WO2012039461A1 - 強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石 - Google Patents

強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石 Download PDF

Info

Publication number
WO2012039461A1
WO2012039461A1 PCT/JP2011/071636 JP2011071636W WO2012039461A1 WO 2012039461 A1 WO2012039461 A1 WO 2012039461A1 JP 2011071636 W JP2011071636 W JP 2011071636W WO 2012039461 A1 WO2012039461 A1 WO 2012039461A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle powder
compound
ferromagnetic particle
ferromagnetic
iron
Prior art date
Application number
PCT/JP2011/071636
Other languages
English (en)
French (fr)
Inventor
高橋研
小川智之
緒方安伸
佐久間昭正
小林斉也
ガラゲ チャミカ ルワン ポルワッタ
小原香
Original Assignee
戸田工業株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 戸田工業株式会社, 国立大学法人東北大学 filed Critical 戸田工業株式会社
Priority to US13/825,584 priority Critical patent/US20130257573A1/en
Priority to EP11826906.7A priority patent/EP2620955A4/en
Priority to KR1020137007065A priority patent/KR20130106825A/ko
Priority to CN201180045408.5A priority patent/CN103119664B/zh
Publication of WO2012039461A1 publication Critical patent/WO2012039461A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0602Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with two or more other elements chosen from metals, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/0622Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/065Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a ferromagnetic particle powder whose main phase is an Fe 16 N 2 -based compound having a large BH max of 5 MGOe or more, and a method for producing the same. Moreover, the anisotropic magnet or bond magnet using this ferromagnetic particle powder is provided.
  • ⁇ ′′ -Fe 16 N 2 is known as a metastable compound that crystallizes when martensite or ferrite that dissolves nitrogen is annealed for a long time.
  • This ⁇ ′′ -Fe 16 The crystal of N 2 has a bct structure and is expected as a giant magnetic substance having a large saturation magnetization.
  • this compound is chemically synthesized as an isolated powder.
  • JP 11-340023 A JP 2000-277311 A JP 2009-84115 A JP 2008-108943 A JP 2008-103510 A JP 2007-335592 A JP 2007-258427 A JP 2007-134614 A JP 2007-36027 A JP 2009-249682 A
  • Patent Documents 1 to 10 and Non-Patent Documents 1 and 2 are still not sufficient.
  • Patent Document 1 describes that iron particles having a surface oxide film are reduced and then nitrided to obtain Fe 16 N 2. However, increasing the maximum energy product is considered. Not. Actually, the maximum energy product of 5 MGOe or more has not been obtained. Moreover, in the Example of patent document 1, the processing time of a nitriding process is as long as 10 days, and it cannot be said that it is industrial.
  • Patent Document 2 describes that iron oxide powder is reduced to produce metallic iron powder, and the obtained metallic iron powder is nitrided to obtain Fe 16 N 2. It is used as a magnetic particle powder for a medium, and is hardly suitable as a hard magnetic material so as to have a high maximum energy product BH max of 5 MGOe or more.
  • Patent Documents 3 to 9 although described as a maximal magnetic substance for a magnetic recording material instead of ferrite, an ⁇ ′′ -Fe 16 N 2 single phase has not been obtained, and a more stable ⁇ ′-Fe 4 N, ⁇ -Fe 2 to 3 N, martensite ( ⁇ ′-Fe), and ferrite ( ⁇ -Fe) -like metals are generated as mixed phases.
  • Patent Document 10 although the additional element is essential, the necessity thereof is not discussed in detail, and the magnetic properties of the obtained product should have a high maximum energy product BH max of 5 MGOe or more. It is difficult to say that it is suitable as a hard magnetic material.
  • Non-Patent Documents 1 and 2 although it has been successful in obtaining an ⁇ ′′ -Fe 16 N 2 single phase in a thin film, it is interesting from an academic viewpoint, but there are limits to the application of a thin film and a wider range of applications In addition, general-purpose magnetic materials have problems in productivity and economy.
  • the present invention provides an Fe 16 N 2 single-phase powder having a high BH max of 5 MGOe or more, a method for producing the same, and an anisotropic magnet and a bonded magnet using the powder in a short time that can be industrially produced. Objective.
  • the present invention is a ferromagnetic particle powder composed of 70% or more of Fe 16 N 2 compound phase based on Mossbauer spectrum, and is selected from Mn, Ni, Ti, Ga, Al, Ge, Zn, Pt, and Si.
  • the ferromagnetic particle powder is characterized by containing one or two or more metal elements X in an amount of 0.04 to 25% relative to Fe mole, and the BH max of the ferromagnetic particle powder is 5 MGOe or more. (Invention 1).
  • the present invention is the ferromagnetic particle powder according to the first aspect of the present invention, in which the particle surface is coated with Si and / or Al compound (the second aspect of the present invention).
  • the present invention there is saturation magnetization sigma s is 130 emu / g or more, the coercive force H c is ferromagnetic particles of the present invention 1 or 2, wherein is above 600 Oe (invention 3).
  • the present invention is the ferromagnetic particle powder according to any one of the present inventions 1 to 3 having a BET specific surface area of 3 to 80 m 2 / g (Invention 4).
  • the present invention is the method for producing a ferromagnetic particle powder according to any one of the present invention 1 to 4, wherein the iron compound particle powder previously passed through a mesh of 250 ⁇ m or less is subjected to a reduction treatment, followed by nitriding treatment.
  • the iron compound particle powder as the starting material has a BET specific surface area of 50 to 250 m 2 / g, an average major axis diameter of 50 to 450 nm, an aspect ratio (major axis diameter / minor axis diameter) of 3 to 25, and a metal Iron oxide or oxygen containing element X (X is one or more selected from Mn, Ni, Ti, Ga, Al, Ge, Zn, Pt, Si) in an amount of 0.04 to 25% relative to Fe mole
  • the present invention further provides the method for producing a ferromagnetic particle powder according to the present invention 5, wherein the surface of the iron compound particle powder is coated with a Si compound and / or an Al compound and then subjected to a reduction treatment through a 250 ⁇ m mesh. (Invention 6).
  • the present invention is an anisotropic magnet comprising the ferromagnetic particle powder according to any one of the present inventions 1 to 4 (Invention 7).
  • the present invention is a bonded magnet containing the ferromagnetic particle powder according to any one of the present inventions 1 to 4 (Invention 8).
  • the ferromagnetic particle powder according to the present invention has a large maximum energy product BH max , it is suitable as a magnetic material.
  • the method for producing a ferromagnetic particle powder according to the present invention can easily obtain a powder of a main phase of a Fe 16 N 2 compound having a large maximum energy product BH max. Is preferred.
  • the ferromagnetic particle powder according to the present invention is composed of 70% or more of Fe 16 N 2 compound phase by Mossbauer spectrum.
  • Mössbauer when Fe 16 N 2 is generated, a peak of an iron site having an internal magnetic field of 330 kOe or more is confirmed, and a particularly characteristic is that a peak near 395 kOe appears.
  • the present invention can exhibit sufficient characteristics as a ferromagnetic hard magnet material.
  • the ferromagnetic particle powder according to the present invention contains one or more metal elements X selected from Mn, Ni, Ti, Ga, Al, Ge, Zn, Pt, and Si in an amount of 0.04 to 25% relative to Fe mole. It is out.
  • the maximum energy product BH max does not exceed 5 MGOe.
  • the content of the metal element X exceeds 25 mol% with respect to Fe, the relative amount of Fe 16 N 2 to be generated is apparently reduced, so that BH max becomes less than 5 MGOe.
  • a more preferable content of the metal element X is 0.5 to 23% with respect to Fe mole.
  • the ferromagnetic particle powder according to the present invention has a maximum energy product BH max of 5 MGOe or more.
  • the value of the maximum energy product BH max is preferably 6 MGOe or more, more preferably 6.5 MGOe or more.
  • the ferromagnetic particle powder according to the present invention preferably has a saturation magnetization value ⁇ s of 130 emu / g or more and a coercive force H c of 600 Oe or more.
  • the saturation magnetization value ⁇ s and the coercive force H c are less than the above ranges, it is difficult to say that the magnetic properties are sufficient as a hard magnetic material. More preferably, the saturation magnetization value ⁇ s is 135 emu / g or more, the coercive force H c is 630 Oe or more, and even more preferably, the coercive force H c is 650 Oe or more.
  • the specific surface area of the ferromagnetic particle powder according to the present invention is preferably 3 to 80 m 2 / g.
  • the specific surface area is less than 3 m 2 / g or more than 80 m 2 / g, it is difficult to obtain a ferromagnetic particle powder composed of Fe 16 N 2 compound phase of 70% or more from the Mossbauer spectrum.
  • BH max nor H c can obtain desired characteristics.
  • a more preferable specific surface area is 4 to 75 m 2 / g, still more preferably 5 to 70 m 2 / g.
  • the ferromagnetic particle powder according to the present invention as an iron compound particle powder as a starting material, has a BET specific surface area of 50 to 250 m 2 / g, an average major axis diameter of 50 to 450 nm, and an aspect ratio (major axis diameter / minor axis diameter).
  • Is 3 to 25 and the metal element X X is one or more selected from Mn, Ni, Ti, Ga, Al, Ge, Zn, Pt, and Si
  • the iron compound particle powder passed through a mesh of 250 ⁇ m or less can be subjected to reduction treatment and then subjected to nitriding treatment.
  • the surface of the iron compound particle powder is coated with a Si compound and / or Al compound, passed through a mesh of 250 ⁇ m or less, subjected to reduction treatment, and then subjected to nitriding treatment. You can also go and get it.
  • the iron compound particle powder in the present invention contains 0.04 to 25% of the metal element X relative to the Fe mole.
  • the addition method of the metal element X is not specifically limited.
  • iron oxide or iron oxyhydroxide as iron compound particles used as a starting material may be added during synthesis by a wet reaction and precipitated by neutralization, or alcohol may be added to iron compound particle powder or paste.
  • a method may be employed in which the metal element X raw material salt dissolved in the above is mixed and dried.
  • the raw material for adding the metal element X is not particularly limited, but a compound that does not easily remain as an impurity even after heat treatment such as dehydration, reduction, and nitridation is preferable.
  • oxalate, acetate, oxide, metal, Nitrate and nitride are preferred.
  • the solid solution to an oxide, nitride, nitrate, acetate, oxalate, a metal, or a raw material iron compound may be sufficient.
  • iron oxide or iron oxyhydroxide can be used, and is not particularly limited, but magnetite, ⁇ -Fe 2 O 3 , ⁇ -Fe 2 O 3 , ⁇ -FeOOH, ⁇ -FeOOH, ⁇ -FeOOH, FeO and the like.
  • the starting material may be a single phase or may contain impurities, and the impurities may contain iron oxide or iron oxyhydroxide other than the main phase.
  • the particle shape of the iron oxide or iron oxyhydroxide used as the iron compound particle powder that is the starting material is not particularly limited, and may be any shape such as a needle shape, a granular shape, a spindle shape, a rectangular parallelepiped shape.
  • the specific surface area of the starting iron compound particle powder is preferably 50 to 250 m 2 / g. If it is less than 50 m 2 / g, nitriding is difficult to proceed, and it becomes difficult to obtain a ferromagnetic particle powder composed of 70% or more of the Fe 16 N 2 compound phase from the intended Mossbauer spectrum. When it exceeds 250 m 2 / g, since nitriding occurs excessively, it becomes difficult to obtain a ferromagnetic particle powder composed of 70% or more of the Fe 16 N 2 compound phase from the Mossbauer spectrum.
  • a more preferable specific surface area is 55 to 230 m 2 / g, and still more preferably 60 to 200 m 2 / g.
  • the average major axis diameter of the iron compound particle powder as the starting material is preferably 50 to 450 nm.
  • the average major axis diameter exceeds 450 nm, it becomes difficult to obtain a ferromagnetic particle powder composed of 70% or more of the Fe 16 N 2 compound phase from the intended Mossbauer spectrum.
  • the superparamagnetic component increases in small particles having an average major axis diameter of less than 50 nm, the properties as a ferromagnetic hard magnet material are inferior.
  • a more preferable average major axis diameter is 70 to 400 nm, and still more preferably 80 to 350 nm.
  • the aspect ratio (major axis diameter / minor axis diameter) of the iron compound particle powder as a starting material is preferably 3 to 25. If it exceeds this range, it will be difficult to obtain a ferromagnetic particle powder composed of 70% or more of Fe 16 N 2 compound phase from the intended Mossbauer spectrum. A more preferred aspect ratio is 3 to 24, and even more preferred is 3 to 23.
  • the particle surface of the iron compound particle powder may be coated with a Si compound and / or an Al compound.
  • the iron compound particle powder covers the particle surface of the iron compound particle powder in order to suppress sintering between the particles by a heat reduction treatment for obtaining iron metal as a raw material before nitriding treatment.
  • the Si compound and / or the Al compound By coating the Si compound and / or the Al compound, the temperature of the heat treatment (reduction treatment, nitriding treatment) can be reduced, and local nitridation can be prevented from proceeding excessively.
  • the coating with the Si compound and / or Al compound is performed by adjusting the pH of the aqueous suspension obtained by dispersing the iron compound particle powder, and then adding the Si compound and / or Al compound and mixing and stirring, or If necessary, by adjusting the pH value after mixing and stirring, the particle surface of the iron compound particle powder is coated with the Si compound and / or Al compound, and then filtered, washed with water, dried and pulverized.
  • Si compound No. 3 water glass, sodium orthosilicate, sodium metasilicate, colloidal silica, silane coupling agent and the like can be used.
  • Al compound aluminum salts such as aluminum acetate, aluminum sulfate, aluminum chloride, and aluminum nitrate, alkali aluminates such as sodium aluminate, alumina sol, aluminum coupling agent, and the like can be used.
  • the coating amount of the Si compound and / or Al compound is preferably 1000 to 20000 ppm in terms of Si or Al with respect to the iron compound particle powder. If it is less than 1000 ppm, it is difficult to say that the effect of suppressing the sintering between particles during heat treatment is sufficient. When it exceeds 20000 ppm, the nonmagnetic component increases, which is not preferable.
  • a more preferable surface coating amount is 1500 to 15000 ppm, and still more preferably 1500 to 13000 ppm.
  • the specific surface area of the iron oxide or iron oxyhydroxide particle powder coated with the Si compound and / or Al compound is preferably 50 to 250 m 2 / g.
  • the specific surface area is less than 50 m 2 / g, nitriding is difficult to proceed and it is difficult to obtain a ferromagnetic particle powder composed of 70% or more of the Fe 16 N 2 compound phase from the Mossbauer spectrum.
  • it exceeds 250 m 2 / g since nitriding occurs excessively, it becomes difficult to obtain a ferromagnetic particle powder composed of 70% or more of the Fe 16 N 2 compound phase from the Mossbauer spectrum.
  • a more preferable specific surface area is 55 to 230 m 2 / g, and still more preferably 60 to 200 m 2 / g.
  • the iron compound particle powder that is a starting material may be coated with a rare earth compound such as Y or La or a transition metal compound such as Co or Ni together with the Si compound and the Al compound.
  • the iron compound particle powder and the Si compound and / or Al compound-coated iron compound particle powder, which are starting materials, are desirably passed through a mesh of 250 ⁇ m or less in advance before the heat treatment. If the mesh size is larger than this, it is difficult to obtain a ferromagnetic particle powder exhibiting desired magnetic properties. More preferably, it is 236 micrometers or less.
  • pulverization may be performed according to a conventional method, if necessary. Although the grinding method is not particularly limited, an atomizer, a mortar or the like can be selected.
  • iron compound particle powder iron oxyhydroxide particle powder or iron oxyhydroxide particle powder whose particle surface is coated with a Si compound and / or an Al compound
  • the following reduction process may be performed without performing the dehydration process.
  • Dehydration temperature is 80-350 ° C. Dehydration hardly proceeds below 80 ° C. When it exceeds 350 degreeC, it becomes difficult to obtain an iron metal particle powder at low temperature in the following reduction process. A more preferable dehydration temperature is 85 to 300 ° C.
  • Dehydration is preferably performed in an air or nitrogen atmosphere.
  • the temperature of the reduction treatment is preferably 280 to 650 ° C.
  • the temperature of the reduction treatment is less than 280 ° C.
  • the iron compound particle powder is not sufficiently reduced to metallic iron.
  • the temperature of the reduction treatment exceeds 650 ° C., the iron compound particle powder is sufficiently reduced, but sintering between the particles also proceeds, which is not preferable.
  • a more preferable reduction temperature is 300 to 600 ° C.
  • the time for the reduction treatment is not particularly limited, but is preferably 1 to 24 hours. If it exceeds 24 h, depending on the reduction temperature, the sintering proceeds and the subsequent nitriding process becomes difficult to proceed. If it is less than 1 h, sufficient reduction is often not possible. More preferably, it is 1.5 to 15 hours.
  • the atmosphere for the reduction treatment is preferably a hydrogen atmosphere.
  • nitriding treatment is performed.
  • the temperature of the nitriding treatment is 100 to 200 ° C. When the nitriding temperature is less than 100 ° C., the nitriding does not proceed sufficiently. When the temperature of the nitriding treatment exceeds 200 ° C., ⁇ ′-Fe 4 N and ⁇ -Fe 2 to 3 N are generated. Therefore, the Fe 16 N 2 compound phase is 70% or more from the target Mossbauer spectrum. Ferromagnetic particle powder constituted cannot be obtained. A more preferable reduction temperature is 105 to 180 ° C.
  • the nitriding time is preferably within 50 hours. By completing the process in as short a time as possible for industrial production, the yield per hour is increased and the industrial productivity is excellent. More preferably, it is within 36 hours.
  • the atmosphere of the nitriding treatment is desirably an NH 3 atmosphere, and in addition to NH 3 , N 2 , H 2 , superheated steam or the like may be mixed therewith.
  • the magnetic properties of the ferromagnetic magnet according to the present invention may be adjusted so as to have desired magnetic properties (coercive force, residual magnetic flux density, maximum energy product) according to the intended application.
  • a method for magnetic orientation is not particularly limited.
  • an EVA (ethylene-vinyl acetate copolymer) resin is made of ferromagnetic particle powder composed of 70% or more of Fe 16 N 2 compound phase by Mossbauer spectrum, or Si and / or Al compound. From the coated Mossbauer spectrum, a ferromagnetic particle powder composed of 70% or more of Fe 16 N 2 compound phase is kneaded together with a dispersing agent and molded, and a desired external magnetic field at a temperature near the glass transition temperature. To promote magnetic orientation.
  • a resin such as urethane, an organic solvent, and the ferromagnetic particle powder mixed and pulverized with a paint shaker or the like are applied and printed on a resin film by a blade or a Roll-to-Roll method. What is necessary is just to make it an orientation.
  • the resin composition for bonded magnets in the present invention is obtained by dispersing the ferromagnetic particle powder according to the present invention in a binder resin, containing 85 to 99% by weight of the ferromagnetic particle powder, with the balance being It consists of a binder resin and other additives.
  • the binder resin can be variously selected depending on the molding method.
  • a thermoplastic resin can be used, and in the case of compression molding, a thermosetting resin can be used.
  • the thermoplastic resin include nylon (PA), polypropylene (PP), ethylene vinyl acetate (EVA), polyphenylene sulfide (PPS), liquid crystal resin (LCP), elastomer, and rubber.
  • Resin can be used, and as the thermosetting resin, for example, epoxy resin, phenol resin or the like can be used.
  • a resin composition for a bonded magnet when manufacturing a resin composition for a bonded magnet, a known plasticizer, lubricant, coupling agent, etc., in addition to a binder resin, may be used in order to facilitate molding or sufficiently draw out magnetic properties. Additives may be used. Also, other types of magnet powder such as ferrite magnet powder can be mixed.
  • additives may be selected appropriately according to the purpose, and as the plasticizer, commercially available products corresponding to the respective resins used can be used, and the total amount depends on the binder resin used. On the other hand, about 0.01 to 5.0% by weight can be used.
  • lubricant stearic acid and its derivatives, inorganic lubricants, oils and the like can be used, and about 0.01 to 1.0% by weight based on the whole bonded magnet can be used.
  • the coupling agent a commercial product corresponding to the resin and filler used can be used, and about 0.01 to 3.0% by weight can be used with respect to the binder resin used.
  • the resin composition for bonded magnets in the present invention is obtained by mixing and kneading ferromagnetic particle powder with a binder resin to obtain a bonded magnet resin composition.
  • the mixing can be performed with a mixer such as a Henschel mixer, a V-shaped mixer, or Nauta, and the kneading can be performed with a uniaxial kneader, a biaxial kneader, a mortar-type kneader, an extrusion kneader, or the like.
  • a mixer such as a Henschel mixer, a V-shaped mixer, or Nauta
  • the kneading can be performed with a uniaxial kneader, a biaxial kneader, a mortar-type kneader, an extrusion kneader, or the like.
  • the magnetic properties of the bond magnet may be adjusted so as to have desired magnetic properties (coercivity, residual magnetic flux density, maximum energy product) according to the intended application.
  • the bonded magnet in the present invention is molded by a known molding method such as injection molding, extrusion molding, compression molding or calender molding using the resin composition for bonded magnet, and then electromagnetization or pulse magnetization according to a conventional method. By magnetizing, a bonded magnet can be obtained.
