WO2020202899A1 - 液体フィルター用のメルトブロー不織布、当該メルトブロー不織布の積層体及び積層体を備える液体用フィルター - Google Patents

液体フィルター用のメルトブロー不織布、当該メルトブロー不織布の積層体及び積層体を備える液体用フィルター Download PDF

Info

Publication number
WO2020202899A1
WO2020202899A1 PCT/JP2020/007318 JP2020007318W WO2020202899A1 WO 2020202899 A1 WO2020202899 A1 WO 2020202899A1 JP 2020007318 W JP2020007318 W JP 2020007318W WO 2020202899 A1 WO2020202899 A1 WO 2020202899A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
nonwoven fabric
woven fabric
blown
blown nonwoven
Prior art date
Application number
PCT/JP2020/007318
Other languages
English (en)
French (fr)
Inventor
智彦 田村
Original Assignee
タピルス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タピルス株式会社 filed Critical タピルス株式会社
Priority to KR1020217022617A priority Critical patent/KR20210116484A/ko
Priority to JP2021511219A priority patent/JP7352302B2/ja
Priority to CN202080008620.3A priority patent/CN113286645B/zh
Publication of WO2020202899A1 publication Critical patent/WO2020202899A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a melt-blown nonwoven fabric for a liquid filter, a laminate of the melt-blown nonwoven fabric, and a liquid filter including the laminate.
  • melt blown non-woven fabric for liquid filters
  • various non-woven fabrics having different textures, thicknesses, fiber diameters, and pore diameters are used depending on the properties of the filtered substance, the required filtration accuracy, and the like.
  • the fiber diameter of melt-blown non-woven fabric is generally about 1 to 10 ⁇ m, but recent research has developed from those using nanofibers of 1 ⁇ m or less to those using thick fibers of several tens of ⁇ m or more. ing.
  • melt-blown non-woven fabrics and spunpond non-woven fabrics with large fiber diameters are mainly used as filtration filters for high-viscosity fluids such as battery electrode slurry and electrolytes.
  • a non-woven fabric is used as a filter, the filter has a low pressure loss and is less likely to be clogged.
  • a bulkier melt-blown non-woven fabric is preferably used.
  • melt-blown non-woven fabric has excellent drapeability, it has low compression resistance in the thickness direction, so the bulkiness of the non-woven fabric is lost due to the pressure of the filtering fluid during filter filtration, resulting in an increase in pressure loss and a decrease in filter life. There is.
  • An object of the present invention is to provide a new melt-blown non-woven fabric having high uniformity, bulkiness, and good compressibility even if the fiber diameter is large.
  • the present inventors have found a melt-blown nonwoven fabric for a liquid filter having a plurality of protrusions, and the ratio A / of the maximum height A of the protrusions to the thickness B of the nonwoven fabric. It has been found that the above problems can be solved by using a melt-blown non-woven fabric having B of 10 to 30 and a formation index of 150 to 450.
  • the present invention is based on such novel findings. Therefore, the present invention provides the following sections: Item 1.
  • a melt-blown nonwoven fabric in which the ratio A / B of the maximum height A of the protrusion to the thickness B of the nonwoven fabric is 10 to 30, and the formation index is 150 to 450.
  • Item 2 The melt-blown nonwoven fabric according to Item 1, which has an average fiber diameter of 10 to 50 ⁇ m.
  • Item 3 The melt-blown nonwoven fabric according to Item 1 or 2, which is mainly composed of at least one selected from the group consisting of polyolefin, polyester and polyamide.
  • Item 4 A laminate for a liquid filter formed by laminating the melt-blown nonwoven fabric according to any one of Items 1 to 3.
  • a liquid filter comprising the laminate according to item 4.
  • the present invention it is possible to provide a melt blown nonwoven fabric having high uniformity, bulkiness, a large surface area, and good compressibility even if the fiber diameter is large. Since a filter using such a non-woven fabric has a large filtration surface area, it is expected that the use of such a non-woven fabric will bring about less clogging of the filter and longer life.
  • FIG. 3A is a partial front view showing an arrangement of spinning nozzles of the nozzle 3c portion in the apparatus of FIG.
  • FIG. 3B is a partial perspective view of the nozzle 3c.
  • FIG. 3C is a cross-sectional view of the nozzle 3c shown in FIG. 3A at X1-X1. It is an exploded perspective view which shows the internal structure of the collector 4a in the apparatus of FIG. It is an SEM photograph of the cross section of the melt blow nonwoven fabric of this invention. It is sectional drawing of the melt blow die. It is a nozzle hole partial view of the nozzle piece of the melt blow die in the preferable embodiment of this invention.
  • the present invention is a melt-blown nonwoven fabric for a liquid filter having a plurality of protrusions, wherein the ratio A / B of the maximum height A of the protrusions to the thickness B of the nonwoven fabric is 10 to 30, and the formation index is.
  • melt blown non-woven fabrics of 150-450.
  • FIG. 1 shows a schematic cross-sectional view of the melt-blown nonwoven fabric according to the present invention.
  • the melt-blown nonwoven fabric according to the present invention has a plurality of protrusions. Such protrusions are formed by the deflection of the fibers during the production of the melt blown nonwoven fabric. Therefore, the protrusion is typically not solid and is hollow as shown in FIG.
  • the melt-blown nonwoven fabric according to the present invention is characterized in that the ratio A / B of the maximum height A of the protruding portion to the thickness B is 10 to 30.
  • the maximum height A means the maximum height of the protruding portion including the thickness B, as outlined in FIG.
  • the maximum height A of the protrusions is not the height of the maximum height of the plurality of protrusions existing on the entire substantially plane constituting the melt blown nonwoven fabric, but in each protrusion as shown in FIG. It means the height at the highest position (the position of the apex).
  • the height C of the lower surface of the protruding portion means the height obtained by subtracting the thickness B from the maximum height A.
  • the maximum height A, thickness B, and bottom surface height C in the present invention can be measured and calculated by the method described in the examples of the present application. Therefore, the maximum height A means the average value of the measured values at 10 points randomly selected from the melt blown non-woven fabric.
  • the thickness B and the height C of the lower surface also mean the average value of the SEM measurement values at 10 points randomly selected from the melt blown non-woven fabric.
  • the ratio A / B is preferably 15 to 25 from the viewpoint of obtaining a liquid filter having a large filtration surface area and high compression resistance during liquid filtration.
  • the melt-blown nonwoven fabric for liquid filters according to the present invention is characterized by having a formation index of 150 to 450.
  • the formation index is preferably 250 to 400 from the viewpoint of filtration accuracy.
  • the texture index of the non-woven fabric is an index indicating the uniformity of the basis weight, and can be calculated by irradiating the sample with transmitted light and using the distribution of the shading of the image.
  • the permeation type total ground FMT-MIII manufactured by Nomura Shoji Co., Ltd.
  • FMT-MIII manufactured by Nomura Shoji Co., Ltd.
  • the formation index can be calculated by dividing the standard deviation by the average absorbance ⁇ 10. The detailed conditions for measuring the formation index in the present invention will be described later in Examples.
  • the average fiber diameter is not particularly limited, but is preferably 10 to 50 ⁇ m, more preferably 14 to 45 ⁇ m, and more preferably 14 to 45 ⁇ m from the viewpoint of high-viscosity fluid filters and compression resistance. It is more preferably about 40 ⁇ m.
  • a non-woven fabric having a large fiber diameter tends to have a large variation in basis weight and the filtration accuracy tends to deteriorate. Therefore, among the melt-blown nonwoven fabrics according to the present invention, it is particularly useful in the above-described embodiments in which the fiber diameter is relatively large.
  • the basis weight of the melt-blown nonwoven fabric of the present invention is not particularly limited, but the average basis weight range is preferably 5 to 100 g / m 2 , and more preferably 40 to 90 g / m 2 . From the viewpoint of improving the strength (the higher the strength, the easier it is to process into a filter), and when forming a filter, the rigidity is suppressed so that it is not too high, and the adhesion with other materials is improved to perform more uniform lamination. From the viewpoint (more uniform lamination leads to effective filtration performance), it is preferable that the average basis weight of the melt blown non-woven fabric is within the above range.
  • the maximum height A of the protruding portion of the melt-blown nonwoven fabric of the present invention is not particularly limited, but is preferably 0.5 to 3.0 mm, more preferably 1.5 to 2.5 mm. From the viewpoint of clarifying the unevenness, improving the filtration area, and suppressing the increase in pressure resistance during filtration, it is preferable that the maximum height A of the protruding portion of the melt blown nonwoven fabric is within the above range.
  • filling rate (%) average basis weight (g / m 2 ) / maximum height A (m) of protruding portion / resin specific gravity (g / m 3 ) x 100%”. Evaluate from the calculated value of. This may be considered as an index of the bulkiness of the non-woven fabric.
  • the filling rate is not particularly limited, but is preferably 1 to 20%, more preferably 2 to 10%.
  • the filling rate of the melt-blown nonwoven fabric is preferably in the above range from the viewpoint of improving the strength to obtain a predetermined processability, increasing the unevenness, improving the bulkiness of the nonwoven fabric, and improving the filtration area.
  • the air permeability of the melt blow nonwoven fabric of the present invention is not particularly limited, but the value measured by stacking three melt blow sheets is preferably 70 to 400 mL / cm 2 / sec, and more preferably 100 to 370 mL / sec. It is cm 2 / sec. From the viewpoint of suppressing an increase in pressure resistance during filtration and obtaining a non-woven fabric having a predetermined strength, it is preferable to set the air permeability of the melt-blown non-woven fabric within the above range.
  • the thickness B of the melt-blown nonwoven fabric of the present invention is not particularly limited, but is preferably 0.01 to 0.20 mm, more preferably 0.07 to 0.15 mm.
  • the thickness B of the melt-blown non-woven fabric is set from the viewpoint of ensuring a predetermined distance between the fibers, avoiding a paper-like non-woven fabric, suppressing an increase in pressure resistance during filtration, and forming an effective uneven structure. The above range is preferable.
  • the distance d between adjacent protrusions is not particularly limited, but is preferably 0.1 to 5.0 mm, more preferably 1.0 to 3.0 mm. is there.
  • the distance d can be calculated as the average of 10 randomly selected locations by taking an SEM photograph of a cross section of the melt blown non-woven fabric cut.
  • the melt-blown non-woven fabric of the present invention has compression resistance capable of filtering high-viscosity fluids and the like.
  • the compression resistance means that even when a pressure load is applied to the surface uneven portion of the non-woven fabric, the protruding portion is not crushed and a constant three-dimensional structure and air permeability are maintained.
  • the compressibility (1) is not particularly limited, but is preferably 0.7 to 1.0, and more preferably 0.8 to 1.0. From the viewpoint of suppressing the collapse of the protruding portion due to pressurization and the loss of filtration performance, it is preferable to set the compressibility (1) in the above range.
  • the compressibility (2) is not particularly limited, but is preferably 0.9 to 1.0, and more preferably 0.95 to 1.0. From the viewpoint of suppressing crushing of the protruding portion and maintaining uniform filtration performance, it is preferable to set the compressibility (2) in the above range.
  • the polymer constituting the melt blown nonwoven fabric for the liquid filter in the present invention is not particularly limited as long as it is a melt blown thermoplastic resin.
  • the polymer constituting the melt-blown non-woven fabric include polyolefin (for example, polyethylene, polypropylene and the like, preferably polypropylene and the like), polyester, polyetheretherketone, polyphenylene sulfide, polyamide and the like.
  • These thermoplastic resins can be used alone or in combination of two or more. When two or more types of thermoplastic resins are used in combination, the blending ratio is not limited.
  • the melt-blown nonwoven fabric mainly composed of a certain resin can be referred to as a melt-blown nonwoven fabric containing the resin as a main component.
  • the melt-blown nonwoven fabric mainly composed of a certain resin means a melt-blown nonwoven fabric obtained by using a resin as a main raw material, and is not limited to the melt-blown nonwoven fabric obtained by using only the resin.
  • a melt-blown nonwoven fabric obtained by using the thermoplastic resin in a proportion of 50% by mass or more, 70% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more of the raw material is also included.
  • polyolefins and polyesters are preferable, and polyolefins are particularly preferable.
  • polystyrene resin examples include homopolymers of ⁇ -olefins such as propylene, ethylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene, and two or more kinds of random ⁇ -olefins thereof.
  • block copolymers are mentioned, and polypropylene is preferable.
  • MFR melt flow rate
  • polypropylene having a melt flow rate (MFR) of 5 to 2,500 g / 10 minutes is preferable.
  • the MFR is preferably 10 to 2,000 g / 10 minutes, more preferably 15 to 100 g / 10 minutes.
  • the polypropylene MFR can be measured based on JIS K7210 at a load of 2.16 kg and a temperature of 230 ° C.
  • the weight average molecular weight (Mw) of the polypropylene is not particularly limited, but is preferably 1 ⁇ 10 4 to 5 ⁇ 10 5 and more preferably 5 ⁇ 10 4 to 3 ⁇ 10 5. ..
  • the molecular weight distribution of polypropylene [weight average molecular weight (Mw) / number average molecular weight (Mn)] is also not particularly limited, but is preferably 1.1 to 10, more preferably 1.5 to 8, and even more preferably 2 to 6.
  • a propylene homopolymer may be used as the polypropylene, and propylene having a majority polymerization ratio and other ⁇ -olefins (for example, ethylene, butene, hexene, 4-methylpentene) may be used. , Octene, etc.), unsaturated carboxylic acids or derivatives thereof (eg, acrylic acid, maleic anhydride, etc.), aromatic vinyl monomers (eg, styrene, etc.), etc. using random, block or graft copolymers. May be good.
  • these polypropylenes may be used alone, as a mixture of a plurality of types of polypropylenes, or as a mixture with a resin other than polypropylene (for example, polyolefin).
  • the polyester is not particularly limited, and examples thereof include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, and polyethylene terephthalate and polybutylene terephthalate are preferable.
  • the polyamide is not particularly limited, but for example, polyamide 3 (nylon 3) (registered trademark), polyamide 4 (nylon 4) (registered trademark), and polyamide 6 (nylon 6). ) (Registered trademark), Polyamide 6-6 (Nylon 6-6) (Registered trademark), Polyamide 12 (Nylon 12) (Registered trademark) and the like.
  • a crystal nucleating agent a matting agent, a pigment, an antifungal agent, an antibacterial agent, a flame retardant, a hydrophilic agent, a light stabilizer and the like are added to the resin to the extent that the effects of the present invention can be obtained. May be good.
  • FIG. 2 shows an example of the melt blown nonwoven fabric manufacturing apparatus of the present invention.
  • This manufacturing apparatus includes a hopper 1a for charging raw materials, an extruder 1b for melt-kneading raw materials, a metering pump 2 for sending molten polymer extruded from the extruder 1b downstream, and a die 3a for horizontally discharging fibrous materials.
  • a suction blower 4b for sucking the collector 4a (and the fibrous melt polymer 5a collected by the collector 4a), the fibrous melt polymer 5a discharged from the die, and the fibrous melt polymer 5a are collected. It comprises a melt blown non-woven fabric 5b that is cooled and solidified on 4a, and a winder 6 that winds up the melt blown non-woven fabric 5b.
  • the downstream side is the side where the molten polymer is sent from the metering pump 2 to the die 3a, formed into the fibrous melt blown non-woven fabric 5b, and the web flows
  • the upstream side is the side where the metering pump 2 is used. This is the side on which the melt-blown non-woven fabric 5b is not formed (the side opposite to the downstream side).
  • FIG. 3A shows a partial front view showing the arrangement of the spinning nozzles of the nozzle 3c portion in the apparatus of FIG.
  • FIG. 3B shows a partial perspective view of the nozzle 3c.
  • FIG. 3 (C) shows a cross-sectional view of the nozzle 3c shown in FIG. 3 (A) at X1-X1.
  • the diameter D of the hole 3d of the spinning nozzle 3c in the die 3a is typically 0.1 to 2.0 mm.
  • the diameter D is the diameter of a virtual circle having the same area as the cross section.
  • the diameter D is preferably 0.2 to 1.5 mm, more preferably 0.3 to 1.2 mm.
  • the diameter D is in the above range because fibers having a relatively large diameter can be produced.
  • the ratio L / D of the length L and the diameter D of the orifice portion of the spinning nozzle hole 3d is preferably 3 or more, and more preferably 6 or more.
  • the density of the spinning nozzle holes 3d is preferably 3 to 40 per inch, more preferably 5 to 35.
  • the collector 4a that continuously collects the polymer fibers discharged and stretched from the spinning nozzle 3c includes a cylindrical member 41 communicating with the suction blower 4b and an outer circumference of the cylindrical member 41. It has a porous cylindrical member 42 provided on the surface and a cylindrical mesh member 43 provided on the outer peripheral surface of the porous cylindrical member 42.
  • the diameter of the collector 4a is preferably 30 to 150 cm, more preferably 50 to 100 cm.
  • the opening of the cylindrical mesh member 43 is not particularly limited as long as the non-woven fabric having the above-mentioned protruding portion can be obtained.
  • the warp density of the net constituting the mesh member may be 10 to 110 threads / inch. It is preferably 10 to 30 lines / inch, more preferably.
  • the weft density of the net constituting the mesh member is preferably 10 to 50 threads / inch mm, and more preferably 20 to 40 threads / inch.
  • the warp yarn means a yarn in the length direction of the cylindrical mesh member 43
  • the weft yarn means a yarn that intersects the warp yarn.
  • the weft thread may be a thread in the width direction (the width direction when the mesh portion is spread in a plane).
  • the diameter of the suction hole 42a of the porous cylindrical member 42 in order to exert a sufficient suction force on the fibrous molten polymer 5a and the melt blown nonwoven fabric 5b (see FIG. 2) to form a desired protrusion.
  • (See 4) is preferably 3 to 20 mm, more preferably 5 to 15 mm, and the opening ratio of the porous cylindrical member 42 is preferably 30 to 70%, more preferably 40 to 60%.
  • the porous cylindrical member 42 a cylindrical body made of a metal plate such as stainless steel having a large number of punched holes is preferable from the viewpoint of air permeability and mechanical strength.
  • the cylindrical mesh member 43 is preferably made of a wire mesh or a fiber of a heat-resistant resin (nylon or the like) having a high melting point.
  • the melt-blown non-woven fabric of the present invention has a step of melt-kneading a polymer, a step of discharging a molten polymer from a spinning nozzle and ejecting heated air from another nozzle to form polymer fibers, and collecting the obtained fibers with a collector. It can be produced by a method including the steps of Explaining with reference to the apparatus described above, in the case of producing a melt blown nonwoven fabric, the fibrous molten polymer 5a discharged from the spinning nozzle 3c is stretched by heated air ejected from the air nozzle, and the obtained polymer fiber is obtained.
  • melt blown non-woven fabric having a desired protrusion.
  • the obtained melt-blown non-woven fabric may be subjected to a calendar treatment, a charging treatment, a hydrophilization treatment, or the like, if necessary.
  • the melt-kneading temperature of the polymer is preferably (melting point of the polymer + 50 ° C.) to (melting point of the polymer + 300 ° C.).
  • the melt-kneading temperature is preferably 210 to 460 ° C, more preferably 230 to 420 ° C.
  • the molten polymer is discharged from a large number of spinning nozzles 3c, and heated air is ejected from the nozzles to form fibers of the polymer.
  • the temperature of the die 3a and the heated air is preferably (melting point of the polymer) to (melting point of the polymer + 200 ° C.).
  • the temperature of the die 3a and the heated air is preferably 160 to 360 ° C, more preferably 190 to 330 ° C.
  • the above temperature range is preferable from the viewpoint of suppressing the rapid solidification of the polymer immediately after being discharged from the spinning nozzle 3c and suppressing the fusion of the formed polymer fibers to suppress the variation in fiber diameter.
  • the discharge amount of the molten polymer per 3c of the spinning nozzle is preferably 0.1 to 2 g / min / hole or less, and more preferably 0.5 to 1 g / min / hole or less.
  • the discharge amount of the molten polymer per 3c of the spinning nozzle is preferably in the above range from the viewpoint of obtaining a discharge pressure sufficient for fiberization and avoiding damage to the nozzle due to an excessive discharge pressure.
  • Ejection amount of heated air per width is preferably 5 ⁇ 50 Nm 3 / min, more preferably 10 ⁇ 40 Nm 3 / min.
  • the suction amount of the collector 4a per width can be appropriately adjusted according to the desired physical properties of the melt blow nonwoven fabric 5b. Most of the heated air is sucked into the collector 4a through the suction holes 42a of the porous cylindrical member 42, and the turbulence of the fiber flow can be suppressed. Specifically, the suction amount of the collector 4a per width is preferably 10 ⁇ 100 m 3 / min, more preferably 20 ⁇ 80 m 3 / min.
  • cooling air is blown to the fibrous molten polymer 5a discharged from the die. It needs to be applied and cooled effectively to solidify the fibers.
  • the temperature of the quench air is preferably 3 to 35 ° C., and the air volume is preferably 1 to 33 m 3 / min, more preferably 8 to 25 m 3 / min.
  • the rotation speed of the collector 4a is preferably 1 to 20 m / min, more preferably 3 to 15 m / min.
  • the collector 4a may be at room temperature, but may be heated if necessary.
  • the shortest distance (DCD) from the nozzle 3c to the collector 4a is 50 to 600 mm. If it is 50 mm or less, the time for the molten polymer to become fibrous becomes short, and it may not be possible to completely solidify it. Further, if it is 600 mm or more, the suction effect of the collector is lowered, and it becomes difficult to form unevenness and to form a stable web.
  • the distance is preferably 100 to 500 mm, more preferably 100 to 300 mm.
  • the calendar processing may be performed for the purpose of improving the mechanical strength of the obtained melt blown non-woven fabric, reducing the pore diameter, and laminating with another base material.
  • the melt blown nonwoven fabric may be subjected to a charging treatment such as a corona discharge treatment.
  • the charged non-woven fabric has a charge amount of about 10 -11 to 10 -7 coulombs / cm 2 , and can electrostatically collect fine particles.
  • the melt blown non-woven fabric may be hydrophilized.
  • the hydrophilization treatment can be performed by a monomer graft, a surfactant treatment, a plasma treatment, or the like. In the case of surfactant treatment, nonionic surfactants are preferable.
  • the melt-blown nonwoven fabric according to the present invention has high uniformity, bulkiness, large surface area, and good compressibility even if the fiber diameter is large. Therefore, the melt-blown nonwoven fabric and its laminate according to the present invention are useful as a filter material for a liquid filter.
  • the present invention also provides a liquid filter including the laminate. Since the melt-blow non-woven fabric according to the present invention has the above-mentioned performance, even when only the melt-blow non-woven fabric of the present invention is used as the melt-blow non-woven fabric constituting the filter material, it has high compression resistance and resistance to clogging. A liquid filter that achieves both of these can be obtained.
  • the melt-blown nonwoven fabric of the present invention may be combined with other melt-blown nonwoven fabrics as the melt-blown nonwoven fabric constituting the filter material, depending on the purpose of filtration or the like.
  • a liquid filter comprising a laminate containing a combination of melt blown non-woven fabrics is also included in the liquid filter of the present invention. Therefore, in the present invention, the "laminate for liquid filter formed by laminating the melt-blown nonwoven fabric of the present invention" includes not only the laminate for liquid filter formed by laminating only the melt-blown nonwoven fabric of the present invention, but also the laminate.
  • melt-blown nonwoven fabric of the present invention is used for at least one layer (preferably half or more of the number of melt-blown nonwoven fabrics constituting the laminate), a laminate containing a melt-blown nonwoven fabric other than the melt-blown nonwoven fabric of the present invention Included.
  • the fiber diameter may be relatively uniform, but may be a mixture of thick fibers (thick fibers) and fine fibers (fine fibers).
  • thick fibers thin fibers
  • fine fibers fine fibers
  • the surface area is increased by making the filter medium itself uneven, and the filtration efficiency in the thickness direction is also improved by changing the distribution of the fiber diameter, so that the life of the filter can be extended. Therefore, it is preferable.
  • the present inventors have produced a non-woven fabric in which thick fibers and fine fibers are mixed by using a non-woven fabric in which nozzle holes having different pore diameters in a specific range are arranged, thereby producing a non-woven fabric having a wide constituent fiber diameter distribution. It has been found that it is possible to efficiently produce a filter material having the same filtering performance as that of laminated laminated non-woven fabrics having different fiber diameters, and a patent has been obtained (Patent Document 2). Therefore, the method for producing a non-woven fabric in which thick fibers and fine fibers are mixed, the preferable range of variation in the fiber diameter of the obtained non-woven fabric, and the like can be appropriately set with reference to the description in Patent Document 2.
  • the melt-blown non-woven fabric in which such thick fibers and fine fibers are mixed has a hole diameter larger than that of the nozzle hole E between the nozzle holes E having an adjacent hole diameter De in a nozzle piece having a substantially circular nozzle hole drilled in a row at the tip of the die. It can be obtained by using a nozzle piece for melt blow nonwoven fabric in which n rows of nozzle holes F having a small hole diameter Df are inserted and arranged.
  • the nozzle piece for melt blow nonwoven fabric can change the diameter of the spun fibers at the time of melt blow to simultaneously and integrally form a nonwoven fabric in which fibers having different diameters are mixed and dispersed, thereby expanding the fiber diameter distribution of the obtained nonwoven fabric.
  • It is preferably a nozzle piece that can be formed. That is, in the nozzle piece portion of the die shown in FIG. 6, as shown in FIG. 7, between the circular nozzle holes E having a large number of hole diameters De drilled in a row at regular intervals at the tip thereof, rather than the nozzle holes E. It is a nozzle piece in which n rows of nozzle holes F having a small hole diameter Df are inserted.
  • the distance between the centers of these holes is assumed to be equal between the adjacent hole diameters EE and FF.
  • the number n of the nozzle holes F to be inserted is preferably in the range of 2 to 4.
  • the number n is preferably in the above range in order to widen the fiber diameter distribution of the obtained melt blow nonwoven fabric and to perform smooth fiber formation.
  • the hole diameter ratio R (De / Df) of both nozzle holes E and F is preferably in the range of 1.3 to 2.0. The above range is preferable from the viewpoint of widening the fiber diameter distribution, adjusting the discharge balance of the resin based on the difference in pore diameter, obtaining a stable spinning state, and suppressing the occurrence of shots.
  • the hole diameter De of the nozzle hole E is 0.30 to 1.00 mm
  • the hole diameter Df of the nozzle hole F is 0.20 to 0.80 mm from the viewpoint of ease of machining. preferable.
  • each parameter was measured and calculated as follows: (1) Average fiber diameter: The average fiber diameter was determined by measuring the fiber diameters of 10 fibers at any 10 locations from electron micrographs of the melt-blown non-woven fabric up to a diameter of 0.1 ⁇ m and averaging them. (2) Average basis weight: The mass (g) of 10 melt-blown non-woven fabric test pieces of 100 mm ⁇ 100 mm in a water equilibrium state at a temperature of 23 ° C. and a humidity of 50% was measured and averaged.
  • Filling rate (%) [average basis weight (g / m 2 ) / maximum height A (m) of protruding portion / resin specific gravity (g / m 3 )] ⁇ 100.
  • Three melt-blown non-woven fabric test pieces having an air permeability T 100 mm ⁇ 100 mm were laminated and measured by a Frazier type tester according to JIS L1096.
  • Bottom surface height C An SEM photograph of a cross section of the melt-blown non-woven fabric is taken, and 10 spatial structure parts created by the protrusion of the non-woven fabric are arbitrarily selected, and the maximum lower surface thereof is on the order of 0.001 mm. The heights were measured and they were averaged.
  • Formation index Three melt-blown non-woven fabric test pieces of 200 mm ⁇ 200 mm were measured using the ground total (FMT-M III manufactured by Nomura Shoji) and averaged.
  • Air permeability T' The central portion of the melt-blown non-woven fabric test piece immediately after being pressurized by the calendar machine was measured by a Frazier type tester according to JIS L1096.
  • Fiber diameter fluctuation rate (CV value): CV value (standard deviation of fiber diameter / average fiber diameter).
  • the surface of the collector has an air permeability of 473 mL / cm 2 / sec, a warp density of 15 threads / inch, a weft density of 26 threads / inch, and a thickness of 2.6 mm as a net for collecting melt blow fibers. I used the net of. Further, in Comparative Examples 1 to 5, a net having an air permeability of 560 mL / cm 2 / sec, a warp density of 40 threads / inch, a weft thread density of 16 threads / inch, and a thickness of 2.1 mm was used.
  • Example 1 Material hopper to a homopolypropylene resin MFR40 meltblown production apparatus (a weight-average molecular weight 1.7 ⁇ 10 5. The following examples, same in Comparative Example) were added, and the melt-kneading temperature and 330 ° C..
  • the resin With a distance of 150 mm between the die and the collector, the resin is discharged into the atmosphere from the nozzle together with 25 Nm 3 / min of heated compressed air at 290 ° C, and after applying 17 m 3 / min of quench air at 20 ° C for cooling, the suction amount is 60 m 3
  • the fibrous resin is continuously collected on the collector at / min, and the rotation speed of the collector is appropriately adjusted so that the average fiber diameter is 21.0 ⁇ m, the average grain size is 45 g / m 2 , and the maximum height of the protrusion is A.
  • a melt-blown nonwoven fabric having a thickness of 2.02 mm, a non-woven fabric thickness B of 0.09 mm, a thickness ratio of A / B of 22.4, and a formation index of 320 was obtained.
  • the compression resistance was 0.89 for the thickness ratio A'/ A and 0.98 for the air permeability ratio T'/ T.
  • Example 2 A homopolypropylene resin of MFR40 was put into the raw material hopper of the melt blow manufacturing apparatus, and the melt-kneading temperature was set to 390 ° C. With a distance of 200 mm between the die and the collector, the resin is discharged into the atmosphere from the nozzle together with 25 Nm 3 / min of heated compressed air at 290 ° C, and after applying 17 m 3 / min of quench air at 20 ° C for cooling, the suction amount is 60 m 3 The fibrous resin is continuously collected on the collector at / min, and the rotation speed of the collector is appropriately adjusted so that the average fiber diameter is 33.6 ⁇ m, the average grain size is 45 g / m 2 , and the maximum height of the protrusion is A.
  • a melt-blown nonwoven fabric having 2.10 mm, a nonwoven fabric thickness B of 0.09 mm, a thickness ratio of A / B of 23.3, and a formation index of 370 was obtained.
  • the compression resistance was 0.85 for the thickness ratio A'/ A and 0.99 for the air permeability ratio T'/ T.
  • Example 3 A homopolypropylene resin of MFR40 was put into the raw material hopper of the melt blow manufacturing apparatus, and the melt-kneading temperature was set to 330 ° C. With a distance of 200 mm between the die and the collector, the resin is discharged into the atmosphere from the nozzle together with 25 Nm 3 / min of heated compressed air at 290 ° C, and after applying 17 m 3 / min of quench air at 20 ° C for cooling, the suction amount is 60 m 3 The fibrous resin is continuously collected on the collector at / min, and the rotation speed of the collector is appropriately adjusted so that the average fiber diameter is 22.6 ⁇ m, the average grain size is 45 g / m 2 , and the maximum height of the protrusion is A.
  • a melt-blown nonwoven fabric having a thickness of 2.09 mm, a nonwoven fabric thickness of B 0.12 mm, a thickness ratio of A / B of 17.4, and a formation index of 350 was obtained.
  • the compression resistance was 0.86 for the thickness ratio A'/ A and 0.99 for the air permeability ratio T'/ T.
  • Example 4 A homopolypropylene resin of MFR40 was put into the raw material hopper of the melt blow manufacturing apparatus, and the melt-kneading temperature was set to 310 ° C. With a distance of 150 mm between the die and the collector, the resin is discharged into the atmosphere from the nozzle with 25 Nm 3 / min of heated compressed air at 290 ° C. No quench air for cooling is used, and the fibers are placed on the collector with a suction amount of 60 m 3 / min.
  • the resin in the shape is continuously collected, and the rotation speed of the collector is adjusted appropriately to have an average fiber diameter of 36.0 ⁇ m, an average grain size of 45 g / m 2 , a maximum height of the protrusion A 2.10 mm, and a thickness of the non-woven fabric.
  • a melt-blown non-woven fabric having a B of 0.12 mm, a thickness ratio of A / B of 17.5, and a formation index of 390 was obtained.
  • the compression resistance was 0.86 for the thickness ratio A'/ A and 0.99 for the air permeability ratio T'/ T.
  • Example 5 A homopolypropylene resin of MFR40 was put into the raw material hopper of the melt blow manufacturing apparatus, and the melt-kneading temperature was set to 370 ° C. The distance between the die and the collector is 150 mm, and the heated compressed air at 290 ° C. is 25 Nm 3 / min. The resin is discharged into the atmosphere from the nozzle used in Example 1 of Patent Document 2, and the quench air at 20 ° C. for cooling is 17 m 3 / min. After applying the minute, the fibrous resin is continuously collected on the collector with a suction amount of 60 m 3 / min, and the rotation speed of the collector is appropriately adjusted to have an average fiber diameter of 14.6 ⁇ m and an average grain of 45 g / min.
  • a melt-blown non-woven fabric having m 2 , a maximum height of the protruding portion A of 1.61 mm, a non-woven fabric thickness of B 0.09 mm, a thickness ratio of A / B of 17.9, and a formation index of 420 was obtained.
  • the compression resistance was 0.80 for the thickness ratio A'/ A and 0.96 for the air permeability ratio T'/ T.
  • Example 6 A homopolypropylene resin of MFR40 was put into the raw material hopper of the melt blow manufacturing apparatus, and the melt-kneading temperature was set to 370 ° C. The distance between the die and the collector is 150 mm, and the heated compressed air at 290 ° C. is 25 Nm 3 / min. The resin is discharged into the atmosphere from the nozzle used in Example 1 of Patent Document 2, and the quench air at 20 ° C. for cooling is 17 m 3 / min. After applying the minute, the fibrous resin is continuously collected on the collector with a suction amount of 60 m 3 / min, and the rotation speed of the collector is appropriately adjusted to have an average fiber diameter of 16.1 ⁇ m and an average grain size of 60 g / min.
  • a melt-blown non-woven fabric having m 2 , a maximum height of the protruding portion A 1.74 mm, a non-woven fabric thickness B 0.15 mm, a thickness ratio A / B of 11.6, and a formation index 385 was obtained.
  • the compression resistance was 0.80 for the thickness ratio A'/ A and 0.97 for the air permeability ratio T'/ T.
  • Comparative Example 1 A homopolypropylene resin of MFR40 was put into the raw material hopper of the melt blow manufacturing apparatus, and the melt-kneading temperature was set to 411 ° C. With a distance of 350 mm between the die and the collector, the resin is discharged into the atmosphere from the nozzle together with 25 Nm 3 / min of heated compressed air at 290 ° C. No quench air for cooling is used, and the fibers are placed on the collector with a suction amount of 60 m 3 / min.
  • the resin in the shape is continuously collected, and the rotation speed of the collector is adjusted appropriately to have an average fiber diameter of 25.2 ⁇ m, an average grain size of 45 g / m 2 , a maximum height of the protrusion A 1.10 mm, and a thickness of the non-woven fabric.
  • a melt-blown non-woven fabric having a B of 0.09 mm, a thickness ratio of A / B of 12.2, and a formation index of 580 was obtained.
  • the compression resistance was 0.64 for the thickness ratio A'/ A and 0.83 for the air permeability ratio T'/ T.
  • Comparative Example 2 A homopolypropylene resin of MFR40 was put into the raw material hopper of the melt blow manufacturing apparatus, and the melt-kneading temperature was set to 365 ° C. With a distance of 300 mm between the die and the collector, the resin is discharged into the atmosphere from the nozzle with 25 Nm 3 / min of heated compressed air at 290 ° C. No quench air for cooling is used, and the fibers are placed on the collector with a suction amount of 60 m 3 / min.
  • the resin is continuously collected, and the rotation speed of the collector is adjusted appropriately so that the average fiber diameter is 14.5 ⁇ m, the average grain size is 47 g / m 2 , the maximum height of the protrusion is A 1.20 mm, and the thickness of the non-woven fabric.
  • a melt-blown non-woven fabric having a B of 0.10 mm, a thickness ratio of A / B of 12.0, and a formation index of 760 was obtained.
  • the compression resistance was 0.58 for the thickness ratio A'/ A and 0.83 for the air permeability ratio T'/ T.
  • Comparative Example 3 A homopolypropylene resin of MFR40 was put into the raw material hopper of the melt blow manufacturing apparatus, and the melt-kneading temperature was set to 410 ° C. With a distance of 420 mm between the die and the collector, the resin is discharged into the atmosphere from the nozzle with 25 Nm 3 / min of heated compressed air at 290 ° C. No quench air for cooling is used, and the fibers are placed on the collector with a suction amount of 60 m 3 / min.
  • the resin is continuously collected, and the rotation speed of the collector is adjusted appropriately so that the average fiber diameter is 28.7 ⁇ m, the average grain size is 45 g / m 2 , the maximum height of the protrusion is A 1.30 mm, and the thickness of the non-woven fabric.
  • a melt-blown non-woven fabric having a B of 0.36 mm, a thickness ratio of A / B of 3.6, and a formation index of 939 was obtained.
  • the compression resistance was 0.74 for the thickness ratio A'/ A and 0.89 for the air permeability ratio T'/ T.
  • Comparative Example 4 A homopolypropylene resin of MFR40 was put into the raw material hopper of the melt blow manufacturing apparatus, and the melt-kneading temperature was set to 418 ° C. With a distance of 280 mm between the die and the collector, the resin is discharged into the atmosphere from the nozzle together with 25 Nm 3 / min of heated compressed air at 290 ° C. No quench air for cooling is used, and the fibers are placed on the collector with a suction amount of 60 m 3 / min.
  • the resin is continuously collected, and the rotation speed of the collector is adjusted appropriately so that the average fiber diameter is 4.0 ⁇ m, the average grain size is 40 g / m 2 , the maximum height of the protrusion is A 0.44 mm, and the thickness of the non-woven fabric.
  • a melt-blown non-woven fabric having a B of 0.30 mm, a thickness ratio of A / B of 1.5, and a formation index of 109 was obtained.
  • the compression resistance was 0.57 for the thickness ratio A'/ A and 0.46 for the air permeability ratio T'/ T.
  • Comparative Example 5 A homopolypropylene resin of MFR40 was put into the raw material hopper of the melt blow manufacturing apparatus, and the melt-kneading temperature was set to 400 ° C. With a distance of 420 mm between the die and the collector, the resin is discharged into the atmosphere from the nozzle with 25 Nm 3 / min of heated compressed air at 290 ° C. No quench air for cooling is used, and the fibers are placed on the collector with a suction amount of 60 m 3 / min.
  • the resin is continuously collected, and the rotation speed of the collector is adjusted appropriately so that the average fiber diameter is 10.9 ⁇ m, the average grain size is 45 g / m 2 , the maximum height of the protrusion is A 0.65 mm, and the thickness of the non-woven fabric.
  • a melt-blown non-woven fabric having a B of 0.14 mm, a thickness ratio of A / B of 4.6, and a formation index of 440 was obtained.
  • the compression resistance was 0.78 for the thickness ratio A'/ A and 0.88 for the air permeability ratio T'/ T.
  • Table 1 below shows the physical properties and compression resistance of the non-woven fabrics of each example and comparative example.

Abstract

複数の突出部を有する、液体フィルター用のメルトブロー不織布であって、不織布の厚みBに対する該突出部の最大高さAの比率A/Bが10~30であり、地合指数が150~450である、メルトブロー不織布

Description

液体フィルター用のメルトブロー不織布、当該メルトブロー不織布の積層体及び積層体を備える液体用フィルター
 [関連出願の相互参照]
 本出願は、2019年3月29日に出願された、日本国特許出願第2019-68090号明細書(その開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。本発明は、液体フィルター用のメルトブロー不織布、当該メルトブロー不織布の積層体及び積層体を備える液体用フィルターに関する。
 液体フィルター用メルトブロー不織布は、濾過物質の性状、求められる濾過精度等によって目付、厚み、繊維径、孔径の異なる様々な不織布が使用されている。例えば、メルトブロー不織布の繊維径は、一般的には1~10μm程度であるが、最近の研究では、1μm以下のナノファイバーを用いたものから数十μm以上の太繊維を用いたものまで開発されている。
 特に電池の電極スラリや電解液等、高粘度流体用の濾過フィルターとしては、太い繊維径のメルトブロー不織布やスパンポンド不織布等が主に使用されている。このような不織布をフィルターに用いた場合、圧力損失が低く、目詰まりしにくいフィルターとなるため、結果としてフィルター寿命が長くなるという利点があり、より嵩高いメルトブロー不織布が好ましく用いられている。
 しかし、繊維径が太くなるほど不織布物性のバラツキが大きくなりやすく、フィルター性能が低下してしまうおそれがある。さらにメルトブロー不織布はドレープ性に優れている反面、厚み方向の耐圧縮性が低いため、フィルター濾過時に濾過流体の圧力によって不織布の嵩高さが失われ、圧力損失の上昇、フィルター寿命の低下となる場合がある。
特開2011-251249 特許第3753522
 本発明は、繊維径が太くても、均一性が高く、嵩高で、かつ耐圧縮性の良好な新たなメルトブロー不織布を提供することを課題とする。
 かかる状況の下、本発明者らは、鋭意検討した結果、複数の突出部を有する、液体フィルター用のメルトブロー不織布であって、不織布の厚みBに対する該突出部の最大高さAの比率A/Bが10~30であり、地合指数が150~450である、メルトブロー不織布を用いることにより上記課題を解決し得ることを見出した。本発明はかかる新規の知見に基づくものである。従って、本発明は、以下の項を提供する:
 項1.複数の突出部を有する、液体フィルター用のメルトブロー不織布であって、
不織布の厚みBに対する該突出部の最大高さAの比率A/Bが10~30であり、地合指数が150~450である、メルトブロー不織布。
 項2.平均繊維径が10~50μmである、項1に記載のメルトブロー不織布。
 項3.ポリオレフィン、ポリエステル及びポリアミドからなる群より選択される少なくとも1種を主体に構成された、項1又は2に記載のメルトブロー不織布。
 項4.項1~3のいずれか一項に記載のメルトブロー不織布を積層してなる液体フィルター用の積層体。
 項5.項4に記載の積層体を備える液体用フィルター。
 本発明によれば、繊維径が太くても、均一性が高く、嵩高で表面積が大きく、さらに耐圧縮性の良好なメルトブロー不織布を提供することができる。かかる不織布を用いたフィルターは濾過表面積が大きくなるため、かかる不織布を用いることによりフィルターの目詰まりしにくさであるとか長寿命化をもたらすことが期待される。
本発明のメルトブロー不織布断面の模式図である。 本発明のメルトブロー不織布の製造方法のプロセス概略図である。 図3(A):図2の装置におけるノズル3c部分の紡糸ノズルの配列を示す部分正面図である。図3(B):ノズル3cの部分斜視図である。図3(C):図3(A)に示すノズル3cのX1-X1での断面図である。 図2の装置におけるコレクタ4aの内部構造を示す分解斜視図である。 本発明のメルトブロー不織布断面のSEM写真である。 メルトブローダイの断面図である。 本発明の好ましい実施形態におけるメルトブローダイのノズルピースのノズル孔部分図である。
 本発明は、複数の突出部を有する、液体フィルター用のメルトブロー不織布であって、不織布の厚みBに対する該突出部の最大高さAの比率A/Bが10~30であり、地合指数が150~450である、メルトブロー不織布を提供する。
 図1に、本発明にかかるメルトブロー不織布の断面図の概略図を示す。図1に符号10で示すように、本発明にかかるメルトブロー不織布は、複数の突出部を有する。かかる突出部は、メルトブロー不織布を製造する際の繊維のたわみにより形成される。従って、当該突出部は、典型的には、中実なものではなく、図1に示すように中空である。
 本発明にかかるメルトブロー不織布は、厚みBに対する該突出部の最大高さAの比率A/Bが10~30であることを特徴とする。本発明において、最大高さAとは図1に概略を示すように、厚みBを含む、突出部の最大高さを意味する。本発明においては、突出部の最大高さAとは、メルトブロー不織布を構成する略平面全体に存在する複数の突出部のうち最大のものの高さではなく、図1に示すように各突出部において最も高い位置(頂点の位置)での高さを意味する。また本明細書において、突出部の下面高さCとは、最大高さAから厚みBを差し引いた高さを意味する。本発明における最大高さA、厚みB及び下面高さCは、本願実施例に記載の方法により測定、算出することができる。従って、最大高さAは、メルトブロー不織布から無作為に選んだ10箇所の測定値の平均値を意味する。また、厚みB及び下面高さCも、メルトブロー不織布から無作為に選んだ10箇所のSEM測定値の平均値を意味する。本発明において、比率A/Bは、濾過表面積が大きくかつ液体濾過の際の耐圧縮性が高い液体フィルターを得るという観点から、15~25であることが好ましい。
 本発明にかかる液体フィルター用メルトブロー不織布は、地合指数が150~450であることを特徴とする。本発明にかかる液体フィルター用メルトブロー不織布において、濾過精度の観点から、地合指数が250~400であることが好ましい。
 本発明において、不織布の地合指数とは、目付の均一性を表す指数であり、試料に透過光をあて、画像の濃淡の分布を用いて算出することができる。地合指数が小さいほど、均一性が高いことを示す。具体的には、測定に透過式地合計(野村商事株式会社製FMT-MIII)を用いた。サンプルをセットしない状態で、光源点灯時/消灯時の透過光量をCCDカメラでそれぞれ測定した。続いてA4サイズにカットした不織布をセットした状態で同様に透過光量を測定し、平均透過率、平均吸光度、標準偏差(吸光度のバラつき)を求めた。地合指数は、標準偏差÷平均吸光度×10で求めることができる。本発明における地合指数の測定の詳しい条件は、実施例にて後述する。
 本発明のメルトブロー不織布においては、平均繊維径は特に限定されないが、高粘度流体フィルター用および耐圧縮性の観点から、10~50μmであることが好ましく、14~45μmであることがより好ましく、20~40μmであることがさらに好ましい。また、一般的に、繊維径が太い不織布は目付のばらつきが大きくなりやすく濾過精度が悪化しやすい。そのため、本発明にかかるメルトブロー不織布のうち、上記のような繊維径が比較的太い実施形態において特に有用である。
 本発明のメルトブロー不織布の目付については、特に限定されないが、平均目付の範囲としては、5~100g/m2が好ましく、より好ましくは40~90g/m2である。強度の向上(強度が向上するとフィルターへの加工がしやすくなる)の観点、及びフィルター化の際、剛性が高すぎないよう抑え、他材との密着性を向上してより均一な積層を行う観点(より均一な積層は効果的な濾過性能につながる)から、メルトブロー不織布の平均目付を上記範囲とすることが好ましい。
 本発明のメルトブロー不織布の突出部の最大高さAについては、特に限定されないが、0.5~3.0mmが好ましく、より好ましくは1.5~2.5mmである。凹凸を鮮明にして濾過面積を向上させ、かつ濾過時の圧力抵抗の上昇を抑える観点から、メルトブロー不織布の突出部の最大高さAを上記範囲とすることが好ましい。
 本発明のメルトブロー不織布の充填率については、「充填率(%)=平均目付(g/m2)/突出部の最大高さA(m)/樹脂比重(g/m3)×100%」の計算値より評価する。こちらは不織布の嵩高さの指標と考えても良い。充填率は、特に限定されないが、1~20%が好ましく、より好ましくは2~10%である。強度を向上して所定の加工性を得つつ、かつ凹凸を濃く、不織布の嵩高性を向上して濾過面積を向上する観点から、メルトブロー不織布の充填率を上記範囲とすることが好ましい。
 本発明のメルトブロー不織布の通気度については、特に限定されないが、当該メルトブローを3枚積層して測定した値が、70~400mL/cm2/秒であることが好ましく、より好ましくは100~370mL/cm2/秒である。濾過時の圧力抵抗の上昇を抑え、かつ所定の強度の不織布を得る観点から、メルトブロー不織布の通気度を上記範囲とすることが好ましい。
 本発明のメルトブロー不織布の厚みBについては、特に限定されないが、0.01~0.20mmが好ましく、より好ましくは0.07~0.15mmである。繊維同士に所定の間隔を確保し、ペーパーライクな不織布となることを回避して濾過時の圧力抵抗の上昇を抑制し、かつ効果的な凹凸構造を形成する観点から、メルトブロー不織布の厚みBを上記範囲とすることが好ましい。また、本発明のメルトブロー不織布において、隣り合う突出部間の距離d(図1参照)は、特に限定されないが、0.1~5.0mmが好ましく、より好ましくは1.0~3.0mmである。距離dは、メルトブロー不織布をカットした断面のSEM写真を撮影し、無作為で選択した10箇所の平均として算出することができる。
 本発明のメルトブロー不織布については、高粘度流体等の濾過も可能な耐圧縮性を有する。耐圧縮性とは、該不織布の表面凹凸部分に圧力負荷がかかった場合でも、突出部が押し潰されずに、一定の立体構造と通気度を維持することを意味する。耐圧縮性の評価は、カレンダーを用いて、ロール間のクリアランスを突出部の最大高さAの20%に設定し、サンプルを室温にて速度2m/分でカレンダー処理し、処理直後の最大突出部の高さAに相当する高さ(=厚みA′とする)と通気度T′を測定し、処理前の各値と比較することによって行われる。その指標はそれぞれ「耐圧縮性(1)=処理後の厚みA′/最大高さA」および、「耐圧縮性(2)=処理後の通気度T′/加工前の通気度T」によって表される。耐圧縮性(1)は、特に限定されないが、0.7~1.0が好ましく、より好ましくは0.8~1.0である。加圧による突出部の潰れ及び濾過性能の損失を抑制する観点から、耐圧縮性(1)を上記範囲とすることが好ましい。また、耐圧縮性(2)は、特に限定されないが、0.9~1.0が好ましく、より好ましくは0.95~1.0である。突出部の潰れを抑制し、均一な濾過性能を維持する観点から、耐圧縮性(2)を上記範囲とすることが好ましい。
 本発明における液体フィルター用のメルトブロー不織布を構成するポリマーは、メルトブロー可能な熱可塑性樹脂であれば、特に限定されない。メルトブロー不織布を構成するポリマーとしては、例えば、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン等、好ましくはポリプロピレン等)、ポリエステル、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリアミド等が挙げられる。これらの熱可塑性樹脂は、一種単独で又は二種以上を組み合わせて使用することができる。二種以上の熱可塑性樹脂を組み合わせて使用する場合、その配合比は限定されない。本発明において、ある樹脂を主体に構成されたメルトブロー不織布とは、当該樹脂を主成分として含むメルトブロー不織布といいかえることもできる。また、本発明において、ある樹脂を主体に構成されたメルトブロー不織布とは、主要な原料として樹脂を用いて得られたメルトブロー不織布を意味し、当該樹脂のみを用いて得られたメルトブロー不織布だけでなく、例えば、当該熱可塑性樹脂を原料の50質量%以上、70質量%以上、90質量%以上、95質量%以上、99質量%以上等の割合で用いて得られたメルトブロー不織布も含まれる。本発明におけるメルトブロー不織布においては、ポリオレフィン、ポリエステルが好ましく、ポリオレフィンが特に好ましい。
 前記ポリオレフィンとしては、プロピレン、エチレン、1-ブテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン等のα-オレフィンの単独重合体、及びこれらのα-オレフィンの2種類以上のランダム又はブロック共重合体が挙げられ、ポリプロピレンが好ましい。本発明において不織布の原料としてポリプロピレンを用いる場合、そのメルトフローレート(MFR)は特に限定されないが、例えば、5~2,500g/10分のメルトフローレート(MFR)を有するポリプロピレンが好ましい。MFRが5g/10分未満のポリプロピレンを用いた場合、溶融混練温度及び吐出温度を比較的高くする必要があり、ポリプロピレン由来の炭化物が発生するおそれがある。またMFRが2,500g/10分を超えると、不織布の伸度が低下し脆くなってしまう。本発明において原料としてポリプロピレンを用いる場合、MFRが10~2,000g/10分が好ましく、15~100g/10分がより好ましい。ポリプロピレンのMFRは、JIS K7210に基づき荷重2.16kg、及び温度230℃で測定することができる。
 本発明において原料としてポリプロピレンを用いる場合、当該ポリプロピレンの重量平均分子量(Mw)は、特に限定されないが、1×104~5×105が好ましく、5×104~3×105がより好ましい。ポリプロピレンの分子量分布[重量平均分子量(Mw)/数平均分子量(Mn)]も特に限定されないが、1.1~10が好ましく、1.5~8がより好ましく、2~6がさらに好ましい。
 本発明において原料としてポリプロピレンを用いる実施形態において、ポリプロピレンとしては、プロピレン単独重合体を用いてもよく、過半重合割合のプロピレンと他のα-オレフィン(例えば、エチレン、ブテン、ヘキセン、4-メチルペンテン、オクテン等)、不飽和カルボン酸又はその誘導体(例えば、アクリル酸、無水マレイン酸等)、芳香族ビニル単量体(例えば、スチレン等)等とのランダム、ブロック又はグラフト共重合体を用いてもよい。本発明において、これらのポリプロピレンを、単独で使用してもよく、複数種類のポリプロピレンの混合物として使用してもよく、ポリプロピレン以外の樹脂(例えば、ポリオレフィン等)との混合物として使用してもよい。
 本発明において原料としてポリエステルを用いる実施形態において、ポリエステルとしては、特に限定されないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート等が挙げられ、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が好ましい。
 本発明において原料としてポリアミドを用いる実施形態において、ポリアミドとしては、特に限定されないが、例えば、ポリアミド3(ナイロン3)(登録商標)、ポリアミド4(ナイロン4)(登録商標)、ポリアミド6(ナイロン6)(登録商標)、ポリアミド6-6(ナイロン6-6)(登録商標)、ポリアミド12(ナイロン12)(登録商標)等が挙げられる。
 本発明において、上記樹脂には、本発明の効果が得られる範囲において、結晶核剤、艶消し剤、顔料、防カビ剤、抗菌剤、難燃剤、親水剤、光安定剤等を添加してもよい。
 以下に本発明の好ましい実施形態におけるメルトブロー不織布の製造方法を図面を参照して説明するが、当該製造方法は下記に限定されない。図2は、本発明のメルトブロー不織布の製造装置の一例を示す。この製造装置は、原料を投入するホッパー1a、原料を溶融混練する押出機1bと、押出機1bから押出された溶融ポリマーを下流に送る定量ポンプ2と、繊維状に水平方向に吐出するダイ3aと、ダイ3aから溶融ポリマーと一緒に排出される高温高速エアー用の温度調整ヒーター3bと、ダイ先端に取り付けられた紡糸ノズル3cと、ダイ3aの近傍に設けられた繊維捕集用のコレクタ4aと、コレクタ4a(及びコレクタ4aで捕集した繊維状の溶融ポリマー5a)を吸引するためのサクションブロワー4bと、ダイから吐出された繊維状の溶融ポリマー5aと、繊維状の溶融ポリマー5aがコレクタ4a上で冷却固化してなるメルトブロー不織布5bと、メルトブロー不織布5bを巻き取る巻取機6からなる。ここで下流側とは定量ポンプ2から溶融ポリマーがダイ3aへ送られ、繊維化されたメルトブロー不織布5bへと形成されてウェブが流れていく側であり、上流側とは定量ポンプ2に対して前記メルトブロー不織布5bが形成されていない側(下流側の反対側)である。
 図3(A)として図2の装置におけるノズル3c部分の紡糸ノズルの配列を示す部分正面図を示す。また、図3(B)として、ノズル3cの部分斜視図を示す。さらに図3(C)として当該図3(A)に示すノズル3cのX1-X1での断面図を示す。図3(C)に示す実施形態において、ダイ3aにおける紡糸ノズル3cの孔3dの直径Dは、典型的には、0.1~2.0mmである。紡糸ノズル孔3dの断面形状が円形でない場合、直径Dは横断面と同じ面積を有する仮想的な円の直径とする。直径Dは0.2~1.5mmが好ましく、0.3~1.2mmがより好ましい。直径Dを上記範囲とするのが、比較的直径の太い繊維を製造しうる点で好ましい。紡糸ノズル3cからの溶融ポリマーの吐出流量を均等にするために、紡糸ノズル孔3dのオリフィス部分の長さLと直径Dとの比L/Dは3以上が好ましく、6以上がより好ましい。吐出された前記ポリマーの繊維の絡まりを防止しつつ効率的にメルトブロー不織布を得るために、紡糸ノズル孔3dの密度は、1インチ当たり3~40個が好ましく、5~35個がより好ましい。
 図2~図4に示すように、紡糸ノズル3cから吐出及び延伸された前記ポリマーの繊維を連続的に捕集するコレクタ4aは、サクションブロワー4bに連通する円筒部材41と、円筒部材41の外周面上に設けられた多孔性円筒部材42と、当該多孔性円筒部材42の外周面上に設けられた円筒状メッシュ部材43とを有する。
 コレクタ4aの直径は30~150cmが好ましく、50~100cmがより好ましい。
 円筒状メッシュ部材43の目開きは、前述した突出部を有する不織布を得ることができれば特に限定されないが、例えば、当該メッシュ部材を構成するネットの縦糸密度が10~110本/インチであることが好ましく、10~30本/インチであることがより好ましい。また、メッシュ部材を構成するネットの横糸密度が10~50本/インチmmであることが好ましく、20~40本/インチであることがより好ましい。ここで、縦糸とは、円筒状メッシュ部材43の長さ方向の糸を意味し、横糸とは、縦糸に交差する糸を意味する。ある実施形態において横糸とは、幅方向(メッシュ部分を平面状に広げた場合の幅方向)の糸であってもよい。
 繊維状の溶融ポリマー5a及びメルトブロー不織布5b(図2を参照)に対して十分な吸引力を作用させ、所望の突出部を形成するために、多孔性円筒部材42の吸引孔42aの直径(図4を参照)は3~20mmが好ましく、5~15mmがより好ましく、また多孔性円筒部材42の開孔率は30~70%が好ましく、40~60%がより好ましい。多孔性円筒部材42としては、通気性と機械的強度の観点から、多数のパンチ穴を有するステンレススチール等の金属板からなる円筒体が好ましい。また円筒状メッシュ部材43は、金網や高融点の耐熱性樹脂(ナイロン等)の繊維からなるのが好ましい。
 本発明のメルトブロー不織布は、ポリマーを溶融混練する工程、溶融ポリマーを紡糸ノズルから吐出し、別のノズルから加熱空気を噴出しポリマーの繊維を形成する工程、及び得られた繊維をコレクタで捕集する工程を含む方法により製造することができる。前記で説明した装置を参照して説明すると、メルトブロー不織布を製造する場合、前記紡糸ノズル3cから吐出した繊維状の溶融ポリマー5aを空気ノズルから噴出する加熱空気により延伸し、得られた前記ポリマー繊維をコレクタ上に捕集する際に、クエンチエアと呼ばれる冷却風を当て、効果的に冷却することによって、コレクタの外周面上に設置されたメッシュ部材の凹凸を当該繊維集合体に鮮明に転写できるため、所望の突出部を有するメルトブロー不織布を得ることが可能である。得られたメルトブロー不織布に対して、必要に応じて、カレンダー処理、帯電処理、親水化処理等を施しても良い。
 (1) 溶融混練工程
 前記ポリマーの溶融混練温度は(前記ポリマーの融点+50℃)~(前記ポリマーの融点+300℃)が好ましい。ポリプロピレンの場合、溶融混練温度は210~460℃が好ましく、230~420℃がより好ましい。
 (2) 繊維形成工程
 溶融ポリマーを多数の紡糸ノズル3cから吐出するとともに、ノズルから加熱空気を噴出し、前記ポリマーの繊維を形成する。ダイ3a及び加熱空気の温度は(前記ポリマーの融点)~(前記ポリマーの融点+200℃)とするのが好ましい。ポリプロピレンの場合、ダイ3a及び加熱空気の温度は160~360℃が好ましく、190~330℃がより好ましい。ポリマーが紡糸ノズル3cから吐出した直後に急速に固化してしまうことを抑制し、かつ形成されたポリマー繊維の融着を抑制して、繊維径のバラツキを抑える観点から、上記温度範囲が好ましい。
 ポリマー繊維を形成するために、紡糸ノズル3c当たりの溶融ポリマーの吐出量は0.1~2g/分/ホール以下が好ましく、0.5~1g/分/ホール以下がより好ましい。繊維化するのに十分な吐出圧力を得ることができ、かつ過剰な吐出圧力でノズルを破損することを避ける観点から、上記紡糸ノズル3c当たりの溶融ポリマーの吐出量は上記範囲が好ましい。
 幅当たりの加熱空気の噴出量は5~50Nm3/分が好ましく、10~40Nm3/分がより好ましい。
 (3) 捕集工程
 幅当たりのコレクタ4aの吸引量は、メルトブロー不織布5bの所望とする物性に応じて適宜調節することができる。加熱空気の大部分は多孔性円筒部材42の吸引孔42aを通ってコレクタ4a内に吸引され、繊維流の乱れを抑制することができる。具体的には、幅当たりのコレクタ4aの吸引量は10~100m3/分が好ましく、20~80m3/分がより好ましい。
 メルトブロー不織布5bを形成する際、コレクタの外周面上に設置されたメッシュ部材の凹凸を不織布上に鮮明に転写するために、ダイから吐出された繊維状の溶融ポリマー5aにクエンチエアと呼ばれる冷却風を当て、効果的に冷却して繊維を固化する必要がある。クエンチエアの温度は3~35℃が好ましく、風量は1~33m3/分が好ましく、より好ましくは8~25m3/分である。
 コレクタ4aの回転速度は1~20m/分が好ましく、3~15m/分がより好ましい。コレクタ4aは室温で良いが、必要に応じて加熱しても良い。
 ノズル3cからコレクタ4aまでの最短距離(DCD)は、50~600mmである。50mm以下であると、溶融ポリマーが繊維化する時間が短くなり、完全に固化できない場合がある。また600mm以上であるとコレクタの吸引効果が低下し、凹凸の形成が難しく安定したウェブの形成が困難になる。距離は100~500mmが好ましく、100~300mmがより好ましい。
 (4) カレンダー処理工程
 得られるメルトブロー不織布の機械的強度を向上し、細孔径を小さくするため、および他の基材と積層する目的でカレンダー処理を施してもよい。
 (5) 帯電処理工程
 必要に応じてメルトブロー不織布に、コロナ放電処理等の帯電処理を施しても良い。帯電不織布は10-11~10-7クーロン/cm2程度の電荷量を有し、微粒子を静電気的に捕集できる。
 (6) 親水化処理工程
 メルトブロー不織布に親水化処理を施してもよい。親水化処理は、モノマーグラフト、界面活性剤処理、プラズマ処理等により行うことができる。界面活性剤処理の場合、ノニオン系界面活性剤が好ましい。
 本発明にかかるメルトブロー不織布は、繊維径が太くても、均一性が高く、嵩高で表面積が大きく、さらに耐圧縮性が良好である。従って、本発明にかかるメルトブロー不織布及びその積層体は、液体フィルター用のフィルター材として有用である。また、本発明は、当該積層体を備える液体用フィルターを提供する。本発明にかかるメルトブロー不織布は、上記性能を有するため、フィルター材を構成するメルトブロー不織布として前記本発明のメルトブロー不織布のみを用いた場合であっても耐圧縮性の高さと目詰まりのしにくさとを両立した液体フィルター得ることができる。一方、本発明の別の実施形態において、濾過の目的等に応じて、フィルター材を構成するメルトブロー不織布として、本発明のメルトブロー不織布に、その他のメルトブロー不織布を組み合わせて用いてもよく、このようなメルトブロー不織布の組合せを含む積層体を備える液体フィルターも本発明の液体フィルターに包含される。従って、本発明において、「本発明のメルトブロー不織布を積層してなる液体フィルター用の積層体」には、本発明のメルトブロー不織布のみを積層してなる液体フィルター用の積層体だけでなく、積層体の少なくとも1層(好ましくは、積層体を構成するメルトブロー不織布の枚数の半分以上)に本発明のメルトブロー不織布を用いているものであれば、本発明のメルトブロー不織布以外のメルトブロー不織布を含む積層体も包含される。
 以上、本発明のメルトブロー不織布及びその製造方法を好ましい実施形態を挙げて説明したが、本発明は、上記特定の実施形態に限定されない。例えば、本発明の好ましい実施形態において、繊維径は比較的均一であってもよいが、太い繊維(太繊維)と細い繊維(細繊維)とが混合したものであってもよい。太繊維と細繊維が混在した不織布を作成すると、繊維径分布が狭い場合に比べて繊維間に大きな空隙ができやすい。よって細い繊維のみを用いた濾過では、大きな粒子が濾材表面で詰まることがあるが、繊維径の分布が広がると表面濾過だけでなく濾材の厚み方向で効果的に粒子が捕集される。本発明のかかる実施形態においては、濾材自体に凹凸をつけることによって表面積を増やし、かつ繊維径の分布を変えて厚み方向での濾過効率も向上させることにより、フィルターの長寿命化が可能となるため好ましい。
 本発明者らは、特定の範囲の異なる孔径をもつノズル孔を配置したノズルピースを用いることにより、太繊維と細繊維とが混在した不織布を製造することにより、構成繊維径分布の広い不織布を得ることが可能となり、繊維径の異なる別個の不織布を積層張り合わせたものと同様の濾過性能を有するフィルター素材を効率良く製造することができることを見出し、特許を取得している(特許文献2)。従って、太繊維と細繊維とが混在した不織布の製造方法及び得られる不織布の繊維径のばらつきの好ましい範囲等は、当該特許文献2の記載を参照して適宜設定することができる。
 かかる太繊維と細繊維とが混在したメルトブロー不織布は、ダイ先端部に一列に穿孔された略円形ノズル孔を有するノズルピースにおいて、隣接する孔径Deのノズル孔Eの間に、ノズル孔Eより孔径が小さい孔径Dfのノズル孔Fのn個の列を挿入配置したメルトブロー不織布用ノズルピースを用いて得ることができる。
 かかる実施形態において、メルトブロー不織布用ノズルピースは、メルトブロー時に、紡糸繊維の径を変え、直径の異なる繊維が混合分散した不織布を同時一体的に形成し、得られる不織布の繊維径分布を広げることができるノズルピースであることが好ましい。すなわち、図6に示すダイのノズルピース部分において、図7に示すように、その先端部に一列に一定間隔に穿孔された多数の孔径Deの円形ノズル孔Eの間に、ノズル孔Eよりも孔径の小さい孔径Dfのノズル孔Fのn個の列を挿入したノズルピースである。ただし、これらの孔の中心間距離、いわゆるピッチ間隔は隣接する同孔径同士E-EおよびF-Fの間では等しいものとする。上記のノズル孔Fの挿入個数nは、2~4の範囲であることが好ましい。得られるメルトブロー不織布の繊維径分布を広げかつスムーズな繊維形成を行うために、個数nが上記範囲であることが好ましい。
 また、両ノズル孔E,Fの孔径比R(De/Df)は、1.3~2.0の範囲であることが好ましい。繊維径分布を広げ、かつ孔径の大小差に基づく樹脂の吐出バランスを整えて、安定した紡糸状態を得ること、及びショットの発生を抑制する観点から上記範囲が好ましい。
さらに、ノズル孔Eの孔径Deは、0.30~1.00mmであり、ノズル孔Fの孔径Dfは、0.20~0.80mmであることが、機械工作上の容易さの点からも好ましい。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。
 本実施例において、各パラメータは下記のように測定、算出した:
(1)平均繊維径:平均繊維径は、メルトブロー不織布の電子顕微鏡写真から任意の10か所について各10本ずつ、直径0.1μmオーダーまで繊維径を測定し、それらを平均して求めた。
(2)平均目付:100mm×100mmの10枚のメルトブロー不織布試験片に対して、温度23℃及び湿度50%における水分平衡状態の質量(g)を測定し、平均することにより求めた。
(3)突出部の最大高さA(厚みA):100mm×100mmのメルトブロー不織布試験片に対して、直径2.5cm、荷重7g/cm2の測定子を付けたリニアゲージにより試験片の重心に当たる中央部分の厚みを測定し、10枚の測定値を平均することにより求めた。
(4)厚みB:メルトブロー不織布をカットした断面のSEM写真を撮影し、不織布繊維が充填されている部分を任意で10か所選定し、0.001mmオーダーまでそれらの厚みを測定し、それらを平均して求めた。
(5)充填率:充填率(%)=[平均目付(g/m2)/突出部の最大高さA(m)/樹脂比重(g/m3)]×100の式により求めた。
(6)通気度T:100mm×100mmのメルトブロー不織布試験片を3枚積層し、JIS L1096に従ってフラジール型試験機により測定した。
(7)引張強度:幅50mmの短冊状メルトブロー不織布試験片に対して、製造時の長手方向の引張破断強度をJIS L 1085に従って測定した。
(8)下面高さC:メルトブロー不織布をカットした断面のSEM写真を撮影し、不織布が突出したことにより作られる空間構造部分を任意で10か所選定し、0.001mmオーダーまでそれらの最大下面高さを測定し、それらを平均して求めた。
(9)地合指数:200mm×200mmの3枚のメルトブロー不織布試験片に対して、地合計(野村商事製FMT-M  III)を用いて測定し、平均することにより求めた。
(10)耐圧縮性:カレンダーロールのクリアランスを突出部の最大高さAの20%に設定し、100mm×100mmのサンプルを室温にて速度2m/minでカレンダーし、厚みA′と通気度T′を測定した。 A′/AおよびT′/Tの値を耐圧縮性とした。
(11)厚みA′:カレンダー機で加圧した直後のメルトブロー不織布試験片に対して、直径2.5cm、荷重7g/cm2の測定子を付けたリニアゲージにより試験片の重心に当たる中央部分の厚みを測定することにより求めた。
(12)通気度T′:カレンダー機で加圧した直後のメルトブロー不織布試験片に対して、3枚積層した中央部分をJIS L1096に従ってフラジール型試験機により測定した。
(13)繊維径変動率(CV値):CV値=(繊維径の標準偏差/平均繊維径)とした。
 以下の実施例1~6において、コレクタの表面には、メルトブロー繊維集積用のネットとして、通気度473mL/cm2/秒、縦糸密度15本/インチ、横糸密度26本/インチ、厚み2.6mmのネットを使用した。また、比較例1~5では、通気度560mL/cm2/秒、縦糸密度40本/インチ、横糸密度16本/インチ、厚み2.1mmのネットを使用した。
 実施例1
 メルトブロー製造装置の原料ホッパーにMFR40のホモポリプロピレン樹脂(重量平均分子量1.7×105。以下の実施例、比較例でも同じ)を投入し、溶融混練温度を330℃とした。ダイとコレクタの間隔150mmで、290℃の加熱圧縮空気25Nm3/分と共に、ノズルより樹脂を大気中に吐出し、冷却用の20℃のクエンチエア17m3/分を当てたのち、吸引量60m3/分のコレクタ上に繊維状の樹脂を連続的に捕集させ、コレクタの回転速度を適当に調節して、平均繊維径21.0μm、平均目付45g/m2、突出部の最大高さA 2.02mm、不織布の厚みB 0.09mm、厚みの比A/Bが22.4、地合指数320のメルトブロー不織布を得た。耐圧縮性は厚みの比A′/Aが0.89および通気度の比T′/Tが0.98であった。
 実施例2
 メルトブロー製造装置の原料ホッパーにMFR40のホモポリプロピレン樹脂を投入し、溶融混練温度を390℃とした。ダイとコレクタの間隔200mmで、290℃の加熱圧縮空気25Nm3/分と共に、ノズルより樹脂を大気中に吐出し、冷却用の20℃のクエンチエア17m3/分を当てたのち、吸引量60m3/分のコレクタ上に繊維状の樹脂を連続的に捕集させ、コレクタの回転速度を適当に調節して、平均繊維径33.6μm、平均目付45g/m2、突出部の最大高さA 2.10mm、不織布の厚みB 0.09mm、厚みの比A/Bが23.3、地合指数370のメルトブロー不織布を得た。耐圧縮性は厚みの比A′/Aが0.85および通気度の比T′/Tが0.99であった。
 実施例3
 メルトブロー製造装置の原料ホッパーにMFR40のホモポリプロピレン樹脂を投入し、溶融混練温度を330℃とした。ダイとコレクタの間隔200mmで、290℃の加熱圧縮空気25Nm3/分と共に、ノズルより樹脂を大気中に吐出し、冷却用の20℃のクエンチエア17m3/分を当てたのち、吸引量60m3/分のコレクタ上に繊維状の樹脂を連続的に捕集させ、コレクタの回転速度を適当に調節して、平均繊維径22.6μm、平均目付45g/m2、突出部の最大高さA 2.09mm、不織布の厚みB 0.12mm、厚みの比A/Bが17.4、地合指数350のメルトブロー不織布を得た。耐圧縮性は厚みの比A′/Aが0.86および通気度の比T′/Tが0.99であった。
 実施例4
 メルトブロー製造装置の原料ホッパーにMFR40のホモポリプロピレン樹脂を投入し、溶融混練温度を310℃とした。ダイとコレクタの間隔150mmで、290℃の加熱圧縮空気25Nm3/分と共に、ノズルより樹脂を大気中に吐出し、冷却用のクエンチエアは使用せず、吸引量60m3/分のコレクタ上に繊維状の樹脂を連続的に捕集させ、コレクタの回転速度を適当に調節して、平均繊維径36.0μm、平均目付45g/m2、突出部の最大高さA 2.10mm、不織布の厚みB 0.12mm、厚みの比A/Bが17.5、地合指数390のメルトブロー不織布を得た。耐圧縮性は厚みの比A′/Aが0.86および通気度の比T′/Tが0.99であった。
 実施例5
 メルトブロー製造装置の原料ホッパーにMFR40のホモポリプロピレン樹脂を投入し、溶融混練温度を370℃とした。ダイとコレクタの間隔150mmで、290℃の加熱圧縮空気25Nm3/分と共に、特許文献2の実施例1で用いたノズルより樹脂を大気中に吐出し、冷却用の20℃のクエンチエア17m3/分を当てたのち、吸引量60m3/分のコレクタ上に繊維状の樹脂を連続的に捕集させ、コレクタの回転速度を適当に調節して、平均繊維径14.6μm、平均目付45g/m2、突出部の最大高さA 1.61mm、不織布の厚みB 0.09mm、厚みの比A/Bが17.9、地合指数420のメルトブロー不織布を得た。耐圧縮性は厚みの比A′/Aが0.80および通気度の比T′/Tが0.96であった。
 実施例6
 メルトブロー製造装置の原料ホッパーにMFR40のホモポリプロピレン樹脂を投入し、溶融混練温度を370℃とした。ダイとコレクタの間隔150mmで、290℃の加熱圧縮空気25Nm3/分と共に、特許文献2の実施例1で用いたノズルより樹脂を大気中に吐出し、冷却用の20℃のクエンチエア17m3/分を当てたのち、吸引量60m3/分のコレクタ上に繊維状の樹脂を連続的に捕集させ、コレクタの回転速度を適当に調節して、平均繊維径16.1μm、平均目付60g/m2、突出部の最大高さA 1.74mm、不織布の厚みB 0.15mm、厚みの比A/Bが11.6、地合指数385のメルトブロー不織布を得た。耐圧縮性は厚みの比A′/Aが0.80および通気度の比T′/Tが0.97であった。
 比較例1
 メルトブロー製造装置の原料ホッパーにMFR40のホモポリプロピレン樹脂を投入し、溶融混練温度を411℃とした。ダイとコレクタの間隔350mmで、290℃の加熱圧縮空気25Nm3/分と共に、ノズルより樹脂を大気中に吐出し、冷却用のクエンチエアは使用せず、吸引量60m3/分のコレクタ上に繊維状の樹脂を連続的に捕集させ、コレクタの回転速度を適当に調節して、平均繊維径25.2μm、平均目付45g/m2、突出部の最大高さA 1.10mm、不織布の厚みB 0.09mm、厚みの比A/Bが12.2、地合指数580のメルトブロー不織布を得た。耐圧縮性は厚みの比A′/Aが0.64および通気度の比T′/Tが0.83であった。
 比較例2
 メルトブロー製造装置の原料ホッパーにMFR40のホモポリプロピレン樹脂を投入し、溶融混練温度を365℃とした。ダイとコレクタの間隔300mmで、290℃の加熱圧縮空気25Nm3/分と共に、ノズルより樹脂を大気中に吐出し、冷却用のクエンチエアは使用せず、吸引量60m3/分のコレクタ上に繊維状の樹脂を連続的に捕集させ、コレクタの回転速度を適当に調節して、平均繊維径14.5μm、平均目付47g/m2、突出部の最大高さA 1.20mm、不織布の厚みB 0.10mm、厚みの比A/Bが12.0、地合指数760のメルトブロー不織布を得た。耐圧縮性は厚みの比A′/Aが0.58および通気度の比T′/Tが0.83であった。
 比較例3
 メルトブロー製造装置の原料ホッパーにMFR40のホモポリプロピレン樹脂を投入し、溶融混練温度を410℃とした。ダイとコレクタの間隔420mmで、290℃の加熱圧縮空気25Nm3/分と共に、ノズルより樹脂を大気中に吐出し、冷却用のクエンチエアは使用せず、吸引量60m3/分のコレクタ上に繊維状の樹脂を連続的に捕集させ、コレクタの回転速度を適当に調節して、平均繊維径28.7μm、平均目付45g/m2、突出部の最大高さA 1.30mm、不織布の厚みB 0.36mm、厚みの比A/Bが3.6、地合指数939のメルトブロー不織布を得た。耐圧縮性は厚みの比A′/Aが0.74および通気度の比T′/Tが0.89であった。
 比較例4
 メルトブロー製造装置の原料ホッパーにMFR40のホモポリプロピレン樹脂を投入し、溶融混練温度を418℃とした。ダイとコレクタの間隔280mmで、290℃の加熱圧縮空気25Nm3/分と共に、ノズルより樹脂を大気中に吐出し、冷却用のクエンチエアは使用せず、吸引量60m3/分のコレクタ上に繊維状の樹脂を連続的に捕集させ、コレクタの回転速度を適当に調節して、平均繊維径4.0μm、平均目付40g/m2、突出部の最大高さA 0.44mm、不織布の厚みB 0.30mm、厚みの比A/Bが1.5、地合指数109のメルトブロー不織布を得た。耐圧縮性は厚みの比A′/Aが0.57および通気度の比T′/Tが0.46であった。
 比較例5
 メルトブロー製造装置の原料ホッパーにMFR40のホモポリプロピレン樹脂を投入し、溶融混練温度を400℃とした。ダイとコレクタの間隔420mmで、290℃の加熱圧縮空気25Nm3/分と共に、ノズルより樹脂を大気中に吐出し、冷却用のクエンチエアは使用せず、吸引量60m3/分のコレクタ上に繊維状の樹脂を連続的に捕集させ、コレクタの回転速度を適当に調節して、平均繊維径10.9μm、平均目付45g/m2、突出部の最大高さA 0.65mm、不織布の厚みB 0.14mm、厚みの比A/Bが4.6、地合指数440のメルトブロー不織布を得た。耐圧縮性は厚みの比A′/Aが0.78および通気度の比T′/Tが0.88であった。
 各実施例及び比較例の不織布の物性、耐圧縮性の数値を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (5)

  1.  複数の突出部を有する、液体フィルター用のメルトブロー不織布であって、
    不織布の厚みBに対する該突出部の最大高さAの比率A/Bが10~30であり、地合指数が150~450である、メルトブロー不織布。
  2.  平均繊維径が10~50μmである、請求項1に記載のメルトブロー不織布。
  3.  ポリオレフィン、ポリエステル及びポリアミドからなる群より選択される少なくとも1種を主体に構成された、請求項1又は2に記載のメルトブロー不織布。
  4.  請求項1~3のいずれか一項に記載のメルトブロー不織布を積層してなる液体フィルター用の積層体。
  5.  請求項4に記載の積層体を備える液体用フィルター。
PCT/JP2020/007318 2019-03-29 2020-02-25 液体フィルター用のメルトブロー不織布、当該メルトブロー不織布の積層体及び積層体を備える液体用フィルター WO2020202899A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217022617A KR20210116484A (ko) 2019-03-29 2020-02-25 액체 필터용 멜트블로운 부직포, 상기 멜트블로운 부직포의 적층체, 및 적층체를 구비하는 액체 필터
JP2021511219A JP7352302B2 (ja) 2019-03-29 2020-02-25 液体フィルター用のメルトブロー不織布、当該メルトブロー不織布の積層体及び積層体を備える液体用フィルター
CN202080008620.3A CN113286645B (zh) 2019-03-29 2020-02-25 液体过滤器用的熔喷无纺布、该熔喷无纺布的层叠体及具备层叠体的液体用过滤器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068090 2019-03-29
JP2019-068090 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202899A1 true WO2020202899A1 (ja) 2020-10-08

Family

ID=72668280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007318 WO2020202899A1 (ja) 2019-03-29 2020-02-25 液体フィルター用のメルトブロー不織布、当該メルトブロー不織布の積層体及び積層体を備える液体用フィルター

Country Status (4)

Country Link
JP (1) JP7352302B2 (ja)
KR (1) KR20210116484A (ja)
CN (1) CN113286645B (ja)
WO (1) WO2020202899A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250057A1 (ja) * 2021-05-26 2022-12-01 タピルス株式会社 メルトブロー不織布及びこれを備えたフィルタ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263353A (ja) * 1991-11-26 1993-10-12 New Oji Paper Co Ltd 長繊維不織布及びその製造方法
JP2009074193A (ja) * 2007-09-19 2009-04-09 Kuraray Co Ltd 不織布及びその製造方法
JP2011005860A (ja) * 2003-03-31 2011-01-13 Toray Ind Inc フィルター材
JP2012052253A (ja) * 2010-08-31 2012-03-15 Uni Charm Corp 不織布シート、その製造方法および吸収性物品
WO2012102398A1 (ja) * 2011-01-28 2012-08-02 タピルス株式会社 極細繊維からなるメルトブロー不織布、その製造方法及びそれを製造するための装置
JP2017150110A (ja) * 2016-02-25 2017-08-31 旭化成株式会社 フェイスマスク用セルロース繊維不織布

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753522B2 (ja) 1997-10-29 2006-03-08 タピルス株式会社 メルトブロー不織布およびメルトブロー不織布用ノズルピース
US6319865B1 (en) * 1999-09-02 2001-11-20 Tonen Tapyrus Co., Ltd. Melt-blown non-woven fabric, and nozzle piece for producing the same
JP5179939B2 (ja) * 2008-04-24 2013-04-10 クラレクラフレックス株式会社 不織布で構成された複合繊維シート
EP2472656A3 (en) 2008-08-15 2013-02-20 Massachusetts Institute of Technology Layer-by-layer assemblies of carbon-based nanostructures and their applications in energy storage and generation devices
RU2642033C1 (ru) * 2010-12-24 2018-01-23 Као Корпорейшн Нетканый материал и использующее его абсорбирующее изделие
JP5925835B2 (ja) * 2013-09-24 2016-05-25 花王株式会社 不織布の製造方法
CN107614772A (zh) * 2015-07-24 2018-01-19 株式会社可乐丽 纤维叠层体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263353A (ja) * 1991-11-26 1993-10-12 New Oji Paper Co Ltd 長繊維不織布及びその製造方法
JP2011005860A (ja) * 2003-03-31 2011-01-13 Toray Ind Inc フィルター材
JP2009074193A (ja) * 2007-09-19 2009-04-09 Kuraray Co Ltd 不織布及びその製造方法
JP2012052253A (ja) * 2010-08-31 2012-03-15 Uni Charm Corp 不織布シート、その製造方法および吸収性物品
WO2012102398A1 (ja) * 2011-01-28 2012-08-02 タピルス株式会社 極細繊維からなるメルトブロー不織布、その製造方法及びそれを製造するための装置
JP2017150110A (ja) * 2016-02-25 2017-08-31 旭化成株式会社 フェイスマスク用セルロース繊維不織布

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250057A1 (ja) * 2021-05-26 2022-12-01 タピルス株式会社 メルトブロー不織布及びこれを備えたフィルタ
JPWO2022250057A1 (ja) * 2021-05-26 2022-12-01
KR20230028580A (ko) * 2021-05-26 2023-02-28 타피러스 컴퍼니 리미티드 멜트블로우 부직포 및 이를 포함하는 필터
JP7333119B2 (ja) 2021-05-26 2023-08-24 タピルス株式会社 メルトブロー不織布及びこれを備えたフィルタ
KR102574822B1 (ko) 2021-05-26 2023-09-04 타피러스 컴퍼니 리미티드 멜트블로우 부직포 및 이를 포함하는 필터

Also Published As

Publication number Publication date
JPWO2020202899A1 (ja) 2020-10-08
KR20210116484A (ko) 2021-09-27
CN113286645A (zh) 2021-08-20
CN113286645B (zh) 2023-03-17
JP7352302B2 (ja) 2023-09-28

Similar Documents

Publication Publication Date Title
KR940004708B1 (ko) 깊이 섬유 크기 구배를 갖는 융해 취입 재료
JP6078835B2 (ja) 極細繊維からなるメルトブロー不織布及びその積層加工品
JP6007899B2 (ja) 混繊不織布と積層シート及びフィルター並びに混繊不織布の製造方法
US10335728B2 (en) Filter medium for air filter, filter pack, and air filter unit
US8308833B2 (en) Nonwoven fabric for filters
JP6496009B2 (ja) 不織布およびその製造方法
JPH11504853A (ja) 一体的に並置された(co−located)支持繊維及び濾過繊維を含む不織布メルトブローン液体濾過体(media)、同濾過体を用いたフィルターカートリッジ、及び同濾過体の製造方法及び製造装置
US10207212B2 (en) Filter material
JP6390612B2 (ja) 混繊不織布およびその製造方法
JP2007152216A (ja) フィルター用不織布
WO2020202899A1 (ja) 液体フィルター用のメルトブロー不織布、当該メルトブロー不織布の積層体及び積層体を備える液体用フィルター
JP3164172B2 (ja) 不織布およびその製造方法
JP7333119B2 (ja) メルトブロー不織布及びこれを備えたフィルタ
JP2023173435A (ja) メルトブロー不織布及びこれを備えたフィルタ
JP6256100B2 (ja) 混繊メルトブロー不織布
JP4906675B2 (ja) エアフィルター用不織布および空気清浄用フィルター
JP2021098930A (ja) スパンボンド不織布、集塵機プリーツフィルター用濾材、集塵機プリーツフィルターおよび大風量パルスジェットタイプ集塵機
JP6997527B2 (ja) ポリフェニレンサルファイド不織布
JP6966859B2 (ja) 不織布
KR20220112773A (ko) 스펀본드 부직포, 집진기 플리츠 필터용 여과재, 집진기 플리츠 필터 및 대풍량 펄스제트 타입 집진기
KR20220110210A (ko) 스펀본드 부직포, 집진기 플리츠 필터용 여과재, 집진기 플리츠 필터 및 대풍량 펄스제트 타입 집진기
JP2016160542A (ja) 混繊不織布
JP2541551C (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783830

Country of ref document: EP

Kind code of ref document: A1