WO2012017824A1 - リチウム二次電池およびその制御システム、ならびにリチウム二次電池の状態検出方法 - Google Patents

リチウム二次電池およびその制御システム、ならびにリチウム二次電池の状態検出方法 Download PDF

Info

Publication number
WO2012017824A1
WO2012017824A1 PCT/JP2011/066442 JP2011066442W WO2012017824A1 WO 2012017824 A1 WO2012017824 A1 WO 2012017824A1 JP 2011066442 W JP2011066442 W JP 2011066442W WO 2012017824 A1 WO2012017824 A1 WO 2012017824A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
lithium secondary
voltage
negative electrode
discharge
Prior art date
Application number
PCT/JP2011/066442
Other languages
English (en)
French (fr)
Inventor
入山 次郎
徹也 梶田
川崎 大輔
竜一 笠原
沼田 達治
Original Assignee
日本電気株式会社
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, Necエナジーデバイス株式会社 filed Critical 日本電気株式会社
Priority to CN201180038349.9A priority Critical patent/CN103053066B/zh
Priority to US13/811,837 priority patent/US9018916B2/en
Publication of WO2012017824A1 publication Critical patent/WO2012017824A1/ja
Priority to US14/670,971 priority patent/US9768476B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This embodiment relates to a lithium secondary battery having a negative electrode using silicon oxide as a negative electrode active material, its control system, and a state detection method of the lithium secondary battery.
  • Patent Documents 1 to 3 disclose a system that detects a state of charge of a secondary battery (amount of charge or SOC (State Of Charge)) based on the battery voltage of the secondary battery.
  • dV / dQ calculating means for calculating a value of dV / dQ, which is a ratio of a change amount dV of the battery voltage V of the secondary battery to a change amount dQ of the storage amount Q, is provided.
  • Patent Document 5 discloses a lithium secondary battery having a negative electrode using silicon oxide as a negative electrode active material.
  • the lithium ion conductivity of the silicon oxide used in the negative electrode is doped.
  • Patent Documents 1 to 3 can detect the deterioration state of the secondary battery (decrease in battery capacity or increase in internal resistance), but these methods measure the battery voltage. Therefore, since the deterioration state is determined, information on local reaction bias inside the negative electrode cannot be obtained. Further, in the technique disclosed in Patent Document 4, it is possible to determine the point of the amount of electricity at which a phase transition accompanied by a minute voltage change of the electrode active material can be determined, but the ratio of each phase at the end of charging is quantified. Cannot be estimated automatically. Therefore, it is possible to quantitatively detect the non-uniform reaction state of the negative electrode of a lithium secondary battery using silicon oxide as the negative electrode active material, that is, at what proportion of locations where the lithium concentration is high and low There is a problem that cannot be detected.
  • This embodiment is to provide a control system for a lithium secondary battery that can solve the above-described problems.
  • a control system for a lithium secondary battery includes a positive electrode, a negative electrode using silicon oxide as a negative electrode active material, and a means for obtaining a potential of the negative electrode with respect to a lithium reference electrode.
  • the calculation means for calculating the intensity ratio of the two peaks appearing on the V-dQ / dV curve, and the detection means for detecting the state of the negative electrode using the intensity ratio.
  • the lithium secondary battery according to the present embodiment is a lithium secondary battery including a positive electrode, a negative electrode using silicon oxide as a negative electrode active material, and a lithium reference electrode having a reference potential with respect to the negative electrode.
  • a charge / discharge control unit that repeatedly charges and discharges the lithium secondary battery; a voltage V of the negative electrode with respect to the lithium reference electrode when the lithium secondary battery is discharged; and a discharge capacity of the lithium secondary battery
  • a V-dQ / dV curve representing a relationship between a measurement unit that measures Q, dQ / dV that is a ratio of the change amount dQ of the discharge capacity Q to the change amount dV of the voltage V, and the voltage V
  • a generating unit for generating, a peak intensity ratio calculating unit for calculating an intensity ratio of two peaks appearing on the V-dQ / dV curve with respect to two voltage values at the voltage V, and using the intensity ratio in front
  • a state detection method for a lithium secondary battery includes a positive electrode, a negative electrode using silicon oxide as a negative electrode active material, and a lithium reference electrode having a reference potential with respect to the negative electrode.
  • FIG. 5 is a block diagram showing the control system of the lithium secondary battery of the first embodiment.
  • a control system 1 for a lithium secondary battery includes a lithium secondary battery 2, a charge / discharge control unit 3, a measurement unit 4, a generation unit 5, a peak intensity ratio calculation unit 6, and a peak intensity ratio comparison. Part 7.
  • the measurement unit 4, the generation unit 5, the peak intensity ratio calculation unit 6, and the peak intensity ratio comparison unit 7 are essential components.
  • the lithium secondary battery 2 and the charge / discharge control unit 3 are arbitrarily configured.
  • the lithium secondary battery 2 includes a positive electrode 21, a negative electrode 22, and a metal lithium reference electrode 23. Silicon oxide is used for the negative electrode 22 as a negative electrode active material.
  • the metallic lithium reference electrode 23 is one of means for obtaining the potential of the negative electrode 22 with respect to lithium.
  • the silicon oxide described in Patent Document 5 can be used as a negative electrode active material of the negative electrode 22.
  • silicon oxides include SiO y (0 ⁇ y ⁇ 2), SiLi x O y (x> 0, 2>y> 0), silicates, and trace amounts of metal elements in these silicon oxides. The thing which added the nonmetallic element is mentioned. These silicon oxides may be crystalline or amorphous. These may use only 1 type and may use 2 or more types together.
  • configurations other than the negative electrode 22, for example, the positive electrode 21, the electrolytic solution, the separator, and the like can be those used in known lithium secondary batteries.
  • Examples of the positive electrode active material of the positive electrode 21 include lithium manganate having a layered structure such as LiMnO 2 , Li x Mn 2 O 4 (0 ⁇ x ⁇ 2) or lithium manganate having a spinel structure, LiCoO 2 , LiNiO 2 , These transition metals are partially replaced with other metals. LiFePO 4 having an olivine type crystal structure can also be used. These positive electrode active materials can also be used individually by 1 type or in combination of 2 or more types.
  • the electrolytic solution material is not particularly limited as long as it is stable at the redox potential of metallic lithium, and a known nonaqueous electrolytic solution can be employed.
  • An electrolytic solution in which an electrolyte salt is dissolved in a solvent is most preferable.
  • cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, and dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, etc.
  • a mixture of two or more lactones such as chain carbonates and ⁇ -butyrolactone is preferred.
  • electrolyte salt examples include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2).
  • a lithium salt such as 2 .
  • electrolyte salts can be used alone or in combination of two or more.
  • an ionic liquid such as a quaternary ammonium-imide salt can be used.
  • the separator is not particularly limited, and a known separator can be adopted.
  • a porous film such as polypropylene or polyethylene or a nonwoven fabric can be used.
  • the present inventors have a metal lithium reference electrode at the time of discharging when the charging current is sufficiently small (for example, 0.02C).
  • DQ / dV which is the ratio of the change amount dQ of the discharge amount Q of the lithium secondary battery 2 to the change amount dV of the voltage V of the negative electrode 22 with respect to 23, the value of the voltage V of the negative electrode 22 with respect to the metal lithium reference electrode 23,
  • VdQ / dV curve representing the relationship peaks appear at 300 mV or near 300 mV (approximately 0.3 V), which is the oxidation-reduction potential of silicon oxide, and around 500 mV or 500 mV (approximately 0.5 V).
  • the intensity ratio of the peak was found to change with the charge capacity per silicon oxide in the negative electrode 22.
  • 0.02C means a current of a magnitude that completes charging of the lithium secondary battery 2 in 50 hours when the lithium secondary battery 2 is charged with a constant current of 0.02C.
  • about 0.3V and about 0.5V show that it is in the range of ⁇ 10% from 0.3V and 0.5V, respectively.
  • FIG. 2 is a diagram showing a V-dQ / dV curve during discharge when SiO is used as the silicon oxide.
  • the charging current is 0.02C.
  • the present inventors show that when the charge capacity (lithium doping amount) is sufficiently small (for example, when the charge capacity is 1750 mAh / g in FIG. 2), in the VdQ / dV curve, It was found that only a peak of about 0.5 V appears, and the peak of about 0.5 V increases as the charging capacity increases. Furthermore, the inventors of the present invention show that when the charge capacity exceeds a certain value, the peak intensity of about 0.5V becomes constant in the V-dQ / dV curve, and the second peak appears at about 0.3V, It has been found that the peak of about 0.3 V increases as the charging capacity increases.
  • phase having a peak at about 0.5V contains less lithium than the phase having a peak at about 0.3V.
  • the present inventors have found that it is possible to obtain information on the proportion of the portion with a high lithium content and the portion with a low lithium content in the negative electrode 22 from the ratio of these two peak intensities.
  • the ratio of these two peak intensities may differ depending on various conditions. For example, when the charge / discharge cycle is repeated, the negative electrode gradually undergoes non-uniform charge / discharge reactions, and many phases with a high lithium content may occur. This is because the lithium ion conductivity of silicon oxide varies greatly depending on the amount of lithium contained, and the lithium ion conductivity increases as the amount of lithium contained increases. Therefore, a charging reaction is likely to occur at a location where the lithium content is large, and as a result, the lithium content at that location tends to be higher after charging.
  • the control system 1 of the lithium ion secondary battery according to the present embodiment uses the intensity ratio of these peaks to make the uniformity of the lithium concentration in the negative electrode 22 of the lithium ion secondary battery 2, that is, the uniformity of the charged state. Is quantified and detected. As a result, it is possible to take measures such as stopping the operation of the lithium secondary battery.
  • the charge / discharge control unit 3 shown in FIG. 5 can generally be called charge / discharge control means.
  • the charge / discharge control unit 3 repeatedly charges and discharges the lithium secondary battery 2.
  • the measuring unit 4 can generally be called measuring means.
  • the measurement unit 4 measures the voltage V of the negative electrode 22 with respect to the metal lithium reference electrode 23 and the discharge capacity Q of the lithium secondary battery 2 when the lithium secondary battery 2 is discharged.
  • the measurement unit 4 measures the voltage V and the discharge capacity Q at the time of the first discharge and at the time of the second discharge performed after the first discharge, respectively.
  • the measurement unit 4 includes a voltage detection unit 41, a current detection unit 42, and a discharge capacity calculation unit 43.
  • the voltage detection unit 41 detects the voltage V of the negative electrode 22 with respect to the metal lithium reference electrode 23 every time the lithium secondary battery 2 is discharged (at least during the first discharge and the second discharge). The voltage detection unit 41 outputs the value of the voltage V to the generation unit 5.
  • the current detector 42 detects the current I flowing from the lithium secondary battery 2 every time the lithium secondary battery 2 is discharged (at least during the first discharge and the second discharge).
  • the current detection unit 42 outputs the value of the current I to the discharge capacity calculation unit 43.
  • the discharge capacity calculation unit 43 calculates the discharge capacity Q of the lithium secondary battery 2 by integrating the value of the current I every predetermined time T every time the lithium secondary battery 2 is discharged.
  • the discharge capacity calculation unit 43 outputs the value of the discharge capacity Q to the generation unit 5.
  • the generation unit 5 can generally be called generation means.
  • the generator 5 generates a V-dQ / dV curve representing the relationship between the voltage V and dQ / dV, which is the ratio of the change amount dQ of the discharge capacity Q to the change amount dV of the voltage V. For example, every time the voltage V and the discharge capacity Q are measured, the generation unit 5 generates a V-dQ / dV curve based on the measured voltage V and the discharge capacity Q. The generation unit 5 outputs the V-dQ / dV curve to the peak intensity ratio calculation unit 6.
  • the peak intensity ratio calculation unit 6 can be generally referred to as calculation means.
  • the peak intensity ratio calculation unit 6 calculates the intensity ratio of two peaks appearing on the V-dQ / dV curve with respect to two voltage values at the voltage V. For example, every time a V-dQ / dV curve is generated, the peak intensity ratio calculation unit 6 calculates the intensity ratio of two peaks appearing on the V-dQ / dV curve with respect to two voltage values.
  • 0.3V and 0.5V are used as two voltage values in the voltage V. Note that a voltage of about 0.3 V may be used instead of 0.3 V, and a voltage of about 0.5 V may be used instead of 0.5 V.
  • the peak intensity ratio calculation unit 6 outputs the intensity ratio to the peak intensity ratio comparison unit 7.
  • the peak intensity ratio comparison unit 7 can be generally called detection means.
  • the peak intensity ratio comparison unit 7 detects the state of the negative electrode 22 using the intensity ratio. For example, the peak intensity ratio comparison unit 7 compares the intensity ratios calculated by the peak intensity ratio calculation unit 6 during a plurality of discharges with each other, and detects the state of the negative electrode 22 from the comparison result. As an example, the peak intensity ratio comparison unit 7 is based on the intensity ratio calculated based on the voltage V and the discharge capacity Q during the second discharge, and the voltage V and the discharge capacity Q during the first discharge. If the difference between the calculated intensity ratio is equal to or greater than a predetermined threshold value, the uniformity of the lithium concentration in the negative electrode 22 is less than or equal to a predetermined value. The accompanying deviation of the lithium doping amount occurs, and it is detected that a non-uniform reaction state at the negative electrode 22 has occurred.
  • the voltage detection unit 41 determines the voltage V of the negative electrode 22 with respect to the metal lithium reference electrode 23 between the negative electrode 22 and the metal lithium reference electrode 23. It is obtained by measuring the voltage.
  • the discharge curve of the half cell composed of the positive electrode and the metal lithium negative electrode is measured in advance, and the measurement unit 4 determines the negative electrode relative to the metal lithium reference electrode 23 from the difference between the discharge curve of the lithium secondary battery 2 and the discharge curve of the harp cell.
  • the voltage V of 22 can also be obtained by calculation.
  • lithium manganate having a spinel structure that has been put to practical use in lithium secondary batteries, or a positive electrode such as LiCoO 2 , LiNiO 2, LiFePO 4, etc. has a uniform charge / discharge reaction compared to a negative electrode made of silicon oxide. Since it proceeds stably, for the sake of simplicity, there is no practical problem even if the discharge curve of the positive electrode is considered to be almost constant at an arbitrary current value.
  • the current detection unit 42 detects the current I flowing from the lithium secondary battery 2 while the lithium secondary battery 2 is performing the discharge operation, and the discharge capacity calculation unit 43 is detected by the current detection unit 42.
  • the discharge capacity Q is calculated by integrating the current value I every predetermined time T.
  • the measuring unit 4 acquires the voltage V and the discharge capacity Q by the above method every predetermined time T when the lithium secondary battery 2 is discharged.
  • the generation unit 5 calculates the change amount dV of the voltage V and the change amount dQ of the discharge capacity Q for each predetermined time T based on the detection result of the measurement unit 4, and based on these, the dQ for each predetermined time T is calculated. Determine the value of / dV.
  • the generation unit 5 draws a V-dQ / dV curve from the dQ / dV value and the voltage V value.
  • the peak intensity ratio calculation unit 6 obtains the intensity (integrated intensity) of the peak on the V-dQ / dV curve by approximating and integrating each peak on the V-dQ / dV curve with a Gaussian function, and the intensity ratio Is calculated.
  • the peak intensity comparison unit 7 compares this intensity ratio with the peak intensity ratio obtained from the V-dQ / dV curve when the lithium secondary battery 2 is charged with a sufficiently small current (for example, 0.02 C). Detect the uniformity of the negative electrode reaction.
  • the information transmission unit 8 can be generally called information transmission means, and transmits information on the intensity ratio obtained by the peak intensity ratio comparison unit 7 to the charge / discharge control unit 3.
  • the peak intensity ratio comparison unit 7 compares the peak intensity ratio in an ideal uniform state with the measured peak intensity, and has a certain value (for example, 10% or more, the threshold value below) If it exceeds the above, the information is transmitted to the charge / discharge control unit through the information transmission unit 8, and the regeneration mode (charging or discharging with a minute current) is executed.
  • a minute current for example, 0.02C
  • FIG. 3 is a diagram showing a V-dQ / dV curve at the time of discharging in a lithium secondary battery having a negative electrode in which SiO is used as a silicon oxide when a charge / discharge cycle is repeated.
  • the peak intensity ratio on the V-dQ / dV curve changes, and when the deviation from the reference value of the peak intensity ratio exceeds 10% at 53 cycles, the regeneration mode ( When 0.02C) is executed, when the cycle test is resumed after execution, the deviation of the peak intensity ratio from the reference value returns to within the threshold value. This indicates that the uniformity of the lithium concentration is improved by executing the regeneration mode.
  • Threshold value is not particularly limited, but can be set in the range of 5 to 20%, for example. Also, the amount of minute current is not particularly limited, but can be set in the range of 0.01 C to 0.1 C, for example.
  • the operation will be described.
  • the operations of the lithium secondary battery 2, the charge / discharge control unit 3, the measurement unit 4, the generation unit 5, the peak intensity ratio calculation unit 6, and the peak intensity ratio comparison unit 7 are the same as those in the first embodiment.
  • the information transmission unit 8 transmits the information to the charge / discharge control unit 3,
  • the charging / discharging control unit executes a regeneration mode (charging / discharging at a minute current, for example, 0.02C).
  • NMP n-methylpyrrolidone
  • Nichia lithium cobaltate, carbon black (Mitsubishi Chemical, trade name: # 3030B), and polyvinylidene fluoride (Kureha, trade name: # 2400) have a mass of 95: 2: 3, respectively. Weighed by ratio. They were mixed with NMP to form a slurry. The mass ratio of NMP to solids was 52:48. The slurry was applied to an aluminum foil having a thickness of 15 ⁇ m using a doctor blade, and then dried by heating at 120 ° C. for 5 minutes.
  • the produced lithium secondary battery 2 was charged / discharged in the voltage range of 4.2 V to 2.7 V using the charge / discharge control unit 3 to perform a charge / discharge cycle test. Charging is performed by the CCCV method (constant current (1C) up to 4.2V, and the voltage is kept constant for one hour after reaching 4.2V), and discharging is performed by the CC method (constant current (1C)). .
  • the 1 C current means a current having a magnitude that completes the discharge in one hour when a battery having an arbitrary capacity is discharged at a constant current.
  • a charge / discharge test apparatus ACD-100M (trade name) manufactured by Asuka Electronics Co., Ltd. was used as the charge / discharge control unit 3.
  • the measuring unit 4 While performing the charge / discharge cycle test, the measuring unit 4 simultaneously measures the voltage V between the negative electrode 22 and the lithium reference electrode (metal lithium reference electrode) 23 and calculates the discharge capacity Q from the discharge time and the discharge current value. did. Recording of the voltage V and the discharge capacity Q was performed every 10 minutes or whenever a change of 0.04 V occurred in the voltage.
  • the generator 5 draws a discharge curve from the voltage V and the discharge capacity Q, and obtains a V-dQ / dV curve from the obtained discharge curve.
  • the peak intensity ratio calculation unit 6 was obtained by approximating a peak intensity of about 0.3 V and a peak intensity of about 0.5 V on the V-dQ / dV curve by a Gaussian function. When the ratio of the two peak intensities changed by ⁇ 10% or more from the initial value, the next charge / discharge cycle was set to a constant current of 0.02 C (regeneration mode).
  • Comparative Example 1 A battery manufactured in the same manner as in Example 1 as Comparative Example 1 was similarly subjected to a charge / discharge cycle test except that the regeneration mode was not performed.
  • FIG. 4 is a graph showing the relationship between the capacity of the lithium secondary battery 2 of Example 1 and Comparative Example 1 and the number of cycles. Referring to FIG. 4, it can be seen that in Comparative Example 1 in which the reproduction mode is not performed, the capacity is decreased with a smaller number of cycles than in Example 1. From FIG. 4, the battery control system can detect the state of the negative electrode 22 and execute the regeneration mode as necessary to alleviate the capacity reduction of the lithium secondary battery 2 associated with the charge / discharge cycle. Is explained.
  • Example 2 the control system of the lithium secondary battery has the same configuration as that of the first embodiment, but the threshold value and the current amount in the regeneration mode are different from those of the first embodiment.
  • the ratio of the two peak intensities changed from the initial value by the threshold value shown in Table 1, the next charge / discharge cycle was executed at a constant current of 0.1 C (regeneration mode).
  • the illustrated configuration and the calculation in the correction program are merely examples, and the present embodiment is not limited thereto.
  • the measurement unit 4 uses the voltage V of the negative electrode 22 with respect to the metal lithium reference electrode 23 and the lithium secondary battery.
  • the discharge capacity Q of the secondary battery 2 is detected, the generator 5 generates a V-dQ / dV curve, and the peak intensity ratio calculator 6 calculates the intensity ratio of the two peaks appearing on the V-dQ / dV curve.
  • the peak intensity ratio comparison unit 7 detects the state of the negative electrode 22 using the intensity ratio.
  • 0.3V and 0.5V are used as two voltage values.
  • the charge / discharge control unit 3 repeatedly charges and discharges the lithium secondary battery 2, and the measurement unit 4 discharges the voltage V and the discharge during the first discharge and the second discharge, respectively.
  • the generating unit 5 generates a V-dQ / dV curve based on the measured voltage V and the discharge capacity Q, and the peak intensity is measured.
  • the ratio calculation unit 6 calculates the intensity ratio of two peaks appearing with respect to two voltage values on the generated V-dQ / dV curve, and the peak intensity is calculated.
  • the ratio comparison unit 7 compares the intensity ratios calculated for each discharge, and detects the state of the negative electrode 22 from the comparison result.
  • the peak intensity ratio comparison unit 7 determines the intensity ratio calculated based on the voltage V and the discharge capacity Q during the second discharge, and the voltage V and the discharge capacity Q during the first discharge. If the difference between the calculated intensity ratio and the intensity ratio is equal to or greater than a predetermined threshold (for example, ⁇ 10% in the example shown in FIG. 4), the uniformity of the lithium concentration in the negative electrode 22 is predetermined. It is detected that the value is below the specified value.
  • a predetermined threshold for example, ⁇ 10% in the example shown in FIG. 4
  • the threshold value is not limited to ⁇ 10% and can be changed as appropriate. For example, the threshold value may be ⁇ 20%.
  • the intensity ratio of the two peaks appearing with respect to the two voltage values on the V-dQ / dV curve varies depending on the proportion of the portion where the lithium content is high and the portion where the lithium content is low.
  • the peak intensity ratio comparison unit 7 can accurately detect the uniformity of the reaction at the negative electrode 22 of the lithium secondary battery 2 using silicon oxide as the negative electrode active material. That is, from these two peak intensity ratios, it is possible to obtain information relating to the proportion of the locations where the lithium content in the anode 22 is high and locations where the lithium content is low.
  • the charging reaction of the negative electrode 22 having silicon oxide is basically caused by a common mechanism based on a reaction in which silicon and lithium in the silicon oxide form an alloy. For this reason, all the lithium secondary batteries using the above-described silicon oxide as the negative electrode active material should quantify and detect the uniformity of the negative electrode reaction state in the control system 1 of the lithium secondary battery of this embodiment. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 負極活物質としてケイ素酸化物を用いるリチウム二次電池に固有の劣化状態、すなわち負極の不均一な反応状態を定量的に検知可能なリチウム二次電池の制御システムを提供する。正極と、負極活物質としてケイ素酸化物を用いた負極と、負極に対する基準電位を有するリチウム基準極と、を備えたリチウム二次電池の制御システムは、リチウム二次電池の放電時に、リチウム基準極に対する負極の電圧Vと、リチウム二次電池の放電容量Qと、を測定する測定手段と、電圧Vの変化量dVに対する放電容量Qの変化量dQの割合であるdQ/dVと、電圧Vと、の関係を表すV-dQ/dV曲線を生成する生成手段と、電圧Vにおける2つの電圧値に対してV-dQ/dV曲線上に現れる2つのピークの強度比を算出する算出手段と、強度比を利用して負極の状態を検知する検知手段、を含む。

