WO2012043281A1 - 二軸配向ポリエステルフィルムおよびリニア磁気記録媒体 - Google Patents

二軸配向ポリエステルフィルムおよびリニア磁気記録媒体 Download PDF

Info

Publication number
WO2012043281A1
WO2012043281A1 PCT/JP2011/071238 JP2011071238W WO2012043281A1 WO 2012043281 A1 WO2012043281 A1 WO 2012043281A1 JP 2011071238 W JP2011071238 W JP 2011071238W WO 2012043281 A1 WO2012043281 A1 WO 2012043281A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretching
biaxially oriented
film
polyester film
oriented polyester
Prior art date
Application number
PCT/JP2011/071238
Other languages
English (en)
French (fr)
Inventor
堀江将人
東大路卓司
横山希
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020137007992A priority Critical patent/KR20130117765A/ko
Priority to EP11828841.4A priority patent/EP2623294A4/en
Priority to US13/822,350 priority patent/US8742058B2/en
Priority to JP2011543395A priority patent/JP5796493B2/ja
Priority to CN201180044039.8A priority patent/CN103118853B/zh
Publication of WO2012043281A1 publication Critical patent/WO2012043281A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/123Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/127Acids containing aromatic rings
    • C08G63/13Acids containing aromatic rings containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/123Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/137Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/185Acids containing aromatic rings containing two or more aromatic rings
    • C08G63/187Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
    • C08G63/189Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings containing a naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2017/00Carriers for sound or information
    • B29L2017/008Tapes

