WO2012012973A1 - 用于柴油机的液压式自适应可变气门正时系统与控制方法 - Google Patents

用于柴油机的液压式自适应可变气门正时系统与控制方法 Download PDF

Info

Publication number
WO2012012973A1
WO2012012973A1 PCT/CN2010/078230 CN2010078230W WO2012012973A1 WO 2012012973 A1 WO2012012973 A1 WO 2012012973A1 CN 2010078230 W CN2010078230 W CN 2010078230W WO 2012012973 A1 WO2012012973 A1 WO 2012012973A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
engine
valve
pump
pressure
Prior art date
Application number
PCT/CN2010/078230
Other languages
English (en)
French (fr)
Inventor
苏万华
战强
裴毅强
刘二喜
吴松林
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to EP10849995.5A priority Critical patent/EP2434110A4/en
Priority to JP2013520945A priority patent/JP2013532790A/ja
Priority to RU2012102245/06A priority patent/RU2505683C2/ru
Priority to US13/254,170 priority patent/US9163531B2/en
Priority to KR1020117025292A priority patent/KR20130069278A/ko
Publication of WO2012012973A1 publication Critical patent/WO2012012973A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • F01L1/146Push-rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0031Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of tappet or pushrod length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/04Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
    • F02B67/06Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus driven by means of chains, belts, or like endless members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/181Centre pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L2013/0089Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque with means for delaying valve closing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • F01L9/12Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem
    • F01L9/14Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem the volume of the chamber being variable, e.g. for varying the lift or the timing of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a hydraulic adaptive valve timing variable system and a control method for an internal combustion engine.
  • Conventional piston four-stroke engines generally use a mechanical camshaft to drive the valve trains of the intake and exhaust valves.
  • the movement of the valve controls the timing through mechanical transmission between the crankshaft and the camshaft, the camshaft and the valves.
  • Such mechanical mechanisms have long proven to be simple, effective and reliable, and relatively inexpensive.
  • valve mechanism opening time and phase parameters are fixed, cannot be adjusted during engine operation, and cannot change timing in different operating conditions, and engine performance potential cannot be fully utilized.
  • the modern advanced internal combustion engine combustion process needs to adjust the opening and closing timing of the valve and the lift.
  • the VVT system based on mechanical and electro-hydraulic control widely used in gasoline engines is the most typical representative.
  • the phase and time of the valve directly affect the intake and exhaust performance of the engine, which plays a vital role in the quality of the combustion process.
  • the timing and timing of the valve are selected taking into account the high speed power of the engine, low speed torque, idle fuel consumption, fuel economy under partial load, low speed smoothness and exhaust emissions.
  • the gas phase should change with speed and load.
  • the engine requires a large valve overlap angle and a late intake valve closing angle at high speeds and large loads in order to obtain a higher power output; conversely, an earlier intake valve close is required at idle and low speed small loads. Angle and smaller valve overlap angle for better idle speed and exhaust emissions.
  • variable gas distribution technology can realize the Miller cycle by changing the valve opening and closing time. Under certain operating conditions of the engine, the time that the intake valve is closed can be delayed, so that a part of the gas that has entered the cylinder re-enters the intake manifold. And maintaining a certain air pressure under the action of turbocharger, the intake efficiency of the engine can be greatly increased and the pumping loss can be reduced. This results in a reduction in the actual compression ratio, an expansion ratio greater than the compression ratio, an increase in efficiency and a reduction in the maximum burst pressure at which the engine operates.
  • variable valve phase Compared with the fixed valve phase, the variable valve phase provides variable valve opening, closing time or lift at various speeds and loads within the engine's operating range, thereby improving engine intake and exhaust performance.
  • the engine meets the requirements of high speed and low speed, high load and small load, power, economy and exhaust emission, and improves overall engine performance.
  • it is often necessary to reorganize the combustion process, and in the combustion process of the new organization, it is necessary to adjust the phase of intake, exhaust and valve closing in time to achieve the optimum.
  • the combustion process enables efficient, clean combustion.
  • the development of modern high technology has launched the car
  • the energy saving, efficiency improvement and low emission of the machine are comprehensive research and technology development as an integrated topic of “energy saving, high efficiency and environmental protection”.
  • the fixed restriction of the gas distribution phase has become more and more unsuitable for the requirements of the times. For this reason, variable valve technology has become one of the key research directions of automobile engines.
  • variable gas distribution technology Due to its own advantages, variable gas distribution technology has been paid more and more attention. Many research institutes have carried out extensive research, and many variable valve drive mechanisms have appeared. Some systems have realized variable valve function, but only a few structures. Simple, low-cost organizations have been commercialized, and most variable valve actuators are only in the experimental phase due to higher cost or reliability issues.
  • the variable gas distribution mechanism in the existing products mainly changes the phase of the camshaft, and the modification of the original engine is relatively large, which is more common in small-power gasoline engines. Since the intake and exhaust camshafts of high-power diesel engines are divided into two types: “top” and "side”, the "side-bottom” camshaft makes the engine structure simple and low in manufacturing cost. At present, it is widely used, usually its The intake and exhaust valves are driven by the same camshaft, and it is difficult to adjust the intake and exhaust valves separately. Therefore, the variable valve technology of high-power diesel engines needs to be developed. Summary of the invention
  • the present invention provides a hydraulic adaptive valve timing variable system and a control method for a diesel engine, which is capable of rapidly realizing valve timing for a side-bottom camshaft diesel engine generally held on the market.
  • Variable institutions and their implementation are provided.
  • a technical solution of the diesel engine hydraulic adaptive valve timing variable system of the present invention is: the system includes at least an engine, and an oil pump is disposed on a power output shaft of the engine, and the oil pump and a pressure regulator are provided.
  • the reversing valve is connected, and the main lubricating oil passage of the engine is connected with the oil pump through the oil pump inlet pipe, and the pressure regulating directional control valve is further connected with an oil delivery pipe and a return oil pipe respectively, and the oil delivery pipe is connected with the oil supply main pipe;
  • the working medium of the system Is the engine oil;
  • the oil pump inlet pipe takes oil from the main lubricating oil passage of the engine;
  • the oil pump is connected to the launched power output;
  • the pressure regulating directional control valve adjusts the pressure oil after the oil pump is pressurized to a suitable working pressure And switching the flow direction thereof to complete the switching of the system working mode;
  • the oil supply manifold, the oil pipeline and the engine working cylinders are connected by an adaptive push rod length changing mechanism;
  • the oil return pipe is connected to the engine oil sump;
  • the adaptive pusher length changing mechanism is a spool type adaptive oil passage switching mechanism, and the spool type is
  • the adaptive oil passage switching mechanism comprises at least
  • the system includes at least an engine, an oil pan, a gear pump and a timing gear, and the engine and the oil sump are provided with a back
  • the oil oil passage is provided with an oil pump on the power output shaft of the engine, and the oil pump is connected with a pressure regulating and reversing valve, and the main lubricating oil passage of the engine is connected with the oil pump through the oil pump inlet pipe, and the pressure regulating and reversing valve is further Connected with an oil delivery pipe and a return oil pipe respectively, the oil delivery pipe is connected to the oil supply main pipe;
  • the working medium of the system is engine oil;
  • the oil pump inlet pipe takes oil from the main lubricating oil passage of the engine;
  • the oil pump is connected with the power output of the engine;
  • the pressure regulating directional valve adjusts the pressure oil after the oil pump is pressurized Finishing the appropriate working pressure and switching its flow direction to complete the switching of the system working mode; the oil supply manifold
  • the control method for the hydraulic adaptive valve timing variable system of the diesel engine of the present invention is realized by any one of the above two structures, the hydraulic hydraulic adaptive valve timing variable system, according to the working state of the engine,
  • the control command sent by the engine electronic control unit controls the operation of the pressure regulating and reversing valve therein, and the control command is stored in the engine running MAP, and the oil circuit is switched by the valve timing variable system to realize the engine working mode and the non-working mode.
  • Switching; its control process is as follows:
  • the oil pump draws oil through the main lubricating oil passage of the engine, and at the same time, the oil pump obtains power from the power output of the engine;
  • the pressure regulating and reversing valve pressurizes the oil to 10 MPa, and determines whether to reverse the direction according to the specific values of the engine speed, the load and the oil temperature, and controls the operation of the pressure regulating and reversing valve to realize the working mode of the engine. Switching between working modes, when the oil temperature is greater than 70 ° C, the engine speed is greater than or equal to 1300 rpm, and the load is greater than or equal to 50%, the pressure regulating valve acts to switch the engine to the working mode; otherwise, The pressure regulating and reversing valve is stationary, the engine is still in the non-working mode, and the pressure oil is directly returned to the engine bottom oil casing through the oil return pipe;
