WO2012004905A1 - スパンボンド不織布およびそれを用いたフィルター - Google Patents

スパンボンド不織布およびそれを用いたフィルター Download PDF

Info

Publication number
WO2012004905A1
WO2012004905A1 PCT/JP2010/072206 JP2010072206W WO2012004905A1 WO 2012004905 A1 WO2012004905 A1 WO 2012004905A1 JP 2010072206 W JP2010072206 W JP 2010072206W WO 2012004905 A1 WO2012004905 A1 WO 2012004905A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
filter
component
fiber
spunbonded nonwoven
Prior art date
Application number
PCT/JP2010/072206
Other languages
English (en)
French (fr)
Inventor
坂本 浩之
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to US13/808,176 priority Critical patent/US9011567B2/en
Priority to CN201080067892.7A priority patent/CN102985608B/zh
Publication of WO2012004905A1 publication Critical patent/WO2012004905A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters

Definitions

  • the present invention relates to a spunbond nonwoven fabric and a filter using the same. More specifically, the present invention provides a highly rigid spunbond nonwoven fabric for a filter base material that has both excellent moldability and shape retention durability, and provides a filter with excellent collection performance using it as a filter base material. About that.
  • air filters such as dust collector filters have been widely used to recover relatively expensive powders in order to improve the working environment in metal cutting factories and factories that generate a lot of dust.
  • a polyester long fiber nonwoven fabric or a polyester short fiber nonwoven fabric which is a general-purpose polyester long fiber nonwoven fabric, is used.
  • a filter base material for dust collectors bag filters made by sewing and molding non-woven fabrics made of short fibers into cylinders have been used so far. Cylindrical bag filters are used to obtain sufficient filtration capacity. The size of the equipment could not be denied. Therefore, in order to save space and increase the filtration area, filters using a pleated nonwoven fabric as a filter base material have been used.
  • the pleated type filter is required to be a non-woven fabric having high rigidity so as to withstand the load during filtration.
  • polyester long-fiber nonwoven fabric oriented crystallized fibers obtained by high-speed spinning have insufficient fiber fusion due to embossing if they have a high basis weight, have low elongation, are rigid, have insufficient moldability, and have shape retention. An inferior problem occurred. Therefore, in order to improve the fiber fusion property, a method of embossing by using an undrawn yarn that is not oriented and crystallized as a thermal bonding component has been proposed (for example, see Patent Document 1). However, this method has a problem that the fiber becomes brittle because the crystallization is promoted in the embossing process, and the shape retention and durability are inferior.
  • a thermal adhesive component has been proposed as a method for improving the rigidity and pleat form retention of a nonwoven fabric.
  • a core-sheath type composite long fiber nonwoven fabric having a low melting point component as a sheath component is bonded with a low melting point component by embossing to give shallow irregularities, suppress fluffing, and has excellent pleated form retention with a bending resistance of 500 mg or more.
  • embossing to give shallow irregularities, suppress fluffing, and has excellent pleated form retention with a bending resistance of 500 mg or more.
  • a method has been proposed in which a low-fiber non-woven fabric having a low-melting-point component as a sheath component is subjected to embossing so that the low-melting-point component is pressure-bonded to provide shallow irregularities, and the basis weight and the bending resistance are defined (for example, see Patent Document 4). ). Also proposed is a method in which a long fiber layer having a low melting point component as a sheath component and a layer in which a low melting point component and a high melting point component are mixed are laminated and embossed, and the thickness is adjusted by calendering. (For example, see Patent Document 5).
  • Pleated formability and pleat form retention are improved by mixing thick composite fibers containing low melting point components and thin fibers to reduce the thermal bonding component and embossing it, and constructing the frame function with thick thermal bonding fibers.
  • has been proposed see, for example, Patent Document 6
  • As a method for reducing the adhesive component many methods have been proposed in which the petal portion is a thermal adhesive component as a petal-shaped cross section (see, for example, Patent Documents 7 to 12). These methods have a problem that durability due to relaxation derived from the glass transition temperature of the low melting point component is inferior.
  • JP-A-10-99608 JP-A-9-192426 Japanese Patent Laid-Open No. 11-253718 JP 2001-54709 A Japanese Patent Laid-Open No. 8-100371 Japanese Patent Laid-Open No. 11-192406 Japanese Patent Laid-Open No. 2001-248056 JP 2001-276529 A JP 2001-271260 A JP 2005-7268 A JP 2005-111337 A JP 2007-125546 A JP-A-6-47219
  • an object of the present invention is to provide a highly rigid spunbonded nonwoven fabric having both excellent moldability and shape retention durability. Moreover, it is providing the filter base material and filter using this highly rigid spunbonded nonwoven fabric.
  • this invention consists of the following structures. 1. Obtained by thermocompression bonding a deposited fiber assembly made of a single-component polyester fiber with an engraving roll and a flat metal roll, the basis weight is 150 to 400 g / m 2 , and the vertical bending rebound is 20 to 60 mN. A spunbonded nonwoven fabric having a vertical tensile strength of 400 N / 5 cm or more. 2. The polyester fiber is 98.0 to 99.95% by weight of a polyester resin (component A) having a glass transition temperature of 60 ° C.
  • the spunbonded nonwoven fabric according to the above which is a fiber comprising a mixture of 0.05 to 2.0% by weight of a thermoplastic resin (component B) at a temperature of from 160 to 160 ° C. 3.
  • a highly rigid nonwoven fabric suitable as a filter substrate can be obtained. Due to its rigidity, a highly rigid nonwoven fabric has a good pleat processability, an excellent bending durability after the pleating process, and a filter base material with excellent pleat shape retention can be proposed.
  • the nonwoven fabric of the present invention is a spunbond nonwoven fabric composed of a single component polyester fiber.
  • the single-component polyester fiber referred to here means that the polyester fiber constituting the nonwoven fabric is not a composite fiber such as a core-sheath type or a side-by-side type, but is extruded from a nozzle without compounding one type of polyester resin. It means the fiber obtained.
  • As one type of polyester-based resin homopolymers as well as those obtained by polymer blending and fiberized without being combined are also included in the single-component polyester fiber referred to in the present invention.
  • the basis weight of the spunbonded nonwoven fabric of the present invention is 150 to 400 g / m 2 , preferably 180 to 350 g / m 2 , more preferably 200 to 300 g / m 2 . If the load is less than 150 g / m 2 , the bending rigidity is low, and when used in a filter, when the load increases on the nonwoven fabric due to the accumulation of filtration particles, the filter medium is deformed by the load to cause creases and the filtration area is reduced. There arises a problem that the reduction and the service life are shortened.
  • the longitudinal rebound of the spunbonded nonwoven fabric of the present invention is 20 to 60 mN, preferably 30 to 50 mN, more preferably 35 to 45 mN. If it is less than 20 mN, the pleat form retainability is inferior, which is not preferable. If it exceeds 60 mN, the folding resistance at the time of pleating increases, and the finished state of the pleated irregularities may not be sharp. Note that the pleated shape retention property is dominated by the vertical bending resilience in the folding direction, and the lateral bending resilience is not particularly limited, but is 10 mN or more, preferably 15 mN or more.
  • the tensile strength in the vertical direction of the spunbonded nonwoven fabric of the present invention is 400 N / 5 cm or more, preferably 450 N / 5 cm or more, more preferably 500 N / 5 cm or more. If it is less than 400 N / 5 cm, there is a risk of sheet breakage when dust is deposited and a load is applied to the filter substrate when used as a filter, which is not preferable.
  • the upper limit of the tensile strength is not particularly limited because it can be adjusted by adjusting the pressure-bonding area or the processing temperature, but is about 1000 N / 5 cm or less because of other non-woven fabric characteristics.
  • the spunbond nonwoven fabric of the present invention has a glass transition temperature of 98.0 to 99.95% by weight of a polyester resin (component A) having a glass transition temperature of 60 ° C. or higher, and is incompatible with the polyester resin (component A).
  • a polyester resin component A
  • polyester resin having a glass transition temperature of 60 ° C. or higher examples include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycyclohexanedimethyl terephthalate (PCHT), and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PCHT polycyclohexanedimethyl terephthalate
  • a polyester-based resin having a glass transition temperature of less than 60 ° C. is not preferable because the heat relaxation of the resulting non-woven fabric is increased, resulting in poor heat resistance when used as a filter.
  • a copolyester resin may be included so that the glass transition temperature is 60 ° C. or higher, preferably the homopolyester resin component is 99 mol% or higher, more preferably 100% or higher. It is. Further, in the present invention, modifying agents such as an antioxidant, an ultraviolet absorber, a colorant, a flame retardant, and an antibacterial agent may be added as necessary within the range not deteriorating the characteristics.
  • thermoplastic resin (component B) that is incompatible with the polyester resin (component A) of the present invention and has a glass transition temperature of 120 ° C. to 160 ° C. is compatible with the polyester resin (A).
  • the component B has a characteristic of existing as an independent component.
  • it has a glass transition temperature that is at least 40 ° C. higher than the glass transition temperature of the polyester resin (component A), so that when the independent component B component is subjected to spinning tension, oriented crystallization of the polyester resin (component A) Has the effect of suppressing Examples thereof include polystyrene resins, polyacrylate resins, methylpentene resins and copolymers thereof.
  • the resulting fiber is a composite fiber in which the B component is dispersed as an independent component in the A component, and island components generally called sea-island fibers are present in the sea component in the longitudinal direction. Is different. That is, a single component fiber that is not a composite fiber, in which the B component is dispersed as an independent component in the main component A, is obtained.
  • the glass transition temperature of this B component is preferably 120 ° C to 160 ° C. If it is less than 120 ° C., the effect of suppressing the orientation is reduced, and it is necessary to increase the amount of addition in order to obtain the desired nonwoven fabric properties. However, an increase in the amount of addition is not preferable because yarn breakage tends to occur during high-speed spinning. When the temperature exceeds 160 ° C., the thinning speed is increased, and yarn breakage is likely to occur during high speed spinning, which is not preferable.
  • the B component in the present invention is preferably a styrene / acrylate copolymer.
  • PET polyethylene terephthalate
  • a styrene / methyl methacrylate / maleic anhydride copolymer having a glass transition temperature of 122 ° C. In the commercial product, for example, Rohm GmbH & Co. KG's PLEXIGLAS HW55, is particularly preferred because it has a high effect of suppressing crystallization with a small addition amount.
  • PEN polyethylene naphthalate
  • a styrene / maleic anhydride copolymer having a glass transition temperature of 155 ° C. for example, SMA1000 from SARTOMER Company Inc. as a commercial product.
  • the content of component B is preferably 0.05 to 2% by weight, more preferably 0.1 to 1.5% by weight, and still more preferably 0.2 to 1.0% by weight.
  • the content is less than 0.05% by weight, the effect of suppressing the orientation crystallization is reduced, and the fusion of fibers by embossing becomes insufficient, which is not preferable.
  • the non-woven fabric of the present invention is a long-fiber non-woven fabric obtained by the spunbond method, and is obtained by embossing by thermocompression bonding with a pair of engraving rolls and flat metal rolls on a piled fiber assembly composed of single-component polyester fibers. It is.
  • a single component polyester resin by using a mixture of the above component A and component B as a raw material, conventionally, a core-sheath type composite fiber having a low melting point component as a sheath component and a high melting point component as a core component has been used. Further, a spunbond nonwoven fabric having a high basis weight of 150 to 400 g / m 2 and having a high basis weight obtained by embossing on both sides with a pair of engraving rolls can be obtained.
  • the non-woven fabric of the present invention can obtain a deposited fiber assembly that is easily thermocompression-bonded by using a polyester-based fiber composed of a mixture of the A component and the B component.
  • the spunbond nonwoven fabric with a high basis weight of 150 to 400 g / m 2 is obtained by thermocompression bonding of the accumulated fiber assembly with a pair of engraving rolls and a flat metal roll instead of thermocompression bonding with a pair of engraving rolls. Can be sufficiently thermocompression-bonded. As a result, the obtained spunbonded nonwoven fabric is a highly rigid nonwoven fabric having excellent bending resilience in the vertical direction.
  • the non-woven fabric of the present invention is not preferred because the short-fiber non-woven fabric has a low tensile strength and low rigidity. Moreover, although the short fiber nonwoven fabric impregnated with resin is improved in rigidity, it is not preferable because binder resin and fibers are dropped due to external force during pleating and repeated use of the filter. Further, in the spunbonded nonwoven fabric, the needle punched nonwoven fabric is not preferable because the rigidity is low and the filtration performance is lowered by the needle hole in the needle punching. Moreover, the spunbond nonwoven fabric impregnated with resin is not preferable because the binder resin may fall off due to external force during pleating and repeated use of the filter.
  • the long fibers constituting the spunbonded nonwoven fabric of the present invention preferably have a birefringence of 0.04 to 0.09, more preferably 0.045 to 0.08, and still more preferably 0.05 to 0.07. . If the birefringence is less than 0.04, it tends to be thermally deformed, and the fusion of fibers by embossing is promoted, but the rigidity of the fibers is inferior, the pleat shape retention is lowered, and the filter becomes brittle when thermoformed Therefore, the durability is inferior, which is not preferable. If the birefringence exceeds 0.09, the rigidity is increased, but the followability at the time of deformation is inferior, and the pleat workability is deteriorated.
  • the long fibers constituting the spunbonded nonwoven fabric of the present invention preferably have a fineness of 1 to 5 dtex, more preferably 1.2 to 4 dtex, and still more preferably 1.5 to 3 dtex. If the fineness is less than 1 dtex, the fiber is thin and the strength of the fiber itself is low, and the abrasion resistance as a nonwoven fabric is inferior. When the fineness exceeds 5 dtex, the gap between the constituent fibers becomes large and the collection performance of a small dust size is lowered, which is not preferable.
  • the filter substrate using the spunbonded nonwoven fabric of the present invention preferably simultaneously satisfies a particle collection efficiency of 25% or more and a QF value of 0.03 mmAq ⁇ 1 or more with a filtration performance of 0.3 ⁇ m or more and less than 0.5 ⁇ m.
  • the collection efficiency of particles having a collection particle diameter of 0.3 to 0.5 ⁇ m or less is 25% or more, preferably 30% or more, as atmospheric dust collection efficiency. More preferably, it is 35% or more.
  • the filter substrate using the spunbonded nonwoven fabric of the present invention preferably has a QF value of 0.03 mmAq ⁇ 1 or more in order to limit the filter performance from the relationship between collection performance and pressure loss. More preferably, it is 0.04 mmAq ⁇ 1 or more, and further preferably 0.05 mmAq ⁇ 1 .
  • the QF value is less than 0.03 mmAq- 1 , the pressure loss is high even if the collection efficiency is high, or the collection efficiency is low even if the pressure loss is low.
  • the upper limit of the QF value is not particularly limited, generally QF value because 0.09MmAq -1 is the limit value, the upper limit is 0.09mmAq -1.
  • the filter base material using the spunbond nonwoven fabric of the present invention is to keep the filter life long by increasing the filtration amount by increasing the filtration area per fixed cross-sectional area by pleating.
  • a known shape can be used as the shape of the pleat, and it is not particularly limited. However, it is preferably at least twice the cross-sectional area of the plane, more preferably at least 2.5 times, and even more preferably at least 3 times.
  • the folded shape is preferably a zigzag shape or a curved shape from the viewpoint of ease of form processing and form retention.
  • a filter substrate using the spunbonded nonwoven fabric of the present invention is used for a high performance filter, it is preferably laminated with a high performance filter substrate such as a high performance membrane and pleated.
  • a known filter structure can be used for the filter using the filter substrate made of the spunbond nonwoven fabric of the present invention.
  • ⁇ Tensile strength of nonwoven fabric> Three test pieces each having a width of 5 cm and a length of 20 cm are sampled per 1 m width, and a load is applied until the test piece is cut at a gripping interval of 10 cm and an extension rate of 20 ⁇ 1 cm / min. The strength at the maximum load of the test piece is the tensile strength.
  • ⁇ Pressure loss of filter base> Three samples with a diameter of 50 mm are taken from an arbitrary part of the nonwoven fabric. For each sample, the sample is set in a filter device holder, and atmospheric dust is measured from the downstream side of the filter medium sample as a pressure loss (mmAq) at an air flow rate of 5 cm / sec. Asked.
  • mmAq pressure loss
  • ⁇ QF value of filter substrate> The average differential pressure ( ⁇ P: mmAq) between the upstream side and the downstream side of the filter medium at the time of collecting efficiency measurement is measured, and the QF value is obtained by the following equation.
  • QF value (1 / mmAq) ⁇ ⁇ ln (collection efficiency) / 100 ⁇ / ( ⁇ P)
  • ⁇ Abrasion resistance> Cut out the non-woven fabric for the filter base material, and installed it with Daiei Science Seiki's Gakushin dyeing friction fastness tester so that the friction surface is on the embossed surface side of the non-woven fabric.
  • a wear test was conducted in accordance with the method of JIS L-0847 at a friction number of 100. The following evaluation was performed by visual judgment of the degree of surface wear. No surface wear: ⁇ , fuzz, small damage: ⁇ , fuzz, little to medium damage: ⁇ , fuzz, large damage: ⁇
  • ⁇ Pleated workability> It is obtained by supplying a nonwoven fabric for rolled filter substrate at 5 m / min with a small pleating machine, forming a pleat with a fold width of 20 mm, and setting it at a hot plate processing temperature of 120 ° C. in a compressed state. From the pleated formation state of the pleated filter base material and the operation state of the machine base, the determination was made by visual sensory evaluation. ⁇ : Machine base is not clogged, pleated shape is very good, ⁇ : Machine base is not clogged, Pleated shape is good, ⁇ : Machine base is not clogged, pleat angle is slightly sweet, X: Machine base clogged is all pleated without clogging Misalignment, abnormal
  • the filter substrate with a pleat shape is folded into a square frame having a thickness of 100 mm and a length and width of 500 mm square so that the filtration area is tripled, and the terminal is fixed with a bonding agent to create a filter with a frame.
  • Place the pleated unevenness in a 50 ° C atmosphere place the load on a disk with a diameter of 200 mm in the center, leave the total load at 19.6 N, leave it for 24 hours, and deweight it. It returned to room temperature and the shape change was visually determined.
  • Slightly deformed
  • Very deformed
  • Crushed
  • Example 1 99% by weight of polyethylene terephthalate (PET) having a glass transition temperature of 67 ° C. and an intrinsic viscosity of 0.65 as the A component, and Rohm GmbH & Co. having a glass transition temperature of 122 ° C. as the B component.
  • PET polyethylene terephthalate
  • Rohm GmbH & Co. having a glass transition temperature of 122 ° C. as the B component.
  • KG PLEXIGLAS HW55 (HW55) 1.0% by weight was mixed and dried, and the nozzle orifice was melt-spun at a spinning temperature of 285 ° C. and a single-hole discharge rate of 1.12 g / min.
  • the web was obtained at a spinning speed of 4500 m / min and shaken on a net conveyor. Continuously, a press treatment was performed on a net with a pre-press roller at 100 ° C.
  • the filter base material of Example 1 that satisfies the requirements of the present invention retains excellent filtration performance and retains a filter function with excellent rigidity, abrasion resistance, pleatability, and shape retention, and the filter.
  • the filter obtained using the substrate was also a filter with excellent durability.
  • Example 2 The nonwoven fabric was obtained in the same manner as in Example 1 except that the basis weight of the nonwoven fabric was 180 g / m 2 .
  • Table 1 shows the evaluation results of the obtained web, nonwoven fabric, filter base material, and filter.
  • the filter base material of Example 2 that satisfies the requirements of the present invention retains excellent filtration performance and retains a filter function with excellent rigidity, abrasion resistance, pleatability, and shape retention.
  • the filter obtained using the substrate was also a filter with excellent durability.
  • Example 3 The nonwoven fabric was obtained in the same manner as in Example 1 except that the basis weight of the nonwoven fabric was 350 g / m 2 .
  • Table 1 shows the evaluation results of the obtained web, nonwoven fabric, filter base material, and filter.
  • the filter base material of Example 3 that satisfies the requirements of the present invention retains excellent filtration performance and retains a filter function with excellent rigidity, abrasion resistance, pleatability, and shape retention.
  • the filter obtained using the substrate was also a filter with excellent durability.
  • Example 4 As the A component, 99.5% by weight of PET, and as the B component, Rohm GmbH & Co. A web, a nonwoven fabric, and a filter base obtained in the same manner as in Example 1 except that 0.5% by weight of KG PLEXIGLAS HW55 (HW55), embossing at an embossing temperature of 255 ° C., and a linear pressure of 125 kN / m. Table 1 shows the evaluation results of the materials and the filter.
  • the filter base material of Example 4 that satisfies the requirements of the present invention retains excellent filtration performance and retains a filter function with excellent rigidity, wear resistance, pleatability, and shape retention.
  • the filter obtained using the substrate was also a filter with excellent durability.
  • Example 5 The evaluation results of the web, nonwoven fabric, filter substrate, and filter obtained in the same manner as in Example 4 except that the single-hole discharge rate was 0.9 g / min, the take-up speed was 3600 m / min, and the embossing temperature was 195 ° C. The results are shown in Table 1.
  • the filter base material of Example 5 satisfying the requirements of the present invention retains excellent filtration performance and retains a filter function with excellent rigidity, abrasion resistance, pleatability, and shape retention.
  • the filter obtained using the material was also a filter with excellent durability.
  • Comparative Example 1 The web, nonwoven fabric, filter base material, and filter evaluation results obtained in the same manner as in Example 1 except that PET is 100% by weight, the spinning temperature is 285 ° C., the embossing temperature is 260 ° C., and the linear pressure is 130 kN / m. Table 1 shows.
  • the filter base material of Comparative Example 1 that does not satisfy the requirements of the present invention maintained excellent filtration accuracy, but the birefringence of the constituent fibers was high, and the pleatability was poor due to insufficient fiber fusion by embossing. It was a substrate.
  • Comparative Example 2 1% by weight of styrene (PS) having a glass transition temperature of 108 ° C. and a molecular weight of 250,000 is added as B component, and 5% by weight of Adekastab PFR is added as a phosphorus flame retardant, and a resin kneaded and pelletized by a conventional method is used.
  • Table 1 shows the evaluation results of the web, nonwoven fabric, filter base material, and filter using the filter base material obtained in the same manner as in Comparative Example 1 except that the embossing temperature was 135 ° C. and the linear pressure was 110 kN / m. Show.
  • Comparative Example 2 is a filter base material using a nonwoven fabric having high shrinkage due to yarn breakage due to spinning (analyzed by branching due to thermal decomposition of styrene). And the form retention was also inferior, and the filter using it was a filter inferior in durability.
  • Table 1 shows the evaluation results of the nonwoven fabric obtained by needle punching the web created in the same manner as in Comparative Example 1 with a penet 60, the filter base material, and the created filter. Since the comparative example 3 is entangled, it becomes a bulky nonwoven fabric with low rigidity and a nonwoven fabric with through holes formed by the entanglement process.
  • the filter base material using the nonwoven fabric is inferior in rigidity and inferior in filtration performance, abrasion resistance, and pleatability, and a filter using the filter base material is also inferior in durability.
  • Example 4 As a B component, Rohm GmbH & Co. Spinning was performed in the same manner as in Example 1 except that KG PLEXIGLAS hw55 (hw55) was mixed in an amount of 4.0% by weight. However, yarn breakage was remarkable and a normal web could not be obtained. Therefore, the performance evaluation of the filter base material could not be performed.
  • Comparative Example 5 Table 1 shows the evaluation results of the web, nonwoven fabric, filter substrate, and filter obtained in the same manner as in Example 2 except that the basis weight is 100 g / m 2 , the embossing temperature is 220 ° C., and the linear pressure is 100 kN / m. . Comparative Example 5 is a filter substrate having a low basis weight and inferior rigidity, and thus inferior pleatability and durability.
  • Table 1 shows the evaluation results of the web, the nonwoven fabric, the filter substrate, and the filter obtained in the same manner as in Example 2 except that the basis weight is 450 g / m 2 .
  • the basis weight is too high and it is rigid, so that it becomes a filter substrate with slightly inferior pleatability.
  • the spunbond nonwoven fabric obtained by the present invention is a spunbond nonwoven fabric composed of a single-component polyester fiber, and is a product in which fibers are fused by a thermocompression bonding method without fiber entanglement treatment, and is cheaper than other manufacturing methods. Can be provided. In addition, it has high bending resilience, good shape stability and durability, and is particularly useful when used as a filter substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

本発明の目的は、単成分のポリエステル系繊維からなるスパンボンド不織布において、達成困難であった高目付・高剛性の不織布をエンボス加工において得ることにある。またフィルター性能を保持しつつ、優れたプリーツ加工性とプリーツ形態保持性、耐久性を同時に併せ持つフィルター基材およびそのフィルター基材を用いたフィルターを提供することにある。上記スパンボンド不織布は、単成分のポリエステル系繊維からなる堆積繊維集合体を一対の彫刻ロールとフラットな金属ロールで熱圧着することにより得られる、目付が150~400g/m、たて方向の曲げ反発性が20~60mN、たて方向の引張強さが400N/5cm以上であるスパンボンド不織布からなる。

Description

スパンボンド不織布およびそれを用いたフィルター
 本発明は、スパンボンド不織布およびそれを用いたフィルターに関する。更に詳しくは、優れた成型加工性、形状保形耐久性を併せ持つフィルター基材用の高剛性なスパンボンド不織布であって、それをフィルター基材に用いた捕集性能に優れたフィルターを提供することに関する。
 従来、エアーフィルター、例えば集塵機フィルター等は、金属の切削工場や粉塵が多く発生する工場での労働環境の改善に、比較的高価な粉体の回収に幅広く用いられている。そのフィルター基材としては、汎用ポリエステル長繊維不織布であるポリエステル長繊維不織布やポリエステル短繊維不織布が用いられている。
 集塵機用のフィルター基材としては、これまで短繊維を原料とした不織布を円筒状に縫製・成型したバグフィルターが用いられていたが、円筒状バグフィルターは、十分なろ過処理能力を得るために装置の大型化が否めなかった。そこで省スペースでろ過面積を多く取るためにプリーツ加工した不織布をフィルター基材としたフィルターが使用されるようになってきた。このプリーツタイプのフィルターには、ろ過時の負荷に耐えられるように剛性の高い不織布が求められる。
 剛性の高い不織布を得るためには不織布の断面形状モーメントを高める、即ち、厚みを高くすることが必要である。ただし、繊維密度を低くして厚みを高めることは、繊維によるネットワーク構造が粗になるため剛性が出ない。したがって、目付を増加することで厚みアップさせる手法がとられていた。
 ポリエステル長繊維不織布において、高速紡糸による配向結晶化繊維では、高目付になればエンボス加工による繊維融着が不十分となり、伸度が低く、剛直で成形性が不十分であり、形状保持性が劣る問題が生じていた。
 そこで、繊維融着性を改善するために、配向結晶化させない未延伸糸を熱接着成分として使用し、エンボス加工する方法が提案されている(例えば、特許文献1参照)。しかし、この方法では配高度の低い繊維をエンボス工程で結晶化促進させるために繊維が脆くなり、形態保持性や耐久性が劣る問題があった。
 不織布の剛性とプリーツ形態保持性を向上させる方法として、熱接着成分を用いる方法が多数提案されている。低融点成分を鞘成分とする芯鞘型複合長繊維不織布をエンボス加工で低融点成分を圧着させて浅い凹凸を付与して、毛羽立ちを抑制し、剛軟度500mg以上のプリーツ形態保持性の良好な不織布を得る方法が提案されている(例えば、特許文献2、3参照)。
 低融点成分を鞘成分とする長繊維不織布を、エンボス加工で低融点成分を圧着させて浅い凹凸を付与し、目付と剛軟度を規定した方法が提案されている(例えば、特許文献4参照)。また、低融点成分を鞘成分とする長繊維層と低融点成分と高融点成分の長繊維が混繊された層が積層されエンボス加工され、さらにカレンダー加工で厚みを調整する方法が提案されている(例えば、特許文献5参照)。低融点成分を含む太い複合繊維と細い繊維を混繊して熱接着成分を減らしてエンボス加工して、枠体機能を太い熱接着繊維で構成することによりプリーツ加工性、プリーツ形態保持性を向上させる方法が提案されている(例えば、特許文献6参照)。接着成分を少なくする方法として、花弁型断面として花弁部を熱接着成分とする方法も多数提案されている(例えば、特許文献7~12参照)。これらの方法は低融点成分のガラス転移点温度に由来する緩和による耐久性が劣る問題があった。
 高剛性不織布を得る他の方法として、低融点成分を含有しない長繊維不織布をニードルパンチ加工で三次元交絡させ、バインダー樹脂を含浸して繊維の交点を樹脂で固定する方法が提案されている(例えば、特許文献13参照)。この方法は、剛性は向上するが、ニードルパンチによる開孔でろ過性能が低下し、さらにはプリーツ加工や繰り返し使用時の外力で交点からバインダー樹脂の脱落が生じる問題がある。
 上記のようにフィルター性能を保持して、プリーツ加工性の向上もしくはプリーツ形態保持性を改良する方法は提案されているが、加熱雰囲気も含めた場合のプリーツ形態保持性、耐久性を併せ持つフィルターとして好適な高剛性不織布を得る課題は未だ解決されていない。
特開平10-99608号公報 特開平9-192426号公報 特開平11-253718号公報 特開2001-54709号公報 特開平8-100371号公報 特開平11-192406号公報 特開2001-248056号公報 特開2001-276529号公報 特開2001-271260号公報 特開2005-7268号公報 特開2005-111337号公報 特開2007-125546号公報 特開平6-47219号公報
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、優れた成型加工性、形状保形耐久性を併せ持つ高剛性なスパンボンド不織布を提供することにある。また、この高剛性なスパンボンド不織布を用いたフィルター基材、フィルターを提供することにある。
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち、本発明は、以下の構成からなる。
1.単成分のポリエステル系繊維からなる堆積繊維集合体を彫刻ロールとフラットな金属ロールで熱圧着することにより得られる、目付が150~400g/m、たて方向の曲げ反発性が20~60mN、たて方向の引張強さが400N/5cm以上であるスパンボンド不織布。
2.ポリエステル系繊維が、ガラス転移点温度が60℃以上のポリエステル系樹脂(A成分)98.0~99.95重量%と、ポリエステル系樹脂(A成分)と非相溶でガラス転移点温度が120℃~160℃の熱可塑性樹脂(B成分)0.05~2.0重量%の混合物からなる繊維である上記1記載のスパンボンド不織布。
3.A成分がポリエチレンテレフタレートであり、B成分がスチレン・メタクリル酸メチル・無水マレイン酸共重合体またはスチレン・マレイン酸共重合体である上記1または2に記載のスパンボンド不織布。
4.不織布を構成する繊維が、複屈折が0.04~0.09、繊度が1~5dtexの長繊維で構成された上記1~3のいずれかに記載のスパンボンド不織布。
5.上記1~4のいずれかに記載のスパンボンド不織布を用いたフィルター基材。
6.上記1~4のいずれかに記載のスパンボンド不織布を用いたフィルター基材であって、不織布単板のろ過特性において0.3μm以上0.5μm以下の粒子捕集効率が25%以上、QF値が0.03mmAq-1以上であるフィルター基材。
7.プリーツ加工された上記5または6記載のフィルター基材。
8.上記5~7のいずれかに記載のフィルター基材を用いたフィルター。
 本発明により、フィルター基材として好適な高剛性な不織布が得られる。高剛性な不織布はその剛性から、プリーツ加工性が良好で、プリーツ加工後の屈曲耐久性に優れ、プリーツ形態保持性に優れたフィルター基材を提案できる。
 以下、本発明を詳述する。
 本発明の不織布は、単成分のポリエステル系繊維からなるスパンボンド不織布である。ここで言う単成分のポリエステル系繊維とは、不織布を構成するポリエステル系繊維が、芯鞘型やサイドバイサイド型等の複合繊維ではなく、1種類のポリエステル系樹脂を複合化させることなく、ノズルより押し出して得られる繊維を意味する。1種類のポリエステル系樹脂として、ホモポリマーはもちろん、ポリマーブレンドしたものを使用し、複合化させずに繊維化したものも、本発明で言う単成分のポリエステル繊維に含まれるものである。
 本発明のスパンボンド不織布の目付は、150~400g/mであり、好ましくは180~350g/mであり、更に好ましくは200~300g/mである。150g/m未満では、曲げ剛性が低くなり、フィルターに使用した場合、ろ過粒子の堆積により不織布に対して負荷が増加した時に、その負荷によってろ材が変形して目折りを生じてろ過面積が低下・寿命が短くなるという問題が生じる。400g/mを超えると、繊維量増加による濾過精度の向上もほぼ見られなくなり、製品重量の増大、コストアップに繋がるために好ましくない。また高い剛性のためにプリーツ加工性が低下するということも生じるために好ましくない。
 本発明のスパンボンド不織布のたて方向の曲げ反発性は、20~60mNであり、好ましくは、30~50mNであり、より好ましくは35~45mNである。20mN未満では、プリーツ形態保持性が劣り、好ましくない。60mNを超えるとプリーツ加工時の折りたたみ抵抗が大きくなり、プリーツ形状の凹凸点の仕上がり状態がシャープにならない場合があるので好ましくない。なお、プリーツ形状保持性は折りたたみ方向であるたて方向の曲げ反発性が支配的であり、横方向の曲げ反発性は特に限定されないが、10mN以上、好ましくは15mN以上である。
 本発明のスパンボンド不織布のたて方向の引張強さは、400N/5cm以上であり、好ましくは450N/5cm以上であり、より好ましくは500N/5cm以上である。400N/5cm未満ではフィルターとして使用した際に粉塵が堆積してフィルター基材に負荷が掛かった際に、シート破断を生じる危険性があり好ましくない。引張強さの上限については圧着面積の調整や加工温度により調整できるため特に限定されないが、他の不織布特性の兼ね合いより1000N/5cm以下程度となる。
 本発明のスパンボンド不織布は、ガラス転移点温度が60℃以上のポリエステル系樹脂(A成分)98.0~99.95重量%と、ポリエステル樹脂(A成分)と非相溶でガラス転移点温度が120℃~160℃の熱可塑性樹脂(B成分)0.05~2.0重量%の混合物を原料としたポリエステル系繊維から構成されることが好ましい。
 ガラス転移点温度が60℃以上のポリエステル系樹脂(A成分)とは、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリシクロヘキサンジメチルテレフタレート(PCHT)などが挙げられる。ガラス転移点温度が60℃未満のポリエステル系樹脂では、得られる不織布の熱緩和が大きくなってしまうのでフィルターとして使用された際に耐熱性が劣り好ましくない。
 ポリエステル系樹脂(A成分)において、ガラス転移温度が60℃以上となるように共重合ポリエステル樹脂を含有させても良いが、好ましくはホモポリエステル樹脂成分が99モル%以上、更に好ましくは100%以上である。また、本発明では特性を低下させない範囲で、必要に応じて酸化防止剤、紫外線吸収材、着色剤、難燃剤、抗菌剤などの改質材を添加させても良い。
 本発明のポリエステル系樹脂(A成分)と非相溶でガラス転移点温度が120℃~160℃の熱可塑性樹脂(B成分)とは、B成分がポリエステル系樹脂(A)と相溶性を有しないで、ポリエステル系樹脂(A成分)を溶融した際に、B成分が独立成分として存在する特性を有する。またポリエステル系樹脂(A成分)のガラス転移温度より少なくとも40℃高いガラス転移温度を有することで、独立成分であるB成分が紡糸張力を受けた際にポリエステル系樹脂(A成分)の配向結晶化を抑制する効果を有する。例えば、ポリスチレン系樹脂、ポリアクリレート系樹脂、メチルペンテン系樹脂およびそれらの共重合体などが挙げられる。なお、得られる繊維はA成分中にB成分が独立成分として分散して存在しており、一般的に海島繊維と呼ばれる島成分が海成分中に長手方向に連通して存在している複合繊維とは異なるものである。すなわち、主成分であるA成分中にB成分が独立成分として分散して存在している、複合繊維ではない単成分の繊維が得られるものである。
 このB成分のガラス転移温度は120℃~160℃が好ましい。120℃未満では、配向抑制効果が少なくなり、求める不織布特性を得るためには添加量を増やす必要があるが、添加量の増加は高速紡糸時に糸切れしやすくなるので好ましくない。160℃を超えると、細化速度が速くなり高速紡糸時に糸切れが発生しやすくなるので好ましくない。
 本発明におけるB成分としては、スチレン・アクリレート系共重合体が好ましく、A成分にポリエチレンテレフタレート(PET)を用いた場合、ガラス転移温度が122℃のスチレン・メタクリル酸メチル・無水マレイン酸共重合体(市販品では、例えばRohm
 GmbH&Co.KGのPLEXIGLAS HW55)が少量の添加量で配向結晶化抑制効果が高いので特に好ましい。A成分にポリエチレンナフタレート(PEN)を用いた場合、ガラス転移温度が155℃のスチレン・無水マレイン酸共重合体(市販品では、例えばSARTOMER Company Inc.のSMA1000など)を用いるのが好ましい。
 このB成分の含有量は、0.05~2重量%が好ましく、より好ましくは0.1~1.5重量%、更に好ましくは0.2~1.0重量%である。含有量が0.05重量%未満では、配向結晶化抑制効果が少なくなり、エンボス加工による繊維同士の融着が不十分となり、好ましくない。含有量2重量%を超えると高速紡糸領域において糸切れが発生しやすく、安定的な生産が困難となるので好ましくない。紡糸速度を下げることで糸切れは改善するが、本発明要件である複屈折を満足せず、耐久性が劣るので好ましくない。
 本発明の不織布はスパンボンド法によって得られる長繊維不織布であり、単成分のポリエステル系繊維からなる堆積繊維集合体を対を成す彫刻ロールとフラットな金属ロールで熱圧着するエンボス加工で得られる不織布である。単成分のポリエステル系樹脂として、上記A成分とB成分の混合物を原料として使用することにより、従来では低融点成分を鞘成分とし、高融点成分を芯成分とした芯鞘型複合繊維を使用し、さらに対を成した彫刻ロールにて両面エンボス加工することにより得られていた、高剛性な目付150~400g/mの高目付のスパンボンド不織布を、得られるようになったものである。
 すなわち、これまで、目付150~400g/mといった高目付のスパンボンド不織布を、単成分のポリエスエル系樹脂で製造した場合、高目付であるためエンボス加工による熱圧着が不完全なものとなり、層間剥離を起こす場合もあるような不織布しか得られず、たて方向の曲げ反発性が20mN未満の剛性の低い不織布しか得られていなかった。それに対し、本発明の不織布は、上記A成分とB成分の混合物からなるポリエステル系繊維を使用することで、熱圧着されやすい堆積繊維集合体が得られる。その堆積繊維集合体を、対を成した彫刻ロールによる熱圧着ではなく、対を成す彫刻ロールとフラットな金属ロールにより熱圧着することで、目付150~400g/mといった高目付のスパンボンド不織布を、十分に熱圧着することが可能となったものである。その結果、得られたスパンボンド不織布は、たて方向の曲げ反発性に優れた高剛性な不織布が得られるものである。
 本発明の不織布は、短繊維不織布は不織布の引張強さが弱く、剛性が低いので好ましくない。また樹脂含浸させた短繊維不織布は、剛性は改善されるものの、プリーツ加工やフィルターの繰り返し使用時の外力によりバインダー樹脂の脱落、繊維の脱落があるので好ましくない。また、スパンボンド不織布においてもニードルパンチ加工不織布は、剛性が低く、さらにニードルパンチ加工における針孔によってろ過性能が低下するので好ましくない。また、樹脂含浸させたスパンボンド不織布は、プリーツ加工やフィルターの繰り返し使用時の外力によりバインダー樹脂の脱落があるので好ましくない。
 本発明のスパンボンド不織布を構成する長繊維は、複屈折0.04~0.09が好ましく、より好ましくは0.045~0.08であり、更に好ましくは0.05~0.07である。複屈折が0.04未満では、熱変形しやすく、エンボス加工による繊維同士の融着が促進されるが、繊維の剛直性が劣り、プリーツの形態保持性が低下し、フィルター熱成型すると脆くなるため耐久性が劣るので好ましくない。複屈折が0.09を超えると、剛直性は高くなるが変形時の追従性が劣り、プリーツ加工性が悪くなるので好ましくない。
 本発明のスパンボンド不織布を構成する長繊維は繊度が1~5dtexが好ましく、より好ましくは1.2~4dtexであり、更に好ましくは1.5~3dtexである。繊度が1dtex未満では、繊維が細いため繊維自身の強度が低く、不織布としての耐摩耗性が劣り好ましくない。繊度が5dtexを超えると、構成する繊維間隙が大きくなり小さいダストサイズの捕集性能が低下するので好ましくない。
 本発明のスパンボンド不織布を用いたフィルター基材は、ろ過性能が0.3μm以上0.5μm未満の粒子捕集効率が25%以上、QF値0.03mmAq-1以上を同時に満たすことが好ましい。本発明では、中性能フィルターの機能を保持させるため、大気塵捕集効率として捕集粒子径は0.3~0.5μm以下の粒子捕集効率が25%以上であり、好ましくは30%以上であり、更に好ましくは35%以上である。
 本発明のスパンボンド不織布を用いたフィルター基材は、捕集性能と圧力損失の関係からフィルター性能を限定するためQF値を0.03mmAq-1以上とすることが好ましい。より好ましくは0.04mmAq-1以上であり、更に好ましくは0.05mmAq-1である。QF値が0.03mmAq-1未満では、捕集効率が高くても圧力損失が高い場合や、圧力損失が低くても捕集効率が低い場合であり、フィルター性能としては好ましくない。なお、QF値の上限値は特に限定されないが、一般にQF値は0.09mmAq-1が限界値となるので、上限を0.09mmAq-1とする。
 本発明のスパンボンド不織布を用いたフィルター基材は、プリーツ加工により、一定断面積あたりのろ過面積を大きくしてろ過量を増大させることで、フィルターの寿命を長く保つことにある。プリーツの形状は、公知の形状を使用でき、特に限定されないが、少なくとも、平面の断面積の2倍以上が好ましく、2.5倍以上がより好ましく、3倍以上が更に好ましい。折り畳み形状は、ジグザグ形状や湾曲形状が形態加工の容易性と形態保持性から望ましい。
 本発明のスパンボンド不織布を用いたフィルター基材を高性能フィルターに用いる場合は、高性能膜などの高性能フィルター基材と積層してプリーツ加工するのが好ましい。
 本発明のスパンボンド不織布からなるフィルター基材を用いたフィルターは、公知のフィルター構造を使用することが出来る。
  以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。実施例において、各特性値の測定を次の方法により実施した。
 <ガラス転移温度、融点>
 各熱可塑性樹脂サンプル5mgを採取し、示差走査型熱量計(TA instruments社性Q100)にて、窒素雰囲気下で20℃から10℃/分にて290℃まで昇温させたときの発熱ピーク位置の温度をガラス転移温度、吸熱ピーク位置の温度を融点として評価した。
 <不織布の目付>
 JIS L 1906(2000)に準じて測定した単位面積(1m)あたりの質量で示す。
 <不織布の剛性(曲げ反発性)>
 JIS L 1096(1999)の8.20.1のA法に準拠して測定した剛軟度を不織布の曲げ反発性とし、たて方向の剛軟度を、本発明ではたて方向の曲げ反発性(mN)とする。
 <不織布の引張強さ>
5cm幅×20cm長の試験片を幅1mあたり3枚採取し、つかみ間隔10cm、20±1cm/minの伸長速度で試験片が切断するまで荷重を加える。試験片の最大荷重時の強さを引張強さとする。
 <複屈折>
 不織布又はウエッブから取り出した単繊維をベレックコンペンセーターを装着した偏向顕微鏡によりレターデーションと繊維径により求めたn=5の平均値を繊維の複屈折(Δn)とした。
 <繊度>
 不織布からランダムに小片サンプルを10個採取し、光学顕微鏡にて各サンプルから5点ずつ、計50本の繊維を任意に選び出してその太さを測定する。繊維は断面が円形と仮定し、太さを繊維径とする。それらの平均値の小数点以下第一位を四捨五入して算出した繊維径とポリマーの密度から繊度を算出する。
 <フィルター基材の圧力損失>
 不織布の任意の部分から、φ50mmのサンプルを3 個採取し、それぞれのサンプルについて、サンプルを濾過装置ホルダーにセットし、大気塵を濾材サンプル下流側からエアー流量5cm/秒における圧力損失(mmAq)を求めた。
 <フィルター基材の0.3μm以上0.5μm以下の捕集効率>
 不織布の任意の部分から、φ50mmのサンプルを3 個採取し、それぞれのサンプルについて、サンプルを濾過装置ホルダーにセットし、大気塵を濾材サンプル下流側からエアー流量5cm/秒にて吸引空気量1mになるまで吸引させ、濾材上流の吸引大気塵中の0.3μm以上、0.5μm以下のダストをカウンターで測定しダスト数(D1)を求め、他方、濾材サンプルを通過した吸引濾過大気中の0.3μm以上、0.5μm以下のダストをカウンターで測定してダスト数(D2)を求め、下記式にて捕集効率を求めた。
  0.3μm以上0.5μm以下の捕集効率(%)=(1-D2/D1)×100
 <フィルター基材のQF値>
 上記捕集効率測定時の濾材の上流側と下流側の平均差圧(ΔP:mmAq)を計測して、下記式にてQF値を求める。
  QF値(1/mmAq)=-{ln(捕集効率)/100}/(ΔP)
 <耐磨耗性>
 フィルター基材用不織布を切り出し、大栄科学精器の学振式染色物摩擦堅牢度試験機にて、摩擦面が不織布のエンボス面側となるように設置して、摩擦の同布に金巾3号を用い、摩擦回数100回にて、JIS L-0847の方法に準拠して磨耗試験を行った。表面の磨耗程度を目視判断で以下の評価を行った。
 表面の磨耗がない:◎、毛羽立ち、損傷が微小:○、毛羽立ち、損傷が少~中ある:△、毛羽立ち、損傷が大:×
 <プリーツ加工性>
 小型プリーツ加工機にて、ロール状フィルター基材用不織布を5m/分にて供給し、襞折り幅20mmのプリーツを形成させ、圧縮状態での熱板処理温度120℃にてセットして得られたプリーツ加工したフィルター基材のプリーツ形成状態と機台の運転状況から、目視官能評価で判定した。
 ◎:機台詰りなし、プリーツ形状非常に良好、○:機台詰りなし、プリーツ形状良好、△:機台詰りなし、プリーツ角度少し甘い、×:機台詰りありはすべて、詰りなしでプリーツ形状ズレ、異常あり
 <フィルター耐久性>
 プリーツ成形したフィルター基材を、厚み100mm、縦横500mm角の正方形枠に濾過面積が3倍になるように折り畳み状態で端末を接合剤で固定し枠付きフィルターを作成し、該枠付きフィルターを、50℃雰囲気中にてプリーツの凹凸が上下になるように置いて、中央にφ200mmの円盤に荷重を乗せて、全荷重が19.6Nとなるようにして、24時間放置後、除重して室温にもどし、形状変化を目視判定した。
 ◎:変形なし、○:少し変形、△:かなり変形、×:潰れた
<不織布の圧着面積>
 不織布1mの表面を20箇所サンプリングし、SEMにて500倍の写真をとり、1000倍に拡大した写真を印刷して、圧着部を切り抜き、切り抜いた圧着部の面積(Sp)を求め、単位面積あたりの圧着部数から、全体の面積(S0)に対してのSpの比率を求める。(n=20)
  P=Sp×n/S0
 (実施例1)
 A成分としてガラス転移点温度が67℃で固有粘度0.65のポリエチレンテレフタレート(PET)99重量%と、B成分としてガラス転移点温度が122℃のRohm GmbH&Co.KGのPLEXIGLAS HW55(HW55)を1.0重量%を混合乾燥し、ノズルオリフィスはL/D3.0のノズルを用い、紡糸温度285℃、単孔吐出量1.12g/分にて溶融紡糸し、紡糸速度4500m/分にて引取り、ネットコンベア上に振落してウエッブを得た。連続して、ネット上で100℃の予備圧着ローラーにて押さえ処理を行い単糸繊度2.5dtexの長繊維からなるウエッブを得た。次いで、圧着面積率18%の横楕円エンボスローラーとフラット金属ローラーとにて、加熱温度として240℃にて、線圧120kN/mにてエンボス加工して、目付250g/mの不織布を得た。得られたウエッブと不織布の評価結果を表1に示す。
 次いで、得られた不織布をプリーツ加工してフィルター基材の評価を行った結果を表1に示す。
 本発明の要件を満たす実施例1のフィルター基材は、優れた濾過性能を保持して、剛直性、耐磨耗性、プリーツ加工性、形態保持性とも優れたフィルター機能を保持し、そのフィルター基材を用いて得られたフィルターも耐久性に優れたフィルターであった。
(実施例2)
 不織布の目付を180g/mとした以外は実施例1と同様にして得た。得られたウエッブ、不織布、フィルター基材、及びフィルターの評価結果を表1に示す。
 本発明の要件を満たす実施例2のフィルター基材は、優れた濾過性能を保持して、剛直性、耐磨耗性、プリーツ加工性、形態保持性とも優れたフィルター機能を保持し、そのフィルター基材を用いて得られたフィルターも耐久性に優れたフィルターであった。
(実施例3)
 不織布の目付を350g/mとした以外は実施例1と同様にして得た。得られたウエッブ、不織布、フィルター基材、及びフィルターの評価結果を表1に示す。
 本発明の要件を満たす実施例3のフィルター基材は、優れた濾過性能を保持して、剛直性、耐磨耗性、プリーツ加工性、形態保持性とも優れたフィルター機能を保持し、そのフィルター基材を用いて得られたフィルターも耐久性に優れたフィルターであった。
 (実施例4)
 A成分としてPET99.5重量%、B成分としてRohm GmbH&Co.KGのPLEXIGLAS HW55(HW55)を0.5重量%し、エンボス加工温度を255℃、線圧125kN/mにてエンボス加工した以外、実施例1と同様にして得られたウエッブ、不織布、フィルター基材、及びフィルターの評価結果を表1に示す。
 本発明の要件を満たす実施例4のフィルター基材は、優れた濾過性能を保持して、剛直性、耐磨耗性、プリーツ加工性、形態保持性とも優れたフィルター機能を保持し、そのフィルター基材を用いて得られたフィルターも耐久性に優れたフィルターであった。
 (実施例5)
 単孔吐出量を0.9g/分、引取速度を3600m/分とし、エンボス温度を195℃とした以外実施例4と同様にして得た、ウエッブ、不織布、フィルター基材、フィルターの評価結果を表1にしめす。
 本発明要件を満たす実施例5のフィルター基材は、優れた濾過性能を保持して、剛直性、耐磨耗性、プリーツ加工性、形態保持性とも優れたフィルター機能を保持し、そのフィルター基材を用いて得られたフィルターも耐久性に優れたフィルターであった。
 (比較例1)
 PET100重量%とし、紡糸温度285℃、エンボス加工温度を260℃、線圧130kN/mとした以外、実施例1と同様にして得られたウエッブ、不織布、フィルター基材、及びフィルターの評価結果を表1に示す。
 本発明の要件を満たさない比較例1のフィルター基材は、優れた濾過精度を保持していたが、構成繊維の複屈折が高く、エンボス加工による繊維の融着不足でプリーツ加工性が劣るフィルター基材であった。
 (比較例2)
 B成分としてガラス転移点温度が108℃の分子量250000のスチレン(PS)を1重量%添加し、リン系難燃剤として、アデカスタブPFRを5重量%添加して、常法により混練ペレタイズした樹脂を用い、エンボス加工温度を135℃、線圧110kN/mとした以外、比較例1と同様にして得たウエッブ、不織布、フィルター基材、及び、フィルター基材を用いたフィルターの評価結果を表1に示す。
 比較例2は、紡糸で糸切れがある(スチレンの熱分解による分岐の生成と類推される)、収縮率も高い不織布を用いたフィルター基材で、耐磨耗は許容されるが、濾過性能および、形態保持性も劣り、それを用いたフィルターは耐久性が劣るフィルターであった。
 (比較例3)
 比較例1と同様にして作成したウエッブを、ペネ60でニードルパンチ加工して得た不織布、フィルター基材、及び、作成したフィルターの評価結果を表1に示す。
 比較例3は、交絡処理をしているため、剛性が低い、嵩高な不織布となり、交絡処理による貫通孔が形成された不織布となる。その不織布を用いたフィルター基材は、剛直性が劣り、濾過性能、耐磨耗性、プリーツ加工性とも劣るものであり、それを用いたフィルターも耐久性が劣るものであった。
 (比較例4)
 B成分としてRohm GmbH&Co.KGのPLEXIGLAS hw55(hw55)を4.0重量%を混合した以外、実施例1と同様にして紡糸したが、糸切れが顕著で、正常なウエッブを得ることができなかった。よって、フィルター基材の性能評価は実施できなかった。
 (比較例5)
 目付を100g/m、エンボス加工温度を220℃、線圧を100kN/mとした以外、実施例2と同様にして得たウエッブ、不織布、フィルター基材、フィルターの評価結果を表1にしめす。
 比較例5は、目付が低く剛直性に劣るため、プリーツ加工性と耐久性が劣るフィルター基材である。
 (比較例6)
 目付を450g/mとして以外は、実施例2と同様にして得たウエッブ、不織布、フィルター基材、フィルターの評価結果を表1にしめす。
 比較例6は、目付が高すぎて剛直なため、プリーツ加工性がやや劣るフィルター基材となる。
Figure JPOXMLDOC01-appb-T000001
 本発明により得られたスパンボンド不織布は単成分のポリエステル系繊維からなるスパンボンド不織布であり、繊維交絡処理無しに熱圧着手法で繊維を融着させた物であり、他の製造方法より安価に提供することが出来る。また高い曲げ反発性を有し、形態安定性、耐久性が良好であり、フィルター基材に用いた場合に特に有用である。

Claims (8)

  1.  単成分のポリエステル系繊維からなる堆積繊維集合体を彫刻ロールとフラットな金属ロールで熱圧着することにより得られる、目付が150~400g/m、たて方向の曲げ反発性が20~60mN、たて方向の引張強さが400N/5cm以上であるスパンボンド不織布。
  2.  ポリエステル系繊維が、ガラス転移点温度が60℃以上のポリエステル系樹脂(A成分)98.0~99.95重量%と、ポリエステル系樹脂(A成分)と非相溶でガラス転移点温度が120℃~160℃の熱可塑性樹脂(B成分)0.05~2.0重量%の混合物からなる繊維である請求項1記載のスパンボンド不織布。
  3.  A成分がポリエチレンテレフタレートであり、B成分がスチレン・メタクリル酸メチル・無水マレイン酸共重合体またはスチレン・マレイン酸共重合体である請求項1または2に記載のスパンボンド不織布。
  4.  不織布を構成する繊維が、複屈折が0.04~0.09、繊度が1~5dtexの長繊維で構成された請求項1~3のいずれかに記載のスパンボンド不織布。
  5.  請求項1~4のいずれかに記載のスパンボンド不織布を用いたフィルター基材。
  6.  請求項1~4のいずれかに記載のスパンボンド不織布を用いたフィルター基材であって、不織布単板のろ過特性において0.3μm以上0.5μm以下の粒子捕集効率が25%以上、QF値が0.03mmAq-1以上であるフィルター基材。
  7.  プリーツ加工された請求項5または6記載のフィルター基材。
  8.  請求項5~7のいずれかに記載のフィルター基材を用いたフィルター。
PCT/JP2010/072206 2010-07-06 2010-12-10 スパンボンド不織布およびそれを用いたフィルター WO2012004905A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/808,176 US9011567B2 (en) 2010-07-06 2010-12-10 Spunbonded nonwoven fabric and filter using same
CN201080067892.7A CN102985608B (zh) 2010-07-06 2010-12-10 一种纺粘无纺布及使用其制成的过滤器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010153701A JP5609334B2 (ja) 2010-07-06 2010-07-06 スパンボンド不織布およびそれを用いたフィルター
JP2010-153701 2010-07-06

Publications (1)

Publication Number Publication Date
WO2012004905A1 true WO2012004905A1 (ja) 2012-01-12

Family

ID=45440901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072206 WO2012004905A1 (ja) 2010-07-06 2010-12-10 スパンボンド不織布およびそれを用いたフィルター

Country Status (4)

Country Link
US (1) US9011567B2 (ja)
JP (1) JP5609334B2 (ja)
CN (1) CN102985608B (ja)
WO (1) WO2012004905A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866485A (zh) * 2012-12-11 2014-06-18 东丽纤维研究所(中国)有限公司 一种热粘合无纺布及其生产方法和用途
JP2020125756A (ja) * 2014-12-01 2020-08-20 愛三工業株式会社 燃料用フィルタ

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102146642B1 (ko) * 2012-03-29 2020-08-20 주식회사 쿠라레 부직 섬유 시트 및 그 제조 방법 그리고 필터
WO2015147119A1 (ja) * 2014-03-27 2015-10-01 大紀商事株式会社 不織布シートとそれを用いた抽出用フィルター及び抽出用バッグ
JP2016108706A (ja) * 2014-12-10 2016-06-20 東洋紡株式会社 熱成型用スパンボンド不織布
EP3275525B1 (en) * 2015-03-26 2019-08-28 Toray Industries, Inc. Filter material for air filter
JP6790480B2 (ja) * 2016-06-15 2020-11-25 東洋紡株式会社 スパンボンド不織布およびそれを用いた成型体の製造方法
JP6668965B2 (ja) * 2016-06-15 2020-03-18 東洋紡株式会社 スパンボンド不織布およびその製造方法、並びにそれを用いた成型体の製造方法
JP6695077B2 (ja) * 2016-06-16 2020-05-20 ユニチカ株式会社 凹凸柄模様を有する積層不織布
CN110709551B (zh) * 2017-06-09 2021-12-28 东洋纺株式会社 长纤维无纺布和使用该长纤维无纺布的过滤器增强材料
WO2019124231A1 (ja) * 2017-12-22 2019-06-27 旭化成株式会社 不織布、及びこれを表皮材として用いた複合吸音材
JP7287385B2 (ja) * 2018-03-23 2023-06-06 東洋紡株式会社 長繊維不織布およびそれを用いたフィルター補強材
JP7105622B2 (ja) * 2018-06-05 2022-07-25 浜松ホトニクス株式会社 エアフィルタ、光源装置、及びエアフィルタの製造方法
US20210262133A1 (en) 2018-06-25 2021-08-26 Toray Industries, Inc. Spunbond nonwoven fabric for use in filters, and manufacturing method thereof
EP4083293A4 (en) * 2019-12-23 2023-06-07 Toray Industries, Inc. SPUN-BONDED NONWOVEN FABRIC, FILTER MEDIA FOR PLEATED DUST COLLECTOR FILTER, PLEATED DUST COLLECTOR FILTER AND HIGH AIR FLOW AIR JET DUST COLLECTOR
JP6992860B2 (ja) * 2020-08-26 2022-01-13 東洋紡株式会社 スパンボンド不織布およびそれを用いた成型体の製造方法
WO2022097532A1 (ja) * 2020-11-05 2022-05-12 東洋紡株式会社 フィルター及びフィルターの成形方法
CN116288804B (zh) * 2023-03-27 2023-09-26 临邑大正特纤新材料有限公司 一种高收缩聚酯海岛纤维及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144723A (ja) * 1985-12-20 1987-06-27 Asahi Chem Ind Co Ltd 容器状フィルターの製造方法
JPH1161568A (ja) * 1997-08-27 1999-03-05 Teijin Ltd ポリエステル繊維の製造方法
JP2001123325A (ja) * 1999-10-21 2001-05-08 Toray Ind Inc ポリエステル高配向未延伸糸およびその製造方法
JP2007231500A (ja) * 2006-02-01 2007-09-13 Toray Ind Inc フィルター用不織布およびその製造方法
JP2007237167A (ja) * 2006-02-07 2007-09-20 Toray Ind Inc フィルター用不織布

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047219A (ja) 1983-08-24 1985-03-14 Canon Inc 磁気ヘツドの製造方法
JP3201168B2 (ja) 1994-09-28 2001-08-20 東レ株式会社 フィルター基材およびその製造方法
JP3534043B2 (ja) 1994-09-28 2004-06-07 東レ株式会社 プリーツ賦型加工されてなるフィルター材
WO1997037071A1 (fr) * 1994-09-28 1997-10-09 Toray Industries, Inc. Textile non-tisse pour filtre plisse et procede de fabrication
JP3339283B2 (ja) 1996-01-19 2002-10-28 東レ株式会社 エアーフィルター用不織布およびそれを用いてなるエアーフィルター装置
DE19630522C2 (de) 1996-07-29 2002-10-02 Freudenberg Carl Kg Verfahren zur Herstellung eines plissierfähigen Filtermediums und Vorrichtung zur Durchführung des Verfahrens
JP3744232B2 (ja) 1997-10-30 2006-02-08 東レ株式会社 フィルター用基材およびフィルター装置
US20010008674A1 (en) * 1998-05-23 2001-07-19 Ralph Smith Underlayment mat employed with a single ply roofing system
JP3799854B2 (ja) 1999-01-20 2006-07-19 東レ株式会社 エアーフィルター
JP2001248056A (ja) 2000-02-28 2001-09-14 Unitika Ltd 複合長繊維不織布およびそれからなるフィルター
JP2001271260A (ja) 2000-03-24 2001-10-02 Unitika Ltd フィルター用不織布およびその製造方法
JP4463933B2 (ja) 2000-03-31 2010-05-19 ユニチカ株式会社 フィルター用不織布
JP4522671B2 (ja) 2003-06-18 2010-08-11 ユニチカ株式会社 フィルター用不織布及びその製造方法
JP4326298B2 (ja) 2003-10-06 2009-09-02 ユニチカ株式会社 フィルター用不織布及びその製造方法
WO2007040104A1 (ja) 2005-10-04 2007-04-12 Toray Industries, Inc. フィルター用不織布
JP5082365B2 (ja) 2005-10-04 2012-11-28 東レ株式会社 フィルター用不織布
CN101378819A (zh) * 2006-02-01 2009-03-04 东丽株式会社 过滤器用无纺布及其制造方法
JP5267809B2 (ja) * 2009-06-18 2013-08-21 東洋紡株式会社 フィルター基材およびそれを用いたフィルター

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144723A (ja) * 1985-12-20 1987-06-27 Asahi Chem Ind Co Ltd 容器状フィルターの製造方法
JPH1161568A (ja) * 1997-08-27 1999-03-05 Teijin Ltd ポリエステル繊維の製造方法
JP2001123325A (ja) * 1999-10-21 2001-05-08 Toray Ind Inc ポリエステル高配向未延伸糸およびその製造方法
JP2007231500A (ja) * 2006-02-01 2007-09-13 Toray Ind Inc フィルター用不織布およびその製造方法
JP2007237167A (ja) * 2006-02-07 2007-09-20 Toray Ind Inc フィルター用不織布

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866485A (zh) * 2012-12-11 2014-06-18 东丽纤维研究所(中国)有限公司 一种热粘合无纺布及其生产方法和用途
JP2020125756A (ja) * 2014-12-01 2020-08-20 愛三工業株式会社 燃料用フィルタ
JP7098682B2 (ja) 2014-12-01 2022-07-11 愛三工業株式会社 燃料用フィルタ

Also Published As

Publication number Publication date
US20130111861A1 (en) 2013-05-09
JP2012017529A (ja) 2012-01-26
CN102985608B (zh) 2015-11-25
CN102985608A (zh) 2013-03-20
JP5609334B2 (ja) 2014-10-22
US9011567B2 (en) 2015-04-21

Similar Documents

Publication Publication Date Title
JP5609334B2 (ja) スパンボンド不織布およびそれを用いたフィルター
EP0831161B1 (en) Nonwoven fabric for pleated filter and process for preparing the same
JP2981533B2 (ja) 成形フィルター
EP3332857B1 (en) Air filter material, filter pack, and air filter unit
KR20080098026A (ko) 필터용 부직포 및 그 제조 방법
JP5082365B2 (ja) フィルター用不織布
JP5075679B2 (ja) フィルタ不織布
WO2007040104A1 (ja) フィルター用不織布
JP2008150753A (ja) 不織布およびそれよりなるフィルター材
JP2007152216A (ja) フィルター用不織布
JP5267809B2 (ja) フィルター基材およびそれを用いたフィルター
JP3744232B2 (ja) フィルター用基材およびフィルター装置
JPH03279452A (ja) 高強力不織シート
WO2018225671A1 (ja) 長繊維不織布およびそれを用いたフィルター補強材
JP7287385B2 (ja) 長繊維不織布およびそれを用いたフィルター補強材
KR101242687B1 (ko) 폴리에스테르계 부직포 및 이의 제조 방법
WO2020202899A1 (ja) 液体フィルター用のメルトブロー不織布、当該メルトブロー不織布の積層体及び積層体を備える液体用フィルター
JPH0291262A (ja) 高強力不織布
JP2007077522A (ja) 積層不織布およびそれを用いてなる濾材
WO2020116569A1 (ja) 長繊維不織布およびそれを用いたフィルター補強材
KR20220110210A (ko) 스펀본드 부직포, 집진기 플리츠 필터용 여과재, 집진기 플리츠 필터 및 대풍량 펄스제트 타입 집진기
KR20090059306A (ko) 무엠보 폴리에스터 장섬유 부직포 및 그 제조 방법
JP3622334B2 (ja) フィルター用不織布
JP7395949B2 (ja) 積層濾材
JP6997527B2 (ja) ポリフェニレンサルファイド不織布

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067892.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13808176

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10854458

Country of ref document: EP

Kind code of ref document: A1