Definitions

  • the present invention relates to a biaxially oriented polyester film used for a magnetic recording medium such as a magnetic tape, and a linear magnetic recording medium in which a magnetic layer is provided on the biaxially oriented polyester film.
  • Biaxially oriented polyester films are used in various applications because of their excellent thermal properties, dimensional stability, mechanical properties, and ease of control of surface morphology, especially magnetic recording media that have been strengthened using stretching technology, etc. Its usefulness as a support is well known.
  • magnetic recording media such as magnetic tapes are required to have high density recording in order to reduce the weight, size, and capacity of equipment. For high density recording, it is useful to shorten the recording wavelength and the recording track.
  • the recording track is made small, there is a problem that the recording track is liable to shift due to deformation caused by heat during tape running or temperature and humidity changes during tape storage. Therefore, there is an increasing demand for improvement in characteristics such as dimensional stability in the width direction in the tape use environment and storage environment.
  • the support may be made of an aromatic polyamide having a higher rigidity than the biaxially oriented polyester film in terms of strength and dimensional stability.
  • aromatic polyamide is expensive and expensive, and is not practical as a support for general-purpose recording media.
  • Patent Documents 1 to 3 In order to improve the dimensional stability of the polyester film in the width direction, a technique for reducing the coefficient of humidity expansion by polymer alloy or copolymerization is disclosed (Patent Documents 1 to 3).
  • Patent Documents 1 to 3 have problems such as deterioration of the slit property and easy tearing during film formation.
  • An object of the present invention is to solve the above problems and provide an excellent biaxially oriented polyester film. More specifically, it is intended to provide a biaxially oriented polyester film that has little dimensional change due to environmental changes when used as a magnetic recording medium, is excellent in storage stability, and has good slit properties, film forming properties, and process suitability.
  • the present invention has a ratio ETD / EMD of Young's modulus ETD in the width direction to Young's modulus EMD in the longitudinal direction of 1.5 to 3, and the refractive index nMD in the longitudinal direction and the refractive index in the width direction.
  • N_bar ((nMD + nTD + nZD) / 3) represented by the average of the refractive index nTD and the refractive index nZD in the thickness direction is 1.590 to 1.680
  • the minute melting peak temperature T-meta is 160 to 190 ° C.
  • the width A biaxially oriented polyester film having a humidity expansion coefficient of 0 to 6 ppm /% RH.
  • the present invention it is possible to obtain a biaxially oriented polyester film that has little dimensional change due to environmental changes when used as a magnetic recording medium, excellent storage stability, and good slit properties, film-forming properties, and process suitability.
  • the present inventors have found that it is important to increase the crystallinity of the molecular chain and the high orientation of the amorphous material for the humidity expansion of the biaxially oriented polyester film. It was found that the amount greatly contributed to dimensional stability and process suitability. Furthermore, a special process is used, such as performing transverse stretching in two stages after longitudinal stretching, bringing it closer to the heat setting temperature at which the second-stage stretching is performed last, and increasing the preheating before lateral stretching to actively crystallize. As a result, it was found that a biaxially oriented polyester film excellent in dimensional stability, storage stability, slit property, film forming property, and process suitability when obtained as a magnetic tape was obtained.
  • MD stretching refers to stretching in the film longitudinal direction
  • TD stretching refers to stretching in the film width direction
  • TD stretching 1 and TD stretching 2 are the first-stage stretching and the second-stage stretching, respectively, of two-stage stretching in the film width direction.
  • the polyester film is composed of, for example, a polymer having an acid component or a diol component such as aromatic dicarboxylic acid, alicyclic dicarboxylic acid or aliphatic dicarboxylic acid as a structural unit (polymerization unit). .
  • aromatic dicarboxylic acid component examples include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 4,4′-diphenyldicarboxylic acid.
  • An acid, 4,4′-diphenyl ether dicarboxylic acid, 4,4′-diphenylsulfone dicarboxylic acid, and the like can be used.
  • terephthalic acid, phthalic acid, and 2,6-naphthalenedicarboxylic acid can be preferably used. .
  • alicyclic dicarboxylic acid component for example, cyclohexane dicarboxylic acid or the like can be used.
  • aliphatic dicarboxylic acid component for example, adipic acid, suberic acid, sebacic acid, dodecanedioic acid and the like can be used. These acid components may be used alone or in combination of two or more.
  • diol component examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2'-bis (4'- ⁇ -hydroxyethoxyphenyl) propane and the like can be used, and among them, ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, diethylene glycol and the like can be preferably used, and ethylene glycol is particularly preferable. It can be used. These diol components may be used alone or in combination of two or more.
  • the polyester may be copolymerized with a monofunctional compound such as lauryl alcohol or phenyl isocyanate, or trifunctional such as trimellitic acid, pyromellitic acid, glycerol, pentaerythritol, or 2,4-dioxybenzoic acid.
  • a compound or the like may be copolymerized within a range in which the polymer is substantially linear without excessive branching or crosslinking.
  • the present invention includes aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid, m-hydroxybenzoic acid, and 2,6-hydroxynaphthoic acid, p-aminophenol, and p-aminobenzoic acid. As long as the effect is not impaired, the copolymerization can be further carried out.
  • Polyester is preferably polyethylene terephthalate (PET) or polyethylene naphthalate (polyethylene-2,6-naphthalate, PEN).
  • the main component is preferably polyethylene terephthalate because a process for increasing the crystallite size and the degree of crystal orientation is easy to apply.
  • the main component means 80% by mass or more in the film composition.
  • these copolymers and modified products may be used, and polymer alloys with other thermoplastic resins may be used.
  • the polymer alloy here refers to a polymer multi-component system, which may be a block copolymer by copolymerization or a polymer blend by mixing.
  • a polymer compatible with polyester is preferable, and a polyetherimide resin is preferable.
  • the polyetherimide resin for example, those shown below can be used.
  • R 1 is a divalent aromatic or aliphatic residue having 6 to 30 carbon atoms
  • R 2 is a divalent aromatic residue having 6 to 30 carbon atoms, From the group consisting of an alkylene group having 2 to 20 carbon atoms, a cycloalkylene group having 2 to 20 carbon atoms, and a polydiorganosiloxane group chain-terminated with an alkylene group having 2 to 8 carbon atoms Selected divalent organic group.
  • R ⁇ 1 >, R ⁇ 2 > the aromatic residue shown by the following formula group can be mentioned, for example.
  • N is an integer of 2 or more, preferably an integer of 20 to 50
  • 2,2-bis [4- (2,3-dicarboxyphenoxy) phenyl] propane dianhydride and m-phenylenediamine or the like from the viewpoint of affinity with polyester, cost, melt moldability, and the like
  • a polymer having a repeating unit represented by the following formula, which is a condensate with p-phenylenediamine, is preferred.
  • This polyetherimide is available from SABIC Innovative Plastics under the trade name “Ultem” (registered trademark). These are known as “Ultem 1000”, “Ultem 1010”, “Ultem 1040”, “Ultem 5000”, “Ultem 6000”, “Ultem XH 6050” series, registered names of “Extem XH” and “Extem UH”.
  • the biaxially oriented polyester film of the present invention preferably has a Young's modulus in the longitudinal direction of 3.0 to 4.4 GPa.
  • the Young's modulus in the longitudinal direction is within the above range, when used for a magnetic recording medium, the storage stability due to the tension during storage of the magnetic recording medium is good. In order to make it larger than 4.4 GPa, the MD magnification is increased, and the film-forming property tends to be lowered.
  • the lower limit of the Young's modulus in the longitudinal direction is more preferably 3.5 GPa, still more preferably 4.0 GPa. A more preferable range is 3.5 to 4.4 GPa, and a further preferable range is 4.0 to 4.4 GPa.
  • the Young's modulus in the longitudinal direction can be controlled by the MD stretching ratio. The MD Young's modulus increases as the MD draw ratio increases.
  • the biaxially oriented polyester film of the present invention preferably has a Young's modulus in the width direction of 6.0 to 12 GPa.
  • the upper limit of the Young's modulus in the width direction is more preferably 10 GPa, and still more preferably 9.0 GPa.
  • the lower limit of the Young's modulus in the width direction is more preferably 6.2 GPa, and even more preferably 6.5 GPa.
  • a more preferable range is 6.2 to 10 GPa, and a further preferable range is 6.5 to 9.0 GPa.
  • the Young's modulus in the width direction can be controlled by the temperature and magnification of TD stretching 1 and 2.
  • the total ratio of TD stretching affects, and the higher the total ratio of TD stretching (TD stretching 1 magnification ⁇ TD stretching 2 magnification), the higher the TD Young's modulus.
  • the biaxially oriented polyester film of the present invention has a ratio ETD / EMD of Young's modulus ETD in the width direction and Young's modulus EMD in the longitudinal direction of 1.5 to 3.0.
  • ETD / EMD value When the ETD / EMD value is outside the range of 1.5 to 3.0, it becomes difficult to satisfy all of dimensional stability, storage stability, slit property, and film forming property.
  • a more preferred upper limit is 2.5, and even more preferred is 2.0.
  • a more preferred lower limit is 1.55, and even more preferred is 1.6.
  • a preferred range is 1.55 to 3, more preferably 1.55 to 2.5, and still more preferably 1.6 to 2.0.
  • ETD / EMD can be controlled by the ratio between the total ratio of TD stretching and the MD stretching ratio.
  • the ETD / EMD increases as the ratio of the total ratio of TD stretching to the MD stretching ratio ((TD stretching 1 magnification ⁇ TD stretching 2 magnification) / MD stretching ratio) increases.
  • the biaxially oriented polyester film of the present invention has a humidity expansion coefficient in the width direction of 0 to 6 ppm /% RH.
  • the humidity expansion coefficient is larger than 6 ppm /% RH, when used for a magnetic recording medium, deformation due to a change in humidity increases, and dimensional stability deteriorates.
  • a more preferred upper limit is 5.5 ppm /% RH, and even more preferred is 5 ppm /% RH.
  • a more preferred range is 0 to 5.5 ppm /% RH, and even more preferred is 0 to 5 ppm /% RH.
  • the coefficient of humidity expansion is a physical property affected by the degree of tension of the molecular chain, and can be controlled by the ratio of the ratio of TD stretching 1 to TD stretching 2, and the total ratio of TD stretching, the total ratio of TD stretching, and MD stretching. It can also be controlled by the ratio with the magnification.
  • the greater the ratio of TD stretching 1 and TD stretching 2 (TD stretching 1 magnification / TD stretching 2 magnification), the smaller the humidity expansion coefficient.
  • the higher the total TD stretching ratio (TD stretching 1 magnification ⁇ TD stretching 2 magnification)
  • the humidity expansion coefficient tends to decrease as the ratio of the total TD stretching ratio to the MD stretching ratio ((TD stretching 1 magnification ⁇ TD stretching 2 magnification) / MD stretching ratio) increases.
  • the biaxially oriented polyester film of the present invention has an average refractive index n_bar of 1.590 to 1.680.
  • n_bar is smaller than 1.590, crystallinity and orientation are insufficient, and storage stability and slit property deteriorate.
  • n_bar is larger than 1.680, crystallinity is too advanced due to orientation relaxation, and the dimensional stability is deteriorated.
  • a preferred upper limit is 1.615.
  • a preferred range is 1.590 to 1.615.
  • n_bar can be controlled by the heat setting temperature, and can also be controlled by the conditions of TD stretching 1 and 2.
  • n_bar is a value calculated by ((nMD + nTD + nZD) / 3) where nMD is the refractive index in the longitudinal direction, nTD is the refractive index in the width direction, and nZD is the refractive index in the thickness direction.
  • nMD is the refractive index in the longitudinal direction
  • nTD is the refractive index in the width direction
  • nZD is the refractive index in the thickness direction.
  • the lower n_bar is, the lower the heat setting temperature is.
  • the minute melting peak temperature T-meta immediately below the melting point of the biaxially oriented polyester film of the present invention is 160 to 190 ° C.
  • T-meta can be controlled by the heat setting temperature. When the heat setting temperature is high, T-meta is high.
  • the birefringence ⁇ n of the biaxially oriented polyester film of the present invention is preferably ⁇ 0.060 to ⁇ 0.020.
  • ⁇ n is smaller than ⁇ 0.060, the lateral orientation is too strong, and the slit property is deteriorated. If it is larger than ⁇ 0.020, the lateral orientation is weak and the width dimension stability is deteriorated.
  • a more preferred upper limit is -0.025, and even more preferred is -0.030.
  • a more preferred lower limit is -0.055, and even more preferred is -0.050.
  • a preferred range is -0.060 to -0.025, a more preferred range is -0.055 to -0.025, and even more preferred is -0.050 to -0.030.
  • ⁇ n can be controlled by the ratio between the total ratio of TD stretching and the MD stretching ratio.
  • the birefringence ⁇ n is a value calculated as nMD ⁇ nTD, where nMD is the refractive index in the longitudinal direction and nTD is the refractive index in the width direction.
  • nMD is the refractive index in the longitudinal direction
  • nTD is the refractive index in the width direction.
  • the biaxially oriented polyester film of the present invention preferably has a heat of crystal fusion ⁇ Hm of 30 to 45 J / g. If it is less than 30 J / g, the crystallinity is low, and the slit property may be deteriorated. If it is greater than 45 J / g, crystallization has progressed too much, so that orientation relaxation occurs and dimensional stability tends to deteriorate.
  • a more preferred upper limit is 42 J / g, and even more preferred is 40 J / g.
  • a more preferred lower limit is 32 J / g, and even more preferred is 35 J / g. Most preferably, it is 36 J / g.
  • a more preferable range is 32 to 42 J / g, further preferably 35 to 40 J / g, and more preferably 36 to 40 J / g.
  • the amount of heat of crystal melting ⁇ Hm can be controlled by the heat setting temperature and the conditions of TD stretching 1 and 2. The lower the heat setting temperature, the lower ⁇ Hm. Further, ⁇ Hm decreases as the ratio of the ratio of TD stretching 1 to TD stretching 2 (TD stretching 1 magnification / TD stretching 2 magnification) increases.
  • the crystallite size in the crystal main chain direction by wide-angle X-rays in the width direction is preferably 5.5 to 8.0 nm. If it is smaller than 5.5 nm, the distance between the crystallites becomes long, and the shrinkage of the amorphous chain increases, so that the process suitability tends to deteriorate. In order to make it larger than 8.0 nm, it is necessary to grow the crystal considerably, and the film forming property tends to deteriorate. A more preferable upper limit is 7.8 nm, and a further preferable upper limit is 7.5 nm.
  • a more preferred lower limit is 6.0 nm, and a more preferred lower limit is 6.5 nm.
  • a more preferable range is 6.0 to 7.8 nm, and a further preferable range is 6.5 to 7.5 nm.
  • the crystallite size can be controlled by the preheating temperature of TD stretching 1 in particular. It can be increased by setting the preheating temperature to be equal to or higher than the cold crystallization temperature of the film after MD stretching.
  • the crystal orientation degree in the crystal main chain direction by wide-angle X-rays in the width direction is preferably 0.68 to 0.90. If it is larger than 0.90, the orientation is too strong in the width direction, so that the slit property tends to deteriorate and the stretchability tends to deteriorate. If it is smaller than 0.68, it tends to be deformed in the width direction and the dimensional stability tends to deteriorate.
  • a more preferred upper limit is 0.85, and a more preferred upper limit is 0.80.
  • a more preferred lower limit is 0.70, and a more preferred lower limit is 0.75.
  • a more preferred range is 0.70 to 0.85, and a further preferred range is 0.75 to 0.80.
  • the degree of crystal orientation indicates the arrangement of molecular chains, and can be controlled by the ratio of TD stretching 1 to TD stretching 2, and the total ratio of TD stretching, the total ratio of TD stretching, and the MD stretching ratio. Control is also possible by the ratio.
  • the degree of crystal orientation becomes higher as the ratio of TD stretching 1 to TD stretching 2 (TD stretching 1 magnification / TD stretching 2 magnification) is larger. Further, the higher the total magnification of TD stretching (TD stretching 1 magnification ⁇ TD stretching 2 magnification), the higher the degree of crystal orientation.
  • the crystal orientation degree tends to increase as the ratio of the total ratio of TD stretching to the MD stretching ratio ((TD stretching 1 magnification ⁇ TD stretching 2 magnification) / MD stretching ratio) increases.
  • the heat setting temperature is also involved, and the lower the heat setting temperature, the higher the degree of crystal orientation.
  • the degree of crystal orientation can be increased by making the preheating temperature of TD stretching 1 equal to or higher than the cold crystallization temperature of the film after MD stretching.
  • the biaxially oriented polyester film of the present invention preferably has a rigid amorphous amount ⁇ ra calculated using the temperature modulation DSC method of 38 to 50%. If Xra is greater than 50%, orientation relaxation occurs and dimensional stability tends to deteriorate. If ⁇ ra is less than 38%, structural fixation is insufficient, storage stability tends to deteriorate, and process suitability tends to deteriorate. A more preferable upper limit is 48%, and a further preferable upper limit is 46%. A more preferred lower limit is 40%, and a more preferred lower limit is 42%. A more preferred range is 40 to 48%, and a further preferred range is 42 to 46%.
  • ⁇ ra can be controlled by the heat setting temperature, and increases as the heat setting temperature increases. Moreover, ⁇ ra can be raised by making the preheating temperature of TD extending
  • the thickness of the biaxially oriented polyester film can be appropriately determined according to the use, but is usually preferably 1 to 7 ⁇ m for the linear magnetic recording medium.
  • this thickness is smaller than 1 ⁇ m, electromagnetic conversion characteristics may be deteriorated when a magnetic tape is used.
  • the thickness is larger than 7 ⁇ m, the tape length per one tape is shortened, so that it may be difficult to reduce the size and increase the capacity of the magnetic tape. Therefore, in the case of high-density magnetic recording medium applications, the lower limit of the thickness is preferably 2 ⁇ m, more preferably 3 ⁇ m, and the upper limit is preferably 6.5 ⁇ m, more preferably 6 ⁇ m. A more preferable range is 2 to 6.5 ⁇ m, and a more preferable range is 3 to 6 ⁇ m.
  • the biaxially oriented polyester film of the present invention as described above is produced, for example, as follows.
  • a polyester film constituting a biaxially oriented polyester film is manufactured.
  • polyester pellets are melted using an extruder, discharged from a die, and then cooled and solidified to form a sheet.
  • inert particles are inorganic particles, organic particles such as clay, mica, titanium oxide, calcium carbonate, carion, talc, wet silica, dry silica, colloidal silica, calcium phosphate, barium sulfate, alumina, zirconia, etc., acrylic Examples thereof include organic particles containing acid, styrene resin, thermosetting resin, silicone, imide compound and the like, particles precipitated by a catalyst added at the time of polyester polymerization reaction (so-called internal particles), and the like.
  • additives such as compatibilizers, plasticizers, weathering agents, antioxidants, heat stabilizers, lubricants, antistatic agents, whitening agents, colorants, and the like, provided that they do not inhibit the present invention.
  • Conductive agents, crystal nucleating agents, ultraviolet absorbers, flame retardants, flame retardant aids, pigments, dyes, and the like may be added.
  • the sheet is stretched biaxially in the longitudinal direction and the width direction, and then heat-treated.
  • the stretching step is preferably divided into two or more stages in the width direction. That is, the method of performing re-lateral stretching is preferable because it is easy to obtain a high-strength film optimal as a high dimensional stability magnetic tape.
  • the stretching method is preferably a sequential biaxial stretching method such as stretching in the longitudinal direction and then stretching in the width direction.
  • PET polyethylene terephthalate
  • the present application is not limited to a support using a PET film, but may be one using another polymer.
  • a polyester film is formed using polyethylene-2,6-naphthalenedicarboxylate having a high glass transition temperature or a high melting point, extrusion or stretching may be performed at a temperature higher than the following temperature.
  • Polyethylene terephthalate is manufactured by one of the following processes. (1) Using terephthalic acid and ethylene glycol as raw materials, a low molecular weight polyethylene terephthalate or oligomer is obtained by direct esterification reaction, and then a polymer is obtained by polycondensation reaction using antimony trioxide or titanium compound as a catalyst. Process (2) A process in which dimethyl terephthalate and ethylene glycol are used as raw materials, a low molecular weight product is obtained by transesterification, and then a polymer is obtained by polycondensation reaction using antimony trioxide or a titanium compound as a catalyst.
  • the reaction proceeds even without a catalyst, but in the transesterification reaction, a compound such as manganese, calcium, magnesium, zinc, lithium and titanium is usually used as a catalyst. Further, after the transesterification reaction is substantially completed, a phosphorus compound may be added for the purpose of inactivating the catalyst used in the reaction.
  • inert particles In order to contain the inert particles in the polyester constituting the film, a method in which the inert particles are dispersed in the form of a slurry in a predetermined ratio in ethylene glycol, and this ethylene glycol is added during the polymerization is preferable.
  • inert particles for example, water sol or alcohol sol particles obtained at the time of synthesis of the inert particles are added without drying once, the dispersibility of the particles is good. It is also effective to mix an aqueous slurry of inert particles directly with PET pellets and knead them into PET using a vented biaxial kneading extruder.
  • a master pellet of a high concentration of inert particles is prepared by the above method, and this is diluted with PET that does not substantially contain inert particles during film formation.
  • a method for adjusting the content of the active particles is effective.
  • the obtained PET pellets are dried under reduced pressure at 180 ° C. for 3 hours or more. Then, it is supplied to an extruder heated to 270 to 320 ° C. under a nitrogen stream or under reduced pressure so that the intrinsic viscosity does not decrease. And it extrudes from a slit-shaped die
  • filters for example, filters made of materials such as sintered metal, porous ceramics, sand, and wire mesh, in order to remove foreign substances and altered polymers.
  • a plurality of different polymers are melt laminated using two or more extruders and manifolds or merge blocks.
  • the unstretched film thus obtained is stretched in the machine direction using the difference in peripheral speed of the roll (MD stretching) using a longitudinal stretching machine in which several rolls are arranged, and then Stretching is performed in two stages with a stenter (TD stretching 1 and TD stretching 2). This biaxial stretching method will be described.
  • the stretching temperature for MD stretching varies depending on the type of polymer used, but can be determined using the glass transition temperature Tg of the unstretched film as a guide.
  • the range is preferably from Tg-10 to Tg + 15 ° C., more preferably from Tg ° C. to Tg + 10 ° C.
  • the MD draw ratio is preferably 2.5 to 4.0 times. More preferably, it is 2.8 to 3.8 times, and still more preferably 3.0 to 4.0 times.
  • the polymer structure in the film after MD stretching is important. If the film is oriented too much in the MD direction, the molecular chains are entangled during TD stretching and local stress is generated, so that the film is broken. In order to prevent the local generation of stress, it is important to generate a microcrystalline state that acts as a stress propagation part and to impart an appropriate MD orientation. Microcrystals can be easily determined by crystallinity analysis by thermal analysis (DSC). The crystallinity is preferably 20 to 30%, more preferably 23 to 28%.
  • the orientation parameter after MD stretching can be determined by birefringence ⁇ n, and ⁇ n is preferably 0.011 to 0.015.
  • the cold crystallization temperature is preferably 90 to 100 ° C.
  • the draw ratio of the first-stage drawing is preferably 3.0 to 5.0 times, more preferably 3.2 to 4.5 times, still more preferably 3.5 to 5.0 times. It is 4.0 times.
  • the stretching temperature of TD stretching 1 is preferably in the range of (MD stretching temperature + 5) to (MD stretching temperature + 50) ° C., more preferably in the range of (MD stretching temperature + 10) to (MD stretching temperature + 30) ° C. Do.
  • the draw ratio of TD stretch 2 is preferably 1.05 to 2 times, more preferably 1.1 to 1.8 times, and still more preferably 1.2 to 1.5 times.
  • the stretching temperature of TD stretching 2 is preferably in the range of (TD stretching 1 temperature + 50) to (TD stretching 1 temperature + 100) ° C., more preferably (TD stretching 1 temperature + 60) to (TD stretching 1 temperature + 90) ° C. Do in range.
  • the preheating temperature of TD stretching 1 is equal to or higher than the cold crystallization temperature of the film after MD stretching. More preferably, it is (cold crystallization temperature of film after MD stretching + 3) ° C. or more and (cold crystallization temperature of film after MD stretching + 7) ° C. or less.
  • the preheating temperature of TD stretching 1 is higher than (cold crystallization temperature of the film after MD stretching + 7) ° C.
  • the produced microcrystals grow and the stretchability tends to deteriorate.
  • the crystal orientation is high and the crystallite size grows in the width direction.
  • the degree of crystal orientation greatly contributes to dimensional stability, and the higher the degree of crystal orientation, the better the dimensional stability.
  • the degree of crystal orientation is increased by simply increasing the draw ratio or the like, the molecular chains are distorted and shrinkage due to heat tends to occur. Therefore, problems such as width shrinkage and wrinkles are likely to occur in the process of forming the magnetic tape.
