WO2012032931A1 - 透明基材およびその製造方法 - Google Patents
透明基材およびその製造方法 Download PDFInfo
- Publication number
- WO2012032931A1 WO2012032931A1 PCT/JP2011/069009 JP2011069009W WO2012032931A1 WO 2012032931 A1 WO2012032931 A1 WO 2012032931A1 JP 2011069009 W JP2011069009 W JP 2011069009W WO 2012032931 A1 WO2012032931 A1 WO 2012032931A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cellulose
- transparent substrate
- less
- substrate according
- base material
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
- C08L1/10—Esters of organic acids, i.e. acylates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B15/00—Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
- C08B15/02—Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B15/00—Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
- C08B15/02—Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
- C08B15/04—Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B15/00—Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
- C08B15/05—Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
- C08B15/06—Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/005—Stabilisers against oxidation, heat, light, ozone
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/521—Esters of phosphoric acids, e.g. of H3PO4
- C08K5/523—Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
-
- G02B1/105—
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/18—Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2301/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
- C08J2301/04—Oxycellulose; Hydrocellulose
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
Definitions
- the present invention relates to a transparent substrate containing a natural material, and more specifically to a transparent substrate containing a cellulose fiber containing a substituent.
- Patent Document 1 a composite using cellulose nanofiber highly refined by adding chemical or mechanical treatment to cellulose fiber is known as a filler, and when used, it has high strength and low linear expansion. It is known that a molded body having a coefficient can be obtained (for example, Patent Document 1).
- the present invention has been made in order to solve the above-mentioned problems, and while using a material that effectively uses natural materials, it has a low linear expansion coefficient, a high light transmittance, an appropriate moisture permeability, and a high
- An object of the present invention is to provide a transparent substrate imparted with water resistance with little variation in strength.
- the present invention as a result of intensive studies, the polysaccharide is oxidized under specific conditions, and after molding hydroxyl groups and aldehyde groups with carboxyl groups, molding under specific conditions, The present inventors have found that the above problems can be solved by reacting a carboxyl group or hydroxyl group on the surface of a polysaccharide oxidized under specific conditions to form a crosslinked structure, and the present invention has been completed.
- the invention described in claim 1 includes at least an oxidized polysaccharide, has a linear expansion coefficient of 50 ppm / ° C. or less at 30 ° C. or more and 150 ° C. or less, and a light transmittance at 660 nm of 70% or more.
- the invention according to claim 2 is characterized in that the transparent substrate contains a polymer compound having two or more functional groups of one or more of oxazoline and isocyanate per molecule. It is a transparent base material as described in above.
- the polysaccharide is a cellulose fiber having a crystal structure of cellulose I, and the fiber diameter of the cellulose fiber is 1 nm or more and 200 nm or less.
- the transparent substrate is 1 nm or more and 200 nm or less.
- the invention according to claim 4 is the transparent substrate according to claim 3, wherein the amount of aldehyde groups of the cellulose fiber is 0.2 mmol / g or less.
- the invention according to claim 5 is the transparent substrate according to claim 4, wherein the amount of carboxyl groups of the cellulose fiber is 0.1 mmol / g or more and 2.5 mmol / g or less.
- the invention according to claim 6 is the transparent substrate according to claim 5, wherein the degree of polymerization of the cellulose fiber is 100 or more and 1000 or less.
- the invention according to claim 7 is the transparent substrate according to claim 5, wherein the content of the cellulose fiber is 1% or more and 99.9% or less.
- the invention according to claim 8 is the transparent base material according to claim 5, which contains any one of an ultraviolet absorber, a deterioration inhibitor and a hydrophobic additive in addition to the cellulose fiber. is there.
- the invention according to claim 9 is the transparent substrate according to claim 1, wherein the light transmittance at 450 nm after heating at 100 ° C. for 3 hours is 70% or more.
- the invention of claim 10 is a transparent substrate according to claim 1, wherein the moisture permeability is less than 1g / m 2 / 24hr or 99g / m 2 / 24hr.
- the invention according to claim 11 is the transparent substrate according to claim 2, wherein the YI value after heating at 150 ° C. for 1.5 hours is 2 or less.
- the invention according to claim 12 is the transparent substrate according to claim 2, characterized in that the water absorption when immersed in water for 1 hour is 50% or less.
- the invention according to claim 13 is the transparent substrate according to claim 5, wherein the thickness is 10 ⁇ m or more and 200 ⁇ m or less.
- the invention according to claim 14 is a polarizing plate protective film using the transparent substrate according to claim 5.
- the invention according to claim 15 is a method in which cellulose is treated with 2,2,6,6-tetramethyl-1-piperidine-N-oxyl or a derivative thereof in water and a co-oxidant is allowed to act.
- An oxidation step of oxidizing, a defibration step of defibrating the oxidized cellulose in water to form cellulose fibers, a base material forming step of forming a transparent substrate using a cellulose dispersion containing the cellulose fibers, are provided in this order.
- the invention according to claim 16 is characterized in that after the defibrating step and before the substrate forming step, two or more functional groups of any one of the cellulose fiber, oxazoline and isocyanate are added per molecule. It is a manufacturing method of the transparent base material of Claim 15 provided with the preparation process which prepares the cellulose dispersion liquid containing the high molecular compound which has the above.
- the invention according to claim 17 is the method for producing a transparent substrate according to claim 16, wherein, in the preparation step, the pH when the polymer compound is added is 3 or more and 6 or less. It is.
- the invention according to claim 18 further includes a heating step of heat-treating the transparent substrate after the substrate forming step. It is.
- a transparent base material that uses a natural material effectively, has a low linear expansion coefficient, a high light transmittance, an appropriate moisture permeability, hardly discolors even when heated, and has a high strength. Can be provided. Further, it is possible to provide a transparent base material having high strength, little variation, and water resistance.
- Natural materials used in the present invention include celluloses, crustaceans such as crabs and shrimps, polysaccharides such as chitin and chitosan that are also present in insect skeletons such as beetles and crickets, or in fungi and cell walls. .
- the natural material used in the present invention is cellulose
- the cellulose material used as a raw material is not particularly limited, and regenerates various kinds of wood, non-wood pulp, microbially produced cellulose, valonia cellulose, squirt cellulose, rayon, etc.
- Cellulose or the like can be used, and the pulping method, the purification method, the bleaching method, and the like are not particularly limited.
- a highly purified cellulose material such as bleached pulp or dissolved pulp.
- powdery powders pulverized with a high-pressure homogenizer freeze pulverization, mill, stone mill, etc., fine cellulose purified by chemical treatment such as hydrolysis, various cellulose powders that are commercially available, and microcrystalline cellulose powders can also be used.
- Natural cellulose forms cellulose nanofibers of several nanometers to several hundred nanometers having a high crystal structure through synthesis by cellulose synthase and self-organization in a broad sense. These cellulose nanofibers are oriented and assembled in various directions to form cellulose fibers. Therefore, natural cellulose originally has a crystallinity of 70% or more.
- Cellulose fibers having a high crystal structure can be obtained by using a natural cellulose material such as pulp, cotton, and bacterial cellulose, and breaking the crystal structure as close to the cellulose nanofiber as possible without breaking the crystal structure.
- a physical fibrillation treatment in a water-containing state or a special chemical A method of defibration with a high-pressure homogenizer or a jet mill can be used without any special treatment.
- the cellulose fibers can form a dense film by hydrogen bonding of a carboxyl group or a hydroxyl group, it can be suitably used in that transparency is increased.
- the method example described below is an example for adjusting the aldehyde group amount of the cellulose fiber, the carboxyl group amount of the cellulose fiber, the degree of polymerization of the cellulose fiber, and the like. The examples are not limiting.
- a method for introducing a carboxyl group into a cellulose fiber a method in which the reaction proceeds while leaving the crystal structure of the cellulose fiber and a carboxyl group can be introduced is preferable.
- various methods have been developed. An example of treating wood pulp with an aqueous system will be described.
- Examples of an oxidation method that can be treated in an aqueous system and that can efficiently introduce carboxyl groups onto the surface of cellulose fibers include a method of oxidizing cellulose using a co-oxidant in the presence of an N-oxyl compound (oxoammonium salt). Can do.
- the N-oxyl compound includes 2,2,6,6-tetramethyl-1-piperidine-N-oxyl (hereinafter referred to as “TEMPO”) and derivatives thereof.
- TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxyl
- carboxyl groups can be uniformly and efficiently introduced according to the degree of oxidation. This oxidation reaction is advantageously carried out in the presence of the N-oxyl compound and bromide or iodide.
- the bromide or iodide a compound that can be dissociated and ionized in water, such as an alkali metal bromide or an alkali metal iodide, can be used.
- the oxidizing agent halogen, hypohalous acid, halohalic acid, perhalogenic acid or salts thereof, halogen oxide, nitrogen oxide, peroxide, etc., as long as the oxidizing agent can promote the target oxidation reaction Any oxidizing agent can be used.