  • the specific surface area values of the starting material iron compound particle powder (iron oxide or iron oxyhydroxide) and the obtained ferromagnetic particle powder are B. E. T. T. et al. Measured by the method.
  • the primary particle size of the iron compound particle powder (iron oxide or iron oxyhydroxide) as a starting material and the obtained ferromagnetic particle powder was measured using a transmission electron microscope (JEOL Ltd., JEM-1200EXII). . The average value was obtained by selecting 120 particles for randomization and measuring the particle size.
  • the composition analysis of the iron compound particle powder (iron oxide or iron oxyhydroxide) that is the starting material and the obtained ferromagnetic particle powder sample is performed by dissolving the heated sample with an acid, and using a plasma emission spectrometer (Seiko Electronics Industry) It was calculated
  • the starting phase and the constituent phases of the obtained ferromagnetic particle powder were identified by a powder X-ray diffractometer (XRD, manufactured by Rigaku Corporation, RINT-2500), a transmission electron microscope (JEOL Ltd., JEM- 2000EX), electron beam diffraction (ED), electron energy loss spectroscopy (EELS), energy dispersive X-ray spectroscopy (EDS) using an ultra-high resolution electron microscope (HREM, Hitachi High-Tech, HF-2000) This was determined by analyzing and evaluating by scanning transmission electron microscope (STEM). Analysis / evaluation by ED, EELS, STEM, EDS is not possible with XRD. Is ⁇ -Fe, Fe 4 N, Fe 3-x N as impurity phase or added metal element X localized microscopically? Can be confirmed.
  • XRD powder X-ray diffractometer
  • JEOL Ltd., JEM- 2000EX transmission electron microscope
  • ED electron beam diffraction
  • EELS electron energy loss
  • the magnetic properties of the obtained ferromagnetic particle powder were measured in a magnetic field of 0 to 9 T at room temperature (300 K) using a physical property measurement system (PPMS + VSM, Nippon Quantum Design Co., Ltd.). Separately, the temperature dependence of the magnetic susceptibility from 5K to 300K was also evaluated.
  • Mossbauer measurement of the obtained ferromagnetic particle powder was performed by mixing the ferromagnetic particle powder with silicon grease in an argon glove box and wrapping it in an aluminum wheel, and taking 3-4 days in the range of liquid helium temperature to room temperature. Then, by analyzing the data, the production ratio (volume ratio) of Fe 16 N 2 of the obtained ferromagnetic particle powder was determined. As total impurities at the time of analysis, ⁇ -Fe, Fe 4 N, Fe 3-x N, and para components such as iron oxide were examined.
  • Example 1 ⁇ Preparation of starting materials> Goethite particles having a minor axis diameter of 17 nm, a major axis diameter of 110 nm, an aspect ratio of 6.47, and a specific surface area of 123 m 2 / g were prepared using ferric sulfate, caustic soda, and sodium carbonate. This was separated and separated by Nutsche, and thoroughly washed with 5 ml of pure water equivalent to 150 ml of pure water. Then, it dried with the 60 degreeC vacuum dryer and extracted only the aggregated particle of 100 micrometers or less with the atomizer grinder and the vibration sieve.
  • a titanium raw material aqueous solution of titanium oxysulfate corresponding to 0.06% of the molar ratio to Fe contained in the goethite particle powder was mixed while being familiar with the entire goethite particle powder. This was heated to 250 ° C. at 3 ° C./min in air to perform dehydration and decomposition of the Ti raw material.
  • the sample taken out in this state was an ⁇ -Fe single phase and the specific surface area was 57 m 2 / g.
  • nitriding treatment was performed at 135 ° C. for 12 h while flowing ammonia gas at 10 L / min.
  • argon gas was circulated and the temperature was lowered to room temperature, supply of argon gas was stopped, and air replacement was performed over 3 hours.
  • Example 2 In the same manner as in Example 1, goethite particles having a minor axis diameter of 12 nm, a major axis diameter of 276 nm, an aspect ratio of 23.00, and a specific surface area of 101 m 2 / g were obtained using ferric chloride, caustic soda, and sodium carbonate. This was separated and separated by Nutsche, and repulped using a disper mixer so as to be 5 g / L in pure water. While stirring the solution, the pH was maintained at 7.0 with dilute nitric acid, and an aqueous gallium nitrate solution corresponding to 20% Ga relative to Fe mole in the goethite particles was added dropwise at room temperature.
  • Example 2 reduction treatment and nitriding treatment were performed in the same manner as in Example 1.
  • the reduction treatment was performed at 420 ° C. for 3 hours.
  • the sample taken out in this state was an ⁇ -Fe single phase, and the specific surface area was 76 m 2 / g.
  • the nitriding gas is a mixed gas of ammonia gas, nitrogen gas, and hydrogen gas with a mixing ratio of 7: 2.9: 0.1.
  • the nitriding treatment is performed at 155 ° C. for 7 hours while flowing a total amount of 10 L / min. It was.
  • Example 3 A sample was obtained in the same manner as in Example 2. However, the pH is set to 8.5, and first, an aluminum nitrate aqueous solution of Al raw material having a molar ratio of 0.8% with respect to Fe in the goethite particles is dropped into the goethite slurry, and then yttrium is coated with 700 wt-ppm in terms of Y. Further, aluminum was coated on the surface so as to be 3000 wt-ppm in terms of Al. Only agglomerated particles of 150 ⁇ m or less were extracted with an atomizer pulverizer and a vibrating sieve. The reduction treatment was performed in the same manner as in Example 1.
  • the sample taken out in this state was an ⁇ -Fe single phase, and the specific surface area was 88 m 2 / g.
  • the nitriding treatment was performed at 142 ° C. for 15 hours in an ammonia gas flow of 5 L / min.
  • the Y and Al contents were 689 wt-ppm and 1.07 wt%, respectively, with respect to Fe mole.
  • the main phase was Fe 16 N 2 from XRD and ED, and the Fe 16 N 2 compound phase was 86% from Mossbauer measurement. Further, the average primary particle size was a short axis diameter of 11 nm, a long axis diameter of 193 nm, and a specific surface area was 85 m 2 / g.
  • the saturation magnetization value ⁇ s 192 emu / g
  • the coercive force H c 2880 Oe
  • BH max 7.5 MGOe.
  • Example 4 In the same manner as in Example 2, goethite particles having a minor axis diameter of 14 nm, a major axis diameter of 150 nm, an aspect ratio of 10.71, and a specific surface area of 115 m 2 / g were obtained using ferric chloride, manganese chloride, caustic soda, and sodium carbonate. It was. The amount of manganese at this time was Mn having a molar ratio of 1.5% to Fe in the goethite particles. This was separated and separated by Nutsche and thoroughly washed with 5 ml of pure water equivalent to 200 ml of pure water. Further, in the same manner as in Example 2, coating with SiO 2 was performed so that the Si equivalent was 3000 ppm.
  • Example 2 The sample taken out after the reduction treatment was an ⁇ -Fe single phase and the specific surface area was 82 m 2 / g.
  • the obtained particle powder was Fe 16 N 2 as a main phase, and the Fe 16 N 2 compound phase was 74% as measured by Mossbauer. Moreover, the average primary particle size was 13 nm in the short axis diameter and 135 nm in the long axis diameter, and the specific surface area was 82 m 2 / g. As a result of ICP analysis, the Mn content was 1.5% with respect to Fe mole.
  • the saturation magnetization value ⁇ s 197 emu / g
  • the coercive force H c 880 Oe
  • BH max 6.3 MGOe.
  • Example 5 In the same manner as in Example 1, goethite particles having a short axis diameter of 17 nm, a long axis diameter of 110 nm, an aspect ratio of 6.47, and a specific surface area of 123 m 2 / g were obtained. This was heat-treated in air at 300 ° C. for 1 h to obtain hematite particle powder. Subsequently, only aggregated particles of 90 ⁇ m or less were extracted with an atomizer pulverizer and a vibrating sieve. A germanium tetrachloride aqueous solution, which is a Ge raw material corresponding to 6.2% by mole with respect to Fe contained in the hematite particle powder, was mixed while being thoroughly blended.
  • the obtained particle powder was Fe 16 N 2 as a main phase from XRD and ED, and the Fe 16 N 2 compound phase was 77% from Mossbauer measurement.
  • the average primary particle size was a minor axis diameter of 32 nm, a major axis diameter of 53 nm, and a specific surface area was 25.3 m 2 / g.
  • the Ge content was 6.2% relative to the Fe mole.
  • Example 6 Ni was used instead of Mn in Example 4. A nickel nitrate aqueous solution was used as the Ni raw material. The amount of nickel was 1.5% Ni relative to the Fe mole. However, SiO 2 coating was not performed. The obtained sample was goethite having a minor axis diameter of 14 nm, a major axis diameter of 146 nm, an aspect ratio of 10.43, and a specific surface area of 116 m 2 / g. This was separated and separated by Nutsche and thoroughly washed with 5 ml of pure water equivalent to 200 ml of pure water. Then, it dried with the 55 degreeC vacuum dryer and extracted only the aggregated particle
  • the obtained particle powder was Fe 16 N 2 as a main phase, and the Fe 16 N 2 compound phase was 84% from Mossbauer measurement.
  • the average primary particle size was 29 nm in short axis diameter, 46 nm in long axis diameter, and the specific surface area was 36.2 m 2 / g.
  • the Ni content was 1.5% relative to the Fe mole.
  • Example 7 Goethite particles having a minor axis diameter of 22 nm, a major axis diameter of 145 nm, an aspect ratio of 6.59, and a specific surface area of 109 m 2 / g were prepared using ferric sulfate, caustic soda, and sodium carbonate. This was separated and separated by Nutsche and washed well with 5 ml of pure water equivalent to 120 ml of pure water. Then, it dried with the 60 degreeC vacuum dryer, and extracted only the aggregated particle
  • a dinitrodiammine platinum solution of a Pt raw material corresponding to 0.07% by mole with respect to Fe contained in the hematite particle powder was mixed while being blended with the whole powder. This was heated to 220 ° C. at 3 ° C./min in air for dehydration and decomposition. Thereafter, PVA (polymerization degree 800) was added as a solid content to 7% of the weight of the powder to form a disk pellet having a diameter of 10 mm and a height of 2.5 mm. This was subjected to reduction treatment and nitriding treatment in the same manner as in Example 1.
  • Example 8 A sample was obtained in the same manner as in Example 2. The sample was goethite having a minor axis diameter of 12 nm, a major axis diameter of 276 nm, an aspect ratio of 23.00, and a specific surface area of 101 m 2 / g. This was repulped in the same manner as in Example 2 and, at a pH of 7.5, an aqueous zinc nitrate solution of Zn raw material having a molar ratio of 3% to Fe in goethite was first dropped. Then, SiO 2 was added dropwise water glass so that 1 wt% in the same manner as in Example 2. The Si content of the obtained sample was 1.02 wt%.
  • the main phase is XRD and Fe 16 N 2 from ED, and the Fe 16 N 2 compound phase is 87% from Mossbauer measurement.
  • the average primary particle size was 11 nm of short axis diameters and 192 nm of long axis diameters, and the specific surface area was 73 m ⁇ 2 > / g.
  • the Zn content was 8.0% relative to Fe mole.
  • the ferromagnetic particle powder according to the present invention has a large maximum energy product BH max , it is suitable as a magnetic material. Moreover, since it is obtained as a ferromagnetic particle powder and is excellent in productivity and economy, it can be used for a wide range of magnetic material applications such as anisotropic magnets and bonded magnets.

Abstract

本発明は、メスバウアースペクトルよりFe16化合物相が70%以上で構成される強磁性粒子粉末であり、Mn、Ni、Ti、Ga、Al、Ge、Zn、Pt、Siから選ばれる一種又は二種以上の金属元素Xを、Feモル対比0.04~25%含有しており、該強磁性粒子粉末のBHmaxが5MGOe以上であることを特徴とする強磁性粒子粉末、その製造方法および該強磁性粒子粉末を磁気的配向させた異方性磁石又はボンド磁石に関する。本発明の強磁性粒子粉末は、工業的に生産可能で、大きなBHmaxを有する異種金属元素を含んだFe16粒子粉末である。

Description

強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石
 本発明は、5MGOe以上の大きなBHmaxを有するFe16系化合物が主相である強磁性粒子粉末及びその製造法に関する。また、該強磁性粒子粉末を用いた異方性磁石又はボンド磁石を提供する。
 現在、Sr系フェライト磁性粉末、Nd-Fe-B系磁性粉末など種々の磁性材料が実用化されている。しかしながら、更なる特性の向上を目的として改良が加えられるとともに、新規材料の探索が行われている。その中でも、Fe16などのFe-N系の化合物が注目されている。
 Fe-N系の化合物のうちα”-Fe16は窒素を固溶するマルテンサイトやフェライトを長時間アニールした場合に晶出する準安定化合物として知られている。このα”-Fe16の結晶はbct構造であり、大きな飽和磁化を持つ巨大磁気物質として期待されている。しかしながら、準安定化合物と言われるように、この化合物を単離した粉末として化学的に合成された例は極めて少ない。
 これまで、α”-Fe16単相を得ようと、蒸着法、MBE法(分子線エピタキシー法)、イオン注入法、スパッタ法、アンモニア窒化法などの様々な方法が試みられた。しかし、より安定なγ’-FeNやε-Fe2~3Nの生成とともに、マルテンサイト(α’-Fe)やフェライト(α-Fe)様金属の共晶が起き、α”-Fe16単一化合物を単離して製造することに困難を伴う。一部、α”-Fe16単一化合物を薄膜として得ているが、薄膜では磁性材料への適用に限界があり、より幅の広い用途展開には不向きであり、粒子粉末のような形態で得られることが望まれている。
 α”-Fe16に関する既存技術として、下記技術が提案されている。
特開平11-340023号公報 特開2000-277311号公報 特開2009-84115号公報 特開2008-108943号公報 特開2008-103510号公報 特開2007-335592号公報 特開2007-258427号公報 特開2007-134614号公報 特開2007-36027号公報 特開2009-249682号公報
M.Takahashi,H.Shoji,H.Takahashi,H.Nashi,T.Wakiyama,M.Doi,and M.Matsui, J.Appl.Phys., Vol.76, pp.6642-6647,1994. Y.Takahashi,M.Katou,H.Shoji,and M.Takahashi, J.Magn.Magn.Mater., Vol.232, p.18-26, 2001.
 上記特許文献1~10及び非特許文献1及び2記載の技術では、未だ十分とは言い難いものである。
 即ち、特許文献1には、表面酸化被膜が存在する鉄粒子を還元処理した後、窒化処理してFe16を得ることが記載されているが、最大エネルギー積を高くすることは考慮されていない。実際5MGOe以上の最大エネルギー積を得てはいない。また、特許文献1の実施例では窒化処理の処理時間が10日と長時間にわたるものであり、工業的とは言い難い。
 また、特許文献2には、酸化鉄粉末を還元処理して金属鉄粉末を生成し、得られた金属鉄粉末を窒化処理してFe16を得ることが記載されているが、磁気記録媒体用磁性粒子粉末として用いられるものであり、5MGOe以上の高い最大エネルギー積BHmaxを有すべく硬磁性材料として好適とは言い難いものである。
 また、特許文献3~9では、フェライトに変わる磁気記録材料用の極大磁気物質として記載されているが、α”-Fe16単相は得られておらず、より安定なγ’-FeNやε-Fe2~3N、マルテンサイト(α’-Fe)やフェライト(α-Fe)様金属が混相として生成している。
 また、特許文献10では、添加元素が必須としながらも、その必要性について細かく議論されておらず、且つ、得られる生成物の磁気特性について、5MGOe以上の高い最大エネルギー積BHmaxを有すべく硬磁性材料として好適とは言い難いものである。
 非特許文献1~2には、薄膜でのα”-Fe16単相を得ることに成功していて学術的には面白いが、薄膜では適用に限界があり、より幅の広い用途展開には不向きである。また、汎用の磁性材料とするには生産性や経済性に問題がある。
 そこで、本発明では、工業的生産可能な短時間において、5MGOe以上の高いBHmaxを持つFe16単相粉末及びその製造方法、該粉末を用いた異方性磁石及びボンド磁石の提供を目的とする。
 上記の目的は、以下の本発明によって解決することができる。
 即ち、本発明は、メスバウアースペクトルよりFe16化合物相が70%以上で構成される強磁性粒子粉末であり、Mn、Ni、Ti、Ga、Al、Ge、Zn、Pt、Siから選ばれる一種又は二種以上の金属元素Xを、Feモル対比0.04~25%含有しており、該強磁性粒子粉末のBHmaxが5MGOe以上であることを特徴とする強磁性粒子粉末である(本発明1)。
 また、本発明は、更に、粒子表面がSi及び/又はAl化合物で被覆されている本発明1記載の強磁性粒子粉末である(本発明2)。
 また、本発明は、飽和磁化値σが130emu/g以上であって、保磁力Hが600Oe以上である本発明1又は2記載の強磁性粒子粉末である(本発明3)。
 また、本発明は、BET比表面積が3~80m/gである本発明1~3のいずれかに記載の強磁性粒子粉末である(本発明4)。
 本発明は、予め250μm以下のメッシュを通した鉄化合物粒子粉末について還元処理を行い、次いで、窒化処理を行う本発明1~4のいずれかに記載の強磁性粒子粉末の製造法であって、前記出発原料である鉄化合物粒子粉末として、BET比表面積が50~250m/g、平均長軸径が50~450nm、アスペクト比(長軸径/短軸径)が3~25であって金属元素X(Xは、Mn、Ni、Ti、Ga、Al、Ge、Zn、Pt、Siから選ばれる一種又は二種以上である)をFeモル対比0.04~25%含有する酸化鉄又はオキシ水酸化鉄を用いることを特徴とする強磁性粒子粉末の製造法である(本発明5)。
 また、本発明は、更に、前記鉄化合物粒子粉末の粒子表面をSi化合物及び/又はAl化合物で被覆した後、250μmのメッシュを通して還元処理を行う本発明5に記載の強磁性粒子粉末の製造法である(本発明6)。
 また、本発明は、本発明1~4のいずれかに記載の強磁性粒子粉末からなる異方性磁石である(本発明7)。
 また、本発明は、本発明1~4のいずれかに記載の強磁性粒子粉末を含有するボンド磁石である(本発明8)。
 本発明に係る強磁性粒子粉末は、大きな最大エネルギー積BHmaxを有するので、磁性材料として好適である。
 また、本発明に係る強磁性粒子粉末の製造法は、大きな最大エネルギー積BHmaxを有するFe16化合物が主相の粉末を容易に得ることができるので、強磁性粒子粉末の製造法として好適である。
 本発明に係る強磁性粒子粉末は、メスバウアースペクトルよりFe16化合物相が70%以上で構成される。メスバウアーでは、Fe16が生成される場合、内部磁場が330kOe以上の鉄サイトのピークが確認され、特に特徴的なのは、395kOe近傍のピークが現れることである。
 一般には他相が多いと、ソフト磁石としての特性が強く表れてしまうために、強磁性ハード磁石材料としては不向きとなる。しかしながら、本発明では、強磁性ハード磁石材料として十分な特性を発揮できる。
 本発明に係る強磁性粒子粉末は、Mn、Ni、Ti、Ga、Al、Ge、Zn、Pt、Siから選ばれる一種又は二種以上の金属元素XをFeモル対比0.04~25%含んでいる。金属元素Xの含有量がFeに対して0.04mol%未満では、最大エネルギー積BHmaxは5MGOeを超えない。逆に、金属元素Xの含有量がFeに対して25mol%を超えると、生成するFe16の相対量が見かけ減るためBHmaxが5MGOe未満となってしまう。より好ましい金属元素Xの含有量はFeモル対比0.5~23%である。
 本発明に係る強磁性粒子粉末は、最大エネルギー積BHmaxが5MGOe以上である。最大エネルギー積BHmaxが5MGOe未満では、硬磁性材料として磁気特性が十分とは言い難い。最大エネルギー積BHmaxの値は好ましくは6MGOe以上、より好ましくは6.5MGOe以上である。
 本発明に係る強磁性粒子粉末は、飽和磁化値σが130emu/g以上であることが好ましく、保磁力Hが600Oe以上であることが好ましい。飽和磁化値σ及び保磁力Hが前記範囲未満の場合、硬磁性材料として磁気特性が十分とは言い難い。より好ましくは飽和磁化値σが135emu/g以上、保磁力Hが630Oe以上、更により好ましくは保磁力Hが650Oe以上である。
 本発明に係る強磁性粒子粉末の比表面積は3~80m/gであることが好ましい。比表面積が3m/g未満あるいは80m/gを超える場合には、メスバウアースペクトルよりFe16化合物相が70%以上で構成される強磁性粒子粉末を得ることが困難になるばかりではなく、BHmaxやHも所望の特性が得られなくなってしまう。より好ましい比表面積は4~75m/g、更により好ましくは5~70m/gである。
 次に、本発明に係る強磁性粒子粉末の製造法について述べる。
 本発明に係る強磁性粒子粉末は、出発原料である鉄化合物粒子粉末として、BET比表面積が50~250m/g、平均長軸径が50~450nm、アスペクト比(長軸径/短軸径)が3~25であって金属元素X(Xは、Mn、Ni、Ti、Ga、Al、Ge、Zn、Pt、Siから選ばれる一種又は二種以上である)をFeモル対比0.04~25%含有する酸化鉄又はオキシ水酸化鉄を用いて、250μm以下のメッシュを通した鉄化合物粒子粉末について還元処理を行い、次いで、窒化処理を行って得ることができる。
 本発明に係る強磁性粒子粉末は、必要により、鉄化合物粒子粉末の粒子表面をSi化合物及び/又はAl化合物で被覆した後、250μm以下のメッシュを通し、還元処理を行い、次いで、窒化処理を行って得ることも出来る。
 本発明における鉄化合物粒子粉末は、金属元素XをFeモル対比で0.04~25%含んでいる。金属元素Xの添加方法は特に限定されない。例えば、出発原料に用いる鉄化合物粒子としての酸化鉄やオキシ水酸化鉄を湿式反応等により合成する際に添加して中和により沈澱させてもよく、また、鉄化合物粒子粉末やペーストなどにアルコールなどで溶解させた金属元素X原料塩を混合し、乾燥させる手法をとってもよい。
 金属元素Xを添加するための原料は、特に限定されないが、脱水、還元、窒化などの熱処理を行っても不純物として残りにくい化合物がよく、例えば、シュウ酸塩、酢酸塩、酸化物、金属、硝酸塩、窒化物などがよい。原料鉄化合物粒子と金属元素Xの混在状態として、特に限定されないが、例えば、酸化物、窒化物、硝酸塩、酢酸塩、シュウ酸塩、金属、あるいは、原料鉄化合物への固溶でもよい。また、原料鉄化合物への固溶以外であれば、できるだけ細かく分散した状態で原料鉄化合物粒子表面に存在することが理想である。
 出発原料である鉄化合物粒子粉末としては、酸化鉄又はオキシ水酸化鉄を用いることができ、特に限定されないが、マグネタイト、γ-Fe、α-Fe、α-FeOOH、β-FeOOH、γ-FeOOH、FeOなどが挙げられる。また、出発原料は単相でも不純物を含んでいてもよく、不純物としては主相以外の酸化鉄又はオキシ水酸化鉄を含んでいてもよい。
 出発原料である鉄化合物粒子粉末として使用する酸化鉄又はオキシ水酸化鉄の粒子形状には特に限定はないが、針状、粒状、紡錘状、直方体状などいずれでもよい。
 出発原料である鉄化合物粒子粉末の比表面積は50~250m/gであることが好ましい。50m/g未満では、窒化が進みにくく、目的とするメスバウアースペクトルよりFe16化合物相が70%以上で構成される強磁性粒子粉末を得ることが困難となる。250m/gを超える場合は、窒化が過剰に起きるためメスバウアースペクトルよりFe16化合物相が70%以上で構成される強磁性粒子粉末を得ることが困難となる。より好ましい比表面積は55~230m/g、更により好ましくは60~200m/gである。
 出発原料である鉄化合物粒子粉末の平均長軸径は50~450nmであることが好ましい。平均長軸径が450nmを超えると目的とするメスバウアースペクトルよりFe16化合物相が70%以上で構成される強磁性粒子粉末を得ることが困難となる。さらには平均長軸径が50nm未満の小さな粒子では超常磁性成分が増加するため強磁性ハード磁石材料としての特性が劣る。より好ましい平均長軸径は70~400nm、更により好ましくは80~350nmである。
 出発原料である鉄化合物粒子粉末のアスペクト比(長軸径/短軸径)は3~25であることが好ましい。この範囲を超えると目的とするメスバウアースペクトルよりFe16化合物相が70%以上で構成される強磁性粒子粉末を得ることが困難となる。より好ましいアスペクト比は3~24、さらにより好ましくは3~23である。
 本発明においては、必要により、鉄化合物粒子粉末の粒子表面をSi化合物及び/又はAl化合物を被覆してもよい。鉄化合物粒子粉末が、窒化処理前の原料である鉄金属を得るための加熱還元処理によって、粒子同士の焼結を抑制するために鉄化合物粒子粉末の粒子表面を被覆する。Si化合物及び/又はAl化合物を被覆することによって、熱処理(還元処理、窒化処理)の温度を低減することができ、局所的に過剰に窒化が進行することを抑制することができる。
 Si化合物及び/又はAl化合物による被覆は、鉄化合物粒子粉末を分散して得られる水懸濁液のpHを調整した後、Si化合物及び/又はAl化合物を添加して混合攪拌することにより、又は、必要により、混合攪拌後にpH値を調整することにより、前記鉄化合物粒子粉末の粒子表面をSi化合物及び/又はAl化合物で被覆し、次いで、濾別、水洗、乾燥、粉砕する。
 Si化合物としては、3号水ガラス、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、コロイダルシリカ、シランカップリング剤等が使用できる。
 Al化合物としては、酢酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム等のアルミニウム塩や、アルミン酸ナトリウム等のアルミン酸アルカリ塩及びアルミナゾル、アルミニウムカップリング剤等が使用できる。
 Si化合物及び/又はAl化合物の被覆量は、鉄化合物粒子粉末に対しSi換算又はAl換算で1000~20000ppmが好ましい。1000ppm未満の場合には熱処理時に粒子間の焼結を抑制する効果が十分とは言い難い。20000ppmを超える場合には、非磁性成分が増加することとなり好ましくない。より好ましい表面被覆量は1500~15000ppm、更により好ましくは1500~13000ppmである。
 Si化合物及び/又はAl化合物によって被覆される酸化鉄又はオキシ水酸化鉄粒子粉末の比表面積は50~250m/gが好ましい。比表面積が50m/g未満では、窒化が進みにくく、メスバウアースペクトルよりFe16化合物相が70%以上で構成される強磁性粒子粉末を得ることが困難となる。250m/gを超える場合は、窒化が過剰に起きるためメスバウアースペクトルよりFe16化合物相が70%以上で構成される強磁性粒子粉末を得ることが困難となる。より好ましい比表面積は55~230m/g、さらにより好ましくは60~200m/gである。
 出発原料である鉄化合物粒子粉末は、Si化合物、Al化合物とともに、YやLaなどの希土類化合物等やCoやNiなどの遷移金属化合物を被覆させても良い。
 出発原料である鉄化合物粒子粉末およびSi化合物及び/又はAl化合物被覆鉄化合物粒子粉末は、熱処理前に予め250μm以下のメッシュを通すことが望ましい。これ以上のメッシュサイズでは、所望とする磁気特性を発揮する強磁性粒子粉末が得られにくい。より好ましくは236μm以下である。所定のメッシュサイズとするために、必要により、常法に従って、粉砕処理を行ってよい。粉砕方法は特に限定されないが、アトマイザー、乳鉢等選択できる。
 次に、出発原料である鉄化合物粒子粉末(オキシ水酸化鉄粒子粉末又は粒子表面がSi化合物及び/又はAl化合物によって被覆されたオキシ水酸化鉄粒子粉末)について脱水処理を行う。脱水処理をせずに次の還元処理を行ってもよい。
 脱水処理の温度は80~350℃である。80℃未満では脱水はほとんど進行しない。350℃を超える場合、次の還元処理において、低温で鉄金属粒子粉末を得ることが難しくなる。より好ましい脱水処理温度は85~300℃である。
 脱水処理は空気若しくは窒素雰囲気が好ましい。
 次に、鉄化合物粒子粉末又は粒子表面がSi化合物及び/又はAl化合物によって被覆された鉄化合物粒子粉末について還元処理を行う。
 還元処理の温度は280~650℃が好ましい。還元処理の温度が280℃未満の場合には鉄化合物粒子粉末が十分に金属鉄に還元されない。還元処理の温度が650℃を超える場合には鉄化合物粒子粉末は十分に還元されるが、粒子間の焼結も進行することになり、好ましくない。より好ましい還元温度は300~600℃である。
 還元処理の時間は特に限定されないが、1~24hが好ましい。24hを超えると還元温度によっては焼結が進み後段の窒化処理が進みにくくなってしまう。1h未満では十分な還元ができない場合が多い。より好ましくは1.5~15hである。
 還元処理の雰囲気は、水素雰囲気が好ましい。
 還元処理を行った後、窒化処理を行う。
 窒化処理の温度は100~200℃である。窒化処理の温度が100℃未満の場合には窒化処理が十分に進行しない。窒化処理の温度が200℃を超える場合には、γ’-FeNやε-Fe2~3Nが生成するため、目的とするメスバウアースペクトルよりFe16化合物相が70%以上で構成される強磁性粒子粉末は得られない。より好ましい還元温度は105~180℃である。
 窒化処理の時間は50h以内であることが望ましい。工業的に生産するにはできる限りの短い時間で工程を完了させることで時間当たりの収量が増え、工業的な生産性に優れる。より好ましくは36h以内である。
 窒化処理の雰囲気は、NH雰囲気が望ましく、NHの他、N、Hや、これらに過熱水蒸気などを混合させてもよい。
 次に、本発明に係る異方性磁石について述べる。
 本発明に係る強磁性磁石の磁気特性は目的とする用途に応じて所望の磁気特性(保磁力、残留磁束密度、最大エネルギー積)となるように調整すればよい。
 磁気的な配向をさせる方法は特に限定されない。例えばガラス転移温度以上温度においてEVA(エチレン-酢酸ビニル共重合)樹脂にメスバウアースペクトルよりFe16化合物相が70%以上で構成される強磁性粒子粉末、あるいは、Si及び/又はAl化合物で被覆されたメスバウアースペクトルよりFe16化合物相が70%以上で構成される強磁性粒子粉末を分散剤などとともに混練して成形し、ガラス転移温度を超えた付近の温度で所望の外部磁場をかけて、磁気的配向を促せばよい。または、ウレタン等の樹脂と有機溶剤と該強磁性粒子粉末をペイントシェーカーなどで強く混合・粉砕したインクをブレードやRoll-to-Roll法によって樹脂フィルムに塗布印刷し、素早く磁場中を通して、磁気的な配向をさせればよい。
 次に、本発明におけるボンド磁石用樹脂組成物について述べる。
 本発明におけるボンド磁石用樹脂組成物は、本発明に係る強磁性粒子粉末を結合剤樹脂中に分散してなるものであって、該強磁性粒子粉末を85~99重量%含有し、残部が結合剤樹脂とその他添加剤とからなる。
 前記結合剤樹脂としては、成形法によって種々選択することができ、射出成形、押し出し成形及びカレンダー成形の場合には熱可塑性樹脂が使用でき、圧縮成形の場合には、熱硬化性樹脂が使用できる。前記熱可塑性樹脂としては、例えば、ナイロン(PA)系、ポリプロピレン(PP)系、エチレンビニルアセテート(EVA)系、ポリフェニレンサルファイド(PPS)系、液晶樹脂(LCP)系、エラストマー系、ゴム系等の樹脂が使用でき、前記熱硬化性樹脂としては、例えば、エポキシ系、フェノール系等の樹脂を使用することができる。
 なお、ボンド磁石用樹脂組成物を製造するに際して、成形を容易にしたり、磁気特性を十分に引き出したりするために、必要により、結合剤樹脂の他に可塑剤、滑剤、カップリング剤など周知の添加物を使用してもよい。また、フェライト磁石粉末などの他種の磁石粉末を混合することもできる。
 これらの添加物は、目的に応じて適切なものを選択すればよく、可塑剤としては、それぞれの使用樹脂に応じた市販品を使用することができ、その合計量は使用する結合剤樹脂に対して0.01~5.0重量%程度が使用できる。
 前記滑剤としては、ステアリン酸とその誘導体、無機滑剤、オイル系等が使用でき、ボンド磁石全体に対して0.01~1.0重量%程度が使用できる。
 前記カップリング剤としては、使用樹脂とフィラーに応じた市販品が使用でき、使用する結合剤樹脂に対して0.01~3.0重量%程度が使用できる。
 本発明におけるボンド磁石用樹脂組成物は、強磁性粒子粉末を結合剤樹脂と混合、混練してボンド磁石用樹脂組成物を得る。
 前記混合は、ヘンシェルミキサー、V字ミキサー、ナウター等の混合機などで行うことができ、混練は一軸混練機、二軸混練機、臼型混練機、押し出し混練機などで行うことができる。
 次に、本発明に係るボンド磁石について述べる。
 ボンド磁石の磁気特性は目的とする用途に応じて所望の磁気特性(保磁力、残留磁束密度、最大エネルギー積)となるように調整すればよい。
 本発明におけるボンド磁石は、前記ボンド磁石用樹脂組成物を用いて、射出成形、押出成形、圧縮成形又はカレンダー成形等の周知の成形法で成形加工した後、常法に従って電磁石着磁やパルス着磁することにより、ボンド磁石とすることができる。
 以下に、実施例を用いて本発明を更に詳しく説明するが、以下の実施例は本発明の例示であり、本発明は以下の実施例に限定されるわけではない。
 出発原料である鉄化合物粒子粉末(酸化鉄又はオキシ水酸化鉄)や得られた強磁性粒子粉末の比表面積値は、窒素によるB.E.T.法により測定した。
 出発原料である鉄化合物粒子粉末(酸化鉄又はオキシ水酸化鉄)や得られた強磁性粒子粉末の一次粒子サイズは透過型電子顕微鏡(日本電子(株)、JEM-1200EXII)を用いて測定した。粒子120個をランダマイズに選び粒子サイズを計測して平均値を求めた。
 出発原料である鉄化合物粒子粉末(酸化鉄又はオキシ水酸化鉄)や、得られた強磁性粒子粉末試料の組成分析は、加熱した試料を酸で溶解し、プラズマ発光分光分析装置(セイコー電子工業(株)、SPS4000)を用い分析して求めた。Si及び/又はAl被覆された試料は、濃苛性ソーダ溶液にてSi及び/又はAlを溶解させ、濾過・水洗後、60℃にて乾燥させて重量の増減を秤ることでSi及び/又はAl量を分析し、その後、上記のように酸で溶解してプラズマ発光分光分析装置にて分析を行った。
 出発原料及び得られた強磁性粒子粉末の構成相は、粉末X線回折装置(XRD、(株)リガク製、RINT-2500)による同定と、透過型電子顕微鏡(日本電子(株)、JEM-2000EX)、電子線分光型超高分解能電子顕微鏡(HREM、日立ハイテク、HF-2000)を用いた電子線回折(ED)、電子エネルギー損失分光法(EELS)、エネルギー分散X線分光法(EDS)、走査透過電子顕微鏡(STEM)分析・評価を行い決定した。EDやEELS、STEM、EDSによる分析・評価は、XRDでは分からない、不純物相としてのα-Fe、FeN、Fe3-xNや、添加した金属元素Xがミクロに局在しているかを確認できる。
 得られた強磁性粒子粉末の磁気特性は、物理特性測定システム(PPMS+VSM、日本カンタム・デザイン(株))を用いて室温(300K)にて、0~9Tの磁場中で測定した。別に5K~300Kまでの磁化率の温度依存性の評価も行った。
 得られた強磁性粒子粉末のメスバウアー測定は、アルゴン雰囲気のグローブボックス中で強磁性粒子粉末をシリコングリースによく混ぜてアルミホイールに包み、液体ヘリウム温度~室温の範囲で3~4日間かけて行い、さらにデータを解析することで、得られた強磁性粒子粉末のFe16の生成比率(体積割合)を求めた。解析時の不純物総としては、α-Fe、FeN、Fe3-xNや、酸化鉄等のパラ成分を検討した。
 実施例1:
<出発原料の調製>
 短軸径17nm、長軸径110nm、アスペクト比6.47、比表面積123m/gのゲータイト粒子を硫酸第二鉄、苛性ソーダ、炭酸ソーダを用いて作製した。これをヌッチェで濾別分離して、試料5gに対して純水150ml相当の純水でよく洗浄した。続いて、60℃の真空乾燥機で乾燥し、アトマイザー粉砕機と振動篩で100μm以下の凝集粒子のみを抽出した。このゲータイト粒子粉末に含まれるFeに対するモル対比0.06%相当のTi原料のオキシ硫酸第二チタン水溶液をゲータイト粒子粉末全体に馴染ませながら混合した。これを空気中で3℃/minにて250℃まで昇温させて脱水及びTi原料の分解を行った。
<出発原料の還元処理及び窒化処理>
 上記で得られた試料粉末50gをアルミナ製甲鉢(125mm×125mm×深さ30mm)に入れ、熱処理炉に静置させた。炉内を真空引きした後、アルゴンガスを充填し、再び真空引きする操作を3回繰り返した。その後、水素ガスを5L/minの流量で流しながら、5℃/minの昇温速度で400℃まで昇温し、3h保持して還元処理を行った。その後、140℃まで降温して水素ガスの供給を止めた。なお、この状態で取り出した試料は、α-Fe単相で、比表面積は57m/gであった。続いて、アンモニアガスを10L/minにて流しながら、135℃で12h窒化処理を行った。その後、アルゴンガスを流通させて室温まで降温し、アルゴンガス供給を止めて、空気置換を3hかけて行った。
<得られた試料の分析・評価>
 得られた粒子粉末の主相はXRD、EDよりFe16であり、メスバウアースペクトル測定により、Fe16化合物相は83%であった。また、平均一次粒子サイズは粒径40nmであって不定形粒子であり、比表面積は58m/gであった。Ti含有量はICP分析の結果、Feモル対比0.06%であった。磁気特性を測定したところ、飽和磁化値σ=183emu/g、保磁力H=1230Oe、BHmax=7.5MGOeであった。
 実施例2:
 実施例1と同様にして、短軸径12nm、長軸径276nm、アスペクト比23.00、比表面積101m/gのゲータイト粒子を塩化第二鉄、苛性ソーダ、炭酸ソーダを用いて得た。これをヌッチェで濾別分離し、純水中5g/Lとなるようディスパーミキサーを用いてリパルプした。これを攪拌しながら、pHを希硝酸で7.0保持となるようにして、ゲータイト粒子中のFeモル対比20%のGa相当の硝酸ガリウム水溶液を室温で滴下した。5h後、5wt%-SiOとした水ガラス溶液を、SiO被覆ゲータイト粒子としてSiが1wt%となるよう、40℃にて5hかけて滴下した。再びヌッチェで濾別分離して、試料5gに対して純水200ml相当の純水でよく洗浄した。続いて、55℃の真空乾燥機で乾燥した。得られた試料のSi含有量は1.02wt%であった。さらにアトマイザー粉砕機と振動篩で180μm以下の凝集粒子のみを抽出した。次に120℃にて脱水処理してヘマタイトを得た。
 次に、実施例1同様に還元処理と窒化処理を行った。還元処理は420℃にて3h行った。なお、この状態で取り出した試料は、α-Fe単相で、比表面積は76m/gであった。窒化処理時のガスは、アンモニアガスと窒素ガスと水素ガスの混合比が7:2.9:0.1の混合ガスとして、全量で10L/minを流しながら、155℃で7h窒化処理を行った。
 得られた粒子粉末の主相はXRD、EDよりFe16であり、メスバウアー測定よりFe16化合物相は72%であった。また、平均一次粒子サイズは、短軸径11nm、長軸径194nmであり、比表面積は77m/gであった。Ga含有量はICP分析の結果、Feモル対比20%であった。磁気特性を測定したところ、飽和磁化値σ=179emu/g、保磁力H=2810Oe、BHmax=6.9MGOeであった。
 実施例3:
 実施例2と同様にして試料を得た。ただしpHは8.5として、ゲータイトのスラリーに、まず、ゲータイト粒子中のFeに対するモル対比0.8%のAl原料の硝酸アルミニウム水溶液を滴下し、その後、イットリウムをY換算で700wt-ppmを被覆し、さらにその上にアルミニウムをAl換算で3000wt-ppmとなるように表面被覆した。アトマイザー粉砕機と振動篩で150μm以下の凝集粒子のみを抽出した。還元処理は実施例1同様に行った。なお、この状態で取り出した試料は、α-Fe単相で、比表面積は88m/gであった。また、窒化処理はアンモニアガス5L/min気流中142℃にて15h行った。Y,Al含有量はICP分析の結果、それぞれFeモル対比689wt-ppm、1.07wt%であった。
 得られた粒子粉末は主相がXRD、EDよりFe16であり、メスバウアー測定よりFe16化合物相は86%であった。また、平均一次粒子サイズは、短軸径11nm、長軸径193nmであり、比表面積は85m/gであった。磁気特性を測定したところ、飽和磁化値σ=192emu/g、保磁力H=2880Oe、BHmax=7.5MGOeであった。
 実施例4:
 実施例2と同様にして、短軸径14nm、長軸径150nm、アスペクト比10.71、比表面積115m/gのゲータイト粒子を塩化第二鉄、塩化マンガン、苛性ソーダ、炭酸ソーダを用いて得た。このときのマンガン量は、ゲータイト粒子中のFeに対するモル比1.5%のMnとした。これをヌッチェで濾別分離し、試料5gに対して純水200ml相当の純水でよく洗浄した。さらに実施例2同様にしてSiO被覆をSi換算3000ppmとなるように行った。続いて、55℃の真空乾燥機で乾燥し、アトマイザー粉砕機と振動篩で90μm以下の凝集粒子のみを抽出した。続いて実施例2と同様に還元処理及び窒化処理を行った。なお、還元処理後の状態で取り出した試料は、α-Fe単相で、比表面積は82m/gであった。
 得られた粒子粉末はXRD、EDより主相はFe16であり、メスバウアー測定よりFe16化合物相は74%であった。また、平均一次粒子サイズは、短軸径13nm、長軸径135nmであり、比表面積は82m/gであった。Mn含有量はICP分析の結果、Feモル対比1.5%であった。磁気特性を測定したところ、飽和磁化値σ=197emu/g、保磁力H=880Oe、BHmax=6.3MGOeであった。
 実施例5:
 実施例1と同様にして、短軸径17nm、長軸径110nm、アスペクト比6.47、比表面積123m/gのゲータイト粒子を得た。これを空気中で300℃にて1h熱処理することでヘマタイト粒子粉末とした。続けて、アトマイザー粉砕機と振動篩で90μm以下の凝集粒子のみを抽出した。このヘマタイト粒子粉末に含まれるFeに対するモル対比6.2%相当のGe原料である四塩化ゲルマニウム水溶液を全体に馴染ませながら混合した。これを空気中で3℃/minにて250℃まで昇温させて脱水及び硝酸分解させた。これを水素100%気流中で550℃にて3hの還元処理を行った。100℃まで水素を流通させながら炉冷した。なお、この状態で取り出した試料は、α-Fe単相で、比表面積は25.6m/gであった。流通ガスをアンモニアガス100%に切換え、4L/minにてガスを流した。155℃まで5℃/minの昇温速度で昇温し、155℃にて13h窒化処理を行った。
 得られた粒子粉末はXRD、EDより主相がFe16であり、メスバウアー測定よりFe16化合物相は77%であった。また、平均一次粒子サイズは、短軸径32nm、長軸径53nmであり、比表面積は25.3m/gであった。Ge含有量はICP分析の結果、Feモル対比6.2%であった。磁気特性を測定したところ、飽和磁化値σ=156emu/g、保磁力H=1819Oe、BHmax=9.1MGOeであった。
 実施例6:
 実施例4のMnの替わりにNiを用いた。Ni原料は硝酸ニッケル水溶液を用いた。ニッケル量は、Feモル対比1.5%のNiとした。ただし、SiO被覆は行わなかった。得られた試料は、短軸径14nm、長軸径146nm、アスペクト比10.43、比表面積116m/gのゲータイトであった。これをヌッチェで濾別分離し、試料5gに対して純水200ml相当の純水でよく洗浄した。続いて、55℃の真空乾燥機で乾燥し、アトマイザー粉砕機と振動篩で100μm以下の凝集粒子のみを抽出した。続いて実施例5と同様に、水素100%気流中で490℃にて3hの還元処理を行った。100℃まで水素を流通させながら炉冷した。なお、この状態で取り出した試料は、α-Fe単相で、比表面積は36.4m/gであった。流通ガスをアンモニアガス100%に切換え、4L/minにてガスを流した。155℃まで5℃/minの昇温速度で昇温し、155℃にて13h窒化処理を行った。
 得られた粒子粉末はXRD、EDより主相はFe16であり、メスバウアー測定よりFe16化合物相は84%であった。また、平均一次粒子サイズは、短軸径29nm、長軸径46nmであり、比表面積は36.2m/gであった。Ni含有量はICP分析の結果、Feモル対比1.5%であった。磁気特性を測定したところ、飽和磁化値σ=197emu/g、保磁力H=2478Oe、BHmax=7.8MGOeであった。
 実施例7:
 短軸径22nm、長軸径145nm、アスペクト比6.59、比表面積109m/gのゲータイト粒子を硫酸第二鉄、苛性ソーダ、炭酸ソーダを用いて作製した。これをヌッチェで濾別分離して、試料5gに対して純水120ml相当の純水でよく洗浄した。続いて、60℃の真空乾燥機で乾燥し、アトマイザー粉砕機と振動篩で125μm以下の凝集粒子のみを抽出した。さらにこれを300℃にて脱水し、ヘマタイトを得た。このヘマタイト粒子粉末に含まれるFeに対するモル対比0.07%相当のPt原料のジニトロジアンミン白金溶液を粉末全体に馴染ませながら混合した。これを空気中で3℃/minにて220℃まで昇温させて脱水及び分解させた。その後、PVA(重合度800)を固形分として粉末重量対比7%加えて直径10mm、高さ2.5mmのディスクペレット状に成形した。これを実施例1同様に還元処理および窒化処理を行った。
 得られた粒子粉末の主相はXRD、EDよりFe16であり、メスバウアー測定よりFe16化合物相は82%であった。また、ディスクペレットの一部を粉砕し得られた粉末より、平均一次粒子サイズは、短軸径94nm、長軸径130nmであり、比表面積は16.3m/gであった。Pt含有量はICP分析の結果、Feモル対比0.07%であった。磁気特性を測定したところ、飽和磁化値σ=179emu/g、保磁力H=2315Oe、BHmax=7.8MGOeであった。
 実施例8:
 実施例2と同様にして試料を得た。試料は、短軸径12nm、長軸径276nm、アスペクト比23.00、比表面積101m/gのゲータイトであった。これを実施例2同様にリパルプし、pHは7.5にてゲータイトのスラリーに、まず、ゲータイト中のFeに対するモル対比3%のZn原料の硝酸亜鉛水溶液を滴下した。その後、実施例2同様にSiOが1wt%となるように水ガラスを滴下した。得られた試料のSi含有量は1.02wt%であった。アトマイザー粉砕機と振動篩で125μm以下の凝集粒子のみを抽出した。還元処理は実施例1同様に行った。なお、この状態で取り出した試料は、α-Fe単相で、比表面積は75m/gであった。また、窒化処理はアンモニアガス5L/min気流中148℃にて15h行った。
 得られた粒子粉末は主相がXRD、EDよりFe16であり、メスバウアー測定よりFe16化合物相は87%であった。また、平均一次粒子サイズは、短軸径11nm、長軸径192nmであり、比表面積は73m/gであった。Zn含有量はICP分析の結果、Feモル対比8.0%であった。磁気特性を測定したところ、飽和磁化値σ=175emu/g、保磁力H=2573Oe、BHmax=8.0MGOeであった。
 本発明に係る強磁性粒子粉末は、大きな最大エネルギー積BHmaxを有するので、磁性材料として好適である。また、強磁性粒子粉末として得られ、生産性や経済性にも優れているため、異方性磁石、ボンド磁石などの幅広い磁性材料用途に使用できる。

Claims (8)

  1.  メスバウアースペクトルよりFe16化合物相が70%以上で構成される強磁性粒子粉末であり、Mn、Ni、Ti、Ga、Al、Ge、Zn、Pt、Siから選ばれる一種又は二種以上の金属元素Xを、Feモル対比0.04~25%含有しており、該強磁性粒子粉末のBHmaxが5MGOe以上であることを特徴とする強磁性粒子粉末。
  2.  更に、粒子表面がSi及び/又はAl化合物で被覆されている請求項1記載の強磁性粒子粉末。
  3.  飽和磁化値σが130emu/g以上であって、保磁力Hが600Oe以上である請求項1又は2記載の強磁性粒子粉末。
  4.  BET比表面積が3~80m/gである請求項1~3のいずれかに記載の強磁性粒子粉末。
  5.  予め250μm以下のメッシュを通した鉄化合物粒子粉末について還元処理を行い、次いで、窒化処理を行う請求項1~4のいずれかに記載の強磁性粒子粉末の製造法であって、前記出発原料である鉄化合物粒子粉末として、BET比表面積が50~250m/g、平均長軸径が50~450nm、アスペクト比(長軸径/短軸径)が3~25であって金属元素X(Xは、Mn、Ni、Ti、Ga、Al、Ge、Zn、Pt、Siから選ばれる一種又は二種以上である)をFeモル対比0.04~25%含有する酸化鉄又はオキシ水酸化鉄を用いることを特徴とする強磁性粒子粉末の製造法。
  6.  更に、前記鉄化合物粒子粉末の粒子表面をSi化合物及び/又はAl化合物で被覆した後、250μmのメッシュを通して還元処理を行う請求項5に記載の強磁性粒子粉末の製造法。
  7.  請求項1~4のいずれかに記載の強磁性粒子粉末からなる異方性磁石。
  8.  請求項1~4のいずれかに記載の強磁性粒子粉末を含有するボンド磁石。
PCT/JP2011/071636 2010-09-24 2011-09-22 強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石 WO2012039461A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/825,584 US20130257573A1 (en) 2010-09-24 2011-09-22 Ferromagnetic particles and process for producing the same, anisotropic magnet and bonded magnet
EP11826906.7A EP2620955A4 (en) 2010-09-24 2011-09-22 Ferromagnetic particle powder, method for producing same, anisotropic magnet, and bonded magnet
KR1020137007065A KR20130106825A (ko) 2010-09-24 2011-09-22 강자성 입자 분말 및 그의 제조법, 이방성 자석 및 본드 자석
CN201180045408.5A CN103119664B (zh) 2010-09-24 2011-09-22 铁磁性颗粒粉末及其制造方法、各向异性磁体和粘结磁体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010214366A JP5822188B2 (ja) 2010-09-24 2010-09-24 強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石
JP2010-214366 2010-09-24

Publications (1)

Publication Number Publication Date
WO2012039461A1 true WO2012039461A1 (ja) 2012-03-29

Family

ID=45873944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071636 WO2012039461A1 (ja) 2010-09-24 2011-09-22 強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石

Country Status (7)

Country Link
US (1) US20130257573A1 (ja)
EP (1) EP2620955A4 (ja)
JP (1) JP5822188B2 (ja)
KR (1) KR20130106825A (ja)
CN (1) CN103119664B (ja)
TW (1) TWI509643B (ja)
WO (1) WO2012039461A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130202A (zh) * 2013-02-03 2013-06-05 北京工业大学 一种制备高纯度Fe4-xMxN(M=Ni,Co)软磁粉体的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5831866B2 (ja) * 2011-01-21 2015-12-09 戸田工業株式会社 強磁性粒子粉末及びその製造方法、並びに異方性磁石、ボンド磁石及び圧粉磁石
JP5858419B2 (ja) * 2011-04-27 2016-02-10 戸田工業株式会社 強磁性粒子粉末の製造方法、異方性磁石、ボンド磁石及び圧粉磁石
CN103121666B (zh) * 2013-02-03 2015-03-25 北京工业大学 一种制备具有优良电磁性能的Fe4-xMxN(M=Ni,Co)软磁粉体的方法
KR102025973B1 (ko) 2013-02-06 2019-09-26 가부시키가이샤 닛신 세이훈 구루프혼샤 자성 입자의 제조방법, 자성 입자 및 자성체
JP6380736B2 (ja) * 2013-06-12 2018-08-29 Tdk株式会社 窒化鉄系磁性粉及びそれを用いた磁石
CN106062907B (zh) * 2014-02-10 2018-05-11 日清制粉集团本社股份有限公司 磁性粒子的制造方法、磁性粒子及磁性体
WO2015193295A1 (en) * 2014-06-16 2015-12-23 Danmarks Tekniske Universitet Process for the preparation of porous nitrided iron material
JP6337662B2 (ja) * 2014-07-09 2018-06-06 Tdk株式会社 窒化鉄系磁性粉及びそれを用いた磁石
JP2017532439A (ja) * 2014-08-08 2017-11-02 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 化学気相堆積又は液相エピタキシーを用いた鉄窒化物硬質磁性材料の形成
EP3251130B1 (en) 2015-01-26 2020-07-15 Regents of the University of Minnesota Iron nitride magnetic materials
CN105225780B (zh) * 2015-10-12 2017-11-14 北京工业大学 一种耐高温各向异性粘结钐铁氮磁体及其制备方法
DE102018200373A1 (de) * 2018-01-11 2019-07-11 Robert Bosch Gmbh Weichmagnetischer Verbundwerkstoff und Verfahren zu seiner Herstellung
CN108538263B (zh) * 2018-03-30 2020-07-03 合肥京东方显示光源有限公司 一种色温调节方法和装置
JP7111636B2 (ja) * 2019-02-05 2022-08-02 国立大学法人 東京大学 鉄系酸化物磁性粉およびその製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340023A (ja) 1998-05-22 1999-12-10 Dowa Mining Co Ltd 磁性材料およびその製法
JP2000277311A (ja) 1999-03-25 2000-10-06 Toyota Central Res & Dev Lab Inc 窒化鉄系磁性粉末材料及びその製造方法並びに磁気記録媒体
JP2007036027A (ja) 2005-07-28 2007-02-08 Dowa Holdings Co Ltd 低ノイズ媒体に適した磁性粉末
JP2007134614A (ja) 2005-11-14 2007-05-31 Dowa Electronics Materials Co Ltd 高保磁力鉄系磁性粉末及び磁気記録媒体
JP2007258427A (ja) 2006-03-23 2007-10-04 Tdk Corp 磁性粒子及びその製造方法
JP2007335592A (ja) 2006-06-14 2007-12-27 Dowa Electronics Materials Co Ltd 窒化鉄系磁性粉末およびその製造法並びに磁気記録媒体
JP2008103510A (ja) 2006-10-18 2008-05-01 Dowa Electronics Materials Co Ltd 窒化鉄系磁性粉末およびその製造法
JP2008108943A (ja) 2006-10-26 2008-05-08 Hitachi Maxell Ltd 磁性粉末およびそれを用いた磁気記録媒体
JP2009084115A (ja) 2007-09-28 2009-04-23 Fujifilm Corp 窒化鉄粉末の製造方法、窒化鉄粉末および磁気記録媒体
JP2009249682A (ja) 2008-04-04 2009-10-29 Nec Tokin Corp 硬磁性合金およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069273A (ja) * 1990-12-25 1994-01-18 Nkk Corp 窒化鉄系高密度焼結体
EP1548760A3 (en) * 2003-11-27 2007-12-26 DOWA Electronics Materials Co., Ltd. Iron nitride magnetic powder and method of producing the powder
JP2007273038A (ja) * 2006-03-31 2007-10-18 Fujifilm Corp 磁気記録媒体
JP2009088287A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp 窒化鉄粉末、窒化鉄粉末の製造方法、および磁気記録媒体
JP2010199361A (ja) * 2009-02-26 2010-09-09 Hitachi Metals Ltd 窒化鉄系磁性微粒子の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340023A (ja) 1998-05-22 1999-12-10 Dowa Mining Co Ltd 磁性材料およびその製法
JP2000277311A (ja) 1999-03-25 2000-10-06 Toyota Central Res & Dev Lab Inc 窒化鉄系磁性粉末材料及びその製造方法並びに磁気記録媒体
JP2007036027A (ja) 2005-07-28 2007-02-08 Dowa Holdings Co Ltd 低ノイズ媒体に適した磁性粉末
JP2007134614A (ja) 2005-11-14 2007-05-31 Dowa Electronics Materials Co Ltd 高保磁力鉄系磁性粉末及び磁気記録媒体
JP2007258427A (ja) 2006-03-23 2007-10-04 Tdk Corp 磁性粒子及びその製造方法
JP2007335592A (ja) 2006-06-14 2007-12-27 Dowa Electronics Materials Co Ltd 窒化鉄系磁性粉末およびその製造法並びに磁気記録媒体
JP2008103510A (ja) 2006-10-18 2008-05-01 Dowa Electronics Materials Co Ltd 窒化鉄系磁性粉末およびその製造法
JP2008108943A (ja) 2006-10-26 2008-05-08 Hitachi Maxell Ltd 磁性粉末およびそれを用いた磁気記録媒体
JP2009084115A (ja) 2007-09-28 2009-04-23 Fujifilm Corp 窒化鉄粉末の製造方法、窒化鉄粉末および磁気記録媒体
JP2009249682A (ja) 2008-04-04 2009-10-29 Nec Tokin Corp 硬磁性合金およびその製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AKIRA NAGATOMI ET AL.: "Synthesis of Iron Nitrides FexN (x : 2, 2-3, 4, 16/2) by Nitrogenizing a-Fe in Ammonia Gas, and Magnetic Properties of The Bulk Sample of Fe16N2", JOURNAL OF THE JAPAN SOCIETY OF POWDER AND POWDER METALLURGY, vol. 46, no. 2, February 1999 (1999-02-01), pages 151 - 155, XP055123622 *
KEN'ICHI SHIBATA ET AL.: "Magnetic Moment and Anisotropy of Iron Nitride Fe16N2 Nanoparticles", JOURNALOF THE MAGNETIC SOCIETY OF JAPAN, vol. 30, no. 5, 2006, pages 501 - 504, XP008161320 *
M. TAKAHASHI; H. SHOJI; H. TAKAHASHI; H. NASHI; T. WAKIYAMA; M. DOI; M. MATSUI, J. APPL. PHYS., vol. 76, 1994, pages 6642 - 6647
See also references of EP2620955A4
TAKAHASHI, M. KATOU; H. SHOJI; M. TAKAHASHI, J. MAGN. MAGN. MATER., vol. 232, 2001, pages 18 - 26
TAKESHI HATTORI ET AL.: "Magnetic Properties of Fe16N2 Fine Particles", JOURNAL OF MAGNETICS SOCIETY OF JAPAN, vol. 25, no. 4-2, 2001, pages 927 - 930, XP009114659 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103130202A (zh) * 2013-02-03 2013-06-05 北京工业大学 一种制备高纯度Fe4-xMxN(M=Ni,Co)软磁粉体的方法

Also Published As

Publication number Publication date
JP5822188B2 (ja) 2015-11-24
EP2620955A4 (en) 2017-09-20
KR20130106825A (ko) 2013-09-30
TWI509643B (zh) 2015-11-21
CN103119664B (zh) 2016-11-02
US20130257573A1 (en) 2013-10-03
EP2620955A1 (en) 2013-07-31
JP2012069811A (ja) 2012-04-05
TW201232571A (en) 2012-08-01
CN103119664A (zh) 2013-05-22

Similar Documents

Publication Publication Date Title
JP5822188B2 (ja) 強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石
JP5769223B2 (ja) 強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石
JP5831866B2 (ja) 強磁性粒子粉末及びその製造方法、並びに異方性磁石、ボンド磁石及び圧粉磁石
JP5858419B2 (ja) 強磁性粒子粉末の製造方法、異方性磁石、ボンド磁石及び圧粉磁石
JP5924657B2 (ja) 強磁性窒化鉄粒子粉末の製造方法、異方性磁石、ボンド磁石及び圧粉磁石
JP6155440B2 (ja) 強磁性窒化鉄粒子粉末の製造方法、異方性磁石、ボンド磁石及び圧粉磁石の製造方法
JP5669389B2 (ja) 高周波用磁性材料とその製造方法
WO2013042721A1 (ja) 強磁性窒化鉄粒子粉末の製造方法、異方性磁石、ボンド磁石及び圧粉磁石
CN111386161A (zh) 磁性材料及其制造法
JP2019080055A (ja) 複合磁性材料、磁石、モータ、および複合磁性材料の製造方法
JP2016134583A (ja) 窒化鉄系磁石
JP7001259B2 (ja) 磁性材料およびその製造法
JP7108258B2 (ja) 窒化鉄系磁性材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045408.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137007065

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011826906

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13825584

Country of ref document: US