  • the preheating temperature of TD stretching 1 is set to be equal to or higher than the cold crystallization temperature of the film after MD stretching, the crystal size is likely to grow in the width direction. It is considered that the shrinkage due to heat is reduced and the process suitability is improved because the distance between the amorphous chains is shortened.
  • the heat setting temperature is preferably 160 to 200 ° C.
  • the upper limit of the heat setting temperature is more preferably 190 ° C., still more preferably 185 ° C.
  • the lower limit of the heat setting temperature is more preferably 170 ° C, and even more preferably 175 ° C.
  • a more preferable range is 170 to 190 ° C., and further preferably 175 to 185 ° C.
  • the heat setting treatment time is preferably in the range of 0.5 to 10 seconds, and the relaxation rate is preferably 0 to 2%.
  • the ratio between the total ratio of TD stretching and the MD stretching ratio is important.
  • the value of “TD stretching total ratio / MD stretching ratio” is preferably 1.2 to 2.0. More preferably, it is 1.3 to 1.8, and still more preferably 1.4 to 1.6.
  • the value of “total ratio of TD stretching / MD stretching ratio” is an index for controlling the balance of molecular chain orientation, and in particular, it is necessary to increase TD orientation in order to improve dimensional stability. However, even if the total ratio of TD stretching is simply increased, the effect is limited, and the effect of subsequent TD stretching can be maximized by appropriately controlling MD stretching.
  • the degree of molecular chain entanglement required for maximizing the effect of TD orientation by maximizing the degree of molecular chain entanglement required to maximize the TD orientation effect by TD stretching It means to control by. Since the optimum value of the MD stretching ratio is related to the total ratio of the subsequent TD stretching, it can be controlled to a preferable state with the ratio of the stretching ratio as described above.
  • the stretch ratio of TD stretch 1 and TD stretch 2 is important for stable film formation.
  • the value of “TD stretch 1 ratio / TD stretch 2 ratio” is preferably 1.8 to 4.1. More preferably, it is 2.2 to 3.5, and further preferably 2.5 to 3.0.
  • TD stretching is performed in two stages, but it is preferable that the stretching ratio is relatively high in TD stretching 1.
  • the TD stretching 2 needs to be stretched at a higher temperature than the TD stretching 1, and the high temperature makes it easy to form crystals. It is important for the dimensional stability of the present application that the orientation of the amorphous part is high, not the orientation including the crystal generally referred to.
  • the TD stretch 2 When the TD stretch 2 is stretched at a high magnification, the orientation of the amorphous part is relaxed. It becomes easy. That is, it is preferable that the TD stretch 1 is stretched to a high degree to a certain degree and highly oriented, and the TD stretch 2 is stretched to such an extent that the high orientation is not relaxed.
  • heat setting treatment is performed after TD stretching, it is preferable to perform heat treatment at a temperature substantially equal to TD stretching 2 in order to suppress orientation relaxation of the film.
  • the heat setting treatment is preferably TD stretching 2 stretching temperature ⁇ 5 to TD stretching 2 stretching temperature + 5 ° C., more preferably TD stretching 2 stretching temperature ⁇ 3 to TD stretching 2 stretching temperature while relaxing the film in tension or in the width direction.
  • the heat setting treatment is performed at + 3 ° C., more preferably at the same temperature as TD stretching 2.
  • a biaxially oriented polyester film having excellent dimensional stability, storage stability, slit property, and film forming property can be obtained by performing a stretching process of “MD stretching-TD stretching 1-TD stretching 2”. “MD stretching-TD stretching” in which MD stretching and TD stretching are each performed in one stage, and “MD stretching 1-TD stretching 1-MD stretching 2-TD stretching 2” in which MD stretching and TD stretching are alternately performed in two stages. In such a stretching process, it is difficult to obtain a biaxially oriented polyester film having good physical properties.
  • the magnetic recording medium support (biaxially oriented polyester film) obtained as described above is, for example, slit into a width of 0.1 to 3 m, and conveyed at a speed of 20 to 300 m / min and a tension of 50 to 300 N / m.
  • a magnetic paint and a non-magnetic paint are applied to one surface (A surface) with an extrusion coater.
  • the magnetic coating is applied to the upper layer with a thickness of 0.1 to 0.3 ⁇ m, and the nonmagnetic coating is applied to the lower layer with a thickness of 0.5 to 1.5 ⁇ m.
  • the support coated with the magnetic paint and the non-magnetic paint is magnetically oriented and dried at a temperature of 80 to 130 ° C.
  • a back coat is applied to the opposite side (B side) with a thickness of 0.3 to 0.8 ⁇ m, calendered, and wound up.
  • the calendering is performed using a small test calender (steel / nylon roll, 5 stages) at a temperature of 70 to 120 ° C. and a linear pressure of 0.5 to 5 kN / cm. Thereafter, the film is aged at 60 to 80 ° C. for 24 to 72 hours, slit to 1 ⁇ 2 inch (1.27 cm) width, and a pancake is produced. Next, a specific length from this pancake is incorporated into a cassette to obtain a cassette tape type magnetic recording medium.
  • composition of the magnetic paint examples include the following [Composition of magnetic paint] Ferromagnetic metal powder: 100 parts by weight Modified vinyl chloride copolymer: 10 parts by weight Modified polyurethane: 10 parts by weight Polyisocyanate: 5 parts by weight 2-ethylhexyl oleate: 1.5 parts by weight Palmitic acid: 1 Mass parts-Carbon black: 1 part by mass-Alumina: 10 parts by mass-Methyl ethyl ketone: 75 parts by mass-Cyclohexanone: 75 parts by mass-Toluene: 75 parts by mass
  • Carbon black (average particle size 20 nm): 95 parts by mass Carbon black (average particle size 280 nm): 10 parts by mass Alumina: 0.1 parts by mass Modified polyurethane: 20 parts by mass Modified vinyl chloride copolymer: 30 Mass parts-Cyclohexanone: 200 mass parts-Methyl ethyl ketone: 300 mass parts-Toluene: 100 mass parts.
  • the magnetic recording medium is preferably used, for example, for data recording applications, specifically for computer data backup applications (eg, linear tape recording media (LTO4, LTO5, etc.)) and digital image recording applications such as video. Can do.
  • data recording applications specifically for computer data backup applications (eg, linear tape recording media (LTO4, LTO5, etc.)) and digital image recording applications such as video. Can do.
  • computer data backup applications eg, linear tape recording media (LTO4, LTO5, etc.)
  • digital image recording applications such as video. Can do.
  • the characteristic value measurement method and effect evaluation method in the present invention are as follows.
  • Young's modulus The Young's modulus of a film is measured according to ASTM-D882 (1997). Instron type tensile tester is used and the conditions are as follows. The average value of the five measurement results is defined as the Young's modulus in the present invention.
  • ⁇ Measuring device Model 5848, an ultra-precision material testing machine manufactured by Instron ⁇ Sample size: ⁇ Measurement of Young's modulus in the film width direction Film length direction 2 mm x film width direction 12.6 mm (The gripping distance is 8mm in the film width direction) ⁇ Measurement of Young's modulus in the longitudinal direction of the film 2 mm in the film width direction ⁇ 12.6 mm in the film longitudinal direction (Grip interval is 8mm in the longitudinal direction of the film) ⁇ Tensile speed: 1 mm / min ⁇ Measurement environment: Temperature 23 ° C., humidity 65% RH -Number of measurements: 5 times.
  • Humidity expansion coefficient in the width direction Measurement is performed under the following conditions in the width direction (TD direction) of the film, and an average value of three measurement results is defined as a humidity expansion coefficient in the present invention.
  • ⁇ Measuring device Thermomechanical analyzer TMA-50 manufactured by Shimadzu (humidity generator: humidity control device HC-1 manufactured by ULVAC-RIKO) Sample size: 10 mm in the film longitudinal direction x 12.6 mm in the film width direction
  • the film was humidified to 80% RH over 40 minutes and held at 80% RH for 6 hours, and then the film L ′ (mm) was measured.
  • the dimensional change ⁇ L (mm) L′ ⁇ L in the film width direction is obtained, and the humidity expansion coefficient (ppm /% RH) is calculated from the following equation.
  • Humidity expansion coefficient (ppm /% RH) 10 6 ⁇ ⁇ ( ⁇ L / 12.6) / (80-40) ⁇ .
  • Tm Melting point
  • T-meta minute melting peak temperature
  • ⁇ Hm heat of fusion
  • Tm melting point
  • T-meta minute endothermic peak temperature appearing slightly on the low temperature side of Tm
  • the amount of heat calculated from the peak area of Tm is defined as the heat of fusion ⁇ Hm.
  • Glass transition temperature (Tg) Specific heat is measured with the following equipment and conditions, and determined according to JIS-K7121 (1987).
  • ⁇ Device Temperature modulation DSC manufactured by TA Instrument ⁇ Measurement conditions ⁇ Heating temperature: 270 to 570K (RCS cooling method) ⁇ Temperature calibration: Melting point of high purity indium and tin ⁇ Temperature modulation amplitude: ⁇ 1K ⁇ Temperature modulation period: 60 seconds ⁇ Temperature increase step: 5K ⁇ Sample weight: 5mg
  • Sample container Aluminum open container (22 mg)
  • Reference container Aluminum open container (18mg)
  • Modified polyurethane 10 parts by mass (number average molecular weight: 25,000, sulfonic acid group content: 1.2 ⁇ 10 ⁇ 4 equivalent / g, glass transition point: 45 ° C.)
  • Modified vinyl chloride copolymer 10 parts by mass (average polymerization degree: 280, epoxy group content: 3.1% by mass, sulfonic acid group content: 8 ⁇ 10 ⁇ 5 equivalent / g)
  • -Methyl ethyl ketone 75 parts by mass-Cyclohexanone: 75 parts by mass-Toluene: 75 parts by mass-Polyisocyanate: 5 parts by mass (Coronate L (trade name) manufactured by Nippon Polyurethane Industry Co., Ltd.)
  • 2-ethylhexyl oleate (lubricant) 1.5 parts by mass Palmitic acid (lubricant): 1 part by mass
  • Carbon black 95 parts by mass (antistatic agent, average primary particle size 0.018 ⁇ m) Carbon black: 10 parts by mass (antistatic agent, average primary particle size 0.3 ⁇ m)
  • Alumina 0.1 part by mass ( ⁇ alumina, average particle size: 0.18 ⁇ m)
  • Modified polyurethane 20 parts by mass (number average molecular weight: 25,000, sulfonic acid group content: 1.2 ⁇ 10 ⁇ 4 equivalent / g, glass transition point: 45 ° C.)
  • Modified vinyl chloride copolymer 30 parts by mass (average polymerization degree: 280, epoxy group content: 3.1% by mass, sulfonic acid group content: 8 ⁇ 10 ⁇ 5 equivalent / g)
  • Cyclohexanone 200 parts by mass Methyl ethyl ketone: 300 parts by mass Toluene: 100 parts by mass
  • the tape is taken out from the cassette tape cartridge, and the sheet width measuring device prepared as shown in FIG. 1 is put into the following constant temperature and humidity chamber, and the width dimension is measured.
  • the sheet width measuring device shown in FIG. 1 is a device that measures the width dimension using a laser, and fixes the magnetic tape 9 to the load detector 3 while setting the magnetic tape 9 on the free rolls 5-8. A weight 4 serving as a load is hung on.
  • this magnetic tape 9 is irradiated with the laser beam 10
  • the laser beam 10 oscillated linearly in the width direction from the laser oscillator 1 is blocked only by the portion of the magnetic tape 9, enters the light receiving unit 2, and the blocked laser beam
  • the width is measured as the width of the magnetic tape.
  • the average value of the three measurement results is defined as the width in the present invention.
  • ⁇ Measuring device Sheet width measuring device manufactured by Ayaha Engineering Co., Ltd.
  • Laser oscillator 1 and light receiving unit 2 Laser dimension measuring device LS-5040 manufactured by Keyence Corporation -Load detector 3: Load cell CBE1-10K manufactured by NMB ⁇ Constant temperature and humidity chamber: SE-25VL-A manufactured by Kato Co., Ltd.
  • Load 4 Weight (longitudinal direction) ⁇ Sample size: width 1/2 inch x length 250 mm -Holding time: 5 hours-Number of measurements: 3 measurements.
  • the width dimension (l A , l B ) is measured under two conditions, and the dimensional change rate is calculated by the following equation. Specifically, dimensional stability is evaluated according to the following criteria. By measuring the lapse of 24 hours after l A in A conditions, measuring the l B after a lapse of 24 hours then B conditions. Three points were measured: a sample cut from the 30 m point from the beginning of the tape cartridge, a sample cut from the 100 m point, and a sample cut from the 170 m point. Evaluation C is rejected.
  • a condition: 10 ° C, 10% RH, tension 0.8N B condition: 29 ° C, 80% RH, tension 0.5N ⁇ Width dimensional change rate (ppm) 10 6 ⁇ ((l B -l A ) / l A ) AAA: Maximum width dimensional change rate is less than 450 (ppm) AA: Maximum width dimensional change rate is 450 (ppm) or more and less than 500 (ppm) A: Maximum width dimensional change rate is 500 (ppm) or more Less than 600 (ppm) B: The maximum value of the width dimensional change rate is 600 (ppm) or more and less than 700 (ppm) C: The maximum value of the width dimensional change rate is 700 (ppm) or more.
  • Width dimensional change rate (ppm) 10 6 ⁇ (
  • Crystallite size The crystallite size in the molecular chain main chain direction ( ⁇ 105) of polyethylene terephthalate in the film width direction (TD direction) was calculated using the following calculation formula after measurement by the following scanning method.
  • ⁇ Scanning method 2 ⁇ - ⁇ step scanning
  • Measurement direction Through-TD
  • Measurement step 0.05 °
  • Counting time 5 seconds
  • Wavelength (0.15418) ⁇ e: half width of diffraction peak
  • Crystal orientation After the measurement by the following scanning method, the degree of crystal orientation in the molecular chain main chain direction ( ⁇ 105) of polyethylene terephthalate in the film width direction (TD direction) was calculated using the following calculation formula.
  • the rigid amorphous amount ( ⁇ ra) [%] 100 ⁇ (- c + ⁇ ma).
  • the complete crystal melting heat amount of PET and the complete amorphous specific heat amount of PET are used, while the PEN content exceeds 50% by mass in the film composition.
  • the heat of complete melting of PEN and the heat of specific heat of PEN are used.
  • PET and PEN are the same amount (50 mass%), since a crystal
  • a film slit to a width of 1 m is conveyed with a tension of 200 N, and a magnetic coating and a non-magnetic coating having the following composition are applied to one surface (surface A) of the support by an extrusion coater (the upper layer is The magnetic coating is applied with a coating thickness of 0.2 ⁇ m, the lower layer is a nonmagnetic coating with a coating thickness of 0.9 ⁇ m), magnetically oriented, and dried at a drying temperature of 100 ° C.
  • a back coat having the following composition was applied to the opposite surface (B surface), and then at a temperature of 85 ° C.
  • the shrinkage in the width direction was 10 mm or more, less than 20 mm, or wrinkles occurred, and coating unevenness was observed in part of the magnetic layer, the lower layer, and the backcoat layer.
  • C The shrinkage in the width direction was 20 mm or more, or wrinkles were severely generated, and the magnetic layer, the lower layer, and the back coat layer could not be applied.
  • polyethylene terephthalate is expressed as PET
  • polyethylene naphthalate is expressed as PEN
  • polyetherimide is expressed as PEI.
  • the reaction system was gradually heated from 230 ° C. to 290 ° C. and the pressure was reduced to 0.1 kPa.
  • the time to reach the final temperature and final pressure was both 60 minutes.
  • the reaction was carried out for 2 hours (3 hours after the start of polymerization), and the agitation torque of the polymerization apparatus was a predetermined value (specific values differ depending on the specifications of the polymerization apparatus.
  • the value indicated by polyethylene terephthalate having an intrinsic viscosity of 0.62 was a predetermined value).
  • the reaction product is transferred to a polymerization apparatus, heated to a temperature of 290 ° C., and subjected to a polycondensation reaction under a high vacuum of 30 Pa.
  • the value indicated by polyethylene-2,6-naphthalate with an intrinsic viscosity of 0.65 in this polymerization apparatus was a predetermined value). Therefore, the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, discharged into cold water in the form of a strand, and immediately cut to obtain PEN pellet X ′ having an intrinsic viscosity of 0.65.
  • Example 1 Extruders E and F2 were used. After 80 parts by weight of PET pellets X and 20 parts by weight of PET pellets Z 0.06 obtained in Reference Examples 1 and 2 were dried at 180 ° C. for 3 hours under reduced pressure, they were supplied to an extruder E heated to 280 ° C. After drying 84 parts by weight of PET pellets X, 15 parts by weight of PET pellets Z 0.3 and 1 part by weight of PET pellets Z 0.8 obtained in Reference Examples 1, 3, and 4 at 180 ° C. for 3 hours, 280 It was supplied to the extruder F heated to ° C.
  • the obtained unstretched laminated film was preheated with a heated roll group, then stretched 3.3 times at a temperature of 90 ° C. (MD stretching), and cooled with a roll group at a temperature of 25 ° C. to be uniaxially stretched.
  • a film was obtained. While holding both ends of the obtained uniaxially stretched film with clips, the tenter is guided to a preheating zone at a temperature of 85 ° C. in the tenter, and then continuously in the heating zone at a temperature of 105 ° C. in the width direction (TD direction) perpendicular to the longitudinal direction.
  • the film was stretched 3.7 times (TD stretching 1), and further stretched 1.3 times in the width direction in a heating zone at a temperature of 180 ° C. (TD stretching 2).
  • TD stretching 1 a heat treatment was performed for 5 seconds at a temperature of 180 ° C. in a heat treatment zone in the tenter, and a relaxation treatment was further performed in the 1% width direction at a temperature of 180 ° C.
  • the film edge was removed, and the film was wound on a core to obtain a biaxially stretched polyester film having a thickness of 5 ⁇ m.
  • Example 2 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film forming conditions were changed as shown in the table. When the obtained biaxially oriented polyester film was evaluated, as shown in the table, the Young's modulus in the MD direction was low when used as a magnetic tape. It had excellent properties.
  • Example 3 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film forming conditions were changed as shown in the table.
  • the Young's modulus in the MD direction was high when used as a magnetic tape, but the film stability was slightly inferior in terms of dimensional stability, storage stability, and slit. It had excellent properties.
  • Example 4 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film forming conditions were changed as shown in the table.
  • the storage stability, slit property, and film formation were slightly inferior in dimensional stability because of its low Young's modulus in the TD direction when used as a magnetic tape. It had excellent properties.
  • Example 5 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film forming conditions were changed as shown in the table.
  • the Young's modulus in the TD direction was high when used as a magnetic tape, but the slit stability and film forming property were slightly inferior, but the dimensional stability and storage stability It had excellent properties.
  • Example 6 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film forming conditions were changed as shown in the table.
  • the crystallinity was low when used as a magnetic tape, but the storage stability and slitting properties were slightly inferior, but the dimensional stability and film forming properties were excellent. Had the characteristics.
  • Example 7 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film forming conditions were changed as shown in the table.
  • the obtained biaxially oriented polyester film was evaluated, as shown in the table, because of its high crystallinity when used as a magnetic tape, it is slightly inferior in dimensional stability but excellent in storage stability, slit property, and film forming property. Had the characteristics.
  • Example 8 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film forming conditions were changed as shown in the table.
  • the average refractive index n_bar was low when used as a magnetic tape, but the film stability was slightly inferior, but the dimensional stability, storage stability, slit property It had excellent characteristics.
  • Example 9 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film forming conditions were changed as shown in the table.
  • the average refractive index n_bar is high, but the storage stability, slit property, film forming property are slightly inferior in dimensional stability. It had excellent characteristics.
  • Example 10 In the extruder E heated to 295 ° C. using two extruders E and F, 70 parts by mass of PET pellets X obtained in Reference Examples 1, 2, and 5, 20 parts by mass of PET pellets Z 0.06 , blended chips (I) Extruder F supplied after drying 10 parts by weight at 180 ° C. under reduced pressure for 3 hours and similarly heated to 295 ° C. is 74 parts by weight of PET pellets X obtained in Reference Examples 1, 3, 4, and 5. Then, 15 parts by mass of PET pellets Z 0.3, 1 part by mass of PET pellets Z 0.8 and 10 parts by mass of blend chip (I) were dried at 180 ° C. under reduced pressure for 3 hours and then supplied.
  • Example 11 PEN pellets X ′ and PEN obtained in Reference Examples 6, 7, 8, and 9 using PET pellets X, PET pellets Z 0.06 , PET pellets Z 0.3 , and PET pellets Z 0.8 used in Example 1.
  • Example 1 except that the pellets Z ′ 0.06 , the PEN pellets Z ′ 0.3 and the PEN pellets Z ′ 0.8 were changed to produce a laminated unstretched film and the film forming conditions were changed as shown in Table 1.
  • Table 1 In the same manner as above, a biaxially oriented polyester film was obtained. When the obtained biaxially oriented polyester film was evaluated, as shown in the table, it had slightly excellent characteristics in dimensional stability, storage stability, slit property, and film forming property.
  • Example 12 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film forming conditions were changed as shown in the table.
  • the obtained biaxially oriented polyester film was obtained by increasing the preheating temperature of TD stretching 1 to 95 ° C. higher than the cold crystallization temperature (92 ° C.) of the film after MD stretching.
  • Example 13 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film forming conditions were changed as shown in the table.
  • the resulting biaxially oriented polyester film has a larger crystallite size in the molecular chain main chain direction in the width direction because the preheating temperature of TD stretching 1 is higher than the cold crystallization temperature of the film after MD stretching.
  • the table when used as a magnetic tape, it had excellent dimensional stability, storage stability, slitting properties, film-forming properties, and process suitability. .
  • Example 14 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film forming conditions were changed as shown in the table.
  • the resulting biaxially oriented polyester film is slightly inferior in film formation due to the preheating temperature of TD stretching 1 being excessively higher than the cold crystallization temperature of the film after MD stretching, but the molecular chain main chain direction in the width direction
  • the crystallite size is large, the degree of crystal orientation is high, the amount of rigid amorphous is increased, and as shown in the table, when used as a magnetic tape, it has excellent dimensional stability, storage stability, slit property, and process suitability Had characteristics.
  • Example 15 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film forming conditions were changed as shown in the table.
  • the obtained biaxially oriented polyester film has a slightly lower effect of growing the crystallite size in the molecular chain main chain direction in the width direction because the preheating temperature of TD stretching 1 is slightly lower than the cold crystallization temperature of the film after MD stretching.
  • the table although it was slightly inferior in process suitability when used as a magnetic tape, it had dimensional stability, storage stability, slit property, film forming property, and excellent characteristics.
  • Example 16 A biaxially oriented polyester film was obtained in the same manner as in Example 11 except that the film forming conditions were changed as shown in the table. Since polyethylene naphthalate has a high degree of crystallinity of the film after MD stretching, even if the preheating temperature of TD stretching 1 is higher than the cold crystallization temperature of the film after MD stretching, the film forming property deteriorates and the crystallization progresses. As shown in the table, orientation relaxation occurred, and although it was slightly superior in process suitability when used as a magnetic tape, it had characteristics slightly inferior in dimensional stability, storage stability, slit property, and film forming property.
  • Example 17 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched under the film forming conditions shown in the table. Since the heat setting temperature was higher than the TD stretching 2 temperature, the biaxially oriented polyester film obtained because the average refractive index n_bar was outside the most preferable range of the present application was slightly inferior in dimensional stability.
  • Example 1 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched under the film forming conditions shown in the table. Since the ratio between the TD Young's modulus and the MD Young's modulus was small, the film-forming property was deteriorated, and the obtained biaxially oriented polyester film was greatly inferior in dimensional stability.
  • Example 2 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched under the film forming conditions shown in the table. Since the ratio of the TD Young's modulus and the MD Young's modulus is large, the humidity expansion coefficient is increased, the film forming property is deteriorated, and the obtained biaxially oriented polyester film is greatly inferior in storage stability and slit property.
  • Example 3 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched under the film forming conditions shown in the table. Since the ratio of TD stretch 1 magnification and TD stretch 2 magnification (TD stretch 1 magnification / TD stretch 2 magnification) is small, the coefficient of humidity expansion becomes large, the film forming property deteriorates, and the obtained biaxially oriented polyester film is dimensionally stable. The nature was greatly inferior.
  • Example 4 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched under the film forming conditions shown in the table. Since the heat setting temperature was lower than the TD stretching 2 temperature, the biaxially oriented polyester film obtained because the average refractive index n_bar was outside the scope of the present application was inferior in dimensional stability and slit property.
  • Example 5 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched under the film forming conditions shown in the table.
  • Example 6 A biaxially oriented polyester film was obtained in the same manner as in Example 1 except that the film was stretched under the film forming conditions shown in the table.
  • Laser oscillator 2 Light receiving unit 3: Load detector 4: Load 5: Free roll 6: Free roll 7: Free roll 8: Free roll 9: Magnetic tape 10: Laser light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