Description

リチウム二次電池およびその制御システム、ならびにリチウム二次電池の状態検出方法
 本実施形態は、負極活物質としてケイ素酸化物を用いた負極を有するリチウム二次電池およびその制御システム、ならびにリチウム二次電池の状態検出方法に関する。
 二次電池の状態を検出して、その状態を制御するシステムとして、これまで様々なものが提案されている。特許文献1~3では、二次電池の電池電圧に基づいて、二次電池の充電状態(蓄電量またはSOC(State Of Charge))を検知するシステムが開示されている。特許文献4では、蓄電量Qの変化量dQに対する二次電池の電池電圧Vの変化量dVの割合であるdV/dQの値を算出するdV/dQ算出手段を備え、蓄電量Qの値とdV/dQの値との関係を表すQ-dV/dQ曲線上に現れる特徴点、または、電池電圧Vの値とdV/dQの値との関係を表すV-dV/dQ曲線上に現れる特徴点を利用して、二次電池システムの状態を検知するシステムが開示されている。
 一方、特許文献5には、負極活物質としてケイ素酸化物を用いた負極を有するリチウム二次電池が開示されている。
特開2007-292778号公報 特開平11-346444号公報 特開平7-294611号公報 特開2009-252381号公報 特許2997741号公報
 特許文献5に開示されたリチウム二次電池、つまり、負極活物質としてケイ素酸化物を用いた負極を有するリチウム二次電池では、負極に用いられているケイ素酸化物のリチウムイオン導電性が、ドープされたリチウム量が多いほど高くなる性質を有する。そのため、負極内で局所的に充放電に伴うリチウムドープ量が偏りやすいという問題点があった。負極内で局所的にリチウムドープ量が偏ったまま充放電が繰り返されると、負極内でリチウムドープ量が他の箇所に比べて多い箇所だけが、充放電に伴う体積変化が大きくなるため、やがて、その箇所が集電体から剥落し電池容量が低下する場合がある。したがって、負極活物質としてケイ素酸化物を用いるリチウム二次電池では、その固有の劣化状態、すなわち負極の不均一な反応状態を定量的に検知する必要がある。
 しかし、特許文献1~3に開示されている手法では、二次電池の劣化状態(電池容量の低下や内部抵抗の上昇)を検知することができるが、これらの手法では、電池電圧を測定することにより、劣化状態を判断しているため、負極内部の局所的な反応の偏りに関する情報を得ることはできない。また、特許文献4に開示されている手法では、電極活物質の微小な電圧変化を伴う相転移が起こる電気量のポイントを判断することはできるが、充電終了時におけるそれぞれの相の比率を定量的に見積もることはできない。そのため、負極活物質としてケイ素酸化物を用いるリチウム二次電池の負極の不均一な反応状態を定量的に検知すること、すなわちリチウム濃度が高い箇所と低い箇所がどのような割合で存在しているかを検知することができないという問題点がある。
 本実施形態は、上述した課題を解決可能なリチウム二次電池の制御システムを提供することにある。
 本実施形態に係るリチウム二次電池の制御システムは、正極と、負極活物質としてケイ素酸化物を用いた負極と、前記負極のリチウム基準極に対する電位を求める手段と、を備えるリチウム二次電池の制御システムであって、前記リチウム二次電池の放電時に、前記リチウム基準極に対する前記負極の電圧Vと、前記リチウム二次電池の放電容量Qと、を測定する測定手段と、前記電圧Vの変化量dVに対する前記放電容量Qの変化量dQの割合であるdQ/dVと、前記電圧Vと、の関係を表すV-dQ/dV曲線を生成する生成手段と、前記電圧Vにおける2つの電圧値に対して前記V-dQ/dV曲線上に現れる2つのピークの強度比を算出する算出手段と、前記強度比を利用して前記負極の状態を検知する検知手段と、を含む。
 本実施形態に係るリチウム二次電池は、正極と、負極活物質としてケイ素酸化物を用いた負極と、前記負極に対する基準電位を有するリチウム基準極と、を備えたリチウム二次電池であって、前記リチウム二次電池に対して充電と放電とを繰り返し行う充放電制御部と、前記リチウム二次電池の放電時に、前記リチウム基準極に対する前記負極の電圧Vと、前記リチウム二次電池の放電容量Qとを測定する測定部と、前記電圧Vの変化量dVに対する前記放電容量Qの変化量dQの割合であるdQ/dVと、前記電圧Vと、の関係を表すV-dQ/dV曲線を生成する生成部と、前記電圧Vにおける2つの電圧値に対して前記V-dQ/dV曲線上に現れる2つのピークの強度比を算出するピーク強度比算出部と、前記強度比を利用して前記負極の状態を検知するピーク強度比検知部と、前記検知部が前記電圧Vにおける2つの電圧値に対して前記V-dQ/dV曲線上に現れる2つのピークの強度比と、の差が、予め定められた閾値以上になったことを検知した場合、その情報を前記充放電制御部に伝達する情報伝達部と、を備え、前記伝達を受けた前記充放電制御部が、負極中でのリチウム濃度の均一度を向上する手段を実行する。
 本実施形態に係るリチウム二次電池の状態検出方法は、正極と、負極活物質としてケイ素酸化物を用いた負極と、前記負極に対する基準電位を有するリチウム基準極と、を備えたリチウム二次電池の状態検出方法であって、前記リチウム二次電池の放電時に、前記リチウム基準極に対する前記負極の電圧Vと、前記リチウム二次電池の放電容量Qと、を測定する測定ステップと、前記電圧Vの変化量dVに対する前記放電容量Qの変化量dQの割合であるdQ/dVと、前記電圧Vと、の関係を表すV-dQ/dV曲線を生成する生成ステップと、前記電圧Vにおける2つの電圧値に対して前記V-dQ/dV曲線上に現れる2つのピークの強度比を算出する算出ステップと、前記強度比を利用して前記負極の状態を検知する検知ステップと、を含む。
 本実施形態によれば、負極活物質としてケイ素酸化物を用いるリチウム二次電池に固有の劣化状態、すなわち負極の不均一な反応状態を定量的に検知することができる。
第二の実施形態に係るリチウム二次電池の制御システムを示す図である。 V-dQ/dV曲線を示す図である。 再生モード実行前後のV-dQ/dV曲線を示す図である。 リチウム二次電池の容量とサイクル数の関係を示す図である。 第一の実施形態に係るリチウム二次電池の制御システムを示す図である。
 〔第一の実施形態〕
 以下、第一の実施形態について図面を参照して説明する。
 図5は、第一の実施形態のリチウム二次電池の制御システムを示したブロック図である。
 図5において、リチウム二次電池の制御システム1は、リチウム二次電池2と、充放電制御部3と、測定部4と、生成部5と、ピーク強度比算出部6と、ピーク強度比比較部7と、を含む。なお、第一の実施形態に係るリチウム二次電池の制御システム1において、測定部4と、生成部5と、ピーク強度比算出部6と、ピーク強度比比較部7とが必須構成であり、リチウム二次電池2および充放電制御部3は任意構成である。
 リチウム二次電池2は、正極21と、負極22と、金属リチウム基準極23と、を含む。負極22には、負極活物質としてケイ素酸化物が用いられている。金属リチウム基準極23は、負極22のリチウムに対する電位を求めるための手段の一つである。
 負極22の負極活物質として、特許文献5に記載されているケイ素酸化物を用いることができる。ケイ素酸化物としては、例えば、SiO(0<y<2)、SiLi(x>0、2>y>0)、ケイ酸塩、および、これらケイ素酸化物に微量の金属元素や非金属元素を添加したものが挙げられる。また、これらのケイ素酸化物は、結晶であっても、非晶質であっても良い。これらは一種のみを用いてもよく、二種以上を併用してもよい。
 リチウム二次電池2の構成のうち、負極22以外の構成、例えば、正極21、電解液、セパレータなどは、いずれも公知のリチウム二次電池で使用されているものを用いることができる。
 正極21の正極活物質としては、LiMnO、LiMn(0<x<2)等の層状構造を有するマンガン酸リチウムもしくはスピネル構造を有するマンガン酸リチウム、あるいはLiCoO、LiNiOやこれらの遷移金属の一部を他の金属で置き換えたもの等が挙げられる。またオリビン型の結晶構造を持つLiFePOも使用することができる。これらの正極活物質は、一種単独または二種以上を組み合わせて使用することもできる。
 電解液材料としては、金属リチウムの酸化還元電位で安定であれば特に限定されるものではなく、公知の非水電解液を採用することができる。電解質塩を溶媒に溶解した電解液が最も好ましい。
 溶媒としては、金属リチウムの酸化還元電位で安定である理由から、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート類と、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類やγブチロラクトン等のラクトン類を二種以上混合したものが好ましい。
 電解質塩としては、例えば、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCFCO、Li(CFSO、LiN(CFSO等のリチウム塩が挙げられる。これら電解質塩は、一種のみ用いることも、二種以上用いることもできる。その他の電解液としては、4級アンモニウム-イミド塩等のイオン液体を用いることができる。
 また、液体の電解液だけではなく、上記の電解液をポリアクリロニトリルやポリアクリレートなどのポリマーに含浸させたゲル電解質や、LiPON、LiS-LiP(x=1~2、y=2~4)のような固体電解質も採用することもできる。
 セパレータとしては、特に限定されるものではなく、公知のものを採用することができる。セパレータとして、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布を用いることができる。