- the 6-position hydroxyl group in the cellulose skeleton can be selectively oxidized, and the glucose in the skeleton is converted to glucuronic acid.
- the N-oxyl compound may be used in a catalytic amount, for example, 10 ppm or more and 2% or less by weight with respect to the cellulose fiber is sufficient.
- the oxidation reaction conditions are not particularly limited, and should be optimized depending on the properties of the cellulose fiber, the equipment used, etc. However, if the oxidation reaction is carried out in the presence of bromide or iodide, it will oxidize even under mild conditions. The reaction can proceed smoothly, and the carboxyl group introduction efficiency can be greatly improved.
- Bromide and / or iodide can be added if necessary, and the amount used can be selected within a range that can promote the oxidation reaction, and is, for example, 100 ppm or more and 20% or less with respect to the cellulose fiber.
- TEMPO is preferably used as the N-oxyl compound
- sodium hypochlorite is preferably used as the oxidizing agent in the presence of sodium bromide.
- the reaction temperature is below room temperature and the reaction temperature is as low as possible without causing the system to freeze in order to increase the selectivity of cellulose fiber to the crystal surface and suppress side reactions. desirable.
- the temperature is in the range of 0 ° C. or higher and 30 ° C. or lower, more preferably 5 ° C. or higher and 20 ° C. or lower, side reactions such as oxidation inside the crystal of the cellulose fiber can be suppressed.
- the pH of the reaction system in the oxidation reaction of the cellulose fiber is desirably performed between pH 9 and pH 11 from the viewpoint of reaction efficiency.
- the amount of carboxyl groups in the oxidized cellulose fiber can be determined by conducting conductivity measurement using the oxidized cellulose fiber obtained here.
- the amount of carboxyl groups present in the cellulose fiber is 0.1 mmol / g or more and 2.5 mmol / g or less, preferably 1.3 mmol / g or more and 2.5 mmol / g, based on the weight of the cellulose fiber. If it is g or less, it can be provided as a stable cellulose nanofiber.
- the transparent substrate of the present invention includes a cellulose fiber having a carboxyl group content in the above range, and thus can be easily refined and can provide a transparent substrate.
- an aldehyde group is introduced in addition to a carboxyl group.
- This aldehyde group may inhibit nano-ization or promote coloring.
- Cellulose fibers containing aldehyde groups introduced by this method undergo various decomposition reactions such as aldehyde itself or ⁇ elimination due to the effects of heat, light, alkali, etc., and double bonds are introduced or crosslinking reactions Remarkably colored.
- the colored cellulose fiber or base material has a reduced light transmittance and impaired transparency. In particular, when the light transmittance at 660 nm is 70% or less, light cannot be transmitted efficiently, and the function as a transparent substrate cannot be exhibited.
- the highly transparent base material which can be utilized also as a display member can be provided as light transmittance is 90% or more.
- the upper limit of light transmittance since it becomes a highly transparent base material, so that light transmittance is high, it does not specifically limit.
- sodium chlorite is preferably used as the oxidizing agent for the oxidized cellulose fiber.
- chlorous acid is used, only the aldehyde group introduced by oxidizing the hydroxyl group can be selectively oxidized and substituted with a carboxyl group.
- the reaction is preferably carried out in the range of 0 ° C. to 30 ° C., more preferably 5 ° C. to 25 ° C.
- the pH of the reaction system in this reoxidation reaction is preferably about pH 4 in terms of reaction efficiency, and acetic acid is preferably used for pH adjustment.
- the aldehyde group introduced in the first oxidation reaction can be removed by performing the second-stage reoxidation reaction.
- the amount of carboxyl groups in the reoxidized cellulose fiber can be determined by conducting conductivity measurement using the oxidized cellulose fiber obtained here. From the amount of carboxyl groups obtained here, the amount of aldehyde groups before reoxidation can be determined by determining the difference in the amount of carboxyl groups before reoxidation. Moreover, the cellulose fiber after reoxidation is further subjected to the same oxidation reaction, and the following measurement can be performed to determine the amount of aldehyde groups after reoxidation.
- TEMPO 4-acetamido TEMPO
- weakly acidic to neutral conditions preferably pH 4 or more and pH 7 or less
- hypohalous acid such as sodium hypochlorite or a salt thereof as a co-oxidant
- hypohalous acid or a salt thereof an oxidation reaction is performed.
- an aldehyde group remains in the cellulose molecule, which causes coloring during heating.
- chlorous acid or a salt thereof is an oxidizing agent that oxidizes aldehyde groups
- the generated aldehyde groups are quickly converted into carboxyl groups and do not remain in the cellulose molecule. For this reason, when using as a film, the coloring by heating can be suppressed.
- the reaction temperature is preferably 0 ° C. or more and 60 ° C. or less, and a sufficient amount of carboxyl groups can be introduced to form fine fibers and exhibit dispersibility in about 3 hours to 72 hours.
- hypohalous acid or a salt thereof may be added.
- the addition amount is preferably suppressed to about 1.1 equivalents relative to the catalyst.
- the oxidation reaction is stopped by adding an excessive amount of other alcohol and completely consuming the co-oxidant in the system.
- the alcohol to be added it is desirable to use a low molecular weight alcohol such as methanol, ethanol or propanol in order to quickly terminate the reaction.
- ethanol is preferable in consideration of safety and by-products generated by oxidation.
- the amount of aldehyde groups contained in cellulose fibers oxidized if the preferred ranges specified below, in all the reflection color infrared spectrum of the substrate, a peak at 1720 cm -1 or 900 cm -1 derived from an aldehyde group Since it does not exist, the amount of aldehyde groups contained in the oxidized cellulose fiber can also be confirmed by a total reflection color infrared spectrum.
- the amount of aldehyde group contained in the oxidized cellulose fiber is: It can also be confirmed by C-NMR spectrum.
- the cellulose fiber obtained here is less likely to be colored or yellowed as the amount of aldehyde groups is smaller, and can be used as a material suitable as a transparent substrate.
- the amount of aldehyde groups present in the cellulose fiber is 0.20 mmol / g or less, preferably 0.03 mmol / g or less with respect to the weight of cellulose, discoloration hardly occurs and a stable transparent substrate can be provided.
- the amount of aldehyde groups can be used as a material suitable as a transparent base material so that there is little, 0 mmol / g is the most preferable.
- a substrate containing cellulose fibers having an aldehyde group amount exceeding 0.03 mmol / g turns yellow when heated at 100 ° C. for 3 hours or 150 ° C. for 1.5 hours.
- the presence or absence of this discoloration can be confirmed by calculating the YI value from the light transmittance.
- YI value of the transparent base material of this invention after heating at 100 degreeC for 3 hours, or after heating at 150 degreeC for 1.5 hours, it is preferable that YI value is 2 or less. It can be said that there is little discoloration of the transparent base material after a heating as it is the said range.
- the aldehyde group introduced into the cellulose fiber by reduction there is also a method of substituting the aldehyde group introduced into the cellulose fiber by reduction.
- the aldehyde group can be substituted with a hydroxyl group by allowing sodium borohydride to act on the cellulose fiber.
- a further fibrillation treatment can be performed after the oxidation reaction to obtain a cellulose dispersion that is a finer fibrous modified fine cellulose.
- normal juicer mixer Henschel mixer, high speed mixer, shear mixer, ribbon blender, homomixer, homogenizer, high pressure homogenizer, ultra high pressure homogenizer, ultrasonic homogenizer, ball mill, sand mill, planetary mill, three rolls, A grinder, an attritor, a basket mill, etc. can be used.
- the cellulose fiber is immersed in an aqueous medium that is a dispersion medium.
- the pH of the immersed liquid is, for example, 4 or less.
- Cellulose fibers are insoluble in an aqueous medium and become a non-uniform suspension when immersed.
- the pH of the suspension is adjusted to a range of pH 4 or more and pH 12 or less using an alkali.
- the pH is made alkaline between pH 7 and pH 12 to form a carboxylate.
- the nanofiber In the cellulose fiber, since the carboxyl group generated on the surface of the fiber is repelled and diffused in the dispersion medium, the nanofiber is easily isolated and a transparent dispersion can be obtained.
- the transmittance of the dispersion When the transmittance of the dispersion is measured with a spectrophotometer, the transmittance is 90% or more at a wavelength of 660 nm and an optical path length of 1 cm.
- the cellulose fibers are refined by the defibrating process to become cellulose nanofibers.
- the cellulose nanofibers after defibration treatment preferably have a number average fiber diameter (width in the minor axis direction of the fiber) of 50 nm or less.
- the fiber diameter of the cellulose nanofiber can be confirmed by a scanning electron microscope (SEM) or an atomic force microscope (AFM). If the dispersion is insufficient or non-uniform and some of the fibers have a large fiber diameter, there is a problem that the transparency and smoothness of the film are lowered when the dispersion is formed into a film.
- SEM scanning electron microscope
- AFM atomic force microscope
- cellulose fibers such as pulp are oxidized by the above-described oxidation method using TEMPO, carboxyl groups are efficiently introduced on the crystal surface. It has been found that cellulose nanofibers can be prepared with less energy than preparing the.
- the cellulose nanofibers have a fiber diameter in the end direction of 3 nm to 4 nm and a length of about several microns under optimum conditions.
- the cellulose nanofibers prepared by this method are particularly suitable as the forming material of the present invention. Can be used.
- the most efficient defibration can be achieved by processing at a pH of about 10. As the defibration progresses, the pH decreases. However, by adjusting the pH to 10 again and performing the defibrating process again, further refinement can be promoted. It has been reported that, under alkaline conditions, ⁇ -elimination which breaks glycoside bonds of polysaccharides such as cellulose is promoted by heat. For this reason, it is considered that ⁇ elimination progresses and molecular weight reduction becomes remarkable.
- the entanglement between the cellulose fibers as the dispersion becomes gentle due to the decrease in the molecular weight, and the viscosity at 25 ° C. is 2000 mPa ⁇ s (shear rate 10 s ⁇ 1 ) or less in the dispersion having a solid content concentration of 1%. Can do.
- the viscosity of the dispersion liquid is low, processability is improved, and it becomes easy to make a base material having a uniform thickness, and unevenness in transmittance and refractive index is suppressed.
- sodium hydroxide, ammonia, tetraalkylammonium hydroxide, or the like can be used as an alkali used for pH adjustment during the defibrating treatment.
- sodium hydroxide When sodium hydroxide is used, a relatively dense film can be formed.
- the aldehyde contained in a cellulose fiber reacts is a cause of coloring, since sodium hydroxide does not react easily with an aldehyde, coloring can be suppressed.
- ammonia or tetraalkylammonium hydroxide is used, salt precipitation can be suppressed during molding. Further, when a volatile alkali is used in the crosslinking, the progress of the reaction can be promoted.
- the cellulose fiber obtained by the above method has a crystal structure of cellulose I.
- the transparent substrate of the present invention contains cellulose fibers having a crystal structure of cellulose I, and the fiber diameter of the cellulose fibers is preferably 1 nm or more and 200 nm or less.
- membrane can be formed because the fiber diameter of a cellulose fiber is the said range.
- the molecular weight of cellulose fiber has an optimum range because it affects transparency, coloring, strength, and processability.
- a cellulose fiber having a degree of polymerization of 100 or more and 1000 or less is preferable. If the degree of polymerization is greater than 1000, transparency and processability cannot be maintained. On the other hand, when the degree of polymerization is less than 100, the physical strength cannot be maintained.
- reaction such as amino group, epoxy group, hydroxyl group, carbodiimide group, oxazoline group, polyethyleneimine, isocyanate, epichlorohydrin, formaldehyde, glutaraldehyde, diepoxyalkane, etc.
- a compound having a functional functional group is added to a dispersion containing cellulose fibers.
- These additives react with hydroxyl groups, carboxyl groups, and aldehyde groups in oxidized cellulose to improve film performance, particularly film strength, water resistance, moisture resistance, or adhesion to adjacent layers such as polarizers. effective.
- the cellulose fibers can be prevented from dissolving even when immersed in water.
- a polymer compound having two or more functional groups of one or more of carbodiimide, oxazoline, and isocyanate to a fiber containing a polysaccharide having at least a carboxyl group or an amino group, It is possible to obtain a transparent substrate having a water absorption of 50% or less and a light transmittance of 660 nm of 70% or more.
- a cross-linking agent When a cross-linking agent is used as an additive, if an ammonia-based volatile base is used, the reaction proceeds quickly and the effect is more easily obtained. This is because the pH is high, and when the carboxyl group of cellulose forms a salt, it is difficult to react with the crosslinking agent.
- a base such as ammonia
- the base is volatilized, the pH is lowered, the carboxyl group is less likely to be present as a salt, and the reaction is likely to proceed.
- the above functional group is preferably 0.01 equivalent or more and 5 equivalent or less, and more preferably 0.1 equivalent or more and 3 equivalent or less with respect to 1 equivalent of carboxyl group.
- the functional group is less than 0.01 equivalent to the carboxyl group of cellulose, a sufficient crosslinking density cannot be obtained, so the film becomes easy to absorb water and the effect of addition cannot be exhibited. It is not preferable because it is disadvantageous and the molded film is brittle and easily cracked.
- the pH is preferably 3 or more and 6 or less from the viewpoint of reaction efficiency, and hydrochloric acid, acetic acid or the like is preferably used for pH adjustment.
- the transparent substrate of the present invention can be obtained by drying the cellulose fiber.
- a target sheet-like substrate can be obtained by pouring a dispersion containing cellulose fibers into a smooth container and drying at a room temperature to 160 ° C. At this time, the lower the drying temperature, the smoother and uncolored one is obtained.
- the dispersion containing cellulose fibers is poured into a smooth container, and the drying temperature is gradually increased, such as 10 minutes at 100 ° C, 10 minutes at 130 ° C, and 10 minutes at 150 ° C.
- the drying temperature is gradually increased, such as 10 minutes at 100 ° C, 10 minutes at 130 ° C, and 10 minutes at 150 ° C.
- the energy for removing the solvent can be greatly reduced.
- the sheet-like base material obtained by drying, as usual, is singly or superposed, and then pressure is applied with a press machine / calender, etc., smoother and uniform in transmittance and refractive index. A substrate can be obtained.
- the dispersion medium contained in the dispersion containing cellulose fibers is a mixture with alcohol, the drying efficiency is good, and the dispersion medium does not remain in the dried coating film, and a dense film can be formed.
- the alcohol is preferably a low molecular weight alcohol such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-butanol from the viewpoint of cost and boiling point.
- means for drying the dispersion containing cellulose fibers general means such as vacuum drying and hot air drying can be used.
- the content of the cellulose fiber contained in the transparent substrate of the present invention is preferably 1% or more and 99.9% or less.
- a film having a sufficient film thickness can be obtained in a short time and high strength can be obtained.
- the temperature is preferably from 100 ° C. to 200 ° C., more preferably from 100 ° C. to 150 ° C. If the temperature is 100 ° C. or lower, the reaction of the functional group cannot sufficiently proceed, and a sufficient crosslinking density cannot be obtained, so that the dimensional stability due to water absorption or moisture absorption is deteriorated. If it is 200 ° C. or higher, the decomposition reaction of cellulose proceeds and causes coloring. Further, by heating the dried film at 100 ° C. or higher, the fiber that has been defibrated using sodium hydroxide can be sufficiently crosslinked, and the effect of water resistance can be obtained.
- the transparent base material of the present invention preferably has a linear expansion coefficient of 30 to 150 ° C. of 50 ppm / ° C. or less, more preferably 20 ppm / ° C. or less, and still more preferably 8 ppm / ° C. or less. If this upper limit is exceeded, problems such as warpage in the manufacturing process may occur, and bleedout of additives may occur. Moreover, when using a transparent base material as a laminated body, it becomes a cause of peeling. On the other hand, the lower limit value of the linear expansion coefficient is not particularly limited because the smaller the linear expansion coefficient, the less likely to be deformed such as warpage in the manufacturing process.
- a water-system adhesive agent is used.
- the moisture permeability is preferably 1 g / m 2 ⁇ 24 hr or more and 99 g / m 2 ⁇ 24 hr or less
- the transparent substrate of the present invention has a permeability.
- the moisture rate is also preferably 1 g / m 2 ⁇ 24 hr or more and 99 g / m 2 ⁇ 24 hr or less.
- the thickness of the transparent substrate is preferably 10 ⁇ m or more and 200 ⁇ m or less. If it is smaller than 10 ⁇ m, the strength cannot be maintained, which causes cracks and the like. Moreover, when larger than 200 micrometers, it is disadvantageous in cost and the transmittance
- hydrophobic additives include triphenyl phosphate, triethyl phosphate, and trioctyl phosphate as phosphate ester compounds, and dimethyl terephthalate and diethyl terephthalate as carboxylate ester compounds.
- the amount of the hydrophobic additive added is preferably 1% to 20%, more preferably 5% to 20%. If it is less than 1%, the moisture permeability cannot be controlled. If it is more than 20%, the moisture permeability is too low, which may cause a problem in adhesion.
- an ultraviolet absorber In the transparent substrate of the present invention, an ultraviolet absorber, a deterioration preventing agent and the like can be added depending on the application.
- additives such as pigments, dyes, and dispersants can be blended at a level that does not impair the effects of the present invention.
- Examples of the ultraviolet absorber include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (3-tert-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (4 , 6-Diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol, 2,4-dihydroxybenzophenone, 2-hydroxy-4-n-octyloxybenzophenone, etc. And 2-hydroxy-4-n-octyloxybenzophenone having good dispersibility is preferred.
- the content of the ultraviolet absorber in the transparent substrate is preferably 0.001% or more and 5.0% or less, and more preferably 0.01% or more and 1.0% or less with respect to the transparent substrate.
- the content of the UV absorber is less than 0.001% with respect to the transparent substrate, the effect of addition cannot be sufficiently exhibited, and when it exceeds 5.0%, the transmitted light is inhibited, which is not preferable. .
- the ultraviolet absorber can be added at any stage, but the form added immediately before casting is most preferable.
- the deterioration inhibitor can prevent the oxidized cellulose from deteriorating and decomposing.
- the deterioration preventing agent include compounds such as butylamine, hindered amine compounds, benzotriazole UV absorbers, and benzophenone UV absorbers.
- the content of the deterioration preventing agent in the transparent substrate is preferably 0.001% or more and 5.0% or less, and more preferably 0.01% or more and 1.0% or less with respect to the transparent substrate.
- the content of the deterioration preventing agent is less than 0.001% with respect to the transparent substrate, the effect of addition cannot be sufficiently exhibited, and when it exceeds 5.0%, it is disadvantageous in terms of cost and transmitted light. May be inhibited, which is not preferable.
- the deterioration inhibitor can be added at any stage, but the form added immediately before casting is most preferable.
- the transparent substrate of the present invention preferably has a light transmittance at 450 nm of 70% or more after heating at 100 ° C. for 3 hours or after heating at 150 ° C. for 1.5 hours. If the light transmittance at 450 nm after heating at 100 ° C. for 3 hours is in the above range, no coloration occurs. On the other hand, the upper limit of the light transmittance is not particularly limited. If the light transmittance of 70% or more is maintained even after heating, it can be said that the substrate is difficult to discolor. In addition, the light transmittance of the transparent base material after a heating can be adjusted with the aldehyde group amount etc. of the cellulose fiber contained in a transparent base material as above-mentioned.
- the amount of carboxyl group contained in the obtained oxidized cellulose was calculated by the following method. 0.2 g of dry weight equivalent of TEMPO oxidized cellulose is placed in a beaker, and 80 ml of ion exchange water is added. Thereto was added 0.5 ml of a 0.01 M sodium chloride aqueous solution, and 0.1 M hydrochloric acid was added while stirring to adjust the whole to pH 2.0.
- 0.05M aqueous sodium hydroxide solution was injected at 0.015 ml / 30 seconds, and the conductivity and pH value were measured every 30 seconds. The measurement was continued until pH 11. From the obtained conductivity curve, the titration amount of sodium hydroxide was determined, and the carboxyl group content was calculated. As a result of the measurement, the carboxyl group amount obtained here was 1.55 mmol / g.
- the carboxyl group was measured in the same manner as in Preparation Example (2).
- the amount of carboxyl groups of oxidized cellulose after the reoxidation treatment was 1.61 mmol / g.
- the aldehyde groups contained in the oxidized cellulose are converted into carboxyl groups, the amount of carboxyl groups of oxidized cellulose after re-oxidation, the amount of carboxyl groups of oxidized cellulose after TEMPO oxidation treatment, and the amount after re-oxidation treatment
- requiring the difference with the carboxyl group amount of an oxidized cellulose the aldehyde group amount of the oxidized cellulose after a TEMPO oxidation process and the aldehyde group amount of the oxidized cellulose after a reoxidation process can be calculated
- Oxidation treatment with 4-acetamide TEMPO 18 g of cellulose (in terms of absolute dry mass) was added to 700 g of sodium acetate buffer having a pH of 4.8, stirred, swollen and then defibrated with a mixer. 560 g of buffer solution, 1.8 g of 4-acetamido TEMPO and 15.3 g of sodium chlorite were added, 63 g of 0.16 mol / L sodium hypochlorite aqueous solution was added, and oxidation reaction was performed at 60 ° C. for 48 hours. Went. Thereafter, 10 g of ethanol was added to stop the reaction. Subsequently, 0.5N HCl was added dropwise to the reaction solution to lower the pH to 2. This solution was filtered using a nylon mesh, and the solid content was further washed several times with water to remove the reaction reagent and by-products, thereby obtaining oxidized cellulose containing water with a solid content concentration of 4%.
- the carboxyl group was measured in the same manner as in Preparation Example (2). As a result, the carboxyl group amount of oxidized cellulose was 1.60 mmol / g.
- Defibration treatment of oxidized cellulose obtained in Preparation Example (2) After adjusting the oxidized cellulose obtained in Preparation Example (2) to a predetermined concentration in ion-exchanged water and adjusting to pH 10 while stirring The mixture was treated for 1 hour using a mixer (Osaka Chemical, Absolute Mill, 14,000 rpm) and refined to obtain a transparent cellulose dispersion.
- a mixer Osaka Chemical, Absolute Mill, 14,000 rpm
- the molecular weight of the obtained cellulose dispersion was derived from the intrinsic viscosity.
- the oxidized cellulose fiber was sufficiently dried to prepare a solution in a 0.5 M copper ethylenediamine solution to 2 mg / ml cellulose.
- the intrinsic viscosity was determined by measuring the outflow rate of the solution with a Canon-Fenske viscometer, and the method derived from the viscosity equation was used.
- the degree of polymerization was 210 and the molecular weight was found to be about 34,000.
- Defibration treatment of oxidized cellulose obtained in Preparation Example (4) Further, the oxidized cellulose obtained in Preparation Example (4) is subjected to the same defibration treatment as in Preparation Example (5) for 4 hours.
- a transparent cellulose dispersion was obtained by miniaturization. About the obtained cellulose dispersion liquid, molecular weight was derived
- Example 1-4 The cellulose dispersion obtained in Preparation Example (6) was cast on a polystyrene plate, dried in an oven at 50 ° C. for 24 hours, and thicknesses of 20 ⁇ m (Example 1), 40 ⁇ m (Example 2), and 60 ⁇ m (implemented). Examples 3) and 250 ⁇ m (Example 4) films were obtained.
- Example 5 A film similar to that of Example 3 was obtained except that 5% of triphenyl phosphate as a hydrophobic additive was added to the cellulose dispersion obtained in Preparation Example (6).
- Example 6> A film similar to that of Example 3 was obtained except that 0.5% of 2-hydroxy-4-n-octyloxybenzophenone, which is an ultraviolet absorber, was added to the cellulose dispersion obtained in Preparation Example (6). .
- Example 7 Example 3 except that 0.5% of bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, which is a deterioration inhibitor, was added to the cellulose dispersion obtained in Preparation Example (6). A similar film was obtained.
- Example 8 The cellulose dispersion obtained in Preparation Example (6) was deteriorated by 5% of triphenyl phosphate as a hydrophobic additive and 0.5% of 2-hydroxy-4-n-octyloxybenzophenone as an ultraviolet absorber. A film was obtained in the same manner as in Example 3 except that 0.5% of bis (2,2,6,6-tetramethyl-4-piperidyl) succinate as an inhibitor was added.
- Example 9 A film similar to that of Example 3 was obtained except that the cellulose dispersion obtained in Preparation Example (5) was used.
- Example 10 A film similar to that of Example 3 was obtained except that the reaction time of the TEMPO oxidation treatment in Preparation Example (2) was set to 1 hour.
- the reaction time of the TEMPO oxidation treatment in Preparation Example (2) was set to 1 hour.
- they were 1.25 mmol / g and 0.01 mmol / g, respectively.
- the degree of polymerization was 345 and the molecular weight was 56000.
- Examples 11 and 12 The cellulose dispersion obtained in Preparation Example (7) was adjusted to pH 4.7 with hydrochloric acid, and Epocros, WS500 (Nippon Shokubai Co., Ltd.) was added so that the oxazoline group was 1 equivalent with respect to the carboxyl group of cellulose.
- the film was cast on a glass petri dish and dried in an oven at 50 ° C. for 24 hours to obtain films having thicknesses of 10 ⁇ m (Example 11) and 40 ⁇ m (Example 12). This was further dried for one day with a desiccator and then heated at 150 ° C. for 1 hour.
- Examples 13 and 14 The cellulose dispersion obtained in Preparation Example (6) was adjusted to pH 4.7 with hydrochloric acid, and Epocros, WS500 (Nippon Shokubai Co., Ltd.) was added so that the oxazoline group was 1 equivalent to the carboxyl group of cellulose.
- the film was cast on a glass petri dish and dried in an oven at 50 ° C. for 24 hours to obtain films having a thickness of 10 ⁇ m (Example 13) and 40 ⁇ m (Example 14). This was further dried for one day with a desiccator and then heated at 150 ° C. for 1 hour.
- Example 15 and 16> After the cellulose dispersion obtained in Preparation Example (7) was adjusted to pH 4.7 with hydrochloric acid, Epocloth and K-2020E (Nippon Shokubai Co., Ltd.) were added so that the equivalent amount of oxazoline group was 1 equivalent to the carboxyl group of cellulose. did. The film was cast on a glass petri dish and dried in an oven at 50 ° C. for 24 hours to obtain films having thicknesses of 10 ⁇ m (Example 15) and 40 ⁇ m (Example 16). This was further dried for one day with a desiccator and then heated at 150 ° C. for 1 hour.
- Example 17 The dispersion obtained in Preparation Example (5) was adjusted to pH 4.7 with hydrochloric acid, and Epocros WS500 (Nippon Shokubai Co., Ltd.) was added so that the oxazoline group was 1 equivalent to the carboxyl group of cellulose.
- the film was cast on a glass petri dish and dried in an oven at 50 ° C. for 24 hours to obtain a film having a thickness of 10 ⁇ m. This was further dried for one day with a desiccator and then heated at 150 ° C. for 1 hour.
- Example 18 A film similar to that of Example 11 was obtained except that the dispersion obtained in Preparation Example (7) was not adjusted to pH 4.7 with hydrochloric acid.
- Example 19 A film similar to that of Example 12 was obtained except that the dispersion obtained in Preparation Example (7) was used and that Epocros was not added.
- Example 20 and 21 The cellulose dispersion obtained in Preparation Example (7) was adjusted to pH 4.7 with hydrochloric acid, and then Carbodilite V-02-L2 (Nisshinbo Chemical Co., Ltd.) was added so that the amount of carbodiimide group was 1 equivalent to the carboxyl group of cellulose. Added. The film was cast on a glass petri dish and dried in an oven at 50 ° C. for 24 hours to obtain films having a thickness of 10 ⁇ m (Example 20) and 40 ⁇ m (Example 21).
- ⁇ Comparative Example 1> A film similar to that in Example 3 was obtained except that the TEMPO oxidation treatment in Preparation Example (2) was not performed and the cellulose dispersion subjected to only the defibration process described in Preparation Example (4) was used.
- the molecular weight of the obtained cellulose dispersion was derived by the method described in Preparation Example (4). As a result, the degree of polymerization was 1300 and the molecular weight was 210,000.
- Crystallinity (%) (I ⁇ Ia) / I ⁇ 100
- Example 1-21 and Comparative Example 1-3 Light transmittance measurement and YI value calculation
- the light transmittance at 660 nm was measured using a U-4000 spectrophotometer (manufactured by Hitachi, Ltd.).
- the films of Example 1-10 and Comparative Example 1-3 were measured for light transmittance at 450 nm after heating at 100 ° C. for 3 hours using a U-4000 spectrophotometer (manufactured by Hitachi, Ltd.).
- the film of Example 11-21 was measured for light transmittance at 450 nm after heating at 150 ° C. for 1.5 hours using a U-4000 spectrophotometer (manufactured by Hitachi, Ltd.).
- Example 1-10 and Comparative Example 3 the YI value was calculated from the light transmittance at 660 nm measured in Evaluation (4) and the light transmittance at 450 nm after heating at 100 ° C. for 3 hours.
- the YI value was calculated from the light transmittance at 660 nm measured in Evaluation (4) and the light transmittance at 450 nm after heating at 150 ° C. for 1.5 hours. The results are shown in Tables 1 and 2.
- Polarization degree measurement A polyvinyl alcohol film stretched and adsorbed with iodine was prepared, and the films of Example 1-10 and Comparative Example 1-3 were bonded to both sides of this polarizer using an adhesive. Then, a polarizing plate was created. About the produced polarizing plate, the polarization degree after leaving to stand at 60 degreeC90% RH for 500 hours was measured. The evaluation criteria are as follows. The results are shown in Tables 1 and 3. ⁇ : Polarization degree is 99.7% or more ⁇ : Polarization degree is 99.2% or more and less than 99.7% ⁇ : Polarization degree is less than 99.2% The above polarization degree was calculated by the following method.
- the transmittance (single transmittance) of one polarizing plate was measured.
- the transmittance (orthogonal transmittance: H90) in the case of superposition was measured.
- the degree of polarization was calculated by applying the parallel transmittance (H0) and the orthogonal transmittance (H90) to the following equations.
- Polarization degree (%) ⁇ (H0 ⁇ H90) / (H0 + H90) ⁇ 1/2 ⁇ 100
- the single transmittance, the parallel transmittance (H0), and the orthogonal transmittance (H90) are Y values obtained by correcting the visibility with a two-degree field of view (C light source) of JIS Z8701.
- the film containing the cellulose fiber has a high light transmittance, and the polarizing plate prepared using the film is the film.
- the film was found to be difficult to peel. Further, it was found that when a film is formed with cellulose fibers having a small amount of aldehyde groups, a film having heat resistance and hardly discoloring can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Polarising Elements (AREA)
- Wood Science & Technology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
Abstract
Description
以下の手順により、セルロースのTEMPO酸化反応を行った。
天然セルロース:漂白クラフトパルプ(フレッチャー チャレンジ カナダ「Machenzie」、結晶形I型を有する)
TEMPO:市販品(東京化成工業(株)、98%)
次亜塩素酸ナトリウム:市販品(和光純薬(株)、Cl:5%)
亜塩素酸ナトリウム:市販品(関東化学(株)、79%)
臭化ナトリウム:市販品(和光純薬(株))
乾燥重量10gの漂白クラフトパルプを、2Lのガラスビーカー中のイオン交換水500ml中で一晩静置し、パルプを膨潤させた。これを温調付きウォーターバスにより20℃に温度調整し、TEMPO0.1gと臭化ナトリウム1gを添加して攪拌し、パルプ懸濁液とした。さらに攪拌しながら、セルロース重量当たり5mmol/gの次亜塩素酸ナトリウムを添加した。この際、約1Nの水酸化ナトリウム水溶液を添加してパルプ懸濁液のpHを約10.5に保持した。その後、3時間反応を行い、イオン交換水で酸化セルロースを十分に水洗した。
作成例(2)で得られた酸化セルロースの乾燥重量2gに対して、これを固形分10%の懸濁液になるようにイオン交換水を添加し、亜塩素酸ナトリウム1.81gと5M酢酸を20ml添加した。これを48時間室温中で攪拌しながら反応させ、十分に水洗することにより、TEMPO酸化処理により生成したアルデヒド基を酸化した。
セルロース18g(絶乾質量換算)をpH4.8の酢酸ナトリウム緩衝液700gに加え撹拌し、膨潤させた後ミキサーにより解繊した。ここに緩衝液560gと、4-アセトアミドTEMPOを1.8gと亜塩素酸ナトリウム15.3gを加え、0.16mol/L濃度の次亜塩素酸ナトリウム水溶液63gを添加し、60℃で48h酸化反応を行った。その後、エタノール10gを添加し、反応を停止した。続いて反応溶液に0.5NのHClを滴下しpHを2まで低下させた。ナイロンメッシュを用いてこの溶液をろ過し、固形分をさらに水で数回洗浄し、反応試薬や副生成物を除去し、固形分濃度4%の水を含有した酸化セルロースを得た。
作成例(2)で得られた酸化セルロースをイオン交換水中で所定濃度となるように調整し、攪拌しながらpH10とした後、ミキサー(大阪ケミカル、アブソルートミル、14,000rpm)を用いて1時間処理し、微細化することにより透明なセルロース分散液を得た。
また、作成例(3)で得られた酸化セルロースを、作成例(5)と同様の解繊処理により微細化し、透明なセルロース分散液を得た。得られたセルロース分散液については、作成例(5)と同様に、極限粘度から分子量の導出を行った。その結果、重合度は309であり、分子量は約50000でることがわかった。
また、作成例(4)で得られた酸化セルロースを、作成例(5)と同様の解繊処理を4時間行うことにより微細化し、透明なセルロース分散液を得た。得られたセルロース分散液については、作成例(5)と同様に、極限粘度から分子量の導出を行った。その結果、重合度は346であり、分子量は約56000でることがわかった。
作成例(6)で得られたセルロース分散液をポリスチレンプレート上にキャストし、50℃のオーブン中で24時間かけて乾燥させ厚み20μm(実施例1)、40μm(実施例2)、60μm(実施例3)、250μm(実施例4)のフィルムを得た。
作成例(6)で得られたセルロース分散液に、疎水性添加剤であるトリフェニルホスフェートを5%添加した以外は、実施例3と同様のフィルムを得た。
作成例(6)で得られたセルロース分散液に、紫外線吸収剤である2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンを0.5%添加した以外は、実施例3と同様のフィルムを得た。
作成例(6)で得られたセルロース分散液に、劣化防止剤であるビス(2,2,6,6-テトラメチル-4-ピペリジル)スクシネートを0.5%添加した以外は、実施例3と同様のフィルムを得た。
作成例(6)で得られたセルロース分散液に、疎水性添加剤であるトリフェニルホスフェートを5%、紫外線吸収剤である2-ヒドロキシ-4-n-オクチルオキシベンゾフェノンを0.5%、劣化防止剤であるビス(2,2,6,6-テトラメチル-4-ピペリジル)スクシネートを0.5%、添加した以外は、実施例3と同様のフィルムを得た。
作成例(5)で得られたセルロース分散液を用いた以外は、実施例3と同様のフィルムを得た。
作成例(2)のTEMPO酸化処理の反応時間を1時間とした以外は、実施例3と同様のフィルムを得た。ここで、得られた酸化セルロースのカルボキシル基量及びアルデヒド基量について、作成例(3)に記載の方法で測定した結果、それぞれ1.25mmol/g、0.01mmol/gであった。また、得られたセルロース分散液について、作成例(5)に記載の方法で分子量の導出を行った結果、重合度は345であり、分子量は56000であった。
作成例(7)で得られたセルロース分散液を塩酸でpH4.7とした後エポクロス、WS500(日本触媒(株))をセルロースのカルボキシル基に対しオキサゾリン基が1等量となるよう添加した。ガラスシャーレ上にキャストし、50℃のオーブン中で24時間かけて乾燥させ厚み10μm(実施例11)、40μm(実施例12)のフィルムを得た。さらにこれをデシケーターで一日乾燥させた後150℃で1時間加熱した。
作成例(6)で得られたセルロース分散液を塩酸でpH4.7とした後エポクロス、WS500(日本触媒(株))をセルロースのカルボキシル基に対しオキサゾリン基が1等量となるよう添加した。ガラスシャーレ上にキャストし、50℃のオーブン中で24時間かけて乾燥させ厚み10μm(実施例13)、40μm(実施例14)のフィルムを得た。さらにこれをデシケーターで一日乾燥させた後150℃で1時間加熱した。
作成例(7)で得られたセルロース分散液を塩酸でpH4.7とした後エポクロス、K-2020E(日本触媒(株))をセルロースのカルボキシル基に対しオキサゾリン基が1等量となるよう添加した。ガラスシャーレ上にキャストし、50℃のオーブン中で24時間かけて乾燥させ厚み10μm(実施例15)、40μm(実施例16)のフィルムを得た。さらにこれをデシケーターで一日乾燥させた後150℃で1時間加熱した。
作成例(5)で得られた分散液を塩酸でpH4.7とした後エポクロスWS500(日本触媒(株))をセルロースのカルボキシル基に対しオキサゾリン基が1等量となるよう添加した。ガラスシャーレ上にキャストし、50℃のオーブン中で24時間かけて乾燥させ厚み10μmのフィルムを得た。さらにこれをデシケーターで一日乾燥させた後150℃で1時間加熱した。
作成例(7)で得られた分散液を塩酸でpH4.7としなかったこと以外は実施例11と同様のフィルムを得た。
作成例(7)で得られた分散液を用い、エポクロスを添加しなかったこと以外は実施例12と同様のフィルムを得た。
作成例(7)で得られたセルロース分散液を塩酸でpH4.7とした後カルボジライトV-02-L2(日清紡ケミカル(株))をセルロースのカルボキシル基に対しカルボジイミド基が1等量となるよう添加した。ガラスシャーレ上にキャストし、50℃のオーブン中で24時間かけて乾燥させ厚み10μm(実施例20)、40μm(実施例21)のフィルムを得た。
作成例(2)のTEMPO酸化処理を行わず、作成例(4)に記載の解繊処理のみを行ったセルロース分散液を用いた以外は、実施例3と同様のフィルムを得た。得られたセルロース分散液について、作成例(4)に記載の方法で分子量の導出を行った結果、重合度は1300であり、分子量は210000であった。
作成例(2)のTEMPO酸化処理で使用するTEMPOを0.2gとし、反応時間を0.5時間とした以外は、実施例9と同様のフィルムを得た。ここで、得られた酸化セルロースのカルボキシル基量及びアルデヒド基量について、作成例(3)に記載の方法で測定した結果、それぞれ0.61mmol/g、0.26mmol/gであった。また、得られたセルロース分散液について、作成例(5)に記載の方法で分子量の導出を行った結果、重合度は1200であり、分子量は195000であった。
市販の厚み80nmのトリアセチルセルロースフィルムを用いた。
以下の方法により、セルロース繊維及びフィルムの評価を行った。
セルロース繊維の結晶構造は、X線回折法により確認した。実施例1-21及び比較例1、2のフィルムのX線回折スペクトルを測定した時、2θ=14.60°、16.5°及び22.7°においてピークを示したため、実施例1-21及び比較例1、2で用いられたセルロース繊維は、セルロースIの結晶構造を有することがわかった。このとき、結晶化度は下記式により算出した。
(式) 結晶化度(%)=(I-Ia)/I×100
I :2θ=14.60°のピーク強度
Ia:2θ=12°と18°の強度を結んだ直線と、2θ=14.60°の強度から真直ぐ下ろした直線が交わる点の強度(アモルファス領域のピーク強度)
実施例1-21及び比較例1、2のセルロース分散液を0.1%濃度で水に分散あるいは溶解させたものを原子間力顕微鏡(AFM)用試料台に薄く延ばし、加熱乾燥させて観察用試料を作成し、原子間力顕微鏡(AFM)にて観察を行った。その結果を表1-3に示す。
実施例1-10及び比較例1-3のフィルムの水蒸気透過度(g/m2/24hr)を、25℃、60%RH雰囲気下で、JIS Z0208に準拠し、カップ法により測定した。その結果を表1、3に示す。
実施例1-21及び比較例1-3のフィルムについて、U-4000分光光度計(日立製作所製)を用いて、660nmにおける光線透過率を測定した。また、実施例1-10及び比較例1-3のフィルムについて、U-4000分光光度計(日立製作所製)を用いて、100℃で3時間加熱した後の450nmにおける光線透過率を測定した。また、実施例11-21のフィルムについて、U-4000分光光度計(日立製作所製)を用いて、150℃で1.5時間加熱した後の450nmにおける光線透過率を測定した。その結果を表1、2に示す。
また、実施例1-10及び比較例3のフィルムについて、評価(4)で測定した660nmにおける光線透過率及び100℃で3時間加熱した後の450nmにおける光線透過率から、YI値を算出した。また、実施例11-21のフィルムについて、評価(4)で測定した660nmにおける光線透過率及び150℃で1.5時間加熱した後の450nmにおける光線透過率から、YI値を算出した。その結果を表1、2に示す。
実施例1-10及び比較例1-3のフィルムについて、窒素雰囲気下20℃~100℃(2nd heat)での線膨張係数を、エスアイアイ・ナノテクノロジー社製EXSTAR TMA/SS6100 を用いて測定した。その結果を表1、3に示す。
延伸させてヨウ素を吸着させたポリビニルアルコールフィルムを作成し、この偏光子の両面に、実施例1-10及び比較例1-3のフィルムを、接着剤を用いて貼合し、偏光板を作成した。
作成した偏光板について、60℃90%RHでの500時間放置した後の偏光度を測定した。評価基準は下記の通りである。その結果を表1、3に示す。
○ : 偏光度が99.7%以上
△ : 偏光度が99.2%以上99.7%未満
× : 偏光度が99.2%未満
上記の偏光度は、下記の方法で算出した。
分光光度計(村上色彩技術研究所製 DOT-3)を用いて、1枚の偏光板の透過率(単体透過率)を測定した。また、同様の分光光度計を用いて、2枚の同じ偏光板を両者の透過軸が平行となるように重ね合わせた場合の透過率(平行透過率:H0)および、両者の透過軸が直交するように重ね合わせた場合の透過率(直交透過率:H90)を測定した。そして、平行透過率(H0)および、直交透過率(H90)を、以下の式に適用することで偏光度を算出した。
(式) 偏光度(%)={(H0-H90)/(H0+H90)}1/2×100
なお、単体透過率、平行透過率(H0)、直交透過率(H90)は、JIS Z8701の2度視野(C光源)により視感度補整したY値である。
実施例1-10及び比較例1-3のフィルムを用いて作成した偏光板を60℃で24時間乾燥後、25℃、60%RHでのセロハン粘着テープによる剥離試験を行った。偏光板から実施例1-10及び比較例1-3のフィルムを剥がし、その剥離の程度を下記の評価基準により評価した。その結果を表1、2に示す。
○ : 剥がれが生じなかった。
△ : 部分的に剥離した。
× : 全面的に剥離した。
実施例11-21のフィルムについて、それぞれを40mg程度カッターで切り取った後電子天秤で重さを量った。続いて純水に30分浸漬し、再度同様に重さを量り浸漬前後の重量から吸水率を測定した。
Claims (18)
- 少なくとも酸化された多糖類を含み、30℃以上150℃以下における線膨張係数が50ppm/℃以下であり、660nmの光線透過率が70%以上であることを特徴とする透明基材。
- 前記透明基材が、オキサゾリン、イソシアネートのいずれか一種類以上の官能基を1分子あたり二つ以上有する高分子化合物を含むことを特徴とする請求項1に記載の透明基材。
- 前記多糖類がセルロースIの結晶構造を有するセルロース繊維であり、前記セルロース繊維の繊維径が1nm以上200nm以下であることを特徴とする請求項2に記載の透明基材。
- 前記セルロース繊維のアルデヒド基量が0.2mmol/g以下であることを特徴とする請求項3に記載の透明基材。
- 前記セルロース繊維のカルボキシル基量が0.1mmol/g以上2.5mmol/g以下であることを特徴とする請求項4に記載の透明基材。
- 前記セルロース繊維の重合度が100以上1000以下である請求項5に記載の透明基材。
- 前記セルロース繊維の含有率が1%以上99.9%以下であることを特徴とする請求項5に記載の透明基材。
- 前記セルロース繊維のほかに、紫外線吸収剤、劣化防止剤、疎水性添加剤のいずれかを含むことを特徴とする請求項5に記載の透明基材。
- 100℃で3時間加熱した後の450nmの光線透過率が70%以上であることを特徴とする請求項1に記載の透明基材。
- 透湿率が1g/m2/24hr以上99g/m2/24hr以下であることを特徴とする請求項1に記載の透明基材。
- 150℃で1.5時間加熱した後のYI値が2以下であることを特徴とする請求項2に記載の透明基材。
- 水へ1時間浸漬させた場合の吸水率が50%以下であることを特徴とする請求項2に記載の透明基材。
- 厚みが10μm以上200μm以下であることを特徴とする請求項5に記載の透明基材。
- 請求項5に記載の透明基材を用いた偏光板保護フィルム。
- セルロースを、水中で、2,2,6,6-テトラメチル-1-ピペリジン-N-オキシル又はその誘導体を触媒とし、共酸化剤を作用させることで酸化させる酸化工程と、
酸化したセルロースを水中で解繊して、セルロース繊維を形成する解繊工程と、
前記セルロース繊維を含むセルロース分散液を用いて透明基材を形成する基材形成工程と、
をこの順で備えることを特徴とする透明基材の製造方法。 - 前記解繊工程の後であって基材形成工程の前に、前記セルロース繊維とオキサゾリン、イソシアネートのいずれか一種類以上の官能基を1分子あたり二つ以上有する高分子化合物とを含むセルロース分散液を調製する調製工程を備えることを特徴とする請求項15に記載の透明基材の製造方法。
- 前記調製工程において、前記高分子化合物を添加するときのpHが3以上6以下であることを特徴とする請求項16に記載の透明基材の製造方法。
- 前記基材形成工程の後、さらに、前記透明基材を加熱処理する加熱工程を備えることを特徴とする請求項17に記載の透明基材の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11823410.3A EP2615128B1 (en) | 2010-09-06 | 2011-08-24 | Transparent base and method for producing same |
KR1020137005190A KR20130106356A (ko) | 2010-09-06 | 2011-08-24 | 투명 기재 및 그의 제조 방법 |
JP2012532926A JP5786862B2 (ja) | 2010-09-06 | 2011-08-24 | 透明基材およびその製造方法 |
CN2011800382763A CN103052674A (zh) | 2010-09-06 | 2011-08-24 | 透明基材及其制造方法 |
US13/784,123 US20130184380A1 (en) | 2010-09-06 | 2013-03-04 | Transparent Substrate |
US14/257,842 US9388301B2 (en) | 2010-09-06 | 2014-04-21 | Cellulose-derived transparent substrate |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-198897 | 2010-09-06 | ||
JP2010198897 | 2010-09-06 | ||
JP2011061644 | 2011-03-18 | ||
JP2011-061644 | 2011-03-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/784,123 Continuation US20130184380A1 (en) | 2010-09-06 | 2013-03-04 | Transparent Substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012032931A1 true WO2012032931A1 (ja) | 2012-03-15 |
Family
ID=45810534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/069009 WO2012032931A1 (ja) | 2010-09-06 | 2011-08-24 | 透明基材およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20130184380A1 (ja) |
EP (1) | EP2615128B1 (ja) |
JP (1) | JP5786862B2 (ja) |
KR (1) | KR20130106356A (ja) |
CN (1) | CN103052674A (ja) |
WO (1) | WO2012032931A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013256090A (ja) * | 2012-06-14 | 2013-12-26 | Toppan Printing Co Ltd | 防汚フィルムおよびその製造方法 |
WO2015087868A1 (ja) * | 2013-12-10 | 2015-06-18 | 国立大学法人東京大学 | セルロース繊維及びその製造方法、微細セルロース繊維分散体及びその製造方法、並びに微細セルロース繊維の製造方法 |
JP2015518914A (ja) * | 2012-06-04 | 2015-07-06 | シマテーズ | 酸化されたセルロース系材料、それを得るための方法、及び圧定布としてのその使用 |
JP2016160406A (ja) * | 2015-03-05 | 2016-09-05 | 凸版印刷株式会社 | ガスバリア膜、セルロース系材料の分散液およびガスバリア膜の製造方法 |
JP2016188343A (ja) * | 2015-03-30 | 2016-11-04 | 日本製紙株式会社 | セルロースナノファイバー及びその製造方法 |
JP2016211116A (ja) * | 2015-05-12 | 2016-12-15 | 凸版印刷株式会社 | セルロースナノファイバーシート |
JP2018095761A (ja) * | 2016-12-15 | 2018-06-21 | 日本製紙株式会社 | 化学変性パルプ乾燥固形物の製造方法 |
JP2018104703A (ja) * | 2016-12-27 | 2018-07-05 | 花王株式会社 | 樹脂組成物 |
WO2019044577A1 (ja) * | 2017-08-30 | 2019-03-07 | 住友化学株式会社 | 偏光板 |
JP2019194391A (ja) * | 2015-05-12 | 2019-11-07 | 凸版印刷株式会社 | セルロースナノファイバーシート |
JP2020037650A (ja) * | 2018-09-04 | 2020-03-12 | 日本製紙株式会社 | 酸化セルロースナノファイバー、および酸化セルロースナノファイバー分散液 |
JP2020193258A (ja) * | 2019-05-27 | 2020-12-03 | 王子ホールディングス株式会社 | シート |
JP2021073357A (ja) * | 2021-02-04 | 2021-05-13 | 王子ホールディングス株式会社 | シート |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2762499B1 (en) * | 2011-09-30 | 2017-07-19 | Nippon Paper Industries Co., Ltd. | Method for producing cellulose nanofibers |
CN105780567B (zh) * | 2016-02-02 | 2017-11-07 | 华南理工大学 | 一种用于柔性oled底发射的纳米纤维基板材料及其制备方法 |
KR102521525B1 (ko) * | 2017-06-28 | 2023-04-14 | 닛토덴코 가부시키가이샤 | 편광판 |
JP7308758B2 (ja) * | 2017-12-11 | 2023-07-14 | 住友化学株式会社 | 硬化性組成物、光学積層体及び画像表示装置 |
CA3111192A1 (en) * | 2018-08-29 | 2020-03-05 | The Trustees Of Columbia University In The City Of New York | Particle-filament composite materials |
CN109267319A (zh) * | 2018-09-21 | 2019-01-25 | 南京林业大学 | 一种可屏蔽紫外光线的高透明纤维素纳米纤丝膜制备方法 |
KR102169831B1 (ko) * | 2019-01-18 | 2020-10-27 | 경희대학교 산학협력단 | 표면증강라만산란용 기판 및 이의 제조방법 |
KR102245673B1 (ko) * | 2019-01-18 | 2021-04-28 | 경희대학교 산학협력단 | 표면증강라만산란용 투명 기판 및 이의 제조방법 |
CN110204748B (zh) * | 2019-04-29 | 2022-06-07 | 福建农林大学 | 一种高雾度高透光率柔性纤维素膜的制备方法及其应用 |
EP3875490A1 (en) | 2020-03-05 | 2021-09-08 | Metadynea Austria GmbH | Aqueous resin composition and use as binder in fibre-based products |
KR20210139010A (ko) * | 2020-05-13 | 2021-11-22 | 현대자동차주식회사 | 투명도와 강도가 우수한 복합 셀룰로오스 나노 시트 및 그 제조방법 |
CN113910470B (zh) * | 2021-09-27 | 2024-04-16 | 惠州市富丽电子有限公司 | 一种偏光片研磨加工刀具的清洗工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003512540A (ja) * | 1999-10-15 | 2003-04-02 | ウェヤーハウザー・カンパニー | カルボキシル化セルロース繊維を製造する方法及び該方法の製品 |
JP2010043144A (ja) * | 2008-08-10 | 2010-02-25 | Univ Of Tokyo | 複合材料、機能材料、複合材料の製造方法、及び、複合材料薄膜の製造方法 |
WO2010055839A1 (ja) * | 2008-11-13 | 2010-05-20 | 住友ベークライト株式会社 | 複合体組成物および複合体 |
JP2010116477A (ja) | 2008-11-13 | 2010-05-27 | Sumitomo Bakelite Co Ltd | 複合体組成物 |
JP2010168572A (ja) * | 2008-12-26 | 2010-08-05 | Kao Corp | ガスバリア用材料及びガスバリア性成形体とその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6315042B1 (en) | 2000-07-26 | 2001-11-13 | Halliburton Energy Services, Inc. | Oil-based settable spotting fluid |
US20080000603A1 (en) * | 2006-06-29 | 2008-01-03 | Neogi Amar N | Covalent Bonding of Carboxylated Cellulose Fiber Webs |
WO2009069641A1 (ja) * | 2007-11-26 | 2009-06-04 | The University Of Tokyo | セルロースナノファイバーとその製造方法、セルロースナノファイバー分散液 |
CN101932416B (zh) * | 2007-12-21 | 2013-12-04 | 三菱化学株式会社 | 纤维复合体 |
WO2009084566A1 (ja) * | 2007-12-28 | 2009-07-09 | Nippon Paper Industries Co., Ltd. | セルロースナノファイバーの製造方法、セルロースの酸化触媒及びセルロースの酸化方法 |
WO2010074340A1 (ja) * | 2008-12-26 | 2010-07-01 | 花王株式会社 | ガスバリア用材料及びガスバリア性成形体とその製造方法 |
-
2011
- 2011-08-24 WO PCT/JP2011/069009 patent/WO2012032931A1/ja active Application Filing
- 2011-08-24 CN CN2011800382763A patent/CN103052674A/zh active Pending
- 2011-08-24 KR KR1020137005190A patent/KR20130106356A/ko active Search and Examination
- 2011-08-24 EP EP11823410.3A patent/EP2615128B1/en active Active
- 2011-08-24 JP JP2012532926A patent/JP5786862B2/ja not_active Expired - Fee Related
-
2013
- 2013-03-04 US US13/784,123 patent/US20130184380A1/en not_active Abandoned
-
2014
- 2014-04-21 US US14/257,842 patent/US9388301B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003512540A (ja) * | 1999-10-15 | 2003-04-02 | ウェヤーハウザー・カンパニー | カルボキシル化セルロース繊維を製造する方法及び該方法の製品 |
JP2010043144A (ja) * | 2008-08-10 | 2010-02-25 | Univ Of Tokyo | 複合材料、機能材料、複合材料の製造方法、及び、複合材料薄膜の製造方法 |
WO2010055839A1 (ja) * | 2008-11-13 | 2010-05-20 | 住友ベークライト株式会社 | 複合体組成物および複合体 |
JP2010116477A (ja) | 2008-11-13 | 2010-05-27 | Sumitomo Bakelite Co Ltd | 複合体組成物 |
JP2010168572A (ja) * | 2008-12-26 | 2010-08-05 | Kao Corp | ガスバリア用材料及びガスバリア性成形体とその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2615128A4 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015518914A (ja) * | 2012-06-04 | 2015-07-06 | シマテーズ | 酸化されたセルロース系材料、それを得るための方法、及び圧定布としてのその使用 |
JP2013256090A (ja) * | 2012-06-14 | 2013-12-26 | Toppan Printing Co Ltd | 防汚フィルムおよびその製造方法 |
WO2015087868A1 (ja) * | 2013-12-10 | 2015-06-18 | 国立大学法人東京大学 | セルロース繊維及びその製造方法、微細セルロース繊維分散体及びその製造方法、並びに微細セルロース繊維の製造方法 |
JP2015113376A (ja) * | 2013-12-10 | 2015-06-22 | 国立大学法人 東京大学 | セルロース繊維及びその製造方法、微細セルロース繊維分散体及びその製造方法、並びに微細セルロース繊維の製造方法 |
JP2016160406A (ja) * | 2015-03-05 | 2016-09-05 | 凸版印刷株式会社 | ガスバリア膜、セルロース系材料の分散液およびガスバリア膜の製造方法 |
JP2016188343A (ja) * | 2015-03-30 | 2016-11-04 | 日本製紙株式会社 | セルロースナノファイバー及びその製造方法 |
JP2016211116A (ja) * | 2015-05-12 | 2016-12-15 | 凸版印刷株式会社 | セルロースナノファイバーシート |
JP2019194391A (ja) * | 2015-05-12 | 2019-11-07 | 凸版印刷株式会社 | セルロースナノファイバーシート |
JP2018095761A (ja) * | 2016-12-15 | 2018-06-21 | 日本製紙株式会社 | 化学変性パルプ乾燥固形物の製造方法 |
WO2018110627A1 (ja) * | 2016-12-15 | 2018-06-21 | 日本製紙株式会社 | 化学変性パルプ乾燥固形物の製造方法 |
WO2018123985A1 (ja) * | 2016-12-27 | 2018-07-05 | 花王株式会社 | 樹脂組成物 |
JP2018104703A (ja) * | 2016-12-27 | 2018-07-05 | 花王株式会社 | 樹脂組成物 |
JP7223498B2 (ja) | 2016-12-27 | 2023-02-16 | 花王株式会社 | 樹脂組成物 |
WO2019044577A1 (ja) * | 2017-08-30 | 2019-03-07 | 住友化学株式会社 | 偏光板 |
JP2019045564A (ja) * | 2017-08-30 | 2019-03-22 | 住友化学株式会社 | 偏光板 |
KR20200044876A (ko) * | 2017-08-30 | 2020-04-29 | 스미또모 가가꾸 가부시키가이샤 | 편광판 |
KR102618402B1 (ko) * | 2017-08-30 | 2023-12-27 | 스미또모 가가꾸 가부시키가이샤 | 편광판 |
JP2020037650A (ja) * | 2018-09-04 | 2020-03-12 | 日本製紙株式会社 | 酸化セルロースナノファイバー、および酸化セルロースナノファイバー分散液 |
JP7283874B2 (ja) | 2018-09-04 | 2023-05-30 | 日本製紙株式会社 | 酸化セルロースナノファイバー、および酸化セルロースナノファイバー分散液 |
JP2020193258A (ja) * | 2019-05-27 | 2020-12-03 | 王子ホールディングス株式会社 | シート |
WO2020241588A1 (ja) * | 2019-05-27 | 2020-12-03 | 王子ホールディングス株式会社 | シート |
JP2021073357A (ja) * | 2021-02-04 | 2021-05-13 | 王子ホールディングス株式会社 | シート |
Also Published As
Publication number | Publication date |
---|---|
JP5786862B2 (ja) | 2015-09-30 |
KR20130106356A (ko) | 2013-09-27 |
CN103052674A (zh) | 2013-04-17 |
US20130184380A1 (en) | 2013-07-18 |
US20140228487A1 (en) | 2014-08-14 |
EP2615128A1 (en) | 2013-07-17 |
EP2615128A4 (en) | 2014-01-29 |
US9388301B2 (en) | 2016-07-12 |
JPWO2012032931A1 (ja) | 2014-01-20 |
EP2615128B1 (en) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5786862B2 (ja) | 透明基材およびその製造方法 | |
JP6575128B2 (ja) | セルロースナノファイバーシートの製造方法 | |
EP2546297B1 (en) | Fine cellulose fiber dispersion liquid and manufacturing method thereof, cellulose film and laminate body | |
US11643475B2 (en) | Thickener, composition, and sheet | |
JP5381338B2 (ja) | セルロースナノファイバーの製造方法 | |
WO2012043103A1 (ja) | セルロースナノファイバー | |
EP3369748A1 (en) | Modified cellulose fine fibers and method for producing same | |
JP6189659B2 (ja) | 防曇剤および防曇用フィルム | |
Zhang et al. | The effects of cellulose nanocrystal and cellulose nanofiber on the properties of pumpkin starch-based composite films | |
EP3786188A1 (en) | Sulfonated pulp fibers, derivative pulp, sulfonated fine cellulose fibers, method for producing sulfonated fine cellulose fibers, and method for producing sulfonated pulp fibers | |
JPWO2004076490A1 (ja) | 湿熱安定性を改良したセルロースエステル | |
JP2010235679A (ja) | セルロースナノファイバーの製造方法 | |
Wang et al. | Ultraviolet light enhanced sodium persulfate oxidation of cellulose to facilitate the preparation of cellulose nanofibers | |
JP6631260B2 (ja) | 防曇フィルム及び防曇用組成物 | |
CA3134513C (en) | Nanocellulose dispersion liquid and method for producing the same | |
JP7031144B2 (ja) | 樹脂成形体、樹脂成形体の製造方法、および樹脂組成物 | |
JP7131296B2 (ja) | 微細繊維状セルロース含有組成物およびその製造方法 | |
JP4682308B2 (ja) | セルロースエステル又はそのフイルム及びその製造方法 | |
JP6965909B2 (ja) | セルロースナノファイバーシート | |
JP6888274B2 (ja) | 成形用組成物および成形体 | |
EP4269100A1 (en) | Laminate and method of manufacturing laminate | |
JP7024217B2 (ja) | 樹脂成形体 | |
WO2023013632A1 (ja) | 積層体、表面保護層用アンカー剤、アンカーシート、積層シート及びその応用 | |
JP2024141945A (ja) | 透明フィルム及びその製造方法、近赤外線吸収フィルター、並びに遮熱フィルター | |
TW202421892A (zh) | 纖維素奈米纖維、及包含其之水系分散組合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180038276.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11823410 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012532926 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20137005190 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2011823410 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011823410 Country of ref document: EP |