 本発明は、幅方向のヤング率と長手方向のヤング率との比が1.5~3、長手方向、幅方向および厚み方向の屈折率の平均値が1.590~1.680、微小融解ピーク温度が160~190℃、並びに幅方向の湿度膨張係数が0~6ppm/%RHの二軸配向ポリエステルフィルムである。 本発明により、磁気記録媒体とした際に環境変化による寸法変化が少なく、保存安定性に優れ、スリット性、製膜性および工程適性が良好である二軸配向ポリエステルフィルムが提供される。

Description

二軸配向ポリエステルフィルムおよびリニア磁気記録媒体
 本発明は、磁気テープなどの磁気記録媒体に用いられる二軸配向ポリエステルフィルムと、該二軸配向ポリエステルフィルム上に磁性層を設けたリニア磁気記録媒体とに関する。
 二軸配向ポリエステルフィルムはその優れた熱特性、寸法安定性、機械特性および表面形態の制御のしやすさから各種用途に使用されており、特に延伸技術を用いて高強度化した磁気記録媒体などの支持体としての有用性がよく知られている。近年、磁気テープなどの磁気記録媒体は、機材の軽量化、小型化、大容量化のため高密度記録化が要求されている。高密度記録化のためには、記録波長を短くし、記録トラックを小さくすることが有用である。しかしながら、記録トラックを小さくすると、テープ走行時における熱やテープ保管時の温湿度変化による変形により、記録トラックのずれが起こりやすくなるという問題がある。したがって、テープの使用環境および保管環境での幅方向の寸法安定性といった特性の改善に対する要求がますます強まっている。
 この観点から、支持体には、強度、寸法安定性の点で二軸配向ポリエステルフィルムよりも優れた剛性の高い芳香族ポリアミドが用いられることがある。しかしながら芳香族ポリアミドは高価格でコストがかかり、汎用記録媒体の支持体としては現実的ではない。
 ポリエステルフィルムの幅方向の寸法安定性を向上させるためにポリマーアロイや共重合などにより湿度膨張係数を低減する技術が開示されている(特許文献1~3)。
特開2010-37448号公報 特開2010-31116号公報 特開2009-221277号公報
 しかしながら、特許文献1~3で開示されている技術では、スリット性が悪化したり、製膜時に破れやすいなどの問題がある。
 本発明の目的は、上記の問題を解決し、優れた二軸配向ポリエステルフィルムを提供することにある。詳しくは、磁気記録媒体とした際に環境変化による寸法変化が少なく、保存安定性に優れ、スリット性と製膜性、工程適性が良好である二軸配向ポリエステルフィルムを提供することにある。
 上記課題を解決するための本発明は、幅方向のヤング率ETDと長手方向のヤング率EMDとの比ETD/EMDが1.5~3であり、長手方向の屈折率nMDと幅方向の屈折率nTDと厚み方向の屈折率nZDとの平均で示されるn_bar((nMD+nTD+nZD)/3)が1.590~1.680であり、微小融解ピーク温度T-metaが160~190℃であり、幅方向の湿度膨張係数が0~6ppm/%RHの二軸配向ポリエステルフィルムである。
 本発明により、磁気記録媒体とした際に環境変化による寸法変化が少なく、保存安定性に優れ、スリット性、製膜性および工程適性が良好である二軸配向ポリエステルフィルムを得ることができる。
幅寸法を測定する際に用いるシート幅測定装置の模式図である。
 本発明者らは鋭意検討した結果、二軸配向ポリエステルフィルムの湿度膨張には分子鎖の結晶性と非晶の高配向化が重要であること、さらに結晶子サイズや結晶配向度、剛直非晶量が寸法安定性や工程適性に大きく寄与していることを見出した。さらに、縦延伸後に2段階で横延伸を行う、2段目の延伸を最後に行う熱固定処理温度に近づける、横延伸前の予熱を高温化して積極的に結晶化させるなど特殊なプロセスを用いることで磁気テープとした際に寸法安定性・保存安定性・スリット性・製膜性・工程適性に優れた二軸配向ポリエステルフィルムが得られることを見出した。
 以下の説明において、長手方向、MDおよび縦方向は同じ意味で用い、幅方向、TDおよび横方向は同じ意味で用いる。MD延伸とはフィルム長手方向の延伸のことであり、TD延伸とはフィルム幅方向の延伸のことである。TD延伸1、TD延伸2とは、それぞれフィルム幅方向の2段階の延伸の1段目の延伸、2段目の延伸のことである。
 本発明において、ポリエステルフィルムとは、例えば、芳香族ジカルボン酸、脂環族ジカルボン酸または脂肪族ジカルボン酸などの酸成分やジオール成分を構成単位(重合単位)とするポリマーで構成されたものである。
 芳香族ジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸等を用いることができ、なかでも好ましくは、テレフタル酸、フタル酸、2,6-ナフタレンジカルボン酸を用いることができる。脂環族ジカルボン酸成分としては、例えば、シクロヘキサンジカルボン酸等を用いることができる。脂肪族ジカルボン酸成分としては、例えば、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸等を用いることができる。これらの酸成分は一種のみを用いてもよく、二種以上を併用してもよい。
 ジオール成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、2,2’-ビス(4’-β-ヒドロキシエトキシフェニル)プロパン等を用いることができ、なかでも、エチレングリコール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、ジエチレングリコール等を好ましく用いることができ、特に好ましくは、エチレングリコール等を用いることができる。これらのジオール成分は一種のみを用いてもよく、二種以上を併用してもよい。
 ポリエステルには、ラウリルアルコール、イソシアン酸フェニル等の単官能化合物が共重合されていてもよいし、トリメリット酸、ピロメリット酸、グリセロール、ペンタエリスリトール、2,4-ジオキシ安息香酸、等の3官能化合物などが、過度に分枝や架橋をせずポリマーが実質的に線状である範囲内で共重合されていてもよい。さらに酸成分、ジオール成分以外に、p-ヒドロキシ安息香酸、m-ヒドロキシ安息香酸、2,6-ヒドロキシナフトエ酸などの芳香族ヒドロキシカルボン酸およびp-アミノフェノール、p-アミノ安息香酸などを本発明の効果が損なわれない程度の少量であればさらに共重合せしめることができる。
 ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(ポリエチレン-2,6-ナフタレート、PEN)が好ましい。特に、結晶子サイズや結晶配向度を高めるプロセスが適用しやすいことから主成分はポリエチレンテレフタレートが好ましい。ここで、主成分とはフィルム組成中80質量%以上であることをいう。また、これらの共重合体や変性体でもよく、他の熱可塑性樹脂とのポリマーアロイでもよい。ここでいうポリマーアロイとは高分子多成分系のことであり、共重合によるブロックコポリマーであってもよいし、混合などによるポリマーブレンドでもよい。特にポリエステルと相溶するポリマーが好ましく、ポリエーテルイミド樹脂などが好ましい。ポリエーテルイミド樹脂としては、例えば以下で示すものを用いることができる。
Figure JPOXMLDOC01-appb-C000001
 (ただし、上記式中Rは、6~30個の炭素原子を有する2価の芳香族または脂肪族残基、Rは6~30個の炭素原子を有する2価の芳香族残基、2~20個の炭素原子を有するアルキレン基、2~20個の炭素原子を有するシクロアルキレン基、および2~8個の炭素原子を有するアルキレン基で連鎖停止されたポリジオルガノシロキサン基からなる群より選択された2価の有機基である。)
 上記R、Rとしては、例えば、下記式群に示される芳香族残基を挙げることができる。
Figure JPOXMLDOC01-appb-C000002
 (nは2以上の整数、好ましくは20~50の整数)
 本発明では、ポリエステルとの親和性、コスト、溶融成形性等の観点から、2,2-ビス[4-(2,3-ジカルボキシフェノキシ)フェニル]プロパン二無水物とm-フェニレンジアミン、またはp-フェニレンジアミンとの縮合物である、下記式で示される繰り返し単位を有するポリマーが好ましい。
Figure JPOXMLDOC01-appb-C000003
または
Figure JPOXMLDOC01-appb-C000004
 このポリエーテルイミドは、“ウルテム”(登録商標)の商品名で、SABICイノベーティブプラスチック社より入手できる。これらは、「Ultem1000」、「Ultem1010」、「Ultem1040」、「Ultem5000」、「Ultem6000」および「UltemXH6050」シリーズや「Extem XH」および「Extem UH」の登録商標名等で知られている。
 本発明の二軸配向ポリエステルフィルムは、長手方向のヤング率が3.0~4.4GPaが好ましい。長手方向のヤング率が上記範囲内であると、磁気記録媒体用に用いた場合に磁気記録媒体の保管時の張力による保存安定性が良好となる。4.4GPaよりも大きくするにはMD倍率を上げることになり、製膜性が低下しやすい。長手方向のヤング率の下限は、より好ましくは3.5GPa、さらに好ましくは4.0GPaである。より好ましい範囲は3.5~4.4GPa、さらに好ましい範囲は4.0~4.4GPaである。長手方向のヤング率はMD延伸の倍率で制御することができる。MD延伸倍率が高いほどMDヤング率が高くなる。
 本発明の二軸配向ポリエステルフィルムは、幅方向のヤング率が6.0~12GPaであることが好ましい。幅方向のヤング率が上記範囲内であると、磁気記録媒体用に用いた場合に磁気記録媒体の記録再生時の環境変化による寸法安定性が良好となる。幅方向のヤング率の上限は、より好ましくは10GPa、さらに好ましくは9.0GPaである。幅方向のヤング率の下限は、より好ましくは6.2GPa、さらに好ましくは6.5GPaである。より好ましい範囲は6.2~10GPa、さらに好ましい範囲は6.5~9.0GPaである。幅方向のヤング率はTD延伸1、2の温度や倍率によって制御することができる。特にTD延伸のトータル倍率が影響し、TD延伸のトータル倍率(TD延伸1倍率×TD延伸2倍率)が高いほどTDヤング率が高くなる。
 本発明の二軸配向ポリエステルフィルムは、幅方向のヤング率ETDと長手方向のヤング率EMDの比ETD/EMDが1.5~3.0である。ETD/EMDの値が1.5~3.0の範囲外になると寸法安定性や保存安定性、スリット性、製膜性のすべてを満たすことが難しくなる。より好ましい上限は2.5であり、さらに好ましくは2.0である。より好ましい下限は1.55であり、さらに好ましくは1.6である。好ましい範囲は1.55~3であり、より好ましくは1.55~2.5であり、さらに好ましくは1.6~2.0である。ETD/EMDはTD延伸のトータル倍率とMD延伸倍率との比によって制御することができる。TD延伸のトータル倍率とMD延伸倍率との比((TD延伸1倍率×TD延伸2倍率)/MD延伸倍率)が大きいほどETD/EMDは大きくなる。
 本発明の二軸配向ポリエステルフィルムは、幅方向の湿度膨張係数が0~6ppm/%RHである。湿度膨張係数が6ppm/%RHより大きいと磁気記録媒体用に用いた場合、湿度変化による変形が大きくなり、寸法安定性が悪化する。より好ましい上限は5.5ppm/%RHであり、さらに好ましくは5ppm/%RHである。より好ましい範囲は0~5.5ppm/%RHであり、さらに好ましくは0~5ppm/%RHである。湿度膨張係数は分子鎖の緊張度合いが影響する物性であり、TD延伸1とTD延伸2の倍率比によって制御することができ、また、TD延伸のトータル倍率や、TD延伸のトータル倍率とMD延伸倍率との比によっても制御できる。TD延伸1とTD延伸2の倍率比(TD延伸1倍率/TD延伸2倍率)が大きいほど湿度膨張係数は小さくなる。また、トータルのTD延伸倍率(TD延伸1倍率×TD延伸2倍率)が高いほど湿度膨張係数は小さくなる。また、TD延伸のトータル倍率とMD延伸倍率との比((TD延伸1倍率×TD延伸2倍率)/MD延伸倍率)が大きいほど湿度膨張係数は小さくなる傾向となる。
 本発明の二軸配向ポリエステルフィルムは、平均屈折率n_barが1.590~1.680である。n_barが1.590よりも小さいと結晶性や配向が不十分であり、保存安定性やスリット性が悪化する。n_barが1.680より大きいと配向緩和により結晶性が進みすぎており、寸法安定性が悪化する。好ましい上限は1.615である。好ましい範囲は1.590~1.615である。n_barは熱固定温度で制御することができ、また、TD延伸1、2の条件によっても制御することができる。なお、n_barは、長手方向の屈折率をnMDとし、幅方向の屈折率をnTDとし、厚み方向の屈折率をnZDとしたとき、((nMD+nTD+nZD)/3)にて算出される値をいう。熱固定温度が低いほどn_barは低くなる。また、TD延伸1とTD延伸2の倍率比(TD延伸1倍率/TD延伸2倍率)が大きいほどn_barは小さくなる。
 本発明の二軸配向ポリエステルフィルムの融点直下の微小融解ピーク温度T-metaは160~190℃である。160℃より小さい場合、熱量不足による構造固定が不十分であり、保存安定性が悪化する。190℃より大きい場合は、過度の熱量により配向緩和が起こり寸法安定性が悪化する。より好ましい上限は188℃であり、さらに好ましくは185℃である。より好ましい下限は170℃であり、さらに好ましくは175℃である。より好ましい範囲は170~188℃であり、さらに好ましくは175~185℃である。T-metaは熱固定温度で制御することができる。熱固定温度が高いとT-metaが高くなる。
 本発明の二軸配向ポリエステルフィルムの複屈折Δnは-0.060~-0.020が好ましい。Δnが-0.060より小さいと横配向が強すぎるためスリット性が悪化する。-0.020より大きいと横配向が弱く幅寸法安定性が悪化する。より好ましい上限は-0.025であり、さらに好ましくは-0.030である。より好ましい下限は-0.055、さらに好ましくは-0.050である。好ましい範囲は-0.060~-0.025であり、より好ましい範囲は-0.055~-0.025であり、さらに好ましくは-0.050~-0.030である。ΔnはTD延伸のトータル倍率とMD延伸倍率との比によって制御することができる。なお、複屈折Δnは、長手方向の屈折率をnMDとし、幅方向の屈折率をnTDとしたとき、nMD-nTDとして算出される値をいう。TD延伸のトータル倍率とMD延伸倍率との比((TD延伸1倍率×TD延伸2倍率)/MD延伸倍率)が小さいほど、Δnは大きくなる傾向にある。
 本発明の二軸配向ポリエステルフィルムの結晶融解熱量ΔHmは30~45J/gであることが好ましい。30J/gよりも小さいと結晶化度が低く、スリット性が悪化することがある。45J/gよりも大きいと結晶化が進みすぎているため配向緩和が起こり寸法安定性が悪化しやすい。より好ましい上限は42J/gであり、さらに好ましくは40J/gである。より好ましい下限は32J/gであり、さらに好ましくは35J/gである。最も好ましくは36J/gである。より好ましい範囲は32~42J/g、さらに好ましくは35~40J/g、より好ましくは36~40J/gである。結晶融解熱量ΔHmは熱固定温度やTD延伸1、2の条件で制御することができる。熱固定温度が低いほどΔHmは低くなる。また、TD延伸1とTD延伸2との倍率比(TD延伸1倍率/TD延伸2倍率)が大きいほどΔHmは小さくなる。
 本発明の二軸配向ポリエステルフィルムがポリエチレンテレフタレートを主成分とするとき、幅方向の広角X線による結晶主鎖方向の結晶子サイズが5.5~8.0nmであることが好ましい。5.5nmよりも小さいと結晶子間の距離が長くなり、非晶鎖の縮み量が大きくなるため工程適性が悪化する傾向にある。8.0nmより大きくするには結晶がかなり成長させる必要があり、製膜性が悪化する傾向にある。より好ましい上限は7.8nmであり、さらに好ましい上限は7.5nmである。より好ましい下限は6.0nmであり、さらに好ましい下限は6.5nmである。より好ましい範囲は6.0~7.8nmであり、さらに好ましい範囲は6.5~7.5nmである。結晶子サイズは特にTD延伸1の予熱温度で制御することができる。予熱温度をMD延伸後のフィルムの冷結晶化温度以上にすることで大きくすることができる。
 本発明の二軸配向ポリエステルフィルムがポリエチレンテレフタレートを主成分とするとき、幅方向の広角X線による結晶主鎖方向の結晶配向度が0.68~0.90であることが好ましい。0.90より大きいと幅方向に配向が強すぎるためスリット性の悪化や延伸性の悪化の傾向がある。0.68よりも小さいと幅方向に変形しやすく寸法安定性が悪化しやすい。より好ましい上限は0.85であり、さらに好ましい上限は0.80である。より好ましい下限は0.70であり、さらに好ましい下限は0.75である。より好ましい範囲は0.70~0.85であり、さらに好ましい範囲は0.75~0.80である。結晶配向度は分子鎖の配列を示すものであり、TD延伸1とTD延伸2との倍率比によって制御することができ、また、TD延伸のトータル倍率や、TD延伸のトータル倍率とMD延伸倍率との比によっても制御ができる。TD延伸1とTD延伸2の倍率比(TD延伸1倍率/TD延伸2倍率)が大きいほど結晶配向度は高くなる。また、TD延伸のトータル倍率(TD延伸1倍率×TD延伸2倍率)が高いほど結晶配向度は高くなる。また、TD延伸のトータル倍率とMD延伸倍率との比((TD延伸1倍率×TD延伸2倍率)/MD延伸倍率)が大きいほど結晶配向度は高くなる傾向となる。また、熱固定温度も関与しており、熱固定温度が低いほど結晶配向度は高くなる。さらに、TD延伸1の予熱温度をMD延伸後のフィルムの冷結晶化温度以上にすることで結晶配向度を高めることができる。
 本発明の二軸配向ポリエステルフィルムは温度変調DSC法を用いて算出される剛直非晶量Χraが38~50%であることが好ましい。Xraが50%より大きいと配向緩和が起こり寸法安定性が悪化する傾向にある。Χraが38%より小さいと構造固定が不十分であり、保存安定性が悪化しやすく、さらに工程適性が悪化する傾向にある。より好ましい上限は48%であり、さらに好ましい上限は46%である。より好ましい下限は40%であり、さらに好ましい下限は42%である。より好ましい範囲は40~48%、さらに好ましい範囲は42~46%である。Χraは熱固定温度で制御することができ、熱固定温度が高いほど大きくなる。また、TD延伸1の予熱温度をMD延伸後のフィルムの冷結晶化温度以上にすることでΧraを高めることができる。
 本発明において、二軸配向ポリエステルフィルムとしての厚みは、用途に応じて適宜決定できるが、通常リニア磁気記録媒体用途では1~7μmが好ましい。この厚みが1μmより小さい場合、磁気テープにした際に電磁変換特性が低下することがある。一方、この厚みが7μmより大きい場合は、テープ1巻あたりのテープ長さが短くなるため、磁気テープの小型化、高容量化が困難になる場合がある。したがって、高密度磁気記録媒体用途の場合、厚みの下限は、好ましくは2μm、より好ましくは3μmであり、上限は、好ましくは6.5μm、より好ましくは6μmである。より好ましい範囲としては2~6.5μm、より好ましい範囲としては3~6μmである。
 上記したような本発明の二軸配向ポリエステルフィルムは、たとえば次のように製造される。
 まず、二軸配向ポリエステルフィルムを構成するポリエステルフィルムを製造する。ポリエステルフィルムを製造するには、たとえばポリエステルのペレットを、押出機を用いて溶融し、口金から吐出した後、冷却固化してシート状に成形する。このとき、繊維焼結ステンレス金属フィルターによりポリマーを濾過することが、ポリマー中の未溶融物を除去するために好ましい。
 また、ポリエステルフィルムの表面性を制御し易滑性や耐摩耗性、耐スクラッチ性などを付与するため、不活性粒子を添加することが好ましい。不活性粒子は無機粒子、有機粒子、例えば、クレー、マイカ、酸化チタン、炭酸カルシウム、カリオン、タルク、湿式シリカ、乾式シリカ、コロイド状シリカ、リン酸カルシウム、硫酸バリウム、アルミナ、ジルコニア等の無機粒子、アクリル酸類、スチレン系樹脂、熱硬化樹脂、シリコーン、イミド系化合物等を構成成分とする有機粒子、ポリエステル重合反応時に添加する触媒等によって析出する粒子(いわゆる内部粒子)などが挙げられる。
 さらに、本発明を阻害しない範囲内であれば、各種添加剤、例えば、相溶化剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、結晶核剤、紫外線吸収剤、難燃剤、難燃助剤、顔料、染料、などが添加されてもよい。
 続いて、上記シートを長手方向と幅方向の二軸に延伸した後、熱処理する。幅方向の寸法安定性を向上させるために延伸工程は、幅方向において2段階以上に分けることが好ましい。すなわち、再横延伸を行う方法が高寸法安定性の磁気テープとして最適な高強度のフィルムが得られ易いために好ましい。
 延伸形式としては、長手方向に延伸した後に幅方向に延伸を行うなどの逐次二軸延伸法が好ましい。
 以下、本発明の支持体の製造方法について、ポリエチレンテレフタレート(PET)をポリエステルとして用いた例を代表例として説明する。もちろん、本願はPETフィルムを用いた支持体に限定されるものではなく、他のポリマーを用いたものものでもよい。例えば、ガラス転移温度や融点の高いポリエチレン-2,6-ナフタレンジカルボキシレートなどを用いてポリエステルフィルムを構成する場合は、以下に示す温度よりも高温で押出や延伸を行えばよい。
 まず、ポリエチレンテレフタレートを準備する。ポリエチレンテレフタレートは、次のいずれかのプロセスで製造される。すなわち、(1)テレフタル酸とエチレングリコールを原料とし、直接エステル化反応によって低分子量のポリエチレンテレフタレートまたはオリゴマーを得、さらにその後の三酸化アンチモンやチタン化合物を触媒に用いた重縮合反応によってポリマーを得るプロセス、(2)ジメチルテレフタレートとエチレングリコールを原料とし、エステル交換反応によって低分子量体を得、さらにその後の三酸化アンチモンやチタン化合物を触媒に用いた重縮合反応によってポリマーを得るプロセスである。ここで、エステル化は無触媒でも反応は進行するが、エステル交換反応においては、通常、マンガン、カルシウム、マグネシウム、亜鉛、リチウム、チタン等の化合物を触媒に用いて進行させる。またエステル交換反応が実質的に完結した後に、該反応に用いた触媒を不活性化する目的で、リン化合物を添加する場合もある。
 フィルムを構成するポリエステルに不活性粒子を含有させるには、エチレングリコールに不活性粒子を所定割合にてスラリーの形で分散させ、このエチレングリコールを重合時に添加する方法が好ましい。不活性粒子を添加する際には、例えば、不活性粒子の合成時に得られる水ゾルやアルコールゾル状態の粒子を一旦乾燥させることなく添加すると粒子の分散性がよい。また、不活性粒子の水スラリーを直接PETペレットと混合し、ベント式二軸混練押出機を用いて、PETに練り込む方法も有効である。不活性粒子の含有量を調節する方法としては、上記方法で高濃度の不活性粒子のマスターペレットを作っておき、それを製膜時に不活性粒子を実質的に含有しないPETで希釈して不活性粒子の含有量を調節する方法が有効である。
 次に、得られたPETのペレットを、180℃で3時間以上減圧乾燥させる。次いで、固有粘度が低下しないように窒素気流下あるいは減圧下で、270~320℃に加熱された押出機に供給する。そして、スリット状のダイから押出し、キャスティングロール上で冷却して未延伸フィルムを得る。この際、異物や変質ポリマーを除去するために各種のフィルター、例えば、焼結金属、多孔性セラミック、サンド、金網などの素材からなるフィルターを用いることが好ましい。また、必要に応じて、定量供給性を向上させるためにギアポンプを設けてもよい。フィルムを積層するには、2台以上の押出機およびマニホールドまたは合流ブロックを用いて、複数の異なるポリマーを溶融積層する。
 次に、このようにして得られた未延伸フィルムを、数本のロールが配置された縦延伸機を用いて、ロールの周速差を利用して縦方向に延伸し(MD延伸)、続いてステンターにより横方向の延伸を二段階で行う(TD延伸1、TD延伸2)。この二軸延伸方法について説明する。
 まず、未延伸フィルムをMD延伸する。MD延伸の延伸温度は、用いるポリマーの種類によって異なるが、未延伸フィルムのガラス転移温度Tgを目安として決めることができる。Tg-10~Tg+15℃の範囲であることが好ましく、より好ましくはTg℃~Tg+10℃である。上記範囲より延伸温度が低い場合には、フィルム破れが多発して生産性が低下し、本願の特徴であるMD延伸後の二段階TD延伸で安定して延伸することが困難となることがある。MD延伸倍率は2.5~4.0倍が好ましい。より好ましくは2.8~3.8倍、さらに好ましくは3.0~4.0倍である。二段階のTD延伸を安定して行うにはMD延伸後のフィルムにおけるポリマー構造が重要である。MD方向へ配向させすぎるとTD延伸時に分子鎖が絡み合い局所的に応力が発生するためにフィルム破れが発生する。その局所的な応力発生を防ぐためには、応力の伝搬部として作用する微結晶状態を発生させることや、また適度なMD配向を付与することが重要である。微結晶は熱分析(DSC)による結晶化度分析で簡易的に判断することができる。結晶化度は20~30%が好ましく、より好ましくは23~28%である。またMD延伸後の配向パラメータとして複屈折Δnで判断することができ、Δnが0.011~0.015であることが好ましい。また、冷結晶化温度が90~100℃であることが好ましい。
 次に、ステンターを用いて、TD延伸を行う。幅方向の寸法安定性を向上させ、保存安定性、スリット性、製膜性が良好な二軸配向ポリエステルフィルムを得るには幅方向に、温度の異なるゾーンで二段階に延伸することが重要である。まず、一段目の延伸(TD延伸1)の延伸倍率は、好ましくは3.0~5.0倍であり、より好ましくは3.2~4.5倍であり、さらに好ましくは3.5~4.0倍である。また、TD延伸1の延伸温度は好ましくは(MD延伸温度+5)~(MD延伸温度+50)℃の範囲であり、さらに好ましくは(MD延伸温度+10)~(MD延伸温度+30)℃の範囲で行う。次にそのままステンター内で二段目の延伸(TD延伸2)を行う。TD延伸2の延伸倍率は好ましくは1.05~2倍であり、より好ましくは1.1~1.8倍、さらに好ましくは1.2~1.5倍である。TD延伸2の延伸温度は好ましくは(TD延伸1温度+50)~(TD延伸1温度+100)℃の範囲であり、さらに好ましくは(TD延伸1温度+60)~(TD延伸1温度+90)℃の範囲で行う。前工程の延伸温度よりも高めることにより、分子鎖の運動性が向上し、前工程での延伸による分子鎖の絡み合いを適度にほどきながら延伸することができる。特にTD延伸1とTD延伸2は同方向に延伸するため温度差を高める必要がある。
 さらに、本発明の二軸配向ポリエステルフィルムの結晶配向度や結晶子サイズを高めるために、TD延伸1の予熱温度をMD延伸後のフィルムの冷結晶化温度以上にすることが好ましい。より好ましくは(MD延伸後のフィルムの冷結晶化温度+3)℃以上であり(MD延伸後のフィルムの冷結晶化温度+7)℃以下である。TD延伸1前の予熱でMD延伸後のフィルムの冷結晶化温度以上の熱を与えることで、フィルム中に微結晶が生成し、その微結晶が延伸の結節点と作用し、より均一に応力が伝搬することから歪みが小さく均一に分子鎖を配向できる。TD延伸1の予熱温度が(MD延伸後のフィルムの冷結晶化温度+7)℃より高温であると、生成した微結晶が成長し、延伸性が悪化する傾向にある。さらに、本発明の延伸プロセスを経て熱固定処理を行うと結晶配向が高く、結晶子サイズが幅方向に成長する。結晶配向度は寸法安定性に大きく寄与し、結晶配向度が高いほど寸法安定性が良好となる。ただし、単純に延伸倍率などを高める方法で結晶配向度を高めようとすると分子鎖に歪みが大きくなり、熱による収縮などが起こりやすい。そのため、磁気テープとする際の工程で幅縮みやシワなどの問題が起こりやすくなる。TD延伸1の予熱温度をMD延伸後のフィルムの冷結晶化温度以上にすることで結晶サイズが幅方向に成長しやすく結晶子サイズが大きくなると、結晶子間の距離が短くなると考えられ、収縮する非晶鎖の距離が短くなるため熱による収縮が小さくなり工程適性が良好になると考えられる。
 続いて、この延伸フィルムを緊張下または幅方向に弛緩しながら熱固定処理する。熱固定処理条件は、熱固定温度は、160~200℃が好ましい。熱固定温度の上限は、より好ましくは190℃、さらに好ましくは185℃である。熱固定温度の下限は、より好ましくは170℃、さらに好ましくは175℃である。より好ましい範囲は170~190℃、さらに好ましくは175~185℃である。熱固定処理時間は0.5~10秒の範囲、弛緩率は0~2%で行うのが好ましい。熱固定処理後は把持しているクリップを開放することでフィルムにかかる張力を低減させながら室温へ急冷する。その後、フィルムエッジを除去しロールに巻き取り、本発明の二軸配向ポリエステルフィルムを得ることができる。
 本願の寸法安定性、保存安定性、スリット性、製膜性を達成するためにはTD延伸のトータル倍率とMD延伸倍率との比が重要である。「TD延伸のトータル倍率/MD延伸倍率」の値は1.2~2.0であることが好ましい。より好ましくは1.3~1.8、さらに好ましくは1.4~1.6である。「TD延伸のトータル倍率/MD延伸倍率」の値は分子鎖の配向のバランスを制御する指標となり、とくに寸法安定性を高めるにはTD配向を高める必要がある。しかしながら、単純にTD延伸のトータル倍率だけを高めてもその効果には限界があり、MD延伸を適度に制御することによってその後のTD延伸による効果を最大とすることができる。これは、延伸による配向度向上の効果はある程度の分子鎖の絡まりが必要であり、TD延伸によるTD配向の効果を最大限高めるために必要となる分子鎖の絡まりの程度を、前段のMD延伸により制御することを意味する。このMD延伸倍率の最適値は後段のTD延伸のトータル倍率と関係するため、結局、前述のような延伸倍率の比をもって好ましい状態に制御することができる。
 また、安定した製膜を行うためにTD延伸1とTD延伸2の延伸倍率比が重要である。「TD延伸1倍率/TD延伸2倍率」の値は1.8~4.1が好ましい。より好ましくは2.2~3.5、さらに好ましくは2.5~3.0である。TD延伸は2段階で行うが、TD延伸1で比較的延伸倍率を高くすることが好ましい。これは、通常TD配向を高めるには最終延伸での倍率が大きいほど配向を高められるが、TD延伸2はTD延伸1より高温で延伸する必要があり、その高温のため結晶を作りやすくなる。本願の寸法安定性は一般的に言われる結晶も含めた配向ではなく、非晶部分の配向が高いことが重要であり、TD延伸2で高倍率延伸した場合は非晶部の配向が緩和しやすくなる。つまり、TD延伸1で、ある程度高倍率で延伸し高配向化させ、TD延伸2ではその高配向化が緩和しない程度に延伸することが好ましい。
 TD延伸後、熱固定処理を行うが、フィルムの配向緩和を抑制するためにTD延伸2とほぼ同等の温度で熱処理を行うことが好ましい。熱固定処理はフィルムを緊張下または幅方向に弛緩しながら、好ましくはTD延伸2延伸温度-5~TD延伸2延伸温度+5℃、より好ましくはTD延伸2延伸温度-3~TD延伸2延伸温度+3℃、さらに好ましくはTD延伸2と同温度で熱固定処理を行う。TD延伸2の延伸温度と熱固定温度を近づけることで、延伸された状態で分子構造を固定することができ、高配向化を維持したまま、分子鎖の歪みをとり、保存安定性やスリット性の悪化を抑えることができる。また、TD延伸2の延伸温度と熱固定温度に差があり、熱固定温度が高すぎると緩和しやすく寸法安定性が低下する傾向にあり、熱固定温度が低すぎると結晶性が低くなりやすくスリット性が低下しやすい。
 本願は「MD延伸-TD延伸1-TD延伸2」の延伸プロセスを行うことで、寸法安定性、保存安定性、スリット性、製膜性が良好な二軸配向ポリエステルフィルムを得ることができる。MD延伸とTD延伸をそれぞれ1段階で行う「MD延伸-TD延伸」や、MD延伸とTD延伸とを交互に2段階で行う「MD延伸1-TD延伸1-MD延伸2-TD延伸2」などの延伸プロセスでは、すべての物性が良好な二軸配向ポリエステルフィルムは得られにくい。
 次に、磁気記録媒体を製造する方法を説明する。
 上記のようにして得られた磁気記録媒体用支持体(二軸配向ポリエステルフィルム)を、たとえば0.1~3m幅にスリットし、速度20~300m/min、張力50~300N/mで搬送しながら、一方の面(A面)に磁性塗料および非磁性塗料をエクストルージョンコーターにより重層塗布する。なお、上層に磁性塗料を厚み0.1~0.3μmで塗布し、下層に非磁性塗料を厚み0.5~1.5μmで塗布する。その後、磁性塗料および非磁性塗料が塗布された支持体を磁気配向させ、温度80~130℃で乾燥させる。次いで、反対側の面(B面)にバックコートを厚み0.3~0.8μmで塗布し、カレンダー処理した後、巻き取る。なお、カレンダー処理は、小型テストカレンダー装置(スチール/ナイロンロール、5段)を用い、温度70~120℃、線圧0.5~5kN/cmで行う。その後、60~80℃にて24~72時間エージング処理し、1/2インチ(1.27cm)幅にスリットし、パンケーキを作製する。次いで、このパンケーキから特定の長さ分をカセットに組み込んで、カセットテープ型磁気記録媒体とする。
 磁性塗料などの組成は例えば以下のような組成が挙げられる
 [磁性塗料の組成]
 ・強磁性金属粉末            :100質量部
 ・変成塩化ビニル共重合体        : 10質量部
 ・変成ポリウレタン           : 10質量部
 ・ポリイソシアネート          :  5質量部
 ・2-エチルヘキシルオレート      :1.5質量部
 ・パルミチン酸             :  1質量部
 ・カーボンブラック           :  1質量部
 ・アルミナ               : 10質量部
 ・メチルエチルケトン          : 75質量部
 ・シクロヘキサノン           : 75質量部
 ・トルエン               : 75質量部。
 [バックコートの組成]
 ・カーボンブラック(平均粒径20nm) : 95質量部
 ・カーボンブラック(平均粒径280nm): 10質量部
 ・アルミナ               :0.1質量部
 ・変成ポリウレタン           : 20質量部
 ・変成塩化ビニル共重合体        : 30質量部
 ・シクロヘキサノン           :200質量部
 ・メチルエチルケトン          :300質量部
 ・トルエン               :100質量部。
 磁気記録媒体は、例えば、データ記録用途、具体的にはコンピュータデータのバックアップ用途(例えばリニアテープ式の記録媒体(LTO4やLTO5など))や映像などのデジタル画像の記録用途などに好適に用いることができる。
 (物性の測定方法ならびに効果の評価方法)
 本発明における特性値の測定方法並びに効果の評価方法は次の通りである。
 (1)ヤング率
 ASTM-D882(1997年)に準拠してフィルムのヤング率を測定する。なお、インストロンタイプの引張試験機を用い、条件は下記のとおりとする。5回の測定結果の平均値を本発明におけるヤング率とする。
・測定装置:インストロン社製超精密材料試験機MODEL5848
・試料サイズ:
 ・フィルム幅方向のヤング率測定の場合
  フィルム長手方向2mm×フィルム幅方向12.6mm
  (つかみ間隔はフィルム幅方向に8mm)
 ・フィルム長手方向のヤング率測定の場合
  フィルム幅方向2mm×フィルム長手方向12.6mm
  (つかみ間隔はフィルム長手方向に8mm)
・引張り速度:1mm/分
・測定環境:温度23℃、湿度65%RH
・測定回数:5回。
 (2)幅方向の湿度膨張係数
 フィルムの幅方向(TD方向)に対して、下記条件にて測定を行い、3回の測定結果の平均値を本発明における湿度膨張係数とする。
・測定装置:島津製作所製熱機械分析装置TMA-50(湿度発生器:アルバック理工製湿度雰囲気調節装置HC-1)
・試料サイズ:フィルム長手方向10mm×フィルム幅方向12.6mm
・荷重:0.5g
・測定回数:3回
・測定温度:30℃
・測定湿度:40%RHで6時間保持しフィルム幅方向の寸法L(mm)を測定した。次いで、40分かけて80%RHまで昇湿し、80%RHで6時間保持したあとフィルムL’(mm)を測定した。フィルム幅方向の寸法変化量ΔL(mm)=L’-Lを求め、次式から湿度膨張係数(ppm/%RH)を算出する。
・湿度膨張係数(ppm/%RH)=10×{(ΔL/12.6)/(80-40)}。
 (3)屈折率
 JIS-K7142(2008年)に従って、下記測定器を用いて測定した。
・装置:アッベ屈折計 4T(株式会社アタゴ社製)
・光源:ナトリウムD線
・測定温度:25℃
・測定湿度:65%RH
・マウント液:ヨウ化メチレン、屈折率1.74以上の場合は硫黄ヨウ化メチレン
  平均屈折率n_bar=((nMD+nTD+nZD)/3)
  複屈折Δn=(nMD-nTD)
  nMD;フィルム長手方向の屈折率
  nTD;フィルム幅方向の屈折率
  nZD;フィルム厚み方向の屈折率。
 (4)融点(Tm)、微小融解ピーク温度(T-meta)、融解熱量(ΔHm)
 JIS-K7121(1987年)に従って測定した。示差走査熱量計として、セイコーインスツルメンツ社製DSC(RDC220)、データ解析装置として同社製ディスクステーション(SSC/5200)を用いた。試料5mgをアルミニウム製の受皿の上に置き、25℃から300℃まで、昇温速度20℃/分で昇温した。そのとき、観測される融解の吸熱ピークのピーク温度を融点(Tm)、Tmの少し低温側に現れる微小吸熱ピーク温度をT-metaとした。Tmのピーク面積から算出される熱量を融解熱量ΔHmとする。
 (5)ガラス転移温度(Tg)
 下記装置および条件で比熱測定を行い、JIS-K7121(1987年)に従って決定する。
・装置  :TA Instrument社製温度変調DSC
・測定条件
 ・加熱温度  :270~570K(RCS冷却法)
 ・温度校正  :高純度インジウムおよびスズの融点
 ・温度変調振幅:±1K
 ・温度変調周期:60秒
 ・昇温ステップ:5K
・試料重量  :5mg
・試料容器  :アルミニウム製開放型容器(22mg)
・参照容器  :アルミニウム製開放型容器(18mg)
 なお、ガラス転移温度は下記式により算出する。
・ガラス転移温度=(補外ガラス転移開始温度+補外ガラス転移終了温度)/2。
 (6)幅寸法安定性
 1m幅にスリットしたフィルムを、張力200Nで搬送させ、支持体の一方の表面(A面)に下記組成の磁性塗料および非磁性塗料をエクストルージョンコーターにより重層塗布し(上層が磁性塗料で、塗布厚0.2μm、下層が非磁性塗料で塗布厚0.9μm)、磁気配向させ、乾燥温度100℃で乾燥させる。次いで反対側の表面(B面)に下記組成のバックコートを塗布した後、小型テストカレンダー装置(スチール/ナイロンロール、5段)で、温度85℃、線圧2.0×10N/mでカレンダー処理した後、巻き取る。上記テープ原反を1/2インチ(12.65mm)幅にスリットし、パンケーキを作成する。次いで、このパンケーキから長さ200m分をカセットに組み込んで、カセットテープとする。
 [磁性塗料の組成]
・強磁性金属粉末              :100質量部
 〔Fe:Co:Ni:Al:Y:Ca=70:24:1:2:2:1(質量比)〕
 〔長軸長:0.09μm、軸比:6、保磁力:153kA/m(1,922Oe)、飽和磁化:146Am/kg(146emu/g)、BET比表面積:53m/g、X線粒径:15nm〕
・変成塩化ビニル共重合体(結合剤)     : 10質量部
 (平均重合度:280、エポキシ基含有量:3.1質量%、スルホン酸基含有量:8×10-5当量/g)
・変成ポリウレタン(結合剤)        : 10質量部
 (数平均分子量:25,000、スルホン酸基含有量:1.2×10-4当量/g、ガラス転移点:45℃)
・ポリイソシアネート(硬化剤)       :  5質量部
 (日本ポリウレタン工業(株)製コロネートL(商品名))
・2-エチルヘキシルオレート(潤滑剤)   :1.5質量部
・パルミチン酸(潤滑剤)          :  1質量部
・カーボンブラック(帯電防止剤)      :  1質量部
 (平均一次粒子径:0.018μm)
・アルミナ(研磨剤)            : 10質量部
 (αアルミナ、平均粒子径:0.18μm)
・メチルエチルケトン            : 75質量部
・シクロヘキサノン             : 75質量部
・トルエン                 : 75質量部。
 [非磁性塗料の組成]
・変成ポリウレタン             : 10質量部
 (数平均分子量:25,000、スルホン酸基含有量:1.2×10-4当量/g、ガラス転移点:45℃)
・変成塩化ビニル共重合体          : 10質量部
 (平均重合度:280、エポキシ基含有量:3.1質量%、スルホン酸基含有量:8×10-5当量/g)
・メチルエチルケトン            : 75質量部
・シクロヘキサノン             : 75質量部
・トルエン                 : 75質量部
・ポリイソシアネート            :  5質量部
 (日本ポリウレタン工業(株)製コロネートL(商品名))
・2-エチルヘキシルオレート(潤滑剤)   :1.5質量部
・パルミチン酸(潤滑剤)          :  1質量部。
 [バックコートの組成]
・カーボンブラック             : 95質量部
 (帯電防止剤、平均一次粒子径0.018μm)
・カーボンブラック             : 10質量部
 (帯電防止剤、平均一次粒子径0.3μm)
・アルミナ                 :0.1質量部
 (αアルミナ、平均粒子径:0.18μm)
・変成ポリウレタン             : 20質量部
 (数平均分子量:25,000、スルホン酸基含有量:1.2×10-4当量/g、ガラス転移点:45℃)
・変成塩化ビニル共重合体          : 30質量部
 (平均重合度:280、エポキシ基含有量:3.1質量%、スルホン酸基含有量:8×10-5当量/g)
・シクロヘキサノン             :200質量部
・メチルエチルケトン            :300質量部
・トルエン                 :100質量部。
 カセットテープのカートリッジからテープを取り出し、下記恒温恒湿槽内へ図1のように作製したシート幅測定装置を入れ、幅寸法測定を行う。なお、図1に示すシート幅測定装置は、レーザーを使って幅方向の寸法を測定する装置で、磁気テープ9をフリーロール5~8上にセットしつつ荷重検出器3に固定し、端部に荷重となる分銅4を吊す。この磁気テープ9にレーザー光10を照射すると、レーザー発振器1から幅方向に線状に発振されたレーザー光10が磁気テープ9の部分だけ遮られ、受光部2に入り、その遮られたレーザーの幅が磁気テープの幅として測定される。3回の測定結果の平均値を本発明における幅とする。
・測定装置:(株)アヤハエンジニアリング社製シート幅測定装置
・レーザー発振器1、受光部2:レーザー寸法測定機 キーエンス社製LS-5040
・荷重検出器3:ロードセル NMB社製CBE1-10K
・恒温恒湿槽:(株)カトー社製SE-25VL-A
・荷重4:分銅(長手方向)
・試料サイズ:幅1/2inch×長さ250mm
・保持時間:5時間
・測定回数:3回測定。
 (幅寸法変化率:寸法安定性)
 2つの条件でそれぞれ幅寸法(l、l)を測定し、次式にて寸法変化率を算出する。具体的には、次の基準で寸法安定性を評価する。
A条件で24時間経過後lを測定して、その後B条件で24時間経過後にlを測定する。テープカートリッジのはじめから30m地点から切り出したサンプル、100m地点から切り出したサンプル、170m地点から切り出したサンプルの3点を測定した。評価Cを不合格とする。
A条件:10℃10%RH 張力0.8N
B条件:29℃80%RH 張力0.5N
・幅寸法変化率(ppm)=10×((l-l)/l
 AAA:幅寸法変化率の最大値が450(ppm)未満
 AA:幅寸法変化率の最大値が450(ppm)以上500(ppm)未満
 A:幅寸法変化率の最大値が500(ppm)以上600(ppm)未満
 B:幅寸法変化率の最大値が600(ppm)以上700(ppm)未満
 C:幅寸法変化率の最大値が700(ppm)以上。
 (7)保存安定性
 上記(6)と同様に、作製したカセットテープのカートリッジからテープを取り出し、次の2つの条件でそれぞれ幅寸法(l、l)を測定し、次式にて寸法変化率を算出する。具体的には、次の基準で寸法安定性を評価する。
23℃65%RHで24時間経過後に幅寸法lを測定して、40℃20%RHの環境下で10日間カートリッジを保管後、23℃65%RHで24時間経過後に幅寸法lを測定する。テープカートリッジのはじめから30m地点から切り出したサンプル、100m地点から切り出したサンプル、170m地点から切り出したサンプルの3点を測定した。評価Cを不合格とする。
・幅寸法変化率(ppm)=10×(|l-l|/l
 AA:幅寸法変化率の最大値が50(ppm)未満
 A:幅寸法変化率の最大値が50(ppm)以上100(ppm)未満
 B:幅寸法変化率の最大値が100(ppm)以上150(ppm)未満
 C:幅寸法変化率の最大値が150(ppm)以上。
 (8)スリット性
 上記(6)と同様に、作製したカセットテープのカートリッジからテープを取り出し、その端部を観察し、1/2インチのスリット時に発生したヒゲを以下に示す方法により評価した。1/2インチにスリット時のスリッターのスピードは80m/分とした。ヒゲの評価は、フィルムの端面を走査型電子顕微鏡にて観察し、ヒゲの発生状況を以下の基準にて評価した。なお、ここでいうヒゲとは、繊維状に剥離したフィルム片を意味する。
AA:ヒゲの発生がほとんどない。
A:ヒゲの発生が少ない。
B:ヒゲの発生が多いがスリットができる。
C:ひげの発生が激しく、スリット中に破れが多発してスリットが困難である。
 (9)製膜性
 フィルムの製膜性について、下記の基準で評価した。
AA:フィルム破れの発生がほとんどなく、安定して製膜できる。
A:フィルム破れが時々発生し、製膜安定性が若干低い。
B:フィルム破が頻繁に発生し製膜安定性は低いが、フィルムサンプルを得ることはできた。
C:フィルム破れがかなり多数発生するためフィルムサンプルを得ることもできず、製膜安定性が極めて低い。
 (10)結晶子サイズ、結晶配向度
 下記条件にて広角X線回折法(透過法)を行い、3回の測定結果の平均値を本発明における結晶子サイズ、結晶配向度とする。
・X線発生装置:理学電機社製4036A2型
・X線源   :CuKα線(Niフィルタ)
・出力    :40kV-20mA
・ゴニオメータ:理学電機社製2155D型
・スリット  :2mmφ-1°-1°
・検出器   :シンチレーションカウンター
・アタッチメント:理学電機社製繊維試料台
・計数記録装置:理学電機社製RAD-C型
・試料サイズ :40mm×1mm
・試料厚み  :1mmになるように重ねる。
 [結晶子サイズ]
 下記スキャン方式で測定後下記の算出式を用いて、フィルム幅方向(TD方向)のポリエチレンテレフタレートの分子鎖主鎖方向(-105)の結晶子サイズを算出した。
・スキャン方式:2θ-θステップスキャン
・測定方向  :Through-TD
・測定範囲(2θ):5~60°
・測定ステップ:0.05°
・計数時間  :5秒
  結晶子サイズ[nm]=(K・λ)/(βcosθ)
  β=(βe-βo0.5
  K:係数(透過法=1.0)
  λ:波長(0.15418)
  βe:回折ピークの半値幅
  βo:半値幅補正値(透過法=0.6°)。
 [結晶配向度]
 下記スキャン方式で測定後下記の算出式を用いて、フィルム幅方向(TD方向)のポリエチレンテレフタレートの分子鎖主鎖方向(-105)の結晶配向度を算出した。
・スキャン方式:βステップスキャン
・回折ピーク :Through(-105) 2θ=約43°
・測定範囲(β):Through(-105) 0~360°
・測定ステップ(β):0.5°
・計数時間  :5秒
  結晶配向度=(180-βc)/180
  βc:βスキャンの半値幅。
 (11)剛直非晶量
 下記条件にて、融解熱量と冷結晶化熱量の差(ΔHm-ΔHc)、比熱差(ΔCp)を測定し、結晶化度(Χc)と可動非晶量(Χma)を算出しさらに下記式から剛直非晶量(Χra)を算出した。
 [融解熱量と冷結晶化熱量の差]
・測定手法 :通常DSC法
・測定装置 :TA Instruments社製Q1000
・データ処理:TA Instruments社製 ”Universal Analysis2000”
・雰囲気  :窒素流(50mL/min)
・温度,熱量校正:高純度インジウム(Tm=156.61℃,ΔHm=28.70g/J)
・温度範囲 :0~300℃
・昇温速度 :10℃/min
・試料量  :10mg
・試料容器 :アルミニウム製標準容器
・測定回数 :2回。
 [比熱差]
・測定手法 :温度変調DSC法
・測定装置 :TA Instruments社製Q1000
・データ処理:TA Instruments社製 ”Universal Analysis2000”
・雰囲気  :窒素流(50mL/min)
・温度,熱量校正:高純度インジウム(Tm=156.61℃,ΔHm=28.70g/J)
・比熱校正 :サファイア
・温度範囲 :0~200℃
・昇温速度 :2℃/min
・試料量  :5mg
・試料容器 :アルミニウム製標準容器
・測定回数 :2回。
 [剛直非晶量]
・結晶化度(Χc)[%]=((ΔHm-ΔHc)/PET(またはPEN)の完全結晶融解熱量)×100
  ΔHm:融解熱量[J/g]
  ΔHc:冷結晶化熱量[J/g]
  PETの完全結晶融解熱量:140.10[J/g]
  PENの完全結晶融解熱量:103.31[J/g]
・可動非晶量(Χma)[%]=(ΔCp/PET(またはPEN)の完全非晶比熱差)×100
  ΔCp:Tg前後での比熱差
  PETの完全非晶比熱差:0.4052J/g℃
  PENの完全非晶比熱差:0.3372J/g℃
・剛直非晶量(Χra)[%]=100-(Χc+Χma)。
 ここで、PETの含有量がフィルム組成中50質量%を超える場合、PETの完全結晶融解熱量とPETの完全非晶比熱量を用い、一方、PENの含有量がフィルム組成中50質量%を超える場合、PENの完全結晶融解熱量とPEN完全非晶比熱量を用いる。なお、PETとPENが等量(50質量%)の場合、実質上結晶を形成しないため、融解熱量(ΔHm)が得られない。
 (12)工程適性
 1m幅にスリットしたフィルムを、張力200Nで搬送させ、支持体の一方の表面(A面)に下記組成の磁性塗料および非磁性塗料をエクストルージョンコーターにより重層塗布し(上層が磁性塗料で、塗布厚0.2μm、下層が非磁性塗料で塗布厚0.9μm)、磁気配向させ、乾燥温度100℃で乾燥させる。次いで反対側の表面(B面)に下記組成のバックコートを塗布した後、小型テストカレンダー装置(スチール/ナイロンロール、5段)で、温度85℃、線圧2.0×10N/mでカレンダー処理した後巻き取った。幅方向の収縮量や塗布の状態から工程適性を下記の基準で評価した。
AA:幅方向の収縮量が5mm未満で問題なく磁性層、下層、バックコート層が形成された。
A:幅方向の収縮量が5mm以上、10mm未満で磁性層、下層、バックコート層が形成された。
B:幅方向の収縮量が10mm以上、20mm未満またはシワが発生し磁性層、下層、バックコート層の一部に塗布ムラが見られた。
C:幅方向の収縮量が20mm以上、またはシワが激しく発生し磁性層、下層、バックコート層の塗布が行えなかった。
 次の実施例に基づき、本発明の実施形態を説明する。なお、ここでポリエチレンテレフタレートをPET、ポリエチレンナフタレートをPEN、ポリエーテルイミドをPEIと表記する。
 (参考例1)
 テレフタル酸ジメチル194質量部とエチレングリコール124質量部とをエステル交換反応装置に仕込み、内容物を140℃に加熱して溶解した。その後、内容物を撹拌しながら酢酸マグネシウム4水塩0.1質量部および三酸化アンチモン0.05質量部を加え、140~230℃でメタノールを留出しつつエステル交換反応を行った。次いで、リン酸トリメチルの5質量部エチレングリコール溶液を1質量部(リン酸トリメチルとして0.05質量部)添加した。
 トリメチルリン酸のエチレングリコール溶液を添加すると反応内容物の温度が低下する。そこで余剰のエチレングリコールを留出させながら反応内容物の温度が230℃に復帰するまで撹拌を継続した。このようにしてエステル交換反応装置内の反応内容物の温度が230℃に達したら、反応内容物を重合装置へ移行した。