  • the pressure oil When the engine is switched to the working mode, the pressure oil enters the adaptive push rod length changing mechanism through the oil pipeline to realize the adaptive oil circuit switching. After the pressure oil works, it returns to the engine oil sump through the oil return pipe.
  • valve timing variable system of the present invention can be modified on the existing fixed valve engine, and the original machine is smallly changed, and it is easy to realize industrialization;
  • valve timing variable system of the present invention is divided into a working mode and a non-working mode according to requirements, which can meet the actual needs of the engine and have the effect of energy saving and environmental protection;
  • valve timing variable system of the present invention requires fewer components, a simple structure, and a lower cost.
  • FIG. 1 is a schematic diagram of a valve-controlled oil circuit switching to implement an adaptive valve timing variable system
  • Figure 2 is a schematic view showing the internal structure of the spool type adaptive oil passage switching mechanism 20 shown in Figure 1;
  • FIG. 3 is a schematic diagram of a control system for controlling an oil passage using a distribution plate to realize an adaptive valve timing change system
  • FIG. 4 is a schematic structural view of the distribution plate control oil passage switching mechanism 18 shown in FIG.
  • Figure 5 is a schematic structural view of the hydraulic pusher member 23 shown in Figure 3;
  • FIG. 6 is a block diagram showing the main flow of the control method of the present invention.
  • Oil pump 8 ——One pressure regulating valve 9—— Oil return pipe
  • the purpose of the hydraulic adaptive valve timing variable system of the diesel engine of the present invention is to realize variable valve timing on the side bottom camshaft diesel engine, mainly by adding an adaptive push rod length changing mechanism to the original engine push rod.
  • the length of the push rod can be changed by the lower push rod in the mechanism according to the actual needs of the engine, thereby forming a combined intake valve push rod.
  • the movement of the hydraulic plunger in the adaptive pusher length changing mechanism is achieved by the pressure chamber entering and exiting the pressure chamber of the adaptive pusher length changing mechanism to push the hydraulic plunger (piston) up and down.
  • the flow of hydraulic fluid into and out is automatically accomplished by the hydraulic circuit of the adaptive push rod length changing mechanism.
  • the hydraulic circuit formed by the adaptive push rod length changing mechanism can ensure that the hydraulic oil maintains a fixed phase inflow and outflow at different speeds, thereby substantially maintaining the valve timing or following a set change rule, so the present invention
  • the point of the invention is adaptive valve control.
  • the power of the hydraulic source is derived from the engine power output by being coupled with the engine output device.
  • the hydraulic oil is made of engine oil or independent hydraulic oil.
  • the former has a simple structure, and the latter is suitable for high transient response requirements, oil temperature or The amount of oil does not meet the engine requirements.
  • the diesel engine hydraulic adaptive valve timing variable system of the present invention includes at least an engine 1
  • An oil pump 7 is disposed on the motive power output shaft 6, and the oil pump 7 may be one of a gear pump, a plunger pump, a rotor pump, and a vane pump.
  • the oil pump 7 is connected to a pressure regulating and reversing valve 8, and the main lubricating oil passage 4 of the engine and the oil pump 7 are connected by a pump inlet pipe 5, and the pressure regulating and reversing valve 8 is also connected with an oil delivery pipe 10 and a return oil pipe respectively.
  • the oil delivery pipe 10 is connected to the oil supply main pipe 11; the working medium of the system is engine oil; the oil pump inlet pipe 5 takes oil from the main lubricating oil passage 4 of the engine; the oil pump 7 is connected to the power output of the engine 1; The pressure regulating and reversing valve 8 adjusts the pressure oil pressurized by the oil pump 7 to a suitable working pressure and switches its flow direction, thereby completing the switching of the system working mode; the oil supply manifold 11, the oil pipeline 10 and the engine work
  • the cylinder is connected by an adaptive pusher length changing mechanism; the oil return pipe 9 is connected to the engine oil pan 3.
  • the oil supply method of the present invention uses a common rail type oil supply, that is, an oil supply manifold connects the respective oil supply branch pipes to the hydraulic push rod members of the respective working cylinders of the engine.
  • a common rail type oil supply that is, an oil supply manifold connects the respective oil supply branch pipes to the hydraulic push rod members of the respective working cylinders of the engine.
  • the hydraulic push rod components need to be supplied and recirculated once per cycle to complete the valve lift and timing adjustment.
  • the engine speed is very high, and the switching process of oil supply and oil return is required to be extremely fast and accurate.
  • the pressure of the valve spring is overcome to push the hydraulic piston up. Therefore, the adaptive switching control of the pressure oil path with high working pressure and large flow is the focus and difficulty of the present invention.
  • Two pressure oil adaptive switching methods for realizing adaptive fader length change are proposed in the present invention. They are: slide valve type adaptive oil circuit switching mechanism and distribution disc type adaptive oil circuit switching mechanism.
  • the slide valve type adaptive oil passage switching mechanism realizes the change of the push rod length by the real-time switching of the spool control oil passage driven by the cam shaft to realize the adaptive control of the valve closing timing phase.
  • the spool type adaptive oil passage switching mechanism 20 includes at least a base 206, a lower end cover 209, a piston 215, a rocker ball pin 213, a ball seat 214, an inner valve core 203, and a spring 207;
  • a base 206 to the spool and guide double acting is seated on the engine cylinder head 208.
  • the base 206 is provided with a lower end cover 209, and the rocker ball pin 213 is connected to the valve rocker arm 201 of the engine 1.
  • the rocker ball pin 213 is pressed against the top end of the piston 215 by the ball head seat 214.
  • the structure of the rocker ball pin 213 and the ball head seat 214 both ensure the effective transmission of the motion and ensure the freedom of movement of the valve rocker arm 201.
  • the base 206 is provided with a base oil inlet hole 217, and the lower end cover 209 is provided with a lower end cover oil inlet hole 216 and a lower end cover oil return hole 204 and a lower end cover oil returning large hole 219; the inner valve core 203 is The spring 207 acts on the bottom of the piston 215; the oil supply manifold is a common rail type oil supply pipe, and the oil pressure is transferred to the spool-type adaptive oil circuit of each cylinder of the engine through the oil supply branch pipe.
  • the oil delivered by the oil pump 7 directly enters the oil pan 3 via the pressure regulating and reversing valve 8, the length of the hydraulic pusher member does not change, and the hydraulic pusher member follows the engine camshaft. Rotate to reciprocate up and down, so that the intake valve operates according to the timing and lift of the original machine.
  • the valve movement process is expressed as the original state of the pure camshaft control.
  • the oil delivered by the oil pump 7 is adjusted to a suitable oil pressure by the pressure regulating directional control valve and supplies oil to the oil delivery pipe 10, and a pressure is generated in the pipeline.
  • the lower end cover 209 is driven by the engine camshaft 212 to reciprocate up and down with the tappet 211 and the push rod 210.
  • the end cap oil inlet hole 216 and the base oil inlet hole 217 are connected, and the pressure chamber 202 starts to enter the oil.
  • the oil feeding process continues for a certain period of time.
  • the piston 215 is ascended, and the inner valve core 203 is moved upward by the action of the spring 207. After the tappet 211 rises to the highest point, it begins to descend.
  • the end cap return oil hole 204 and the base oil return hole 205 are turned on, the hydraulic cylinder starts to slowly drain, and when the cam shaft 212 is turned to the base circle, the valve lift Entering the approximate hold phase, the valve closes The timing starts to be delayed, and the valve lowering speed is completely determined by the diameter of the lower end return oil hole 204.
  • the lower end return oil hole 219 and the base oil return large hole 218 have been turned on.
  • the piston 215 continues to descend, the inner valve 203 is forced to descend.
  • the pressure chamber 202 is electrically connected through the inner valve 203 and the lower end cover oil returning hole 219, and at this time.
  • the core of the variable valve system for spool-type oil switching control is an adaptive slide valve mechanism that performs real-time switching of the oil passage by means of the movement of the push rod driven by the camshaft and a specially designed slide valve mechanism. Control the pressure oil to enter and exit the hydraulic push rod components in time, and then adjust the valve timing.
  • the entire system is compact and sleek, and the size and position of the inlet and return holes determine the amount of valve timing change.
  • the oil passage switching structure of the adaptive spool valve is integrated with the hydraulic push rod member, eliminating the difference caused by the hydraulic response delay. Regardless of the rotation speed of the engine, the real-time switching of the oil passage is in accordance with the fixed valve phase. It is carried out to achieve the same working characteristics of the variable valve system under different working conditions.
  • the diesel hydraulic adaptive valve timing variable system using the distribution disc type adaptive oil passage switching mechanism includes at least an engine 1, an engine return oil passage 2, and an oil pan 3
  • the gear pump 7, the timing gear 16, and the distribution plate control oil passage switching mechanism 18, the power output shaft 6 of the engine is provided with an oil pump 7, and the oil pump 7 is connected to a pressure regulating valve 8, the main lubricating oil of the engine
  • the pump 4 is connected to the oil pump 7 through a pump inlet pipe 5, and the pressure regulating directional control valve 8 is also connected with an oil delivery pipe 10 and a return oil pipe 9, respectively, and the oil delivery pipe 10 is connected to the distribution plate control oil passage switching mechanism 18;
  • the working medium is engine oil;
  • the oil pump inlet pipe 5 takes oil from the main lubricating oil passage 4 of the engine;
  • the oil pump 7 is connected to the power output of the engine 1; and the pressure regulating directional control valve 8 pressurizes the oil pump 7
  • the pressure oil is adjusted to a suitable working pressure and switches its flow direction to complete the switching of
