WO2012042965A1 - 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池 - Google Patents

積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池 Download PDF

Info

Publication number
WO2012042965A1
WO2012042965A1 PCT/JP2011/061183 JP2011061183W WO2012042965A1 WO 2012042965 A1 WO2012042965 A1 WO 2012042965A1 JP 2011061183 W JP2011061183 W JP 2011061183W WO 2012042965 A1 WO2012042965 A1 WO 2012042965A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
mass
resin
layer
laminated porous
Prior art date
Application number
PCT/JP2011/061183
Other languages
English (en)
French (fr)
Inventor
高木義人
根本友幸
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to KR1020127024946A priority Critical patent/KR101483836B1/ko
Priority to CN201180021742.7A priority patent/CN102883885B/zh
Priority to EP11828527.9A priority patent/EP2623317A4/en
Priority to US13/816,677 priority patent/US20130143095A1/en
Priority to JP2012536246A priority patent/JP5690832B2/ja
Publication of WO2012042965A1 publication Critical patent/WO2012042965A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a laminated porous film, which can be used as a packaging, sanitary, livestock, agricultural, architectural, medical, separation membrane, light diffusion plate, battery separator, and particularly as a separator for non-aqueous electrolytic batteries. It can be used suitably.
  • the polymer porous body with many fine communication holes is used for separation membranes used for the production of ultrapure water, purification of chemicals, water treatment, waterproof and moisture-permeable films used for clothing and sanitary materials, and batteries. It is used in various fields such as battery separators.
  • secondary batteries are widely used as power sources for portable devices such as OA, FA, household appliances or communication devices.
  • portable devices using lithium ion secondary batteries are increasing because they have a high volumetric efficiency when mounted on devices, leading to a reduction in size and weight of the devices.
  • large-sized secondary batteries are being researched and developed in many fields related to energy / environmental issues, including road leveling, UPS, and electric vehicles, and are excellent in large capacity, high output, high voltage, and long-term storage. Therefore, the use of lithium ion secondary batteries, which are a kind of non-aqueous electrolyte secondary battery, is expanding.
  • the working voltage of a lithium ion secondary battery is usually designed with an upper limit of 4.1V to 4.2V.
  • the aqueous solution causes electrolysis and cannot be used as an electrolyte. Therefore, so-called non-aqueous electrolytes using organic solvents are used as electrolytes that can withstand high voltages.
  • the solvent for the non-aqueous electrolyte a high dielectric constant organic solvent capable of allowing more lithium ions to be present is used, and organic carbonate compounds such as propylene carbonate and ethylene carbonate are mainly used as the high dielectric constant organic solvent. in use.
  • a highly reactive electrolyte such as lithium hexafluorophosphate is dissolved in the solvent and used.
  • a separator is interposed between the positive electrode and the negative electrode from the viewpoint of preventing an internal short circuit.
  • the separator is required to have insulating properties due to its role.
  • a porous film is used as a separator.
  • SD characteristic As a characteristic that contributes to the safety of the battery separator, there is a shutdown characteristic (hereinafter referred to as “SD characteristic”).
  • This SD characteristic is a function that can prevent a subsequent increase in the temperature inside the battery because the micropores are blocked when the temperature is about 100 to 150 ° C., and as a result, ion conduction inside the battery is cut off.
  • the lowest temperature among the temperatures at which the micropores of the laminated porous film are blocked is referred to as a shutdown temperature (hereinafter referred to as “SD temperature”).
  • SD temperature shutdown temperature
  • the normal shutdown function does not function sufficiently, the temperature inside the battery exceeds 150 ° C., which is the melting point of PE, further increases, and the heat of the separator Due to the rupture caused by contraction, both poles are short-circuited, resulting in an accident that leads to ignition. Therefore, in order to ensure safety, the separator is required to have higher heat resistance than the current SD characteristics.
  • multilayer porous films having a porous layer containing a filler and a resin binder on at least one surface of a polyolefin resin porous film have been proposed.
  • a coating layer that is highly filled with a filler such as inorganic on a porous film these can cause abnormal heat generation and prevent short-circuit between both electrodes even when the temperature exceeds the SD temperature and continues to rise. This is a very safe method.
  • Patent Documents 1 to 3 it is necessary to reduce the content of the resin binder in order to ensure high air permeability, and there is a problem in the adhesion between the porous film as the base film and the coating layer. was there.
  • An object of the present invention is to solve the above problems. That is, to provide a laminated porous film having excellent characteristics when used as a separator for a non-aqueous electrolyte secondary battery, having excellent adhesion between a porous film as a base film and a heat-resistant layer and excellent heat resistance. Objective.
  • a coating layer (II layer) containing a filler (a), a resin binder (b), and an adhesive (c) is laminated on at least one surface of a polyolefin resin porous film (I layer). It is the laminated porous film characterized.
  • the adhesive (c) is preferably a nitrogen-containing organic compound.
  • the content of the adhesive (c) is preferably 0.5% by mass or more with respect to 100% by mass of the resin binder (b).
  • the peel strength between the polyolefin resin porous film (I layer) and the coating layer (II layer) of the laminated porous film is preferably 1 N / 15 mm or more.
  • the present invention preferably has ⁇ crystal activity.
  • the polyolefin resin porous film (I layer) and the coating layer (II layer), which are the base films, have excellent adhesion and heat resistance, and are non-aqueous electrolyte secondary battery separators.
  • a porous film having excellent characteristics can be obtained.
  • the expression “main component” includes the intention to allow other components to be contained within a range that does not interfere with the function of the main component, unless otherwise specified.
  • the content ratio of the components is not specified, but the main component includes 50% by mass or more, preferably 70% by mass or more, particularly preferably 90% by mass or more (including 100%) in the composition. It is.
  • “X to Y” (X and Y are arbitrary numbers) is described, it means “preferably greater than X” and “preferably smaller than Y” with the meaning of “X to Y” unless otherwise specified. Is included.
  • Polyolefin resin porous film (I layer) examples include homopolymers or copolymers obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexane and the like. Among these, a polypropylene resin and a polyethylene resin are preferable.
  • Polypropylene resins include homopropylene (propylene homopolymer), or propylene and ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, etc. Random copolymers or block copolymers with ⁇ -olefins may be mentioned. Among these, homopolypropylene is more preferably used from the viewpoint of maintaining the mechanical strength and heat resistance of the laminated porous film.
  • the polypropylene resin preferably has an isotactic pentad fraction (mmmm fraction) exhibiting stereoregularity of 80 to 99%. More preferably 83 to 98%, and still more preferably 85 to 97%. If the isotactic pentad fraction is too low, the mechanical strength of the film may be reduced.
  • the upper limit of the isotactic pentad fraction is defined by the upper limit that can be obtained industrially at the present time, but this is not the case when a more regular resin is developed in the industrial level in the future. is not.
  • the isotactic pentad fraction (mmmm fraction) is the same direction for all five methyl groups that are side chains with respect to the main chain of carbon-carbon bonds composed of any five consecutive propylene units. Means the three-dimensional structure located at or its proportion. Signal assignment of the methyl group region is as follows. Zambelli et al (Macromolecules 8,687, (1975)).
  • Mw / Mn which is a parameter indicating a molecular weight distribution
  • Mw / Mn is 2.0 to 10.0. More preferred is 2.0 to 8.0, and still more preferred is 2.0 to 6.0. This means that the smaller the Mw / Mn is, the narrower the molecular weight distribution is.
  • Mw / Mn is less than 2.0, problems such as a decrease in extrusion moldability occur, and it is difficult to produce industrially.
  • Mw / Mn exceeds 10.0, low molecular weight components increase, and the mechanical strength of the laminated porous film tends to decrease.
  • Mw / Mn is obtained by GPC (gel permeation chromatography) method.
  • the melt flow rate (MFR) of the polypropylene resin is not particularly limited, but usually the MFR is preferably 0.5 to 15 g / 10 minutes, and 1.0 to 10 g / 10 minutes. It is more preferable. When the MFR is 0.5 g / 10 min or more, the resin has a high melt viscosity at the time of molding, and sufficient productivity can be ensured. On the other hand, the mechanical strength of the obtained laminated porous film can be sufficiently maintained by setting it to 15 g / 10 min or less. MFR is measured according to JISK7210 under conditions of a temperature of 230 ° C. and a load of 2.16 kg.
  • the method for producing the polypropylene resin is not particularly limited, and a known polymerization method using a known polymerization catalyst, for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene catalyst. And a polymerization method using a single site catalyst.
  • a known polymerization method using a known polymerization catalyst for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene catalyst.
  • a polymerization method using a single site catalyst for example, a multisite catalyst represented by a Ziegler-Natta type catalyst or a metallocene catalyst.
  • polypropylene resins examples include the trade names “Novatech PP” “WINTEC” (manufactured by Nippon Polypro), “Versify” “Notio” “Toughmer XR” (manufactured by Mitsui Chemicals), “Zeras” “Thermolan” (Mitsubishi Chemical) ), “Sumitomo Noblen”, “Tough Selenium” (manufactured by Sumitomo Chemical), “Prime TPO” (manufactured by Prime Polymer), “Adflex”, “Adsyl”, “HMS-PP (PF814)” (manufactured by Sun Aroma) Commercially available products such as “Inspire” (Dow Chemical) can be used.
  • the laminated porous film of the present invention preferably has ⁇ crystal activity.
  • the ⁇ crystal activity can be regarded as an index indicating that the polypropylene resin produced ⁇ crystals in the film-like material before stretching. If the polypropylene resin in the film-like material before stretching produces ⁇ crystals, fine pores can be easily formed by stretching even when additives such as fillers are not used. A laminated porous film having characteristics can be obtained.
  • the presence or absence of “ ⁇ crystal activity” is determined when the crystal melting peak temperature derived from the ⁇ crystal is detected by a differential scanning calorimeter described later and / or the X-ray diffractometer described later.
  • a diffraction peak derived from the ⁇ crystal is detected by measurement using, it is determined that the crystal has “ ⁇ crystal activity”.
  • the laminated porous film is heated from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min for 1 minute with a differential scanning calorimeter, and then cooled from 240 ° C. to 25 ° C. at a cooling rate of 10 ° C./min.
  • Tm ⁇ crystal melting peak temperature
  • the ⁇ crystal activity of the laminated porous film is calculated by the following equation using the heat of crystal melting derived from the ⁇ crystal of the polypropylene resin ( ⁇ Hm ⁇ ) and the heat of crystal melting derived from the ⁇ crystal ( ⁇ Hm ⁇ ).
  • ⁇ crystal activity (%) [ ⁇ Hm ⁇ / ( ⁇ Hm ⁇ + ⁇ Hm ⁇ )] ⁇ 100
  • the amount of heat of crystal melting derived from the ⁇ crystal ( ⁇ Hm ⁇ ) detected mainly in the range of 145 ° C. or higher and lower than 160 ° C., and mainly detected at 160 ° C. or higher and 170 ° C. or lower.
  • the amount of heat of crystal melting ( ⁇ Hm ⁇ ) derived from the ⁇ crystal detected mainly in the range of 120 ° C. or more and less than 140 ° C. It can be calculated from the crystal melting calorie ( ⁇ Hm ⁇ ) derived from the ⁇ crystal detected in the range of from 0 ° C. to 165 ° C.
  • the laminated porous film preferably has a higher ⁇ crystal activity, and the ⁇ crystal activity is preferably 20% or more. More preferably, it is 40% or more, and particularly preferably 60% or more. If the laminated porous film has a ⁇ crystal activity of 20% or more, it indicates that a large number of ⁇ crystals of polypropylene resin can be produced in the film-like material before stretching, and fine and uniform pores are formed by stretching. As a result, a separator for a non-aqueous electrolyte secondary battery having high mechanical strength and excellent air permeability can be obtained.
  • the upper limit value of the ⁇ crystal activity is not particularly limited, but the higher the ⁇ crystal activity, the more effective the effect is obtained, so the closer it is to 100%, the better.
  • the ⁇ crystal activity can be measured in the state where the laminated porous film of the present invention is in the entire laminated porous film. Further, if a layer containing a polypropylene resin other than the layer made of polypropylene resin is laminated, it is preferable that both layers have ⁇ crystal activity.
  • ⁇ crystal nucleating agent examples include those shown below, but are not particularly limited as long as they increase the formation and growth of ⁇ crystals of polypropylene resin, and two or more types are mixed. May be used.
  • examples of the ⁇ crystal nucleating agent include amide compounds; tetraoxaspiro compounds; quinacridones; iron oxides having a nanoscale size; potassium 1,2-hydroxystearate, magnesium benzoate or magnesium succinate, magnesium phthalate, etc.
  • Alkali or alkaline earth metal salts of carboxylic acids represented by: aromatic sulfonic acid compounds represented by sodium benzenesulfonate or sodium naphthalenesulfonate; di- or triesters of dibasic or tribasic carboxylic acids; phthalocyanine blue Phthalocyanine pigments typified by: a two-component compound comprising component A which is an organic dibasic acid and a component B which is an oxide, hydroxide or salt of a Group IIA metal of the periodic table; a cyclic phosphorus compound; Made of magnesium compound Such as the formation thereof.
  • specific types of nucleating agents are described in JP-A No. 2003-306585, JP-A No. 06-289656, and JP-A No. 09-194650.
  • ⁇ crystal nucleating agent As a commercial product of ⁇ crystal nucleating agent, ⁇ crystal nucleating agent “NJESTER NU-100” manufactured by Shin Nippon Rika Co., Ltd.
  • polypropylene resin to which ⁇ crystal nucleating agent is added polypropylene manufactured by Aristech “Bepol B-” 022SP ”, polypropylene manufactured by Borealis“ Beta ( ⁇ ) -PP BE60-7032, ” Mayo polypropylene manufactured by“ BNX BETAPP-LN ”, and the like.
  • the ratio of the ⁇ -crystal nucleating agent added to the polypropylene resin needs to be appropriately adjusted depending on the type of the ⁇ -crystal nucleating agent or the composition of the polypropylene-based resin.
  • the agent is preferably 0.0001 to 5.0 parts by mass. 0.001 to 3.0 parts by mass is more preferable, and 0.01 to 1.0 part by mass is still more preferable. If it is 0.0001 part by mass or more, ⁇ -crystals of polypropylene resin can be sufficiently produced and grown during production, and sufficient ⁇ -crystal activity can be secured even when used as a separator, and desired air permeability performance. Is obtained.
  • Addition of 5.0 parts by mass or less is preferable because it is economically advantageous and there is no bleeding of the ⁇ crystal nucleating agent on the surface of the laminated porous film.
  • the amount of ⁇ crystal nucleating agent added to each layer may be the same or different.
  • the porous structure of each layer can be appropriately adjusted by changing the addition amount of the ⁇ crystal nucleating agent.
  • additives generally added to the resin composition can be added as appropriate within a range that does not significantly impair the effects of the present invention.
  • the additive is added for the purpose of improving and adjusting the molding processability, productivity and various physical properties of the polyolefin resin porous film (I layer), recycled resin generated from trimming loss such as ears, silica, Inorganic particles such as talc, kaolin and calcium carbonate, pigments such as titanium oxide and carbon black, flame retardants, weathering stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinkers, lubricants, nucleating agents, plastics Additives such as an agent, an anti-aging agent, an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizing agent, an antifogging agent, an antiblocking agent, a slipping agent or a coloring agent.
  • polyethylene resin Specific examples of the polyethylene resin include ultra low density polyethylene, low density polyethylene, high density polyethylene, linear low density polyethylene, and homopolymer polyethylene such as ultra high molecular weight polyethylene characterized by molecular weight, as well as ethylene propylene.
  • a copolymer or a copolymer polyethylene of a polyethylene resin and another polyolefin resin may be mentioned.
  • homopolymer polyethylene or copolymer polyethylene having an ⁇ -olefin comonomer content of 2 mol% or less is preferable, and homopolymer polyethylene is more preferable.
  • the density of the polyethylene resin is preferably 0.910 to 0.970 g / cm 3 , more preferably 0.930 to 0.970 g / cm 3 , and 0.940 to 0.970 g / cm 3. 3 is more preferable.
  • a density of 0.910 g / cm 3 or more is preferable because it can have appropriate SD characteristics.
  • 0.970 g / cm 3 or less is preferable in that it can have an appropriate SD characteristic and can maintain stretchability.
  • the density can be measured according to JIS K7112 using a density gradient tube method.
  • the melt flow rate (MFR) of the polyethylene resin is not particularly limited, but usually the MFR is preferably 0.03 to 30 g / 10 minutes, and preferably 0.3 to 10 g / 10 minutes. It is more preferable. If the MFR is 0.03 g / 10 min or more, the melt viscosity of the resin during the molding process is sufficiently low, which is excellent in productivity and preferable. On the other hand, if it is 30 g / 10 minutes or less, since sufficient mechanical strength can be obtained, it is preferable. MFR is measured in accordance with JIS K7210 under conditions of a temperature of 190 ° C. and a load of 2.16 kg.
  • the polymerization catalyst for the polyethylene resin is not particularly limited, and may be any one such as a Ziegler type catalyst, a Philips type catalyst, or a Kaminsky type catalyst.
  • a polymerization method of the polyethylene resin there are a one-stage polymerization, a two-stage polymerization, or a multistage polymerization more than that, and any method of the polyethylene resin can be used.
  • the porosity promoting compound X is not limited, but specific examples thereof include a porosity promoting compound X selected from a modified polyolefin resin, an alicyclic saturated hydrocarbon resin or a modified product thereof, an ethylene copolymer, or a wax. It is more preferable that at least one of them is included. Among these, an alicyclic saturated hydrocarbon resin or a modified product thereof, an ethylene copolymer, or a wax, which is more effective when made porous, is more preferable, and a wax is more preferable from the viewpoint of moldability.
  • Examples of alicyclic saturated hydrocarbon resins and modified products thereof include petroleum resins, rosin resins, terpene resins, coumarone resins, indene resins, coumarone-indene resins, and modified products thereof.
  • the petroleum resin in the present invention is a C4 to C10 aliphatic olefin or diolefin obtained from a by-product such as by thermal decomposition of naphtha, or a C8 or more aromatic compound having an olefinically unsaturated bond.
  • a by-product such as by thermal decomposition of naphtha
  • a C8 or more aromatic compound having an olefinically unsaturated bond refers to aliphatic, aromatic and copolymer petroleum resins obtained by singly or copolymerizing one or more of the compounds contained in the above.
  • Examples of petroleum resins include aliphatic petroleum resins mainly containing C5 fraction, aromatic petroleum resins mainly containing C9 fraction, copolymer petroleum resins thereof, and alicyclic petroleum resins.
  • Examples of the terpene resin include terpene resins and terpene-phenol resins from ⁇ -pinene
  • examples of the rosin resin include rosin resins such as gum rosin and utudrodin, and esterified rosin resins modified with glycerin and pentaerythritol.
  • the alicyclic saturated hydrocarbon resin and the modified product thereof have relatively good compatibility when mixed with a polyethylene resin, but a petroleum resin is more preferable in terms of color tone and thermal stability, and a hydrogenated petroleum resin is used. More preferably.
  • Hydrogenated petroleum resin is obtained by hydrogenating petroleum resin by a conventional method.
  • Examples thereof include hydrogenated aliphatic petroleum resins, hydrogenated aromatic petroleum resins, hydrogenated copolymer petroleum resins and hydrogenated alicyclic petroleum resins, and hydrogenated terpene resins.
  • hydrogenated petroleum resins hydrogenated alicyclic petroleum resins obtained by copolymerizing and hydrogenating a cyclopentadiene compound and an aromatic vinyl compound are particularly preferable.
  • Examples of commercially available hydrogenated petroleum resins include “ALCON” (manufactured by Arakawa Chemical Industries).
  • the ethylene copolymer in the present invention is a compound obtained by copolymerizing ethylene and one or more of vinyl acetate, unsaturated carboxylic acid, unsaturated carboxylic acid anhydride, or carboxylic acid ester. It is.
  • the ethylene copolymer preferably has an ethylene monomer unit content of 50% by mass or more, more preferably 60% by mass or more, and still more preferably 65% by mass or more.
  • the content of ethylene monomer units is preferably 95% by mass or less, more preferably 90% by mass or less, and further preferably 85% by mass or less. If the content of the ethylene monomer unit is within a predetermined range, a porous structure can be formed more efficiently.
  • ethylene copolymer those having an MFR (JIS K7210, temperature: 190 ° C., load: 2.16 kg) of 0.1 g / 10 min to 10 g / 10 min are preferably used.
  • MFR JIS K7210, temperature: 190 ° C., load: 2.16 kg
  • the MFR is 0.1 g / 10 min or more, the extrudability can be maintained satisfactorily.
  • the MFR is 10 g / 10 min or less, the strength of the film is hardly lowered, which is preferable.
  • the ethylene-based copolymers include “EVAFLEX” (Mitsui / DuPont Polychemical Co., Ltd.), “Novatech EVA” (Nihon Polyethylene Co., Ltd.) as an ethylene-vinyl acetate copolymer, and “NUC” as an ethylene-acrylic acid copolymer.
  • the wax in the present invention is an organic compound that satisfies the following properties (a) and (b).
  • the melting point is 40 ° C to 200 ° C.
  • the melt viscosity at a temperature 10 ° C. higher than the melting point is 50 Pa ⁇ s or less.
  • ⁇ For wax including polar or nonpolar wax, polypropylene wax, polyethylene wax and wax modifier.
  • paraffin wax, polyethylene wax, and microcrystalline wax are preferable from the viewpoint of efficiently forming a porous structure, and microcrystalline wax that can further reduce the pore diameter is more preferable from the viewpoint of SD characteristics.
  • examples of commercially available polyethylene wax include “FT-115” (manufactured by Nippon Seiwa), and examples of microcrystalline wax include “Hi-Mic” (manufactured by Nippon Seiwa).
  • the blending amount of the porosity promoting compound X is set as a lower limit with respect to 100 parts by mass of the polyethylene resin contained in one layer when peeling the interface between the polyethylene resin and the porosity promoting compound X to form micropores. 1 part by mass or more is preferable, 5 parts by mass or more is more preferable, and 10 parts by mass or more is still more preferable.
  • the upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and still more preferably 30 parts by mass or less.
  • thermoplastic resin may be used as long as the thermal characteristics of the porous film, specifically, the porosity is not impaired.
  • thermoplastic resins include styrene resins such as styrene, AS resin, and ABS resin: polyvinyl chloride, fluorine resin, polyethylene terephthalate, polybutylene terephthalate, and polycarbonate.
  • ester resins such as polyarylate
  • Ether resins such as polyacetal, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone or polyphenylene sulfide
  • polyamides such as 6 nylon, 6-6 nylon, 6-12 nylon
  • thermoplastic resins such as resins.
  • thermoplastic elastomer examples include styrene / butadiene, polyolefin, urethane, polyester, polyamide, 1,2-polybutadiene, polyvinyl chloride, and ionomer.
  • additives or other components that are generally blended in the resin composition may be included.
  • the additive is added for the purpose of improving and adjusting the molding processability, productivity and various physical properties of the polyolefin resin porous film (I layer), recycled resin generated from trimming loss such as ears, silica, Inorganic particles such as talc, kaolin and calcium carbonate, pigments such as titanium oxide and carbon black, flame retardants, weathering stabilizers, heat stabilizers, antistatic agents, melt viscosity improvers, crosslinkers, lubricants, nucleating agents, plastics Additives such as an agent, an anti-aging agent, an antioxidant, a light stabilizer, an ultraviolet absorber, a neutralizing agent, an antifogging agent, an antiblocking agent, a slipping agent or a coloring agent.
  • the nucleating agent is preferable because it has an effect of controlling the crystal structure of the polyethylene resin and reducing the porous structure at the time of stretching and opening.
  • “Gelall D” manufactured by Shin Nippon Chemical Co., Ltd.
  • “Adeka Stub” manufactured by Asahi Denka Kogyo Co., Ltd.
  • “Hyperform” manufactured by Milliken Chemical Co., Ltd.
  • “IRGACEARARD” Ciba Special Chemicals Co., Ltd.
  • Manufactured and the like.
  • “Rike Master” are commercially available.
  • the polyolefin resin porous film (I layer) may be a single layer or a laminate, but is preferably laminated in two or more layers. Especially, what laminated
  • the layer structure of the polyolefin resin porous film is not particularly limited as long as at least one layer containing a polypropylene resin (hereinafter referred to as “A layer”) is present.
  • other layers hereinafter referred to as “B layer” can be laminated as long as they do not interfere with the function of the polyolefin resin porous film.
  • strength maintenance layer, the heat-resistant layer (high melting temperature resin layer), the shutdown layer (low melting temperature resin layer), etc. are mentioned.
  • a low melting point resin layer that ensures the safety of the battery is laminated by closing the hole in a high temperature atmosphere as described in JP-A No. 04-181651.
  • Specific examples include a two-layer structure in which A layers / B layers are stacked, a three-layer structure in which A layers / B layers / A layers, or B layers / A layers / B layers are stacked.
  • the physical properties of the polyolefin resin porous film of the present invention can be freely adjusted by the layer constitution, lamination ratio, composition of each layer, and production method.
  • the method for producing the non-porous film is not particularly limited, and a known method may be used. For example, a method of melting a thermoplastic resin composition using an extruder, extruding from a T die, and cooling and solidifying with a cast roll. Is mentioned. Moreover, the method of cutting open the film-like thing manufactured by the tubular method and making it planar is also applicable.
  • There are methods for stretching the nonporous film-like material such as a roll stretching method, a rolling method, a tenter stretching method, and a simultaneous biaxial stretching method, and these methods are used alone or in combination of two or more to perform uniaxial stretching or biaxial stretching. . Among these, sequential biaxial stretching is preferable from the viewpoint of controlling the porous structure.
  • the production method is roughly classified into the following four types depending on the order of the porous formation and lamination.
  • (I) A method in which each layer is made porous, and then the layers made porous are laminated or bonded with an adhesive or the like.
  • (II) A method of laminating each layer to produce a laminated nonporous film-like material, and then making the nonporous film-like material porous.
  • (III) A method in which one of the layers is made porous and then laminated with another layer of a nonporous film to make it porous.
  • (IV) A method of forming a laminated porous film by preparing a porous layer and then applying a coating such as inorganic / organic particles or depositing metal particles.
  • a coating such as inorganic / organic particles or depositing metal particles.
  • a method of forming a porous layer after preparing is particularly preferable.
  • a mixed resin composition of a polypropylene resin and, if necessary, a thermoplastic resin and additives is prepared.
  • raw materials such as polypropylene resin, ⁇ crystal nucleating agent, and other additives as required, preferably using a Henschel mixer, super mixer, tumbler type mixer, etc., or by hand-blending all ingredients in a bag
  • the mixture is melt-kneaded with a single-screw or twin-screw extruder, a kneader or the like, preferably a twin-screw extruder, and then cut to obtain pellets.
  • the pellets are put into an extruder and extruded from a T-die extrusion die to form a film.
  • the type of T die is not particularly limited.
  • the T die may be a multi-manifold type for two types and three layers or a feed block type for two types and three layers.
  • the gap of the T die to be used is determined from the final required film thickness, stretching conditions, draft ratio, various conditions, etc., but is generally about 0.1 to 3.0 mm, preferably 0.5. -1.0 mm. If it is less than 0.1 mm, it is not preferable from the viewpoint of production speed, and if it is more than 3.0 mm, it is not preferable from the viewpoint of production stability because the draft rate increases.
  • the extrusion temperature is appropriately adjusted depending on the flow characteristics and moldability of the resin composition, but is generally preferably 180 to 350 ° C, more preferably 200 to 330 ° C, and further preferably 220 to 300 ° C.
  • a temperature of 180 ° C. or higher is preferable because the viscosity of the molten resin is sufficiently low and the moldability is excellent and the productivity is improved.
  • the cooling and solidification temperature by the cast roll is very important in the present invention, and the ratio of the ⁇ crystal of the polypropylene resin in the film can be adjusted.
  • the cooling and solidifying temperature of the cast roll is preferably 80 to 150 ° C, more preferably 90 to 140 ° C, and still more preferably 100 to 130 ° C. It is preferable to set the cooling and solidification temperature to 80 ° C. or higher because the ratio of ⁇ crystals in the film can be sufficiently increased. Further, it is preferable to set the temperature to 150 ° C. or lower because troubles such as the extruded molten resin sticking to and wrapping around the cast roll hardly occur and the film can be efficiently formed into a film.
  • the ⁇ crystal ratio of the polypropylene resin of the film-like material before stretching is adjusted to 30 to 100% by setting a cast roll in the temperature range. More preferably, it is 40 to 100%, more preferably 50 to 100%, and most preferably 60 to 100%.
  • a polyolefin-based resin porous film having good gas permeability can be obtained because it is easily made porous by the subsequent stretching operation.
  • the ⁇ crystal ratio in the film before stretching is detected when the film is heated from 25 ° C. to 240 ° C. at a heating rate of 10 ° C./min using a differential scanning calorimeter.
  • uniaxial stretching may be performed in the longitudinal direction or the transverse direction, or biaxial stretching may be performed.
  • biaxial stretching simultaneous biaxial stretching may be sufficient and sequential biaxial stretching may be sufficient.
  • sequential biaxial stretching is more preferable because the stretching conditions can be selected in each stretching step and the porous structure can be easily controlled.
  • Biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching, but the stretching conditions (magnification, temperature) can be easily selected in each stretching step, and the porous structure can be easily controlled. Biaxial stretching is more preferable.
  • the longitudinal direction of the film and the film is referred to as “longitudinal direction”, and the direction perpendicular to the longitudinal direction is referred to as “lateral direction”.
  • stretching in the longitudinal direction is referred to as “longitudinal stretching”
  • stretching in the direction perpendicular to the longitudinal direction is referred to as “lateral stretching”.
  • the stretching temperature needs to be appropriately selected depending on the composition of the resin composition to be used and the crystallization state, but it is preferable to select within the range of the following conditions.
  • the stretching temperature needs to be changed appropriately depending on the composition of the resin composition to be used, the crystal melting peak temperature, the crystallinity, etc., but the stretching temperature in the longitudinal stretching is preferably about 0 to 130 ° C., More preferably, it is controlled in the range of 10 to 120 ° C., more preferably 20 to 110 ° C. Further, it is preferably 2 to 10 times, more preferably 3 to 8 times, still more preferably 4 to 7 times.
  • the stretching temperature in transverse stretching is generally from 100 to 160 ° C., preferably from 110 to 150 ° C., more preferably from 120 to 140 ° C.
  • the preferred longitudinal draw ratio is preferably 1.2 to 10 times, more preferably 1.5 to 8 times, still more preferably 2 to 7 times.
  • the stretching speed in the stretching step is preferably 500 to 12000% / min, more preferably 1500 to 10,000% / min, and further preferably 2500 to 8000% / min.
  • the laminated porous film thus obtained is preferably subjected to heat treatment for the purpose of improving dimensional stability.
  • the effect of dimensional stability can be expected by setting the temperature to preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and still more preferably 140 ° C. or higher.
  • the heat treatment temperature is preferably 170 ° C. or lower, more preferably 165 ° C. or lower, and further preferably 160 ° C. or lower.
  • a heat treatment temperature of 170 ° C. or lower is preferable because the polypropylene resin hardly melts by the heat treatment and can maintain a porous structure.
  • a relaxation treatment of 1 to 20% may be performed as necessary.
  • a laminated porous film is obtained by cooling uniformly and winding up after heat processing.
  • a coating layer (II layer) containing a filler (a), a resin binder (b), and an adhesive (c) is laminated on at least one surface of a polyolefin resin porous film (I layer).
  • Filler (a) examples of the filler (a) that can be used in the present invention include inorganic fillers and organic fillers, but are not particularly limited.
  • inorganic fillers include carbonates such as calcium carbonate, magnesium carbonate and barium carbonate; sulfates such as calcium sulfate, magnesium sulfate and barium sulfate; chlorides such as sodium chloride, calcium chloride and magnesium chloride, aluminum oxide and oxidation
  • oxides such as calcium, magnesium oxide, zinc oxide, titanium oxide, and silica
  • silicates such as talc, clay, and mica can be used.
  • barium sulfate and aluminum oxide are preferable.
  • organic fillers include ultra high molecular weight polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polysulfone, polyethersulfone, polyetheretherketone, polytetrafluoroethylene, polyimide, polyether.
  • examples thereof include thermoplastic resins such as imide, melamine, and benzoguanamine, and thermosetting resins. Among these, cross-linked polystyrene and the like are particularly preferable.
  • the average particle diameter of the filler (a) is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, still more preferably 0.3 ⁇ m or more, and the upper limit is preferably 3.0 ⁇ m or less, more preferably 1 .5 ⁇ m or less. Sufficient heat resistance can be exhibited when the average particle diameter is within the specified range. Moreover, it is more preferable from a viewpoint of the dispersibility in the porous layer of a filler (a) that an average particle diameter shall be 1.5 micrometers or less.
  • the “average particle diameter of the inorganic filler” is a value measured according to a method using SEM.
  • the filler and the polyolefin-based resin porous film can be favorably bonded, are electrochemically stable, and a laminated porous film is used as a battery.
  • ethylene-acrylic acid copolymer such as ethylene-vinyl acetate copolymer (EVA, whose structural unit derived from vinyl acetate is 20 to 35 mol%), ethylene-ethyl acrylate copolymer, fluorine, etc.
  • Resins [polyvinylidene fluoride (PVDF), etc.], fluorinated rubber, styrene-butadiene rubber (SBR), nitrile butadiene rubber (NBR), polybutadiene rubber (BR), polyacrylonitrile (PAN), polyacrylic acid (PAA), carboxy Examples thereof include methyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), poly N-vinylacetamide, cross-linked acrylic resin, polyurethane, and epoxy resin.
  • These resin binders (b) may be used individually by 1 type, and may use 2 or more types together. Among these resin binders (b), polyvinyl alcohol, polyvinylidene fluoride, styrene-butadiene rubber, carboxymethyl cellulose, and polyacrylic acid are preferable.
  • Adhesive (c) In the present invention, it is important to contain the adhesive (c) for the purpose of improving the adhesion between the polyolefin resin porous film (I layer) and the coating layer (II layer) used as the base film. Although the details are unclear by adding the adhesive (c) to the coating layer (II layer), the polyolefin resin in which the adhesive (c) is contained in the polyolefin resin porous film, or the resin binder ( In order to react with b), it is thought that sufficient adhesiveness can be ensured even if the content of the resin binder (b) is small. As the adhesive (c), a nitrogen-containing organic compound is preferred when the resin binder (b) is used.
  • Typical examples of the nitrogen-containing organic compound include what are called imine compounds and amine compounds.
  • polyalkyleneimine is a representative example of the imine compound, polyethyleneimine, alkyl or cyclopentyl-modified polyethyleneimine, imine adduct of ethyleneurea, poly (ethyleneimine-urea) and ethyleneimine adduct of polyaminepolyamide, or There is a polyimine compound selected from the group consisting of these alkyl-modified products, alkenyl-modified products, benzyl-modified products, or aliphatic cyclic hydrocarbon-modified products, polyamideimides, and polyimide varnishes.
  • polyalkylene polyamine is mentioned as an amine compound.
  • polyethylene polyamine ethylenediamine, diethylenetriamine, and triethylenetetramine
  • a polyamide such as a polyamidoimide adduct of polyamide, a hydrazine compound, an epichlorohydrin adduct of polyamine polyamide (saturated dibasic carboxylic acid having 3 to 10 carbon atoms and polyhydride).
  • Polyamineamide compounds such as water-soluble and cationic thermosetting resins obtained by reacting polyamides with epichlorohydrin from alkylene polyamines, quaternary nitrogen-containing acrylic polymers, quaternary nitrogen-containing benzyl polymers, urethanes, carboxylate amines
  • nitrogen-containing quaternary salt compounds such as compounds having a base, compounds such as methylolated melamine, and cationic polyurethane.
  • cationic resins such as cation-modified polyurethane resins, polyvinyl pyrrolidone, vinyl pyrrolidone-vinyl acetate copolymers, tertiary nitrogen-containing acrylic resins, and the like can be given.
  • urea compounds such as urea, thiourea, guanylurea, methylurea and dimethylurea, dicyandiamide derivatives and the like are also included in the present invention.
  • polyalkyleneimine is most preferable from the viewpoint of not only adhesion improvement but also compatibility with the resin binder (b) in water.
  • polyethyleneimine and polypropyleneimine are preferable, and polyethyleneimine (PEI) is particularly preferable.
  • PEI polyethyleneimine
  • These polyalkyleneimines may be used alone or in the form of a salt with acetic acid, p-toluenesulfonic acid, sulfuric acid, hydrochloric acid or the like.
  • the nitrogen-containing organic compound used in the present invention is generally highly reactive, and even when a low molecular weight substance that reacts with the electrolyte is mixed, the nitrogen-containing organic compound is combined with the nitrogen-containing organic compound, and the output characteristics are reduced due to self-discharge or the like.
  • the effect of suppressing can also be considered.
  • the content of the filler (a) in the total amount of the filler (a) and the resin binder (b) is preferably 92% by mass or more, and more preferably 95% by mass or more. 98 mass% or more is more preferable. If the content rate of the said filler (a) is 92 mass% or more, since the laminated porous film with a communication property can be produced and the outstanding air permeation performance can be shown, it is preferable.
  • the content of the adhesive (c) is preferably 0.5% by mass or more, and 0.5% by mass or more and 75% by mass with respect to 100% by mass of the resin binder (b). % Is more preferable, and a range of 0.5% by mass or more and less than 50% by mass is more preferable. If the lower limit of the content of the adhesive (c) is 0.5% by mass or more based on the resin binder (b), excellent adhesiveness can be achieved. Moreover, although the upper limit of the content rate of the said adhesive agent (c) is not specifically limited, If it is less than 75 mass% with respect to the said resin binder (b), since it can combine the outstanding adhesiveness and heat resistance. If it is less than 50% by mass, it is more preferable because of excellent coatability.
  • the laminated porous film of the present invention is a polyolefin-based resin porous film (I layer) obtained by dissolving or dispersing the filler (a), the resin binder (b), and the adhesive (c) in a solvent.
  • the coating layer (II layer) can be formed on the surface of the polyolefin resin porous film (I layer).
  • the solvent it is preferable to use a solvent in which the filler (a), the resin binder (b), and the adhesive (c) can be dissolved or dispersed uniformly and stably.
  • a solvent include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, water, ethanol, toluene, hot xylene, and hexane.
  • the dispersion includes a dispersant such as a surfactant, a thickener, a wetting agent, an antifoaming agent.
  • additives such as an agent, a pH adjusting agent including an acid and an alkali may be added.
  • the additive is preferably one that can be removed upon solvent removal or plasticizer extraction, but is electrochemically stable in the range of use of the nonaqueous electrolyte secondary battery, does not inhibit the battery reaction, and is about 200 ° C. If it is stable, it may remain in the battery (in the laminated porous film).
  • Examples of the method for dissolving or dispersing the filler (a), the resin binder (b), and the adhesive (c) in a solvent include a ball mill, a bead mill, a planetary ball mill, a vibrating ball mill, a sand mill, a colloid mill, and an attritor. And a mechanical stirring method using a roll mill, a high-speed impeller dispersion, a disperser, a homogenizer, a high-speed impact mill, ultrasonic dispersion, a stirring blade, and the like.
  • the method of applying the dispersion to the surface of the polyolefin resin porous film (II layer) may be after the extrusion molding, after the longitudinal stretching step, or in the transverse stretching step. It may be later.
  • the coating method in the coating step is not particularly limited as long as the required layer thickness and coating area can be realized.
  • coating methods include gravure coater method, small diameter gravure coater method, reverse roll coater method, transfer roll coater method, kiss coater method, dip coater method, knife coater method, air doctor coater method, blade coater method, rod Examples include a coater method, a squeeze coater method, a cast coater method, a die coater method, a screen printing method, and a spray coating method.
  • the said dispersion liquid may be apply
  • the solvent is preferably a solvent that can be removed from the dispersion applied to the polyolefin resin porous film (I layer).
  • a method for removing the solvent any method that does not adversely affect the polyolefin resin porous film (I layer) can be employed without any particular limitation.
  • a method for removing the solvent for example, a method of drying the polyolefin-based resin porous film (I layer) at a temperature below its melting point, a method of drying at a low temperature under reduced pressure, a poor solvent for the resin binder (b) And a method of extracting the solvent simultaneously with solidifying the resin binder (b).
  • the laminated porous film of the present invention can be manufactured using a method different from the above-described manufacturing method. For example, a raw material for polyolefin resin porous film (I layer) is introduced into one extruder, a raw material for a coating layer (II layer) is introduced into the other extruder, and integrated with one die to form a laminated film It is also possible to adopt a method of forming a porous material after forming the product.
  • the thickness of the laminated porous film of the present invention is preferably 5 to 100 ⁇ m. More preferably, it is 8 to 50 ⁇ m, and still more preferably 10 to 30 ⁇ m.
  • a separator for a non-aqueous electrolyte secondary battery if it is 5 ⁇ m or more, substantially necessary electrical insulation can be obtained. For example, even when a large force is applied to the protruding portion of the electrode, Breaks through the separator for the electrolyte secondary battery and is not easily short-circuited.
  • thickness is 100 micrometers or less, since the electrical resistance of a lamination
  • the thickness of the coating layer (II layer) is preferably 0.5 ⁇ m or more, more preferably 2 ⁇ m or more, still more preferably 3 ⁇ m or more, and particularly preferably 4 ⁇ m or more from the viewpoint of heat resistance.
  • the upper limit is preferably 90 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 30 ⁇ m or less, and particularly preferably 10 ⁇ m or less from the viewpoint of communication.
  • the porosity is preferably 30% or more, more preferably 35% or more, and further preferably 40% or more. If the porosity is 30% or more, it is possible to obtain a laminated porous film that ensures communication and has excellent air permeability.
  • the upper limit is preferably 70% or less, more preferably 65% or less, and still more preferably 60% or less. If the porosity is 70% or less, the strength of the laminated porous film is hardly lowered, which is preferable from the viewpoint of handling. The porosity is measured by the method described in the examples.
  • the air permeability of the laminated porous film of the present invention is preferably 2000 seconds / 100 ml or less, more preferably 10 to 1000 seconds / 100 ml, still more preferably 50 to 800 seconds / 100 ml.
  • An air permeability of 2000 seconds / 100 ml or less is preferable because it indicates that the laminated porous film has communication properties and can exhibit excellent air permeability.
  • the air permeability represents the difficulty in passing through the air in the film thickness direction, and is specifically expressed by the number necessary for 100 ml of air to pass through the film. Therefore, it means that the smaller the numerical value is, the easier it is to pass through, and the higher numerical value is, the easier it is to pass.
  • the air permeability of the laminated porous film of the present invention is low, it can be used for various applications. For example, when used as a separator for a non-aqueous electrolyte secondary battery, a low air permeability means that lithium ions can be easily transferred, which is preferable because battery performance is excellent.
  • the laminated porous film of the present invention preferably has SD characteristics when used as a separator for a non-aqueous electrolyte secondary battery.
  • the air permeability after heating at 135 ° C. for 5 seconds is preferably 10,000 seconds / 100 ml or more, more preferably 25000 seconds / 100 ml or more, and further preferably 50000 seconds / 100 ml or more.
  • the shrinkage rate at 150 ° C. of the laminated porous film of the present invention is preferably less than 25%, more preferably less than 15%, and still more preferably less than 10%. If the shrinkage rate at 150 ° C. is less than 25%, even when abnormal heat is generated above the SD temperature, it is suggested that it has good dimensional stability and heat resistance, preventing film breakage, and internal short circuit. The temperature can be improved. Although it does not specifically limit as a minimum, 1% or more is more preferable.
  • the peel strength between the polyolefin resin porous film (I layer) and the coating layer (II layer) of the laminated porous film of the present invention is preferably 1 N / 15 mm or more.
  • the peel strength of 1 N / 15 mm or more is preferable because the filler (a) can be prevented from falling off.
  • a nonaqueous electrolyte secondary battery containing the laminated porous film of the present invention as a battery separator will be described with reference to FIG.
  • Both electrodes of the positive electrode plate 21 and the negative electrode plate 22 are wound in a spiral shape so as to overlap each other via the battery separator 10, and the outside is stopped with a winding tape to form a wound body.
  • the winding process will be described in detail.
  • One end of the battery separator is passed between the slit portions 1 of the pin (FIG. 2), and the pin is slightly rotated to wind one end of the battery separator around the pin. At this time, the surface of the pin is in contact with the coating layer of the battery separator.
  • the positive electrode and the negative electrode are arranged so as to sandwich the battery separator, and the pins are rotated by a winding machine to wind the positive and negative electrodes and the battery separator. After winding, the pin is pulled out of the wound object.
  • the wound body in which the positive electrode plate 21, the battery separator 10 and the negative electrode plate 22 are integrally wound is accommodated in a bottomed cylindrical battery case and welded to the positive and negative electrode lead bodies 24 and 25.
  • the electrolyte is injected into the battery can, and after the electrolyte has sufficiently penetrated into the battery separator 10 or the like, the positive electrode lid 27 is sealed around the opening periphery of the battery can via the gasket 26, and precharging and aging are performed.
  • a cylindrical non-aqueous electrolyte secondary battery is manufactured.
  • an electrolytic solution in which a lithium salt is used as an electrolytic solution and is dissolved in an organic solvent is used.
  • the organic solvent is not particularly limited.
  • esters such as propylene carbonate, ethylene carbonate, butylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethyl carbonate, methyl propionate or butyl acetate, and nitriles such as acetonitrile.
  • ethers such as tetrahydrofuran, 2-methyltetrahydrofuran or 4-methyl-1,3-dioxolane, or sulfolane.
  • LiPF 6 lithium hexafluorophosphate
  • an alkali metal or a compound containing an alkali metal integrated with a current collecting material such as a stainless steel net is used.
  • the alkali metal include lithium, sodium, and potassium.
  • the compound containing an alkali metal include an alloy of an alkali metal and aluminum, lead, indium, potassium, cadmium, tin or magnesium, a compound of an alkali metal and a carbon material, a low potential alkali metal and a metal oxide, and the like. Or a compound with a sulfide or the like.
  • the carbon material may be any material that can be doped and dedoped with lithium ions, such as graphite, pyrolytic carbons, cokes, glassy carbons, a fired body of an organic polymer compound, Mesocarbon microbeads, carbon fibers, activated carbon and the like can be used.
  • a carbon material having an average particle diameter of 10 ⁇ m is mixed with a solution in which polyvinylidene fluoride is dissolved in N-methylpyrrolidone to form a slurry, and this negative electrode mixture slurry is passed through a mesh of 70 mesh. After removing the large particles, uniformly apply to both sides of the negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 ⁇ m and dry, and then compression-molded with a roll press machine, cut, strip-shaped negative electrode plate and We use what we did.
  • lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, manganese dioxide, metal oxide such as vanadium pentoxide or chromium oxide, metal sulfide such as molybdenum disulfide, etc. are used as active materials.
  • These positive electrode active materials are combined with conductive additives and binders such as polytetrafluoroethylene as appropriate, and finished with a current collector material such as a stainless steel mesh as a core material. It is done.
  • a strip-like positive electrode plate produced as follows is used as the positive electrode. That is, lithium graphite oxide (LiCoO 2 ) is added with phosphorous graphite as a conductive additive at a mass ratio of 90: 5 (lithium cobalt oxide: phosphorous graphite) and mixed, and this mixture and polyvinylidene fluoride are mixed with N Mix with a solution in methylpyrrolidone to make a slurry.
  • This positive electrode mixture slurry is passed through a 70-mesh net to remove large particles, and then uniformly applied to both sides of a positive electrode current collector made of an aluminum foil having a thickness of 20 ⁇ m, dried, and then compressed by a roll press. After forming, it is cut into a strip-like positive electrode plate.
  • the longitudinal direction of the laminated porous film is referred to as “longitudinal direction”, and the direction perpendicular to the longitudinal direction is referred to as “lateral direction”.
  • Air permeability (Gurley value) The air permeability (second / 100 ml) was measured according to JIS P8117.
  • the laminated porous film is made of two aluminum plates in the center of an oil bath (manufactured by ASONE, OB-200A) filled with glycerin (manufactured by Nacalai Tesque, grade 1) until it reaches 100 mm from the bottom.
  • the sample in a state constrained to was immersed and heated for 5 seconds. Immediately after heating, it is immersed in a separately prepared cooling bath filled with 25 ° C. glycerin and cooled for 5 minutes, and then washed with 2-propanol (manufactured by Nacalai Tesque, special grade) and acetone (manufactured by Nacalai Tesque, special grade). And dried in an air atmosphere at 25 ° C. for 15 minutes. About the sample after drying, air permeability was measured according to the method of said (4).
  • Adhesiveness was evaluated according to the following evaluation criteria.
  • Coating property was evaluated according to the following evaluation criteria. A: Coating is possible. Forms a good coating film without particle aggregation during visual observation. ⁇ : Coating is possible. In visual observation, particle aggregation can be confirmed. X: Many particles are aggregated and coating is difficult.
  • Heat resistance Heat resistance was evaluated according to the following evaluation criteria.
  • Shrinkage rate at 150 ° C. is 10% or more and less than 25% in the longitudinal direction or the transverse direction.
  • X Shrinkage rate at 150 ° C. is longitudinal. 25% or more in horizontal or horizontal direction
  • the obtained laminated porous film was evaluated for ⁇ crystal activity as follows. (12) Differential scanning calorimetry (DSC) The obtained laminated porous film was heated from 25 ° C. to 240 ° C. at a scanning speed of 10 ° C./min for 1 minute using a differential scanning calorimeter (DSC-7) manufactured by Perkin Elmer, and then held for 240 minutes. The temperature was lowered from 0 ° C. to 25 ° C. at a scanning rate of 10 ° C./min and held for 1 minute, and then heated again from 25 ° C. to 240 ° C. at a scanning rate of 10 ° C./min.
  • DSC-7 differential scanning calorimeter
  • Tm ⁇ crystal melting peak temperature
  • -Wide-angle X-ray diffraction measurement device manufactured by Mac Science, model number: XMP18A X-ray source: CuK ⁇ ray, output: 40 kV, 200 mA Scanning method: 2 ⁇ / ⁇ scan, 2 ⁇ range: 5 ° to 25 °, scanning interval: 0.05 °, scanning speed: 5 ° / min
  • the presence or absence of ⁇ crystal activity was evaluated as follows from the peak derived from the (300) plane of ⁇ crystal of the polypropylene resin.
  • polypropylene resin (Prime Polymer, Prime Polypro F300SV, density: 0.90 g / cm 3 , MFR: 3.0 g / 10 min) and N, N′-dicyclohexyl- as the ⁇ crystal nucleating agent 2,6-Naphthalenedicarboxylic acid amide was prepared.
  • Each raw material is blended at a ratio of 0.2 part by mass of ⁇ -crystal nucleating agent with respect to 100 parts by mass of this polypropylene resin, and the same direction twin screw extruder manufactured by Toshiba Machine Co., Ltd.
  • the ⁇ -crystal activity of the polypropylene resin composition was 80%.
  • glycerin is added to 100 parts by mass of high-density polyethylene (manufactured by Nippon Polytechnics, Novatec HD HF560, density: 0.963 g / cm 3 , MFR: 7.0 g / 10 min).
  • Example 1 39.4 parts by mass of alumina (manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m), polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree of polymerization) : 2400) A dispersion in which 0.6 part by mass was dispersed in 60.0 parts by mass of water was obtained. Further, 0.003 part by mass of polyethyleneimine (manufactured by Junsei Chemical Co., Ltd., polyethyleneimine 10,000, molecular weight: about 10,000) was dispersed in the dispersion to obtain a dispersion.
  • alumina manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m
  • polyvinyl alcohol manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree
  • the content of the adhesive (c) contained in the dispersion was 0.05% by mass with respect to 100% by mass of the resin binder (b).
  • the obtained dispersion was applied to a laminated porous film obtained by the method for producing a polyolefin resin porous film using a gravure coater, and then dried at 60 ° C.
  • the physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.
  • Example 2 39.4 parts by mass of alumina (manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m), polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree of polymerization) : 2400) A dispersion in which 0.6 part by mass was dispersed in 60.0 parts by mass of water was obtained. Furthermore, 0.018 parts by mass of polyethyleneimine (manufactured by Junsei Chemical Co., Ltd., polyethyleneimine 10,000, molecular weight: about 10,000) was dispersed to obtain a dispersion.
  • alumina manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m
  • polyvinyl alcohol manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree of polymerization
  • the content of the adhesive (c) contained in the dispersion was 3% by mass with respect to 100% by mass of the resin binder (b).
  • the obtained dispersion was applied to a laminated porous film obtained by the method for producing a polyolefin resin porous film using a gravure coater, and then dried at 60 ° C.
  • the physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.
  • Example 3 39.4 parts by mass of alumina (manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m), polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree of polymerization) : 2400) A dispersion in which 0.6 part by mass was dispersed in 60.0 parts by mass of water was obtained. Further, 0.06 part by mass of polyethyleneimine (manufactured by Junsei Chemical Co., Ltd., polyethyleneimine 10000, molecular weight: about 10,000) was dispersed in the dispersion to obtain a dispersion.
  • alumina manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m
  • polyvinyl alcohol manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree
  • the content of the adhesive (c) contained in the dispersion was 10% by mass with respect to 100% by mass of the resin binder (b).
  • the obtained dispersion was applied to a laminated porous film obtained by the method for producing a polyolefin resin porous film using a gravure coater, and then dried at 60 ° C.
  • the physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.
  • Example 4 39.4 parts by mass of alumina (manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m), polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree of polymerization) : 2400) A dispersion in which 0.6 part by mass was dispersed in 60.0 parts by mass of water was obtained. Furthermore, 0.18 parts by mass of polyethyleneimine (manufactured by Junsei Chemical Co., Ltd., polyethyleneimine 10000, molecular weight: about 10,000) was dispersed in the dispersion to obtain a dispersion.
  • alumina manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m
  • polyvinyl alcohol manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree
  • the content of the adhesive (c) contained in the dispersion was 30% by mass with respect to 100% by mass of the resin binder (b).
  • the obtained dispersion was applied to a laminated porous film obtained by the method for producing a polyolefin resin porous film using a gravure coater, and then dried at 60 ° C.
  • the physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.
  • Example 5 39.4 parts by mass of alumina (manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m), polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree of polymerization) : 2400) A dispersion in which 0.6 part by mass was dispersed in 60.0 parts by mass of water was obtained. Further, 0.3 part by mass of polyethyleneimine (manufactured by Junsei Chemical Co., Ltd., polyethyleneimine 10000, molecular weight: about 10,000) was dispersed in the dispersion to obtain a dispersion.
  • alumina manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m
  • polyvinyl alcohol manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree
  • the content of the adhesive (c) contained in the dispersion was 50% by mass with respect to 100% by mass of the resin binder (b).
  • the obtained dispersion was applied to a laminated porous film obtained by the method for producing a polyolefin resin porous film using a gravure coater, and then dried at 60 ° C.
  • the physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.
  • Example 6 39.4 parts by mass of alumina (manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m), polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree of polymerization) : 2400) A dispersion in which 0.6 part by mass was dispersed in 60.0 parts by mass of water was obtained. Furthermore, 0.45 parts by mass of polyethyleneimine (manufactured by Junsei Chemical Co., Ltd., polyethyleneimine 10000, molecular weight: about 10,000) was dispersed to obtain a dispersion.
  • alumina manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m
  • polyvinyl alcohol manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree of polymerization
  • the content of the adhesive (c) contained in the dispersion was 75% by mass with respect to 100% by mass of the resin binder (b).
  • the obtained dispersion was applied to a laminated porous film obtained by the method for producing a polyolefin resin porous film using a gravure coater, and then dried at 60 ° C.
  • the physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.
  • Example 7 39.4 parts by mass of alumina (manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m), polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree of polymerization) : 2400) A dispersion in which 0.6 part by mass was dispersed in 60.0 parts by mass of water was obtained. Further, 0.6 part by mass of polyethyleneimine (manufactured by Junsei Chemical Co., Ltd., polyethyleneimine 10,000, molecular weight: about 10,000) was dispersed in the dispersion to obtain a dispersion.
  • alumina manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m
  • polyvinyl alcohol manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree of
  • the content of the adhesive (c) contained in the dispersion was 100% by mass with respect to 100% by mass of the resin binder (b).
  • the obtained dispersion was applied to a laminated porous film obtained by the method for producing a polyolefin resin porous film using a gravure coater, and then dried at 60 ° C.
  • the physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.
  • Example 8 39.4 parts by mass of alumina (manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m), polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree of polymerization) : 2400) A dispersion in which 0.6 part by mass was dispersed in 60.0 parts by mass of water was obtained. Furthermore, 0.003 part by mass of polyethyleneimine (manufactured by Junsei Chemical Co., Ltd., polyethyleneimine 10000, molecular weight: about 1800) was dispersed in the dispersion to obtain a dispersion.
  • alumina manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m
  • polyvinyl alcohol manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average
  • the content of the adhesive (c) contained in the dispersion was 0.5% by mass with respect to 100% by mass of the resin binder (b).
  • the obtained dispersion was applied to a laminated porous film obtained by the method for producing a polyolefin resin porous film using a gravure coater, and then dried at 60 ° C.
  • the physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.
  • Example 9 39.4 parts by mass of alumina (manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m), polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree of polymerization) : 2400) A dispersion in which 0.6 part by mass was dispersed in 60.0 parts by mass of water was obtained. Furthermore, 0.018 part by mass of polyethyleneimine (manufactured by Junsei Chemical Co., Ltd., polyethyleneimine 10000, molecular weight: about 1800) was dispersed in the dispersion to obtain a dispersion.
  • alumina manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m
  • polyvinyl alcohol manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average
  • the content of the adhesive (c) contained in the dispersion was 3% by mass with respect to 100% by mass of the resin binder (b).
  • the obtained dispersion was applied to a laminated porous film obtained by the method for producing a polyolefin resin porous film using a gravure coater, and then dried at 60 ° C.
  • the physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.
  • Example 10 39.4 parts by mass of alumina (manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m), polyvinyl alcohol (manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree of polymerization) : 2400) A dispersion in which 0.6 part by mass was dispersed in 60.0 parts by mass of water was obtained. Furthermore, 0.06 part by mass of polyethyleneimine (manufactured by Junsei Chemical Co., Ltd., polyethyleneimine 10000, molecular weight: about 1800) was dispersed to obtain a dispersion.
  • alumina manufactured by Sumitomo Chemical Co., Sumiko Random AA-03, average particle size: 0.3 ⁇ m
  • polyvinyl alcohol manufactured by Kuraray Co., Ltd., PVA124, degree of saponification: 98.0 to 99.0, average degree of polymerization
  • the content of the adhesive (c) contained in the dispersion was 10% by mass with respect to 100% by mass of the resin binder (b).
  • the obtained dispersion was applied to a laminated porous film obtained by the method for producing a polyolefin resin porous film using a gravure coater, and then dried at 60 ° C.
  • the physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.
  • the obtained dispersion was applied to a laminated porous film obtained by the method for producing a polyolefin resin porous film using a gravure coater, and then dried at 60 ° C.
  • the physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.
  • the obtained dispersion was applied to a laminated porous film obtained by the method for producing a polyolefin resin porous film using a gravure coater, and then dried at 60 ° C.
  • the physical properties of the obtained laminated porous film were evaluated, and the results are summarized in Table 1.
  • the laminated porous films obtained in Examples 1 to 10 had excellent adhesion and excellent heat resistance and air permeability.
  • a laminated porous film having particularly excellent heat resistance and coatability could be obtained.
  • the laminated porous film obtained in Comparative Example 1 did not contain the adhesive (c)
  • the adhesion was insufficient.
  • the laminated porous film obtained in Comparative Example 2 can improve the adhesion by reducing the content of the filler (a) compared to Comparative Example 1 without containing the adhesive (c).
  • the air permeability was insufficient.
  • the polyolefin resin porous film of Comparative Example 3 was not laminated with a coating layer, the heat resistance was insufficient.
  • the laminated porous film of the present invention can be applied to various uses that require air permeability.

Abstract

 基膜であるポリオレフィン系樹脂多孔フィルムと被覆層との高い密着性、耐熱性を有し、非水電解液二次電池用セパレータとして用いた際に、優れた特性を兼ね備えた積層多孔フィルムを提供することを目的とする。本発明は、ポリオレフィン系樹脂多孔フィルム(I層)の少なくとも片面に、フィラー(a)、樹脂バインダー(b)、および密着剤(c)を含む被覆層(II層)を積層していることを特徴とする積層多孔フィルムである。

Description

積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
 本発明は、積層多孔フィルムに関し、包装用、衛生用、畜産用、農業用、建築用、医療用、分離膜、光拡散板、電池用セパレータとして利用でき、特に、非水電解電池用セパレータとして好適に利用できるものである。
 多数の微細連通孔を有する高分子多孔体は、超純水の製造、薬液の精製、水処理などに使用する分離膜、衣類・衛生材料などに使用する防水透湿性フィルム、あるいは電池などに使用する電池セパレータなど各種の分野で利用されている。
 特に二次電池はOA、FA、家庭用電器または通信機器等のポータブル機器用電源として幅広く使用されている。特に機器に装備した場合に容積効率がよく機器の小型化および軽量化につながることからリチウムイオン二次電池を使用したポータブル機器が増加している。一方、大型の二次電池はロードレベリング、UPS、電気自動車をはじめ、エネルギー/環境問題に関連する多くの分野において研究開発が進められ、大容量、高出力、高電圧および長期保存性に優れている点より非水電解液二次電池の一種であるリチウムイオン二次電池の用途が広がっている。
 リチウムイオン二次電池の使用電圧は通常4.1Vから4.2Vを上限として設計されている。このような高電圧では水溶液は電気分解を起こすので電解液として使うことができない。そのため、高電圧でも耐えられる電解液として有機溶媒を使用したいわゆる非水電解液が用いられている。非水電解液用溶媒としては、より多くのリチウムイオンを存在させることができる高誘電率有機溶媒が用いられ、該高誘電率有機溶媒としてプロピレンカーボネートやエチレンカーボネート等の有機炭酸エステル化合物が主に使用されている。溶媒中でリチウムイオン源となる支持電解質として、6フッ化リン酸リチウム等の反応性の高い電解質を溶媒中に溶解させて使用している。
 リチウムイオン二次電池には内部短絡の防止の点からセパレータが正極と負極の間に介在されている。該セパレータにはその役割から当然絶縁性が要求される。また、リチウムイオンの通路となる透気性と電解液の拡散・保持機能を付与するために微細孔構造である必要がある。これらの要求を満たすためセパレータとしては多孔性フィルムが使用されている。
 最近の電池の高容量化に伴い、電池の安全性に対する重要度が増してきている。電池用セパレータの安全に寄与する特性として、シャットダウン特性(以後、「SD特性」と称す)がある。このSD特性は、100~150℃程度の高温状態になると微細孔が閉塞され、その結果電池内部のイオン伝導が遮断されるため、その後の電池内部の温度上昇を防止できるという機能である。この時、積層多孔性フィルムの微細孔が閉塞される温度のうち最も低い温度をシャットダウン温度(以後、「SD温度」と称す)という。電池用セパレータとして使用する場合は、このSD特性を具備していることが必要である。
 しかしながら、近年LIBの高エネルギー密度化、ハイパワー化に伴い、通常のシャットダウン機能が十分に機能せず、電池内部の温度がPEの融点である150℃前後を超え、さらに上昇し、セパレータの熱収縮に伴う破膜によって、両極が短絡し、発火に至る事故が発生している。そこで、安全性を確保するため、セパレータには現在のSD特性よりもさらに高い耐熱性が求められている。
 前記要望に対し、ポリオレフィン樹脂多孔フィルムの少なくとも片面に、フィラーと樹脂バインダーとを含む多孔層を備えた多層多孔フィルム(特許文献1、2、3)が提案されている。これらは、多孔フィルム上に無機などのフィラーを高充填させたコート層を設けることで、異常発熱を起こし、SD温度を越え、温度が上昇し続けた際においても、両極の短絡を防ぐことができ、非常に安全性に優れる方法とされている。
特開2004-227972号公報 特開2007-280911号公報 特開2008-186721号公報
 しかしながら、前記特許文献1~3に記載の方法では、高い透気性を確保するには、樹脂バインダーの含有量を少なくする必要があり、基膜である多孔フィルムと被覆層との密着性に問題があった。
 本発明の課題は、前記問題点を解決することにある。すなわち、基膜である多孔フィルムと耐熱層の高い密着性、耐熱性に優れ、非水電解液二次電池用セパレータとして用いた際に、優れた特性を有した積層多孔フィルムを提供することを目的とする。
 本発明は、ポリオレフィン系樹脂多孔フィルム(I層)の少なくとも片面に、フィラー(a)、樹脂バインダー(b)、および密着剤(c)を含む被覆層(II層)を積層していることを特徴とする積層多孔フィルムである。
 また本発明について、前記密着剤(c)が、含窒素有機化合物であることが好ましい。
 また本発明について、前記密着剤(c)の含有率は、前記樹脂バインダー(b)100質量%に対して0.5質量%以上であることが好ましい。
 また本発明について、前記積層多孔フィルムのポリオレフィン系樹脂多孔フィルム(I層)と被覆層(II層)との引き剥がし強度が1N/15mm以上であることが好ましい。
 また本発明について、β晶活性を有することが好ましい。
 本発明によれば、基膜であるポリオレフィン系樹脂多孔フィルム(I層)と被覆層(II層)の高い密着性、耐熱性に優れた特性を有し、非水電解液二次電池用セパレータとして用いた際に、優れた特性を兼ね備えた多孔フィルムが得ることができる。
本発明の積層多孔フィルムを収容している電池の概略的断面図である。 SD特性、耐熱性、広角X線回折測定における積層多孔フィルムの固定方法を説明する図である。 引き剥がし強度の測定方法を説明する図である。
 以下、本発明の積層多孔フィルムの実施形態について詳細に説明する。
 なお、本発明において、「主成分」と表現した場合には、特に記載しない限り、当該主成分の機能を妨げない範囲で他の成分を含有することを許容する意を包含し、特に当該主成分の含有割合を特定するものではないが、主成分は組成物中の50質量%以上、好ましくは70質量%以上、特に好ましくは90質量%以上(100%含む)を占める意を包含するものである。
 また、「X~Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」及び「好ましくはYより小さい」の意を包含するものである。
 以下に、本発明の積層多孔フィルムを構成する各成分について説明する。
(ポリオレフィン系樹脂多孔フィルム(I層))
 ポリオレフィン系樹脂多孔フィルム(I層)で用いるポリオレフィン系樹脂として、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキサンなどを重合した単独重合体または共重合体が挙げられる。この中でも、ポリプロピレン系樹脂、ポリエチレン系樹脂が好ましい。
(ポリプロピレン系樹脂)
 ポリプロピレン系樹脂としては、ホモプロピレン(プロピレン単独重合体)、またはプロピレンとエチレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネンもしくは1-デセンなどα-オレフィンとのランダム共重合体またはブロック共重合体などが挙げられる。この中でも、積層多孔フィルムの機械的強度、耐熱性などを維持する観点から、ホモポリプロピレンがより好適に使用される。
 また、ポリプロピレン系樹脂としては、立体規則性を示すアイソタクチックペンタッド分率(mmmm分率)が80~99%であることが好ましい。より好ましくは83~98%、更に好ましくは85~97%であるものを使用する。アイソタクチックペンタッド分率が低すぎるとフィルムの機械的強度が低下するおそれがある。一方、アイソタクチックペンタッド分率の上限については現時点において工業的に得られる上限値で規定しているが、将来的に工業レベルで更に規則性の高い樹脂が開発された場合についてはこの限りではない。
 アイソタクチックペンタッド分率(mmmm分率)とは、任意の連続する5つのプロピレン単位で構成される炭素-炭素結合による主鎖に対して側鎖である5つのメチル基がいずれも同方向に位置する立体構造あるいはその割合を意味する。メチル基領域のシグナルの帰属は、A.Zambelli
et al(Macromolecules8,687,(1975))に準拠した。
 また、ポリプロピレン系樹脂としては、分子量分布を示すパラメータであるMw/Mnが2.0~10.0であることが好ましい。より好ましくは2.0~8.0、更に好ましくは2.0~6.0であるものが使用される。Mw/Mnが小さいほど分子量分布が狭いことを意味するが、Mw/Mnが2.0未満であると押出成形性が低下する等の問題が生じるほか、工業的に生産することも困難である。一方、Mw/Mnが10.0を超えた場合は低分子量成分が多くなり、積層多孔フィルムの機械的強度が低下しやすい。Mw/MnはGPC(ゲルパーミエーションクロマトグラフィー)法によって得られる。
 また、ポリプロピレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常、MFRは0.5~15g/10分であることが好ましく、1.0~10g/10分であることがより好ましい。MFRが0.5g/10分以上とすることで、成形加工時の樹脂の溶融粘度が高く、十分な生産性を確保することができる。一方、15g/10分以下とすることで、得られる積層多孔フィルムの機械的強度を十分に保持することができる。MFRはJISK7210に従い、温度230℃、荷重2.16kgの条件で測定する。
 なお、前記ポリプロピレン系樹脂の製造方法は特に限定されるものではなく、公知の重合用触媒を用いた公知の重合方法、例えばチーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン系触媒に代表されるシングルサイト触媒を用いた重合方法等が挙げられる。
 ポリプロピレン系樹脂としては、例えば、商品名「ノバテックPP」「WINTEC」(日本ポリプロ社製)、「バーシファイ」「ノティオ」「タフマーXR」(三井化学社製)、「ゼラス」「サーモラン」(三菱化学社製)、「住友ノーブレン」「タフセレン」(住友化学社製)、「プライム
TPO」(プライムポリマー社製)、「Adflex」、「Adsyl」、「HMS-PP(PF814)」(サンアロマー社製)、「インスパイア」(ダウケミカル)など市販されている商品を使用できる。
 本発明の積層多孔フィルムは、β晶活性を有することが好ましい。
 β晶活性は、延伸前の膜状物においてポリプロピレン系樹脂がβ晶を生成していたことを示す一指標と捉えることができる。延伸前の膜状物中のポリプロピレン系樹脂がβ晶を生成していれば、フィラー等の添加剤を使用しない場合においても、延伸を施すことで微細孔が容易に形成されるため、透気特性を有する積層多孔フィルムを得ることができる。
 本発明の積層多孔フィルムにおいて、「β晶活性」の有無は、後述する示差走査型熱量計によりβ晶に由来する結晶融解ピーク温度が検出された場合か、及び/又は後述するX線回折装置を用いた測定により、β晶に由来する回折ピークが検出された場合、「β晶活性」を有すると判断する。
 具体的には、示差走査型熱量計で積層多孔フィルムを25℃から240℃まで加熱速度10℃/分で昇温後1分間保持し、次に240℃から25℃まで冷却速度10℃/分で降温後1分間保持し、更に25℃から240℃まで加熱速度10℃/分で再昇温させた際に、ポリプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(Tmβ)が検出された場合、β晶活性を有すると判断している。
 また、前記積層多孔フィルムのβ晶活性度は、検出されるポリプロピレン系樹脂のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算している。
   β晶活性度(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
 例えば、ポリプロピレン系樹脂がホモポリプロピレンの場合は、主に145℃以上160℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に160℃以上170℃以下に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。また、例えばエチレンが1~4モル%共重合されているランダムポリプロピレンの場合は、主に120℃以上140℃未満の範囲で検出されるβ晶由来の結晶融解熱量(ΔHmβ)と、主に140℃以上165℃以下の範囲に検出されるα晶由来の結晶融解熱量(ΔHmα)から計算することができる。
 前記積層多孔フィルムのβ晶活性度は大きい方が好ましく、β晶活性度は20%以上であることが好ましい。40%以上であることがさらに好ましく、60%以上であることが特に好ましい。積層多孔フィルムが20%以上のβ晶活性度を有すれば、延伸前の膜状物中においてもポリプロピレン系樹脂のβ晶が多く生成することができることを示し、延伸により微細かつ均一な孔が多く形成され、結果として機械的強度が高く、透気性能に優れた非水電解液二次電池用セパレータとすることができる。
 β晶活性度の上限値は特に限定されないが、β晶活性度が高いほど前記効果がより有効に得られるので100%に近いほど好ましい。
 また前記β晶活性の有無は、特定の熱処理を施した積層多孔フィルムの広角X線回折測定により得られる回折プロファイルでも判断できる。
 詳細には、ポリプロピレン系樹脂の融点を超える温度である170℃~190℃の熱処理を施し、徐冷してβ晶を生成・成長させた積層多孔フィルムについて広角X線測定を行い、ポリプロピレン系樹脂のβ晶の(300)面に由来する回折ピークが2θ=16.0°~16.5°の範囲に検出された場合、β晶活性が有ると判断している。
 ポリプロピレン系樹脂のβ晶構造と広角X線回折に関する詳細は、Macromol.Chem.187,643-652(1986)、Prog.Polym.Sci.Vol.16,361-404(1991)、Macromol.Symp.89,499-511(1995)、Macromol.Chem.75,134(1964)、及びこれらの文献中に挙げられた参考文献を参照することができる。広角X線回折を用いたβ晶活性の詳細な評価方法については、後述の実施例にて示す。
 前記β晶活性は、本発明の積層多孔フィルムが積層多孔フィルム全層の状態で測定することができる。
 また、仮に、ポリプロピレン系樹脂からなる層以外に、ポリプロピレン系樹脂を含有する層などを積層させる場合には、両層ともにβ晶活性を有することが好ましい。
 前述したβ晶活性を得る方法としては、特許3739481号公報に記載されているように過酸化ラジカルを発生させる処理を施したポリプロピレンを添加する方法、及び組成物にβ晶核剤を添加する方法などが挙げられる。
(β晶核剤)
 本発明で用いるβ晶核剤としては以下に示すものが挙げられるが、ポリプロピレン系樹脂のβ晶の生成・成長を増加させるものであれば特に限定される訳ではなく、また2種類以上を混合して用いても良い。
 β晶核剤としては、例えば、アミド化合物;テトラオキサスピロ化合物;キナクリドン類;ナノスケールのサイズを有する酸化鉄;1,2-ヒドロキシステアリン酸カリウム、安息香酸マグネシウムもしくはコハク酸マグネシウム、フタル酸マグネシウムなどに代表されるカルボン酸のアルカリもしくはアルカリ土類金属塩;ベンゼンスルホン酸ナトリウムもしくはナフタレンスルホン酸ナトリウムなどに代表される芳香族スルホン酸化合物;二もしくは三塩基カルボン酸のジもしくはトリエステル類;フタロシアニンブルーなどに代表されるフタロシアニン系顔料;有機二塩基酸である成分Aと周期律表第IIA族金属の酸化物、水酸化物もしくは塩である成分Bとからなる二成分系化合物;環状リン化合物とマグネシウム化合物からなる組成物などが挙げられる。そのほか核剤の具体的な種類については、特開2003-306585号公報、特開平06-289566号公報、特開平09-194650号公報に記載されている。
 β晶核剤の市販品としては新日本理化社製β晶核剤「エヌジェスターNU-100」、β晶核剤の添加されたポリプロピレン系樹脂の具体例としては、Aristech社製ポリプロピレン「BepolB-022SP」、Borealis社製ポリプロピレン「Beta(β)-PP BE60-7032」、Mayzo社製ポリプロピレン「BNX BETAPP-LN」などが挙げられる。
 前記ポリプロピレン系樹脂に添加するβ晶核剤の割合は、β晶核剤の種類またはポリプロピレン系樹脂の組成などにより適宜調整することが必要であるが、ポリプロピレン系樹脂100質量部に対しβ晶核剤は0.0001~5.0質量部であることが好ましい。0.001~3.0質量部がより好ましく、0.01~1.0質量部が更に好ましい。0.0001質量部以上であれば、製造時において十分にポリプロピレン系樹脂のβ晶を生成・成長させることができ、セパレータとして用いる際にも十分なβ晶活性が確保でき、所望の透気性能が得られる。また、5.0質量部以下の添加であれば、経済的にも有利になるほか、積層多孔フィルム表面へのβ晶核剤のブリードなどがなく好ましい。
 また、仮にポリプロピレン系樹脂からなる層以外に、ポリプロピレン系樹脂を含有する層などを積層させる場合には、各層のβ晶核剤の添加量は同じであっても、異なっていても良い。β晶核剤の添加量を変更することで各層の多孔構造を適宜調整することができる。
(他の成分)
 本発明においては、前述した成分のほか、本発明の効果を著しく阻害しない範囲内で、一般に樹脂組成物に配合される添加剤を適宜添加できる。前記添加剤としては、成形加工性、生産性およびポリオレフィン系樹脂多孔フィルム(I層)の諸物性を改良・調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などの添加剤が挙げられる。具体的には、「プラスチックス配合剤」のP154~P158に記載されている酸化防止剤、P178~P182に記載されている紫外線吸収剤、P271~P275に記載されている帯電防止剤としての界面活性剤、P283~P294に記載されている滑剤などが挙げられる。
(ポリエチレン系樹脂)
 ポリエチレン系樹脂としては、具体的に超低密度ポリエチレン、低密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、また分子量に特徴のある超高分子量ポリエチレンのようなホモポリマーポリエチレンだけでなく、エチレンプロピレン共重合体、またはポリエチレン系樹脂と他のポリオレフィン系樹脂とのコポリマーポリエチレンが挙げられる。中でも、ホモポリマーポリエチレン、或いはα-オレフィンコモノマー含量が2モル%以下のコポリマーポリエチレンが好ましく、ホモポリマーポリエチレンであることが更に好ましい。α-オレフィンコモノマーの種類については特に制限はない。
 前記ポリエチレン系樹脂の密度は、0.910~0.970g/cmであることが好ましく、0.930~0.970g/cmであることがより好ましく、0.940~0.970g/cmであることが更に好ましい。密度が0.910g/cm以上であれば適度なSD特性を有することができるため好ましい。一方、0.970g/cm以下であれば適度なSD特性を有することができるほか、延伸性が維持される点で好ましい。密度の測定は密度勾配管法を用いてJIS K7112に準じて測定することができる。
 また、前記ポリエチレン系樹脂のメルトフローレート(MFR)は特に制限されるものではないが、通常MFRは0.03~30g/10分であることが好ましく、0.3~10g/10分であることがより好ましい。MFRが0.03g/10分以上であれば成形加工時の樹脂の溶融粘度が十分に低いため生産性に優れ好ましい。一方、30g/10分以下であれば、十分な機械的強度を得ることができるために好ましい。
 MFRはJIS K7210に従い、温度190℃、荷重2.16kgの条件で測定している。
 ポリエチレン系樹脂の重合触媒には特に制限はなく、チーグラー型触媒、フィリップス型触媒、カミンスキー型触媒等いずれのものでも良い。ポリエチレン系樹脂の重合方法として、一段重合、二段重合、もしくはそれ以上の多段重合等があり、いずれの方法のポリエチレン系樹脂も使用可能である。
(多孔化促進化合物)
 ポリエチレン系樹脂に、多孔化を促進させる多孔化促進化合物Xを添加することが好ましい。前記多孔化促進化合物Xを添加することにより、より効率的に多孔構造を得ることができ、孔の形状や孔径を制御しやすくなる。
 前記多孔化促進化合物Xは限定しないが、具体的に例示すると、変性ポリオレフィン樹脂、脂環族飽和炭化水素樹脂若しくはその変性体、エチレン系共重合体、またはワックスから選ばれる多孔化促進化合物Xのうち少なくとも1種が含まれていることがより好ましい。中でも、多孔化でより効果の大きい脂環族飽和炭化水素樹脂若しくはその変性体、エチレン系共重合体、またはワックスがより好ましく、成形性の観点からワックスが更に好ましい。
 脂環族飽和炭化水素樹脂及びその変性体について、石油樹脂、ロジン樹脂、テルペン樹脂、クマロン樹脂、インデン樹脂、クマロン-インデン樹脂、及びそれらの変性体等が挙げられる。
 本発明における石油樹脂とは、ナフサの熱分解などによる副生物から得られるC4~C10の脂肪族オレフィン類やジオレフィン類、オレフィン性不飽和結合を有するC8以上の芳香族化合物で、それらの中に含まれる化合物の一種又は二種以上を単独若しくは共重合することにより得られる脂肪族系、芳香族系及び共重合系石油樹脂をいう。
 石油樹脂としては、例えばC5留分を主原料とする脂肪族系石油樹脂、C9留分を主原料とする芳香族系石油樹脂、それらの共重合系石油樹脂、脂環族系石油樹脂がある。テルペン樹脂としてはβ-ピネンからのテルペン樹脂やテルペン-フェノール樹脂が、またロジン系樹脂としては、ガムロジン、ウツドロジンなどのロジン樹脂、グリセリンやペンタエリスリトールで変性したエステル化ロジン樹脂などが例示できる。脂環族飽和炭化水素樹脂及びその変性体はポリエチレン系樹脂に混合した場合に比較的良好な相溶性を示すが、色調や熱安定性といった面から石油樹脂がより好ましく、水添石油樹脂を用いることが更に好ましい。
 水添石油樹脂は、石油樹脂を慣用の方法によって水素化することにより得られるものである。例えば、水素化脂肪族系石油樹脂、水素化芳香族系石油樹脂、水素化共重合系石油樹脂及び水素化脂環族系石油樹脂、並びに水素化テルペン系樹脂が挙げられる。水添石油樹脂の中でも、水素化脂環族系石油樹脂で、シクロペンタジエン系化合物と芳香族ビニル系化合物とを共重合して水素添加したものが特に好ましい。市販されている水添石油樹脂としては、「アルコン」(荒川化学工業社製)などが挙げられる。
 本発明におけるエチレン系共重合体とは、エチレンと、酢酸ビニル、不飽和カルボン酸、不飽和カルボン酸無水物、またはカルボン酸エステル等の中から1種類以上とを共重合させることにより得られる化合物である。
 エチレン系共重合体は、エチレン単量体単位の含有率が好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上である。一方、上限については、エチレン単量体単位の含有率が好ましくは95質量%以下、より好ましくは90質量%以下、さらに好ましくは85質量%以下であることが望ましい。エチレン単量体単位の含有率が所定の範囲内であれば、より効率的に多孔構造を形成することができる。
 前記エチレン系共重合体は、MFR(JIS K7210、温度:190℃、荷重:2.16kg)が0.1g/10分以上10g/10分以下のものが好適に用いられる。MFRが0.1g/10分以上であれば、押出加工性を良好に維持でき、一方、MFRが10g/10分以下で有ればフィルムの強度低下を起こしにくく、好ましい。
 前記エチレン系共重合体は、エチレン-酢酸ビニル共重合体として「EVAFLEX」(三井・デュポンポリケミカル社製)、「ノバテックEVA」(日本ポリエチレン社製)、エチレン-アクリル酸共重合体として「NUCコポリマー」(日本ユニカー社製)、エバフレックス-EAA(三井・デュポンポリケミカル社製)、「REXPEARLEAA」(日本エチレン社製)、エチレン-(メタ)アクリル酸共重合体として「ELVALOY」(三井・デュポンポリケミカル社製)、「REXPEARL EMA」(日本エチレン社製)、エチレン-アクリル酸エチル共重合体として「REXPEARL EEA」(日本エチレン社製)、エチレン-メチル(メタ)アクリル酸共重合体として「アクリフト」(住友化学社製)、エチレン-酢酸ビニル-無水マレイン酸三元共重合体として「ボンダイン」(住友化学社製)、エチレン-メタクリル酸グリシジル共重合体、エチレン-酢酸ビニル-メタクリル酸グリシジル三元共重合体、エチレン-アクリル酸エチル-メタクリル酸グリシジル三元共重合体として「ボンドファースト」(住友化学社製)などが商業的に入手できる。
 本発明におけるワックスとは、以下の(ア)および(イ)の性質を満たす有機化合物のことである。
 (ア)融点が40℃~200℃である。
 (イ)融点より10℃高い温度での溶融粘度が50Pa・s以下である。
 ワックスについて、極性または非極性ワックス、ポリプロピレンワックス、ポリエチレンワックス及びワックス改質剤を含む。具体的には、極性ワックス、非極性ワックス、フィッシャー-トロプシュワックス、酸化フィッシャー-トロプシュワックス、ヒドロキシステアロマイドワックス、機能化ワックス、ポリプロピレンワックス、ポリエチレンワックス、ワックス改質剤、アモルファスワックス、カルナウバワックス、キャスター・オイルワックス、マイクロクリスタリンワックス、蜜ろう、カルナウバろう、キャスターワックス、植物ろう、カンデリラろう、日本ろう、ouricuryワックス、ダグラスファーバーク・ワックス、米ぬかワックス、ホホバワックス、ヤマモモワックス、モンタンワックス、オゾケライトワックス、セレシンワックス、石油ろう、パラフィンワックス、化学変性炭化水素ワックス、置換アミドワックス、及びこれらの組み合わせ及び誘導体が挙げられる。中でも多孔構造を効率的に形成できる点から、パラフィンワックス、ポリエチレンワックス、マイクロクリスタリンワックスが好ましく、SD特性の観点より孔径をより微小化できるマイクロクリスタリンワックスが更に好ましい。市販されているポリエチレンワックスとしては「FT-115」(日本精蝋社製)、マイクロクリスタリンワックスとしては「Hi-Mic」(日本精蝋社製)などが挙げられる。
 前記多孔化促進化合物Xの配合量は、ポリエチレン系樹脂と前記多孔化促進化合物Xとの界面を剥離させて微細孔を形成させる場合、一層に含まれるポリエチレン系樹脂100質量部に対し、下限として1質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上が更に好ましい。一方、上限として50質量部以下が好ましく、40質量部以下がより好ましく、30質量部以下が更に好ましい。前記多孔化促進化合物Xの配合量がポリエチレン系樹脂100質量部に対し、1質量部以上とすることで、目的とする良好な多孔構造が発現する効果が十分に得られる。また、前記多孔化促進化合物Xの配合量が50質量部以下とすることで、より安定した成形性を確保することができる。
 必要に応じてポリエチレン系樹脂や多孔化促進化合物X以外に、多孔フィルムの熱特性、具体的には多孔化を損なわない範囲で熱可塑性樹脂を用いても良い。前述のポリエチレン系樹脂との混合させることができる他の熱可塑性樹脂としては、スチレン、AS樹脂、もしくはABS樹脂等のスチレン系樹脂:ポリ塩化ビニル、フッ素系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネートもしくはポリアリレート等のエステル系樹脂;ポリアセタール、ポリフェニレンエーテル、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトンもしくはポリフェニレンサルファイド等のエーテル系樹脂;6ナイロン、6-6ナイロン、6-12ナイロン等のポリアミド系樹脂等の熱可塑性樹脂が挙げられる。
 また、必要に応じて熱可塑性エラストマー等のゴム成分と呼ばれているものを添加しても良い。熱可塑性エラストマーとしては、スチレン・ブタジエン系、ポリオレフィン系、ウレタン系、ポリエステル系、ポリアミド系、1,2-ポリブタジエン、ポリ塩化ビニル系、アイオノマーなどが挙げられる。
 ポリエチレン系樹脂や多孔化促進化合物X以外に、一般に樹脂組成物に配合される添加剤または他の成分を含んでいてもよい。前記添加剤としては、成形加工性、生産性およびポリオレフィン系樹脂多孔フィルム(I層)の諸物性を改良・調整する目的で添加される、耳などのトリミングロス等から発生するリサイクル樹脂やシリカ、タルク、カオリン、炭酸カルシウム等の無機粒子、酸化チタン、カーボンブラック等の顔料、難燃剤、耐候性安定剤、耐熱安定剤、帯電防止剤、溶融粘度改良剤、架橋剤、滑剤、核剤、可塑剤、老化防止剤、酸化防止剤、光安定剤、紫外線吸収剤、中和剤、防曇剤、アンチブロッキング剤、スリップ剤または着色剤などの添加剤が挙げられる。
 中でも、核剤はポリエチレン系樹脂の結晶構造を制御し、延伸開孔時の多孔構造を細かくするという効果があるため好ましい。市販されているものとして、「ゲルオールD」(新日本理化社製)、「アデカ スタブ」(旭電化工業社製)、「Hyperform」(ミリケンケミカル社製)、または「IRGACLEARD」(チバ スペシャルケミカルズ社製)等が挙げられる。また、核剤の添加されたポリエチレン系樹脂の具体例としては、「リケマスター」(理研ビタミン社製)等が商業的に入手できる。
(ポリオレフィン系樹脂多孔フィルム(I層)の層構成)
 本発明において、ポリオレフィン系樹脂多孔フィルム(I層)は、単層でも積層でも構わないが、2層以上に積層させることが好ましい。中でも、ポリプロピレン系樹脂を含有する層とポリエチレン系樹脂を含有する層とを積層したものがより好ましい。
 ポリオレフィン系樹脂多孔フィルムの層構成は、ポリプロピレン系樹脂を含有する層(以降「A層」と称す)を少なくとも1層存在すれば特に限定されるものではない。また、ポリオレフィン系樹脂多孔フィルムの機能を妨げない範囲で他の層(以降「B層」と称す)を積層することもできる。強度保持層、耐熱層(高融解温度樹脂層)、シャットダウン層(低融解温度樹脂層)などを積層させた構成が挙げられる。例えば、リチウムイオン電池用セパレータとして用いる際には、特開平04-181651号公報に記載されているような高温雰囲気化で孔閉塞し、電池の安全性を確保する低融点樹脂層を積層させることが好ましい。
 具体的にはA層/B層を積層した2層構造、A層/B層/A層、若しくは、B層/A層/B層として積層した3層構造などが例示できる。また、他の機能を持つ層と組み合わせて3種3層の様な形態も可能である。この場合、他の機能を持つ層との積層順序は特に問わない。更に層数としては4層、5層、6層、7層と必要に応じて増やしても良い。
 本発明のポリオレフィン系樹脂多孔フィルムの物性は、層構成や積層比、各層の組成、製造方法によって自由に調整できる。
(ポリオレフィン系樹脂多孔フィルム(I層)の製造方法)
 次に本発明のポリオレフィン系樹脂多孔フィルム(I層)の製造方法について説明するが、本発明はかかる製造方法により製造されるポリオレフィン系樹脂多孔フィルム(I層)のみに限定されるものではない。
 無孔膜状物の作製方法は特に限定されず公知の方法を用いてよいが、例えば押出機を用いて熱可塑性樹脂組成物を溶融し、Tダイから押出し、キャストロールで冷却固化するという方法が挙げられる。また、チューブラー法により製造した膜状物を切り開いて平面状とする方法も適用できる。
 無孔膜状物の延伸方法については、ロール延伸法、圧延法、テンター延伸法、同時二軸延伸法などの手法があり、これらを単独あるいは2つ以上組み合わせて一軸延伸あるいは二軸延伸を行う。中でも、多孔構造制御の観点から逐次二軸延伸が好ましい。
 また、本発明において、ポリオレフィン系樹脂多孔フィルム(I層)を積層にする場合、製造方法は、多孔化と積層の順序等によって以下の4つに大別される。
(I)各層を多孔化したのち、多孔化された各層をラミネートしたり接着剤等で接着したりして積層する方法。
(II)各層を積層して積層無孔膜状物を作製し、ついで当該無孔膜状物を多孔化する方法。
(III)各層のうちいずれか1層を多孔化したのち、もう1層の無孔膜状物と積層し、多孔化する方法。
(IV)多孔層を作製した後、無機・有機粒子などのコーティング塗布や、金属粒子の蒸着などを行うことにより積層多孔フィルムとする方法。
 本発明においては、その工程の簡略さ、生産性の観点から(II)の方法を用いることが好ましく、なかでも2層の層間接着性を確保するために、共押出で積層無孔膜状物を作製した後、多孔化する方法が特に好ましい。
 以下に、製造方法の詳細を説明する。
 まずポリプロピレン系樹脂と、必要であれば熱可塑性樹脂、添加剤の混合樹脂組成物を作製する。例えば、ポリプロピレン系樹脂、β晶核剤、および所望によりその他添加物等の原材料を、好ましくはヘンシェルミキサー、スーパーミキサー、タンブラー型ミキサー等を用いて、または袋の中に全成分を入れてハンドブレンドにて混合した後、一軸あるいは二軸押出機、ニーダー等、好ましくは二軸押出機で溶融混練後、カッティングしてペレットを得る。
 前記のペレットを押出機に投入し、Tダイ押出用口金から押出して膜状物を成形する。
Tダイの種類としては特に限定されない。例えば本発明の積層多孔フィルムが2種3層の積層構造をとる場合、Tダイは2種3層用マルチマニホールドタイプでも構わないし、2種3層用フィードブロックタイプでも構わない。
 使用するTダイのギャップは、最終的に必要なフィルムの厚み、延伸条件、ドラフト率、各種条件等から決定されるが、一般的には0.1~3.0mm程度、好ましくは0.5~1.0mmである。0.1mm未満では生産速度という観点から好ましくなく、また3.0mmより大きければ、ドラフト率が大きくなるので生産安定性の観点から好ましくない。
 押出成形において、押出加工温度は樹脂組成物の流動特性や成形性等によって適宜調整されるが、概ね180~350℃が好ましく、200~330℃がより好ましく、220~300℃が更に好ましい。180℃以上の場合、溶融樹脂の粘度が十分に低く成形性に優れ生産性が向上することから好ましい。一方、350℃以下にすることにより、樹脂組成物の劣化、ひいては得られる積層多孔フィルムの機械的強度の低下を抑制できる。
 キャストロールによる冷却固化温度は本発明において非常に重要であり、膜状物中のポリプロピレン系樹脂のβ晶の比率を調整することができる。キャストロールの冷却固化温度は好ましくは80~150℃、より好ましくは90~140℃、更に好ましくは100~130℃である。冷却固化温度を80℃以上とすることで、膜状物中のβ晶の比率を十分に増加させることができるために好ましい。また、150℃以下とすることで押出された溶融樹脂がキャストロールへ粘着し巻き付いてしまうなどのトラブルが起こりにくく、効率よく膜状物化することが可能であるので好ましい。
 前記温度範囲にキャストロールを設定することで、延伸前の膜状物のポリプロピレン系樹脂のβ晶比率は30~100%に調整することが好ましい。40~100%がより好ましく、50~100%が更に好ましく、60~100%が最も好ましい。延伸前の膜状物中のβ晶比率を30%以上とすることで、その後の延伸操作により多孔化が行われやすく、透気特性の良いポリオレフィン系樹脂多孔フィルムを得ることができる。
 延伸前の膜状物中のβ晶比率は、示差走査型熱量計を用いて、該膜状物を25℃から240℃まで加熱速度10℃/分で昇温させた際に、検出されるポリプロピレン系樹脂(A)のα晶由来の結晶融解熱量(ΔHmα)とβ晶由来の結晶融解熱量(ΔHmβ)を用いて下記式で計算される。
   β晶比率(%)=〔ΔHmβ/(ΔHmβ+ΔHmα)〕×100
 延伸工程においては、縦方向又は横方向に一軸延伸してもよいし、二軸延伸であってもよい。また、二軸延伸を行う場合は同時二軸延伸であってもよいし、逐次二軸延伸であってもよい。本発明のポリオレフィン系樹脂多孔フィルムを作製する場合には、各延伸工程で延伸条件を選択でき、かつ多孔構造を制御し易い逐次二軸延伸がより好ましい。
 ついで、得られた無孔膜状物を少なくとも二軸延伸することがより好ましい。二軸延伸は同時二軸延伸であってもよいし、逐次二軸延伸であってもよいが、各延伸工程で延伸条件(倍率、温度)を簡便に選択でき、多孔構造を制御し易い逐次二軸延伸がより好ましい。なお、膜状物及びフィルムの長手方向を「縦方向」、長手方向に対して垂直方向を「横方向」と称する。また、長手方向への延伸を「縦延伸」、長手方向に対して垂直方向への延伸を「横延伸」と称する。
 逐次二軸延伸を用いる場合、延伸温度は用いる樹脂組成物の組成、結晶化状態によって、適時選択する必要があるが、下記条件の範囲内で選択することが好ましい。
 逐次二軸延伸を用いる場合、延伸温度は用いる樹脂組成物の組成、結晶融解ピーク温度、結晶化度等によって適時変える必要があるが、縦延伸での延伸温度は概ね0~130℃が好ましく、より好ましくは10~120℃、更に好ましくは20~110℃の範囲で制御される。また、2~10倍が好ましく、より好ましくは3~8倍、更に好ましくは4~7倍である。前記範囲内で縦延伸を行うことで、延伸時の破断を抑制しつつ、適度な空孔起点を発現させることができる。
 一方、横延伸での延伸温度は概ね100~160℃、好ましくは110~150℃、更に好ましくは120~140℃である。また、好ましい縦延伸倍率は1.2~10倍が好ましく、より好ましくは1.5~8倍、更に好ましくは2~7倍である。前記範囲内で横延伸することで、縦延伸により形成された空孔起点を適度に拡大させ、微細な多孔構造を発現させることができる。
 前記延伸工程の延伸速度としては、500~12000%/分が好ましく、1500~10000%/分がさらに好ましく、2500~8000%/分であることが更に好ましい。
 このようにして得られた積層多孔フィルムは、寸法安定性の改良を目的として熱処理を施すことが好ましい。この際、温度は好ましくは100℃以上、より好ましくは120℃以上、更に好ましくは140℃以上とすることで、寸法安定性の効果が期待できる。一方、熱処理温度は好ましくは170℃以下、より好ましくは165℃以下、更に好ましくは160℃以下である。熱処理温度が170℃以下であれば、熱処理によってポリプロピレン系樹脂の融解が起こりにくく、多孔構造を維持できるため好ましい。また、熱処理工程中には、必要に応じて1~20%の弛緩処理を施しても良い。なお、熱処理後、均一に冷却して巻き取ることにより、積層多孔フィルムが得られる。
(被覆層(II層))
 本発明は、ポリオレフィン系樹脂多孔フィルム(I層)の少なくとも片面に、フィラー(a)、樹脂バインダー(b)、および密着剤(c)を含む被覆層(II層)を積層させている。
(フィラー(a))
 本発明に用いることができるフィラー(a)として、無機フィラー、有機フィラーなどが挙げられるが、特に制約されるものではない。
 無機フィラーの例としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウムなどの炭酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸バリウムなどの硫酸塩;塩化ナトリウム、塩化カルシウム、塩化マグネシウムなどの塩化物、酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化チタン、シリカなどの酸化物のほか、タルク、クレー、マイカなどのケイ酸塩等が挙げられる。これらの中でも、硫酸バリウム、酸化アルミニウムが好ましい。
 有機フィラーの例としては、超高分子量ポリエチレン、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリテトラフルオロエチレン、ポリイミド、ポリエーテルイミド、メラミン、ベンゾグアナミンなどの熱可塑性樹脂及び熱硬化性樹脂が挙げられる。これらの中でも、特に架橋させたポリスチレンなどが好ましい。
 前記フィラー(a)の平均粒径としては、好ましくは0.1μm以上、より好ましくは0.2μm以上、更に好ましくは0.3μm以上であり、上限として好ましくは3.0μm以下、より好ましくは1.5μm以下である。前記平均粒径が規定した範囲内であることで、十分な耐熱性を発現することができる。また、平均粒径を1.5μm以下とすることで、フィラー(a)の多孔層中における分散性の観点からより好ましい。
 なお、本実施の形態において「無機フィラーの平均粒径」とは、SEMを用いる方法に準じて測定される値である。
(樹脂バインダー(b))
 本発明に用いることができる樹脂バインダー(b)の例として、前記フィラー、前記ポリオレフィン系樹脂多孔フィルムを良好に接着でき、電気化学的に安定で、かつ積層多孔フィルムを電池として使用する場合には、有機電解液に対して安定であれば特に制限はない。具体的には、エチレン-酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20~35モル%のもの)、エチレン-エチルアクリレート共重合体などのエチレン-アクリル酸、共重合体、フッ素樹脂[ポリフッ化ビニリデン(PVDF)など]、フッ素系ゴム、スチレン-ブタジエンゴム(SBR)、ニトリルブタジエンゴム(NBR)、ポリブタジエンゴム(BR)、ポリアクリロニトリル(PAN)、ポリアクリル酸(PAA)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリN-ビニルアセトアミド、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられる。これらの樹脂バインダー(b)は1種単独で使用してもよく、2種以上を併用しても構わない。これらの樹脂バインダー(b)の中でもポリビニルアルコール、ポリフッ化ビニリデン、スチレン-ブタジエンゴム、カルボキシメチルセルロース、ポリアクリル酸が好ましい。
(密着剤(c))
 本発明において、基膜として用いるポリオレフィン系樹脂多孔フィルム(I層)と被覆層(II層)との密着性を改善する目的で密着剤(c)を含有することが重要である。前記被覆層(II層)に密着剤(c)を添加させることによって、詳細は不明であるが、密着剤(c)がポリオレフィン系樹脂多孔フィルムに含まれるポリオレフィン系樹脂、または、前記樹脂バインダー(b)と反応するために、前記樹脂バインダー(b)の含有量が少なくても十分に良好な密着性を確保することができると考えられる。
 密着剤(c)としては、前記樹脂バインダー(b)を用いる場合には含窒素有機化合物が好ましい。前記含窒素有機化合物としては、イミン化合物やアミン化合物と称せられるものが代表である。これらのうちイミン化合物としてはポリアルキレンイミンが代表であり、ポリエチレンイミン、アルキルあるいはシクロペンチル変性ポリエチレンイミン、エチレン尿素のイミン付加物、ポリ(エチレンイミン-尿素)及びポリアミンポリアミドのエチレンイミン付加物、又は、これらのアルキル変性体、アルケニル変性体、ベンジル変性体、もしくは、脂肪族環状炭化水素変性体、ポリアミドイミド、ポリイミドワニス、からなる群より選ばれたポリイミン系化合物がある。
 また、アミン化合物としてはポリアルキレンポリアミンが挙げられる。例えば、ポリエチレンポリアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミンなどの化合物が挙げられる。また同様の効果を示すものとしては、ポリアミドのポリエチレンイミド付加物などの化合物などのポリアミド、ヒドラジン化合物、ポリアミンポリアミドのエピクロロヒドリン付加物(炭素数3~10の飽和二塩基性カルボン酸とポリアルキレンポリアミンとからポリアミドをエピクロルヒドリンと反応させて得られる水溶性で陽イオン性の熱硬化性樹脂)などのポリアミンアミド化合物、4級窒素含有アクリルポリマー、4級窒素含有ベンジルポリマー、ウレタン、カルボン酸アミン塩基を有する化合物、メチロール化メラミン、カチオン性ポリウレタンなどの化合物などの含窒素4級塩化合物がある。また、カチオン変性ポリウレタン樹脂、ポリビニルピロリドン、ビニルピロリドン-酢酸ビニル共重合体、第3級窒素含有アクリル系樹脂等などのカチオン樹脂が挙げられる。更に、尿素、チオ尿素、グアニル尿素、メチル尿素、ジメチル尿素などの尿素化合物やジシアンジアミド誘導体なども本発明に含まれる。
 これらの含窒素有機化合物の中でも、密着向上性だけでなく、水中での樹脂バインダー(b)との相溶性の観点で、ポリアルキレンイミンが最も好適である。ポリアルキレンイミンとしては、ポリエチレンイミン及びポリプロピレンイミンが好ましく、特にポリエチレンイミン(PEI)が好ましい。これらのポリアルキレンイミンは単独で使用しても、また酢酸、p-トルエンスルホン酸、硫酸、塩酸等との塩を形成して使用してもよい。
 なお、本発明に用いる前記含窒素有機化合物は、一般に反応性が高く、電解液と反応する低分子量物質が混入した際も前記含窒素有機化合物と結合し、自己放電等による出力特性の低下を抑える効果も考えられる。
 被覆層(II層)において、前記フィラー(a)と前記樹脂バインダー(b)との総量に占めるフィラー(a)の含有率が92質量%以上であることが好ましく、95質量%以上がより好ましく、98質量%以上が更に好ましい。前記フィラー(a)の含有率が92質量%以上であれば、連通性がある積層多孔フィルムを作製でき、優れた透気性能を示すことができるために好ましい。
 被覆層(II層)において、前記密着剤(c)の含有率は前記樹脂バインダー(b)100質量%に対して0.5質量%以上であることが好ましく、0.5質量%以上75質量%未満の範囲がより好ましく、0.5質量%以上50質量%未満の範囲が更に好ましい。前記密着剤(c)の含有率の下限は、前記樹脂バインダー(b)に対して0.5質量%以上であれば、優れた密着性を具備することができる。また、前記密着剤(c)の含有率の上限は、特に限定しないが、前記樹脂バインダー(b)に対して75質量%未満であれば、優れた密着性と耐熱性を兼ね備えることができるためにより好ましく、50質量%未満であれば塗工性にも優れるために更に好ましい。
(被覆層(II層)の製造方法)
 本発明の積層多孔フィルムは、前記フィラー(a)と前記樹脂バインダー(b)と前記密着剤(c)とを溶媒に溶解または分散させた分散液を、前記ポリオレフィン系樹脂多孔フィルム(I層)の少なくとも片面に塗布することによって、ポリオレフィン系樹脂多孔フィルム(I層)表面に被覆層(II層)を形成して製造することができる。
 前記溶媒としては、前記フィラー(a)、前記樹脂バインダー(b)、および前記密着剤(c)が均一かつ安定に溶解または分散可能な溶媒を用いることが好ましい。このような溶媒としては、例えば、N-メチルピロリドンやN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、水、エタノール、トルエン、熱キシレン、ヘキサンなどを挙げることができる。また、前記分散液を安定化させるため、あるいはポリオレフィン系樹脂多孔フィルムへの塗工性を向上させるために、前記分散液には界面活性剤等の分散剤、増粘剤、湿潤剤、消泡剤、酸やアルカリを含めたpH調製剤等の各種添加剤を加えてもよい。前記添加剤は、溶媒除去や可塑剤抽出の際に除去できるものが好ましいが、非水電解液二次電池の使用範囲において電気化学的に安定で、電池反応を阻害せず、かつ200℃程度まで安定ならば、電池内(積層多孔フィルム内)に残存してもよい。
 前記フィラー(a)、前記樹脂バインダー(b)、および前記密着剤(c)を溶媒に溶解または分散させる方法としては、例えば、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、コロイドミル、アトライター、ロールミル、高速インペラー分散、ディスパーザー、ホモジナイザー、高速衝撃ミル、超音波分散、撹拌羽根等による機械撹拌法等が挙げられる。
 前記分散液をポリオレフィン系樹脂多孔フィルム(II層)の表面に塗布する方法としては、前記押出成形の後であってもよいし、縦延伸工程の後であってもよいし、横延伸工程の後であってもよい。
 前記塗布工程における塗布方式としては、必要とする層厚や塗布面積を実現できる方式であれば特に限定されない。このような塗布方法としては、例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法、等が挙げられる。また、また、前記分散液は、その用途に照らし、ポリオレフィン系樹脂多孔フィルム(II層)の片面だけに塗布されてもよいし、両面に塗布されてもよい。
 前記溶媒としては、ポリオレフィン系樹脂多孔フィルム(I層)に塗布した分散液から除去され得る溶媒であることが好ましい。溶媒を除去する方法としては、ポリオレフィン系樹脂多孔フィルム(I層)に悪影響を及ぼさない方法であれば、特に限定することなく採用することが出来る。溶媒を除去する方法としては、例えば、ポリオレフィン系樹脂多孔フィルム(I層)を固定しながらその融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法、前記樹脂バインダー(b)に対する貧溶媒に浸漬して樹脂バインダー(b)を凝固させると同時に溶媒を抽出する方法などが挙げられる。
 なお、本発明の積層多孔フィルムは、上述した製造方法とは異なる方法を用いて製造することも可能である。例えば、一方の押出機にポリオレフィン系樹脂多孔フィルム(I層)の原料を投入し、他方の押出機に被覆層(II層)の原料を投入し、一つのダイで一体化させて積層膜状物を成形した後に、多孔化処理する方法を採用することも可能である。
(積層多孔フィルムの形状及び物性)
 本発明の積層多孔フィルムの厚みは5~100μmが好ましい。より好ましくは8~50μm、更に好ましくは10~30μmである。非水電解液二次電池用セパレータとして使用する場合、5μm以上であれば、実質的に必要な電気絶縁性を得ることができ、例えば電極の突起部分に大きな力がかかった場合でも、非水電解液二次電池用セパレータを突き破って短絡しにくく安全性に優れる。また、厚みが100μm以下であれば、積層多孔フィルムの電気抵抗を小さくすることができるので、電池の性能が十分に確保することができる。
 被覆層(II層)の厚みとしては、耐熱性の観点から、好ましくは0.5μm以上、より好ましくは2μm以上、更に好ましくは3μm以上、特に好ましくは4μm以上である。一方で上限としては、連通性の観点から、好ましくは90μm以下、より好ましくは50μm以下、更に好ましくは30μm以下、特に好ましくは10μm以下である。
 本発明の積層多孔フィルムにおいて、空孔率は30%以上が好ましく、35%以上がより好ましく、40%以上が更に好ましい。空孔率が30%以上であれば、連通性を確保し透気特性に優れた積層多孔フィルムとすることができる。
 一方、上限については70%以下が好ましく、65%以下がより好ましく、60%以下が更に好ましい。空孔率が70%以下であれば、積層多孔フィルムの強度が低下しにくく、ハンドリングの観点からも好ましい。なお、空孔率は実施例に記載の方法で測定している。
 本発明の積層多孔フィルムの透気度は2000秒/100ml以下が好ましく、10~1000秒/100mlがより好ましく、50~800秒/100mlが更に好ましい。透気度が2000秒/100ml以下であれば、積層多孔フィルムに連通性があることを示し、優れた透気性能を示すことができるため好ましい。
 透気度はフィルム厚み方向の空気の通り抜け難さを表し、具体的には100mlの空気が当該フィルムを通過するのに必要な数で表現されている。そのため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚み方向の連通性が良いことを意味し、その数値が大きい方がフィルム厚み方向の連通性が悪いことを意味する。連通性とはフィルム厚み方向の孔のつながり度合いである。本発明の積層多孔フィルムの透気度が低ければ様々な用途に使用することができる。例えば非水電解液二次電池用セパレータとして使用する場合、透気度が低いということはリチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。
 本発明の積層多孔フィルムは、非水電解液二次電池用セパレータとして使用時において、SD特性を有することが好ましい。具体的には、135℃で5秒間加熱後の透気度は10000秒/100ml以上であることが好ましく、より好ましくは25000秒/100ml以上、さらに好ましくは50000秒/100ml以上である。135℃で5秒間加熱後の透気度が10000秒/100ml以上とすることで、異常発熱時において空孔が速やかに閉塞し、電流が遮断されるため、電池の破裂等のトラブルを回避することができる。
 本発明の積層多孔フィルムの150℃における収縮率は、25%未満が好ましく、15%未満がより好ましく、10%未満であることが更に好ましい。前記150℃における収縮率が25%未満であれば、SD温度を超えて異常発熱した際においても、寸法安定性がよく、耐熱性を有することを示唆しており、破膜を防ぎ、内部短絡温度を向上することができる。下限としては特に限定しないが、1%以上がより好ましい。
 本発明の積層多孔フィルムのポリオレフィン系樹脂多孔フィルム(I層)と被覆層(II層)との引き剥がし強度は、1N/15mm以上であることが好ましい。前記引き剥がし強度が1N/15mm以上であれば、前記フィラー(a)の脱落を防ぐことができるために好ましい。
(電池)
 続いて、本発明の前記積層多孔フィルムを電池用セパレータとして収容している非水電解液二次電池について、図1に参照して説明する。
 正極板21、負極板22の両極は電池用セパレータ10を介して互いに重なるようにして渦巻き状に捲回し、巻き止めテープで外側を止めて捲回体としている。
 前記捲回工程について詳しく説明する。電池用セパレータの片端をピン(図2)のスリット部1の間に通し、ピンを少しだけ回転させて電池用セパレータの一端をピンに巻きつけておく。この時、ピンの表面と電池用セパレータの被覆層とが接触している。その後、電池用セパレータを間に挟むようにして正極と負極を配置し、捲回機によってピンを回転させて、正負極と電池用セパレータを捲回する。捲回後、ピンは捲回物から引き抜かれる。
 前記正極板21、電池用セパレータ10および負極板22を一体的に巻き付けた捲回体を有底円筒状の電池ケース内に収容し、正極および負極のリード体24、25と溶接する。ついで、前記電解質を電池缶内に注入し、電池用セパレータ10などに十分に電解質が浸透した後、電池缶の開口周縁にガスケット26を介して正極蓋27を封口し、予備充電、エージングを行い、筒型の非水電解液二次電池を作製している。
 電解液としては、リチウム塩を電解液とし、これを有機溶媒に溶解した電解液が用いられる。有機溶媒としては特に限定されるものではないが、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、ジメチルカーボネート、プロピオン酸メチルもしくは酢酸ブチルなどのエステル類、アセトニトリル等のニトリル類、1,2-ジメトキシエタン、1,2-ジメトキシメタン、ジメトキシプロパン、1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフランもしくは4-メチル-1,3-ジオキソランなどのエーテル類、またはスルホランなどが挙げられ、これらを単独でまたは二種類以上を混合して用いることができる。
 なかでも、エチレンカーボネート1質量部に対してメチルエチルカーボネートを2質量部混合した溶媒中に六フッ化リン酸リチウム(LiPF)を1.0mol/Lの割合で溶解した電解質が好ましい。
 負極としてはアルカリ金属またはアルカリ金属を含む化合物をステンレス鋼製網などの集電材料と一体化させたものが用いられる。前記アルカリ金属としては、例えばリチウム、ナトリウムまたはカリウムなどが挙げられる。前記アルカリ金属を含む化合物としては、例えばアルカリ金属とアルミニウム、鉛、インジウム、カリウム、カドミウム、スズもしくはマグネシウムなどとの合金、さらにはアルカリ金属と炭素材料との化合物、低電位のアルカリ金属と金属酸化物もしくは硫化物との化合物などが挙げられる。
 負極に炭素材料を用いる場合、炭素材料としてはリチウムイオンをドープ、脱ドープできるものであればよく、例えば黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などを用いることができる。
 本実施形態では、負極として、ポリフッ化ビニリデンをN-メチルピロリドンに溶解させた溶液に平均粒径10μmの炭素材料を混合してスラリーとし、この負極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み18μmの帯状の銅箔からなる負極集電体の両面に均一に塗布して乾燥させ、その後、ロールプレス機により圧縮成形した後、切断し、帯状の負極板としたものを用いている。
 正極としては、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物、二酸化マンガン、五酸化バナジウムもしくはクロム酸化物などの金属酸化物、二硫化モリブデンなどの金属硫化物などが活物質として用いられ、これらの正極活物質に導電助剤やポリテトラフルオロエチレンなどの結着剤などを適宜添加した合剤を、ステンレス鋼製網などの集電材料を芯材として成形体に仕上げたものが用いられる。
 本実施形態では、正極としては、下記のようにして作製される帯状の正極板を用いている。すなわち、リチウムコバルト酸化物(LiCoO)に導電助剤としてリン状黒鉛を(リチウムコバルト酸化物:リン状黒鉛)の質量比90:5で加えて混合し、この混合物と、ポリフッ化ビニリデンをN-メチルピロリドンに溶解させた溶液とを混合してスラリーにする。この正極合剤スラリーを70メッシュの網を通過させて大きな粒子を取り除いた後、厚み20μmのアルミニウム箔からなる正極集電体の両面に均一に塗布して乾燥し、その後、ロールプレス機により圧縮成形した後、切断し、帯状の正極板としている。
 以下に実施例および比較例を示し、本発明の積層多孔フィルムについて更に詳細に説明するが、本発明はこれらに限定されるものではない。
なお、積層多孔フィルムの長手方向を「縦方向」、長手方向に対して垂直方向を「横方向」と称する。
(1)フィラー(a)の含有率
 分散液中のフィラー(a)と樹脂バインダー(b)との総量に占めるフィラー(a)の割合をフィラー(a)の含有率とした。
(2)密着剤(c)の含有率
 密着剤(c)の含有率は、分散液中の樹脂バインダー(b)100質量%に対する比率とした。
(3)厚み
 1/1000mmのダイアルゲージにて、面内を不特定に30箇所測定し、その平均値を積層多孔フィルムの厚みとした。
(4)透気度(ガーレ値)
 JIS P8117に準拠して透気度(秒/100ml)を測定した。 
(5)135℃で5秒間加熱後の透気度(SD特性)
 サンプルとして、積層多孔フィルムを縦60mm×横60mm角に切り出し、図2(A)に示すように中央部にφ40mmの円状の穴を空けたアルミ板(材質:JIS A5052、サイズ:縦60mm、横60mm、厚み1mm)2枚の間にはさみ、図2(B)に示すように周囲をクリップで固定した。
 次に、グリセリン(ナカライテスク社製、1級)を底面から100mmとなるまで満たした、135℃のオイルバス(アズワン社製、OB-200A)の中央部に、積層多孔フィルムをアルミ板2枚に拘束した状態のサンプルを浸漬し、5秒間加熱した。加熱後直ちに、別途用意した25℃のグリセリンを満たした冷却槽に浸漬して5分間冷却した後、2-プロパノール(ナカライテスク社製、特級)、アセトン(ナカライテスク社製、特級)で洗浄し、25℃の空気雰囲気下にて15分間乾燥した。乾燥後のサンプルについて、透気度を前記(4)の方法に従い測定した。
(6)引き剥がし強度
 JIS Z0237に準拠して、ポリオレフィン系樹脂多孔フィルム(I層)と被覆層(II層)との引き剥がし強度を測定した。まず、サンプルとして、積層多孔フィルムを横50mm×縦150mmに切り出し、当該サンプルの縦方向にテープ43として、セロハンテープ(ニチバン社製、JIS Z1522)を貼付け、当該テープ背面が重なるように180°に折り返し、当該サンプルから25mm剥がした。次に、引張試験機(インテスコ社製、インテスコIM-20ST)の下部チャックに剥がした部分のサンプルの片端を固定し、上部チャックにテープを固定し、試験速度300mm/分にて引き剥がし強度を測定した(図3)。測定後、最初の25mmの長さの測定値は無視し、試験片から引き剥がされた50mmの長さの引き剥がし強度測定値を平均し、引き剥がし強度とした。
(7)密着性
 密着性は、以下の評価基準によって評価した。 
  ◎:引き剥がし強度が1N/15mm以上 。
  ×:引き剥がし強度が1N/15mm未満。
(8)塗工性
 塗工性は、以下の評価基準によって評価した。
  ◎:塗工が可能。可視観察において、粒子の凝集がなく良好な被覆膜を形成。
  △:塗工が可能。可視観察において、粒子の凝集が確認できる。
  ×:粒子の凝集が多く、塗工困難。
(10)150℃における収縮率
 積層多孔フィルムを150×10mm四方に切り出したサンプルをチャック間100mmとなるように印を入れ、150℃に設定したオーブン(タバイエスペック社製、タバイギヤオーブンGPH200)に該サンプルを入れ、1時間静置した。該サンプルをオーブンから取り出し冷却した後、長さを測定し、以下の式にて収縮率をそれぞれ算出した。
   収縮率(%)={(100-加熱後の長さ)/100}×100
 以上の測定は、積層多孔フィルムの縦方向、横方向について行った。
(11)耐熱性
 耐熱性は、以下の評価基準において評価した。
  ◎:150℃における収縮率が、縦方向、横方向いずれも10%未満
  △:150℃における収縮率が、縦方向もしくは横方向で10%以上25%未満
  ×:150℃における収縮率が、縦方向もしくは横方向で25%以上
 更に、得られた積層多孔フィルムについて次のようにしてβ晶活性の評価を行った。
(12)示差走査型熱量測定(DSC)
 得られた積層多孔フィルムをパーキンエルマー社製の示差走査型熱量計(DSC-7)をもちいて、25℃から240℃まで走査速度10℃/分で昇温後1分間保持し、次に240℃~25℃まで走査速度10℃/分で降温後1分間保持し、次に25℃から240℃まで走査速度10℃/分で再昇温させた。この再昇温時にポリプロピレン系樹脂のβ晶に由来する結晶融解ピーク温度(Tmβ)である145~160℃にピークが検出されるか否かによりβ晶活性の有無をいかの基準にて評価した。
  ○:Tmβが145℃~160℃の範囲内に検出された場合(β晶活性あり)
  ×:Tmβが145℃~160℃の範囲内に検出されなかった場合(β晶活性なし)
 なお、β晶活性の測定は、試料量10mgで、窒素雰囲気下にて行った。
(13)広角X線回折測定(XRD)
 積層多孔フィルムを縦60mm×横60mm角に切り出し、図2(A)に示すように中央部が40mmφの円状に穴の空いたアルミ板(材質:JIS
A5052、サイズ:縦60mm、横60mm、厚み1mm)2枚の間にはさみ、図2(B)に示すように周囲をクリップで固定した。
 積層多孔フィルムをアルミ板2枚に拘束した状態のサンプルを設定温度180℃、表示温度180℃である送風定温恒温器(ヤマト科学株式会社製、型式:DKN602)に入れ3分間保持した後、設定温度を100℃に変更し、10分以上の時間をかけて100℃まで徐冷を行った。表示温度が100℃になった時点でサンプルを取り出し、アルミ板2枚に拘束した状態のまま25℃の雰囲気下で5分間冷却して得られたサンプルについて、以下の測定条件で、中央部の40mmφの円状の部分について広角X線回折測定を行った。
 ・広角X線回折測定装置:マックサイエンス社製、型番:XMP18A
 ・X線源:CuKα線、出力:40kV、200mA
 ・走査方法:2θ/θスキャン、2θ範囲:5°~25°、走査間隔:0.05°、走査速度:5°/min
 得られた回折プロファイルについて、ポリプロピレン系樹脂のβ晶の(300)面に由来するピークより、β晶活性の有無を以下のように評価した。
 ○:ピークが2θ=16.0~16.5°の範囲に検出された場合(β晶活性あり)
 ×:ピークが2θ=16.0~16.5°の範囲に検出されなかった場合(β晶活性なし)
 なお、積層多孔フィルム片が60mm×60mm角に切り出せない場合は、中央部に40mmφの円状の穴に積層多孔フィルムが設置されるように調整し、サンプルを作成しても構わない。
(ポリオレフィン系樹脂フィルム)
 A層として、ポリプロピレン系樹脂(プライムポリマー社製、プライムポリプロ F300SV、密度:0.90g/cm、MFR:3.0g/10分)と、β晶核剤として、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボン酸アミドを準備した。このポリプロピレン系樹脂100質量部に対して、β晶核剤を0.2質量部の割合で各原材料をブレンドし、東芝機械株式会社製の同方向二軸押出機(口径:40mmφ、L/D:32)に投入し、設定温度300℃で溶融混合後、水槽にてストランドを冷却固化し、ペレタイザーにてストランドをカットし、ポリプロピレン系樹脂のペレットを作製した。ポリプロピレン系樹脂組成物のβ晶活性は80%であった。
 次にB層を構成する混合樹脂組成物として、高密度ポリエチレン(日本ポリエチ社製、ノバテックHD HF560、密度:0.963g/cm、MFR:7.0g/10分)100質量部に、グリセリンモノエステルを0.04質量部、及びマイクロクリスタリンワックス(日本精蝋社製、Hi-Mic1080)10質量部を加え、同型の同方向二軸押出機を用いて220℃にて溶融混練してペレット状に加工した樹脂組成物を得た。
 前記2種類の原料を用いて、外層がA層、中間層がB層となるように別々の押出機を用いて、2種3層のフィードブロックを通じて積層成型用の口金より押出し、124℃のキャスティングロールで冷却固化させて、A層/B層/A層とした2種3層の積層膜状物を作製した。
 前記積層膜状物を、縦延伸機を用いて縦方向に4.6倍延伸し、コロナ表面処理を施した。その後、横延伸機にて100℃で横方向に2倍延伸後、熱固定/弛緩処理を行うことでポリオレフィン系樹脂多孔フィルムを得た。
[実施例1]
 アルミナ(住友化学社製、スミコランダムAA-03、平均粒径:0.3μm)39.4質量部、ポリビニルアルコール(クラレ社製、PVA124、鹸化度:98.0~99.0、平均重合度:2400)0.6質量部を水60.0質量部に分散させた分散液を得た。さらに分散液にポリエチレンイミン(純正化学社製、ポリエチレンイミン10000、分子量:約10000)0.003質量部を分散させ、分散液を得た。この時、分散液に含まれている密着剤(c)の含有率は、樹脂バインダー(b)100質量%に対して0.05質量%であった。
 得られた分散液を前記ポリオレフィン系樹脂多孔フィルムの製造方法により得た積層多孔フィルムにグラビアコーターを用いて塗布した後、60℃で乾燥した。
 得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[実施例2]
 アルミナ(住友化学社製、スミコランダムAA-03、平均粒径:0.3μm)39.4質量部、ポリビニルアルコール(クラレ社製、PVA124、鹸化度:98.0~99.0、平均重合度:2400)0.6質量部を水60.0質量部に分散させた分散液を得た。さらに分散液にポリエチレンイミン(純正化学社製、ポリエチレンイミン10000、分子量:約10000)0.018質量部を分散させ、分散液を得た。この時、分散液に含まれている密着剤(c)の含有率は、樹脂バインダー(b)100質量%に対して3質量%であった。
 得られた分散液を前記ポリオレフィン系樹脂多孔フィルムの製造方法により得た積層多孔フィルムにグラビアコーターを用いて塗布した後、60℃で乾燥した。
 得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[実施例3]
 アルミナ(住友化学社製、スミコランダムAA-03、平均粒径:0.3μm)39.4質量部、ポリビニルアルコール(クラレ社製、PVA124、鹸化度:98.0~99.0、平均重合度:2400)0.6質量部を水60.0質量部に分散させた分散液を得た。さらに分散液にポリエチレンイミン(純正化学社製、ポリエチレンイミン10000、分子量:約10000)0.06質量部を分散させ、分散液を得た。この時、分散液に含まれている密着剤(c)の含有率は、樹脂バインダー(b)100質量%に対して10質量%であった。
 得られた分散液を前記ポリオレフィン系樹脂多孔フィルムの製造方法により得た積層多孔フィルムにグラビアコーターを用いて塗布した後、60℃で乾燥した。
 得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[実施例4]
 アルミナ(住友化学社製、スミコランダムAA-03、平均粒径:0.3μm)39.4質量部、ポリビニルアルコール(クラレ社製、PVA124、鹸化度:98.0~99.0、平均重合度:2400)0.6質量部を水60.0質量部に分散させた分散液を得た。さらに分散液にポリエチレンイミン(純正化学社製、ポリエチレンイミン10000、分子量:約10000)0.18質量部を分散させ、分散液を得た。この時、分散液に含まれている密着剤(c)の含有率は、樹脂バインダー(b)100質量%に対して30質量%であった。
 得られた分散液を前記ポリオレフィン系樹脂多孔フィルムの製造方法により得た積層多孔フィルムにグラビアコーターを用いて塗布した後、60℃で乾燥した。
 得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[実施例5]
 アルミナ(住友化学社製、スミコランダムAA-03、平均粒径:0.3μm)39.4質量部、ポリビニルアルコール(クラレ社製、PVA124、鹸化度:98.0~99.0、平均重合度:2400)0.6質量部を水60.0質量部に分散させた分散液を得た。さらに分散液にポリエチレンイミン(純正化学社製、ポリエチレンイミン10000、分子量:約10000)0.3質量部を分散させ、分散液を得た。この時、分散液に含まれている密着剤(c)の含有率は、樹脂バインダー(b)100質量%に対して50質量%であった。
 得られた分散液を前記ポリオレフィン系樹脂多孔フィルムの製造方法により得た積層多孔フィルムにグラビアコーターを用いて塗布した後、60℃で乾燥した。
 得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[実施例6]
 アルミナ(住友化学社製、スミコランダムAA-03、平均粒径:0.3μm)39.4質量部、ポリビニルアルコール(クラレ社製、PVA124、鹸化度:98.0~99.0、平均重合度:2400)0.6質量部を水60.0質量部に分散させた分散液を得た。さらに分散液にポリエチレンイミン(純正化学社製、ポリエチレンイミン10000、分子量:約10000)0.45質量部を分散させ、分散液を得た。この時、分散液に含まれている密着剤(c)の含有率は、樹脂バインダー(b)100質量%に対して75質量%であった。
 得られた分散液を前記ポリオレフィン系樹脂多孔フィルムの製造方法により得た積層多孔フィルムにグラビアコーターを用いて塗布した後、60℃で乾燥した。
 得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[実施例7]
 アルミナ(住友化学社製、スミコランダムAA-03、平均粒径:0.3μm)39.4質量部、ポリビニルアルコール(クラレ社製、PVA124、鹸化度:98.0~99.0、平均重合度:2400)0.6質量部を水60.0質量部に分散させた分散液を得た。さらに分散液にポリエチレンイミン(純正化学社製、ポリエチレンイミン10000、分子量:約10000)0.6質量部を分散させ、分散液を得た。この時、分散液に含まれている密着剤(c)の含有率は、樹脂バインダー(b)100質量%に対して100質量%であった。
 得られた分散液を前記ポリオレフィン系樹脂多孔フィルムの製造方法により得た積層多孔フィルムにグラビアコーターを用いて塗布した後、60℃で乾燥した。
 得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[実施例8]
 アルミナ(住友化学社製、スミコランダムAA-03、平均粒径:0.3μm)39.4質量部、ポリビニルアルコール(クラレ社製、PVA124、鹸化度:98.0~99.0、平均重合度:2400)0.6質量部を水60.0質量部に分散させた分散液を得た。さらに分散液にポリエチレンイミン(純正化学社製、ポリエチレンイミン10000、分子量:約1800)0.003質量部を分散させ、分散液を得た。この時、分散液に含まれている密着剤(c)の含有率は、樹脂バインダー(b)100質量%に対して0.5質量%であった。
 得られた分散液を前記ポリオレフィン系樹脂多孔フィルムの製造方法により得た積層多孔フィルムにグラビアコーターを用いて塗布した後、60℃で乾燥した。
 得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[実施例9]
 アルミナ(住友化学社製、スミコランダムAA-03、平均粒径:0.3μm)39.4質量部、ポリビニルアルコール(クラレ社製、PVA124、鹸化度:98.0~99.0、平均重合度:2400)0.6質量部を水60.0質量部に分散させた分散液を得た。さらに分散液にポリエチレンイミン(純正化学社製、ポリエチレンイミン10000、分子量:約1800)0.018質量部を分散させ、分散液を得た。この時、分散液に含まれている密着剤(c)の含有率は、樹脂バインダー(b)100質量%に対して3質量%であった。
 得られた分散液を前記ポリオレフィン系樹脂多孔フィルムの製造方法により得た積層多孔フィルムにグラビアコーターを用いて塗布した後、60℃で乾燥した。
 得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[実施例10]
 アルミナ(住友化学社製、スミコランダムAA-03、平均粒径:0.3μm)39.4質量部、ポリビニルアルコール(クラレ社製、PVA124、鹸化度:98.0~99.0、平均重合度:2400)0.6質量部を水60.0質量部に分散させた分散液を得た。さらに分散液にポリエチレンイミン(純正化学社製、ポリエチレンイミン10000、分子量:約1800)0.06質量部を分散させ、分散液を得た。この時、分散液に含まれている密着剤(c)の含有率は、樹脂バインダー(b)100質量%に対して10質量%であった。
 得られた分散液を前記ポリオレフィン系樹脂多孔フィルムの製造方法により得た積層多孔フィルムにグラビアコーターを用いて塗布した後、60℃で乾燥した。
 得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[比較例1]
 アルミナ(住友化学社製、スミコランダムAA-03、平均粒径:0.3μm)39.4質量部、ポリビニルアルコール(クラレ社製、PVA124、鹸化度:98.0~99.0、平均重合度:2400)0.6質量部を水60.0質量部に分散させた分散液を得た。この時、分散液に含まれている密着剤(c)の含有率は、樹脂バインダー(b)100質量%に対して0質量%であった。
 得られた分散液を前記ポリオレフィン系樹脂多孔フィルムの製造方法により得た積層多孔フィルムにグラビアコーターを用いて塗布した後、60℃で乾燥した。
 得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[比較例2]
 アルミナ(住友化学社製、スミコランダムAA-03、平均粒径:0.3μm)36質量部、ポリビニルアルコール(クラレ社製、PVA124、鹸化度:98.0~99.0、平均重合度:2400)4質量部を水60.0質量部に分散させた分散液を得た。この時、分散液に含まれている密着剤(c)の含有率は、樹脂バインダー(b)100質量%に対して0質量%であった。
 得られた分散液を前記ポリオレフィン系樹脂多孔フィルムの製造方法により得た積層多孔フィルムにグラビアコーターを用いて塗布した後、60℃で乾燥した。
 得られた積層多孔フィルムの物性評価を行い、その結果を表1にまとめた。
[比較例3]
 前記ポリオレフィン系樹脂多孔フィルムの物性評価を行い、その結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~10で得た積層多孔フィルムは、優れた密着性を持ち、優れた耐熱性、通気性を有することができた。中でも、実施例1~3では耐熱性、塗工性が特に優れた積層多孔フィルムを得ることができた。
 一方、比較例1で得た積層多孔フィルムは、密着剤(c)を含有していないために、密着性が不十分となった。
 また、比較例2で得た積層多孔フィルムは、密着剤(c)を含有せずに、比較例1よりもフィラー(a)の含有率を小さくすることで、密着性を改善することはできたものの、通気性が不十分であった。
 また、比較例3のポリオレフィン系樹脂多孔フィルムは、被覆層が積層されていないため、耐熱性が不十分であった。
 本発明の積層多孔フィルムは、透気特性が要求される種々の用途に応用することができる。リチウム電池用セパレータ;使い捨て紙オムツ、生理用品等の体液吸収用パットもしくはベッドシーツ等の衛生材料;手術衣もしくは温湿布用基材等の医療用材料;ジャンパー、スポーツウエアもしくは雨着等の衣料用材料;壁紙、屋根防水材、断熱材、吸音材等の建築用材料;乾燥剤;防湿剤;脱酸素剤;使い捨てカイロ;鮮度保持包装もしくは食品包装等の包装材料等の資材として極めて好適に使用できる。
 20 二次電池
 21 正極板
 22 負極板
 24 正極リード体
 25 負極リード体
 26 ガスケット
 27 正極蓋
 31 アルミ板
 32 サンプル
 33 クリップ
 34 フィルム縦方向
 35 フィルム横方向
 41 サンプル
 42 テープ
 43 滑り止め
 44 上部チャック
 45 下部チャック
 

Claims (7)

  1.  ポリオレフィン系樹脂多孔フィルム(I層)の少なくとも片面に、フィラー(a)、樹脂バインダー(b)、および密着剤(c)を含む被覆層(II層)を積層していることを特徴とする積層多孔フィルム。
  2.  前記密着剤(c)が、含窒素有機化合物であることを特徴とする請求項1に記載の積層多孔フィルム。
  3.  前記密着剤(c)の含有率は、前記樹脂バインダー(b)100質量%に対して0.5質量%以上であることを特徴とする請求項1または2に記載の積層多孔フィルム。
  4.  前記積層多孔フィルムのポリオレフィン系樹脂多孔フィルム(I層)と被覆層(II層)との引き剥がし強度が1N/15mm以上であることを特徴とする請求項1~3のいずれかに1項に記載の積層多孔フィルム。
  5.  β晶活性を有することを特徴とする請求項1~4のいずれか1項に記載の積層多孔フィルム。
  6.  請求項1~5のいずれか1項に記載の積層多孔フィルムを用いた非水電解液二次電池用セパレータ。
  7.  請求項6に記載の非水電解液二次電池用セパレータを用いた非水電解液二次電池。
PCT/JP2011/061183 2010-09-30 2011-05-16 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池 WO2012042965A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127024946A KR101483836B1 (ko) 2010-09-30 2011-05-16 적층 다공 필름, 비수 전해액 2 차 전지용 세퍼레이터, 및 비수 전해액 2 차 전지
CN201180021742.7A CN102883885B (zh) 2010-09-30 2011-05-16 叠层多孔膜、非水电解质二次电池用隔板、以及非水电解质二次电池
EP11828527.9A EP2623317A4 (en) 2010-09-30 2011-05-16 POROUS LAMINATED FILM, SEPARATOR FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
US13/816,677 US20130143095A1 (en) 2010-09-30 2011-05-16 Laminated porous film, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2012536246A JP5690832B2 (ja) 2010-09-30 2011-05-16 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-220940 2010-09-30
JP2010220940 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012042965A1 true WO2012042965A1 (ja) 2012-04-05

Family

ID=45892446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061183 WO2012042965A1 (ja) 2010-09-30 2011-05-16 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池

Country Status (6)

Country Link
US (1) US20130143095A1 (ja)
EP (1) EP2623317A4 (ja)
JP (1) JP5690832B2 (ja)
KR (1) KR101483836B1 (ja)
CN (1) CN102883885B (ja)
WO (1) WO2012042965A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248442A (ja) * 2011-05-30 2012-12-13 Hitachi Maxell Ltd 非水電解質電池用セパレータおよび非水電解質電池
JP2013237203A (ja) * 2012-05-16 2013-11-28 Mitsubishi Plastics Inc 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
WO2014002701A1 (ja) * 2012-06-29 2014-01-03 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2015026572A (ja) * 2013-07-29 2015-02-05 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2016040354A (ja) * 2014-08-12 2016-03-24 三菱樹脂株式会社 積層多孔フィルムの製造方法
JP2019516206A (ja) * 2016-03-23 2019-06-13 シャンハイ、エナジー、ニュー、マテリアルズ、テクノロジー、カンパニー、リミテッドShanghai Energy New Materials Technology Co., Ltd. 電気化学的装置用セパレータおよびその調製方法および使用
JP2021534564A (ja) * 2019-05-03 2021-12-09 エルジー・ケム・リミテッド 固体電解質膜、その製造方法及びそれを含む全固体電池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103717390B (zh) 2012-03-26 2015-10-14 三菱树脂株式会社 叠层多孔膜、非水电解质二次电池用隔板、以及非水电解质二次电池
US20150380708A1 (en) * 2014-01-07 2015-12-31 Mitsubishi Plastics, Inc. Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2017107150A1 (zh) * 2015-12-24 2017-06-29 深圳中兴创新材料技术有限公司 用于电池隔膜的涂料、电池隔膜及电池隔膜的制备方法
WO2017171509A1 (ko) * 2016-04-01 2017-10-05 주식회사 엘지화학 배터리 모듈
KR102011906B1 (ko) * 2016-04-28 2019-08-19 삼성에스디아이 주식회사 다공성 접착층을 포함하는 분리막 및 이를 이용한 리튬 이차 전지
KR101819394B1 (ko) * 2016-12-23 2018-01-16 주식회사 포스코 도금 밀착성이 우수한 Zn-Mg 합금 도금 강재
CN110352520A (zh) * 2017-02-27 2019-10-18 远景Aesc日本有限公司 单电池的制造方法
JP6381754B1 (ja) * 2017-07-31 2018-08-29 住友化学株式会社 非水電解液二次電池
CN114039166A (zh) * 2021-11-09 2022-02-11 深圳市旭然电子有限公司 一种锂离子电池用隔膜及制备方法和锂离子电池
CN114784460B (zh) * 2022-06-17 2022-09-09 宁波长阳科技股份有限公司 一种耐低温锂电池微孔膜及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181651A (ja) 1990-11-14 1992-06-29 Nitto Denko Corp 電池用セパレータの製造法
JPH06289566A (ja) 1993-03-30 1994-10-18 Fuji Photo Film Co Ltd 感光材料処理装置
JPH09194650A (ja) 1996-01-23 1997-07-29 Chisso Corp 結晶性プロピレン重合体組成物
JP2003306585A (ja) 2002-04-15 2003-10-31 Sekisui Chem Co Ltd 樹脂−層状珪酸塩複合材料及びその製造方法
JP2004227972A (ja) 2003-01-24 2004-08-12 Sumitomo Chem Co Ltd 非水電解液二次電池用セパレータ
JP3739481B2 (ja) 1995-05-17 2006-01-25 昭和電工株式会社 ポリプロピレン系樹脂材料及びその製造方法
WO2007049568A1 (ja) * 2005-10-24 2007-05-03 Tonen Chemical Corporation ポリオレフィン多層微多孔膜及びその製造方法並びに電池用セパレータ
JP2007280911A (ja) 2006-03-17 2007-10-25 Sanyo Electric Co Ltd 非水電解質電池及びその製造方法
JP2008186721A (ja) 2007-01-30 2008-08-14 Asahi Kasei Chemicals Corp 高耐熱性と高透過性を兼ね備えた多孔膜およびその製法
WO2008149986A1 (ja) * 2007-06-06 2008-12-11 Asahi Kasei E-Materials Corporation 多層多孔膜
JP2009039910A (ja) * 2007-08-07 2009-02-26 Mitsubishi Plastics Inc 積層多孔性フィルムおよび電池用セパレータ
WO2010021248A1 (ja) * 2008-08-19 2010-02-25 帝人株式会社 非水系二次電池用セパレータ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131001A (ja) * 1983-12-16 1985-07-12 Suzuki Motor Co Ltd 電動車の駆動装置
KR100201885B1 (ko) * 1993-08-18 1999-06-15 곤도 쓰네오 농업용 폴리올레핀계 수지 필름
US6153337A (en) * 1997-12-19 2000-11-28 Moltech Corporation Separators for electrochemical cells
EP1209186B1 (en) * 1999-05-28 2006-08-02 Suzuki Latex Industry Co., Ltd. Nontacky latex products
EP1104703A1 (en) * 1999-12-03 2001-06-06 Yupo Corporation Coated film
AU2002335219A1 (en) * 2001-11-21 2003-06-10 Hitachi Powdered Metals Co., Ltd. Coating material for fuel cell separator
KR100477987B1 (ko) * 2002-09-11 2005-03-23 삼성에스디아이 주식회사 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
JP5032002B2 (ja) * 2004-06-17 2012-09-26 株式会社クラレ 電池用セパレータ及びアルカリ電池
CA2632364C (en) * 2005-12-06 2014-02-18 Lg Chem, Ltd. Organic/inorganic composite separator having morphology gradient, manufacturing method thereof and electrochemical device containing the same
KR101105748B1 (ko) * 2005-12-08 2012-01-17 히다치 막셀 가부시키가이샤 전기화학소자용 세퍼레이터와 그 제조방법, 및전기화학소자와 그 제조방법
JP2008311220A (ja) * 2007-05-11 2008-12-25 Mitsubishi Plastics Inc 積層多孔性フィルム、電池用セパレータおよび電池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04181651A (ja) 1990-11-14 1992-06-29 Nitto Denko Corp 電池用セパレータの製造法
JPH06289566A (ja) 1993-03-30 1994-10-18 Fuji Photo Film Co Ltd 感光材料処理装置
JP3739481B2 (ja) 1995-05-17 2006-01-25 昭和電工株式会社 ポリプロピレン系樹脂材料及びその製造方法
JPH09194650A (ja) 1996-01-23 1997-07-29 Chisso Corp 結晶性プロピレン重合体組成物
JP2003306585A (ja) 2002-04-15 2003-10-31 Sekisui Chem Co Ltd 樹脂−層状珪酸塩複合材料及びその製造方法
JP2004227972A (ja) 2003-01-24 2004-08-12 Sumitomo Chem Co Ltd 非水電解液二次電池用セパレータ
WO2007049568A1 (ja) * 2005-10-24 2007-05-03 Tonen Chemical Corporation ポリオレフィン多層微多孔膜及びその製造方法並びに電池用セパレータ
JP2007280911A (ja) 2006-03-17 2007-10-25 Sanyo Electric Co Ltd 非水電解質電池及びその製造方法
JP2008186721A (ja) 2007-01-30 2008-08-14 Asahi Kasei Chemicals Corp 高耐熱性と高透過性を兼ね備えた多孔膜およびその製法
WO2008149986A1 (ja) * 2007-06-06 2008-12-11 Asahi Kasei E-Materials Corporation 多層多孔膜
JP2009039910A (ja) * 2007-08-07 2009-02-26 Mitsubishi Plastics Inc 積層多孔性フィルムおよび電池用セパレータ
WO2010021248A1 (ja) * 2008-08-19 2010-02-25 帝人株式会社 非水系二次電池用セパレータ

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Bepol B-022SP", ARISTECH INC.
"Beta (p)- PP BE60-7032", BOREALIS INC.
"BNX BETAPP-LN", MAYZO INC.
"N Jester NU-100", NEW JAPAN CHEMICAL CO., LTD.
A. ZAMBELLI ET AL., MARCOMOLECULES, vol. 8, 1975, pages 687
MACROMOL. CHEM., vol. 187, 1986, pages 643 - 652
MACROMOL. CHEM., vol. 75, 1964, pages 134
MACROMOL. SYMP., vol. 89, 1995, pages 499 - 511
PROG. POLYM. SCI., vol. 16, 1991, pages 361 - 404
See also references of EP2623317A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248442A (ja) * 2011-05-30 2012-12-13 Hitachi Maxell Ltd 非水電解質電池用セパレータおよび非水電解質電池
JP2013237203A (ja) * 2012-05-16 2013-11-28 Mitsubishi Plastics Inc 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
WO2014002701A1 (ja) * 2012-06-29 2014-01-03 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
KR20150035504A (ko) * 2012-06-29 2015-04-06 미쓰비시 쥬시 가부시끼가이샤 적층 다공 필름, 비수 전해액 이차 전지용 세퍼레이터, 및 비수 전해액 이차 전지
JPWO2014002701A1 (ja) * 2012-06-29 2016-05-30 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
US9818999B2 (en) 2012-06-29 2017-11-14 Mitsubishi Chemical Corporation Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR102107364B1 (ko) * 2012-06-29 2020-05-07 미쯔비시 케미컬 주식회사 적층 다공 필름, 비수 전해액 이차 전지용 세퍼레이터, 및 비수 전해액 이차 전지
JP2015026572A (ja) * 2013-07-29 2015-02-05 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2016040354A (ja) * 2014-08-12 2016-03-24 三菱樹脂株式会社 積層多孔フィルムの製造方法
JP2019516206A (ja) * 2016-03-23 2019-06-13 シャンハイ、エナジー、ニュー、マテリアルズ、テクノロジー、カンパニー、リミテッドShanghai Energy New Materials Technology Co., Ltd. 電気化学的装置用セパレータおよびその調製方法および使用
JP2021534564A (ja) * 2019-05-03 2021-12-09 エルジー・ケム・リミテッド 固体電解質膜、その製造方法及びそれを含む全固体電池
JP7247340B2 (ja) 2019-05-03 2023-03-28 エルジー エナジー ソリューション リミテッド 固体電解質膜、その製造方法及びそれを含む全固体電池

Also Published As

Publication number Publication date
CN102883885B (zh) 2015-10-14
JP5690832B2 (ja) 2015-03-25
EP2623317A1 (en) 2013-08-07
KR101483836B1 (ko) 2015-01-16
US20130143095A1 (en) 2013-06-06
JPWO2012042965A1 (ja) 2014-02-06
KR20120138778A (ko) 2012-12-26
EP2623317A4 (en) 2014-07-09
CN102883885A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5690832B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5502707B2 (ja) 積層多孔フィルム、電池用セパレータおよび電池
JP5676577B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5298247B2 (ja) 積層多孔フィルム、電池用セパレータおよび電池
JP5419817B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5685039B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5697328B2 (ja) 積層多孔フィルム、電池用セパレータ、および電池
JP5265052B1 (ja) 積層多孔フィルムの製造方法
JP5778657B2 (ja) ポリプロピレン系樹脂多孔フィルム、電池用セパレータおよび電池
JP5507766B2 (ja) 積層多孔フィルムの製造方法
JP4734397B2 (ja) 積層多孔性フィルム、それを利用したリチウムイオン電池用セパレータ、および電池
JP5930032B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
WO2010026954A1 (ja) セパレータ用積層多孔性フィルム
WO2013080701A1 (ja) 積層多孔フィルムロール及びその製造方法
WO2013146342A1 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP2010061974A (ja) セパレータ用積層多孔性フィルム、およびその製造方法
JP6117493B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP5603410B2 (ja) ポリプロピレン系樹脂多孔フィルム、電池用セパレータおよび電池
JP4801705B2 (ja) セパレータ用積層多孔性フィルム、およびその製造方法
JP5848193B2 (ja) 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
JP5976305B2 (ja) 積層多孔フィルムの製造方法
JP2013116442A (ja) 積層多孔フィルムの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021742.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828527

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127024946

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012536246

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13816677

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011828527

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE