WO2012002310A1 - 触媒、電極、燃料電池、ガス除害装置、並びに触媒および電極の製造方法 - Google Patents

触媒、電極、燃料電池、ガス除害装置、並びに触媒および電極の製造方法 Download PDF

Info

Publication number
WO2012002310A1
WO2012002310A1 PCT/JP2011/064647 JP2011064647W WO2012002310A1 WO 2012002310 A1 WO2012002310 A1 WO 2012002310A1 JP 2011064647 W JP2011064647 W JP 2011064647W WO 2012002310 A1 WO2012002310 A1 WO 2012002310A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
alloy
electrode
chain
ions
Prior art date
Application number
PCT/JP2011/064647
Other languages
English (en)
French (fr)
Inventor
千尋 平岩
真嶋 正利
鉄也 桑原
知之 粟津
登志雄 上田
敏行 倉本
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN2011800317834A priority Critical patent/CN102958609A/zh
Priority to KR1020127033836A priority patent/KR101459406B1/ko
Publication of WO2012002310A1 publication Critical patent/WO2012002310A1/ja
Priority to US13/807,394 priority patent/US20130101920A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/866Nickel and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a catalyst, an electrode, a fuel cell, a gas abatement apparatus, and a method for manufacturing the catalyst and the electrode.
  • the present invention relates to a harmful device, a method for manufacturing a catalyst and an electrode, and the like.
  • Ammonia is an indispensable compound for agriculture and industry, but it is harmful to humans. Therefore, many methods for decomposing ammonia in water and air have been disclosed. For example, in order to decompose and remove ammonia from water containing high-concentration ammonia, a method in which atomized aqueous ammonia is brought into contact with an air stream to separate ammonia in the air and brought into contact with a hypobromite solution or sulfuric acid has been proposed (Patent Document 1). In addition, a method of separating ammonia in the air by the same process as described above and combusting with a catalyst is also disclosed (Patent Document 2).
  • Patent Document 3 a method for decomposing ammonia-containing wastewater into a nitrogen and water by using a catalyst has been proposed.
  • ammonia, hydrogen, and the like are usually contained in the waste gas of the semiconductor manufacturing apparatus.
  • many methods have been used in which harmful gas is absorbed in water containing chemicals through a scrubber when discharging waste gas from a semiconductor manufacturing apparatus.
  • Patent Document 4 an exhaust gas treatment of a semiconductor manufacturing apparatus in which ammonia is decomposed by a phosphoric acid fuel cell
  • JP-A-7-31966 Japanese Patent Laid-Open No. 7-116650 Japanese Patent Laid-Open No. 11-347535 JP 2003-45472 A
  • Ammonia can be decomposed by a method using a chemical solution such as the above neutralizing agent (Patent Document 1), a combustion method (Patent Document 2), a method using a thermal decomposition reaction using a catalyst (Patent Document 3), etc. It is.
  • the above-described method has a problem in that it requires chemicals and external energy (fuel), requires periodic replacement of the catalyst, and has a high running cost.
  • the apparatus becomes large and, for example, when it is additionally provided in existing equipment, the arrangement may be difficult.
  • a device that uses phosphoric acid fuel cells for the removal of ammonia in the exhaust of compound semiconductor manufacturing (Patent Document 4) also solves the problem by depressing pressure loss and increasing electrical resistance, etc. The idea to do is not made.
  • a catalyst having a high performance is one that promotes such an electrochemical reaction and can be put into practical use.
  • a high-performance catalyst promotes the electrochemical reaction of decomposition of ammonia or the like and increases the processing capacity.
  • the present invention provides a catalyst, an electrode, a fuel cell, a gas abatement device, and a method for producing the catalyst and the electrode, which can promote the electrochemical reaction in general with gas decomposition and the like. Objective.
  • the catalyst of the present invention is used to promote an electrochemical reaction.
  • the catalyst is an alloy containing nickel (Ni) and one or more of ⁇ iron (Fe), cobalt (Co), chromium (Cr), tungsten (W) and copper (Cu) ⁇ . To do. With the above-described configuration, decomposition of gas or the like can be promoted, and a gas abatement device, a fuel cell, or the like that has a small processing capacity can be obtained.
  • the catalyst may be a chain formed by continuously extending alloy particles having a diameter of 0.5 ⁇ m or less.
  • the alloy particles are connected to each other and extend in a string shape, leaving some form of individual particles.
  • the convex surface of the particle and the concave portion in the connecting portion are continuous in the longitudinal direction of the string, and the unevenness is repeated.
  • fine protrusions are densely distributed on the surface of the alloy particles. For this reason, convex parts or protrusions are distributed at high density on the surface of the chain.
  • the catalyst of the present invention dramatically increases its catalytic action at a specific point such as a protrusion.
  • the above singularities are distributed at a very high density as compared to the catalytic action of alloys such as lumps and plates, and as a result, the catalytic action is significantly greater than that of lumps and sheets of alloy.
  • the chain body does not mean a “chain” that connects so-called metal rings, but the metal particles are connected to each other to form fine irregularities and high-density projections. Etc. are used in the sense that they look like chain irregularities.
  • the alloy particles have a composition of nickel and one or more of ⁇ iron (Fe), cobalt (Co), chromium (Cr), tungsten (W) and copper (Cu) ⁇ . , May vary across the chain.
  • the composition of adjacent particles need not be the same, and may vary periodically, for example.
  • the chain can be branched into a dendritic chain in which the branched branches are intertwined.
  • a porous catalyst having microscopic pores can be obtained. For this reason, it is easy to bring the gas to be decomposed into contact with the catalyst, and the gas decomposition treatment capability can be improved with a relatively small MEA (Membrane Electrode Assembly) or the like.
  • the alloy may include 0.5% by weight or less of titanium (Ti).
  • the chain of alloy particles can be obtained by using trivalent titanium (Ti) ions as a reducing agent in the liquid phase method.
  • the nickel ions and iron ions are reduced by trivalent titanium, added with electrons, and precipitated as alloy particles from the nickel ions and iron ions.
  • Trivalent titanium loses electrons and becomes tetravalent titanium ions. Since the alloy particles are precipitated from an aqueous solution containing these ions, they contain trivalent and tetravalent titanium ions, but are not particularly distinguished in the alloy particles and exist as titanium. Titanium contributes to increased catalysis in the alloy.
  • the catalyst may be a woven fabric of the above-described alloy fibers or a woven fabric of metal fibers on which a plating layer of the above-mentioned alloy is formed. Accordingly, a part of the current collector can be shared by the metal woven fabric, and can be directly conductively connected to the electrode to promote an electrochemical reaction of gas decomposition at the electrode. Since the woven fabric is supple, porous, and has a high conductivity, a conductive connection with a low electrical resistance is possible in contact with the electrode. It is essential for the gas to maintain good contact with the electrode (the electrode is also porous). Further, the above alloy having a catalytic function includes an alloy having high oxidation resistance, and when used for an air electrode in contact with oxygen, a highly durable air electrode current collector capable of maintaining a low electric resistance is obtained. be able to.
  • the soot catalyst can be a plated porous body of the above alloy or a plated porous body on which a plated layer of the above alloy is formed.
  • the plated porous body is disposed in order to prevent gas from passing through, there may be a structure in which the plated porous body and the electrode are in direct contact with each other.
  • the catalytic effect can be exerted on the plated porous body in the decomposition reaction at the contacted electrode.
  • the same effect as that of the woven fabric can also be obtained with respect to the oxidation-resistant plated porous body that comes into contact with the air electrode.
  • the soot catalyst may be particles of the above alloy having an average diameter of 100 ⁇ m or less.
  • a metal paste containing particles of the above alloy it is used as an auxiliary means for conductive connection between the electrode and the current collector of the electrode, and gas decomposition at the electrode is maintained while keeping the electric resistance of the conductive connection low. Can be promoted.
  • It can be in the form of an alloy, located in the form of a film or precipitate, so as to be present with the solid electrolyte and to cover the surface of the solid electrolyte.
  • the alloy film or precipitate is formed on the solid electrolyte by the molten salt electrodeposition method. For this reason, a membrane-electrode assembly (MEA: Electrode Assembly) or the like can be formed relatively easily.
  • the inner alloy part is a good conductor and provides a good transfer path for electrons in the electrochemical reaction.
  • the electrode of the present invention is characterized in that any one of the above catalysts and an ion conductive ceramic are sintered. By using this porous electrode, it is possible to form an electrochemical reaction device that is small in size and has a high processing capability such as gas decomposition.
  • silver particles can be further dispersed.
  • Silver has a catalytic action that promotes the decomposition of oxygen molecules.
  • the electrode is used for an air electrode of a fuel cell or an abatement device, the decomposition of oxygen molecules can be promoted and the electrochemical reaction can proceed smoothly.
  • a fuel cell according to the present invention is characterized by using any one of the above catalysts or any electrode. As a result, a small fuel cell having a large power generation capacity can be obtained.
  • a gas abatement apparatus of the present invention is characterized by using any one of the above catalysts or any electrode. This makes it possible to obtain a gas abatement apparatus that is small and has a large gas processing capacity.
  • the method for producing a catalyst of the present invention includes a step of preparing an aqueous solution containing nickel ions, one or more of (iron ions, cobalt ions, chromium ions, tungsten ions and copper ions), titanium ions, and complex ions, An alkaline aqueous solution is added to the aqueous solution and stirred at room temperature to 60 ° C., and nickel (Ni), (iron (Fe), cobalt (Co), chromium (Cr), tungsten (W) and copper (Cu)) are mixed. And a step of precipitating a chain of alloy particles containing a small amount of titanium (Ti).
  • a high-performance catalyst can be obtained relatively easily by the liquid phase method.
  • a step of subjecting the precipitated chain to a surface oxidation treatment can be provided. Thereby, the catalytic action can be further enhanced.
  • an ion conductive ceramic powder and a solvent containing the catalyst and the ion conductive ceramic are dispersed together with a fluid solvent. It is characterized by being applied to a solid electrolyte and sintered. Thereby, it is possible to easily manufacture a cylindrical body MEA and the like that are difficult to manufacture.
  • the electrochemical reactions in general electrochemical reactions involving gas decomposition, the electrochemical reactions can be promoted, and the capacity can be reduced in size. For this reason, it is useful for size reduction of a fuel cell and a gas abatement apparatus.
  • FIG. 4 is a diagram showing the influence of the composition on the power generation output by changing the composition of Ni—Fe alloy particles in an ammonia decomposition element using an electrode including a chain. It is a figure which shows the manufacturing method of the chain body of an alloy particle.
  • FIG. 4 is a cross-sectional view taken along line IVB-IVB in FIG. 1A, showing the gas decomposition element according to Embodiment 2 of the present invention. It is a figure which shows the electrical wiring system
  • (Embodiment 1-Catalyst) 1A is a diagram showing a catalyst 3 in Embodiment 1 of the present invention, which is a scanning electron microscope image
  • FIG. 1B is a diagram showing catalyst 3 in Embodiment 1 of the present invention
  • the catalyst 3 is formed by connecting alloy particles 3p to form a chain.
  • the morphological features of the chain 3 are as follows. (F1) When viewed broadly, the alloy particles 3p are connected and extend long in a string shape. Further, the branch part 3b branches and the branches are intertwined. In other words, they are intertwined dendritic shapes.
  • the chain 3 can be used as a high performance catalyst as it is. Alternatively, performance improvement can be obtained by performing surface oxidation treatment depending on the application, and surface oxidation treatment is performed for such an application.
  • the thickness of the surface oxide layer is preferably 1 nm to 100 nm, more preferably 10 nm to 50 nm. Depending on the gas to be decomposed, even if the surface is oxidized and the operation is started, it may be reduced during the operation and the surface oxide layer may disappear. In any case, unless otherwise specified, the chain 3 refers to any of the above states (the state in which the surface oxide layer is present and the surface oxide layer is reduced).
  • FIG. 2 is a diagram showing the results of measuring the power generation output when the composition of Ni—Fe alloy particles is changed to form an electrode using the chain 3 and ammonia is decomposed.
  • the electrode is an anode or a fuel electrode.
  • an oxide layer formed by surface oxidation treatment was formed on the chain 3, but as a result of the introduction of a reducing gas containing ammonia by the operation and the anode reaction proceeding, the oxide layer was Reduced and disappeared.
  • oxidation is caused by oxygen ions generated by the cathode reaction at the air electrode and passing through the solid electrolyte.
  • the material of the cathode or air electrode, the ammonia concentration, etc. are kept constant, and only the composition of the chain 3 constituting the catalyst in the anode is changed.