  • the adaptive push rod length changing mechanism is a distribution tray control oil passage switching mechanism 18, and the distribution tray control oil passage switching mechanism 18 includes at least an oil inlet pipe 184, a return oil pipe 187, a moving plate 185, and a fixed a disk 183, a distribution plate oil supply pipe 181 and a hydraulic push rod member;
  • the movable plate 185 is connected to the timing gear 16 of the engine 1, and the movable plate 185 is provided with a movable plate oil passage hole 186;
  • the disk 183 is provided with a fixed oil passage hole 182 corresponding to the working order of each cylinder of the engine, and the oil delivery pipe 10 is connected to the fixed plate 183 of the distribution plate control oil passage switching mechanism 18;
  • the fixed oil passage hole 182 is connected to the hydraulic push rod member of each working cylinder through an oil supply branch pipe, and as shown in FIG.
  • the hydraulic push rod member includes a hydraulic piston 25 and a lower end cover 27
  • the fixed plate 183 of the distribution plate control oil passage switching mechanism 18 is fixed to the body, and the movable plate 185 is connected to the timing gear 16 to realize the valve timing.
  • the valve rocker arm is pressed against the hydraulic piston 25.
  • the diesel hydraulic adaptive valve timing variable system adopting the distribution disc type adaptive oil passage switching mechanism cooperates with the timing gear 16 and the cam shaft 17, and the timing gear 16 connected to the cam shaft 17 drives the cam shaft 17
  • the rotating plate 185 of the distribution plate control oil passage switching mechanism 18 rotates synchronously, and the movable oil passage hole 186 respectively turns on the fixed oil passage hole 182 to open the oil inlet and return oil passages, so that the pressure oil can enter and exit the hydraulic pressure at an appropriate timing.
  • the pressure chamber 26 of the pusher member 23 pushes the piston 25 to move. An additional lift is added to the original valve lift to achieve a change in valve timing.
  • the size of the oil passage hole 186 and the fixed oil passage hole 182 of the oil passage switching mechanism 18 is controlled by the distribution plate to determine the length of time for entering and draining the hydraulic push rod member 23 in one working cycle of the valve timing variable system.
  • the relative position of the two holes determines the phase at which the oil and oil return processes begin.
  • a distribution plate can simultaneously dispense high-pressure oil for a plurality of hydraulic pusher members 23, and only need to process different number of oil holes on the fixed plate as needed.
  • the oil delivered by the oil pump 7 directly enters the oil pan 3 via the pressure regulating and reversing valve 8, the length of the hydraulic pusher member does not change, and the hydraulic pusher member follows the engine camshaft. Rotate to reciprocate up and down, so that the intake valve operates according to the timing and lift of the original machine.
  • the valve movement process is expressed as the original state of the pure camshaft control.
  • the oil delivered by the oil pump 7 is adjusted to a suitable oil pressure by the pressure regulating directional valve 8 and supplies oil to the oil pipe 10, and a pressure is generated in the pipe.
  • the pressure oil is controlled by the distribution plate to control the oil inlet pipe 18 of the oil passage switching mechanism 18 to enter the distribution plate for distribution.
  • the movable plate 185 rotates synchronously with the cam shaft 17.
  • the manifold 181 enters the pressure chamber 26 of the hydraulic pusher member, urges the piston 25 to move, and the length of the hydraulic pusher member increases, creating an additional lift superimposed on the original valve lift.
  • the camshaft 17 continues to rotate at a certain angle, the distribution plate oil inlet hole 186 is rotated, the oil inlet oil passage is cut off and the return oil passage is turned on, and the pressure oil in the pressure chamber 26 is returned to the oil under the action of the valve spring force.
  • the oil port 28 is recirculated, and the hydraulic pusher member 23 is returned to its original length, and the additional lift disappears. This completes the adjustment of the timing of the valve timing in one of the valve timings of the engine.
  • the variable valve system for distributing the disc type adaptive oil passage switching control controls the opening and closing of the oil passage by a distribution disc to realize the valve timing control.
  • the rotation of the distribution disc 185 and the rotation of the engine camshaft are synchronized, so that regardless of the rotation speed of the engine, the real-time switching of the oil passage is performed in accordance with a fixed phase, and has good adaptability.
  • the difference in the angle of time between the establishment of the oil pressure in the pipeline at different speeds can be compensated by the adjustment of the working oil pressure, and finally the working characteristics of the variable valve system under different working conditions are basically the same.
  • the above-mentioned common use of different pressure oil adaptive switching methods has the following features: By modifying the original push rod into a combined hydraulic push rod member, the combined hydraulic push rod member generates an additional lift under the action of hydraulic pressure. Superimposed on the original valve lift, thereby changing the original valve timing or lift, thereby achieving the purpose of variable valve; and all of them are accomplished by using an adaptive real-time oil switching mechanism to complete the combined hydraulic pusher components. Telescopic control.
  • the working medium in the present invention is: For an engine that does not require a high transient response, the engine itself is preferably used. For engines with special requirements, such as: high transient response requirements, and insufficient time to preheat the oil to the desired temperature, the working medium can be hydraulic oil with a dedicated inlet and return lines.
  • the source of the pressure oil during the operation of the present invention is:
  • the hydraulic oil is supplied by a hydraulic pump (or other pump capable of meeting the flow and pressure requirements) coupled to a certain power output position of the engine.
  • the invention also switches the working mode of the adaptive valve control mechanism to be in a working or non-working state according to the working needs of the engine by the hydraulic reversing valve.
  • the movement law of the intake valve can also be changed by changing the oil pressure.
  • the control of the hydraulic directional control valve and how to change the movement law of the intake valve by changing the oil pressure are all common knowledge in the technical field, and the realization thereof The process of this will not be repeated here.
  • the control of the diesel hydraulic adaptive valve timing variable system is mainly reflected in the judgment of the working state of the engine and the switching of the working mode and the non-working mode of the variable valve timing system.
  • the pressure regulating and reversing valve of the present invention completes the switching of the oil circuit according to the control command sent by the engine electronic control unit to realize the switching between the engine working mode and the non-working mode; the control command is stored in the engine running MAP, according to
  • the engine's oil temperature, engine speed and load and other operating parameters are considered as the optimal control strategy to achieve efficient and low-emission combustion of the engine.
  • the parameter condition for determining the operation of the pressure regulating and reversing valve is to adjust the engine oil pressure to 10 MPa, the oil temperature to be greater than 70 ° C, preferably to the range of 70 ° C to 95 ° C, and the engine speed to be greater than or equal to 1300. Rpm, the load is greater than or equal to 50%, the pressure regulating valve acts, so that the engine valve timing variable mechanism is in the working mode.
  • the control process is as follows:
  • the oil circuit is switched by the valve timing variable system to switch between the engine working mode and the non-working mode; the control process is as follows:
  • the oil pump 1 takes the oil through the main lubricating oil passage 4 of the engine, and at the same time, the oil pump 7 obtains power from the power output of the engine 1.
  • the pressure regulating and reversing valve 8 pressurizes the oil to 10 MPa, and determines whether to reverse the direction according to the specific values of the engine speed, the load and the oil temperature, and controls the operation of the pressure regulating and reversing valve 8 to realize the engine in the working mode.
  • the pressure regulating valve acts to switch the engine to the working mode; Otherwise, the pressure regulating and reversing valve is stationary, the engine is still in the non-operating mode, and the pressurized oil is directly returned to the engine bottom oil casing 3 via the oil return pipe 9.
  • the pressurized oil enters the adaptive push rod length changing mechanism through the oil delivery pipe 10 to realize the adaptive oil circuit switching, and after the pressure oil works, it returns to the engine oil sump 3 through the oil return pipe 9.
  • the hydraulic adaptive valve timing variable system of the diesel engine of the invention is one of the key technologies for achieving high efficiency and low emission combustion.
  • the variable valve timing provides superior valve opening, closing time or lift over the entire range of engine speeds and loads, thereby improving engine intake and exhaust performance, and better meeting engine high and low speeds.
  • the dynamic, economical, and exhaust emission requirements at high loads and small loads improve overall engine performance. It is possible to determine whether the optimal combustion scheme under different engine speeds, injection timing, load, EGR rate, intake boost pressure and oil temperature conditions uses the original valve timing or lift or the changed valve timing or lift. Thereby controlling whether the diesel hydraulic adaptive valve timing variable system is in a non-operating mode or an operating mode. Cooperate with other control methods to jointly control the in-cylinder combustion process of the engine to achieve an efficient, low-emission combustion process.
  • the diesel hydraulic adaptive valve timing variable system of the present invention has the following advantages:
  • the engine valve timing variable system is simple and independent, and requires no additional equipment for operation. It only needs several necessary components to be quickly built.
  • the valve can be easily modified by a fixed valve engine.
  • the timing is variable, the parts are small, the manufacturing cost is low, and it is easy to implement.
  • the engine valve timing variable system is divided into two modes to work not only to meet the needs of different engine operating conditions, but also to effectively reduce energy consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