 ここで、負極22の負極活物質としてケイ素酸化物が用いられたリチウム二次電池2の特性について説明する。
 本発明者等は、負極活物質としてケイ素酸化物を用いた負極22を備えるリチウム二次電池2では、充電電流が十分小さい場合(例えば、0.02Cの場合)、放電時の金属リチウム基準極23に対する負極22の電圧Vの変化量dVに対する、リチウム二次電池2の放電量Qの変化量dQの割合であるdQ/dVと、金属リチウム基準極23に対する負極22の電圧Vの値と、の関係を表すV-dQ/dV曲線上において、ケイ素酸化物の酸化還元電位である300mVまたは300mV近傍(略0.3V)と、500mVまたは500mV近傍(略0.5V)と、にピークが現れ、そのピークの強度比は、負極22内のケイ素酸化物当たりの充電容量に伴い変化することを見出した。ここで、0.02Cとは、0.02Cの一定電流でリチウム二次電池2を充電した場合、50時間でリチウム二次電池2の充電が完了する大きさの電流を意味する。また、略0.3V、略0.5Vとは、それぞれ0.3V、0.5Vから±10%の範囲内であることを示す。
 図2は、ケイ素酸化物としてSiOを用いた場合の放電時のV-dQ/dV曲線を示す図である。なお、充電電流は0.02Cである。
 本発明者等は、図2に示すように、充電容量(リチウムドープ量)が十分小さい場合(例えば、図2において充電容量が1750mAh/gである場合)は、V-dQ/dV曲線では、略0.5Vのピークのみが現れ、充電容量が増えるに従い略0.5Vのピークは大きくなることを見出した。さらに、本発明者等は、充電容量がある一定値を超えると、V-dQ/dV曲線では、略0.5Vのピーク強度は一定となり、略0.3Vに2つ目のピークが現れ、略0.3Vのピークは、充電容量が増えるに伴い大きくなることを見出した。これは、シリコン酸化物へのリチウムドープ量がある一定値を超えると、ケイ素酸化物中に酸化還元電位の異なる、2つ目の相が生じたためと考えられる。略0.5Vにピークを持つ相は、略0.3Vにピークを持つ相よりも含まれているリチウム量が少ない。
 すなわち本発明者等は、これらの2つのピーク強度比から、負極22中でのリチウム含有量の多い箇所と少ない箇所の割合に関する情報を得ることができることを見出した。
 なお、負極活物質としてケイ素酸化物が用いられた負極を有するリチウム二次電池では、充電量が同じでも、様々な条件の違いにより、これらの2つのピーク強度比が異なってくる場合がある。例えば、充放電サイクルを繰り返すと、次第に負極が不均一に充放電反応し、リチウム含有量が多い相が多く生じる場合がある。これは、ケイ素酸化物のリチウムイオン導電性が、含有リチウム量により大きく変化し、含有リチウム量が多いほどリチウムイオン導電性が高くなるためである。そのため、含有リチウム量の多い箇所で、充電反応が起こりやすくなり、その結果、充電後にその箇所のリチウム含有量がさらに高くなりやすい。
 本実施形態に係るリチウムイオン二次電池の制御システム1は、これらのピークの強度比を利用して、リチウムイオン二次電池2の負極22中のリチウム濃度の均一性、すなわち充電状態の均一性を定量化し検知する。これにより、リチウム二次電池の動作を停止する等の対処を行うことができる。
 図5に示した充放電制御部3は、一般的に充放電制御手段と呼ぶことができる。充放電制御部3は、リチウム二次電池2に対して充電と放電とを繰り返し行う。
 測定部4は、一般的に測定手段と呼ぶことができる。測定部4は、リチウム二次電池2の放電時に、金属リチウム基準極23に対する負極22の電圧Vと、リチウム二次電池2の放電容量Qと、を測定する。測定部4は、例えば、第1放電時、および、第1放電時よりも後に行われる第2放電時に、それぞれ、電圧Vと放電容量Qとを測定する。測定部4は、電圧検出部41と、電流検出部42と、放電容量算出部43と、を含む。
 電圧検出部41は、リチウム二次電池2の放電時(少なくとも、第1放電時および第2放電時)ごとに、金属リチウム基準極23に対する負極22の電圧Vを検出する。電圧検出部41は、電圧Vの値を生成部5に出力する。
 電流検出部42は、リチウム二次電池2の放電時(少なくとも、第1放電時および第2放電時)ごとに、リチウム二次電池2から流れる電流Iを検出する。電流検出部42は、電流Iの値を放電容量算出部43に出力する。
 放電容量算出部43は、リチウム二次電池2の放電時ごとに、電流Iの値を所定時間Tごとに積算することによってリチウム二次電池2の放電容量Qを算出する。放電容量算出部43は、放電容量Qの値を生成部5に出力する。
 生成部5は、一般的に生成手段と呼ぶことができる。生成部5は、電圧Vの変化量dVに対する放電容量Qの変化量dQの割合であるdQ/dVと、電圧Vと、の関係を表すV-dQ/dV曲線を生成する。生成部5は、例えば、電圧Vと放電容量Qとが測定されるごとに、測定された電圧Vと放電容量Qとに基づいてV-dQ/dV曲線を生成する。生成部5は、V-dQ/dV曲線をピーク強度比算出部6に出力する。
 ピーク強度比算出部6は、一般的に算出手段と呼ぶことができる。ピーク強度比算出部6は、電圧Vにおける2つの電圧値に対してV-dQ/dV曲線上に現れる2つのピークの強度比を算出する。ピーク強度比算出部6は、例えば、V-dQ/dV曲線が生成されるごとに、2つの電圧値に対してV-dQ/dV曲線上に現れる2つのピークの強度比を算出する。本実施形態では、電圧Vにおける2つの電圧値として、0.3Vと0.5Vとが用いられる。なお、0.3Vの代わりに略0.3Vの電圧が用いられてもよく、0.5Vの代わりに略0.5Vの電圧が用いられてもよい。ピーク強度比算出部6は、強度比をピーク強度比比較部7に出力する。
 ピーク強度比比較部7は、一般的に検知手段と呼ぶことができる。ピーク強度比比較部7は、強度比を利用して負極22の状態を検知する。ピーク強度比比較部7は、例えば、複数の放電時にピーク強度比算出部6にてそれぞれ算出された強度比を互いに比較し、その比較の結果から、負極22の状態を検知する。一例としては、ピーク強度比比較部7は、第2放電時の電圧Vと放電容量Qとに基づいて算出された強度比と、第1放電時の前記電圧Vと放電容量Qとに基づいて算出された強度比と、の差が、予め定められた閾値以上であると、負極22中でのリチウム濃度の均一度が予め定められた値以下になった、つまり、負極22において充放電に伴うリチウムドープ量の偏りが生じ、負極22での不均一な反応状態が発生したことを検知する。
 次に、動作を説明する。
 充放電制御部3が、リチウム二次電池2に放電動作を行わせている間、電圧検出部41は、金属リチウム基準極23に対する負極22の電圧Vを、負極22と金属リチウム基準極23間の電圧を測定することにより求める。
 または、正極と金属リチウム負極からなるハーフセルの放電カーブを予め測定しておき、測定部4が、リチウム二次電池2の放電曲線とハープセルの放電カーブとの差分から、金属リチウム基準極23に対する負極22の電圧Vを計算により求めることもできる。現在、リチウム二次電池に実用化されているスピネル構造を有するマンガン酸リチウム、あるいはLiCoO、LiNiO2、LiFePO等の正極は、ケイ素酸化物の負極に比較して、充放電反応が均一に安定して進行するため、簡便を図るために、正極の放電カーブは、任意の電流値でほぼ一定と見なしても実用上は問題ない。
 また、電流検出部42は、リチウム二次電池2が放電動作を行っている間、リチウム二次電池2から流れる電流Iを検出し、放電容量算出部43は、電流検出部42で検出された電流値Iを所定時間Tごとに積算することにより、放電容量Qを算出する。測定部4は、リチウム二次電池2の放電時に所定時間Tごとに、上記の方法で電圧Vと放電容量Qを取得する。
 生成部5は、測定部4の検出結果を元に、所定時間Tごとの電圧Vの変化量dVと放電容量Qの変化量dQとを算出し、これらに基づいて、所定時間TごとのdQ/dVの値を求める。生成部5は、このdQ/dVの値と電圧Vの値から、V-dQ/dV曲線を描く。
 ピーク強度比算出部6は、V-dQ/dV曲線上の各ピークをガウス関数で近似し積分することにより、V-dQ/dV曲線上のピークの強度(積分強度)を求め、その強度比を算出する。
 ピーク強度比較部7は、この強度比を、リチウム二次電池2を十分小さい電流(例えば、0.02C)で充電した場合のV-dQ/dV曲線から求めたピーク強度比と比較することにより、負極反応の均一性を検知する。
 〔第二の実施形態〕
 以下、第二の実施形態について、図1を参照して説明する。
 第二の実施形態に係るリチウム二次電池の制御システム1は、第一の実施形態と同様に、リチウム二次電池2と、充放電制御部3と、測定部4と、生成部5と、ピーク強度比算出部6と、ピーク強度比比較部7とを含むが、さらに、情報伝達部8を含む点で異なる。なお、第二の実施形態に係るリチウム二次電池の制御システム1において、充放電制御部3と、測定部4と、生成部5と、ピーク強度比算出部6と、ピーク強度比比較部7と、情報伝達部8とが必須構成であり、リチウム二次電池2は任意構成である。
 情報伝達部8は、一般的に情報伝達手段と呼ぶことができ、ピーク強度比比較部7で得られた強度比に関する情報を、充放電制御部3へ伝達する。
 第二の実施形態において、ピーク強度比比較部7は、理想的な均一状態でのピーク強度比と計測されたピーク強度を比較し、両者の差がある一定値(たとえば10%以上、以下閾値という)を超えた場合、充放電制御部にその情報を情報伝達部8を通じて伝達し、再生モード(微小電流での充電、もしくは放電)を実行する。微小電流(たとえば0.02C)で充放電を行うことにより、負極中のリチウム濃度の均一性を向上させることができる。
 図3は、ケイ素酸化物としてSiOが用いられた負極を有するリチウム二次電池において、充放電サイクルを繰り返した場合の放電時のV-dQ/dV曲線を示す図である。充放電サイクル(1C電流)を繰り返すことにより、V-dQ/dV曲線上のピーク強度比が変化し、53cycle目にピーク強度比の基準値からのずれが10%を超えたところで、再生モード(0.02C)を実行すると、実行後、サイクル試験を再開するとピーク強度比の基準値からのずれが閾値内にもどる。これは、リチウム濃度の不均一性が再生モードの実行によって、均一性が向上したことを示す。
 閾値は、特に限定されないが、例えば5~20%の範囲に設定することができる。また、微小電流の電流量も特に限定されないが、例えば0.01C~0.1Cの範囲で設定することができる。
 次に、動作を説明する。リチウム二次電池2、充放電制御部3、測定部4、生成部5、ピーク強度比算出部6およびピーク強度比比較部7の動作は、第一の実施形態と同様である。第二の実施形態においては、ピーク強度比較部7で、負極22での不均一な反応状態が発生したことを検知した場合、情報伝達部8が充放電制御部3にその情報を伝達し、充放電制御部が再生モード(微小電流、例えば0.02Cによる充放電)を実行する。
 以下、具体的な実施例を説明する。
 (実施例1)
 <負極22の作製>
 高純度化学製の一酸化ケイ素(平均粒子直径D50=25μm)と、カーボンブラック(三菱化学製、商品名:#3030B)と、ポリアミック酸(宇部興産製、商品名:U-ワニスA)とを、それぞれ、83:2:15の質量比で計量した。それらをn-メチルピロリドン(NMP)とホモジナイザーを用いて混合しスラリーとした。NMPと固形分の質量比は、57:43とした。スラリーを厚さ15μmのCu0.2Snに、ドクターブレードを用いて塗布後、120℃で7分間加熱し、NMPを乾燥させ負極22とした。その後、負極22を窒素雰囲気下にて、電気炉を用いて250℃で30分間加熱した。
 <正極21の作製>
 日亜化学製のコバルト酸リチウムと、カーボンブラック(三菱化学製、商品名:#3030B)と、ポリフッ化ビニリデン(クレハ製、商品名:#2400)とを、それぞれ、95:2:3の質量比で計量した。それらをNMPと混合しスラリーとした。NMPと固形分の質量比は52:48とした。スラリーを厚さ15μmのアルミニウム箔に、ドクターブレードを用いて塗布後、120℃で5分間加熱し乾燥した。
 <リチウム二次電池2の作製>
 上記の正極21と負極22に、それぞれ、アルミ端子、ニッケル端子を溶接した。また、銅箔とリチウム箔を張り合わせたもの(本城金属製)にニッケル端子を溶接し、リチウム参照極(金属リチウム基準極)23とした。これらを、セパレータを介して重ね合わせて電極素子を作製した。電極素子をラミネートフィルムで外装し電解液を注入した後、減圧しながらラミネートフィルムを熱融着して封止を行い、平板型のリチウム二次電池2を作製した。セパレータには、ポリプロピレンフィルムを用いた。ラミネートフィルムには、アルミニウムを蒸着したポリプロピレンフィルムを用いた。電解液には、1.0mol/lのLiPF電解質塩を含むエチレンカーボネートとジエチルカーボネートとの7:3(体積比)混合溶媒を用いた。
 <リチウム二次電池2の評価>
 作製したリチウム二次電池2を、充放電制御部3を用いて、電圧範囲4.2Vから2.7Vの範囲で充放電させて充放電サイクル試験を行った。充電は、CCCV方式(4.2Vまでは一定電流(1C)、4.2Vに達した後は電圧を一定に一時間保つ)で行い、放電は、CC方式(一定電流(1C))とした。ここで1C電流とは、任意の容量の電池を一定電流で放電した場合、1時間で放電が終了する大きさの電流を意味する。充放電サイクル試験では、アスカ電子株式会社製の充放電試験装置ACD-100M(商品名)を、充放電制御部3として用いた。
 充放電サイクル試験を行いながら、同時に、測定部4は、負極22とリチウム参照極(金属リチウム基準極)23との間の電圧Vを測定し、放電容量Qを放電時間と放電電流値から算出した。電圧Vおよび放電容量Qの記録は、10分ごと、もしくは、電圧に0.04Vの変化が生じるたびに行った。生成部5は、電圧Vと放電容量Qから放電カーブを描き、得られた放電カーブからV-dQ/dV曲線を求めた。
 ピーク強度比算出部6は、V-dQ/dV曲線上の、略0.3Vのピークの強度と、略0.5Vのピークの強度とを、ガウス関数で近似することにより求めた。2つのピーク強度の比が初期値から±10%以上変化した場合、次回の充放電サイクルを0.02Cの定電流で行う設定(再生モード)とした。
 (比較例1)
 比較例1として実施例1と同様に作製した電池を、再生モード行わない以外は同様に充放電サイクル試験を行った。
 図4は、実施例1と比較例1のリチウム二次電池2の容量とサイクル数の関係を示した図である。図4を参照すると、再生モードを行わない比較例1は、実施例1よりも少ないサイクル数で容量の低下が見られることがわかる。図4より、本電池制御システムが、負極22の状態を検知して必要に応じて再生モードを実行し、充放電サイクルに伴うリチウム二次電池2の容量低下を緩和することが可能であることが説明される。
 (実施例2)
 本実施例は、リチウム二次電池の制御システムは実施例1と同様の構成を有するが、閾値および再生モードの電流量が実施例1と異なる。2つのピーク強度の比が初期値から表1に記載の閾値以上変化した場合、次回の充放電サイクルを0.1Cの定電流(再生モード)で実行した。
Figure JPOXMLDOC01-appb-T000001
 また、2つのピーク強度の比が初期値から20%以上変化した場合、次回の充放電サイクルを表2に記載の定電流の範囲で実行した。
Figure JPOXMLDOC01-appb-T000002
 実施例2-1~2-4より、閾値が5~20%の範囲内において、再生モードの実行後、ピーク強度比の基準値からのずれが閾値内にもどることが確認された。これは、再生モードの実行によってリチウム濃度の均一性が向上したためと考えられる。また、閾値を20%と設定した場合においても、実施例2-5~2-9より、再生モード時の充放電の電流量が0.01C~0.1Cの場合において、再生モードの実行後、ピーク強度比の基準値からのずれが閾値内にもどることが確認された。
 以上説明した実施形態および実施例において、図示した構成や、補正プログラム内の計算は単なる一例であって、本実施形態はそれに限定されるものではない。
 本実施形態によれば、負極活物質としてケイ素酸化物を用いた負極22を備えたリチウム二次電池2の放電時に、測定部4が、金属リチウム基準極23に対する負極22の電圧Vとリチウム二次電池2の放電容量Qとを検出し、生成部5が、V-dQ/dV曲線を生成し、ピーク強度比算出部6が、V-dQ/dV曲線上に現れる2つのピークの強度比を算出し、ピーク強度比比較部7が、強度比を利用して負極22の状態を検知する。
 また、本実施形態では、2つの電圧値として0.3Vと0.5Vとを用いている。
 また、本実施形態では、充放電制御部3が、リチウム二次電池池2に対して充電と放電とを繰り返し行い、測定部4は、第1放電時および第2放電時にそれぞれ電圧Vと放電容量Qとを測定し、生成部5は、電圧Vと放電容量Qとが測定されるごとに、測定された電圧Vおよび放電容量Qに基づいてV-dQ/dV曲線を生成し、ピーク強度比算出部6は、V-dQ/dV曲線が生成されるごとに、生成されたV-dQ/dV曲線上に2つの電圧値に対して現れる2つのピークの強度比を算出し、ピーク強度比比較部7は、放電時ごとにそれぞれ算出された強度比を互いに比較し、その比較の結果から、負極22の状態を検知する。
 また、本実施形態では、ピーク強度比比較部7は、第2放電時の電圧Vと放電容量Qとに基づいて算出された強度比と、第1放電時の電圧Vと放電容量Qとに基づいて算出された強度比と、の差が、予め定められた閾値(例えば、図4に示した例では±10%)以上であると、負極22中でのリチウム濃度の均一度が予め定められた値以下になったことを検知する。なお、閾値は、±10%に限らず適宜変更可能であり、例えば、±20%でもよい。
 V-dQ/dV曲線上に2つの電圧値に対して現れる2つのピークの強度比は、負極22中のリチウム含有量の多い箇所と少ない箇所の割合に応じて変化する。
 このため、ピーク強度比比較部7は、負極活物質にケイ素酸化物を利用したリチウム二次電池2の負極22での反応の均一性を精度良く検知することが可能である。つまり、これらの2つのピーク強度比から、負極22中のリチウム含有量の多い箇所と少ない箇所の割合に関する情報を得ることが可能である。
 なお、ケイ素酸化物を有する負極22の充電反応は、基本的に、ケイ素酸化物中のケイ素とリチウムとが合金を形成する反応に基づいた共通のメカニズムに起因するものである。このため、上述したケイ素酸化物を負極の活物質として用いたリチウム二次電池は、いずれも、本実施形態のリチウム二次電池の制御システム1で負極反応状態の均一性を定量化し検知することができる。
 この出願は、2010年8月4日に出願された日本出願特願2010-175337及び2010年12月24日に出願された日本出願特願2010-287956を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
1   リチウム二次電池の制御システム
2   リチウム二次電池
21  正極
22  負極
23  リチウム基準極
3   充放電制御部
4   検出部
41  電圧検出部
42  電流検出部
43  放電容量算出部
5   生成部
6   ピーク強度比算出部
7   ピーク強度比比較部
8   情報伝達部

Claims (20)

  1.  正極と、負極活物質としてケイ素酸化物を用いた負極と、前記負極のリチウム基準極に対する電位を求める手段と、を備えたリチウム二次電池の制御システムであって、
     前記リチウム二次電池の放電時に、前記リチウム基準極に対する前記負極の電圧Vと、前記リチウム二次電池の放電容量Qと、を測定する測定手段と、
     前記電圧Vの変化量dVに対する前記放電容量Qの変化量dQの割合であるdQ/dVと、前記電圧Vと、の関係を表すV-dQ/dV曲線を生成する生成手段と、
     前記電圧Vにおける2つの電圧値に対して前記V-dQ/dV曲線上に現れる2つのピークの強度比を算出する算出手段と、
     前記強度比を利用して前記負極の状態を検知する検知手段と、
    を含むリチウム二次電池の制御システム。
  2.  請求項1に記載のリチウム二次電池の制御システムにおいて、
     前記2つの電圧値は、前記ケイ素酸化物の酸化還元電位であるリチウム二次電池の制御システム。
  3.  請求項1または2に記載のリチウム二次電池の制御システムにおいて、
     前記2つの電圧値は、略0.3Vと略0.5Vであるリチウム二次電池の制御システム。
  4.  請求項1~3のいずれかに記載のリチウム二次電池の制御システムにおいて、
     前記リチウム二次電池に対して充電と放電とを繰り返し行う充放電制御手段をさらに含み、
     前記測定手段は、第1放電時、および、前記第1放電時よりも後に行われる第2放電時に、それぞれ、前記電圧Vと前記放電容量Qとを測定し、
     前記生成手段は、前記電圧Vと前記放電容量Qとが測定されるごとに、当該電圧Vと当該放電容量Qとに基づいて前記V-dQ/dV曲線を生成し、
     前記算出手段は、前記V-dQ/dV曲線が生成されるごとに、前記2つの電圧値に対して当該V-dQ/dV曲線上に現れる2つのピークの強度比を算出し、
     前記検知手段は、前記算出手段にてそれぞれ算出された強度比を互いに比較し、当該比較の結果から、前記負極の状態を検知するリチウム二次電池の制御システム。
  5.  請求項4に記載のリチウム二次電池の制御システムにおいて、
     前記検知手段は、前記第2放電時の前記電圧Vと前記放電容量Qとに基づいて算出された強度比と、前記第1放電時の前記電圧Vと前記放電容量Qとに基づいて算出された強度比と、の差が、予め定められた閾値以上であると、前記負極中でのリチウム濃度の均一度が予め定められた値以下になったことを検知するリチウム二次電池の制御システム。
  6.  請求項5に記載のリチウム二次電池の制御システムにおいて、
     前記検知手段は、前記第2放電時の前記電圧Vと前記放電容量Qとに基づいて算出された強度比と、前記第1放電時の前記電圧Vと前記放電容量Qとに基づいて算出された強度比と、の差が、予め定められた閾値以上になったことを検知した場合、その情報を前記充放電制御手段に伝達する情報伝達手段をさらに含み、
     前記伝達を受けた前記充放電制御手段が、前記負極中でのリチウム濃度の均一度を向上する手段を実行するリチウム二次電池の制御システム。
  7.  請求項5または6に記載のリチウム二次電池において、
     前記予め定められた閾値が、5~20%であるリチウム二次電池の制御システム。
  8.  請求項7に記載のリチウム二次電池の制御システムにおいて、
     前記負極中でのリチウム濃度の均一度を向上する手段が、微小電流による充放電であるリチウム二次電池の制御システム。
  9.  請求項8に記載のリチウム二次電池の制御システムにおいて、
     前記微小電流の電流量は、0.01C~0.1Cであるリチウム二次電池の制御システム。
  10.  正極と、負極活物質としてケイ素酸化物を用いた負極と、前記負極に対する基準電位を有するリチウム基準極と、を備えたリチウム二次電池であって、
     前記リチウム二次電池に対して充電と放電とを繰り返し行う充放電制御部と、
     前記リチウム二次電池の放電時に、前記リチウム基準極に対する前記負極の電圧Vと、前記リチウム二次電池の放電容量Qとを測定する測定部と、
     前記電圧Vの変化量dVに対する前記放電容量Qの変化量dQの割合であるdQ/dVと、前記電圧Vと、の関係を表すV-dQ/dV曲線を生成する生成部と、
     前記電圧Vにおける2つの電圧値に対して前記V-dQ/dV曲線上に現れる2つのピークの強度比を算出するピーク強度比算出部と、
     前記強度比を利用して前記負極の状態を検知するピーク強度比比較部と、
     前記比較部が前記電圧Vにおける2つの電圧値に対して前記V-dQ/dV曲線上に現れる2つのピークの強度比と、の差が、予め定められた閾値以上になったことを検知した場合、その情報を前記充放電制御部に伝達する情報伝達部と、
    を備え、
     前記伝達を受けた前記充放電制御部が、負極中でのリチウム濃度の均一度を向上する手段を実行するリチウム二次電池。
  11.  請求項10に記載のリチウム二次電池において、
     前記2つの電圧値は、前記ケイ素酸化物の酸化還元電位であるリチウム二次電池。
  12.  請求項10または11に記載のリチウム二次電池において、
     前記2つの電圧値は、略0.3Vと略0.5Vであるリチウム二次電池。
  13.  請求項10~12のいずれかに記載のリチウム二次電池において、
     前記測定部は、第1放電時、および、前記第1放電時よりも後に行われる第2放電時に、それぞれ、前記電圧Vと前記放電容量Qとを測定し、
     前記生成部は、前記電圧Vと前記放電容量Qとが測定されるごとに、当該電圧Vと当該放電容量Qとに基づいて前記V-dQ/dV曲線を生成し、
     前記ピーク強度比算出部は、前記V-dQ/dV曲線が生成されるごとに、前記2つの電圧値に対して当該V-dQ/dV曲線上に現れる2つのピークの強度比を算出し、
     前記ピーク強度比比較部は、前記算出部にてそれぞれ算出された強度比を互いに比較し、当該比較の結果から、前記負極の状態を検知するリチウム二次電池。
  14.  請求項13に記載のリチウム二次電池において、
     前記比較部は、前記第2放電時の前記電圧Vと前記放電容量Qとに基づいて算出された強度比と、前記第1放電時の前記電圧Vと前記放電容量Qとに基づいて算出された強度比と、の差が、予め定められた閾値以上であると、前記負極中でのリチウム濃度の均一度が予め定められた値以下になったことを検知するリチウム二次電池。
  15.  請求項14に記載のリチウム二次電池において、
     前記予め定められた閾値が、5~20%であるリチウム二次電池。
  16.  請求項15に記載のリチウム二次電池において、
     前記伝達を受けた前記充放電制御部が、微小電流による充放電を行うリチウム二次電池。
  17.  請求項16に記載のリチウム二次電池において、
     前記微小電流の電流量は、0.01C~0.1Cであるリチウム二次電池。
  18.  正極と、負極活物質としてケイ素酸化物を用いた負極と、前記負極に対する基準電位を有するリチウム基準極と、を備えたリチウム二次電池の状態検出方法であって、
     前記リチウム二次電池の放電時に、前記リチウム基準極に対する前記負極の電圧Vと、前記リチウム二次電池の放電容量Qと、を測定する測定ステップと、
     前記電圧Vの変化量dVに対する前記放電容量Qの変化量dQの割合であるdQ/dVと、前記電圧Vと、の関係を表すV-dQ/dV曲線を生成する生成ステップと、
     前記電圧Vにおける2つの電圧値に対して前記V-dQ/dV曲線上に現れる2つのピークの強度比を算出する算出ステップと、
     前記強度比を利用して前記負極の状態を検知する検知ステップと、
    を含むリチウム二次電池の状態検出方法。
  19.  請求項18に記載のリチウム二次電池の状態検出方法において、
     前記2つの電圧値は、前記ケイ素酸化物の酸化還元電位であるリチウム二次電池の状態検出方法。
  20.  請求項18または19に記載のリチウム二次電池の状態検出方法において、
     前記2つの電圧値は、略0.3Vと略0.5Vであるリチウム二次電池の状態検出方法。
PCT/JP2011/066442 2010-08-04 2011-07-20 リチウム二次電池およびその制御システム、ならびにリチウム二次電池の状態検出方法 WO2012017824A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180038349.9A CN103053066B (zh) 2010-08-04 2011-07-20 锂二次电池及其控制系统和检测锂二次电池状态的方法
US13/811,837 US9018916B2 (en) 2010-08-04 2011-07-20 Lithium secondary battery and control system therefor, and method for detecting state of lithium secondary battery
US14/670,971 US9768476B2 (en) 2010-08-04 2015-03-27 System and method for detecting a state of a lithium secondary battery by measuring a voltage of a negative electrode with respect to a reference electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-175337 2010-08-04
JP2010175337 2010-08-04
JP2010-287956 2010-12-24
JP2010287956A JP5682955B2 (ja) 2010-08-04 2010-12-24 リチウム二次電池の制御システム、およびリチウム二次電池の状態検出方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/811,837 A-371-Of-International US9018916B2 (en) 2010-08-04 2011-07-20 Lithium secondary battery and control system therefor, and method for detecting state of lithium secondary battery
US14/670,971 Continuation US9768476B2 (en) 2010-08-04 2015-03-27 System and method for detecting a state of a lithium secondary battery by measuring a voltage of a negative electrode with respect to a reference electrode

Publications (1)

Publication Number Publication Date
WO2012017824A1 true WO2012017824A1 (ja) 2012-02-09

Family

ID=45559330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066442 WO2012017824A1 (ja) 2010-08-04 2011-07-20 リチウム二次電池およびその制御システム、ならびにリチウム二次電池の状態検出方法

Country Status (4)

Country Link
US (2) US9018916B2 (ja)
JP (1) JP5682955B2 (ja)
CN (1) CN103053066B (ja)
WO (1) WO2012017824A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513183A (zh) * 2012-06-19 2014-01-15 株式会社日立制作所 二次电池的检查系统、充放电器以及检查方法
WO2014199554A1 (ja) * 2013-06-14 2014-12-18 信越化学工業株式会社 珪素含有材料、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池及びその製造方法
WO2017013718A1 (ja) * 2015-07-17 2017-01-26 株式会社 東芝 非水電解質電池および電池パック
CN108700636A (zh) * 2016-02-24 2018-10-23 Ntn株式会社 二次电池的劣化判断装置
CN113533988A (zh) * 2021-06-04 2021-10-22 上海空间电源研究所 一种锂离子电池长期循环容量衰减分析方法
CN113884933A (zh) * 2021-10-29 2022-01-04 蜂巢能源科技有限公司 电池电量的预估方法、系统及电子设备

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011036760A1 (ja) * 2009-09-25 2011-03-31 トヨタ自動車株式会社 二次電池システム
JP5682955B2 (ja) * 2010-08-04 2015-03-11 Necエナジーデバイス株式会社 リチウム二次電池の制御システム、およびリチウム二次電池の状態検出方法
WO2013157132A1 (ja) * 2012-04-20 2013-10-24 日立ビークルエナジー株式会社 二次電池システム、二次電池の劣化状態判断方法
JP5846054B2 (ja) * 2012-06-22 2016-01-20 トヨタ自動車株式会社 診断装置および診断方法
JP2014139897A (ja) * 2013-01-21 2014-07-31 Toyota Industries Corp 二次電池システム
CN103698714B (zh) * 2014-01-02 2016-06-29 清华大学 电池容量衰减机理辨识方法及系统
JP2015154593A (ja) * 2014-02-14 2015-08-24 ソニー株式会社 充放電制御装置、電池パック、電子機器、電動車両および充放電制御方法
WO2015132891A1 (ja) * 2014-03-05 2015-09-11 株式会社日立製作所 二次電池モジュール
JP6123844B2 (ja) * 2014-09-01 2017-05-10 横河電機株式会社 二次電池容量測定システム及び二次電池容量測定方法
EP2990818B1 (en) * 2014-09-01 2019-11-27 Yokogawa Electric Corporation Secondary battery capacity measurement system and secondary battery capacity measurement method
JP6252790B2 (ja) * 2014-12-15 2017-12-27 三菱重工業株式会社 二次電池の劣化評価方法、二次電池の劣化抑制方法、二次電池管理装置、およびプログラム
CN104730468B (zh) * 2015-04-07 2017-12-22 阳光电源股份有限公司 一种电池soc估算方法、装置以及电池管理系统
JP6620605B2 (ja) * 2015-05-07 2019-12-18 株式会社リコー 充電制御装置、移動体及び充電制御方法
JP6638227B2 (ja) * 2015-07-10 2020-01-29 株式会社Gsユアサ 蓄電素子劣化状態推定装置、蓄電素子劣化状態推定方法及び蓄電システム
DE102016207926A1 (de) * 2016-05-09 2017-11-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Betrieb einer Energiespeicherzelle, Batteriemodul und Fahrzeug
JP6477610B2 (ja) * 2016-06-22 2019-03-06 横河電機株式会社 二次電池容量測定システムおよび二次電池容量測定方法
KR20180057275A (ko) * 2016-11-22 2018-05-30 삼성전자주식회사 배터리 제어 방법 및 장치
CN108279382B (zh) * 2017-01-05 2022-06-21 中兴通讯股份有限公司 电池健康状态检测方法及装置
JP6864503B2 (ja) * 2017-03-03 2021-04-28 株式会社エンビジョンAescジャパン 二次電池の制御方法及び装置
US10992156B2 (en) * 2017-10-17 2021-04-27 The Board Of Trustees Of The Leland Stanford Junior University Autonomous screening and optimization of battery formation and cycling procedures
US11226374B2 (en) 2017-10-17 2022-01-18 The Board Of Trustees Of The Leland Stanford Junior University Data-driven model for lithium-ion battery capacity fade and lifetime prediction
JP7131568B2 (ja) * 2017-10-24 2022-09-06 株式会社Gsユアサ 推定装置、推定方法及びコンピュータプログラム
TWI657639B (zh) 2017-12-04 2019-04-21 Industrial Technology Research Institute 電池放電流程決定方法和系統
TWI649573B (zh) * 2017-12-04 2019-02-01 財團法人工業技術研究院 電池內短路阻抗之偵測方法和系統
KR102563753B1 (ko) 2017-12-29 2023-08-04 삼성전자주식회사 배터리 충전 방법 및 장치
JP6958412B2 (ja) * 2018-02-14 2021-11-02 株式会社デンソー 二次電池の異常判定装置
US11193985B2 (en) 2018-04-10 2021-12-07 Lg Chem, Ltd. Apparatus and method for diagnosing battery
WO2019199062A1 (ko) * 2018-04-10 2019-10-17 주식회사 엘지화학 배터리의 전극 정보를 결정하기 위한 장치, 방법, 배터리 팩 및 전기 시스템
KR102349300B1 (ko) * 2018-04-10 2022-01-10 주식회사 엘지에너지솔루션 배터리의 전극 정보를 결정하기 위한 장치, 방법, 배터리 팩 및 전기 시스템
CN109342960A (zh) * 2018-07-30 2019-02-15 中国电力科学研究院有限公司 一种预测梯次利用动力电池处于容量加速衰减阶段的方法及系统
EP3833993A4 (en) * 2018-08-06 2022-04-20 The Regents of the University of Michigan ELECTRODE DIAGNOSTICS FOR LITHIUM-ION BATTERY
KR20200122111A (ko) * 2019-04-17 2020-10-27 주식회사 엘지화학 배터리의 퇴화 상태를 결정하기 위한 장치, 방법 및 배터리 팩
KR102537607B1 (ko) 2019-05-14 2023-05-25 주식회사 엘지에너지솔루션 배터리의 퇴화도를 결정하기 위한 장치, 방법 및 배터리 팩
CN110531276B (zh) * 2019-09-05 2022-04-26 江苏智蓝电源科技有限公司 电池状况检测方法及装置
KR20210031226A (ko) 2019-09-11 2021-03-19 주식회사 엘지화학 배터리 관리 장치 및 방법
FR3101429B1 (fr) * 2019-10-01 2021-09-24 Powerup Procédé de détermination de l'état de santé d'une batterie lithium-ion.
CN110828812A (zh) * 2019-10-29 2020-02-21 宁德新能源科技有限公司 负极材料、包括其的负极及负极的制备方法
CN110931897B (zh) * 2019-11-29 2022-10-11 国网江苏电力设计咨询有限公司 一种梯次利用磷酸铁锂电池的分选方法
JP7211354B2 (ja) * 2019-12-25 2023-01-24 トヨタ自動車株式会社 電池システムおよびリチウムイオン電池の制御方法
CN111856293B (zh) * 2020-06-03 2022-12-06 天津力神电池股份有限公司 一种锂离子电池硅负极材料容量的测试方法
KR20210150217A (ko) * 2020-06-03 2021-12-10 주식회사 엘지에너지솔루션 배터리 상태 진단 장치 및 방법
KR102652327B1 (ko) * 2020-09-09 2024-03-27 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
KR20220092313A (ko) * 2020-12-24 2022-07-01 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
WO2023114882A1 (en) * 2021-12-15 2023-06-22 Element Energy, Inc. Methods and systems for detecting variations in minor total-impedance contributors in electrochemical cells
US11901748B2 (en) * 2022-02-02 2024-02-13 Enevate Corporation State-of-charge balancing in battery management systems for si/li batteries
KR20240061909A (ko) * 2022-11-01 2024-05-08 주식회사 엘지에너지솔루션 배터리 진단 장치 및 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009080093A (ja) * 2007-09-07 2009-04-16 Hitachi Vehicle Energy Ltd 二次電池の内部情報検知方法及び装置
JP2009252381A (ja) * 2008-04-01 2009-10-29 Toyota Motor Corp 二次電池システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
US5429890A (en) * 1994-02-09 1995-07-04 Valence Technology, Inc. Cathode-active material blends of Lix Mn2 O4
JP3188100B2 (ja) 1994-04-27 2001-07-16 株式会社日本自動車部品総合研究所 バッテリ状態検出方法
US5643695A (en) * 1995-09-26 1997-07-01 Valence Technology, Inc. Carbonaceous electrode and compatible electrolyte
US6017654A (en) * 1997-08-04 2000-01-25 Carnegie Mellon University Cathode materials for lithium-ion secondary cells
JPH11346444A (ja) 1998-06-02 1999-12-14 Toyota Motor Corp 電池充電状態の推定方法
US7646171B2 (en) 2004-01-06 2010-01-12 Sion Power Corporation Methods of charging lithium sulfur cells
US20060046144A1 (en) * 2004-09-01 2006-03-02 3M Innovative Properties Company Anode composition for lithium ion battery
ATE499714T1 (de) 2004-10-29 2011-03-15 Medtronic Inc Verfahren zum aufladen einer lithiumionenbatterie
JP4888667B2 (ja) * 2006-05-16 2012-02-29 宇部興産株式会社 蓄電デバイスおよび蓄電システム
EP2132811A1 (en) * 2007-03-14 2009-12-16 California Institute of Technology High discharge rate batteries
CN104103851B (zh) * 2007-09-14 2018-10-09 A123系统有限责任公司 具有用于健康状态监视的参考电极的锂可再充电电池
WO2010082402A1 (ja) * 2009-01-15 2010-07-22 株式会社Gsユアサ リチウム二次電池用正極活物質及びリチウム二次電池
US9017867B2 (en) * 2009-08-10 2015-04-28 Battelle Memorial Institute Self assembled multi-layer nanocomposite of graphene and metal oxide materials
WO2011036760A1 (ja) * 2009-09-25 2011-03-31 トヨタ自動車株式会社 二次電池システム
AU2011201595A1 (en) * 2010-04-12 2011-10-27 Belenos Clean Power Holding Ag Transition metal oxidenitrides
JP5682955B2 (ja) * 2010-08-04 2015-03-11 Necエナジーデバイス株式会社 リチウム二次電池の制御システム、およびリチウム二次電池の状態検出方法
US20120100403A1 (en) * 2010-10-26 2012-04-26 Gm Global Technology Operations, Inc. Electrolytic cell and method of estimating a state of charge thereof
CN103563132B (zh) * 2011-05-27 2016-03-23 日本电气株式会社 在负极中掺杂和脱掺杂锂的方法以及制造锂二次电池用负极的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009080093A (ja) * 2007-09-07 2009-04-16 Hitachi Vehicle Energy Ltd 二次電池の内部情報検知方法及び装置
JP2009252381A (ja) * 2008-04-01 2009-10-29 Toyota Motor Corp 二次電池システム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GEORGE TING-KUO FEY ET AL.: "Electrochemical studies on surface coated LiCoVo4 with A1203 derived from carboxylate-alumoxane for lithium- ion cells", JOURNAL OF POWER SOURCES, vol. 174, 2007, pages 1152 - 1155 *
IRA BLOOM ET AL.: "Differential voltage analyses of high-power lithium-ion cells 3. Another anode phenomenon", JOURNAL OF POWER SOURCES, vol. 157, 2006, pages 537 - 542, XP008139555 *
KAZUMA KUMAI ET AL.: "Degradation Mechanism of Li-ion Cell after Long Cycling - Mechanism and Method for Estimating the degradation factor", CRIEPI RESEARCH REPORT, T01033, April 2002 (2002-04-01), pages 1 - 17 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513183A (zh) * 2012-06-19 2014-01-15 株式会社日立制作所 二次电池的检查系统、充放电器以及检查方法
WO2014199554A1 (ja) * 2013-06-14 2014-12-18 信越化学工業株式会社 珪素含有材料、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池及びその製造方法
JP2015002036A (ja) * 2013-06-14 2015-01-05 信越化学工業株式会社 珪素含有材料、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池及びその製造方法
US20160111711A1 (en) * 2013-06-14 2016-04-21 Shin-Etsu Chemical Co., Ltd. Silicon-contained material, negative electrode for use in non-aqueous electrolyte secondary battery, method of producing the same, non-aqueous electrolyte secondary battery, and method of producing the same
WO2017013718A1 (ja) * 2015-07-17 2017-01-26 株式会社 東芝 非水電解質電池および電池パック
JP6151431B1 (ja) * 2015-07-17 2017-06-21 株式会社東芝 非水電解質電池および電池パック
AU2015402938B2 (en) * 2015-07-17 2018-10-11 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery and battery pack
CN108700636A (zh) * 2016-02-24 2018-10-23 Ntn株式会社 二次电池的劣化判断装置
CN113533988A (zh) * 2021-06-04 2021-10-22 上海空间电源研究所 一种锂离子电池长期循环容量衰减分析方法
CN113884933A (zh) * 2021-10-29 2022-01-04 蜂巢能源科技有限公司 电池电量的预估方法、系统及电子设备
CN113884933B (zh) * 2021-10-29 2023-06-27 蜂巢能源科技有限公司 电池电量的预估方法、系统及电子设备

Also Published As

Publication number Publication date
JP5682955B2 (ja) 2015-03-11
CN103053066B (zh) 2015-05-13
JP2012054220A (ja) 2012-03-15
CN103053066A (zh) 2013-04-17
US20130119940A1 (en) 2013-05-16
US20150200425A1 (en) 2015-07-16
US9768476B2 (en) 2017-09-19
US9018916B2 (en) 2015-04-28

Similar Documents

Publication Publication Date Title
JP5682955B2 (ja) リチウム二次電池の制御システム、およびリチウム二次電池の状態検出方法
US10727535B2 (en) Electrolyte system for silicon-containing electrodes
US9577457B2 (en) Control device for secondary battery, charging control method, and SOC detection method
US20120226455A1 (en) Anomalously Charged State Detection Device and Test Method for Lithium Secondary Cell
JP5975024B2 (ja) 負極にリチウムをドープ及び脱ドープする方法及びリチウム二次電池用負極の製造方法
JP5896024B2 (ja) 二次電池の充電制御方法および充電制御装置
JP6087489B2 (ja) 組電池システム
CN107534194B (zh) 二次电池、其评估方法和制造方法、以及充电放电控制装置
US20120032647A1 (en) Method for determining completion of charge of lithium ion secondary battery, method for determining termination of discharge of lithium ion secondary battery, charge control circuit, discharge control circuit, and power supply
JP6898585B2 (ja) 二次電池の状態推定方法および状態推定システム
JP6056125B2 (ja) 組電池及び蓄電装置
KR20120030159A (ko) 리튬이온 이차전지의 충전방법 및 충전시스템
JP6437407B2 (ja) 電池パックおよび充電制御方法
JP2009301850A (ja) リチウム二次電池
JP2013065453A (ja) リチウム二次電池
JP2009199929A (ja) リチウム二次電池
WO2012029418A1 (ja) 非水電解質組成物及び非水電解質二次電池
JP6219303B2 (ja) 非水電解質二次電池用電極板及びこれを用いた非水電解質二次電池並びにその製造方法
JP2012252951A (ja) 非水電解質二次電池
JP2014022317A (ja) 非水系二次電池の充電方法
JP6244623B2 (ja) 非水電解質二次電池の製造方法及び非水電解質二次電池
KR101064791B1 (ko) 혼합 전극 활물질, 및 이를 포함하는 이차전지
JP2011076976A (ja) 放電可能容量算出方法および放電可能容量算出装置
JP2015225824A (ja) リチウムイオン二次電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038349.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13811837

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814454

Country of ref document: EP

Kind code of ref document: A1