 移行後、反応系を230℃から290℃まで徐々に昇温するとともに、圧力を0.1kPaまで下げた。最終温度、最終圧力到達までの時間はともに60分とした。最終温度、最終圧力に到達した後、2時間(重合を始めて3時間)反応させたところ、重合装置の撹拌トルクが所定の値(重合装置の仕様によって具体的な値は異なるが、本重合装置にて固有粘度0.62のポリエチレンテレフタレートが示す値を所定の値とした)を示した。そこで反応系を窒素パージし常圧に戻して重縮合反応を停止し、冷水にストランド状に吐出、直ちにカッティングして固有粘度0.62のポリエチレンテレフタレートのPETペレットXを得た。(Tm=255℃、Tg=78℃)。
 (参考例2)
 280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、参考例1にて作製したPETペレットXを99質量部と平均径0.06μmのコロイダルシリカ粒子の10質量部水スラリーを10質量部(コロイダルシリカ粒子として1質量部)供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、平均径0.06μmのコロイダルシリカ粒子を1質量部含有する固有粘度0.62のPETペレットZ0.06を得た。
 (参考例3)
 280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、参考例1にて作製したPETペレットXを98質量部と平均径0.3μmの球状架橋ポリスチレン粒子の10質量部水スラリーを20質量部(球状架橋ポリスチレンとして2質量部)供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、平均径0.3μmの球状架橋ポリスチレン粒子を2質量部含有する固有粘度0.62のPETペレットZ0.3を得た。
 (参考例4)
 平均径0.3μmの球状架橋ポリスチレン粒子ではなく平均径0.8μmの球状架橋ポリスチレン粒子を用いたこと以外、参考例2と同様の方法にて、平均径0.8μmの球状架橋ポリスチレン粒子を2質量部含有する固有粘度0.62のPETペレットZ0.8を得た。
 (参考例5)
 温度300℃に加熱されたニーディングパドル混練部を3箇所設けた同方向回転タイプのベント式2軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に、参考例1で得られたPETペレットXの50質量部とSABICイノベーティブプラスチック社製のPEI“Ultem1010”のペレット50質量部を供給し、スクリュー回転数300回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてブレンドチップ(I)を作製した。
 (参考例6)
 2,6-ナフタレンジカルボン酸ジメチル100質量部とエチレングリコール60質量部の混合物に、酢酸マンガン・4水和物塩0.03質量部を添加し、150℃の温度から240℃の温度に徐々に昇温しながらエステル交換反応を行った。途中、反応温度が170℃に達した時点で三酸化アンチモン0.024質量部を添加した。また、反応温度が220℃に達した時点で3,5-ジカルボキシベンゼンスルホン酸テトラブチルホスホニウム塩0.042質量部(2mmol%に相当)を添加した。その後、引き続いてエステル交換反応を行い、トリメチルリン酸0.023質量部を添加した。次いで、反応生成物を重合装置に移し、290℃の温度まで昇温し、30Paの高減圧下にて重縮合反応を行い、重合装置の撹拌トルクが所定の値(重合装置の仕様によって具体的な値は異なるが、本重合装置にて固有粘度0.65のポリエチレン-2,6-ナフタレートが示す値を所定の値とした)を示した。そこで反応系を窒素パージし常圧に戻して重縮合反応を停止し、冷水にストランド状に吐出、直ちにカッティングして固有粘度0.65のPENペレットX’を得た。
 (参考例7)
 280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、参考例6にて作製したPENペレットX’を99質量部と平均径0.06μmのコロイダルシリカ粒子の10質量部水スラリーを10質量部(コロイダルシリカ粒子として1質量部)供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、平均径0.06μmのコロイダルシリカ粒子を1質量部含有する固有粘度0.65のPENペレットZ’0.06を得た。
 (参考例8)
 280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、参考例6にて作製したPENペレットX’を98質量部と平均径0.3μmの球状架橋ポリスチレン粒子の10質量部水スラリーを20質量部(球状架橋ポリスチレンとして2質量部)供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、平均径0.3μmの球状架橋ポリスチレン粒子を2質量部含有する固有粘度0.65のPENペレットZ’0.3を得た。
 (参考例9)
 平均径0.3μmの球状架橋ポリスチレン粒子ではなく平均径0.8μmの球状架橋ポリスチレン粒子を用いたこと以外、参考例8と同様の方法にて、平均径0.8μmの球状架橋ポリスチレン粒子を2質量部含有する固有粘度0.65のPENペレットZ’0.8を得た。
 (実施例1)
 押出機E、F2台を用いた。参考例1、2で得られたPETペレットX80質量部、PETペレットZ0.0620質量部をそれぞれ180℃で3時間減圧乾燥した後、280℃に加熱された押出機Eに供給した。参考例1、3、4で得られたPETペレットX84質量部、PETペレットZ0.315質量部、およびPETペレットZ0.81質量部をそれぞれ180℃で3時間減圧乾燥した後、280℃に加熱された押出機Fに供給した。2層積層するべくTダイ中で合流させ(積層比 押出機E(A面側)/押出機F(B面側)=7/1)、表面温度25℃のキャストドラムに静電荷を印加させながらB面側がキャスティングドラムに接触するように密着冷却固化し、積層未延伸フィルムを作製した。
 続いて、得られた積層未延伸フィルムを加熱したロール群で予熱した後、90℃の温度で3.3倍延伸を行い(MD延伸)、25℃の温度のロール群で冷却して一軸延伸フィルムを得た。得られた一軸延伸フィルムの両端をクリップで把持しながらテンター内の85℃の温度の予熱ゾーンに導き、引き続き連続的に105℃の温度の加熱ゾーンで長手方向に直角な幅方向(TD方向)に3.7倍延伸し(TD延伸1)、さらに続いて180℃の温度の加熱ゾーンでに幅方向に1.3倍延伸した(TD延伸2)。引き続いて、テンター内の熱処理ゾーンで180℃の温度で5秒間の熱処理を施し、さらに180℃の温度で1%幅方向に弛緩処理を行った。次いで、25℃に均一に冷却後、フィルムエッジを除去し、コア上に巻き取って厚さ5μmの二軸延伸ポリエステルフィルムを得た。
 得られた二軸配向ポリエステルフィルムを評価したところ、表に示すように、寸法安定性、保存安定性、スリット性、製膜性に優れた特性を有していた。
 (実施例2)
 表の通り製膜条件を変更した以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。
得られた二軸配向ポリエステルフィルムを評価したところ、表に示すように、磁気テープとして使用した際にMD方向のヤング率が低いためやや保存安定性やスリット性が劣るものの寸法安定性、製膜性に優れた特性を有していた。
 (実施例3)
 表の通り製膜条件を変更した以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。
得られた二軸配向ポリエステルフィルムを評価したところ、表に示すように、磁気テープとして使用した際にMD方向のヤング率が高いためやや製膜性が劣るものの寸法安定性、保存安定性、スリット性に優れた特性を有していた。
 (実施例4)
 表の通り製膜条件を変更した以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。
得られた二軸配向ポリエステルフィルムを評価したところ、表に示すように、磁気テープとして使用した際にTD方向のヤング率が低いためやや寸法安定性が劣るものの保存安定性、スリット性、製膜性に優れた特性を有していた。
 (実施例5)
 表の通り製膜条件を変更した以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。
得られた二軸配向ポリエステルフィルムを評価したところ、表に示すように、磁気テープとして使用した際にTD方向のヤング率が高いためややスリット性や製膜性が劣るものの寸法安定性、保存安定性に優れた特性を有していた。
 (実施例6)
 表の通り製膜条件を変更した以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。
得られた二軸配向ポリエステルフィルムを評価したところ、表に示すように、磁気テープとして使用した際に結晶性が低いためやや保存安定性やスリット性が劣るものの寸法安定性、製膜性に優れた特性を有していた。
 (実施例7)
 表の通り製膜条件を変更した以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。
得られた二軸配向ポリエステルフィルムを評価したところ、表に示すように、磁気テープとして使用した際に結晶性が高いためやや寸法安定性が劣るものの保存安定性、スリット性、製膜性に優れた特性を有していた。
 (実施例8)
 表の通り製膜条件を変更した以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。
得られた二軸配向ポリエステルフィルムを評価したところ、表に示すように、磁気テープとして使用した際に平均屈折率n_barが低いためやや製膜性が劣るものの寸法安定性、保存安定性、スリット性に優れた特性を有していた。
 (実施例9)
 表の通り製膜条件を変更した以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。
得られた二軸配向ポリエステルフィルムを評価したところ、表に示すように、磁気テープとして使用した際に平均屈折率n_barが高いためやや寸法安定性が劣るものの保存安定性、スリット性、製膜性に優れた特性を有していた。
 (実施例10)
 押出機E、F2台を用い、295℃に加熱された押出機Eには、参考例1、2、5で得られたPETペレットX70質量部、PETペレットZ0.0620質量部、ブレンドチップ(I)10質量部を180℃で3時間減圧乾燥した後に供給し、同じく295℃に加熱された押出機Fには、参考例1、3、4、5で得られたPETペレットX74質量部、PETペレットZ0.315質量部、PETペレットZ0.81質量部、ブレンドチップ(I)10質量部を180℃で3時間減圧乾燥した後に供給した。2層積層するべくTダイ中で合流させ(積層比E(A面側)/F(B面側)=7/1)、表面温度25℃のキャストドラムに静電荷を印加させながら密着冷却固化し、積層未延伸フィルムを作製したことと表1の通り製膜条件を変更したこと以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。
 得られた二軸配向ポリエステルフィルムを評価したところ、表に示すように、寸法安定性、保存安定性、スリット性、製膜性に優れた特性を有していた。
 (実施例11)
 実施例1で用いたPETペレットX、PETペレットZ0.06、PETペレットZ0.3、PETペレットZ0.8を参考例6、7、8、9で得られたPENペレットX’、PENペレットZ’0.06、PENペレットZ’0.3、PENペレットZ’0.8に変更し積層未延伸フィルムを作製したことと表1の通り製膜条件を変更したこと以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。
得られた二軸配向ポリエステルフィルムを評価したところ、表に示すように、寸法安定性、保存安定性、スリット性、製膜性にやや優れた特性を有していた。
 (実施例12)
 表の通り製膜条件を変更した以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。
得られた二軸配向ポリエステルフィルムはTD延伸1の予熱温度をMD延伸後のフィルムの冷結晶化温度(92℃)より高温化(95℃)したことで幅方向の分子鎖主鎖方向の結晶子サイズが大きく、結晶配向度が高く、剛直非晶量が多くなり、表に示すように、磁気テープとして使用した際に寸法安定性、保存安定性、スリット性、製膜性、工程適性に優れた特性を有していた。
 (実施例13)
 表の通り製膜条件を変更した以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。
得られた二軸配向ポリエステルフィルムはTD延伸1の予熱温度をMD延伸後のフィルムの冷結晶化温度より高温化したことで幅方向の分子鎖主鎖方向の結晶子サイズが大きく、結晶配向度が高く、剛直非晶量が多くなり、表に示すように、磁気テープとして使用した際に寸法安定性、保存安定性、スリット性、製膜性、工程適性に優れた特性を有していた。
 (実施例14)
 表の通り製膜条件を変更した以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。
得られた二軸配向ポリエステルフィルムはTD延伸1の予熱温度をMD延伸後のフィルムの冷結晶化温度より過度に高温化したことで製膜性はやや劣るが、幅方向の分子鎖主鎖方向の結晶子サイズが大きく、結晶配向度が高く、剛直非晶量が多くなり、表に示すように、磁気テープとして使用した際に寸法安定性、保存安定性、スリット性、工程適性に優れた特性を有していた。
 (実施例15)
 表の通り製膜条件を変更した以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。
得られた二軸配向ポリエステルフィルムはTD延伸1の予熱温度をMD延伸後のフィルムの冷結晶化温度よりやや低いため、幅方向の分子鎖主鎖方向の結晶子サイズを成長させる効果がやや小さく、表に示すように、磁気テープとして使用した際に工程適性にやや劣るものの、寸法安定性、保存安定性、スリット性、製膜性、優れた特性を有していた。
 (実施例16)
 表の通り製膜条件を変更した以外は実施例11と同様に二軸配向ポリエステルフィルムを得た。ポリエチレンナフタレートはMD延伸後のフィルムの結晶化度が高いためTD延伸1の予熱温度をMD延伸後のフィルムの冷結晶化温度より高くしても、製膜性が悪化し、結晶化の進行と配向緩和が起こり、表に示すように、磁気テープとして使用した際に工程適性にやや優れるものの、寸法安定性、保存安定性、スリット性、製膜性にやや劣る特性を有していた。
 (実施例17)
 表の製膜条件で延伸したこと以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。熱固定温度がTD延伸2温度よりも高いため、平均屈折率n_barが本願の最も好ましい範囲外のため得られた二軸配向ポリエステルフィルムは寸法安定性がやや劣っていた。
 (比較例1)
 表の製膜条件で延伸したこと以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。TDヤング率とMDヤング率の比が小さいため、製膜性が悪化し、得られた二軸配向ポリエステルフィルムは寸法安定性が大きく劣っていた。
 (比較例2)
 表の製膜条件で延伸したこと以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。TDヤング率とMDヤング率の比が大きいため、湿度膨張係数が大きくなり、製膜性が悪化し、得られた二軸配向ポリエステルフィルムは保存安定性やスリット性が大きく劣っていた。
 (比較例3)
 表の製膜条件で延伸したこと以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。TD延伸1倍率とTD延伸2倍率の比(TD延伸1倍率/TD延伸2倍率)が小さいため湿度膨張係数が大きくなり、製膜性が悪化し、得られた二軸配向ポリエステルフィルムは寸法安定性が大きく劣っていた。
 (比較例4)
 表の製膜条件で延伸したこと以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。熱固定温度がTD延伸2温度よりも低いため、平均屈折率n_barが本願の範囲外のため得られた二軸配向ポリエステルフィルムは寸法安定性やスリット性が劣っていた。
 (比較例5)
 表の製膜条件で延伸したこと以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。熱固定温度がTD延伸2温度よりも低く、また、微小融解ピーク温度T-metaが本願の範囲外のため得られた二軸配向ポリエステルフィルムは寸法安定性や保存安定性、スリット性が大きく劣っていた。
 (比較例6)
 表の製膜条件で延伸したこと以外は実施例1と同様に二軸配向ポリエステルフィルムを得た。熱固定温度がTD延伸2温度よりも高く、また、微小融解ピーク温度T-metaが本願の範囲外のため得られた二軸配向ポリエステルフィルムは寸法安定性が大きく劣っていた。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 1:レーザー発振器
 2:受光部
 3:荷重検出器
 4:荷重
 5:フリーロール
 6:フリーロール
 7:フリーロール
 8:フリーロール
 9:磁気テープ
10:レーザー光

Claims (9)

  1.  幅方向のヤング率ETDと長手方向のヤング率EMDとの比ETD/EMDが1.5~3であり、長手方向の屈折率nMDと幅方向の屈折率nTDと厚み方向の屈折率nZDとの平均で示されるn_bar((nMD+nTD+nZD)/3)が1.590~1.680であり、微小融解ピーク温度T-metaが160~190℃であり、幅方向の湿度膨張係数が0~6ppm/%RHである二軸配向ポリエステルフィルム。
  2.  長手方向の屈折率nMDと幅方向の屈折率nTDとの差で示される複屈折Δn(nMD-nTD)が-0.060~-0.020である、請求項1の二軸配向ポリエステルフィルム。
  3.  融解熱量ΔHmが30~45J/gである、請求項1または2の二軸配向ポリエステルフィルム。
  4.  長手方向のヤング率が3.0~4.4GPaである、請求項1~3のいずれかの二軸配向ポリエステルフィルム。
  5.  温度変調DSCから算出される剛直非晶量が38~50%である、請求項1~4のいずれかの二軸配向ポリエステルフィルム。
  6.  ポリエステルの主成分がポリエチレンテレフタレートである、請求項1~5のいずれかの二軸配向ポリエステルフィルム。
  7.  幅方向の広角X線による結晶主鎖方向の結晶子サイズが5.5~8.0nmである、請求項6の二軸配向ポリエステルフィルム。
  8.  幅方向の広角X線による結晶主鎖方向の結晶配向度が0.68~0.90である、請求項6または7の二軸配向ポリエステルフィルム。
  9.  請求項1~8のいずれかの二軸配向ポリエステルフィルムを用いたリニア磁気記録媒体。
PCT/JP2011/071238 2010-09-27 2011-09-16 二軸配向ポリエステルフィルムおよびリニア磁気記録媒体 WO2012043281A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137007992A KR20130117765A (ko) 2010-09-27 2011-09-16 2축 배향 폴리에스테르 필름 및 선형 자기 기록 매체
EP11828841.4A EP2623294A4 (en) 2010-09-27 2011-09-16 BIAXIALLY ORIENTED POLYESTER FILM AND LINEAR MAGNETIC RECORDING MEDIUM
US13/822,350 US8742058B2 (en) 2010-09-27 2011-09-16 Biaxially oriented polyester film and linear magnetic recording medium
JP2011543395A JP5796493B2 (ja) 2010-09-27 2011-09-16 二軸配向ポリエステルフィルムおよびリニア磁気記録媒体
CN201180044039.8A CN103118853B (zh) 2010-09-27 2011-09-16 双轴取向聚酯膜和线性磁记录介质

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010214825 2010-09-27
JP2010-214825 2010-09-27
JP2011-123993 2011-06-02
JP2011123993 2011-06-02

Publications (1)

Publication Number Publication Date
WO2012043281A1 true WO2012043281A1 (ja) 2012-04-05

Family

ID=45892748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071238 WO2012043281A1 (ja) 2010-09-27 2011-09-16 二軸配向ポリエステルフィルムおよびリニア磁気記録媒体

Country Status (6)

Country Link
US (1) US8742058B2 (ja)
EP (1) EP2623294A4 (ja)
JP (1) JP5796493B2 (ja)
KR (1) KR20130117765A (ja)
CN (1) CN103118853B (ja)
WO (1) WO2012043281A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181655A1 (ja) * 2017-03-31 2018-10-04 東洋紡株式会社 液晶表示装置、偏光板および偏光子保護フィルム
JP2019179585A (ja) * 2018-02-20 2019-10-17 富士フイルム株式会社 磁気テープカートリッジ
US10902875B2 (en) 2018-02-20 2021-01-26 Fujifilm Corporation Single reel magnetic tape cartridge with pre-defined tape width difference
WO2022018904A1 (ja) * 2020-07-21 2022-01-27 ソニーグループ株式会社 磁気記録媒体
US11257518B2 (en) 2019-03-22 2022-02-22 Fujifilm Corporation Single reel magnetic tape cartridge with predefined servo band interval difference
US11270727B2 (en) 2019-03-22 2022-03-08 Fujifilm Corporation Single reel magnetic tape cartridge with predefined tape width difference and servo band interval difference
US11635653B2 (en) 2018-10-02 2023-04-25 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103249540B (zh) * 2011-02-21 2016-08-31 东丽株式会社 双轴取向聚对苯二甲酸乙二醇酯膜
WO2015008841A1 (ja) * 2013-07-19 2015-01-22 三井化学株式会社 結晶化高分子フィルム及びその製造方法
CN110337357B (zh) * 2017-02-28 2021-12-10 富士胶片株式会社 热塑性树脂薄膜及热塑性树脂薄膜的制造方法
US10861487B2 (en) * 2017-06-05 2020-12-08 Maxell Holdings, Ltd. High recording density magnetic recording medium and recording/reproduction mechanism for the same
EP3675123A4 (en) * 2017-11-08 2020-08-05 Sony Corporation MAGNETIC RECORDING MEDIUM
US10543656B2 (en) 2018-01-11 2020-01-28 Eastman Chemical Company Tough shrinkable films
CN113056507B (zh) * 2018-10-31 2023-11-10 杰富意钢铁株式会社 金属板被覆用膜和树脂被覆金属板
JP6610823B1 (ja) 2019-03-29 2019-11-27 ソニー株式会社 磁気記録媒体
JP6610821B1 (ja) 2019-03-29 2019-11-27 ソニー株式会社 磁気記録媒体
JP6610822B1 (ja) * 2019-03-29 2019-11-27 ソニー株式会社 磁気記録媒体
JP6610824B1 (ja) 2019-04-05 2019-11-27 ソニー株式会社 カートリッジおよびカートリッジメモリ
JP6590104B1 (ja) 2019-04-26 2019-10-16 ソニー株式会社 磁気記録媒体
JP6590103B1 (ja) 2019-04-26 2019-10-16 ソニー株式会社 磁気記録媒体
JP6590102B1 (ja) 2019-04-26 2019-10-16 ソニー株式会社 磁気記録カートリッジ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261805A (ja) * 1992-03-18 1993-10-12 Teijin Ltd 二軸配向ポリエチレン―2,6―ナフタレートフィルム及びその製造方法
JPH05286028A (ja) * 1992-04-10 1993-11-02 Teijin Ltd 二軸配向ポリエチレン―2,6―ナフタレートフィルム
JPH07302421A (ja) * 1994-05-09 1995-11-14 Toray Ind Inc デジタル記録用磁気テープ
JPH07299863A (ja) * 1994-05-09 1995-11-14 Toray Ind Inc ポリエステルフィルムおよびその製造方法
JP2005298712A (ja) * 2004-04-14 2005-10-27 Toray Ind Inc 磁気記録テープ用ポリエステルフィルム及び磁気記録テープ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG76565A1 (en) * 1997-10-14 2000-11-21 Toray Industries Biaxially oriented polyester films and their production methods
US6319587B1 (en) * 1998-09-24 2001-11-20 Toray Industries, Inc. Biaxially-oriented polyester film
JP4023090B2 (ja) * 1999-04-19 2007-12-19 東レ株式会社 磁気記録テープ用二軸配向ポリエステルフィルムおよび磁気記録テープ
JP2001030350A (ja) * 1999-07-21 2001-02-06 Toray Ind Inc 二軸配向ポリエステルフィルム
KR100825249B1 (ko) * 2000-12-11 2008-04-25 데이진 가부시키가이샤 이축배향 폴리에스테르 필름 및 그 제조법
US7879471B2 (en) * 2005-09-22 2011-02-01 Toray Industries, Inc. Support for magnetic recording medium, and magnetic recording medium
JP4706680B2 (ja) * 2006-09-22 2011-06-22 東レ株式会社 複合フィルム
JP2009221277A (ja) 2008-03-14 2009-10-01 Toray Ind Inc 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP2010031116A (ja) 2008-07-28 2010-02-12 Teijin Ltd 二軸配向ポリエステルフィルムおよびそれを用いた磁気記録媒体
JP5136271B2 (ja) 2008-08-06 2013-02-06 東レ株式会社 二軸配向ポリエステルフィルムおよび磁気記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261805A (ja) * 1992-03-18 1993-10-12 Teijin Ltd 二軸配向ポリエチレン―2,6―ナフタレートフィルム及びその製造方法
JPH05286028A (ja) * 1992-04-10 1993-11-02 Teijin Ltd 二軸配向ポリエチレン―2,6―ナフタレートフィルム
JPH07302421A (ja) * 1994-05-09 1995-11-14 Toray Ind Inc デジタル記録用磁気テープ
JPH07299863A (ja) * 1994-05-09 1995-11-14 Toray Ind Inc ポリエステルフィルムおよびその製造方法
JP2005298712A (ja) * 2004-04-14 2005-10-27 Toray Ind Inc 磁気記録テープ用ポリエステルフィルム及び磁気記録テープ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623294A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181655A1 (ja) * 2017-03-31 2018-10-04 東洋紡株式会社 液晶表示装置、偏光板および偏光子保護フィルム
JPWO2018181655A1 (ja) * 2017-03-31 2020-02-06 東洋紡株式会社 液晶表示装置、偏光板および偏光子保護フィルム
JP7261738B2 (ja) 2017-03-31 2023-04-20 東洋紡株式会社 液晶表示装置、偏光板および偏光子保護フィルム
JP2019179585A (ja) * 2018-02-20 2019-10-17 富士フイルム株式会社 磁気テープカートリッジ
US10902875B2 (en) 2018-02-20 2021-01-26 Fujifilm Corporation Single reel magnetic tape cartridge with pre-defined tape width difference
JP2021114354A (ja) * 2018-02-20 2021-08-05 富士フイルム株式会社 磁気テープカートリッジ
JP7357745B2 (ja) 2018-02-20 2023-10-06 富士フイルム株式会社 磁気テープカートリッジ
US11635653B2 (en) 2018-10-02 2023-04-25 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
JP7476794B2 (ja) 2018-10-02 2024-05-01 東洋紡株式会社 液晶表示装置、偏光板および偏光子保護フィルム
US11257518B2 (en) 2019-03-22 2022-02-22 Fujifilm Corporation Single reel magnetic tape cartridge with predefined servo band interval difference
US11270727B2 (en) 2019-03-22 2022-03-08 Fujifilm Corporation Single reel magnetic tape cartridge with predefined tape width difference and servo band interval difference
WO2022018904A1 (ja) * 2020-07-21 2022-01-27 ソニーグループ株式会社 磁気記録媒体

Also Published As

Publication number Publication date
US20130172515A1 (en) 2013-07-04
CN103118853A (zh) 2013-05-22
EP2623294A1 (en) 2013-08-07
KR20130117765A (ko) 2013-10-28
JPWO2012043281A1 (ja) 2014-02-06
JP5796493B2 (ja) 2015-10-21
CN103118853B (zh) 2015-03-18
US8742058B2 (en) 2014-06-03
EP2623294A4 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5796493B2 (ja) 二軸配向ポリエステルフィルムおよびリニア磁気記録媒体
KR100635403B1 (ko) 이축 배향 폴리에스테르 필름, 그의 제조 방법 및 자기기록 매체
JP5712614B2 (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP6260199B2 (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP5915102B2 (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP4893190B2 (ja) 二軸配向ポリエステルフィルム
JP6819082B2 (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP2021055077A (ja) 二軸配向ポリエステルフィルム
JP6701666B2 (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP5136271B2 (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP2013199510A (ja) 二軸配向ポリエステルフィルムおよびリニア磁気記録媒体
JP2009221277A (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP6707861B2 (ja) 二軸配向ポリエステルフィルム
JP5098719B2 (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP2011034647A (ja) 二軸配向ポリエステルフィルム
JP6866703B2 (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP2020164807A (ja) 二軸配向ポリエステルフィルム
JP5521627B2 (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP5589718B2 (ja) 二軸配向ポリエステルフィルム
JP2011184605A (ja) 二軸配向フィルム
JP2011068807A (ja) 二軸配向ポリエステルフィルム
JP7456203B2 (ja) 二軸配向ポリエステルフィルム
JP2012102251A (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP2012072219A (ja) 二軸配向ポリエステルフィルム
JP2014162117A (ja) 二軸配向ポリエステルフィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044039.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011543395

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828841

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011828841

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011828841

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13822350

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137007992

Country of ref document: KR

Kind code of ref document: A