用干柴油机的液压式自适) ^可变气门正时系统与捽制方法
技术领域
本发明涉及一种内燃机液压式自适应气门正时可变系统与控制方法。
背景技术
传统的活塞式四冲程发动机普遍采用机械式凸轮轴驱动进气门和排气门的配气机构。 气门的运动通过曲轴与凸轮轴, 凸轮轴与各气门之间的机械传动来控制定时。 长期以来, 这种机械式机构被证明是简单、 有效和可靠的, 并且费用相对低廉。 然而, 这种气门机构 开启时间和相位等参数是固定不变的, 无法在发动机运行中进行调节, 不能在不同运行工 况下改变正时, 发动机性能潜力不能得到充分发挥。 现代先进内燃机燃烧过程需要对气门 的开启和关闭定时以及升程进行调整, 汽油机广泛应用的基于机械和电液控制的 VVT系统 是最典型的代表。 但在柴油机上, 特别是重型柴油机上由于机构复杂, 调整装置受力强度 大, 在工程上可用的气门调整机构鲜见报道。 20世纪 80年代以来, 能源和环境问题日益突 出, 社会对燃油的经济性和有害排放物的要求日益严格, 如何改善发动机的性能、 提高热 效率和减少有害排放越来越受到关注, 开发可工程应用的气门正时可变机构成为现代柴油 机开发的关键技术。
配气相位和时间直接影响着发动机的进排气性能, 对燃烧过程的优劣起着至关重要的 作用。 配气相位和时间的选择要考虑到发动机的高速功率、 低速扭矩、 怠速油耗、 部分负 荷下的燃油经济性、 低速平稳性和废气排放等问题。 为了获得较好的发动机性能, 配气相 位应随着转速和负荷的变化而变化。 发动机在高速和大负荷下需要较大的气门重叠角和较 晚的进气门关闭角, 以便得到较高的功率输出; 反之, 在怠速和低速小负荷下则需要较早 的进气门关闭角和较小的气门重叠角, 以便得到较好的怠速平稳性和废气排放性能。
随着发动机工作者对减少发动机有害物排放和提高发动机工作效率的努力, 出现了废 气再循环 (EGR) 和后处理技术, 然而伴随着发动机有害排放物的减少, 却导致了发动机 效率的降低, 而当采用高增压压力时可能导致发动机最高爆发压力过高。 可变配气技术可 以通过改变气门开启关闭时刻实现米勒循环, 在发动机运行的一定工况下, 可以利用延迟 进气门关闭的时间, 使一部分已经进入气缸的气体重新进入进气歧管, 并在涡轮增压的作 用下保持一定的气压, 发动机的进气效率可以大大增加并降低泵吸损失。 这样就造成了实 际压缩比降低, 膨胀比大于压缩比, 提高效率并减小发动机工作的最高爆发压力。
与固定配气相位相比, 可变配气相位则可以在发动机不同工作范围内的转速和负荷 下, 提供可变的气门开启、 关闭时刻或升程, 从而改善发动机进、 排气性能, 较好的满足 发动机在高转速与低转速、 大负荷与小负荷时动力性、 经济性、 废气排放的要求, 整体提 高发动机综合性能。 为了进一步提高发动机的动力性和降低有害物的排放, 往往需要重新 组织其燃烧过程, 而在新组织的燃烧过程当中, 需要适时调整进、 排气量和气门关闭的相 位, 方能达到最优的燃烧过程, 实现高效、 清洁的燃烧。 现代高科技的发展已将汽车发动 机的节能、增效、低排放作为 "节能一高效一环保 "一体化课题进行综合研究和技术开发。 配气相位固定不变的限制已越来越显得不适应时代要求, 为此, 可变气门技术已成为汽车 发动机研究重点方向之一。
可变配气技术由于自身的优点, 日益受到人们的重视, 国外研究机构进行了大量的研 究, 出现了很多种可变气门驱动机构, 有些系统实现了气门参数可变的功能, 但只有少数 结构简单、 成本较低的机构实现了产品化, 大多数可变气门驱动机构由于成本较高或者可 靠性的问题, 仅处于实验阶段。 现有产品中的可变配气机构以改变凸轮轴的相位为主要方 式, 对原发动机的改动都比较大, 多见于小功率汽油机。 由于大功率柴油机进排气凸轮轴 分为 "顶置"和 "侧底置"两种, 由于 "侧底置"凸轮轴使发动机结构简单, 制造成本低, 目前, 应用十分广泛, 通常它的进排气门由同一凸轮轴驱动, 很难使进排气门分别进行调 整, 所以大功率柴油机的可变气门技术有待开发。 发明内容
针对上述现有技术, 本发明提供一种柴油机液压式自适应气门正时可变系统与控制方 法, 是针对市场上普遍保有的侧底置凸轮轴柴油发动机提出的一种可以快速实现气门正时 可变的机构及其实现方式。
为了解决上述技术问题, 本发明柴油机液压式自适应气门正时可变系统予以实现的一 个技术方案是: 该系统至少包括发动机, 发动机的动力输出轴上设置有油泵, 所述油泵与 一调压换向阀相连, 发动机的主润滑油道与油泵之间通过油泵进油管连接, 所述调压换向 阀还分别连接有输油管和回油管, 所述输油管与供油总管相连; 系统的工作介质是发动机 机油; 所述油泵进油管从发动机的主润滑油道取油; 所述油泵与发动的动力输出相连; 所 述调压换向阀将油泵加压后的压力油调整到合适的工作压力并切换其流向, 从而完成系统 工作模式的切换; 所述供油总管、 输油管和发动机的各个工作缸通过一自适应推杆长度改 变机构相连; 所述回油管和发动机油底壳相连; 所述自适应推杆长度改变机构为滑阀式自 适应油路切换机构, 所述滑阀式自适应油路切换机构至少包括底座、 下端盖、 活塞、 摇臂 球销、 球头座、 内阀芯和弹簧; 所述底座设置在发动机工作缸缸头上, 所述底座中设置有 下端盖, 所述摇臂球销与所述发动机的气门摇臂相连, 所述摇臂球销通过球头座压在活塞 的顶端; 所述底座上设有底座进油孔, 所述下端盖上设有下端盖进油孔和下端盖回油孔和 下端盖回油大孔; 所述内阀芯在弹簧的作用下顶在活塞的底部; 所述供油总管是一种共轨 式的供油管, 通过供油支管将油压传递到发动机的各工作缸内。
本发明柴油机液压式自适应气门正时可变系统予以实现的另一个技术方案是: 该系统 至少包括发动机、 油底壳、 齿轮泵和正时齿轮, 所述发动机与油底壳之间设有回油油路, 发动机的动力输出轴上设置有油泵, 所述油泵与一调压换向阀相连, 发动机的主润滑油道 与油泵之间通过油泵进油管连接, 所述调压换向阀还分别连接有输油管和回油管, 所述输 油管与供油总管相连; 系统的工作介质是发动机机油; 所述油泵进油管从发动机的主润滑 油道取油; 所述油泵与发动机的动力输出相连; 所述调压换向阀将油泵加压后的压力油调 整到合适的工作压力并切换其流向, 从而完成系统工作模式的切换; 所述供油总管、 输油 管和发动机的各个工作缸通过一自适应推杆长度改变机构相连; 所述回油管和发动机油底 壳相连; 所述自适应推杆长度改变机构为分配盘控制油路切换机构, 所述分配盘控制油路 切换机构至少包括进油管、 动盘、 定盘、 分配盘供油支管和液压推杆部件; 所述动盘和所 述发动机的正时齿轮相连, 所述动盘上设置有动盘过油孔; 所述定盘上设有与发动机的各 工作缸位置对应的定盘过油孔, 所述液压推杆部件设置在发动机的工作缸中, 所述定盘过 油孔通过供油支管和各工作缸的液压推杆部件相连, 所述液压推杆部件包括液压活塞、 下 端盖、 下端盖上的进油回油口和下部推杆; 所述分配盘供油支管连接到液压推杆部件。
本发明柴油机液压式自适应气门正时可变系统的控制方法, 该控制方法由上述两种结 构中的任一种柴油机液压式自适应气门正时可变系统予以实现, 根据发动机工作状态, 由 发动机电控单元发送的控制指令控制其中的调压换向阀动作, 所述控制指令储存于发动机 运行 MAP内, 通过气门正时可变系统完成油路的切换以实现发动机工作模式和非工作模式 的切换; 其控制过程如下:
首先, 油泵通过发动机的主润滑油道取机油, 与此同时, 所述油泵从所述发动机的动 力输出获得动力;
所述调压换向阀将机油加压到 10Mpa, 并根据发动机转速、 负荷和机油温度的具体数 值, 判断是否换向, 通过控制所述调压换向阀动作以实现发动机在工作模式和非工作模式 之间的切换, 当机油温度大于 70°C、 发动机转速大于或等于 1300转 /分、 负荷大于或等于 50%时, 所述调压换向阀动作使发动机切换到工作模式; 否则, 所述调压换向阀静止, 发 动机仍然处于非工作模式, 压力油经回油管直接回发动机底油壳;
当发动机切换到工作模式后, 压力油经输油管进入自适应推杆长度改变机构, 实现自 适应油路切换, 压力油做功之后, 经回油管回到发动机油底壳。
与现有技术相比, 本发明的有益效果是:
( 1 ) 本发明气门正时可变系统可在现有固定气门发动机上进行改装, 对原机改动小, 易于实现产业化;
( 2 ) 本发明气门正时可变系统的动力来源和工作介质均来自发动机自身, 既不需依 附外部设备而工作, 又自成一个系统;
( 3 ) 本发明气门正时可变系统根据需要分为工作模式和非工作模式, 既能满足发动 机的实际需求又起到节能环保的效果;
( 4) 本发明气门正时可变系统所需的零部件较少, 结构简单, 成本较低。 附图说明
图 1是采用滑阀控制油路切换以实现自适应气门正时可变系统的示意图;
图 2是图 1中所示滑阀式自适应油路切换机构 20的内部结构示意图;
图 3是采用分配盘控制油路切换以实现自适应气门正时可变系统的示意图; 图 4是图 3中所示分配盘控制油路切换机构 18的结构示意图; 图 5是图 3中所示液压推杆部件 23的结构示意图;
图 6是本发明控制方法的主流程框图;
图中:
1—一发动机体 2——一发动机回油油路 3—— 发动机油底壳
4——一发动机主润滑油道 5——一油泵进油管 6——一发动机动力输出轴
7—— 油泵 8——一调压换向阀 9—— 回油管
10- 输油管 11-一供油总管 12-一供油支管
13-一发动机飞轮 20-一滑阀式实时油路切换机构
201- ——气门摇臂 26、 202——压力室 203- ——内阀芯
204- ——下端盖回油孔 205- 底座回油孔 206- 底座
207- ——弹簧 208- ——发动机缸头 27、 209——下端盖
29、 210——下部推杆 211- ——挺柱 212- ——凸轮轴
213- —摇臂球销 214- ——球头座 215- ——活塞
216- 下端盖进油孑 L 217- 底座进油孔 218- 底座回油大孔
219- —下端盖回油大孔 16-一正时齿轮 17- 凸轮轴
18-一分配盘控制油路切换机构 181- ——分配盘供油支管
23- 液压推杆部件 181- ——供油支管 182- ——定盘过油孔
183- 定盘 184- ——分配盘进油管 185- ——动盘
186- —动盘过油孔 187- ——分配盘回油管 25- 液压活塞
28- 进油回油口 具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细地描述。
本发明柴油机液压式自适应气门正时可变系统的目的是在侧底置凸轮轴柴油发动机 上实现气门正时可变, 主要是通过在原发动机推杆上增加一套自适应推杆长度改变机构, 可以根据发动机的实际需要借助该机构中的下部推杆来改变推杆长度, 从而形成一个组合 式进气门推杆。
自适应推杆长度改变机构中液压柱塞的运动是通过压力油进入和流出自适应推杆长 度改变机构的压力室推动液压柱塞 (活塞) 上下运动而实现的。 而这个液压油流入和流出 的过程是通过自适应推杆长度改变机构的液压回路自动完成的。 采用自适应推杆长度改变 机构所形成的液压回路可以保证发动机在不同转速下液压油保持固定的相位流入和流出, 从而基本上保持气门定时不变或遵循设定的变化规律, 故本发明的发明点是自适应气门控 制。 本发明中液压源的动力是通过与发动机输出装置相耦合而来自于发动机动力输出, 液 压油采用发动机机油或独立的液压油, 前者结构简单, 后者适用于瞬态响应要求高、 机油 温度或机油量不能满足响应要求的发动机。
如图 1所示, 本发明柴油机液压式自适应气门正时可变系统, 至少包括发动机 1, 发 动机的动力输出轴 6上设置有油泵 7, 所述油泵 7可以为齿轮泵、 柱塞泵、 转子泵及叶片 泵中的一种。 所述油泵 7与一调压换向阀 8相连, 发动机的主润滑油道 4与油泵 7之间通 过泵进油管 5连接, 所述调压换向阀 8还分别连接有输油管 10和回油管 9, 所述输油管 10与供油总管 11相连; 系统的工作介质是发动机机油; 所述油泵进油管 5从发动机的主 润滑油道 4取油; 所述油泵 7与发动机 1的动力输出相连; 所述调压换向阀 8将油泵 7加 压后的压力油调整到合适的工作压力并切换其流向, 从而完成系统工作模式的切换; 所述 供油总管 11、 输油管 10和发动机的各个工作缸通过一自适应推杆长度改变机构相连; 所 述回油管 9和发动机油底壳 3相连。
如图 1所示, 本发明中的供油方式采用共轨式供油, 即一个供油总管连接各个供油支 管向发动机的各工作缸的液压推杆部件供油。 根据设计要求, 液压推杆部件需要每循环供 油、 回油一次, 以完成气门升程和定时的调节。 发动机转速很高, 需要供油、 回油的切换 过程异常迅速和精确。 同时要克服气门弹簧压力将液压活塞推起。 因此, 工作压力高、 流 量大的压力油路自适应切换控制是本发明的重点和难点。
本发明中提出了两种用于实现自适应推杆长度改变的压力油自适应切换方式。 分别 为: 滑阀式自适应油路切换机构和分配盘式自适应油路切换机构。
如图 1和图 2所示, 采用滑阀式自适应油路切换机构实现推杆长度改变是由凸轮轴带动 的滑阀控制油路的实时切换实现气门关闭定时相位的自适应控制。
如图 2所示, 所述滑阀式自适应油路切换机构 20至少包括底座 206、 下端盖 209、 活塞 215、 摇臂球销 213、 球头座 214、 内阀芯 203和弹簧 207; 起到滑阀和导向双重作用的底座 206座落在发动机缸头 208上, 所述底座 206中设置有下端盖 209, 所述摇臂球销 213与所述 发动机 1的气门摇臂 201相连, 所述摇臂球销 213通过球头座 214压在活塞 215的顶端, 摇臂 球销 213和球头座 214结构既保证了运动的有效传递又使保证了气门摇臂 201运动的自由 度。 所述底座 206上设有底座进油孔 217, 所述下端盖 209上设有下端盖进油孔 216和下端盖 回油孔 204和下端盖回油大孔 219; 所述内阀芯 203在弹簧 207的作用下顶在活塞 215的底部; 所述供油总管是一种共轨式的供油管, 通过供油支管将油压传递到发动机的各缸的滑阀式 自适应油路切换机构内。
当系统非工作模式下, 所述油泵 7输送的机油经所述调压换向阀 8直接进入油底壳 3, 所述液压推杆部件的长度不发生改变, 液压推杆部件随发动机凸轮轴旋转进行上下往复运 动, 使进气门按照原机的定时与升程进行动作。 气门运动过程表现为纯凸轮轴控制的原机 状态。
当系统在工作模式下, 所述油泵 7输送的机油经调压换向阀调整到合适的油压并给输 油管 10供油, 管路中产生压力。 所述下端盖 209在发动机凸轮轴 212带动下, 随挺柱 211和 推杆 210上下往复运动, 在某一时刻下端盖进油孔 216和底座进油孔 217接通, 压力室 202开 始进油, 进油过程持续一定时间, 此时活塞 215上行, 内阀芯 203在弹簧 207作用下随之上 行。 挺柱 211升到最高点后开始下降, 在某一位置下端盖回油孔 204和底座回油孔 205接通, 液压缸开始缓慢泄油, 当凸轮轴 212转到基圆时, 气门升程进入近似保持阶段, 气门关闭 定时开始延迟, 此时气门下降速度完全由下端盖回油孔 204直径决定。 此时下端盖回油大 孔 219和底座回油大孔 218已经导通。 当活塞 215继续下降, 内阀 203被迫下降, 当内阀配油 边缘到达下端盖回油大孔 219时, 压力室 202通过内阀 203和下端盖回油大孔 219导通, 而此 时下端盖回油大孔 219和底座回油大孔 218已经导通, 所以压力室 202内的机油迅速泄出, 活塞 215回位, 气门关闭。 完成发动机的一个配气循环内配气定时的调整。 滑阀式自适应 油路切换机构的详细结构和工作过程可以参考专利号为 200810152274. 7, 发明创造名称为 《滑阀式两模式发动机进气门延时关闭机构》 的中国发明专利。
滑阀式油路切换控制的可变气门系统的核心是具有自适应性的滑阀机构, 它借助凸轮 轴带动的推杆的运动和一组特别设计的滑阀机构完成油路的实时切换, 控制压力油适时进 出液压推杆部件, 进而实现气门正时的调整。 整个系统结构紧凑, 设计灵巧, 进、 回油孔 的大小和位置决定了气门定时改变量的大小。 而自适应滑阀的油路切换结构和液压推杆部 件做成一体, 消除了液力响应延迟造成的差异, 无论发动机以何种转速转动, 油路的实时 切换都是按照固定的配气相位进行, 做到了不同工况下可变气门系统的工作特性一致。
如图 3、 图 4和图 5所示, 采用分配盘式自适应油路切换机构的柴油机液压式自适应气 门正时可变系统至少包括发动机 1、 发动机回油油路 2、 油底壳 3、 齿轮泵 7、 正时齿轮 16和 分配盘控制油路切换机构 18, 发动机的动力输出轴 6上设置有油泵 7, 所述油泵 7与一调压 换向阀 8相连, 发动机的主润滑油道 4与油泵 7之间通过泵进油管 5连接, 所述调压换向阀 8 还分别连接有输油管 10和回油管 9, 所述输油管 10与分配盘控制油路切换机构 18相连; 系 统的工作介质是发动机机油; 所述油泵进油管 5从发动机的主润滑油道 4取油; 所述油泵 7 与发动机 1的动力输出相连; 所述调压换向阀 8将油泵 7加压后的压力油调整到合适的工作 压力并切换其流向, 从而完成系统工作模式的切换; 所述分配盘控制油路切换机构 18将输 油管 10来的压力油通过分配盘供油支管 181分配到各缸的液压推杆部件; 所述回油管 9和回 油管 187与发动机油底壳 3相连。
如图 4所示, 所述自适应推杆长度改变机构为分配盘控制油路切换机构 18, 所述分配 盘控制油路切换机构 18至少包括进油管 184、 回油管 187、 动盘 185、 定盘 183、 分配盘供油 支管 181和液压推杆部件; 所述动盘 185和所述发动机 1的正时齿轮 16相连, 所述动盘 185上 设置有动盘过油孔 186; 所述定盘 183上设有与发动机的各缸工作顺序对应的定盘过油孔 182, 所述输油管 10与所述分配盘控制油路切换机构 18中的定盘 183相连; 所述液压推杆部 件设置在发动机的工作缸中, 所述定盘过油孔 182通过供油支管和各工作缸的液压推杆部 件相连, 如图 5所示, 所述液压推杆部件包括液压活塞 25、 下端盖 27、 下端盖上的进油回 油口 28和下部推杆 29。 分配盘控制油路切换机构 18的定盘 183固定于机体上, 动盘 185和正 时齿轮 16相连, 实现配气正时。 气门摇臂压在液压活塞 25上。
上述采用分配盘式自适应油路切换机构的柴油机液压式自适应气门正时可变系统配 合正时齿轮 16、 凸轮轴 17—起工作, 与凸轮轴 17相连的正时齿轮 16带动凸轮轴 17和分配盘 控制油路切换机构 18的动盘 185同步旋转, 动盘过油孔 186分别接通定盘过油孔 182接通进 油和回油油路, 使压力油适时的进、 出液压推杆部件 23的压力室 26, 推动活塞 25运动, 产 生一个附加的升程叠加在原气门升程上, 实现气门正时的变化。 靠分配盘控制油路切换机 构 18上动盘过油孔 186和定盘过油孔 182的大小确定气门正时可变系统一个工作循环内液 压推杆部件 23内进油和排油时间长短,靠两孔的相对位置确定进油、回油过程开始的相位。 一个分配盘可以为多个液压推杆部件 23同时分配高压油, 根据需要只需在定盘上加工不同 个数出油孔即可。
当系统非工作模式下, 所述油泵 7输送的机油经所述调压换向阀 8直接进入油底壳 3, 所述液压推杆部件的长度不发生改变, 液压推杆部件随发动机凸轮轴旋转进行上下往复运 动, 使进气门按照原机的定时与升程进行动作。 气门运动过程表现为纯凸轮轴控制的原机 状态。
当系统在工作模式下, 所述油泵 7输送的机油经调压换向阀 8调整到合适的油压并给输 油管 10供油, 管路中产生压力。 压力油经分配盘控制油路切换机构 18的进油管 184进入分 配盘进行分配。 动盘 185随凸轮轴 17同步旋转, 当原进气门升到某个恰当的时刻, 动盘过 油孔 186和某一缸的定盘过油孔 182接通, 压力油经分配盘供油支管 181进入液压推杆部件 的压力室 26, 推动活塞 25运动, 液压推杆部件的长度增加, 产生一个附加升程叠加在原气 门升程上。 当凸轮轴 17继续旋转一定角度, 分配盘进油孔 186转过, 把进油油路切断而回 油油路接通, 压力室 26内的压力油在气门弹簧力的作用下经进油回油口 28回流, 液压推杆 部件 23变回原来长度,附加升程消失。如此完成发动机的一个配气循环内配气定时的调整。
分配盘式自适应油路切换控制的可变气门系统是靠一个分配盘控制油路的通断进而 实现气门正时的控制。 通过精确调整分配盘上油孔的位置和大小, 可以满足发动机进、 排 气的定时改变的要求, 从而调整发动机配气到较佳状态。 分配盘动盘 185的转动和发动机 凸轮轴同步转动, 因此无论发动机以何种转速转动, 油路的实时切换都是按照固定的相位 进行,具有很好的自适应性。而管路内建立油压的时间延迟在不同转速下造成的转角差异, 可以通过工作油压的调整进行补偿, 最终做到不同工况下可变气门系统的工作特性基本一 致。
上述采用不同的压力油自适应切换方式所具有的共同点是: 通过将原推杆改装成一个 组合式液压推杆部件, 该组合式液压推杆部件在液压力的作用下产生一个附加升程叠加到 原气门升程上, 从而改变了原气门定时或升程, 从而达到气门可变的目的; 而且都是通过 采用一个自适应性的实时油路切换机构来完成组合式液压推杆部件的伸缩控制。
本发明中的工作介质是: 对于对瞬态响应要求不高的发动机, 其首选采用发动机自身 机油。 对于有特殊要求的发动机, 例如: 瞬态响应要求高、 而且没有足够的时间使机油预 热到理想温度, 则工作介质可以采用液压油且配专用的进、 回油管路即可。
本发明工作过程中压力油的来源是: 通过一个液压泵 (或其他能满足流量和压力要求 的泵) 与发动机的某个动力输出位置耦合提供液压油。 本发明还通过液压换向阀根据发动 机工作需要切换该自适应气门控制机构工作模式是处于工作或不工作的状态。 另外, 还可 通过改变油压来改变进气门的运动规律。 对于诸如上述的压力油来源、 液压换向阀的控制 及如何通过改变油压来改变进气门的运动规律等均属于本技术领域内的公知常识, 其实现 的过程在此不再赘述。
柴油机液压式自适应气门正时可变系统的控制主要是体现在发动机工作状态的判断 和气门正时可变系统的工作模式和非工作模式的切换上。 本发明中的所述调压换向阀根据 发动机电控单元发送的控制指令完成油路的切换, 以实现发动机工作模式和非工作模式的 切换; 所述控制指令储存于发动机运行 MAP内, 根据发动机的机油温度, 发动机转速和负 荷等运行参数等综合考虑得出的最优控制策略, 实现发动机的高效低排放的燃烧。 本发明 中作为判断调压换向阀动作的参数条件是将发动机的机油压力调整为 10Mpa, 机油温度大 于 70°C, 最好控制在 70°C至 95°C范围, 发动机转速大于或等于 1300转 /分, 负荷大于或等 于 50%, 调压换向阀动作, 使发动机气门正时可变机构处于工作模式。 如图 6所示, 其控制 过程如下:
通过气门正时可变系统完成油路的切换以实现发动机工作模式和非工作模式的切换; 其控制过程如下:
油泵 1通过发动机的主润滑油道 4取机油, 与此同时, 所述油泵 7从所述发动机 1的动力 输出获得动力。 所述调压换向阀 8将机油加压到 10Mpa, 并根据发动机转速、 负荷和机油温 度的具体数值, 判断是否换向, 通过控制所述调压换向阀 8动作以实现发动机在工作模式 和非工作模式之间的切换, 当机油温度大于 70°C、 发动机转速大于或等于 1300转 /分、 负 荷大于或等于 50%时, 所述调压换向阀动作使发动机切换到工作模式; 否则, 所述调压换 向阀静止, 发动机仍然处于非工作模式, 压力油经回油管 9直接回发动机底油壳 3。 当发动 机切换到工作模式后, 压力油经输油管 10进入自适应推杆长度改变机构, 实现自适应油路 切换, 压力油做功之后, 经回油管 9回到发动机油底壳 3。
因为, 喷油定时、 进气增压、 可变气门定时和 EGR都是为了组织燃烧过程, 实现高效 低排放的燃烧。 本发明柴油机液压式自适应气门正时可变系统是实现高效、 低排放燃烧的 关键技术之一。 可变配气相位可以在发动机整个范围内的转速和负荷下, 提供较优的气门 开启、 关闭时刻或升程, 从而改善发动机进排气性能, 较好的满足发动机在高转速与低转 速、 大负荷与小负荷时的动力性、 经济性、 废气排放的要求, 整体提高发动机综合性能。 可以确定不同发动机转速、 喷油定时、 负荷、 EGR率、 进气增压压力和机油温度等条件下 的最优燃烧方案采用原机气门定时或升程还是采用改变后的气门定时或升程, 从而控制柴 油机液压式自适应气门正时可变系统处于非工作模式还是工作模式。 配合其他控制手段, 协同控制发动机的缸内燃烧过程, 最终实现高效、 低排放的燃烧过程。
本发明的柴油机液压式自适应气门正时可变系统与现有技术相比, 其优势在于:
( 1 )本发动机气门正时可变系统的突出特点是具有自适应性,能够很好地满足不同工 况下气门正时可变的需求。
( 2 ) 本发动机气门正时可变系统结构简单且独立成系统, 工作时不需要额外的设备, 仅需要几个必要的组件即可迅速构建完成, 将固定气门发动机进行简单改装就可实现气门 正时可变, 零部件少, 制造成本低, 易于实现。
( 3 )本发动机气门正时可变系统的基本原理相同但具体实施方式有多种,实际应用时 可以根据具体条件进行选择, 增加了使用的灵活性和实用性。
(4)本发动机气门正时可变系统分为两模式工作,不仅能满足发动机不同工况的需求, 而且能有效的降低能耗。
尽管上面结合图对本发明进行了描述, 但是本发明并不局限于上述的具体实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本领域的普通技术人员在本发明 的启示下, 在不脱离本发明宗旨的情况下, 还可以作出很多变形, 这些均属于本发明的保 护之内。

Claims

权利要求
1.一种柴油机液压式自适应气门正时可变系统, 至少包括发动机 (1 ) 及其电控单元, 其 特征在于- 发动机的动力输出轴 (6) 上设置有油泵 (7) , 所述油泵 (7) 与一调压换向阀 (8) 相连, 发动机的主润滑油道 (4) 与油泵 (7) 之间通过油泵进油管 (5) 连接, 所述调压 换向阀(8)还分别连接有输油管(10)和回油管(9), 所述输油管(10)与供油总管(11 ) 相连; 系统的工作介质是发动机机油; 所述油泵进油管 (5) 从发动机的主润滑油道 (4) 取油; 所述油泵 (7) 与发动机 (1 ) 的动力输出相连; 所述调压换向阀 (8) 将油泵 (7) 加压后的压力油调整到合适的工作压力并切换其流向, 从而完成系统工作模式的切换; 所述供油总管 (11 ) 、 输油管 (10) 和发动机的各个工作缸通过一自适应推杆长度改 变机构相连; 所述回油管 (9) 和发动机油底壳 (3) 相连;
所述自适应推杆长度改变机构为滑阀式自适应油路切换机构 (20) , 所述滑阀式自适 应油路切换机构 (20) 至少包括底座 (206) 、 下端盖 (209) 、 活塞 (215 ) 、 摇臂球销 (213 ) 、 球头座 (214) 、 内阀芯 (203 ) 和弹簧 (207) ; 所述底座 (206) 设置在发动 机工作缸缸头上, 所述底座 (206) 中设置有下端盖 (209) , 所述摇臂球销 (213 ) 与所 述发动机 1 ) 的气门摇臂 (201 ) 相连, 所述摇臂球销 (213 ) 通过球头座 (214) 压在活塞 (215 ) 的顶端; 所述底座 (206) 上设有底座进油孔 (217) , 所述下端盖 (209) 上设有 下端盖进油孔(216)和下端盖回油孔(204)和下端盖回油大孔(219); 所述内阀芯(203 ) 在弹簧 (207) 的作用下顶在活塞 (215 ) 的底部; 所述供油总管是一种共轨式的供油管, 通过供油支管将油压传递到发动机的各工作缸内。
2.根据权利要求 1所述柴油机液压式自适应气门正时可变系统,其特征在于,所述油泵(7) 为齿轮泵、 柱塞泵、 转子泵及叶片泵中的一种。
3.根据权利要求 1所述柴油机液压式自适应气门正时可变系统,其特征在于,所述油泵(7) 的动力来源为发动机 (1 ) 的动力输出。
4.根据权利要求 1所述柴油机液压式自适应气门正时可变系统, 其特征碍于, 所述发动机 ( 1 ) 与发动机回油底壳 (3) 之间设有发动机回油油路 (2) 。
5.—种柴油机液压式自适应气门正时可变系统, 至少包括发动机 (1 ) 及其电控单元、 油 底壳 (3) 、 齿轮泵 (7) 和正时齿轮 (16) , 其特征在于:
所述发动机 (1 ) 与油底壳 (3) 之间设有回油油路 (2) , 发动机的动力输出轴 (6) 上设置有油泵 (7) , 所述油泵 7与一调压换向阀 (8) 相连, 发动机的主润滑油道 (4) 与 油泵(7)之间通过油泵进油管(5)连接, 所述调压换向阀(8)还分别连接有输油管(10) 和回油管 (9) ; 系统的工作介质是发动机机油; 所述油泵进油管 (5) 从发动机的主润滑 油道 (4) 取油; 所述油泵 (7) 与发动机 (1 ) 的动力输出相连; 所述调压换向阀 (8) 将 油泵 (7) 加压后的压力油调整到合适的工作压力并切换其流向, 从而完成系统工作模式 的切换;
所述输油管 (10) 和发动机的各个工作缸通过一自适应推杆长度改变机构相连; 所述 回油管 (9) 和发动机油底壳 (3) 相连;
所述自适应推杆长度改变机构为分配盘控制油路切换机构 (18) , 所述分配盘控制油 路切换机构 (18) 至少包括进油管 (184) 、 动盘 (185 ) 、 定盘 (183 ) 、 分配盘供油支 管 (181 ) 和液压推杆部件; 所述动盘 (185 ) 和所述发动机 (1 ) 的正时齿轮相连, 所述 动盘 (185 ) 上设置有动盘过油孔 (186) ; 所述定盘 (183 ) 上设有与发动机的各缸工作 顺序对应的定盘过油孔 (182) , 所述输油管 (10) 与所述定盘 (183 ) 相连; 所述液压推 杆部件设置在发动机的工作缸中, 所述定盘过油孔 (182) 通过供油支管 (181 ) 和各工作 缸的液压推杆部件相连, 所述液压推杆部件包括液压活塞 (25 ) 、 下端盖 (27) 、 下端盖 上的进油回油口 (28) 和下部推杆 (29) ; 所述分配盘供油支管 (181 ) 连接到液压推杆 部件。
6.根据权利要求 5所述柴油机液压式自适应气门正时可变系统,其特征在于,所述油泵(7) 为齿轮泵、 柱塞泵、 转子泵及叶片泵中的一种。
7.根据权利要求 5所述柴油机液压式自适应气门正时可变系统,其特征在于,所述油泵(7) 的动力来源为发动机 (1 ) 的动力输出。
8.—种柴油机液压式自适应气门正时可变系统的控制方法, 其特征在于, 该控制方法由如 权利要求 1或 5中任一所述柴油机液压式自适应气门正时可变系统予以实现, 根据发动机 工作状态, 由发动机电控单元发送的控制指令控制其中的调压换向阀动作, 所述控制指令 储存于发动机运行 MAP内, 通过气门正时可变系统完成油路的切换以实现发动机工作模式 和非工作模式的切换; 其控制过程如下- 首先, 油泵 (1 ) 通过发动机的主润滑油道 (4) 取机油, 与此同时, 所述油泵 (7) 从所述发动机 (1 ) 的动力输出获得动力;
所述调压换向阀 (8)将机油加压到 10Mpa, 并根据发动机转速、 负荷和机油温度的具 体数值, 判断是否换向, 通过控制所述调压换向阀 (8 ) 动作以实现发动机在工作模式和 非工作模式之间的切换, 当机油温度大于 70°C、 发动机转速大于或等于 1300转 /分、 负荷 大于或等于 50%时, 所述调压换向阀动作使发动机切换到工作模式; 否则, 所述调压换向 阀静止, 发动机仍然处于非工作模式, 压力油经回油管 (9) 直接回发动机底油壳 (3) ; 当发动机切换到工作模式后, 压力油经输油管 (10) 进入自适应推杆长度改变机构, 实现自适应油路切换, 压力油做功之后, 经回油管 (9) 回到发动机油底壳 (3) 。
PCT/CN2010/078230 2010-07-30 2010-10-29 用于柴油机的液压式自适应可变气门正时系统与控制方法 WO2012012973A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10849995.5A EP2434110A4 (en) 2010-07-30 2010-10-29 AUTOMATICALLY ADAPTABLE VARIABLE DISTRIBUTION TIMING HYDRAULIC SYSTEM FOR DIESEL ENGINE AND CONTROL METHOD THEREFOR
JP2013520945A JP2013532790A (ja) 2010-07-30 2010-10-29 ディーゼルエンジン油圧式適応バルブタイミング可変システムおよび制御方法
RU2012102245/06A RU2505683C2 (ru) 2010-07-30 2010-10-29 Самоадаптивная гидравлическая система с изменяемыми фазами газораспределения для дизельного двигателя и способ управления
US13/254,170 US9163531B2 (en) 2010-07-30 2010-10-29 Self-adaptive hydraulic variable valve timing system for diesel engine and control method
KR1020117025292A KR20130069278A (ko) 2010-07-30 2010-10-29 디젤엔진용 자체적응 유압식 밸브 타이밍 가변 시스템과 그 제어방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010241776.4 2010-07-30
CN2010102417764A CN101929365B (zh) 2010-07-30 2010-07-30 柴油机液压式自适应气门正时可变系统与控制方法

Publications (1)

Publication Number Publication Date
WO2012012973A1 true WO2012012973A1 (zh) 2012-02-02

Family

ID=43368751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078230 WO2012012973A1 (zh) 2010-07-30 2010-10-29 用于柴油机的液压式自适应可变气门正时系统与控制方法

Country Status (7)

Country Link
US (1) US9163531B2 (zh)
EP (1) EP2434110A4 (zh)
JP (1) JP2013532790A (zh)
KR (1) KR20130069278A (zh)
CN (1) CN101929365B (zh)
RU (1) RU2505683C2 (zh)
WO (1) WO2012012973A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102444441B (zh) * 2011-12-19 2013-04-10 宜兴大隆动力科技有限公司 一种用于6缸内燃机的双模式全可变气门驱动系统
US8662035B1 (en) * 2012-12-13 2014-03-04 GM Global Technology Operations LLC Oil pressure control system for switchable valve train components
US10167873B2 (en) * 2013-09-19 2019-01-01 United Technologies Corporation Dual direction windmill pump for geared turbofan engine
CN103726896B (zh) * 2013-12-28 2016-01-20 大连理工大学 一种用于4缸内燃机的模块化多功能可变气门驱动系统
KR101897182B1 (ko) * 2014-04-08 2018-09-10 현대중공업 주식회사 엔진의 가변밸브타이밍 장치
US9528399B2 (en) * 2014-10-21 2016-12-27 Ford Global Technologies, Llc Method and system for variable cam timing device
KR102169207B1 (ko) * 2015-03-17 2020-10-22 현대중공업 주식회사 내장형 푸시 로드의 밸브
CN106917686B (zh) * 2015-12-24 2019-11-08 联创汽车电子有限公司 车用cvvl机构位置自学习方法
DE102016002361A1 (de) 2016-02-26 2017-08-31 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Steuern einer Brennkraftmaschine mit verstellbarer Nockenwelle
DE102016112447A1 (de) * 2016-07-07 2018-01-11 Man Diesel & Turbo Se Ventiltrieb für eine Brennkraftmaschine und Brennkraftmaschine
DE102016112455A1 (de) * 2016-07-07 2018-01-11 Man Diesel & Turbo Se Ventiltrieb für eine Brennkraftmaschine und Brennkraftmaschine
CN108240244B (zh) * 2017-12-29 2023-12-19 潍柴动力股份有限公司 柴油机进气门可变系统及柴油机
CN109838298B (zh) * 2019-03-11 2021-02-23 潍柴动力股份有限公司 一种商用车活塞冷却喷嘴控制方法及控制系统
CN112504686A (zh) * 2020-11-30 2021-03-16 重庆红江机械有限责任公司 一种柴油机密封油控制单元流量测试装置及测试方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020045436A (ko) * 2000-12-11 2002-06-19 류정열 디젤차량의 크랭크 저널 윤활장치
CN101201009A (zh) * 2007-12-04 2008-06-18 天津大学 发动机气门正时与升程连续可变系统
CN201162550Y (zh) * 2007-12-04 2008-12-10 天津大学 柴油机电液控制可变配气装置

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2672132A (en) * 1950-11-29 1954-03-16 Elizabeth Leighton Randol Mechanical self-adjusting valve lifter
US4050435A (en) * 1975-12-02 1977-09-27 Harold L. Fuller, Jr. Valve control for cylinder cutout system
US4407241A (en) * 1980-12-31 1983-10-04 Cummins Engine Company, Inc. Expandable hydraulic tappet with a variable exit valve
US4694787A (en) * 1984-02-27 1987-09-22 Rhoads Gary E Automatic fluid distributing valve timing device
JPS62203911A (ja) * 1985-11-15 1987-09-08 Daihatsu Diesel Kk デイ−ゼル機関のバルブタイミング変更装置
JPS62159712A (ja) * 1986-01-08 1987-07-15 Fuji Heavy Ind Ltd クランク軸直結型オイルポンプの取付装置
DE3779062D1 (de) * 1986-12-05 1992-06-17 Riva Calzoni Spa Rotierende verteilungsgruppe fuer hydraulische motoren mit umlaufender flaechendichtung.
JPH0629527B2 (ja) * 1987-05-29 1994-04-20 川崎重工業株式会社 縦軸型エンジンの潤滑装置
US5085181A (en) * 1990-06-18 1992-02-04 Feuling Engineering, Inc. Electro/hydraulic variable valve timing system
JP2782311B2 (ja) * 1993-10-06 1998-07-30 三菱自動車エンジニアリング株式会社 吸気弁閉鎖時期可変装置
JP3189679B2 (ja) * 1996-05-24 2001-07-16 トヨタ自動車株式会社 内燃機関のバルブ特性制御装置
JPH10103034A (ja) * 1996-09-24 1998-04-21 Toyota Motor Corp 内燃機関のオイル供給装置
US6158404A (en) * 1997-02-26 2000-12-12 Aft Atlas Fahrzeugtechnik Gmbh Apparatus for regulating the operation of an adjusting device
JP3865025B2 (ja) * 1998-09-30 2007-01-10 スズキ株式会社 油圧制御装置付エンジンのオイル通路構造
RU2163299C2 (ru) * 1999-03-30 2001-02-20 Московский государственный открытый университет Гидравлическая система управления клапанами газораспределения двигателя внутреннего сгорания
JP2001082124A (ja) * 1999-09-16 2001-03-27 Sanshin Ind Co Ltd 船外機
JP3803526B2 (ja) * 2000-03-16 2006-08-02 本田技研工業株式会社 側弁型エンジン
RU2178088C1 (ru) * 2000-05-22 2002-01-10 Открытое акционерное общество "Завод им. В.А. Дегтярева" Механизм изменения фаз газораспределения четырехтактного двигателя внутреннего сгорания
JP4344460B2 (ja) * 2000-07-11 2009-10-14 本田技研工業株式会社 エンジン本体のシール構造
DE10112132A1 (de) * 2001-03-14 2002-09-19 Bayerische Motoren Werke Ag Zylinderkurbelgehäuse für eine flüssigkeitsgekühlte Brennkraftmaschine
US7201121B2 (en) * 2002-02-04 2007-04-10 Caterpillar Inc Combustion engine including fluidically-driven engine valve actuator
US7004122B2 (en) * 2002-05-14 2006-02-28 Caterpillar Inc Engine valve actuation system
US7069887B2 (en) * 2002-05-14 2006-07-04 Caterpillar Inc. Engine valve actuation system
US6907851B2 (en) * 2002-05-14 2005-06-21 Caterpillar Inc Engine valve actuation system
US7055486B2 (en) * 2003-03-28 2006-06-06 Caterpillar Inc. Fluid delivery control system
DE102005029831A1 (de) * 2004-07-23 2006-03-16 Ina-Schaeffler Kg Hydraulisches Ventilspielausgleichselement (HVA)
DE102004053202A1 (de) * 2004-11-04 2006-06-01 Schaeffler Kg Ventiltrieb einer Brennkraftmaschine
US7225776B2 (en) * 2004-11-17 2007-06-05 General Motors Corporation Valvetrain with two-step switchable rocker and deactivating stationary lash adjuster
DE102005054086A1 (de) * 2004-12-17 2006-11-02 Schaeffler Kg Ventiltrieb einer Brennkraftmaschine mit einem Stößel und einer Stößelstange
US7617807B2 (en) * 2005-11-30 2009-11-17 Ford Global Technologies, Llc Engine and valvetrain with dual pushrod lifters and independent lash adjustment
US7503296B2 (en) * 2006-04-12 2009-03-17 Gm Global Technology Operations, Inc. Cylinder deactivation apparatus
JP2008031900A (ja) * 2006-07-27 2008-02-14 Toyota Motor Corp エンジン用オイルポンプ
KR100947383B1 (ko) * 2007-12-14 2010-03-15 현대자동차주식회사 가변 밸브 시스템
CN101377138B (zh) * 2008-10-09 2010-06-30 天津大学 滑阀式两模式发动机进气门延时关闭系统
CN101418709B (zh) * 2008-10-09 2011-11-02 天津大学 分配盘控制的两模式发动机气门正时可变系统
CN201284673Y (zh) * 2008-10-09 2009-08-05 天津大学 机械分配式的两模式发动机气门正时可变系统
CN101526042B (zh) * 2008-12-23 2011-07-06 天津大学 一种压燃式内燃机可变进排气系统的电子控制方法
US8622036B2 (en) * 2009-01-26 2014-01-07 GM Global Technology Operations LLC Engine including cylinder deactivation assembly and method of control
US8235022B2 (en) * 2009-02-02 2012-08-07 Ford Global Technologies Oil supply system for internal combustion engine
JP5290029B2 (ja) * 2009-03-31 2013-09-18 本田技研工業株式会社 内燃機関
KR101198799B1 (ko) * 2010-09-20 2012-11-12 현대자동차주식회사 가변 밸브 기구를 구비한 엔진
KR101371827B1 (ko) * 2012-10-19 2014-03-07 현대중공업 주식회사 가변 밸브 타이밍장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020045436A (ko) * 2000-12-11 2002-06-19 류정열 디젤차량의 크랭크 저널 윤활장치
CN101201009A (zh) * 2007-12-04 2008-06-18 天津大学 发动机气门正时与升程连续可变系统
CN201162550Y (zh) * 2007-12-04 2008-12-10 天津大学 柴油机电液控制可变配气装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2434110A4

Also Published As

Publication number Publication date
EP2434110A4 (en) 2013-11-06
US9163531B2 (en) 2015-10-20
RU2505683C2 (ru) 2014-01-27
EP2434110A1 (en) 2012-03-28
US20130125844A1 (en) 2013-05-23
RU2012102245A (ru) 2013-07-27
CN101929365B (zh) 2012-07-04
CN101929365A (zh) 2010-12-29
JP2013532790A (ja) 2013-08-19
KR20130069278A (ko) 2013-06-26

Similar Documents

Publication Publication Date Title
WO2012012973A1 (zh) 用于柴油机的液压式自适应可变气门正时系统与控制方法
EP0961870B1 (en) Multi-cylinder diesel engine with variable valve actuation
JP5562386B2 (ja) 多気筒ディーゼル機関
US7252054B2 (en) Combustion engine including cam phase-shifting
US8534261B2 (en) Four-cycle engine
CN201162550Y (zh) 柴油机电液控制可变配气装置
EP2184451B1 (en) Diesel engine having cams for driving the intake valves which have a main lobe and an additional lobe connected to each other
US20070089416A1 (en) Combustion engine including engine valve actuation system
CN109404141B (zh) 一种可变气门控制装置及方法
EP2184452B1 (en) Diesel engine having a system for variable control of the intake valves and inner exhaust gas recirculation
CN101201009A (zh) 发动机气门正时与升程连续可变系统
CN109653829B (zh) 一种气门滞后角的电液调控方法及装置
CN104265393A (zh) 新型可变气门正时系统
CN115182800B (zh) 一种实现同名气门相异升程的液压气门机构
US20110214632A1 (en) Hydro-mechanical variable valve actuation
CN201284673Y (zh) 机械分配式的两模式发动机气门正时可变系统
JP3550428B2 (ja) ミラーサイクルエンジン用吸気弁の開閉制御装置
JP2009121349A (ja) 内燃機関の動弁装置
CN209067302U (zh) 高速船用发动机连续可变气门升程机构
CN101418709B (zh) 分配盘控制的两模式发动机气门正时可变系统
CN115992760B (zh) 基于液压可变气门机构的可变排量控制方法和系统
JPH0372811B2 (zh)
CN109322721A (zh) 高速船用发动机连续可变气门升程机构
JPS5925008A (ja) 内燃機関の弁作動切換装置
GB2508501A (en) Valve train facilitating adjustable valve lift via a hydraulic plunger

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013520945

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13254170

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117025292

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010849995

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010849995

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012102245

Country of ref document: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE