WO2012036218A1 - 多孔質セラミックス焼結体 - Google Patents

多孔質セラミックス焼結体 Download PDF

Info

Publication number
WO2012036218A1
WO2012036218A1 PCT/JP2011/071034 JP2011071034W WO2012036218A1 WO 2012036218 A1 WO2012036218 A1 WO 2012036218A1 JP 2011071034 W JP2011071034 W JP 2011071034W WO 2012036218 A1 WO2012036218 A1 WO 2012036218A1
Authority
WO
WIPO (PCT)
Prior art keywords
dense layer
pores
plate
water
volume
Prior art date
Application number
PCT/JP2011/071034
Other languages
English (en)
French (fr)
Inventor
晃宏 奥谷
和弥 大西
Original Assignee
小松精練株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小松精練株式会社 filed Critical 小松精練株式会社
Priority to SG2013019419A priority Critical patent/SG188568A1/en
Priority to US13/824,343 priority patent/US20130330530A1/en
Priority to JP2012534042A priority patent/JP5820382B2/ja
Priority to KR1020137007625A priority patent/KR20140006777A/ko
Priority to EP11825218.8A priority patent/EP2617696A4/en
Priority to CN2011800446854A priority patent/CN103189334A/zh
Publication of WO2012036218A1 publication Critical patent/WO2012036218A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • A01G24/12Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material containing soil minerals
    • A01G24/15Calcined rock, e.g. perlite, vermiculite or clay aggregates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G2/00Vegetative propagation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • A01G24/17Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material containing slag
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/40Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure
    • A01G24/44Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure in block, mat or sheet form
    • A01G24/46Growth substrates; Culture media; Apparatus or methods therefor characterised by their structure in block, mat or sheet form multi-layered
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/138Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0064Multimodal pore size distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00758Uses not provided for elsewhere in C04B2111/00 for agri-, sylvi- or piscicultural or cattle-breeding applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24992Density or compression of components

Definitions

  • the present invention relates to a porous ceramic sintered body.
  • a porous ceramic sintered body is used for a fireproof heat insulating material, a water purification material, a humidity control material, a volatile organic compound (VOC) adsorbing material, and the like.
  • a porous ceramic sintered body examples include a closed cell type, a lattice structure type, an aggregate type, a material having a minute crack pore, and a material having continuous through pores. Selected.
  • a sintered ceramic material is known in which a ceramic composition is injected and filled into pores of a urethane foam resin, and then the resin component is decomposed and sintered.
  • an aggregate-type porous ceramic sintered body those having pores in the gap between the aggregates of elementary particles in the composition are known.
  • an independent pore type porous ceramic sintered body one in which pores are generated by a high-temperature decomposition volatile component in a composition in a firing step is known.
  • Known porous ceramic sintered bodies having minute crack pores are those obtained by sintering a composition in which a raw material such as clay that shrinks upon heating and slags that expand upon heating are mixed. .
  • a porous ceramic sintered body having continuous through pores one obtained by adding an alkali solution to metallic aluminum in a water-containing composition to generate hydrogen and sintering it is known.
  • porous ceramic sintered bodies have also been used as greening base materials.
  • the greening base material is laid under the soil for growing ground cover plants, etc., and the greening base material is required to have water permeability and proper water retention. .
  • Such a greening base material can be laid on the rooftop of a building, etc., and a plant can be grown thereon, thereby improving the cooling effect of the building.
  • a porous ceramic sintered body used as a greening base material for example, a sintered body of diatomaceous earth using diatomaceous earth as a raw material has been proposed (for example, Patent Document 1).
  • This porous ceramic sintered body has a binary structure in which macropores derived from diatomaceous earth and artificially generated millimeter-sized tunnel structure pores are interconnected, so that water easily penetrates and retains water. Is good.
  • the porous ceramic sintered body used as a greening base material has good water diffusion (diffusibility), in particular horizontal diffusibility, in addition to easy water penetration and good water retention. Desired.
  • the water retained in the pores of the porous ceramic sintered body must be available for plants to be grown. Further, the porous ceramic sintered body is required to further improve the cooling effect. Accordingly, the present invention is directed to a porous ceramic sintered body suitable for plant growth and having a high cooling effect.
  • the porous ceramic sintered body of the present invention has a pore volume which is a total value of pore volumes having a diameter of 3 nm to 360 ⁇ m of 0.2 cm 3 / g or more, and a diameter of 0.01 ⁇ m to 1 ⁇ m in the pore volume.
  • the ratio of the fine pore volume which is the total value of the volume of the pores less than 30% is 30% by volume or more.
  • the median pore diameter of pores having a diameter of 3 nm to 360 ⁇ m is preferably less than 40 ⁇ m, preferably has a layered dense layer having a bulk specific gravity of 0.7 g / cm 3 or more, and a bulk specific gravity of 0.7 g / cm 3. It is preferable to have a non-dense layer that is less than cm 3 , and the non-dense layer is more preferably provided on both sides of the dense layer, and may be a greening base material.
  • the present invention is directed to a porous ceramic sintered body suitable for plant growth and having a high cooling effect.
  • FIG. 2 It is a cross-sectional photograph of the porous ceramics sintered compact concerning one Embodiment of this invention.
  • A It is an electron micrograph (30 times) of the cross section of the dense layer of the porous ceramic sintered compact shown in FIG.
  • B It is the electron micrograph (2000 times) which expanded and imaged a part of FIG. 2 (a).
  • FIG. 1 is a cross-sectional view of a plate-like ceramic 1 according to an embodiment of the present invention.
  • the plate-like ceramic 1 includes a dense layer 10, a first non-dense layer 20 provided on one surface of the dense layer 10, and a second provided on the other surface of the dense layer 10.
  • the non-dense layer 30 the plate-like ceramic 1 has a three-layer structure including a dense layer 10, a first non-dense layer 20, and a second non-dense layer 30.
  • the first surface 22 which is the surface of the first non-dense layer 20 is formed with an opening in which the pores formed in the first non-dense layer 20 are exposed.
  • a certain second surface 32 is formed with an opening in which the pores formed in the second non-dense layer 30 are exposed.
  • the thickness T1 of the plate-like ceramic 1 can be determined according to the application, and can be determined in the range of 0.5 to 15 cm, for example. More preferably, it can be determined in the range of 1.5 to 10 cm.
  • the dense layer 10 is a layer in which pores having a diameter of 3 nm to 360 ⁇ m (hereinafter simply referred to as pores) are formed. As shown in FIG. 2 (a), the dense layer 10 has two or more pores 12, which are pores having a diameter of more than 360 ⁇ m, and two or more pores 14 as shown in FIG. 2 (b). Is formed.
  • the pores 14 or the pores 12 formed in the dense layer 10 form communication holes communicating with each other. By forming the communication hole, water retention, diffusibility, and cooling effect can be improved.
  • Total pore volume i.e. the volume of all the pores 14 of the dense layer 10 is 0.2 cm 3 / g or more, preferably 0.25 cm 3 / g or more, and more is 0.3 cm 3 / g or more preferable. If it is less than the above lower limit value, the diffusibility in the plate-like ceramics 1 becomes insufficient or the water retention becomes insufficient.
  • the upper limit of the pore volume can be determined according to the application of the plate-shaped ceramic 1, for example, is preferably from 0.8 cm 3 / g, more preferably not more than 0.6cm 3 / g, 0.4cm 3 / More preferably, it is g or less. If it exceeds the upper limit, water is less likely to evaporate and the cooling effect may be reduced.
  • the pore volume is a value measured in accordance with JIS R1655-2003.
  • the total value (volume specific pore volume) of the pores 14 per unit volume in the dense layer 10 can be determined in consideration of the application of the plate-like ceramics 1, for example, 0.1 to 0.5 cm 3 / cm 3 is preferable, and 0.2 to 0.4 cm 3 / cm 3 is more preferable. If it is less than the lower limit, water retention and diffusibility may be insufficient, and if it exceeds the upper limit, the strength of the plate-like ceramic 1 may be insufficient.
  • micropore ratio the ratio of the pore volume to the pore volume (micropore ratio), which is the total volume of pores having a diameter of 0.01 ⁇ m or more and less than 1 ⁇ m (hereinafter sometimes referred to as micropores), It is 30 volume% or more of pore volume, 40 volume% or more is more preferable, and 50 volume% or more is further more preferable. When it is less than the lower limit, water retention and diffusibility are insufficient.
  • the upper limit value of the fine pore ratio is not particularly limited, and may be 100% by volume.
  • the fine pore ratio is obtained by the following equation (1).
  • Micropore ratio (volume%) micropore volume / pore volume ⁇ 100 (1)
  • the fine pore volume of the dense layer 10 can be determined in consideration of the use of the plate-like ceramics 1 if the fine pore ratio is 30% by volume or more. preferably 1 cm 3 / g or more, more preferably at least 0.12 cm 3 / g, more preferably 0.14 cm 3 / g or more, 0.2 cm 3 / g or more is particularly preferable. If it is less than the above lower limit value, the diffusibility in the plate-like ceramics 1 becomes insufficient or the water retention becomes insufficient.
  • the upper limit value of the fine pore volume in the dense layer 10 can be determined in consideration of the use of the plate-like ceramic 1, etc., for example, 0.8 cm 3 / g or less is preferable, and 0.6 cm 3 / g or less is more preferable. 0.4 cm 3 / g or less is more preferable. If it exceeds the upper limit, water is less likely to evaporate and the cooling effect may be reduced.
  • the micropore volume is a value measured by the same method as the pore volume.
  • the volume of the pores 12 of the dense layer 10 is too small, the heat insulating property may be lowered, and if it is too large, the water retention property may be lowered. Accordingly, the volume of the pores 12 can be determined in consideration of the usage of the plate-like ceramic 1.
  • the median pore diameter in pores having a diameter of 3 nm to 360 ⁇ m is preferably less than 40 ⁇ m.
  • the thickness is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the median pore diameter of pores having a diameter of 3 nm to 360 ⁇ m is preferably 10 nm or more. Preferably it is 100 nm or more. If it is less than 40 micrometers, it is excellent in water retention and can continue to evaporate water from a ceramic sintered compact for a long period of time. On the other hand, if the thickness is less than 10 nm, the water retention is lowered, and there is a possibility that a sufficient amount of water cannot be continuously evaporated from the ceramic sintered body for a long period of time.
  • Bulk density of the dense layer 10 is 0.7 g / cm 3 or more, preferably 0.75 ⁇ 0.95g / cm 3, more preferably 0.8 ⁇ 0.9g / cm 3. If it is less than the above lower limit, the strength of the plate-like ceramic 1 may be insufficient, water retention may be reduced, or diffusibility may be reduced. If it exceeds the above upper limit value, water is less likely to evaporate and the cooling effect may be reduced, or water may not easily penetrate.
  • the porosity of the dense layer 10 can be determined in consideration of the application of the plate-like ceramic 1, and is preferably 40% by volume or more, preferably 60 to 90% by volume, more preferably 65 to 80% by volume, 70% More preferred is ⁇ 80% by volume. If it is less than the above lower limit value, the diffusion rate of water in the plate-like ceramics 1 may be reduced, and if it exceeds the above upper limit value, the water retention is reduced or the strength of the plate-like ceramics 1 is lowered. There is a risk of
  • the thickness t1 of the dense layer 10 can be determined in consideration of the application and the thickness T1 of the plate-like ceramic 1, and is preferably determined in the range of 20 to 60% of the thickness T1, for example.
  • the first non-dense layer 20 is a layer in which pores are formed. As shown in FIG. 1, in the first non-dense layer 20, two or more pores 24 and two or more pores (not shown) are formed, and communication holes in which the pores 24 and the pores communicate with each other are formed. Is formed.
  • Pore volume in the first non-dense layer 20 is 0.2 cm 3 / g or more, preferably 0.3 ⁇ 0.6cm 3 / g, 0.4cm 3 / g Ultra 0.5 cm 3 / g or less Is more preferable. If it is less than the above lower limit value, the diffusibility in the plate-like ceramics 1 becomes insufficient or the water retention becomes insufficient. If it exceeds the upper limit, water is less likely to evaporate and the cooling effect may be reduced.
  • the volume specific pore volume in the first non-dense layer 20 is the same as the volume specific pore volume in the dense layer 10. In this embodiment, the volume specific pore volume in the first non-dense layer 20 is smaller than the volume specific pore volume in the dense layer 10.
  • the fine pore ratio of the first non-dense layer 20 is the same as the fine pore ratio of the dense layer 10.
  • the fine pore volume of the first non-dense layer 20 can be determined in consideration of the use and the like. For example, it is preferably 0.1 cm 3 / g or more, more preferably 0.12 to 0.8 cm 3 / g, and 14 to 0.4 cm 3 / g is more preferable. If it is less than the above lower limit value, the diffusibility may be reduced, and if it exceeds the above upper limit value, water is less likely to evaporate and the cooling effect may be reduced.
  • the volume of the pores 24 of the first non-dense layer 20 is too small, the heat insulating property may be lowered or water may not easily penetrate. Moreover, when the volume of the pores 24 is too large, the strength of the plate-like ceramic 1 may be reduced. Accordingly, the volume of the pores 24 can be determined in consideration of the use of the plate-like ceramic 1.
  • the median pore diameter in pores having a diameter of 3 nm to 360 ⁇ m is preferably less than 40 ⁇ m.
  • the thickness is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the median pore diameter of pores having a diameter of 3 nm to 360 ⁇ m is preferably 10 nm or more. Preferably it is 100 nm or more. If it is less than 40 micrometers, it is excellent in water retention and can continue to evaporate water from a ceramic sintered compact for a long period of time. On the other hand, if the thickness is less than 10 nm, the water retention is lowered, and there is a possibility that a sufficient amount of water cannot be continuously evaporated from the ceramic sintered body for a long period of time.
  • Bulk density of the first non-dense layer 20 is less than 0.7 g / cm 3, preferably less than 0.4 g / cm 3 or more 0.7 g / cm 3, is 0.5 ⁇ 0.65g / cm 3 Further preferred. If it exceeds the upper limit, water permeability may be reduced or water may not easily evaporate, and a good cooling effect may not be obtained. In addition, if it is less than the said upper limit, the heat insulation and soundproofing property of the plate-shaped ceramics 1 will improve. If it is less than the lower limit, the strength of the plate-like ceramic 1 may be reduced, or water may evaporate too early, and the cooling effect may not be sustained.
  • the porosity of the first non-dense layer 20 can be determined in consideration of the application of the plate-like ceramic 1, and is preferably 50% by volume or more, preferably 60 to 90% by volume, more than 80% by volume and 90% by volume. % Or less is more preferable. If it is less than the lower limit, water may not easily permeate, and if it exceeds the upper limit, the strength of the plate-like ceramic 1 may be reduced. In the present embodiment, the porosity of the first non-dense layer 20 is greater than the porosity of the dense layer 10. By being larger than the porosity of the dense layer 10, the thermal insulation and soundproofing properties of the plate-like ceramic 1 can be further improved.
  • the thickness t2 of the first non-dense layer 20 can be determined in consideration of the application, the thickness T1 of the plate-like ceramic 1, etc., and is preferably determined in the range of 20 to 40% of the thickness T1, for example.
  • the second non-dense layer 30 is a layer in which pores are formed. As shown in FIG. 1, in the second non-dense layer 30, two or more pores 34 and two or more pores (not shown) are formed, and communication holes in which the pores 34 and the pores communicate with each other are formed. Is formed.
  • the pore volume of the second non-dense layer 30 is the same as the pore volume of the first non-dense layer 20, and the volume specific pore volume of the second non-dense layer 30 is the same as that of the first non-dense layer. Same as 20 volume specific pore volume.
  • the fine pore volume of the second non-dense layer 30 is the same as the fine pore volume of the first non-dense layer 20, and the fine pore ratio of the second non-dense layer 30 is the same as that of the first non-dense layer 20. The same as the fine pore ratio.
  • the median pore diameter in the pores having a diameter of 3 nm to 360 ⁇ m in the second non-dense layer 30 is the same as the median pore diameter in the pores having a diameter of 3 nm to 360 ⁇ m in the first non-dense layer 20.
  • the bulk specific gravity of the second non-dense layer 30 is the same as the bulk specific gravity of the first non-dense layer 20, and the porosity of the second non-dense layer 30 is the same as the porosity of the first non-dense layer 20. It is the same.
  • the thickness t3 of the second non-dense layer 30 is the same as the thickness t2 of the first non-dense layer 20.
  • the manufacturing method of the plate-like ceramics 1 includes a mixing step of mixing raw materials to obtain a mixture, a forming step of forming the mixture to obtain a formed body, and a firing step of firing the formed body.
  • the mixing step is a step of mixing diatomaceous earth, clays, organic sludge and slag to obtain a mixture.
  • a plate-like ceramic having pores formed in diatomaceous earth and pores formed by reducing the amount of organic sludge during sintering can be obtained.
  • the diatomaceous earth used in the present invention is a deposit made of diatom remains and is porous having pores on the order of micrometers.
  • Diatomaceous earth is not particularly limited, and the same diatomaceous earth as that conventionally used for fireproof bricks and filter media can be used. For example, it is not necessary to separate and refine clay minerals (montmorillonite, etc.), quartz, feldspar and the like that are narrow, and the amount of the mixture can be adjusted after recognizing these contents.
  • the moisture content of the diatomaceous earth is not particularly limited, and for example, the moisture content in a natural dry state is preferably 20 to 60% by mass, more preferably 30 to 50% by mass, and further preferably 35 to 45% by mass.
  • the moisture content is a value obtained by drying the sample (200 ° C., 12 minutes) using an infrared moisture meter having the following specifications, which is a weight loss method, and calculating the following equation (2).
  • Measurement method Loss on drying method (heat drying / mass measurement method) Minimum display: moisture content; 0.1% by mass Measurement range: Moisture content; 0.0 to 100% by mass Drying temperature: 0-200 ° C Measurement accuracy: sample weight 5g or more, moisture content ⁇ 0.1% by mass Heat source: infrared lamp; 185W
  • Water content (mass%) [(m 1 -m 2 ) / (m 1 -m 0 )] ⁇ 100 (2) m 1 : Total mass (g) of the weight of the container before drying and the weight of the sample before drying m 2 : Total mass (g) of the weight of the container after drying and the weight of the sample after drying m 0 : Mass of the container after drying (g)
  • the blending amount of diatomaceous earth in the mixture can be determined in consideration of the pore volume, the fine pore volume, etc. in the dense layer 10, the first non-dense layer 20 or the second non-dense layer 30, for example, 55% by mass. The following is preferable, and 1 to 45% by mass is more preferable. If it is in the said range, the moldability of a mixture will not be impaired and the pore volume and micropore ratio of the dense layer 10, the 1st non-dense layer 20, or the 2nd non-dense layer 30 can be made suitable.
  • the clays in the present invention are mineral materials having clay-like properties that are generally used as ceramic raw materials, and are other than diatomaceous earth.
  • known materials used for ceramic sintered bodies can be used, which are composed of mineral compositions such as quartz, feldspar, and clay, and the constituent minerals are mainly kaolinite, halloysite, montmorillonite, or illite.
  • the thing containing is preferable.
  • those containing coarse quartz grains having a particle diameter of 500 ⁇ m or more are more preferable.
  • the coarse quartz particles preferably have a particle diameter of 5 mm or less. Examples of such clays include cocoon clay. Clays can be blended alone or in combination of two or more.
  • the blending amount of the clays in the mixture can be determined in consideration of the use of the plate-like ceramic 1 and the formability. For example, it is preferably 5 to 60% by mass, preferably 5 to 45% by mass, and 10 to 10%. 40 mass% is more preferable. If it is in the above-mentioned range, the moldability of the mixture can be smoothly formed without sacrificing, and the strength of the plate-like ceramic 1 can be made sufficient.
  • Organic sludge is sludge containing an organic substance as a main component. Any organic sludge can be used, and activated sludge derived from wastewater treatment such as sewage or factory is particularly preferable. The activated sludge is discharged from the wastewater treatment facility using the activated sludge method through a coagulation and dehydration process. By using such organic sludge, pores or micropores can be formed. Furthermore, the activated sludge derived from wastewater treatment, which has been positioned as waste, can be reused as a raw material.
  • the water content of the organic sludge is preferably 60 to 90% by mass, for example, and more preferably 65 to 85% by mass. This is because, within the above range, a homogeneous mixture can be obtained in the mixing step described later, and good moldability can be maintained in the molding step.
  • the organic sludge content of the organic sludge is not particularly limited.
  • the content of the organic matter (organic matter content) in the solid content of the organic sludge is preferably 70% by mass or more, and more preferably 80% by mass or more.
  • the organic content may be 100% by mass as an upper limit. This is because the larger the organic content, the easier the formation of pores.
  • the organic content is a value obtained by measuring the ash content (mass%) of the sludge after drying according to JIS M8812-1993 at a carbonization temperature of 700 ° C. and by the following equation (3).
  • the average particle diameter of the organic sludge can be determined according to the use of the plate-like ceramic 1, and is preferably 1 to 5 ⁇ m, more preferably 1 to 3 ⁇ m.
  • the average particle diameter is a volume-based median diameter (volume 50% diameter) measured by a particle size distribution analyzer (LA-920, manufactured by Horiba, Ltd.).
  • the blending amount of the organic sludge in the mixture can be determined in consideration of the use of the plate-shaped ceramics 1 and the formability. For example, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. More preferred is 20% by mass. This is because the mixture has appropriate fluidity and plasticity within the above range, the moldability is improved, and the molding can be smoothly performed without closing the molding apparatus.
  • the pore volume and the fine pore ratio of the dense layer 10, the first non-dense layer 20, and the second non-dense layer 30 can be made suitable.
  • ⁇ Slag ⁇ Slag is not particularly limited, for example, blast furnace slag generated during metal refining, municipal waste melting slag generated during melting of municipal waste, sewage sludge melting slag generated during melting of sewage sludge, and generated in cast iron such as ductile cast iron Cast iron slag such as cast iron slag, etc., among which cast iron slag has a stable foaming state due to its stable composition, and has a foaming rate about 1.5 to 2 times that of other slags Is more preferable.
  • blending slag the pores 12, 24, and 34 are formed, and the fall of a water permeability coefficient (speed which lets water pass) can be suppressed.
  • the amount of slag in the mixture can be determined in consideration of the use of the plate-like ceramic 1 and the formability. For example, it is preferably 80% by mass or less, more preferably 30 to 70% by mass, and 40 to 60%. More preferred is mass%. Within the above range, the moldability of the mixture can be smoothly formed without sacrificing, and the porosity or bulk specific gravity of the plate-like ceramic 1 can be made a suitable range.
  • optional components include naphthalene-based fluidizing agents such as Mighty 2000WH (trade name, manufactured by Kao Corporation), and melamine-based fluidizing agents such as Melment F-10 (trade name, manufactured by Showa Denko KK).
  • Polycarboxylic acid fluidizers such as Darex Super 100pH (trade name, manufactured by Grace Chemicals Co., Ltd.), antibacterial agents such as silver, copper, and zinc, adsorbents such as zeolite and apatite, and metallic aluminum Is mentioned.
  • the blending amount of the optional component is preferably determined in the range of 5 to 10% by mass, for example.
  • water may be appropriately blended.
  • the water content of the mixture is not particularly limited, but is preferably 25 to 45% by mass, and more preferably 25 to 30% by mass. This is because the mixture has appropriate plasticity and fluidity within the above range and can maintain good moldability.
  • the mixing order of each component in a mixing process is not specifically limited, For example, the method of throwing diatomaceous earth, clays, organic sludge, and slag into a mixing apparatus at a time and mixing (single-stage mixing system) is mentioned. Further, for example, diatomaceous earth and organic sludge are mixed to obtain a primary mixture (first mixing operation), and the primary mixture, clays, and slag may be mixed to obtain a mixture (second mixing operation) ( Above, two-stage mixing method). Since organic sludge has higher fluidity than clays, it is presumed that when mixed, it preferentially enters the pores of diatomaceous earth.
  • diatomaceous earth By molding and baking such a mixture, it is considered that the organic matter of the organic sludge filled in the pores of the diatomaceous earth is volatilized and the pores of the diatomaceous earth are maintained according to the amount filled with the organic sludge. In the second mixing operation, diatomaceous earth may be further added.
  • the mixing step preferably includes a first mixing operation and a second mixing operation.
  • first mixing operation diatomaceous earth and organic sludge are mixed to obtain an appropriate fluid primary mixture, and the pores of diatomaceous earth are filled with organic sludge.
  • second mixing operation a homogeneous mixture can be stably obtained by mixing the primary mixture having moderate fluidity, clays, and slag.
  • clays cannot easily enter the pores of diatomaceous earth because the pores of diatomaceous earth are already filled with organic sludge. For this reason, the ratio of the pores of the diatomaceous earth filled with organic sludge is higher in the mixture obtained by the two-stage mixing method than in the mixture obtained by the one-stage mixing method. As a result, it is considered that more diatomaceous earth pores are maintained without being blocked by adopting a two-stage mixing method.
  • the mixing apparatus used for a mixing process is not specifically limited, A well-known mixing apparatus can be used.
  • the mixing device include a kneader such as a mix muller (manufactured by Toshin Kogyo Co., Ltd.), a kneader (manufactured by Moriyama Co., Ltd.), a mixer (manufactured by Nippon Ceramic Science Co., Ltd.) and the like.
  • the mixing time in the mixing process can be determined in consideration of the mixing ratio of diatomaceous earth, clays, organic sludge and slag, the fluidity of the mixture, etc., and the mixing time is determined so that the mixture becomes a plastic state. It is preferable.
  • the mixing time is preferably in the range of 15 to 45 minutes, and more preferably in the range of 25 to 35 minutes.
  • the temperature in the mixing step is not particularly limited, and can be determined in consideration of the blending ratio and moisture content of diatomaceous earth, clay, organic sludge, and slag.
  • the temperature is preferably in the range of 40 to 80 ° C. More preferably, the temperature is in the range of 50 to 60 ° C.
  • the forming step is a step of forming the mixture obtained in the mixing step into an arbitrary shape.
  • the forming method a known forming method can be used, and it can be determined in consideration of the properties of the mixture and the shape of the porous ceramic sintered body.
  • the molding method may be, for example, a method for obtaining an arbitrary plate-shaped molded body using a molding machine, a method for obtaining a molded body by filling a mixture in a mold having an arbitrary shape, or an arbitrary method after stretching or rolling the mixture. The method of cutting to the dimension of etc. is mentioned.
  • the molding machine include a vacuum clay molding machine, a flat plate press molding machine, and a flat plate extrusion molding machine. Among these, a vacuum clay molding machine is preferable. By removing the air in the molded body using a vacuum clay molding machine, the fine pore ratio of the dense layer 10 can be controlled.
  • ⁇ Baking process> In the firing step, the molded body obtained in the molding process is dried (drying operation), the dried molded body is fired (firing operation), and diatomaceous earth and clay are sintered to obtain a porous ceramic sintered body. It is a process.
  • the drying operation is not particularly limited, and a known method can be used.
  • the molded body may be naturally dried, or may be dried by treating in a hot air drying oven at 50 to 220 ° C. for an arbitrary time.
  • the moisture content of the dried molded body is not particularly limited, but is preferably less than 5% by mass, for example, and more preferably less than 1% by mass.
  • the moisture content of the dried molded body may be 0% by mass as the lower limit.
  • the firing method is not particularly limited, and a known method can be used.
  • a method of firing at an arbitrary temperature using a continuous sintering furnace such as a roller hearth kiln and a batch sintering furnace such as a shuttle kiln.
  • a continuous sintering furnace for firing from the viewpoint of productivity.
  • the calcination temperature may be any condition as long as diatomaceous earth and clays are sintered, the organic matter contained in the organic sludge is volatilized and reduced by thermal decomposition, and the slag expands. It can be determined in consideration of the compounding ratio of slag and organic sludge components.
  • the firing temperature is preferably 950 to 1200 ° C., more preferably 1000 to 1100 ° C. Most of organic substances start to decompose at around 700 ° C., and the odor peculiar to organic sludge is eliminated by thermally decomposing odor components at 950 ° C., and most of the organic substances in the organic sludge are volatilized and reduced.
  • the firing step moisture is first evaporated from the compact before reaching the firing temperature, and then the organic matter of activated sludge is volatilized through thermal decomposition.
  • the temperature rise heat curve, temperature gradient
  • rapid evaporation of water or rapid volatilization of organic substances can be suppressed, and the formation can be prevented from being crushed (exploded).
  • rapid cooling after reaching the firing temperature may cause breakage such as cracking or crushing in the porous ceramic sintered body. Such a phenomenon is particularly noticeable in a continuous sintering furnace. For this reason, it is preferable to provide a temperature gradient in the firing step.
  • the temperature gradient can be determined in consideration of the scale of the baking apparatus and the like. For example, when firing using a continuous sintering furnace having an effective length of 15 m, the inlet and outlet of the continuous sintering furnace are at room temperature (20 ° C. ⁇ 15 ° C.), and the central part of the continuous sintering furnace The firing temperature at 950 ° C. to 1200 ° C. was set, and the passing speed of the compact in the continuous sintering furnace was 3 to 4 mm / sec. And the following temperature gradient conditions are preferable. The temperature gradient was determined by dividing the continuous sintering furnace into 10 zones of equal distance, and the temperature gradient of the continuous sintering furnace was 0.4 to 0.6 ° C./sec.
  • a continuous sintering furnace when the moisture content of the molded body at the time of charging exceeds 3% by mass, the molded body may burst or explode due to a rapid vaporization of the water content in the firing process, or the activated sludge rapidly Damage due to volatilization may occur. Therefore, for example, by controlling the inside of the continuous sintering furnace to the temperature gradient as described above, it is possible to suppress damage in the firing process of the molded body. In addition, by providing an appropriate temperature gradient, a three-layer structure or a communication hole can be formed, and the water retention, diffusibility, water permeability, or cooling effect of the plate-like ceramics 1 can be enhanced.
  • the firing time can be determined in consideration of the firing temperature, the water content of the mixture, and the like.
  • the residence time at the firing temperature is preferably 4 to 10 minutes, more preferably 6.5 to 7.5 minutes. is there. If it is in the said range, it can bake favorably, preventing the failure
  • the plate-like ceramic 1 obtained in this way can be used as a greening substrate material or the like as it is or after being cut out about 5 cm from the side edges along the four side surfaces.
  • the surface of the plate-like ceramic 1 may be shaved with a grinder or the like.
  • the plate-like ceramic 1 improves the water absorption speed by shaving the surface. Further, when the plate-like ceramic 1 is used as a greening base material or the like, the surface of the plate-like ceramic 1 is shaved so that the roots of the plant can easily enter the plate-like ceramic 1 to prevent plant death and Promote growth.
  • the plate-like ceramic of the present embodiment has high water retention and diffusibility because the pore volume is 0.2 cm 3 / g or more and the fine pore ratio is 30 volume% or more. This is because water is rapidly absorbed and retained by the capillary action of the communication hole. In addition, water that has penetrated the plate-like ceramics gradually evaporates, and the cooling effect can be maintained over a long period of time. As described above, the plate-like ceramic of the present embodiment is excellent in water retention and diffusibility, so that it is suitable for plant growth and has a high cooling effect because it evaporates the retained water over a long period of time.
  • the plate-like ceramic of the present embodiment has a three-layer structure including a dense layer having a bulk density of 0.7 g / cm 3 or more and a non-dense layer having a bulk specific gravity of less than 0.7 g / cm 3 formed on both surfaces of the dense layer. Therefore, it is excellent in heat insulation and soundproofing, and water retention and diffusibility are improved while maintaining water permeability. For example, when the first surface 22 is vertically upward and water is poured into the first surface 22, the first non-dense layer 20 having a low bulk specific gravity has high water permeability, so the poured water is quickly It flows down and reaches the dense layer 10.
  • the water that has reached the dense layer 10 diffuses not only in the vertical direction but also in the horizontal direction due to the capillary action of the communication holes formed in the dense layer 10.
  • the water poured into the first surface 22 is quickly diffused into the plate-like ceramic 1 and is maintained in the plate-like ceramic 1.
  • the plate-like ceramic of the present embodiment is excellent in water retention and diffusibility and can maintain a good cooling effect for a long period of time. Therefore, in addition to the greening base material, the plant cultivator, and the heat insulating material inside and outside the building, the building or In order to suppress the temperature rise of the ground surface, it is suitable for uses such as roofing materials, outer wall materials, ground surfaces such as sidewalks or parking lots, or laying materials buried in the ground, and particularly suitable for greening base materials.
  • the plate-shaped ceramic is formed and fired in a state where the organic sludge is filled in the pores of the diatomaceous earth, so that the organic matter of the organic sludge volatilizes during sintering. Can maintain the pores of diatomaceous earth.
  • the plate-like ceramics are formed with pores formed by volatilization of organic matter of organic sludge in the compact during firing. Furthermore, pores are formed in the plate-shaped ceramics by the slag in the molded body expanding during firing. As a result, a plate-like ceramic having pores and pores can be obtained.
  • the sludge preferentially enters the pores of diatomaceous earth in the mixing process.
  • organic matter of organic sludge is volatilized during sintering, and the pores of diatomaceous earth are maintained.
  • the mixing step has a first mixing operation and a second mixing operation, thereby effectively preventing clays from entering the pores of diatomaceous earth and facilitating the formation of pores.
  • a plate-shaped ceramic having a three-layer structure can be obtained.
  • the reason why the three-layer structure is formed can be estimated as follows.
  • the firing step first, the molded body has an arbitrary temperature in the vicinity of the surface, pores and pores are formed, and sintered to provide the first and second non-dense layers.
  • the temperature in the vicinity of the center of the formed body becomes an arbitrary temperature, and pores and pores are formed in the vicinity of the center.
  • pores are formed in the vicinity of the surface and already sintered, the slag existing in the vicinity of the center cannot be sufficiently expanded and the volume of the pores is hardly increased. For this reason, it is considered that a dense layer having a bulk specific gravity higher than that of the non-dense layer is formed between the first non-dense layer and the second non-dense layer.
  • organic sludge that has been conventionally regarded as waste can be used as a raw material, it is possible to appropriately cope with environmental considerations.
  • organic sludge is a raw material that can be obtained easily and in large quantities, and is advantageous in terms of raw material procurement.
  • organic sludge has a high water content, the work of adding water in the mixing step can be omitted.
  • the porous ceramic sintered body has a plate shape.
  • the present invention only requires that the pore volume is 0.2 cm 3 / g or more and the fine pore ratio is 30% by volume or more.
  • the shape of the ceramic sintered body can be selected according to the application.
  • the shape of the porous ceramic sintered body may be the shape of a flower pot, a pellet, or a granule obtained by pulverizing a plate-like ceramic into about 1 to 50 mm square. Good. Further, it may be presintered into granules of about 1 to 50 mm square. Granules can be used as they are or as raw materials for blocks and tiles used for wall materials and road surface materials, and building or civil engineering materials with excellent water retention, diffusion, cold water, heat insulation, and sound insulation can be obtained. .
  • the first and second non-dense layers are provided.
  • the porous ceramic sintered body may be composed of only the dense layer.
  • the non-dense layer may be formed only, or the non-dense layer may be provided only on one surface of the dense layer.
  • a porous ceramic sintered body composed only of a dense layer can be obtained by adjusting the blending ratio of each raw material and the firing conditions.
  • the dense layer and the non-dense layer are laminated, but the present invention is not limited to this.
  • the non-dense layer is formed so as to cover the dense layer with the dense layer as a core. May be formed.
  • pores are formed in the dense layer.
  • the present invention is not limited to this, and pores may not be formed in the dense layer.
  • the pore is formed in the non-dense layer, the present invention is not limited to this, and the pore may not be formed in the non-dense layer.
  • a dense layer or a non-dense layer in which no pores are formed can be obtained by not adding slag to the molded body.
  • diatomaceous earth is blended in the mixture, but the present invention is not limited to this, and diatomaceous earth may not be blended in the mixture. By not blending diatomaceous earth, the pore volume derived from diatomaceous earth can be reduced.
  • ⁇ Clays> As the clay, Sasame clay (from Gifu Prefecture or Aichi Prefecture) was used.
  • ⁇ Diatomaceous earth> As the diatomaceous earth, a powdery diatomaceous earth having a water content of 5% by mass was used as a raw material for refractory bricks from the Noto district.
  • the cast iron slag is SiO 2, Al 2 O 3, CaO, Fe 2 O 3, FeO, MgO, MnO, ductile iron slag mainly K 2 O, and Na 2 O.
  • Example 1 According to the composition of the mixture in Table 1, organic sludge and diatomaceous earth are mixed with a mix muller (manufactured by Toshin Kogyo Co., Ltd.) to obtain a primary mixture (first mixing operation), and clays and slag are added to the primary mixture. Further mixing was performed to obtain a plastic mixture (second mixing operation). The obtained mixture was molded with a vacuum kneading machine (manufactured by Takahama Kogyo Co., Ltd.) to obtain a strip-shaped primary molded body having a width of 60 cm and a thickness of 2 cm.
  • a mix muller manufactured by Toshin Kogyo Co., Ltd.
  • clays and slag are added to the primary mixture. Further mixing was performed to obtain a plastic mixture (second mixing operation).
  • the obtained mixture was molded with a vacuum kneading machine (manufactured by Takahama Kogyo Co., Ltd.) to obtain a
  • the primary molded body was cut at an arbitrary pitch and width to obtain a substantially square flat plate-shaped molded body having a thickness of 2 cm (molding step).
  • the obtained molded body was dried with a hot air dryer (180 ° C., 0.5 hour) to a moisture content of 1% by mass or less, and then fired under the firing conditions shown in Table 1 using a continuous sintering furnace. did.
  • the side edges are cut off along the four side surfaces of the plate-shaped ceramic, and the plate-shaped ceramic (A size) 50 cm wide ⁇ 50 cm long ⁇ 4 cm thick, and a plate 25 cm wide ⁇ 25 cm long ⁇ 4 cm thick Ceramic (B size) and plate ceramic (C size) 16.7 cm wide ⁇ 16.7 cm long ⁇ 4 cm thick were obtained (firing step).
  • the obtained plate-like ceramics have no structural difference between the square flat plate surfaces, and either surface can be used as the front surface or the back surface.
  • the surface of the obtained plate-shaped ceramic was cut with a grinder, and the surface that was not cut was used as the back surface.
  • the obtained plate-like ceramic was used by grinding only the front surface by about 1 mm with a grinder and not grinding the back surface.
  • the respective pore volume, volume specific pore volume, fine pore volume, fine pore ratio, bulk specific gravity, and porosity are determined, and the plate shape
  • the bending strength, saturation moisture content, moisture content by pF value, and thermal conductivity of the ceramic were measured.
  • the cross section of the obtained plate-shaped ceramic was as shown in FIG.
  • a roller hearth kiln (effective length of the sintering furnace: total length 15 m, the sintering furnace was divided into zones 1 to 10 each having a length of 1.5 m) was used.
  • Example 1 Comparative Example 1
  • diatomaceous earth, clays and slag were mixed with a mix muller to obtain a mixture (mixing step).
  • a molded body was obtained from the obtained mixture in the same manner as in Example 1, and fired to obtain A to C size plate-shaped ceramics.
  • the obtained plate-like ceramic was used by grinding only the front surface with a grinder about 1 mm and without grinding the back surface.
  • the pore volume, volume specific pore volume, fine pore volume, fine pore ratio, bulk specific gravity, and porosity were determined in the same manner as in Example 1, and the results are shown in Table 1.
  • the cross-sectional photograph of the obtained plate-shaped ceramics is shown in FIG.
  • the porosity was determined by the following formula (5) based on JIS R2614-1985.
  • the true specific gravity is a specific gravity measured in a state where the test piece was crushed and pores were eliminated.
  • Porosity (volume%) (true specific gravity-bulk specific gravity) ⁇ true specific gravity x 100 (5)
  • FIG. 4 is a chart showing the measurement results of the pore volume of the dense layer of Example 1, wherein the horizontal axis indicates the diameter of the pore, and the right side of the vertical axis indicates the volume of the pore having the horizontal axis diameter (unit pore). The left side of the vertical axis represents the total pore volume (total pore volume). As shown in FIG. 4, the total volume of pores having a diameter of 3 nm to 360 ⁇ m, that is, the pore volume was 0.29 cm 3 / g.
  • the total volume of pores having a diameter of 1 to 360 ⁇ m was 0.14 cm 3 / g, and the total volume of pores having a diameter of 0.01 to 360 ⁇ m was 0.28 cm 3 / g.
  • the above results were applied to the following formula (6) to determine the fine pore volume.
  • the micropore ratio was determined from the determined micropore volume and pore volume.
  • the measurement result of the first non-dense layer is shown in FIG. 5, and the measurement result of Comparative Example 1 is shown in FIG.
  • Micropore volume [total volume of pores having a diameter of 0.01 to 360 ⁇ m] ⁇ [total volume of pores having a diameter of 1 to 360 ⁇ m] (6)
  • volume specific pore volume was determined by the following formula (7).
  • volume specific pore volume (cm 3 / cm 3 ) pore volume ⁇ (1 ⁇ bulk specific gravity) (7)
  • the sample column (5 pieces) is obtained by hollowing out the central portion and the square vicinity portion into a substantially cylindrical shape having a diameter of 42 mm ⁇ thickness of 40 mm and making it saturated with water.
  • a rotor jig equipped with a sample column is attached to a rotor (15B-R8 for soil pF measurement) attached to a centrifuge (model: 50B-5, manufactured by Sakuma Seisakusho Co., Ltd.), 650 rpm, 30 minutes And centrifuged.
  • the amount of water separated from the sample column was determined as the amount of water having a pF value of 1.5 or less.
  • the sample column is centrifuged at 1540 rpm for 30 minutes, the amount of water separated from the sample column is set to a water amount having a pF value of more than 1.5 and not more than 2.7, and the amount of water remaining in the sample column is set to a pF value of more than 2.7. The amount of water.
  • the average mass of 5 sample pillars when dried is 46.4 g
  • the average mass of 5 sample pillars (saturated water content) is 73.8 g
  • the average value of the water content of 5 sample pillars with a pF value of 1.5 or less is
  • the average value of the moisture content of 16.5 g, 5 sample pillars with a pF value of more than 1.5 and less than 2.7 is 3.4 g
  • the moisture content of 5 sample pillars with a pF value of more than 2.7 is 7.5 g. It was.
  • the plate-like ceramic of Example 1 has a three-layer structure including a dense layer and non-dense layers provided on both sides of the dense layer, and has a pore volume of 0.00. It was 2 cm 3 / g or more and the fine pore ratio was 30% by volume or more.
  • the plate-like ceramic of Comparative Example 1 has a single-layer structure, and pores, in particular, huge pores in the order of millimeters are seen in the entire cross section.
  • the plate-like ceramic of Comparative Example 1 had a fine pore ratio of 26% by volume.
  • Example 1 As shown in Table 1, in Example 1 to which the present invention was applied, the bending strength was 3.3 N / mm 2 or more, and the strength was sufficient for application to a greening substrate material.
  • the water content having a pF value of 2.7 or less was 72.6% by mass. In general, water having a pF value of 2.7 or less can be used by plants for growth. From this, it was found that the water retained in the plate-like ceramic of Example 1 was retained in a state where it could be used as a greening substrate material.
  • Example 1 Diffusivity (horizontal) As shown in FIG. 7, four plate-like ceramics (B size) 100 of Example 1 were arranged to form a test bed 101. The position P in the vicinity of the top portion 102 of the test bed 101, water injection water 4000 cm 3 by a tube 120 (feed rate: 50cm 3 /min.,80 minutes). Water injection was performed on the surface of the plate-like ceramic. From the start of water injection to the end of water injection, no leakage of water from the test bed 101 was observed. In addition, the injected water penetrated the entire test bed 101. From this result, it was found that the plate-like ceramics to which the present invention is applied are excellent in diffusibility in the horizontal direction.
  • Example 2 Diffusivity (15 ° inclination)
  • FIG. 8A nine plate ceramics (C size) 110 of Example 1 were arranged to form a test bed 112.
  • Water injection was performed on the surface of the plate-like ceramic. From the start of water injection to the end of water injection, no leakage of water from the test bed 112 was observed. In addition, the injected water penetrated the entire test bed 112. From this result, it was found that the plate-like ceramics to which the present invention was applied were excellent in diffusibility in the horizontal direction even when inclined to 15 °.
  • Example 3 Plant growth test The plate-like ceramics of Example 1 (A size, dry mass: 6.9 kg) were saturated with water, and artificial soil for greening was laid on the surface of the plate-like ceramics to a thickness of 1 cm. Sedum was planted to make a greening base (kg). Two of these greening bases (greening bases A and B) were prepared and stored without irrigation, and the growth status of the sedum was observed, and the mass of the greening base was measured every day at 10 am. The results of mass measurement are shown in FIG.
  • FIG. 9 is a graph showing the storage days on the horizontal axis and the mass of the greening base on the vertical axis, in which the legend (a) shows the greening base A and the legend (b) shows the greening base B.
  • the mass of the greening base A on the first day of storage was 9.2 kg
  • the mass of the greening base B was 10.1 kg.
  • the mass of the greening base A was 7.35 kg
  • the mass of the greening base B was 7.75 kg.
  • the planted sedums were not dead even after 28 days. From these results, it was speculated that a small amount of water remained in the plate-like ceramic in the non-irrigated storage on the 28th.
  • Example 4 Measurement of transpiration amount
  • Experimental Example 4-1 to Experimental Example 4-2 were used without cutting the front and back surfaces of the plate-like ceramic obtained in Example 1.
  • ⁇ Experimental example 4-1> A sample obtained by irrigating 2.64 kg of water on the surface of the plate-like ceramic (A size, dry mass: 9.6 kg) was used. This sample was installed outdoors, and the mass transition of the sample was measured over 2 days. Irrigation was performed at 5 am and the mass of the sample was measured every hour to determine the amount of decrease in the mass of the sample every hour.
  • FIG. 10A shows the transition of the decrease in the mass of the sample on the first day.
  • FIG. 10B shows the transition of the decrease in the mass of the sample on the second day.
  • Example 4-2 Experiment Example 4-1 except that instead of plate ceramic alone, artificial soil for greening was laid 1 cm thick on the surface of the plate ceramic (A size) and sedum was planted as a sample Similarly, the amount of decrease in the mass of the sample was determined. The results are shown in FIGS. 10A and 10B.
  • Example 4-3 The amount of decrease in the mass of the sample was determined in the same manner as in Experimental Example 4-1, except that the plate-like ceramic was not used and the artificial soil for greening was laid with a thickness of 80 mm. The results are shown in FIGS. 10A and 10B.
  • Example 4-4 The amount of decrease in the mass of the sample was the same as in Experimental Example 4-1, except that the artificial soil for greening was laid at a thickness of 80 mm without using the plate-shaped ceramics, and a Korean turf was planted thereon. Asked. The results are shown in FIGS. 10A and 10B.
  • FIG. 10A is a graph showing the transition of the decrease in the mass of the sample on the first day, with the horizontal axis indicating the measurement time and the vertical axis indicating the decrease in the mass of the sample.
  • FIG. 10B is a graph showing the transition of the decrease in the mass of the sample on the second day, with the horizontal axis indicating the measurement time and the vertical axis indicating the decrease in the mass of the sample.
  • legend (c-1) represents the results of Experimental Example 4-1
  • legend (c-2) represents the results of Experimental Example 4-2
  • legend (c-3) represents The results of Experimental Example 4-3 are represented
  • the legend (c-4) represents the results of Experimental Example 4-4.
  • FIGS. 10A is a graph showing the transition of the decrease in the mass of the sample on the first day, with the horizontal axis indicating the measurement time and the vertical axis indicating the decrease in the mass of the sample.
  • legend (c-1) represents the results of Experimental Example 4-1
  • legend (c-2) represents the results of
  • the present invention is extremely useful industrially because it provides a porous ceramic sintered body suitable for plant growth and having a high cooling effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Environmental Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Cultivation Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Road Paving Structures (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本発明により、植物の生育に適し、かつ冷却効果の高い多孔質セラミックス焼結体が提供される。 本発明は、直径3nm~360μmの細孔の容積の合計値である細孔容積が0.2cm/g以上であり、前記細孔容積における直径0.01μm以上1μm未満の細孔の容積の合計値である微細孔容積の割合が30体積%以上であることよりなる多孔質セラミックス焼結体に関する。

Description

多孔質セラミックス焼結体
本発明は、多孔質セラミックス焼結体に関する。
 本願は、2010年9月16日に、日本に出願された特願2010-208458号に基づき優先権を主張し、その内容をここに援用する。
一般に、多孔質セラミックス焼結体は、耐火断熱材料、水質浄化材料、調湿材料、及び揮発性有機化合物(VOC)吸着材料等に用いられているものである。このような多孔質セラミックス焼結体の構造としては、独立気泡型、格子構造型、アグリゲート型、微小な亀裂孔隙を有するもの、及び連続貫通気孔を有するもの等が挙げられ、用途に応じて選択される。
格子構造型の多孔質セラミックス焼結体としては、発泡ウレタン樹脂の気孔内へセラミックス組成物を注入充填した後、樹脂成分を分解し、焼結されたものが知られている。
アグリゲート型の多孔質セラミックス焼結体としては、組成物中の素粒子の骨材の間隙を気孔としたものが知られている。
独立気孔型の多孔質セラミックス焼結体としては、焼成工程において、組成物中の高温分解揮発成分により気孔を生成させたものが知られている。
微小な亀裂孔隙を有する多孔質セラミックス焼結体としては、加熱時に収縮する粘土質等の原料と、加熱時に膨張するスラグ類とを混合した組成物を焼結し得られるものが知られている。
また、連続貫通気孔を有する多孔質セラミックス焼結体としては、含水組成物内に、金属アルミニウムにアルカリ溶液を加えて水素を発生させ、これを焼結して得られるものが知られている。
近年、多孔質セラミックス焼結体は、緑化基盤材料としても利用されている。緑化基盤材料は、地被植物等を生育させるための土壌の下に敷設されるものであり、緑化基盤材料には、水が浸透しやすく、かつ適度な保水性を有することが必要とされる。このような緑化基盤材料は、建物の屋上等に敷設され、その上に植物を生育させることで、建物の冷却効果を向上できる。
緑化基盤材料として用いられる多孔質セラミックス焼結体として、例えば、原料として珪藻土を用い、珪藻土の成形体を焼結したものが提案されている(例えば、特許文献1)。この多孔質セラミックス焼結体は、珪藻土由来のマクロ気孔と、人工的に生成されたミリメートルサイズのトンネル構造孔隙とが相互に連結された二元構造を有するため、水が浸透しやすくかつ保水性が良好である。
特開2005-239467号公報
 しかしながら、緑化基盤材料として用いる多孔質セラミックス焼結体には、水が浸透しやすく、保水性が良好であることに加え、良好な水の拡散(拡散性)、特に水平方向への拡散性が求められる。加えて、多孔質セラミックス焼結体の気孔内に保持された水が、生育させる植物に利用できなくてはならない。さらに、多孔質セラミックス焼結体には、冷却効果のさらなる向上が求められている。
 そこで、本発明は、植物の生育に適し、かつ冷却効果の高い多孔質セラミックス焼結体を目的とする。
本発明の多孔質セラミックス焼結体は、直径3nm~360μmの細孔の容積の合計値である細孔容積が0.2cm/g以上であり、前記細孔容積における直径0.01μm以上1μm未満の細孔の容積の合計値である微細孔容積の割合が30体積%以上であることを特徴とする。
直径3nm~360μmの細孔におけるメジアン細孔直径が40μm未満であることが好ましく、かさ比重が0.7g/cm以上である層状の稠密層を有することが好ましく、かさ比重が0.7g/cm未満である非稠密層を有することが好ましく、前記非稠密層は、前記稠密層の両面に設けられていることがより好ましく、緑化基盤材料であってもよい。
本発明は、植物の生育に適し、かつ冷却効果の高い多孔質セラミックス焼結体を目的とする。
本発明の一実施形態にかかる多孔質セラミックス焼結体の断面写真である。 (a)図1に示す多孔質セラミックス焼結体の稠密層の断面の電子顕微鏡写真(30倍)である。(b)図2(a)の一部を拡大撮影した電子顕微鏡写真(2000倍)である。 比較例の多孔質セラミックス焼結体の断面写真である。 実施例の多孔質セラミックス焼結体の稠密層の細孔容積の測定結果を示すチャートである。 実施例の多孔質セラミックス焼結体の第一の非稠密層の細孔容積の測定結果を示すチャートである。 比較例の多孔質セラミックス焼結体の細孔容積の測定結果を示すチャートである。 拡散性(水平)の試験方法を説明する模式図である。 拡散性(15°傾斜)の試験方法を説明する模式図である。 拡散性(15°傾斜)の試験方法を説明する模式図である。 植物生育試験の結果を示すグラフである。 蒸散量の測定結果を示すグラフである。 蒸散量の測定結果を示すグラフである。
 (多孔質セラミックス焼結体)
 本発明の一実施形態である板状の多孔質セラミックス焼結体(以下、板状セラミックスということがある)について、以下に図面を用いて説明する。図1は、本発明の一実施形態にかかる板状セラミックス1の断面図である。
 図1に示すように板状セラミックス1は、稠密層10と、稠密層10の一方の面に設けられた第一の非稠密層20と、稠密層10の他方の面に設けられた第二の非稠密層30とで概略構成されている。即ち、板状セラミックス1は、稠密層10と、第一の非稠密層20と、第二の非稠密層30とからなる3層構造を有する。
 第一の非稠密層20の面である第一の面22には、第一の非稠密層20に形成された気孔が露出した開口部が形成され、第二の非稠密層30の面である第二の面32には、第二の非稠密層30に形成された気孔が露出した開口部が形成されている。
板状セラミックス1の厚みT1は、用途に応じて決定でき、例えば、0.5~15cmの範囲で決定できる。より好ましくは、1.5~10cmの範囲で決定できる。
<稠密層>
稠密層10は、直径3nm~360μmの細孔(以下、単に細孔ということがある)が形成された層である。
稠密層10には、図2(a)に示すように、直径360μm超の気孔である孔隙12が2以上形成されていると共に、図2(b)に示すように、細孔14が2以上形成されている。
稠密層10に形成されている細孔14又は孔隙12は、相互に連通した連通孔を形成している。連通孔が形成されることで、保水性、拡散性、及び冷却効果の向上が図れる。
稠密層10の細孔容積、即ち全ての細孔14の容積の合計値は、0.2cm/g以上であり、0.25cm/g以上が好ましく、0.3cm/g以上がより好ましい。上記下限値未満であると、板状セラミックス1内での拡散性が不十分になったり、保水性が不十分となったりする。また、細孔容積の上限値は、板状セラミックス1の用途に応じて決定でき、例えば、0.8cm/g以下が好ましく、0.6cm/g以下がより好ましく、0.4cm/g以下がさらに好ましい。上記上限値超であると、水が蒸散しにくくなって冷却効果が低下するおそれがある。
細孔容積は、JIS R1655-2003に準拠し、計測される値である。
 稠密層10における単位体積当たりの細孔14の容積の合計値(体積比細孔容積)は、板状セラミックス1の用途等を勘案して決定でき、例えば、0.1~0.5cm/cmが好ましく、0.2~0.4cm/cmがより好ましい。上記下限値未満であると、保水性や拡散性が不十分になるおそれがあり、上記上限値超であると、板状セラミックス1の強度が不十分になるおそれがある。
細孔14の内、直径0.01μm以上1μm未満の細孔(以下、微細孔ということがある)の容積の合計値である微細孔容積の細孔容積に占める割合(微細孔割合)は、細孔容積の30体積%以上であり、40体積%以上がより好ましく、50体積%以上がさらに好ましい。上記下限値未満であると、保水性や拡散性が不十分となる。微細孔割合の上限値は、特に限定されず、100体積%であってもよい。微細孔割合は、下記(1)式により求められる。
微細孔割合(体積%)=微細孔容積÷細孔容積×100 ・・・(1)
稠密層10の微細孔容積は、微細孔割合が30体積%以上であれば板状セラミックス1の用途等を勘案して決定でき、例えば、板状セラミックス1を緑化基盤材料とする場合、0.1cm/g以上が好ましく、0.12cm/g以上がより好ましく、0.14cm/g以上がさらに好ましく、0.2cm/g以上が特に好ましい。上記下限値未満であると、板状セラミックス1内での拡散性が不十分になったり、保水性が不十分となったりする。また、稠密層10における微細孔容積の上限値は、板状セラミックス1の用途等を勘案して決定でき、例えば、0.8cm/g以下が好ましく、0.6cm/g以下がより好ましく、0.4cm/g以下がさらに好ましい。上記上限値超であると、水が蒸散しにくくなって冷却効果が低下するおそれがある。
 微細孔容積は、細孔容積と同様の方法で測定される値である。
稠密層10の孔隙12の容積は、小さすぎると断熱性が低下するおそれがあり、大きすぎると保水性が低下するおそれがある。従って、孔隙12の容積は、板状セラミックス1の用途等を勘案して決定できる。
 直径3nm~360μmの細孔におけるメジアン細孔直径が40μm未満であるとよい。好ましくは30μm以下であり、より好ましくは20μm以下であり、さらに好ましくは10μm以下であるとよい。また、直径3nm~360μmの細孔におけるメジアン細孔直径は10nm以上であるとよい。好ましくは100nm以上であるとよい。
 40μm未満であれば、保水性に優れ、長期間、セラミック焼結体から水を蒸散し続けることができる。
 また、10nm未満となると保水性が低下し、長期間、セラミック焼結体から十分な量の水を蒸散し続けることができなくなるおそれがある。
稠密層10のかさ比重は、0.7g/cm以上であり、0.75~0.95g/cmが好ましく、0.8~0.9g/cmがより好ましい。上記下限値未満であると、板状セラミックス1の強度が不十分になったり、保水性が低下したり、拡散性が低下したりするおそれがある。上記上限値超であると、水が蒸散しにくくなって冷却効果が低下したり、水が浸透にくくなったりするおそれがある。
稠密層10の気孔率は、板状セラミックス1の用途等を勘案して決定でき、例えば、40%体積%以上が好ましく、60~90体積%が好ましく、65~80体積%がより好ましく、70~80体積%がさらに好ましい。上記下限値未満であると、板状セラミックス1内での水の拡散速度が低下するおそれがあり、上記上限値超であると、保水性が低下したり、板状セラミックス1の強度が低下したりするおそれがある。
稠密層10の厚みt1は、用途や、板状セラミックス1の厚みT1等を勘案して決定でき、例えば、厚みT1の20~60%の範囲で決定することが好ましい。
 <第一の非稠密層>
 第一の非稠密層20は、細孔が形成された層である。図1に示すように、第一の非稠密層20には、2以上の孔隙24と、図示されない2以上の細孔とが形成され、孔隙24と細孔とが相互に連通した連通孔が形成されている。
 第一の非稠密層20における細孔容積は、0.2cm/g以上であり、0.3~0.6cm/gが好ましく、0.4cm/g超0.5cm/g以下がより好ましい。上記下限値未満であると、板状セラミックス1内での拡散性が不十分になったり、保水性が不十分となったりする。上記上限値超であると、水が蒸散しにくくなって冷却効果が低下するおそれがある。
 第一の非稠密層20における体積比細孔容積は、稠密層10における体積比細孔容積と同様である。
 本実施形態において、第一の非稠密層20における体積比細孔容積は、稠密層10における体積比細孔容積よりも小さいものとされている。第一の非稠密層20における体積比細孔容積を稠密層10における体積比細孔容積よりも小さいものとすることで、板状セラミックス1の強度を十分なものとしつつ、保水性、拡散性の向上が図れる。
 第一の非稠密層20の微細孔割合は、稠密層10の微細孔割合と同様である。
 第一の非稠密層20の微細孔容積は、用途等を勘案して決定でき、例えば、0.1cm/g以上が好ましく、0.12~0.8cm/gがより好ましく、0.14~0.4cm/gがさらに好ましい。上記下限値未満であると、拡散性が低下するおそれがあり、上記上限値超であると、水が蒸散しにくくなって冷却効果が低下するおそれがある。
第一の非稠密層20の孔隙24の容積は、小さすぎると断熱性が低下したり、水が浸透しにくくなる場合がある。また、孔隙24の容積が大きすぎると、板状セラミックス1の強度が低下する場合がある。従って、孔隙24の容積は、板状セラミックス1の用途等を勘案して決定できる。
 直径3nm~360μmの細孔におけるメジアン細孔直径が40μm未満であるとよい。好ましくは30μm以下であり、より好ましくは20μm以下であり、さらに好ましくは10μm以下であるとよい。また、直径3nm~360μmの細孔におけるメジアン細孔直径は10nm以上であるとよい。好ましくは100nm以上であるとよい。
 40μm未満であれば、保水性に優れ、長期間、セラミック焼結体から水を蒸散し続けることができる。
 また、10nm未満となると保水性が低下し、長期間、セラミック焼結体から十分な量の水を蒸散し続けることができなくなるおそれがある。
第一の非稠密層20のかさ比重は、0.7g/cm未満であり、0.4g/cm以上0.7g/cm未満が好ましく、0.5~0.65g/cmがさらに好ましい。上記上限値超であると、透水性が低下したり、水が蒸散しにくくなったりし、良好な冷却効果を得られないおそれがある。加えて、上記上限値未満であれば、板状セラミックス1の断熱性や防音性が向上する。上記下限値未満であると、板状セラミックス1の強度が低下したり、水の蒸散が早すぎて冷却効果が持続しなくなったりするおそれがある。
第一の非稠密層20の気孔率は、板状セラミックス1の用途等を勘案して決定でき、例えば、50%体積%以上が好ましく、60~90体積%が好ましく、80体積%超90体積%以下がより好ましい。上記下限値未満であると、水が浸透しにくくなるおそれがあり、上記上限値超であると、板状セラミックス1の強度が低下するおそれがある。
本実施形態において、第一の非稠密層20の気孔率は、稠密層10の気孔率より大きいものとされている。稠密層10の気孔率より大きいことで、板状セラミックス1の断熱性や防音性のさらなる向上が図れる。
第一の非稠密層20の厚みt2は、用途や、板状セラミックス1の厚みT1等を勘案して決定でき、例えば、厚みT1の20~40%の範囲で決定することが好ましい。
 <第二の非稠密層>
 第二の非稠密層30は、細孔が形成された層である。図1に示すように、第二の非稠密層30には、2以上の孔隙34と、図示されない2以上の細孔とが形成され、孔隙34と細孔とが相互に連通した連通孔が形成されている。
 第二の非稠密層30の細孔容積は、第一の非稠密層20の細孔容積と同様であり、第二の非稠密層30の体積比細孔容積は、第一の非稠密層20の体積比細孔容積と同様である。
 第二の非稠密層30の微細孔容積は、第一の非稠密層20の微細孔容積と同様であり、第二の非稠密層30の微細孔割合は、第一の非稠密層20の微細孔割合と同様である。
 第二の非稠密層30の直径3nm~360μmの細孔におけるメジアン細孔直径は、第一の非稠密層20の直径3nm~360μmの細孔におけるメジアン細孔直径と同様である。
 第二の非稠密層30のかさ比重は、第一の非稠密層20のかさ比重と同様であり、第二の非稠密層30の気孔率は、第一の非稠密層20の気孔率と同様である。
 第二の非稠密層30の厚みt3は、第一の非稠密層20の厚みt2と同様である。
(製造方法)
板状セラミックス1の製造方法は、原料を混合して混合物を得る混合工程と、前記混合物を成形し成形体を得る成形工程と、前記成形体を焼成する焼成工程とを有する。
<混合工程>
混合工程は、珪藻土、粘土類、有機汚泥及びスラグを混合し、混合物を得る工程である。このような配合とすることで珪藻土に形成された細孔と、有機汚泥が焼結時に減量して形成された細孔とを有する板状セラミックスを得られる。
≪珪藻土≫
 本発明に用いられる珪藻土は、珪藻の遺骸からなる堆積物であり、マイクロメートルオーダーの気孔を有する多孔質である。
 珪藻土は、特に限定されず、従来、耐火断煉瓦、及び濾過材等に使用されていたものと同様のものを用いることができる。例えば、狭雑している粘土鉱物(モンモリロナイト等)、石英、及び長石等を分別精製する必要はなく、これらの含有率を認識した上で、混合物への配合量を調整することができる。
 珪藻土の含水率は特に限定されず、例えば、自然乾燥状態での含水率が20~60質量%が好ましく、30~50質量%が好ましく、35~45質量%がさらに好ましい。上記範囲内であれば、含水率を認識しながら、混合の際に狭雑物中の粗粒子分を除去して使用することで、成形性が良好な混合物を得られるためである。
 含水率は、乾燥減量方式である下記仕様の赤外線水分計を用い試料を乾燥(200℃、12分間)し、下記(2)式により求めた値である。
 <仕様>
 測定方式:乾燥減量法(加熱乾燥・質量測定方式)
 最小表示:含水率;0.1質量%
 測定範囲:含水率;0.0~100質量%
 乾燥温度:0~200℃
 測定精度:試料質量5g以上で、含水率±0.1質量%
 熱源:赤外線ランプ;185W
 含水率(質量%)=[(m-m)/(m-m)]×100 ・・・(2)
 m:乾燥前の容器の質量と乾燥前の試料の質量との合計質量(g)
 m:乾燥後の容器の質量と乾燥後の試料の質量との合計質量(g)
 m:乾燥後の容器の質量(g)
 混合物中の珪藻土の配合量は、稠密層10、第一の非稠密層20又は第二の非稠密層30における細孔容積、及び微細孔容積等を勘案して決定でき、例えば、55質量%以下が好ましく、1~45質量%がより好ましい。上記範囲内であれば混合物の成形性を損なわず、稠密層10、第一の非稠密層20又は第二の非稠密層30の細孔容積及び微細孔割合を好適なものにできる。
≪粘土類≫
 本発明における粘土類は、一般的に窯業原料として用いられる粘土状の性状を示す鉱物材料であり、珪藻土以外のものである。粘土類は、セラミックス焼結体に用いられる公知のものを用いることができ、石英、長石、及び粘土系等の鉱物組成で構成され、構成鉱物はカオリナイトを主とし、ハロイサイト、モンモリロナイト、又はイライトを含むものが好ましい。中でも、焼結時のクラックの進展を抑え、板状セラミックス1の破壊を防ぐ観点から粒子径が500μm以上の石英の粗粒を含むものがより好ましい。前記石英の粗粒は、粒子径が5mm以下であることが好ましい。このような粘土類としては、例えば、蛙目粘土等が挙げられる。粘土類は、1種単独で又は2種以上を適宜組み合わせて配合できる。
 混合物中の粘土類の配合量は、板状セラミックス1の用途や、成形性を勘案して決定することができ、例えば、5~60質量%が好ましく、5~45質量%が好ましく、10~40質量%がより好ましい。
上記範囲内であれば混合物の成形性を損なわず、かつ円滑に成形できると共に、板状セラミックス1の強度を十分なものにできる。
≪有機汚泥≫
 有機汚泥は、主成分として有機物を含有する汚泥である。有機汚泥は、任意のものを用いることができ、下水や工場等の排水処理に由来する活性汚泥が特に好ましい。活性汚泥は、活性汚泥法を用いた排水処理設備から、凝集及び脱水工程を経て排出される。このような有機汚泥を用いることで、細孔または微細孔を形成できる。さらに、廃棄物の位置付けであった排水処理由来の活性汚泥を原料として再度利用することができる。
 有機汚泥の含水率は、例えば60~90質量%が好ましく、65~85質量%がより好ましい。上記範囲内であれば、後述の混合工程で均質な混合物が得られると共に、成形工程においても良好な成形性を維持できるためである。
 有機汚泥の有機物の含有量は特に限定されないが、例えば、有機汚泥の固形分中の有機物の含有量(有機物含有量)として70質量%以上が好ましく、80質量%以上がより好ましい。前記有機物含有量は上限値として100質量%であってもよい。前記有機物含有量が多いほど、細孔の形成が容易となるためである。有機物含有量は、乾燥後の汚泥をJIS M8812-1993に準じ、炭化温度700℃で灰分(質量%)を測定し、下記(3)式により求まる値である。
有機物含有量(質量%)=100(質量%)-灰分(質量%)  ・・・(3)
有機汚泥の平均粒子径は、板状セラミックス1の用途に応じて決定でき、好ましくは1~5μm、より好ましくは1~3μmとされる。平均粒子径が小さいほど、稠密層10における細孔の形成が容易である。平均粒子径は、粒度分布測定装置(LA-920、株式会社堀場製作所製)により測定される体積基準のメディアン径(体積50%径)である。
 混合物中の有機汚泥の配合量は、板状セラミックス1の用途や、成形性を勘案して決定することができ、例えば、1~50質量%が好ましく、5~30質量%がより好ましく、5~20質量%がさらに好ましい。上記範囲内であれば混合物は適度な流動性と可塑性とを備え、成形性が向上し、成形装置を閉塞することなく円滑に成形できるためである。加えて、稠密層10、第一の非稠密層20及び第二の非稠密層30の細孔容積と微細孔割合とを好適なものにできる。
≪スラグ≫
スラグは、特に限定されず、例えば、金属精錬時に発生する高炉スラグ、都市ゴミの溶融時に発生する都市ゴミ溶融スラグ、下水汚泥の溶融時に発生する下水汚泥溶融スラグ、及びダクタイル鋳鉄等の鋳鉄時に発生する鋳鉄スラグ等のガラス質スラグ等が挙げられ、中でも、組成が安定しているため安定した発泡状態が得られると共に、他のスラグに比べ1.5~2倍程度の発泡率である鋳鉄スラグがより好ましい。スラグを配合することで、孔隙12、24及び34を形成し、透水係数(水を通す速度)の低下を抑制できる。
混合物中のスラグの配合量は、板状セラミックス1の用途や、成形性を勘案して決定することができ、例えば、80質量%以下が好ましく、30~70質量%がより好ましく、40~60質量%がさらに好ましい。上記範囲内であれば、混合物の成形性を損なわず、かつ円滑に成形できると共に、板状セラミックス1の気孔率又はかさ比重を好適な範囲とすることができる。
≪任意成分≫
混合物には、本発明の目的を阻害しない範囲で、任意成分を配合してもよい。任意成分としては、例えば、マイティ2000WH(商品名、花王株式会社製)等のナフタリン系の流動化剤、メルメントF-10(商品名、昭和電工株式会社製)等のメラミン系の流動化剤、ダーレックススーパー100pH(商品名、グレースケミカルズ株式会社製)等のポリカルボン酸系の流動化剤等、銀、銅、及び亜鉛等の抗菌剤、ゼオライト、及びアパタイト等の吸着剤、並びに金属アルミニウム等が挙げられる。
 混合物に任意成分を配合する場合、任意成分の配合量は、例えば、5~10質量%の範囲で決定することが好ましい。
 加えて、混合工程において、有機汚泥が好適な配合比で配合されている場合には、有機汚泥に含まれる水により混合工程にて水を添加しなくてもよいし、混合物の流動性の調整等を目的として、適宜、水を配合してもよい。
 混合物の含水率は特に限定されないが、例えば、25~45質量%が好ましく、25~30質量%がより好ましい。上記範囲内であれば、混合物は適度な可塑性と流動性を有し、良好な成形性を維持できるためである。
 混合工程における各成分の混合順序は特に限定されず、例えば、珪藻土、粘土類、有機汚泥及びスラグを一度に混合装置へ投入し、混合する方法が挙げられる(一段混合方式)。また、例えば、珪藻土と有機汚泥とを混合し一次混合物を得(第一の混合操作)、前記一次混合物と粘土類とスラグとを混合し混合物を得てもよい(第二の混合操作)(以上、二段混合方式)。有機汚泥は、粘土類に比べて流動性が高いため、混合時に珪藻土の気孔へ優先して進入すると推測される。このような混合物を成形し焼成することで、珪藻土の気孔に充填された有機汚泥の有機物が揮発し、有機汚泥が充填された分に応じて珪藻土の気孔が維持されると考えられる。
 第二の混合操作では、珪藻土をさらに添加してもよい。
 混合工程は、第一の混合操作と第二の混合操作とを有することが好ましい。まず、第一の混合操作では、珪藻土と有機汚泥とを混合することで、適度な流動性の一次混合物が得られると共に、珪藻土の気孔に有機汚泥が充填される。続く第二の混合操作では、適度な流動性を有する一次混合物と粘土類とスラグとを混合することで、均質な混合物を安定的に得られる。第二の混合操作では、珪藻土の気孔に有機汚泥が既に充填されているため、粘土類は珪藻土の気孔に容易に進入できない。このため、二段混合方式で得られた混合物は、一段混合方式で得られた混合物に比べて、有機汚泥が充填された珪藻土の気孔の割合がさらに高くなる。この結果、混合工程を二段混合方式とすることで、より多くの珪藻土の気孔が閉塞せずに維持されると考えられる。
 混合工程に用いる混合装置は特に限定されず、公知の混合装置を用いることができる。
例えば、混合装置としては、ミックスマラー(東新工業株式会社製)等の混練機や、ニーダー(株式会社モリヤマ製)、及び混合機(日陶科学株式会社製)等が挙げられる。
 混合工程における混合時間は、珪藻土と粘土類と有機汚泥とスラグとの配合比や、混合物の流動性等を勘案して決定することができ、混合物が可塑状態となるような混合時間を決定することが好ましい。混合時間は、例えば、15~45分間の範囲とすることが好ましく、25~35分間の範囲とすることがより好ましい。
 混合工程における温度は特に限定されず、珪藻土と粘土類と有機汚泥とスラグとの配合比や含水率等を勘案して決定することができ、例えば、40~80℃の範囲とすることが好ましく、50~60℃の範囲とすることがより好ましい。
 <成形工程>
 成形工程は、混合工程で得られた混合物を任意の形状に成形する工程である。
 成形方法は、公知の成形方法を用いることができ、混合物の性状や多孔質セラミックス焼結体の形状を勘案して決定することができる。成形方法は、例えば、成形機を用いて、任意の板状の成形体を得る方法、混合物を任意の形状の型に充填し成形体を得る方法、あるいは、混合物を延伸又は圧延した後、任意の寸法に切断する方法等が挙げられる。
 成形機としては、真空土練成形機、平板プレス成形機、及び平板押出し成形機等が挙げられ、中でも、真空土練成形機が好ましい。真空土練成形機を用いて成形体中の空気を除去することで、稠密層10の微細孔割合を制御できる。
 <焼成工程>
 焼成工程は、成形工程で得られた成形体を乾燥し(乾燥操作)、乾燥した成形体を焼成し(焼成操作)、珪藻土及び粘土類等を焼結して多孔質セラミックス焼結体を得る工程である。
 ≪乾燥操作≫
 乾燥操作は、特に限定されず、公知の方法を用いることができる。例えば、成形体を自然乾燥してもよいし、50~220℃の熱風乾燥炉で任意の時間処理することで乾燥してもよい。乾燥の成形体の含水率は、特に限定されないが、例えば、5質量%未満が好ましく、1質量%未満がより好ましい。乾燥の成形体の含水率は、下限値として0質量%であってもよい。
 ≪焼成操作≫
 焼成の方法は特に限定されず、公知の方法を用いることができる。例えば、ローラーハースキルン等の連続式焼結炉、及びシャトルキルン等の回分式焼結炉を用い、任意の温度で焼成する方法が挙げられる。中でも、焼成には、生産性の観点から連続式焼結炉を用いることが好ましい。
 焼成温度(到達温度)は、珪藻土及び粘土類が焼結され、有機汚泥に含まれる有機物が熱分解により揮発して減量し、スラグが膨張する条件であればよく、珪藻土と粘土類と有機汚泥とスラグとの配合比や有機汚泥の成分等を勘案して決定できる。例えば、焼成温度は、950~1200℃が好ましく、1000~1100℃がより好ましい。有機物の多くは、700℃前後より分解が始まり、950℃において有機汚泥特有の臭いは、臭気成分が熱分解され解消されると共に、有機汚泥中の有機物の大部分が揮発して減量する。また、スラグの多くは800~850℃で結晶化により膨張する。
 焼成温度が1200℃を超えると、多孔質セラミッス焼結体の組織全体のガラス化が進み、成形体が破損したり、細孔又は孔隙が閉塞したりするおそれがある。
 焼成工程では、焼成温度に達するまでに、成形体からまず水分が蒸発し、その後活性汚泥の有機物が熱分解を経て揮発する。この過程で、温度上昇(ヒートカーブ、温度勾配)を適性に調整することにより、急激な水分の蒸発又は急激な有機物の揮発を抑え、形成物の粉砕(爆破)を防止できる。加えて、焼成温度に達した後の急激な冷却により、多孔質セラミックス焼結体に割れや粉砕等の破損が生じることがある。このような現象は、特に連続式焼結炉において顕著に現れる。このため、焼成工程には、温度勾配を設けることが好ましい。
 温度勾配は、焼成装置の規模等を勘案して決定することができる。例えば、焼成部の有効長が15mの連続式焼結炉を用いて焼成する場合、連続式焼結炉の入口及び出口を常温(20℃±15℃)とし、連続式焼結炉の中央部における焼成温度を950℃~1200℃とし、成形体の連続式焼結炉内の通過速度を3~4mm/sec.とし、以下の温度勾配条件とすることが好ましい。
 温度勾配は、連続式焼結炉を均等な距離の10のゾーンに区分し、連続式焼結炉の温度勾配を入口側より0.4~0.6℃/sec.、0.1~0.2℃/sec.、0.3~0.4℃/sec.、0.4~0.6℃/sec.、0.7~1.0℃/sec.、0.004~0.005℃/sec.、-0.4~-0.2℃/sec.、-0.8~-0.5℃/sec.、-0.4~-0.3℃/sec.、及び-0.3~-0.1℃/sec.とすることが好ましい。
 連続式焼結炉において、投入時における成形体の含水率が3質量%を超える場合、焼成工程での含有水分の急激な気化により、成形体に破裂もしくは爆砕が生じたり、活性汚泥の急激な揮発に伴う破損が生じたりするおそれがある。従って、例えば、連続式焼結炉内を上述のような温度勾配に制御することで、成形体の焼成工程における破損を抑えることができる。加えて、適切な温度勾配を設けることで、3層構造を形成し、あるいは連通孔を形成し、板状セラミックス1の保水性、拡散性、透水性又は冷却効果を高めることができる。
 焼成時間は、焼成温度や混合物の含水率等を勘案して決定することができ、例えば、焼成温度における滞留時間が、好ましくは4~10分間、より好ましくは6.5~7.5分間である。上記範囲内であれば、板状セラミックス1の破損を防止しつつ、良好に焼成できる。
こうして得られた板状セラミックス1は、そのまま、あるいは4つの側面に沿って、側端から5cm程度切除して、緑化基盤材料等に用いることができる。板状セラミックス1を並べて用いる場合、側面同士の接触状態を良好にする観点から、4つの側面に沿って、側端から5cm程度切除することが好ましい。
板状セラミックス1はグラインダー等で表面を削ってもよい。板状セラミックス1は表面を削ることで、吸水速度を向上させる。また、板状セラミックス1を緑化基盤材料等に用いる場合には、板状セラミックス1の表面を削ることで、植物の根が板状セラミックス1の中に入り込みやすくなり、植物の枯死を防ぎ、植物の成長を促進させる。
本実施形態の板状セラミックスは、細孔容積が0.2cm/g以上、微細孔割合が30体積%以上であるため、保水性及び拡散性が高い。これは、連通孔の毛細管現象により、水を速やかに吸収し保持するためである。加えて、板状セラミックスに浸透した水が徐々に蒸散し、長期にわたって冷却効果を維持できる。
このように、本実施形態の板状セラミックスは、保水性及び拡散性に優れるため植物の生育に適すると共に、保水した水を長期にわたって蒸散するため冷却効果が高いものである。
本実施形態の板状セラミックスは、かさ密0.7g/cm以上の稠密層と、稠密層の両面に形成されたかさ比重0.7g/cm未満の非稠密層とからなる3層構造を有するため、断熱性及び防音性に優れると共に、透水性を維持しつつ保水性と拡散性の向上が図られている。例えば、第一の面22を鉛直方向上方とし、第一の面22に水を注ぐと、低いかさ比重の第一の非稠密層20は透水性が高いため、注がれた水が速やかに流下し、稠密層10に到る。稠密層10に至った水は、稠密層10に形成された連通孔の毛細管現象により、鉛直方向下方のみならず、水平方向にも拡散する。こうして、第一の面22に注がれた水は、板状セラミックス1内に速やかに拡散し、かつ板状セラミックス1に維持される。
本実施形態の板状セラミックスは、保水性及び拡散性に優れると共に、良好な冷却効果を長期に維持できるため、緑化基盤材料、植物栽培器、及び建物の内外の断熱材料の他、建築物又は地表の温度上昇を抑制するため、屋根材、外壁材、又は歩道若しくは駐車場等の地表若しくは地中に埋設される敷設材料等の用途に好適であり、特に緑化基盤材料に好適である。
 また、本実施形態の製造方法によれば、板状セラミックスは、有機汚泥が珪藻土の気孔に充填された状態の成形体を成形し焼成するため、焼結時に前記有機汚泥の有機物が揮発し、珪藻土の気孔を維持できる。加えて、板状セラミックスには、成形体中の有機汚泥の有機物が、焼成時に揮発して形成された細孔が形成される。さらに、板状セラミックスには、成形体中のスラグが焼成時に膨張することで、孔隙が形成される。この結果、細孔と孔隙とを有する板状セラミックスを得ることができる。
 有機汚泥は、粘土類に比べて流動性が高いため、混合工程では優先的に珪藻土の気孔に進入すると推測される。有機汚泥が充填された珪藻土の気孔では、焼結時に有機汚泥の有機物が揮発し、珪藻土の気孔が維持されると考えられる。加えて、有機汚泥を含有する成形体を焼成することで、有機汚泥の有機物の揮発により板状セラミックスに多くの細孔が成形され、さらには連通孔が形成される。さらに、混合工程は、第一の混合操作と第二の混合操作とを有することにより、珪藻土の気孔への粘土類の進入を効果的に防止し、細孔の形成を容易にする。
 本実施形態の製造方法によれば、3層構造の板状セラミックスを得ることができる。3層構造が形成される理由は、次のように推測できる。焼成工程において、まず、成形体は、表面近傍が任意の温度となり、細孔及び孔隙が形成され、焼結されて第一及び第二の非稠密層が設けられる。次いで、成形体の中心近傍が任意の温度となり、中心近傍に細孔及び孔隙が形成される。この際、表面近傍に気孔が形成され、既に焼結されているため、中心近傍に存在するスラグが十分に膨張できず、孔隙の容積が増大しにくい。このため、第一の非稠密層と第二の非稠密層との間に、非稠密層よりもかさ比重の高い稠密層が形成されると考えられる。
 本実施形態の製造方法によれば、従来、廃棄物としてみなされていた有機汚泥を原料として活用できるため、環境面への配慮にも好適に対応できる。加えて、有機汚泥は容易かつ大量に入手可能な原料であり、原料調達面で優位である。さらに、有機汚泥は含水率が高いため、混合工程において水を添加する作業を省略できる。
本発明は上述の実施形態に限定されるものではない。
上述の実施形態では、多孔質セラミックス焼結体が板状とされているが、本発明は細孔容積0.2cm/g以上、微細孔割合が30体積%以上であればよく、多孔質セラミックス焼結体の形状を用途に応じて選択できる。例えば、多孔質セラミックス焼結体の形状は、植木鉢の形状とされていてもよいし、ペレット状であってもよいし、板状セラミックスを1~50mm角程度に粉砕した顆粒状であってもよい。また、あらかじめ、1~50mm角程度の顆粒状に焼結したものであってもよい。顆粒状のものは、そのまま、又は壁材や路面材に用いられるブロックやタイルの原料としても用いることができ、保水、拡散、冷水、断熱、及び遮音性などに優れる建築又は土木材料が得られる。
上述の実施形態では、第一及び第二の非稠密層が設けられているが、本発明はこれに限定されず、多孔質セラミックス焼結体は、稠密層のみで構成されていてもよいし、非稠密層のみで構成されていてもよいし、稠密層の一方の面のみに非稠密層が設けられていてもよい。稠密層のみで構成された多孔質セラミックス焼結体は、各原料の配合割合、焼成条件を調節することで得ることができる。
上述の実施形態では、稠密層と非稠密層とが積層されたものであるが、本発明はこれに限定されず、例えば、稠密層を核とし、この稠密層を被覆するように非稠密層が形成されたものであってもよい。
上述の実施形態では、稠密層に孔隙が形成されているが、本発明はこれに限定されず、稠密層に孔隙が形成されていなくてもよい。
また、上述の実施形態では、非稠密層に孔隙が形成されているが、本発明はこれに限定されず、非稠密層に孔隙が形成されていなくてもよい。
孔隙が形成されていない稠密層又は非稠密層は、成形体にスラグを配合しないことにより得ることができる。
上述の実施形態では、混合物に珪藻土が配合されているが、本発明はこれに限定されず、混合物に珪藻土が配合されていなくてもよい。珪藻土を配合しないことで、珪藻土由来の細孔容積を低減することができる。
 以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によって限定されるものではない。
 (使用原料)
 実施例に用いた原料は、次のとおりである。
 <有機汚泥>
 以下の実施例における有機汚泥には、染色工場(小松精練株式会社、美川工場)の活性汚泥法による排水処理設備から凝集・脱水工程を経て排出された活性汚泥を用いた。この活性汚泥の有機物含有量(対固形分)は83質量%であった。
 <粘土類>
 粘土類には、蛙目粘土(岐阜県産又は愛知県産)を用いた。
 <珪藻土>
 珪藻土には、能登地区産の耐火煉瓦の原料で、含水率が5質量%の粉末状の珪藻土を用いた。
 <スラグ>
 スラグには、鋳鉄スラグを用いた。この鋳鉄スラグは、SiO、Al、CaO、Fe、FeO、MgO、MnO、KO、及びNaOを主成分とするダクタイル鋳鉄スラグである。
(実施例1)
 表1の混合物の組成に従い、有機汚泥と珪藻土とをミックスマラー(東新工業株式会社製)で混合し一次混合物を得(第一の混合操作)、一次混合物に粘土類とスラグとを添加し、さらに混合し、可塑状態の混合物を得た(第二の混合操作)。得られた混合物を真空土練成形機(高浜工業株式会社製)で成形し、幅60cm、厚み2cmの帯状の一次成形体を得た。この一次成形体を任意のピッチと幅で切断し、厚み2cmの略正方形の平板状の成形体を得た(成形工程)。
 得られた成形体を熱風乾燥機で乾燥(180℃、0.5時間)し、含水率1質量%以下とした後、連続式焼結炉を用いて、表1に示す焼成条件にて焼成した。焼成後、板状セラミックスの4つの側面に沿って、側端を切除し、幅50cm×長さ50cm×厚み4cmの板状セラミックス(Aサイズ)と、幅25cm×長さ25cm×厚み4cmの板状セラミックス(Bサイズ)と、幅16.7cm×長さ16.7cm×厚み4cmの板状セラミックス(Cサイズ)とを得た(焼成工程)。得られた板状セラミックスは、前記正方形の両平板面において構造上差異はなく、どちらの面を表面又は裏面として使用することもできる。得られた板状セラミックスをグラインダーで削った面を表面、削らない面を裏面とした。得られた板状セラミックスは、グラインダーで表面のみを1mm程度削って、裏面は削らずに用いた。
 得られた板状セラミックスの稠密層及び第一の非稠密層について、それぞれの細孔容積、体積比細孔容積、微細孔容積、微細孔割合、かさ比重、及び気孔率を求めると共に、板状セラミックスの曲げ強度、飽和含水率、pF値別水分量、及び熱伝導率を測定した。
 また、得られた板状セラミックスの断面は、図1に示すものであった。
 連続式焼結炉としては、ローラーハースキルン(焼結炉の有効長:全長15m、焼結炉を各1.5mのゾーン1~10に分割)を用いた。
(比較例1)
表1の混合物の組成に従い、珪藻土と粘土類とスラグとをミックスマラーで混合し混合物を得た(混合工程)。得られた混合物を実施例1と同様にして成形体を得、焼成して、A~Cサイズの板状セラミックスを得た。得られた板状セラミックスは、実施例1と同様に、グラインダーで表面のみを1mm程度削って、裏面は削らずに用いた。
得られた板状セラミックスについて、実施例1と同様に細孔容積、体積比細孔容積、微細孔容積、微細孔割合、かさ比重、気孔率を求め、その結果を表1に示す。また、得られた板状セラミックスの断面写真を図3に示す。
(測定方法)
<かさ比重>
 各層の試験片の外形寸法をノギスにより測定し体積を求めた。同試験片を絶乾状態にし、電子天秤にて質量を測定(絶乾状態質量)し、下記(4)式により比重を算出した。各例の試料(N)数はN=10とした。
 比重(g/cm)=[絶乾状態質量(g)]/[体積(cm)] ・・・(4)
<気孔率>
気孔率は、JIS R2614-1985に準拠し、下記(5)式により求めた。真比重は、試験片を粉砕し、気孔をなくした状態で測定した比重である。
気孔率(体積%)=(真比重-かさ比重)÷真比重×100 ・・・(5)
<細孔容積、微細孔容積、微細孔割合、メジアン細孔直径>
各例の板状セラミックス(Aサイズ)を厚さ方向に切断し、稠密層、第一の非稠密層及び第二の非稠密層の各層を幅15mm×長さ40mm×厚み7mmに切り出し、試験片とした。この試験片について、JIS R1655に準拠し、下記測定条件で細孔の容積及びメジアン細孔直径を測定した。測定結果のチャートから、細孔容積、微細孔容積、及び微細孔割合を算出した。
≪測定条件≫
使用装置:オートポア9420(マイクロメリティックス社製)
使用水銀:再生水銀
水銀表面張力:485dynes/cm(0.485N/m)
 水銀接触角:130°
 測定圧力:0.5~60000psia(0.003~414MPa)
算出の方法につき、図4を用いて説明する。図4は、実施例1の稠密層の細孔容積の測定結果を示すチャートであり、横軸に細孔は直径を示し、縦軸右側は横軸の直径の細孔の容積(単位細孔容積)を示し、縦軸左側は細孔の容積の合計(細孔容積合計)を示す。図4に示すように直径3nm~360μmの細孔の容積の合計、即ち細孔容積は0.29cm/gであった。直径1~360μmの細孔の容積の合計は、0.14cm/gであり、直径0.01~360μmの細孔の容積の合計は、0.28cm/gであった。
以上の結果を下記(6)式に当てはめ、微細孔容積を求めた。求めた微細孔容積と細孔容積とから微細孔割合を求めた。
第一の非稠密層の測定結果を図5に示し、比較例1の測定結果を図6に示す。
微細孔容積=[直径0.01~360μmの細孔の容積の合計]-[直径1~360μmの細孔の容積の合計]・・・(6)
<体積比細孔容積>
体積比細孔容積は、下記(7)式により求めた。
体積比細孔容積(cm/cm)=細孔容積÷(1÷かさ比重) ・・・(7)
 <曲げ強度>
 JIS R5201に準拠して測定した。
 <飽和含水率>
 比重を測定したサンプル(N=10)を水に60分間浸漬した後、前記表面を上に向けて、水からサンプルを傾けずに取り出し、質量を測定(飽和状態質量)し、下記(8)式により求めた。前記表面を上に向けて、水からサンプルを傾けずに取り出したことにより、サンプルから水が流れ出すことを防ぐことができる。
 飽和含水率(質量%)=[(飽和状態質量-絶乾状態質量)/絶乾状態質量]×100・・・(8)
<pF値別水分量の測定>
各例の板状セラミックス(Aサイズ)について、中央部及び四角の近傍部を直径42mm×厚み40mmの略円柱形にくり抜き、飽和含水状態にしたものを試料柱(5個)とし、この試料柱を専用のロータ治具に装着した。遠心分離機(型式:50B-5、株式会社佐久間製作所製)に装着されたロータ(土壌用pF測定用15B-R8)に、試料柱が装着されたロータ治具を装着し、650rpm、30分間で遠心処理をした。この際、試料柱から分離された水量をpF値1.5以下の水分量とした。
次いで、試料柱を1540rpm、30分間遠心処理し、試料柱から分離された水量をpF値1.5超2.7以下の水分量とし、試料柱に残存した水量をpF値2.7超の水分量とした。
試料柱5個の乾燥時の平均質量は46.4g、試料柱(飽和含水状態)5個の平均質量は73.8g、試料柱5個のpF値1.5以下の水分量の平均値は16.5g、試料柱5個のpF値1.5超2.7以下の水分量の平均値は3.4g、試料柱5個のpF値2.7超の水分量は7.5gであった。
<熱伝導率の測定>
JIS A1412-2-1999に準拠し、試験体を長さ、幅、及び厚さ方向にスライスし、長さ20cm×幅20cm×厚み21.6mmとして測定した。その結果、熱流密度:45.7W/m、高温側の温度:26.1℃、低温側の温度:16.8℃、試験体平均温度:21.5℃、熱抵抗:17.5(m・K)/W、及び熱伝導率:0.123W/(m・K)であった。
Figure JPOXMLDOC01-appb-T000001
表1及び図1に示すように、実施例1の板状セラミックスは、稠密層と、稠密層の両側に設けられた非稠密層からなる3層構造のものであり、細孔容積が0.2cm/g以上で、かつ微細孔割合が30体積%以上であった。
一方、図3に示すように、比較例1の板状セラミックスは、単層構造であり、孔隙、特にミリメートルオーダーの巨大な孔隙が断面全体に見られるものであった。また、比較例1の板状セラミックスは、微細孔割合が、26体積%であった。
表1に示すように、本発明を適用した実施例1は、曲げ強度が3.3N/mm以上であり、緑化基盤材料への適用が十分な強度であった。また、pF値2.7以下の水分量が72.6質量%であった。一般的に、pF値2.7以下の水は、植物が生育に利用しうるものである。このことから、実施例1の板状セラミックスに保水された水は、緑化基盤材料として利用できる状態で、保水されていることが判った。
(実験例1)拡散性(水平)
図7に示すように、実施例1の板状セラミックス(Bサイズ)100を4枚並べて試験床101とした。この試験床101の頂部102の近傍の位置Pに、チューブ120により水4000cmを注水(供給速度:50cm/min.、80分間)した。注水は、板状セラミックスの前記表面に行った。
注水開始から注水終了までの間、試験床101からの水の漏洩は見られなかった。また、注水した水は、試験床101全体に浸透していた。
この結果から、本発明を適用した板状セラミックスは、水平方向への拡散性に優れることが判った。
(実験例2)拡散性(15°傾斜)
図8Aに示すように、実施例1の板状セラミックス(Cサイズ)110を9枚並べて試験床112とした。図8Bに示すように、この試験床112を、第一の辺114から第一の辺114に対向する第二の辺116へ向かって下がるように、水平面に対する傾斜角度θ=15°として設置した。第一の辺114の近傍の位置Qに、チューブ120により水4000cmを注水(供給速度:50cm/min.、80分間)した。注水は、板状セラミックスの前記表面に行った。注水開始から注水終了までの間、試験床112からの水の漏洩は見られなかった。また、注水した水は、試験床112全体に浸透していた。
この結果から、本発明を適用した板状セラミックスは、15°に傾斜させても水平方向への拡散性に優れることが判った。
 (実験例3)植物生育試験
 実施例1の板状セラミックス(Aサイズ、乾燥質量:6.9kg)を飽和含水状態とし、板状セラミックスの前記表面上に緑化用人工土壌を1cm厚に敷き、セダム類を植栽して緑化基盤(kg)とした。この緑化基盤を2つ(緑化基盤A、B)用意し無灌水で保管し、セダムの生育状況を観察すると共に、毎日午前10時に緑化基盤の質量を測定した。質量測定の結果を図9に示す。
 本試験に用いた緑化用人工土壌は、ヤシ殻熟成堆肥:50質量%、バーミキュライト:20質量%、鹿沼土(細粒):20質量%、ビートモス:10質量%、ユニミックスプラスII:750g/m、及びマグアンプIIIBB-SS:1kg/mの混合物である。
 図9は、横軸に保管日数、縦軸に緑化基盤の質量を示すグラフであり、グラフ中、凡例(a)は緑化基盤A、凡例(b)は緑化基盤Bを示す。図9に示すように、保管開始初日の緑化基盤Aの質量は9.2kg、緑化基盤Bの質量は10.1kgであった。28日間の無灌水保管後、緑化基盤Aの質量は7.35kg、緑化基盤Bの質量は7.75kgであった。また、植栽したセダム類は、28日経過後においても枯死していなかった。これらの結果から、28日の無灌水保管において、板状セラミック内に微量の水分が残存していると推測された。
 (実験例4)蒸散量の測定
 以下、実験例4-1~実験例4-2については、実施例1で得られる板状セラミックスの表面及び裏面を削らずに用いた。
 <実験例4-1>
 前記板状セラミックス(Aサイズ、乾燥質量:9.6kg)の前記表面に、2.64kgの水を灌水したものを試料とした。この試料を屋外に設置し、試料の質量推移を2日間にわたり測定した。灌水は、午前5時に行い、1時間毎に試料の質量を測定し、1時間毎の試料の質量の減少量を求めた。図10Aに、1日目の試料の質量の減少量の推移を示す。さらに、2日目の午前5時に2.64kgの水を試料に灌水した後、1時間毎に試料の質量を測定し、1時間毎の試料の質量の減少量を求めた。図10Bに、2日目の試料の質量の減少量の推移を示す。
<実験例4-2>
板状セラミックス単体に換え、前記板状セラミックス(Aサイズ)の前記表面上に緑化用人工土壌を1cm厚で敷き、セダム類を植設したものを試料とした以外は、実験例4-1と同様にして、試料の質量の減少量を求めた。その結果を図10A及びBに示す。
<実験例4-3>
前記板状セラミックスを用いずに、緑化用人工土壌を80mm厚で敷き試料とした以外は、実験例4-1と同様にして、試料の質量の減少量を求めた。その結果を図10A及びBに示す。
<実験例4-4>
前記板状セラミックスを用いずに、緑化用人工土壌を80mm厚で敷き、その上に高麗芝を植栽し試料とした以外は、実験例4-1と同様にして、試料の質量の減少量を求めた。その結果を図10A及びBに示す。
 図10Aは、1日目の試料の質量減少の推移を示すグラフであり、横軸に測定時刻、縦軸に試料の質量の減少量を示したものである。図10Bは、2日目の試料の質量減少の推移を示すグラフであり、横軸に測定時刻、縦軸に試料の質量の減少量を示したものである。図10A及びB中、凡例(c-1)は、実験例4-1の結果を表わし、凡例(c-2)は、実験例4-2の結果を表わし、凡例(c-3)は、実験例4-3の結果を表わし、凡例(c-4)は、実験例4-4の結果を表わす。
 図10A及びBに示すように、板状セラミックスのみの実験例4-1、及び板状セラミックスにセダム類を植栽した実験例4-2は、高麗芝を植栽した実験例4-4よりも、単位時間当たりの水の蒸散量が多かった。また、実験例4-1及び4-2は、緑化人工土壌を用いた実験例4-3よりも、単位時間当たりの水の蒸散量が少なかった。
 これらの結果から、実験例4-1及び4-2は、実験例4-3より水の蒸散が長期に維持され、かつ実験例4-4よりも水の蒸散による冷却効果が高いものと推測できる。
本発明は、植物の生育に適し、かつ冷却効果の高い多孔質セラミックス焼結体を提供するため、産業上極めて有用である。
 1、100、110 板状セラミックス
 10 稠密層
 14 細孔
 20 第一の非稠密層
 30 第二の非稠密層

Claims (6)

  1.  直径3nm~360μmの細孔の容積の合計値である細孔容積が0.2cm/g以上であり、前記細孔容積における直径0.01μm以上1μm未満の細孔の容積の合計値である微細孔容積の割合が30体積%以上であることを特徴とする多孔質セラミックス焼結体。
  2.  直径3nm~360μmの細孔におけるメジアン細孔直径が40μm未満である請求項1に記載の多孔質セラミックス焼結体。
  3.  かさ比重が0.7g/cm以上である層状の稠密層を有することを特徴とする請求項1又は2のいずれかに記載の多孔質セラミックス焼結体。
  4.  かさ比重が0.7g/cm未満である非稠密層を有することを特徴とする請求項1~3のいずれか1項に記載の多孔質セラミックス焼結体。
  5.  前記非稠密層は、前記稠密層の両面に設けられていることを特徴とする請求項4に記載の多孔質セラミックス焼結体。
  6.  緑化基盤材料であることを特徴とする請求項1~5のいずれか1項に記載の多孔質セラミックス焼結体。
PCT/JP2011/071034 2010-09-16 2011-09-14 多孔質セラミックス焼結体 WO2012036218A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
SG2013019419A SG188568A1 (en) 2010-09-16 2011-09-14 Porous ceramic sintered body
US13/824,343 US20130330530A1 (en) 2010-09-16 2011-09-14 Porous Ceramic Sintered Body
JP2012534042A JP5820382B2 (ja) 2010-09-16 2011-09-14 多孔質セラミックス焼結体
KR1020137007625A KR20140006777A (ko) 2010-09-16 2011-09-14 다공질 세라믹스 소결체
EP11825218.8A EP2617696A4 (en) 2010-09-16 2011-09-14 POROUS CERAMIC FRIDGE BODY
CN2011800446854A CN103189334A (zh) 2010-09-16 2011-09-14 多孔陶瓷烧结体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-208458 2010-09-16
JP2010208458 2010-09-16

Publications (1)

Publication Number Publication Date
WO2012036218A1 true WO2012036218A1 (ja) 2012-03-22

Family

ID=45831674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071034 WO2012036218A1 (ja) 2010-09-16 2011-09-14 多孔質セラミックス焼結体

Country Status (7)

Country Link
US (1) US20130330530A1 (ja)
EP (1) EP2617696A4 (ja)
JP (2) JP5820382B2 (ja)
KR (1) KR20140006777A (ja)
CN (1) CN103189334A (ja)
SG (1) SG188568A1 (ja)
WO (1) WO2012036218A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220960A (ja) * 2012-04-13 2013-10-28 Komatsu Seiren Co Ltd 多孔質セラミックス焼結体
JP2013227768A (ja) * 2012-04-25 2013-11-07 Komatsu Seiren Co Ltd インターロッキングブロック
JP2014081072A (ja) * 2012-09-28 2014-05-08 Kurosaki Harima Corp 断熱材及びその製造方法
JP2014113086A (ja) * 2012-12-10 2014-06-26 Toyo Tire & Rubber Co Ltd 人工土壌粒子、及び人工土壌培地
JP2014113087A (ja) * 2012-12-10 2014-06-26 Toyo Tire & Rubber Co Ltd 人工土壌粒子、及び人工土壌培地
JP2015029930A (ja) * 2013-07-31 2015-02-16 小松精練株式会社 浮体式水浄化装置
EP2738148A4 (en) * 2011-07-01 2015-05-27 Komatsu Seiren Co VERKLINKUNGSBLOCK
JP2016002065A (ja) * 2014-06-19 2016-01-12 小松精練株式会社 緑化構造体及び緑化壁
JPWO2014073570A1 (ja) * 2012-11-08 2016-09-08 小松精練株式会社 土壌改良材およびそれを含む培土
JP2017169587A (ja) * 2017-06-02 2017-09-28 小松精練株式会社 植物育成装置
JP2018529621A (ja) * 2015-09-11 2018-10-11 シーニャ ラボ エス. アール. エル. 材料、その用途、及び材料の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2553670C1 (ru) * 2014-06-02 2015-06-20 Юлия Алексеевна Щепочкина Керамическая масса для штамповки строительных изделий
JP6227585B2 (ja) * 2015-03-31 2017-11-08 日本碍子株式会社 ハニカム構造体、及びハニカム構造体の製造方法
EP3386607A1 (en) * 2015-12-09 2018-10-17 Corning Incorporated Porous ceramic composition, filter, and articles
CN105645924B (zh) * 2015-12-30 2018-09-18 深圳市新陶环保特种材料科技有限公司 一种功能性陶瓷材料、其制备方法及应用
CN106007787B (zh) * 2016-05-16 2019-08-13 咸阳陶瓷研究设计院 一种海绵性绿色无机蓄水材料及其制备方法
CN110461798A (zh) * 2017-03-29 2019-11-15 日本碍子株式会社 多孔质陶瓷颗粒及多孔质陶瓷结构体
FR3065352B1 (fr) * 2017-04-25 2020-08-07 Soprema Systeme de vegetalisation d'un mur ou d'une facade
KR102012442B1 (ko) 2018-02-06 2019-11-04 전북대학교산학협력단 고인성 산화물 소결체의 제조 방법
CN109053152B (zh) * 2018-08-29 2021-06-22 戴成豪 一种硅藻土陶瓷花盆及其制备方法
JP2020158351A (ja) * 2019-03-27 2020-10-01 日本碍子株式会社 ハニカム構造体、および、ハニカム構造体の製造方法
CN114573320A (zh) * 2020-11-30 2022-06-03 武汉苏泊尔炊具有限公司 烹饪器具及其加工方法
JP7452870B2 (ja) * 2021-04-01 2024-03-19 株式会社誠和 株元保護資材及び果菜類の栽培方法
CN114455973A (zh) * 2021-12-31 2022-05-10 靖州县惠能耐火材料有限公司 一种防裂多孔陶瓷材料及其制备方法
KR102668267B1 (ko) * 2023-06-15 2024-05-21 김태식 항균 및 탈취능을 갖는 세라믹 소결체 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632673A (ja) * 1992-07-16 1994-02-08 Kurosaki Refract Co Ltd アルミナ質多孔体
JPH11240777A (ja) * 1998-02-27 1999-09-07 Sumitomo Chem Co Ltd α−アルミナ多孔質凝集焼結体、その製造方法および用途
JP2008296141A (ja) * 2007-05-31 2008-12-11 Ngk Insulators Ltd ハニカムフィルタ
WO2010106724A1 (ja) * 2009-03-16 2010-09-23 小松精練株式会社 多孔質セラミックス焼結体及びその製造方法
JP2011001204A (ja) * 2009-06-16 2011-01-06 Jfe Steel Corp 高性能断熱材およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153119A (ja) * 2000-09-11 2002-05-28 Seikatsu Kachi Sozo Jutaku Kaihatsu Gijutsu Kenkyu Kumiai 緑化用基盤及び植栽方法
JP3682405B2 (ja) * 2000-11-16 2005-08-10 東芝セラミックス株式会社 植栽用多孔質セラミックスの製造方法
JP4460916B2 (ja) * 2004-02-25 2010-05-12 株式会社アースエンジニアリング 二元構造の気孔を持つセラミックス焼結体とその製造方法
US20060162929A1 (en) * 2005-01-26 2006-07-27 Global Synfrac Inc. Lightweight proppant and method of making same
CN100419021C (zh) * 2006-06-08 2008-09-17 武汉理工大学 一种屋顶绿化基体材料及其制备方法
JP4920007B2 (ja) * 2008-05-16 2012-04-18 地方独立行政法人 東京都立産業技術研究センター ガラス発泡体の製造方法、ガラス発泡体及びガラス発泡体の再生方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632673A (ja) * 1992-07-16 1994-02-08 Kurosaki Refract Co Ltd アルミナ質多孔体
JPH11240777A (ja) * 1998-02-27 1999-09-07 Sumitomo Chem Co Ltd α−アルミナ多孔質凝集焼結体、その製造方法および用途
JP2008296141A (ja) * 2007-05-31 2008-12-11 Ngk Insulators Ltd ハニカムフィルタ
WO2010106724A1 (ja) * 2009-03-16 2010-09-23 小松精練株式会社 多孔質セラミックス焼結体及びその製造方法
JP2011001204A (ja) * 2009-06-16 2011-01-06 Jfe Steel Corp 高性能断熱材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2617696A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2738148A4 (en) * 2011-07-01 2015-05-27 Komatsu Seiren Co VERKLINKUNGSBLOCK
JP2013220960A (ja) * 2012-04-13 2013-10-28 Komatsu Seiren Co Ltd 多孔質セラミックス焼結体
JP2013227768A (ja) * 2012-04-25 2013-11-07 Komatsu Seiren Co Ltd インターロッキングブロック
JP2014081072A (ja) * 2012-09-28 2014-05-08 Kurosaki Harima Corp 断熱材及びその製造方法
JPWO2014073570A1 (ja) * 2012-11-08 2016-09-08 小松精練株式会社 土壌改良材およびそれを含む培土
JP2014113086A (ja) * 2012-12-10 2014-06-26 Toyo Tire & Rubber Co Ltd 人工土壌粒子、及び人工土壌培地
JP2014113087A (ja) * 2012-12-10 2014-06-26 Toyo Tire & Rubber Co Ltd 人工土壌粒子、及び人工土壌培地
JP2015029930A (ja) * 2013-07-31 2015-02-16 小松精練株式会社 浮体式水浄化装置
JP2016002065A (ja) * 2014-06-19 2016-01-12 小松精練株式会社 緑化構造体及び緑化壁
JP2018529621A (ja) * 2015-09-11 2018-10-11 シーニャ ラボ エス. アール. エル. 材料、その用途、及び材料の製造方法
JP2017169587A (ja) * 2017-06-02 2017-09-28 小松精練株式会社 植物育成装置

Also Published As

Publication number Publication date
JP6043853B2 (ja) 2016-12-14
JP5820382B2 (ja) 2015-11-24
SG188568A1 (en) 2013-04-30
KR20140006777A (ko) 2014-01-16
CN103189334A (zh) 2013-07-03
JPWO2012036218A1 (ja) 2014-02-03
EP2617696A1 (en) 2013-07-24
US20130330530A1 (en) 2013-12-12
JP2016029013A (ja) 2016-03-03
EP2617696A4 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP6043853B2 (ja) 多孔質セラミックス焼結体及びその製造方法
JP5658136B2 (ja) 多孔質セラミックス焼結体及びその製造方法
JP5232984B2 (ja) 多孔質レンガ及びその製造方法
JP5993600B2 (ja) 多孔質セラミックス焼結体の製造方法
KR100729677B1 (ko) 다공질 세라믹 및 이것의 제조방법
CN101885620A (zh) 多级孔道结构的陶瓷材料及其制造方法
JP6055419B2 (ja) 多孔質セラミックス及びその製造方法
JP6268650B2 (ja) 土壌改良材およびそれを含む培土
JP2003020290A (ja) セラミック製の多孔質基材及びその製造方法並びにこの多孔質基材を粉砕して得られた土壌用基材
JP6088380B2 (ja) 浮体式水浄化装置
CN107324837A (zh) 一种保水透水滤水铺路板砖及其制作方法
CN111087170B (zh) 一种微晶透水保水砖及其制备方法
JP6337403B2 (ja) 多孔質セラミックス焼成体及びその製造方法
JP6393950B2 (ja) 人工芝用充填材およびそれを用いた人工芝
JP7550524B2 (ja) 土壌改良材及びそれを含む土壌
JP5296573B2 (ja) 多孔質焼結体
JP2016082882A (ja) プランター及びそれを用いた植物の育成方法
JP2009051683A (ja) 焼成体及びその製造方法
JP2013220960A (ja) 多孔質セラミックス焼結体
JP2014221703A (ja) 多孔質セラミックス焼成体
SI22379A (sl) Postopek za pripravo agregata zlasti iz odpadnih surovin in tako dobljen agregat
KR20030015144A (ko) 카콜 세라믹 제조를 위한 조성물 및 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825218

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012534042

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011825218

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011825218

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137007625

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13824343

Country of ref document: US