  • the ammonia concentration is 100% by volume at the inlet and the flow rate is 50 ml / min.
  • the ammonia decomposition apparatus used for this measurement will be described in detail in Embodiment 2.
  • the power generation output is increased and the catalytic action is large when Ni is in the range of 40 at% to 80 at%. Since Fe has a stronger binding force to oxygen than Ni, using a Ni—Fe alloy makes it easier for oxygen to bind to the surface than Ni alone.
  • the projections 3k are formed innumerably on the surface of the Ni—Fe alloy particles 3p, so that oxygen is easily added to the tips of the projections 3k. That is, the catalytic action is enhanced by the above-mentioned feature (F3) of the chain body rather than the action of a simple alloy. Furthermore, since the surface area of the chain 3 is increased by the above feature (F2), the catalytic action is higher than the action of a simple alloy by the increase of the surface area. Furthermore, the porosity of the porous electrode is increased by the feature (F1), which can also contribute to the promotion of gas decomposition.
  • the Ni-Fe based Ni of 40 at% or more and 80 at% or less can be regarded as a composition range in which the electrochemical reaction is promoted by the above complex factors.
  • Ni—Co Ni—Co
  • Ni—Cr Ni—W
  • Ni—Cu Ni—Cu
  • ⁇ Ni-W series> When W is 0.25 at% or more and 50 at% or less, there is a high catalytic action range for promoting ammonia decomposition.
  • the above ranges are all composition ranges that enhance the catalytic action in the binary system. Although the composition range varies, the catalyst of the present invention may be an alloy of ternary or higher.
  • nickel ions one or more of (iron ions, cobalt ions, chromium ions, tungsten ions, and copper ions) constituting the composition of the alloy particles, and titanium ions (trivalent and tetravalent).
  • an aqueous solution containing complex ions such as citrate ions.
  • an aqueous ammonia solution is added to the aqueous solution containing the above metal ions to adjust the pH to around 9.0. Then, the liquid temperature is kept at an appropriate temperature of normal temperature to 60 ° C. and stirred.
  • trivalent titanium (Ti) ions act as a reducing agent, and the above nickel ions, iron ions, etc. are reduced by trivalent titanium ions, added with electrons, and alloyed from nickel ions, iron ions, etc. Precipitate as particles.
  • Trivalent titanium loses electrons and becomes tetravalent titanium ions. Since the alloy particles are precipitated from an aqueous solution containing these ions, they contain trivalent and tetravalent titanium ions, but are not particularly distinguished in the alloy particles and exist as titanium.
  • the metal needs to be a ferromagnetic metal and have a predetermined size or more.
  • Nickel, iron, cobalt, and the like are single metals and ferromagnetic, and chromium, tungsten, and copper are also included in nickel alloys and nickel iron alloys to become ferromagnetic metals. For this reason, the alloy particles become a ferromagnetic material, and the alloy particles of the ferromagnetic material attract each other by magnetic force at first. Subsequently, precipitation and growth continue on the contacted alloy particles to form a chain.
  • the size requirement is necessary in the process in which the ferromagnetic alloys form magnetic domains and are coupled to each other by magnetic force, and precipitation and growth of the alloy occur in the coupled state, so that the whole is united. Even after alloy particles of a predetermined size or larger are bonded by magnetic force, the precipitation of the alloy continues. For example, the neck at the boundary of the bonded alloy particles grows thicker together with other portions of the alloy particles. At this time, precipitation that becomes fine protrusions 3k also occurs on the surface of the alloy particles. The fine protrusions 3k are conspicuous in the convex portions of the alloy particles 3p, but are also generated in the concave portions of the joint portions.
  • the average diameter D of the chain 3 included in the anode 2 is preferably in the range of, for example, 5 nm or more and 500 nm or less.
  • the average length L is difficult to measure when it is branched and entangled, but when it is not entangled, the average length L is preferably in the range of 0.5 ⁇ m or more and 1000 ⁇ m or less.
  • the ratio between the average length L and the average diameter D is preferably 3 or more. However, it may have dimensions outside these ranges.
  • the surface oxidation treatment method is as follows. Three types of (i) heat treatment oxidation by vapor phase method, (ii) electrolytic oxidation, and (iii) chemical oxidation are suitable methods. In (i), the treatment is preferably carried out in the atmosphere at 500 to 700 ° C. for 1 to 30 minutes. Although it is the simplest method, it is difficult to control the oxide film thickness. In (ii), surface oxidation is performed by applying a potential to about 3 V with reference to a standard hydrogen electrode and performing anodization. However, the oxide film thickness can be controlled by the amount of electricity according to the surface area.
  • the surface is oxidized by dipping in a solution in which an oxidizing agent such as nitric acid is dissolved for about 1 to 5 minutes.
  • an oxidizing agent such as nitric acid
  • the oxide film thickness can be controlled by time, temperature, and type of oxidizer, cleaning of chemicals is troublesome. Either method is suitable, but (i) or (iii) is more preferred.
  • the thickness of the oxide layer is in the range of 1 nm to 100 nm, more preferably in the range of 10 nm to 50 nm. However, it may be outside this range. If the oxide film is too thin, the catalyst function will be insufficient. In addition, even a slight reducing atmosphere may cause metallization. On the other hand, if the oxide film is too thick, the catalytic property is sufficiently maintained, but on the other hand, the electronic conductivity at the interface is impaired and the power generation performance is lowered.
  • the alloy particle chain 3 in the present embodiment is a string in which alloy particles containing Ni, one or more of (Fe, Co, Cr, W, Cu) and a trace amount of Ti are continuously formed in a string shape. Its morphological characteristics are shown in the above (F1) to (F3). Since this chain of alloy particles is an alloy, it has a higher catalytic action in a predetermined alloy composition range than the chain of Ni simple particles. Further, the above features (F1) to (F3) are also factors for improving the catalytic action, and in particular, the fine protrusions 3k distributed innumerably contribute to the improvement of the catalytic action as singular points.
  • the fine protrusions 3k should function as a field where oxygen and an alloy element such as Fe are combined to enhance the catalytic action.
  • a catalyst based on a chain of alloy particles has a larger catalytic action for promoting an electrochemical reaction of gas decomposition than a chain of simple Ni particles.
  • said catalyst is description in the case of the chain body of the alloy particle manufactured by Ti reduction method.
  • the catalyst of the present invention may be a precipitate produced by a molten salt electrodeposition method as well as a chain of alloy particles by the Ti reduction method.
  • FIG. 4A is a longitudinal sectional view of a gas decomposition element, in particular, an ammonia decomposition element 10, which is an electrochemical reaction device according to Embodiment 2 of the present invention.
  • 4B is a cross-sectional view taken along the line IVB-IVB in FIG. 4A.
  • an anode 2 is provided so as to cover the inner surface of the cylindrical solid electrolyte 1
  • a cathode 5 is provided so as to cover the outer surface, thereby forming a cylindrical MEA 7 (1, 2, 5).
  • the anode 2 is sometimes called a fuel electrode
  • the cathode 5 is sometimes called an air electrode.
  • the anode 2 includes a chain of alloy particles that is the catalyst described in the first embodiment. The material constituting the anode 2 will be described in detail later.
  • the inner diameter of the cylindrical MEA is, for example, about 20 mm, but may be changed according to the device to be applied.
  • An anode current collector 11 is disposed in the inner cylinder of the cylindrical MEA 7.
  • a cathode current collector 12 is arranged so as to wrap around the outer surface of the cathode 5.
  • Each current collector is as follows. ⁇ Anode current collector 11>: Metal woven fabric 11a / plated porous body 11s / center conductive rod 11k The metal woven fabric 11a contacts the anode 2 on the inner surface side of the cylindrical MEA 7 and conducts from the plated porous body 11s to the central conductive rod 11k.
  • Celmet registered trademark: Sumitomo Electric Industries, Ltd.
  • capable of increasing the porosity can be used in order to reduce the pressure loss of the gas containing ammonia described later.
  • the anode 2 contains the alloy particle chain 3 to sufficiently increase the ammonia decomposition ability, and on the inner surface side of the cylindrical MEA, while reducing the overall electric resistance of the current collector 11 formed of a plurality of members. It is important to reduce the pressure loss of gas introduction to the anode side.
  • the silver paste-coated wiring 12g contains silver that acts as a catalyst for promoting the decomposition of oxygen gas at the cathode 5 into oxygen ions, and contributes to lowering the electrical resistance of the cathode current collector 12.
  • the cathode 5 can contain silver
  • the silver paste coating wiring 12g having a predetermined property is connected to the cathode current collector 12 so that the silver particles come into contact with the cathode 5 while passing oxygen molecules. It exhibits the same catalytic action as silver particles contained in. Moreover, it is less expensive than the inclusion in the cathode 5.
  • FIG. 5 is a diagram showing an electrical wiring system of the gas decomposition element 10 of FIG. 4 when the solid electrolyte is oxygen ion conductive.
  • the gas containing ammonia is introduced into the inner cylinder of the cylindrical MEA 7, that is, the space where the anode current collector 12 is disposed, with tight airtightness.
  • the use of the plated porous body 11s is indispensable because gas passes through the inner surface side. From the viewpoint of reducing the pressure loss, it is important to use a metal plated body such as Celmet as described above.
  • the gas containing ammonia contacts the anode 2 while passing through the gap between the metal woven fabric 11a and the porous metal 11s, and undergoes the following ammonia decomposition reaction.
  • Oxygen ions O 2 ⁇ are generated by an oxygen gas decomposition reaction at the cathode and reach the anode 2 through the solid electrolyte 1. That is, it is an electrochemical reaction when oxygen ions, which are anions, move through the solid electrolyte.
  • Anode reaction 2NH 3 + 3O 2 ⁇ ⁇ N 2 + 3H 2 O + 6e ⁇ More specifically, a part of ammonia causes a reaction of 2NH 3 ⁇ N 2 + 3H 2 , and this 3H 2 reacts with oxygen ions 3O 2 ⁇ to generate 3H 2 O. In this ammonia decomposition, the chain 3 of alloy particles promotes decomposition.
  • Air particularly oxygen gas
  • the cathode reaction is as follows.
  • the heater was operated with external power, and an output measuring device was inserted into the load of FIG. 5 to measure the output of private power generation.
  • the output measuring device is connected to the external wiring 11e from the central conductive rod 11k of the anode current collector 11 and the external wiring 12e from the metal woven fabric 12a of the cathode current collector.
  • the decomposition rate of ammonia at the anode 2 is important. If the decomposition rate of ammonia at the anode 2 is low, most of the ammonia will leave the outlet without being decomposed, and it will be impossible to satisfy the outlet concentration of several ppm or less. In order to satisfy the outlet concentration, reducing the flow rate of the gas containing ammonia does not allow a practical level of processing capacity and is not allowed. In order to increase the ammonia decomposition rate at the anode 2, it is important to use a chain 3 of alloy particles.
  • FIG. 6 is a diagram for explaining the material and electrochemical reaction of the anode 2 when the solid electrolyte 1 is oxygen ion conductive.
  • a gas containing ammonia is introduced into the anode 2 and flows through the pores 2h.
  • the anode 2 is a sintered body mainly composed of a catalyst, that is, a chain 3 of alloy particles that are oxidized on the surface and have an oxide layer, and an oxygen ion conductive ceramic 22.
  • a chain 3 of Ni—Fe alloy particles is used.
  • the composition is preferably about Ni 60 at%, for example. Further, it is preferable to contain a trace amount of Ti of about 2 to 10,000 ppm. Catalysis can be further enhanced by containing a small amount of Ti.
  • the nickel oxide formed by oxidizing this Ni can further enhance the promoting action of these single metals.
  • ammonia decomposition reaction anode reaction
  • the oxide layer produced in the sintering process, etc. was formed in the Ni particle chain in the product before use. The chain is also reduced and the oxide layer disappears.
  • the catalytic action of the Ni—Fe alloy itself is reliable, and furthermore, in order to cover the absence of an oxide layer, Ti can be included in the Ni—Fe system to compensate for the reduction in catalytic action.
  • SSZ sindium stabilized zirconia
  • YSZ yttrium stabilized zirconia
  • SDC sinarium stabilized ceria
  • LSGM lanthanum gallate
  • GDC gadria stabilized ceria
  • oxygen ions are allowed to participate in the decomposition reaction at the anode. That is, the decomposition is performed in an electrochemical reaction.
  • anode reaction 2NH 3 + 3O 2 ⁇ ⁇ N 2 + 3H 2 O + 6e ⁇ oxygen ions contribute and the ammonia decomposition rate is greatly improved.
  • free electrons e ⁇ are generated. If the electrons e ⁇ stay on the anode 2, the progress of the anode reaction is hindered.
  • the chain 3 is elongated in a string shape, and the contents 3a covered with the oxide layer 3s is a good conductor metal (Ni—Fe alloy).
  • the characteristics of the embodiment of the present invention are the following (e1), (e2) and (e3) in the anode.
  • the average diameter of the raw material powder of SSZ is about 0.5 ⁇ m to 50 ⁇ m.
  • the compounding ratio between the surface-oxidized metal particle chain 21 and SSZ22 is in the range of 0.1 to 10 in terms of mol ratio.
  • the sintering method is carried out, for example, by maintaining the temperature in the range of 1000 ° C. to 1600 ° C. for 30 to 180 minutes in the air atmosphere. Regarding the manufacturing method, the manufacturing method of the cylindrical MEA 7 will be described later.
  • Metal woven fabric 11a of the anode current collector 11 is an important element in that the pressure loss of the gas flow is reduced by reducing the electrical resistance of the anode current collector 11.
  • Celmet registered trademark
  • the contact resistance is relatively large when a metal woven fabric is not used, and the cathode current collector of the gas decomposition element 10
  • the electrical resistance between 12 and the anode current collector 11 was about 4 to 7 ⁇ , for example.
  • the metal woven fabric 11a was used for the anode current collector 11, the following was found.
  • N1 By disposing the metal woven fabric 11a, the plated porous body 11s may be intermittently disposed inside the cylindrical MEA. That is, it is not necessary to dispose the plated porous body 11s seamlessly over the entire length of the cylindrical MEA 7.
  • N2 As a result of disposing the plated porous body 11s intermittently at intervals, the pressure loss in the flow of gas containing ammonia can be greatly reduced.
  • a sufficient amount of gas containing ammonia discharged from the exhaust equipment of the semiconductor manufacturing apparatus can be sucked out without applying a large negative pressure, and the power cost required for sucking out the gas can be reduced.
  • a woven fabric of an alloy containing nickel (Ni) and one or more of ⁇ iron (Fe), cobalt (Co), chromium (Cr), tungsten (W) and copper (Cu) ⁇ , or the above alloy The anodic reaction can be promoted by using a metal fiber woven fabric on which a plating layer is formed (catalytic action by the woven fabric 11a).
  • the interfaces of the anode 2 / the metallic woven fabric 11a / plated porous body 11s can be fixed by reduction bonding.
  • the metal paste is sufficiently applied to the interface and the vicinity thereof to ensure reduction bonding.
  • the metal particles include nickel (Ni) having an average particle size of 100 ⁇ m or less and one or more of ⁇ iron (Fe), cobalt (Co), chromium (Cr), tungsten (W), and copper (Cu) ⁇ .
  • the anode reaction can be promoted by using alloy particles or particles formed with the alloy plating layer (catalysis by the alloy particles).
  • the plated porous body 11s of the current collector of the anode 2 is preferably a metal plated body.
  • the above-mentioned Celmet registered trademark
  • the plated porous body 11s can have a high porosity, and can be set to 0.6 or more and 0.98 or less, for example. This makes it possible to obtain very good air permeability while functioning as one element of the current collector of the anode 2 that is the inner surface side electrode.
  • the porosity is less than 0.6, the pressure loss increases, and if forced circulation by a pump or the like is performed, the energy efficiency is lowered, and bending deformation or the like occurs in the ion conductive material or the like.
  • the porosity is preferably 0.8 or more, and more preferably 0.9 or more.
  • the electrical conductivity is lowered and the current collecting function is lowered.
  • the plated porous body 11s may be brought into direct contact with the anode without using a metal woven fabric.
  • a plated porous body of an alloy containing nickel (Ni) and one or more of ⁇ iron (Fe), cobalt (Co), chromium (Cr), tungsten (W) and copper (Cu) ⁇ Alternatively, the anode reaction can be promoted by using a plated porous body on which a plated layer of the above alloy is formed (catalytic action by the plated porous body 11s).
  • the central conductive rod 11k of the anode current collector 11 In the case where the MEA 7 is cylindrical, it is preferable to use a central conductive rod 11k for the anode current collector 11. For example, a nickel central conductive rod 11k is preferably used. As a result, the following advantages can be obtained.
  • K1 The overall electrical resistance from the anode 2 to the external wiring can be reduced.
  • K2 Although the porous plated body is indispensable for collecting current on the inner surface side of the cylindrical MEA, it is known that the plated porous body is difficult to put together the end portion, but it is reduced in size by using the central conductive rod 11k. The terminal portion thus formed can be formed.
  • FIG. 7 is a diagram for explaining an electrochemical reaction at the cathode 5 when the solid electrolyte 1 is oxygen ion conductive.
  • Air particularly oxygen molecules, is introduced into the cathode 5.
  • the cathode 5 is a sintered body mainly composed of an oxygen ion conductive ceramic 52.
  • As the oxygen ion conductive ceramic 52 in this case, LSM (lanthanum strontium manganite), LSC (lanthanum strontium cobaltite), SSC (samarium strontium cobaltite), or the like may be used.
  • the cathode 5 may not use a chain.
  • the Ag particles are arranged in the form of silver paste coated wiring 12g.
  • the Ag particles have a catalytic function for greatly promoting the cathode reaction O 2 + 4e ⁇ ⁇ 2O 2 ⁇ .
  • the average diameter of the Ag particles is preferably 10 nm to 100 nm.
  • the solid electrolyte 1 is oxygen ion conductive.
  • the solid electrolyte 1 may be proton (H + ) conductive.
  • the ion conductive ceramic 52 in the cathode 5 is proton conductive. Ceramics such as barium zirconate may be used.
  • a chain 3 that is a catalyst.
  • a chain 3 having a surface oxidation treatment and an oxide layer 3s silver particles are preferably used, but may not be used.
  • the average diameter of SSZ in the cathode 5 is preferably about 0.5 ⁇ m to 50 ⁇ m.
  • the sintering conditions are maintained at 1000 ° C. to 1600 ° C. for 30 minutes to 180 minutes in an air atmosphere.
  • Silver paste coated wiring 12g of the cathode current collector 12 Conventionally, it has been usual to arrange silver particles on the cathode 5 to improve the decomposition rate of oxygen molecules by the catalytic action of the silver particles. However, in the structure in which the cathode 5 contains silver particles, the price of the cathode 5 becomes high and the economy is lowered. Instead of containing silver particles in the cathode 5, wiring of silver particles can be formed on the outer surface of the cathode 5 in the form of a silver paste coating layer.
  • the silver paste is arranged on the outer peripheral surface of the cathode 5, and for example, the belt-like wiring is arranged in a grid (bus line direction + annular direction). What is important in this silver paste is to make it highly porous after drying or sintering.
  • the porous silver paste coated wiring 12g can promote (C1) the cathode reaction and (C2) lower the electrical resistance of the cathode current collector 12.
  • Metal woven fabric 12a The woven fabric 12a of the cathode current collector 12 is made of nickel (Ni) and one or more of ⁇ iron (Fe), cobalt (Co), chromium (Cr), tungsten (W) and copper (Cu) ⁇ ,
  • Ni nickel
  • Fe cobalt
  • Cr chromium
  • W tungsten
  • Cu copper
  • a silver plating layer on a metal woven fabric, for example, a Ni fiber woven fabric, the decomposition of oxygen molecules is promoted, and as a result, the oxidation resistance is improved and the electrical resistance is reduced because it is silver. be able to.
  • Solid electrolyte As the electrolyte 1, a solid oxide, molten carbonate, phosphoric acid, solid polymer, or the like can be used, but the solid oxide is preferable because it can be downsized and easily handled. As the solid oxide 1, it is preferable to use oxygen ion conductive SSZ, YSZ, SDC, LSGM, GDC, or the like. In addition, a reaction in which protons are generated at the anode 2 using, for example, barium zirconate (BaZrO 3 ) as the solid electrolyte 1 and moved through the solid electrolyte 1 to the cathode 5 is also a desirable form of the present invention.
  • BaZrO 3 barium zirconate
  • proton conductive solid electrolyte 1 When proton conductive solid electrolyte 1 is used, for example, when ammonia is decomposed, ammonia is decomposed at anode 2 to generate protons, nitrogen molecules and electrons, and protons are transferred to cathode 5 through solid electrolyte 1. Then, it reacts with oxygen at the cathode 5 to produce water (H 2 O). Since protons are smaller than oxygen ions, the moving speed in the solid electrolyte is large. Therefore, a practical decomposition capacity can be obtained while lowering the heating temperature.
  • the thickness of the solid electrolyte 1 is also easily set to a thickness that can ensure strength.
  • the oxygen ion conductive solid electrolyte is a reaction that generates water on the inner side (anode) of the cylindrical body. Water may form water droplets at the low temperature near the outlet of the cylindrical body MEA and cause pressure loss.
  • a proton conductive solid electrolyte protons, oxygen molecules, and electrons react at the cathode (outside) to generate water. Since the outside is almost open, pressure loss is unlikely to occur even if water droplets adhere on the outlet side at low temperature.
  • FIG. 8 shows a process of sintering for each of the anode 2 and the cathode 5.
  • a commercially available cylindrical solid electrolyte 1 is purchased and prepared.
  • a solution in which the cathode constituent material is dissolved in a solvent so as to have a predetermined fluidity is prepared and applied uniformly to the outer surface of the cylindrical solid electrolyte.
  • the cathode 5 is sintered under appropriate sintering conditions (the amount is kept small in consideration of progress due to anode sintering conditions described later).
  • the process proceeds to formation of the anode 2.
  • the chain 3 of alloy particles and the ion conductive ceramics 22 are dispersed in a fluid solvent and applied uniformly to the inner surface of the cylindrical solid electrolyte 1.
  • the anode 2 is sintered under appropriate sintering conditions.
  • the number of times of sintering is one time, as shown in FIG. 8, instead of sintering each part, each part is formed in the applied state, and finally, the greatest promise of each part Sintering is performed under several conditions.
  • the manufacturing conditions can be determined by comprehensively considering the material constituting each part, the target decomposition efficiency, the manufacturing cost, and the like.
  • the manufacturing method described above is a case where a chain of alloy particles by a Ti reduction method is used.
  • the ion conductive ceramic 22 and the alloy precipitate may be directly deposited on the solid electrolyte 1 by the molten salt electrodeposition method.
  • the gas decomposing element 10 described here has a cylindrical MEA 7 and the gas to be abated passes through the cylinder, but the gas decomposing element of the present invention is not limited to the cylindrical MEA, and the shape is It can be anything.
  • a plate-like laminate in which a plurality of plate-like MEAs are laminated with a porous metal body (plated porous body) interposed therebetween may be used.
  • FIG. 9 is a diagram showing a gas decomposition system functioning as a fuel cell in Embodiment 3 of the present invention.
  • a hydrogen source that is a molecule containing hydrogen, such as ammonia, toluene, xylene, or the like is supplied from a hydrogen source and decomposed in the power generation cell 10 or the gas decomposition element 10.
  • the shape of the gas decomposing element 10 may be any shape as described above, and one gas decomposing element or a plurality of gas decomposing elements may be arranged.
  • the anode (not shown) of the gas decomposition element 10 includes the chain 3 of alloy particles described in the first and second embodiments.
  • Electricity is generated by the electrochemical reaction of gas decomposition described above. Part of this electric power is used for a heating device (heater) 41 for improving gas decomposition ability or power generation ability.
  • the surplus power is AC / DC converted or boosted by the inverter 71 to be converted into a power form suitable for the external device.
  • the fuel cell system of the present embodiment is used as a power source for electronic devices such as PCs and portable terminals, and a power source for electric devices with higher power consumption, using various hydrogen sources including organic substances such as sugars. Can.
  • the gas that is decomposed and exhausted from the power generation cell 10 or the gas decomposition element 10 is treated safely by detecting the residual component concentration by the post-processing device (built-in sensor) 75.
  • Table 1 is a table illustrating other gas decomposition reactions to which the catalyst and electrode of the present invention can be applied.
  • the gas decomposition reaction R1 is the ammonia / oxygen decomposition reaction described in the second embodiment.
  • the catalyst and electrode of the present invention can be used for any of the gas decomposition reactions R2 to R20. That is, it can be used for ammonia / water, ammonia / NOx, hydrogen / oxygen /, ammonia / carbon dioxide gas, VOC (volatile organic compounds) / oxygen, VOC / NOx, water / NOx, and the like.
  • Table 1 only illustrates some of the many electrochemical reactions.
  • the catalyst and electrode of the present invention are applicable to many other reactions.
  • Table 1 is limited to reaction examples of the solid electrolyte having oxygen ion conductivity, but the reaction example in which the solid electrolyte is proton (H + ) conductivity as described above is also a powerful embodiment of the present invention. is there. Even if the solid electrolyte is made proton conductive, the ionic species that permeate the solid electrolyte become protons.
  • the gas combinations shown in Table 1 it is possible to achieve decomposition of gas molecules as a result.
  • a large processing capacity can be obtained with a small electrochemical reaction device, and a small fuel cell, a small gas abatement device and the like can be obtained.
  • Small fuel cells are easy to use for portable terminals and PCs.
  • a small gas abatement device can be easily placed immediately after the discharge part of the manufacturing equipment, and even if the exhaust pipe is damaged due to an earthquake or the like, it is roughly removed because it has passed through the abatement device. The concentration is low and does not cause a serious disaster.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

ガス分解等を伴う電気化学反応一般において、当該電気化学反応を促進することができる、触媒、電極、燃料電池、ガス除害装置等を提供する。本発明の触媒は、電気化学反応を促進するために用いられ、ニッケル(Ni)と、{鉄(Fe)、コバルト(Co)、クロム(Cr)、タングステン(W)および銅(Cu)}の一種以上と、を含む合金粒子の連鎖体3であることを特徴とする。

Description

触媒、電極、燃料電池、ガス除害装置、並びに触媒および電極の製造方法
  本発明は、触媒、電極、燃料電池、ガス除害装置、並びに触媒および電極の製造方法に関し、より具体的には、ガス等の分解を促進することができる触媒、電極、燃料電池、ガス除害装置、並びに触媒および電極の製造方法に等に関するものである。
  アンモニアは農業や工業に不可欠の化合物であるが、ヒトには有害であるので、水中や大気中のアンモニアを分解する方法が、多く開示されてきた。たとえば、高濃度のアンモニアを含む水からアンモニアを分解除去するために、噴霧状のアンモニア水を空気流と接触させて空気中にアンモニアを分離して、次亜臭素酸溶液または硫酸と接触させる方法が提案されている(特許文献1)。また、上記と同じプロセスで空気中にアンモニアを分離して触媒により燃焼させる方法の開示もなされている(特許文献2)。また、アンモニア含有排水を触媒を用いて分解して、窒素と水とに分解する方法が提案されている(特許文献3)。
  また、半導体製造装置の廃ガスには、アンモニア、水素等が含まれるのが普通であり、アンモニアの異臭を完全に除去するには、ppmオーダーにまで除害する必要がある。この目的のために、半導体製造装置の廃ガス放出の際にスクラバーを通して、薬品を含む水に有害ガスを吸収させる方法が多く用いられてきた。一方、エネルギや薬品等の投入なしに、安価なランニングコストを得るために、リン酸型燃料電池でアンモニアを分解する、半導体製造装置の排気ガス処理の提案もされている(特許文献4)。
特開平7-31966号公報 特開平7-116650号公報 特開平11-347535号公報 特開2003-45472号公報
  上記の中和剤などの薬液を用いる方法(特許文献1)、燃焼する方法(特許文献2)、触媒を用いた熱分解反応による方法(特許文献3)などによれば、アンモニアの分解は可能である。しかし、上記の方法では、薬品や外部エネルギ(燃料)を必要とし、さらに触媒の定期的交換を要し、ランニングコストが高いという問題がある。また、装置が大掛かりとなり、たとえば既存の設備に付加的に設ける場合に配置が難しい場合も生じる。
  リン酸型燃料電池を、化合物半導体製造の排気中のアンモニアの除害に用いる装置(特許文献4)についても、除害能力の向上を阻害する、圧力損失や電気抵抗の増大などを踏み込んで解決する工夫がなされていない。電気化学反応をアンモニア等の除害に用いる場合、圧力損失の増大、高温環境下での電極/集電体間の電気抵抗の増大等を画期的な構造で抑止しない限り、実用レベルの大きな処理能力を得ることができず、ジャストアイデアに留まっている状況にある。このような電気化学反応を促進して実用化可能とするものに、高性能の触媒がある。高性能の触媒は、アンモニア等の分解の電気化学反応を促進して処理容量を増大させる。
  本発明は、ガス分解等を伴う電気化学反応一般において、当該電気化学反応を促進することができる、触媒、電極、燃料電池、ガス除害装置、並びに触媒および電極の製造方法を提供することを目的とする。
  本発明の触媒は、電気化学反応を促進するために用いられる。この触媒は、ニッケル(Ni)と、{鉄(Fe)、コバルト(Co)、クロム(Cr)、タングステン(W)および銅(Cu)}の一種以上と、を含む合金であることを特徴とする。
  上記の構成によって、ガス等の分解を促進して、小型で処理容量の大きいガス除害装置や燃料電池等を得ることができる。
  触媒は、直径0.5μm以下の合金の粒子が連続して延びた連鎖体とすることができる。
  上記の連鎖体では、合金の粒子が個々の粒子の形態を少し残しながら相互に連結してひも状に延びている。このため、連鎖体の表面は、ひもの長手方向に、粒子の凸面と連結部における凹部とが連続して、凹凸がくりかえされている。また合金の粒子の表面には微細な突起が稠密に分布している。このため、連鎖体には、表面に凸部または突起が高密度で分布している。本発明の触媒は、突起のような特異点において、その触媒作用を飛躍的に増加させる。これによって、塊状、板状などの合金の触媒作用に比べて、上記の特異点が非常に高い密度で分布しており、これによって、塊状、板状の合金に比べて格段に大きな触媒作用を得ることができる。
  ここで、連鎖体は、いわゆる金属環をつなぎあわせた「鎖(くさり)」という意味ではなく、金属粒子同士が連結して微細な凹凸と高密度の突起を形成しながら延びており、その凹凸等が鎖の凹凸のように見えるという意味で用いている。
  なお、上記の連鎖体では、合金の粒子は、ニッケルと、{鉄(Fe)、コバルト(Co)、クロム(Cr)、タングステン(W)および銅(Cu)}の一種以上と、の組成が、連鎖体にわたって、変動していてもよい。たとえば隣り合う粒子どうしの組成が同じである必要はなく、たとえば周期的に変動していてもよい。
  連鎖体は、分枝して、当該分枝した枝状の連鎖体が絡み合った樹枝状連鎖体とすることができる。
これによって、ミクロ的に気孔が確保された多孔質の触媒を得ることができる。このため、分解対象のガスを触媒に接触させやすく、比較的小さなMEA(Membrane  Electrode  Assembly)等でガス分解の処理能力を向上させることができる。
  合金に、0.5重量%以下のチタン(Ti)が含まれる構成とすることができる。
  本発明では、液相法において3価のチタン(Ti)イオンを還元剤に用いて、上記合金粒子の連鎖体を得ることができる。この場合、上記のニッケルイオン、鉄イオン等は、3価のチタンによって還元され、電子を付加されて、ニッケルイオン、鉄イオン等から合金粒子として析出する。3価のチタンは、電子を失って4価のチタンイオンになる。合金粒子は、これらのイオンを含む水溶液から析出するので、3価および4価のチタンイオンを含むが、合金粒子中では特に区別されずチタンとして存在する。
  チタンは、合金中で、触媒作用の増大に寄与する。
  触媒を、上記合金の繊維による織布、または上記合金のめっき層が形成された金属繊維の織布、とすることができる。これによって、集電体の一部を、この金属の織布に分担させて、電極と、直接、導電接続させて、電極におけるガス分解の電気化学反応を促進させることができる。織布はしなやかで、多孔質で、導電性に富むので、電極との接触において電気抵抗の小さい導電接続が可能となる。多孔質であることは、ガスが電極(電極も多孔質)と良好な接触を保つ上で必須である。
  また、触媒機能を有する上記の合金には、耐酸化性の高い合金があり、酸素と接触する空気極に用いることで、低い電気抵抗を維持できる耐久性の高い空気極の集電体を得ることができる。
  触媒を、上記合金のめっき多孔体、または上記合金のめっき層が形成されためっき多孔体とすることができる。ガスの素通りを防ぐためにめっき多孔体を配置するとき、めっき多孔体と電極とが直接、接触する構造をとる場合がある。この場合、その接触している電極での分解反応において、めっき多孔体に触媒作用を発揮させることができる。空気極と接触する耐酸化性のめっき多孔体についても、上記織布と同様の効果を得ることができる。
  触媒は、平均径100μm以下の上記合金の粒子とすることができる。これによって、たとえば上記合金の粒子を含んだ金属ペーストとして、電極と当該電極の集電体との導電接続の補助手段として用いられ、その導電接続の電気抵抗を低く保ちながら、電極でのガス分解を促進することができる。
  固体電解質とともに存在し、該固体電解質の表面を覆うように、合金の、膜または析出物の形態で位置する形態をとることができる。この合金の膜または析出物は、溶融塩電析法によって固体電解質上に形成される。このため、比較的簡単に膜-電極複合体(MEA:Membrane  Electrode  Assembly)等を形成することができる。
  合金の表面に酸素が結合されているか、または合金が酸化層で被覆されている構成をとることができる。
  酸素の共存下で、上記合金の触媒作用はさらに向上する。中身の合金部分は良導体であり、電気化学反応における電子の良好な移動経路を提供する。
  本発明の電極は、上記のいずれかの触媒と、イオン導電性セラミックスとが焼結されていることを特徴とする。この多孔質の電極を用いることで、小型で、ガス分解等の処理能力の高い電気化学反応装置を形成することができる。
  上記の電極において、さらに銀粒子を分散させることができる。銀は、酸素分子の分解を促進する触媒作用を有する。上記電極を燃料電池や除害装置の空気極に用いた場合、酸素分子の分解を促進して、電気化学反応の円滑な進行をはかることができる。
  本発明の燃料電池は、上記のいずれかの触媒、またはいずれかの電極を用いたことを特徴とする。これによって、小型で発電容量の大きい燃料電池を得ることができる。
  本発明のガス除害装置は、上記のいずれかの触媒、またはいずれかの電極を用いたことを特徴とする。これによって、小型でガス処理容量の大きいガス除害装置を得ることができる。
  本発明の触媒の製造方法は、ニッケルイオンと、(鉄イオン、コバルトイオン、クロムイオン、タングステンイオンおよび銅イオン)の一種以上と、チタンイオンと、錯体イオンとを含む水溶液を準備する工程と、水溶液にアルカリ性水溶液を添加して、常温~60℃において撹拌して、ニッケル(Ni)と、(鉄(Fe)、コバルト(Co)、クロム(Cr)、タングステン(W)および銅(Cu))の一種以上と、微量のチタン(Ti)を含む合金粒子の連鎖体を析出させる工程と、を備えることを特徴とする。
  これによって液相法によって、高性能の触媒を、比較的簡単に得ることができる。
  析出した連鎖体に表面酸化処理を施す工程を備えることができる。これによって、触媒作用をさらに高めることができる。
  本発明の電極の製造方法では、上記のいずれかの触媒の製造方法に引き続いて、イオン導電性セラミックス粉とともに、流動性のある溶媒に分散して、その触媒およびイオン導電性セラミックスを含む溶媒を、固体電解質に塗布し、焼結することを特徴とする。これによって、製造することが難しい筒状体MEA等を簡単に製造することができる。
  本発明の触媒等によれば、ガス分解等を伴う電気化学反応一般において、当該電気化学反応を促進することができ、小型で容量を大きくすることができる。このため、燃料電池やガス除害装置の小型化に有益である。
本発明の実施の形態1における合金粒子の連鎖体を示す図であり、連鎖体の走査型電子顕微鏡像である。 本発明の実施の形態1における合金粒子の連鎖体を示す図であり、図1AのA部の拡大図である。 連鎖体を含む電極を用いたアンモニア分解素子において、Ni-Fe合金粒子の組成を変えて当該組成が発電出力に及ぼす影響を示す図である。 合金粒子の連鎖体の製造方法を示す図である。 本発明の実施の形態2におけるガス分解素子を示し、電気化学反応装置であるガス分解素子、とくにアンモニア分解素子の縦断面図である。 本発明の実施の形態2におけるガス分解素子を示し、図1AにおけるIVB-IVB線に沿う断面図である。 図4のガス分解素子の電気配線系統を示す図である。 アノードの材料構成および電気化学反応を説明するための図である。 カソードの材料構成および電気化学反応を説明するための図である。 円筒MEAの製造方法を説明するための図である。 本発明の実施の形態3におけるガス分解システムを示す図である。
(実施の形態1-触媒-)
  図1Aは、本発明の実施の形態1における触媒3を示す図であり、走査型電子顕微鏡像であり、図1Bは、本発明の実施の形態1における触媒3を示す図であり、図1Aの中のA部拡大図である。図1A,Bに示すように、触媒3は、合金粒子3pが連結しており連鎖体を形成している。連鎖体3の形態上の特徴は次のとおりである。
(F1)大きく眺めると、合金粒子3pが連結されて、ひも状に長く延びている。また、分枝部3bで枝分かれして、枝同士が絡み合っている。すなわち絡み合う樹枝状でもある。
(F2)細かく見ると、合金粒子3p自体の凸部と合金粒子の連結部の凹部とで形成される凹凸が、ひも状の長手方向に沿ってある。凸凹状のひもと言ってもよい。
(F3)さらに詳細に見ると、合金粒子3pには、微細な突起3kが無数に形成されている。
  上記の連鎖体3は、そのままの状態で高性能触媒として使用できる。または、用途によっては表面酸化処理を施したほうが性能向上を得ることができ、このような用途には、表面酸化処理を行う。表面酸化層の厚みは、1nm~100nmとするのがよく、より好ましくは10nm~50nmとする。分解対象のガスによっては、表面酸化処理をして操業を開始しても、操業中に還元されて表面酸化層が消失する場合がある。
  どのような場合でも、とくに断らない限り、連鎖体3というとき、上記のすべての状態(そのまま、表面酸化層あり、表面酸化層が還元された状態)のいずれかをさす。
  上記の合金粒子3pの組成について説明する。
<Ni-Fe系>
  図2は、Ni-Fe合金粒子の組成を変えて、連鎖体3を用いて電極を形成して、アンモニアを分解したときの発電出力を測定した結果を示す図である。電極はアノードまたは燃料極である。測定に用いた装置の設置当初は、連鎖体3に表面酸化処理による酸化層が形成されていたが、稼働によってアンモニアを含む還元性ガスが導入されてアノード反応が進行する結果、その酸化層は還元されて消失している。ただし、空気極でのカソード反応で生じて固体電解質を経由してきた酸素イオンによる酸化は起こっていると考えられる。
  カソードまたは空気極の材料、アンモニア濃度等は一定にして、アノード中の触媒を構成する連鎖体3の組成のみを変えている。アンモニア濃度は、入口で、100体積%であり、流量は50ml/分である。この測定に用いたアンモニア分解装置については、実施の形態2で詳細に説明する。
  図2によれば、ニッケル(Ni)-鉄(Fe)系において、Niが40at%以上80at%以下の範囲で、発電出力は高められており、触媒作用が大きいことが分かる。FeはNiより酸素との結合力が強いために、Ni-Fe合金とすることでNi単体に比べて酸素が表面に結合しやすくなる。とくに連鎖体3では突起3kが無数にNi-Fe合金粒子3pの表面に形成されるので、突起3kの先端に酸素が付加されやすい。すなわち上記の連鎖体の特徴(F3)によって、単なる合金の作用よりも触媒作用は高められる。さらに、上記の特徴(F2)によって連鎖体3の表面積は増大するので、やはり表面積の増大分だけ、単なる合金による作用よりも触媒作用は高くなる。さらに、特徴(F1)により多孔質電極の気孔率は高くなり、やはりガス分解の促進に寄与することができる。
  上記のNi-Fe系におけるNi40at%以上80at%以下、は、上記の複合的な要因により、電気化学反応が促進される組成範囲とみることができる。
  その他の系として、Ni-Co系、Ni-Cr系、Ni-W系、Ni-Cu系、がある。これらについても、Ni-Fe系と同様に、アンモニア分解装置のアノードに用いて、発電出力を測定して触媒作用の大きい範囲を求めた。
<Ni-Co系>:
  Ni20at%以上80at%以下の広い組成にわたって、アンモニア分解を促進する触媒作用の高い範囲が認められる。
<Ni-Cr系>:
  Crが0.25at%以上50at%以下に、アンモニア分解を促進する触媒作用の高い範囲がある。
<Ni-W系>:
  Wが0.25at%以上50at%以下に、アンモニア分解を促進する触媒作用の高い範囲がある。
<Ni-Cu系>:
  Cuが0.25at%以上50at%以下に、アンモニア分解を促進する触媒作用の高い範囲がある。
  上記の範囲は、いずれも二元系での触媒作用を高める組成範囲である。組成の範囲は異なってくるが、本発明の触媒は、三元系以上の合金でもよい。
  次に、上記の連鎖体3をチタン還元法によって製造する方法を説明する。図3を参照して、まず、合金粒子の組成を構成する、ニッケルイオンと、(鉄イオン、コバルトイオン、クロムイオン、タングステンイオンおよび銅イオン)の一種以上と、チタンイオン(3価および4価)と、クエン酸イオン等の錯体イオンとを含む水溶液を準備する。次いで、アンモニア水溶液を、上記の金属イオンを含む水溶液に添加して、pHを9.0付近に調整する。そして、液温を常温~60℃の適当な温度に保持して撹拌する。このとき、3価のチタン(Ti)イオンが還元剤として働き、上記のニッケルイオン、鉄イオン等は、3価のチタンイオンによって還元され、電子を付加されて、ニッケルイオン、鉄イオン等から合金粒子として析出する。3価のチタンは、電子を失って4価のチタンイオンになる。
合金粒子は、これらのイオンを含む水溶液から析出するので、3価および4価のチタンイオンを含むが、合金粒子中では特に区別されずチタンとして存在する。
  連鎖体3が連続する機構について説明する。連鎖体3を形成するには、金属が強磁性金属であり、かつ所定のサイズ以上であることを要する。ニッケル、鉄、コバルト等は金属単体で強磁性体であり、クロム、タングステン、銅も、ニッケル合金やニッケル鉄合金に含まれて、強磁性金属となる。このため、合金粒子が強磁性体となり、強磁性体の合金粒子が相互に最初は磁気力で引き合い接触する。次いで、その接触した合金粒子に析出と成長が続いてゆき、連鎖体が形成される。サイズについての要件は、強磁性合金が磁区を形成して、相互に磁力で結合し、その結合状態のまま合金の析出・成長が生じて、全体が一体になる過程で、必要である。所定サイズ以上の合金粒子が磁力で結合した後も、合金の析出は続き、たとえば結合した合金粒子の境界のネックは、合金粒子の他の部分とともに、太く成長する。
  このとき、微細な突起3kとなる析出も、合金粒子の表面に生じる。微細な突起3kは、合金粒子3pの凸部において目立つが、結合部の凹部にも生じる。このような連鎖体3の生成メカニズムに、触媒の特異点となる微細な突起3kが生じる理由がある(上記の特徴(F3))。
  アノード2に含まれる連鎖体3の平均直径Dは、たとえば5nm以上、500nm以下の範囲とするのがよい。また、平均長さLは、分枝して絡み合う場合は測定が難しいが、絡み合わない場合、0.5μm以上、1000μm以下の範囲とするのがよい。また、上記平均長さLと平均径Dとの比は3以上とするのがよい。ただし、これら範囲外の寸法を持つものであってもよい。
  表面酸化処理は、アノード2に用いる場合は、還元されるので重要度は少し低下する。
表面酸化処理方法はつぎのとおりである。(i)気相法による熱処理酸化、(ii)電解酸化、(iii)化学酸化の3種類が好適な手法である。(i)では大気中で500~700℃にて1~30分処理するのがよい。最も簡便な方法であるが、酸化膜厚の制御が難しい。(ii)では標準水素電極基準で3V程度に電位を印加し、陽極酸化することにより表面酸化を行うが、表面積に応じ電気量により酸化膜厚を制御できる特徴がある。しかし、大面積化した場合、均一に酸化膜をつけることは難しい手法である。(iii)では硝酸などの酸化剤を溶解した溶液に1~5分程度浸漬することで表面酸化する。酸化膜厚は時間と温度、酸化剤の種類でコントロールできるが薬品の洗浄が手間となる。いずれの手法も好適であるが、(i)または(iii)がより好ましい。
  上述のように、酸化層の厚みは1nm~100nmの範囲で、より好ましくは10nm~50nmの範囲とする。ただし、この範囲外であってもかまわない。酸化皮膜が薄すぎると触媒機能が不十分となる。また、わずかな還元雰囲気でもメタライズされてしまう恐れがある。逆に酸化皮膜が厚すぎると触媒性は充分保たれるが、反面、界面での電子伝導性が損なわれ、発電性能が低下する。
  本実施の形態における合金粒子の連鎖体3は、Niと、(Fe,Co,Cr,W,Cu)の一種以上と、微量Tiとを含む合金粒子がひも状に連続したものである。その形態的な特徴は、上記(F1)~(F3)に示した。この合金粒子の連鎖体は、合金であるが故に、Ni単体粒子の連鎖体に比べて、所定の合金組成範囲で、高い触媒作用を有する。さらに、上記の特徴(F1)~(F3)も、触媒作用の向上の要因になっており、とくに無数に分布する微細な突起3kは、特異点として触媒作用の向上に寄与している。微細な突起3kは、酸素と、合金元素たとえばFeとが結合して触媒作用を高める場として機能しているはずである。
  要約すると、合金粒子の連鎖体による触媒は、Ni単体粒子の連鎖体に比べて、ガス分解の電気化学反応を促進する触媒作用が大きい。
  なお、上記の触媒は、Ti還元法によって製造した合金粒子の連鎖体の場合の説明である。本発明の触媒は、Ti還元法による合金粒子の連鎖体だけでなく、溶融塩電析法によって製造した析出物等であってもよい。
(実施の形態2-ガス分解素子-)
  図4Aは、本発明の実施の形態2における電気化学反応装置であるガス分解素子、とくにアンモニア分解素子10の縦断面図である。また、図4Bは、図4AにおけるIVB-IVB線に沿う断面図である。このアンモニア分解素子10では、円筒形の固体電解質1の内面を覆うようにアノード2が設けられ、また外面を覆うようにカソード5が設けられて、円筒形MEA7(1,2,5)が形成されている。アノード2は燃料極、またカソード5は空気極と呼ばれることがある。
  アノード2のなかに、実施の形態1で説明した触媒である合金粒子の連鎖体が含まれている。アノード2を構成する材料については、このあと詳しく説明する。
  円筒形MEAの内径は、たとえば20mm程度であるが、適用する装置に応じて、変えるのがよい。円筒形のMEA7の内筒中に、アノード集電体11が配置されている。また、カソード5の外面に巻き付くようにカソード集電体12が配置されている。
  各集電体は次のとおりである。
<アノード集電体11>:金属の織布11a/めっき多孔体11s/中心導電棒11k
  金属の織布11aが円筒MEA7の内面側のアノード2に接触して、めっき多孔体11sから中心導電棒11kへと導電する。めっき多孔体11sは、後述するアンモニアを含む気体の圧力損失を低くするために、気孔率を高くできるセルメット(登録商標:住友電気工業株式会社)を用いることができる。アノード2に合金粒子の連鎖体3を含有させてアンモニア分解能力を十分高めた上で、円筒MEAの内面側では、複数の部材で形成される集電体11の全体の電気抵抗を低くしながら、アノード側への気体導入の圧力損失を低くすることが重要なポイントである。
<カソード集電体12>:銀ペースト塗布配線12g+金属の織布12a
  金属の織布12aが、円筒MEA7の外面に接触して、外部配線へと導電する。銀ペースト塗布配線12gは、カソード5における酸素ガスを酸素イオンに分解するのを促進する触媒として作用する銀を含み、かつカソード集電体12の電気抵抗を低くすることに寄与する。カソード5に銀を含ませることも可能であるが、カソード集電体12に、所定の性状の銀ペースト塗布配線12gは、酸素分子を通しながら銀粒子がカソード5に接触して、カソード5内に含まれる銀粒子と同等の触媒作用を発現する。しかも、カソード5に含ませるより安価である。
  図5は、固体電解質が酸素イオン導電性である場合における、図4のガス分解素子10の電気配線系統を示す図である。アンモニアを含む気体は、気密性を厳格にして円筒MEA7の内筒、すなわちアノード集電体12が配置されている空間に導入される。円筒MEA7を用いた場合、内面側に気体を通すことから、めっき多孔体11sの使用は不可欠である。圧力損失を低くする点から、上述のように金属めっき体、たとえばセルメットを用いることが重要である。アンモニアを含む気体は、金属の織布11aおよび多孔質金属11sの空隙を通りながら、アノード2と接触して、下記のアンモニア分解反応をする。酸素イオンO2-は、カソードでの酸素ガス分解反応によって生じ、固体電解質1を通ってアノード2に到達したものである。すなわち陰イオンである酸素イオンが固体電解質を移動する場合の電気化学反応である。
(アノード反応):2NH+3O2-→N+3HO+6e
  より詳しくは、一部のアンモニアが、2NH→N+3Hの反応を生じ、この3Hが酸素イオン3O2-と反応して3HOを生成する。このアンモニア分解において、合金粒子の連鎖体3が分解を促進する。このため、このあと説明する出口濃度を所定レベル以下にしながら、少なくとも、アンモニア分解過程が、全体の電気化学反応のネック(律速過程)にならないようにできる。
  カソード5には空気、とくに酸素ガスが、スペースSを通るように導入され、カソード5において酸素分子から分解した酸素イオンをアノード2に向かって固体電解質1へと送り出す。カソード反応はつぎのとおりである。
(カソード反応):O+4e→2O2-
  上記の電気化学反応の結果、電力が発生し、アノード2とカソード5との間に電位差を生じ、カソード集電体12からアノード集電体11へと電流Iが流れる。カソード集電体12とアノード集電体11との間に負荷、たとえばこのガス分解素子10を加熱するためのヒータ41を接続しておけば、そのための電力を供給することができる。ヒータ41への上記電力の供給は、部分的であってもよく、むしろ大部分の場合において、自家発電の供給量はヒータ全体に要する電力の半分以下であることが多い。
  実施の形態1では、ヒータは外部の電力で運転し、図5の負荷に出力測定装置を装入して、自家発電の出力を測定した。出力測定装置は、アノード集電体11の中心導電棒11kからの外部配線11eと、カソード集電体の金属の織布12aからの外部配線12eとに接続される。この出力測定装置を用いた測定によって、図2に示す、Ni-Fe系における触媒作用が向上する組成範囲を決めることができた。
  上記のガス分解素子では、アノード2におけるアンモニアの分解速度が重要である。アノード2におけるアンモニアの分解速度が小さいと、アンモニアの多くは分解されないまま出口を出ることになり、数ppm以下という出口濃度を満たすことは不可能となる。出口濃度を満たすために、アンモニアを含む気体の流れ速度を小さくすることは、実用レベルの処理能力を得ることができず、許容されない。アノード2におけるアンモニア分解速度を高めるために、合金粒子の連鎖体3を用いることが重要になる。
<アノード>
  図6は、固体電解質1が酸素イオン導電性の場合における、アノード2の材料および電気化学反応を説明するための図である。アノード2には、アンモニアを含む気体が導入され、気孔2hを通って流れる。アノード2は、触媒、すなわち表面酸化されて酸化層を有する合金粒子の連鎖体3と、酸素イオン導電性のセラミックス22とを主成分とする焼結体である。ここでは、Ni-Fe系の合金粒子の連鎖体3を用いている。組成としては、たとえばNi60at%程度とするのがよい。
  さらにTiを2~10000ppm程度の微量含むのがよい。Tiを微量含むことでさらに触媒作用を高めることができる。さらに、このNiを酸化させて形成されたニッケル酸化物は、これら金属単体の促進作用をさらに高めることができる。ただし、アンモニアの分解反応(アノード反応)は還元反応なので、使用前の製品には焼結処理等で生じた酸化層がNi粒連鎖体に形成されていたのが、使用によってアノード中の金属粒連鎖体も還元されて酸化層が消失することになる。しかし、Ni-Fe合金自体の触媒作用は確実にあり、さらに、酸化層がないことをカバーするために、TiをNi-Fe系に含有させて触媒作用の低下を補うことができる。
  酸素イオン導電性のセラミックス22としては、SSZ(スカンジウム安定化ジルコニア)、YSZ(イットリウム安定化ジルコニア)、SDC(サマリウム安定化セリア)、LSGM(ランタンガレート)、GDC(ガドリア安定化セリア)などを用いることができる。
  上記の触媒作用に加えて、アノードにおいて、酸素イオンを分解反応に参加させている。すなわち、分解を電気化学反応のなかで行う。上記のアノード反応2NH+3O2-→N+3HO+6eでは、酸素イオンの寄与があり、アンモニアの分解速度を大きく向上させる。(3)アノード反応では、自由な電子eが生じる。電子eがアノード2に滞留すると、アノード反応の進行は、妨げられる。連鎖体3は、ひも状に細長く、酸化層3sで被覆された中身3aは良導体の金属(Ni-Fe合金)である。電子eは、ひも状の連鎖体の長手方向に、スムースに流れる。このため、電子eがアノード2に滞留することはなく、連鎖体3の中身3aを通って、外に流れる。連鎖体3により、電子eの通りが、非常に良くなる。要約すると、本発明の実施の形態における特徴は、アノードにおける次の(e1)、(e2)および(e3)にある。
(e1)合金粒子の連鎖体3による分解反応の促進(高い触媒機能:酸化層3sも触媒作用の向上に寄与)
  (e2)酸素イオンによる分解促進(電気化学反応の中での分解促進)
(e3)連鎖体3のひも状良導体3mによる電子の導通性確保(高い電子伝導性)
  上記の(e1)、(e2)および(e3)によって、アノード反応は非常に大きく促進される。
  温度を上げて、触媒3に分解対象ガスを接触させるだけで、その分解対象ガスの分解は進行する。しかし、上記のように、燃料電池を構成する素子において、カソード5からイオン導電性の固体電解質1を経て、酸素イオンを反応に関与させ、その結果、生じる電子を外に導通させることで、分解反応速度は飛躍的に向上する。上記の(e1)、(e2)および(e3)の機能、およびその機能をもたらす構成をもつことが、本発明の大きな特徴である。
  なお、上記は固体電解質1が酸素イオン導電性の場合の説明であるが、固体電解質1はプロトン(H)導電性でもよく、その場合、アノード2におけるイオン導電性セラミックス22はプロトン導電性のセラミックス、たとえばバリウムジルコネート等を用いる。
  アノード2の酸素イオン導電性の金属酸化物(セラミックス)をSSZとする場合、SSZの原料粉末の平均径は0.5μm~50μm程度とする。表面酸化された金属粒連鎖体21と、SSZ22との配合比は、mol比で0.1~10の範囲とする。焼結方法は、たとえば大気雰囲気中で、温度1000℃~1600℃の範囲に、30分~180分間保持することで行う。製造方法については、とくに円筒MEA7の製造法について、このあと説明する。
<アノード集電体11>
(i)アノード集電体の金属の織布11a:
  アノード集電体11における金属の織布11aは、アノード集電体11の電気抵抗を低下させることを通じて、ガス流れの圧力損失を小さくする点で、重要な要素である。
  上記のように、めっき多孔体11sに金属めっき体であるセルメット(登録商標)を用いても、金属の織布を用いない場合、接触抵抗は比較的大きく、ガス分解素子10のカソード集電体12とアノード集電体11との間の電気抵抗は、たとえば4~7Ω程度あった。これに、上記の金属の織布11aを挿入することによって、1Ω程度以下に下げることができる。すなわち1/4以下程度にすることができる。
  アノード集電体11に金属の織布11aを用いた場合、次のことが判明した。
(N1)金属の織布11aを配置することで、めっき多孔体11sは、断続的に円筒MEAの内側に配置すればよい。すなわち、めっき多孔体11sを、円筒MEA7の全長さにわたって切れ目なく配置する必要はない。
(N2)そのめっき多孔体11sを、間隔をおいて断続的に配置した結果、アンモニアを含む気体の流れにおける圧損を大きく下げることができる。この結果、たとえば半導体製造装置の排気設備から排出されるアンモニアを含んだ気体を、大きな負圧をかけずに十分な量吸い出すことができ、上記気体の吸い出しに要する電力代を下げることができる。
  また、ニッケル(Ni)と、{鉄(Fe)、コバルト(Co)、クロム(Cr)、タングステン(W)および銅(Cu)}の一種以上と、を含む合金の織布、または上記の合金のめっき層を形成した金属繊維の織布を用いることで、上記のアノード反応を促進することができる(織布11aによる触媒作用)。
  アノード2とめっき多孔体11sとの間に上記金属の織布を介在させる場合、アノード2/金属の織布11a/めっき多孔体11s、の各界面を還元接合で固定することができる。この場合、金属ペーストを界面およびその付近に十分塗布して還元接合を確実なものとするのがよい。この金属粒子を、平均粒100μm以下の、ニッケル(Ni)と、{鉄(Fe)、コバルト(Co)、クロム(Cr)、タングステン(W)および銅(Cu)}の一種以上と、を含む合金の粒子、または上記の合金のめっき層を形成した粒子を用いることで、上記のアノード反応を促進することができる(合金の粒子による触媒作用)。
(ii)アノード集電体11のめっき多孔体11s
  圧力損失を低くしながら導電性を確保するために、アノード2の集電材のめっき多孔体11sは金属めっき体とするのがよい。めっき多孔体11には、上述のセルメット(登録商標)を用いるのがよい。めっき多孔体11sは、気孔率を大きくとることができ、たとえば0.6以上0.98以下とすることができる。これによって、内面側電極であるアノード2の集電体の一要素として機能しながら、非常に良好な通気性を得ることができる。
気孔率が0.6未満では、圧力損失が大きくなり、ポンプ等による強制循環をするとエネルギ効率が低下し、またイオン導電材等に曲げ変形等を生じて好ましくない。圧力損失を低減し、イオン導電材の損傷を防止するために、気孔率は、0.8以上とするのがよく、更に好ましい範囲として0.9以上とする。一方、気孔率が0.98を超えると電気伝導性が低下して集電機能が低下する。
  また、本実施の形態では採用していないが、金属の織布を用いないで、めっき多孔体11sを、直接、アノードに接触させる場合がある。そのような場合、ニッケル(Ni)と、{鉄(Fe)、コバルト(Co)、クロム(Cr)、タングステン(W)および銅(Cu)}の一種以上と、を含む合金のめっき多孔体、または上記の合金のめっき層を形成しためっき多孔体を用いることで、上記のアノード反応を促進することができる(めっき多孔体11sによる触媒作用)。
(iii)アノード集電体11の中心導電棒11k
  MEA7が円筒形の場合、アノード集電体11に中心導電棒11kを用いるのがよい。
たとえばニッケルの中心導電棒11kを用いるのがよい。これによって、次の利点を得ることができる。
(K1)アノード2から外部配線に至る間の全体の電気抵抗を低くすることができる。
(K2)円筒MEAの内面側の集電にはめっき多孔体は不可欠であるが、このめっき多孔体は端の部分をまとめにくいことで知られるが、中心導電棒11kを用いることで、小型化された端子部を形成することができる。
(K3)ガス分解素子10を能率よく稼働させるには600℃~1000℃に加熱する必要がある。加熱のためのヒータ41は、空気通路の外側に配置するしかない。中心導電棒11kを用いれば、ヒータ41側の外側から遠い位置にあり、しかも容易に軸方向に延ばすことができる。このため、比較的、温度が低い箇所まで延ばした位置で、気密性を高くしながら、外部配線との導電接続、および気体搬送路との接続、を行うことができる。その結果、非常に特殊な樹脂を用いることなく、通常のレベルの耐熱性かつ耐食性の樹脂を用いることができ、経済性を高め、かつ耐久性を向上させることができる。
<カソード>
  図7は、固体電解質1が酸素イオン導電性の場合における、カソード5における電気化学反応を説明するための図である。カソード5には、空気とくに酸素分子が導入される。
カソード5は、酸素イオン導電性のセラミックス52とを主成分とする焼結体とする。この場合の酸素イオン導電性のセラミックス52として、LSM(ランタンストロンチウムマンガナイト)、LSC(ランタンストロンチウムコバルタイト)、SSC(サマリウムストロンチウムコバルタイト)などを用いるのがよい。酸素イオン導電性の固体電解質1を用いる場合、カソード5には、連鎖体は用いなくてもよい。
  本実施の形態におけるカソード5では、Ag粒子は銀ペースト塗布配線12gの形態で配置される。この中で、Ag粒子はカソード反応O+4e→2O2-を大きく促進させる触媒機能を有する。この結果、カソード反応は非常に大きい速度で進行することができる。Ag粒子の平均径は、10nm~100nmとするのがよい。
  なお、上記は固体電解質1が酸素イオン導電性の場合の説明であるが、固体電解質1はプロトン(H)導電性でもよく、その場合、カソード5におけるイオン導電性セラミックス52はプロトン導電性のセラミックス、たとえばバリウムジルコネート等を用いるのがよい。さらに、触媒である連鎖体3を用いるのがよい。とくに表面酸化処理が行われて酸化層3sを有する連鎖体3を用いるのがよい。この場合、銀粒子は用いることが好ましいが、用いなくてもよい。
  カソード5におけるSSZの平均径は0.5μm~50μm程度のものを用いるのがよい。焼結条件は、大気雰囲気で、1000℃~1600℃に、30分~180分間程度保持する。
<カソード集電体>
(i)カソード集電体12の銀ペースト塗布配線12g:
  従来、カソード5には銀粒子を配置して、銀粒子の触媒作用によって酸素分子の分解速度を向上させるのが普通であった。しかし、カソード5に銀粒子を含ませる構造では、カソード5の価格が高くなり、経済性を低下させる。カソード5に銀粒子を含有させる代わりに、カソード5外面において、銀ペースト塗布層の形態で銀粒子の配線を形成することができる。銀ペースト塗布配線12gは、銀ペーストをカソード5の外周面に、たとえば帯状の配線を格子状(母線方向+環状方向)に配置する。この銀ペーストにおいて重要なのは、乾燥後または焼結後に、気孔率の高い多孔質にすることである。多孔質になる銀ペースト塗布配線12gによって、(C1)カソード反応を促進して、かつ(C2)カソード集電体12の電気抵抗を下げることができる。
(ii)金属の織布12a:
  カソード集電体12のうちの織布12aを、ニッケル(Ni)と、{鉄(Fe)、コバルト(Co)、クロム(Cr)、タングステン(W)および銅(Cu)}の一種以上と、を含む合金の織布、または上記の合金のめっき層を形成した金属繊維の織布を用いることで、耐酸化性を向上させて、低い電気抵抗を長く維持できる耐久性の高いものとすることができる。また、合金によるが、上記のカソード反応を促進することができる。
  さらに金属の織布たとえばNi繊維の織布に銀めっき層を形成することで、酸素分子の分解を促進し、その結果、耐酸化性を向上させ、また銀であることから電気抵抗を低減することができる。
<固体電解質>
  電解質1は、固体酸化物、溶融炭酸塩、リン酸、固体高分子などを用いることができるが、固体酸化物は小型化でき、取り扱いが容易なので好ましい。固体酸化物1としては、酸素イオン導電性の、SSZ、YSZ、SDC、LSGM、GDCなどを用いるのがよい。
  また、固体電解質1に、たとえばバリウムジルコネート(BaZrO)を用いてプロトンをアノード2で発生させて固体電解質1中をカソード5へと移動させる反応も、本発明の望ましい一つの形態である。プロトン導電性の固体電解質1を用いると、たとえばアンモニアを分解する場合、アノード2でアンモニアを分解してプロトン、窒素分子および電子を生じさせて、プロトンを固体電解質1を経てカソード5へと移動させ、カソード5において酸素と反応して水(HO)を生じさせる。プロトンは酸素イオンと比べて小さいので固体電解質中の移動速度は大きい。このため加熱温度を低くしながら実用レベルの分解容量を得ることができる。固体電解質1の厚みも、強度を確保できる厚みとしやすい。
  また、たとえば筒状体MEAを用いてアンモニア分解を行うとき、内側をアノードとした場合、酸素イオン導電性の固体電解質では、水を筒状体の内側(アノード)で生成する反応となる。水は、筒状体MEAの出口付近の温度が低い部分では水滴を形成して圧力損失の原因となる場合がある。これに対して、プロトン導電性の固体電解質を用いると、プロトンと酸素分子と電子とが、カソード(外側)で反応して水を生成する。外側はほぼ開放されているので、出口側の温度の低い箇所で水滴となって付着しても圧力損失を生じにくい。
<円筒MEAの製造方法>
  図8により、円筒形MEA7の製造方法の概要について説明する。図8には、アノード2、およびカソード5ごとに、焼結を行う工程を示す。まず、市販されている円筒形固体電解質1を購入して準備する。次いで、カソード5を形成する場合は、所定の流動性を持つようにカソード構成材料を溶媒に溶かした溶液を調整して、円筒形固体電解質の外面に均等になるように塗布する。次いで、カソード5に適切な焼結条件で焼結する(後述するアノードの焼結条件による進行を見込んで少なめにしておく)。このあとアノード2の形成に移る。アノード2の場合も流動性を有する溶媒に、合金粒子の連鎖体3およびイオン導電性セラミックス22を分散して、円筒形固体電解質1の内面に均等に塗布する。次いで、アノード2に適切な焼結条件で焼結する。
  図8に示す製造方法の他に、多くのバリエーションがある。焼結回数を1回ですます場合で、図8に示すように、各部分ごとに焼結を行うのではなく、塗布状態のまま、各部分を形成して、最後に、各部分の最大公約数的な条件で焼結を行う。この他、多くのバリエーションがあり、各部分を構成する材料と、目標とする分解効率と、製造経費等を総合的に考えて製造条件を決めることができる。
  上記の製造方法は、Ti還元法による合金粒子の連鎖体を用いる場合である。この他に、固体電解質1に、アノード2の場合、直接、イオン導電性セラミックス22および合金析出物を、溶融塩電析法で析出させてもよい。
  なお、ここで説明したガス分解素子10は、筒状のMEA7を有し、筒内を除害対象のガスが通るが、本発明のガス分解素子は筒状のMEAに限定されず、形状はどのようなものでもよい。たとえば、板状のMEAが間に多孔質金属体(めっき多孔体)を挟んで複数、積層された板状積層体であってもよい。
(実施の形態3)
  図9は、本発明の実施の形態3における、燃料電池として機能するガス分解システムを示す図である。この燃料電池システム50では、水素源から、アンモニア、トルエン、キシレン等の、水素を含む分子である水素源を供給され、発電セル10またはガス分解素子10において分解する。ガス分解素子10の形状は、上述のようにどのような形状であってもよく、また1つのガス分解素子の配置でも、複数が配置されていてもよい。ガス分解素子10の、図示しないアノードには実施の形態1および2で説明した合金粒子の連鎖体3が含まれている。上記のガス分解の電気化学反応によって、電力を生じる。この電力の一部は、ガス分解能力または発電能力を向上させるための加熱装置(ヒータ)41に用いられる。余剰の電力は、インバータ71によって交直変換や、昇圧などされて、外部装置に適合する電力形態に変換される。これによって、本実施の形態の燃料電池システムは、糖類などの有機物を含む多様な水素源を用いて、PCや携帯端末等の電子機器の電源、より電力消費の多い電気機器の電源に利用されることができる。
  分解されて、発電セル10またはガス分解素子10から排気される気体は、後処理装置(センサー内蔵)75によって残留成分濃度を検出して、安全なように処理する。この場合、残留成分濃度によっては元に戻して循環させることができる。
  燃料電池システム50では、ガス除害を目的とする場合のように、ガス成分の濃度を極端に低くする必要がなく、高いガス成分濃度において分解の電気化学反応を行うことで、高い発電能力を得ることができる。
(その他のガス分解素子)
  表1は、本発明の触媒および電極を適用できる他のガス分解反応を例示する表である。
ガス分解反応R1は、実施の形態2で説明したアンモニア/酸素の分解反応である。その他、ガス分解反応R2~R20のどの反応に対しても本発明の触媒および電極は用いることができる。すなわち、アンモニア/水、アンモニア/NOx、水素/酸素/、アンモニア/炭酸ガス、VOC(揮発性有機化合物:volatile  organic  compounds)/酸素、VOC/NOx、水/NOx、などに用いることができる。
Figure JPOXMLDOC01-appb-T000001
  表1は、多くの電気化学反応の一部を例示したにすぎない。本発明の触媒および電極は、その他の多くの反応に適用可能である。たとえば表1は酸素イオン導電性の固体電解質の反応例に限定しているが、上述のように固体電解質をプロトン(H)導電性とする反応例も本発明の有力な実施の形態例である。固体電解質をプロトン導電性としても、固体電解質を透過するイオン種はプロトンになるが表1に示すガスの組み合わせにおいて、結果的にガス分子の分解を実現することは可能である。たとえば(R1)の反応において、プロトン導電性の固体電解質の場合、アンモニア(NH)はアノードで窒素分子、プロトン、および電子に分解し、プロトンは固体電解質中をカソードへと移動する。電子は外部回路をカソードへと移動する。そしてカソードにおいて酸素分子と、電子と、プロトンとが水分子を生成する。結果的にアンモニアが酸素分子と組み合わされて分解されるという点において、固体電解質が酸素イオンである場合と同じである。
  上記の電気化学反応はガス除害を目的としたガス分解反応である。しかし、ガス除害を主目的としないガス分解素子もあり、本発明のガス分解素子は、そのような、電気化学反応装置、たとえば燃料電池等にも用いることができる。
  上記において、本発明の実施の形態について説明を行ったが、上記に開示された本発明の実施の形態は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
  本発明の触媒、電極等によれば、小型の電気化学反応装置で、大きな処理能力を得ることができ、小型の燃料電池、小型のガス除害装置等を得ることができる。小型の燃料電池は、携帯端末やPCなどに用いやすい。また小型のガス除害装置は、製造装置の排出部の直後に配置することが容易であり、地震等による排気管の損傷があっても、当該除害装置を通過後なので、大まかに除かれており低濃度となっており、重大災害にはならない。
  1  固体電解質、2  アノード、2h  アノード中の気孔、3  合金粒子の連鎖体(触媒)、3b  分枝部、3k  微細な突起、3m  合金部(酸化層の内側)、3p  合金粒子、5  カソード、10  ガス分解素子、11  アノード集電体、11a  金属の織布、11e  アノード外部配線、11g  Niペースト層、11k  中心導電棒、11s  めっき多孔体(金属めっき体)、12  カソード集電体、12a  金属の織布、12e  カソード外部配線、12g  銀ペースト塗布配線、22  アノードのイオン導電性セラミックス、71  インバータ、75  後処理装置、S  空気スペース。

Claims (16)

  1.   電気化学反応を促進するために用いられる触媒であって、
      ニッケル(Ni)と、{鉄(Fe)、コバルト(Co)、クロム(Cr)、タングステン(W)および銅(Cu)}の一種以上と、を含む合金であることを特徴とする、触媒。
  2.   前記触媒は、直径0.5μm以下の前記合金の粒子が連結して延びた連鎖体であることを特徴とする、請求項1に記載の触媒。
  3.   前記連鎖体は、分枝して、当該分枝した枝状の連鎖体が絡み合った樹枝状連鎖体であることを特徴とする、請求項2に記載の触媒。
  4.   前記合金に、0.5重量%以下のチタン(Ti)が含まれることを特徴とする、請求項1~3のいずれか1項に記載の触媒。
  5.   前記触媒は、前記合金の繊維による織布、または前記合金のめっき層が形成された金属繊維の織布、であることを特徴とする、請求項1に記載の触媒。
  6.   前記触媒は、前記合金のめっき多孔体、または前記合金のめっき層が形成されためっき多孔体であることを特徴とする、請求項1に記載の触媒。
  7.   前記触媒は、平均径100μm以下の前記合金の粒子であることを特徴とする、請求項1に記載の触媒。
  8.   固体電解質とともに存在し、該固体電解質の表面を覆うように、前記合金の、膜または析出物の形態で位置することを特徴とする、請求項1に記載の触媒。
  9.   前記合金の表面に酸素が結合されているか、または前記合金が酸化層で被覆されている、ことを特徴とする、請求項1~8のいずれか1項に記載の触媒。
  10.   請求項1~9のいずれか1項に記載の触媒と、イオン導電性セラミックスとが焼結されていることを特徴とする、電極。
  11.   さらに銀粒子が分散していることを特徴とする、請求項10に記載の電極。
  12.   請求項1~9のいずれか1項に記載の触媒、または請求項10~11のいずれか1項に記載の電極を用いたことを特徴とする、燃料電池。
  13.   請求項1~9のいずれか1項に記載の触媒、または請求項10~11のいずれか1項に記載の電極を用いたことを特徴とする、ガス除害装置。
  14.   ニッケルイオンと、(鉄イオン、コバルトイオン、クロムイオン、タングステンイオンおよび銅イオン)の一種以上と、チタンイオンと、錯体イオンとを含む水溶液を準備する工程と、
      前記水溶液にアルカリ性水溶液を添加して、常温~60℃において撹拌して、ニッケル(Ni)と、(鉄(Fe)、コバルト(Co)、クロム(Cr)、タングステン(W)および銅(Cu))の一種以上と、微量のチタン(Ti)を含む合金粒子の連鎖体を析出させる工程と、を備えることを特徴とする、触媒の製造方法。
  15.   前記連鎖体に表面酸化処理を施す工程を備えることを特徴とする、請求項14に記載の触媒の製造方法。
  16.   請求項14または15に記載の触媒の製造方法に引き続いて、イオン導電性セラミックス粉とともに、流動性のある溶媒に分散して、前記触媒およびイオン導電性セラミックスを含む溶媒を、固体電解質に塗布し、焼結することを特徴とする、電極の製造方法。
PCT/JP2011/064647 2010-07-01 2011-06-27 触媒、電極、燃料電池、ガス除害装置、並びに触媒および電極の製造方法 WO2012002310A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800317834A CN102958609A (zh) 2010-07-01 2011-06-27 催化剂、电极、燃料电池、气体毒害消除装置、以及制造催化剂和电极的方法
KR1020127033836A KR101459406B1 (ko) 2010-07-01 2011-06-27 촉매, 전극, 연료 전지, 가스 제해 장치, 그리고 촉매 및 전극의 제조 방법
US13/807,394 US20130101920A1 (en) 2010-07-01 2012-06-27 Catalyst, electrode, fuel cell, gas detoxification apparatus, and methods for producing catalyst and electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010151382A JP5648344B2 (ja) 2010-07-01 2010-07-01 触媒、電極、燃料電池、ガス除害装置、並びに触媒および電極の製造方法
JP2010-151382 2010-07-01

Publications (1)

Publication Number Publication Date
WO2012002310A1 true WO2012002310A1 (ja) 2012-01-05

Family

ID=45402023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064647 WO2012002310A1 (ja) 2010-07-01 2011-06-27 触媒、電極、燃料電池、ガス除害装置、並びに触媒および電極の製造方法

Country Status (5)

Country Link
US (1) US20130101920A1 (ja)
JP (1) JP5648344B2 (ja)
KR (1) KR101459406B1 (ja)
CN (1) CN102958609A (ja)
WO (1) WO2012002310A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251341A1 (ja) * 2020-06-11 2021-12-16 国立大学法人山梨大学 電極触媒、アニオン交換膜型電気化学セル

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5683883B2 (ja) * 2010-09-13 2015-03-11 古河電気工業株式会社 カソード用電極およびカソード用電極の製造方法
JP2013111526A (ja) * 2011-11-29 2013-06-10 Daihatsu Motor Co Ltd 排ガス浄化用触媒
JP2013111525A (ja) * 2011-11-29 2013-06-10 Daihatsu Motor Co Ltd 排ガス浄化用触媒
JP6194183B2 (ja) * 2013-03-28 2017-09-06 日立造船株式会社 アルカリ形燃料電池用アノード電極触媒
CN103567454B (zh) * 2013-10-28 2015-07-08 南昌航空大学 一种利用高速混合-内核爆破制备Ni-BaO-GDC纳米SOFC阳极的方法
US9433932B2 (en) * 2014-08-29 2016-09-06 National Cheng Kung University Hydrogenation catalyst and method of manufacturing the same
CN110380066A (zh) * 2019-06-24 2019-10-25 福州大学化肥催化剂国家工程研究中心 一种氨分解制氢催化剂及其制备方法与应用
CN112517009B (zh) * 2020-11-03 2023-05-30 佛山科学技术学院 一种改性多孔铜镍合金板及其制备方法和应用
CN113149092B (zh) * 2021-03-10 2022-07-29 南京工业大学 一种b位掺杂的质子导体燃料电池的电解质材料、制备方法以及直接氨燃料电池中的应用
KR102609729B1 (ko) * 2021-09-29 2023-12-04 포항공과대학교 산학협력단 텅스텐 용해를 이용한 OER용 다공성 Ni 촉매의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022997B1 (ja) * 1969-06-07 1975-08-04
JP2004332047A (ja) * 2003-05-08 2004-11-25 Sumitomo Electric Ind Ltd 連鎖状金属粉末とその製造方法、及びそれを用いた導電性付与材
JP2009506500A (ja) * 2005-08-25 2009-02-12 本田技研工業株式会社 白金、タングステン、およびニッケルまたはジルコニウムを含有する電極触媒
JP2009543674A (ja) * 2006-07-07 2009-12-10 クアンタムスフィアー インコーポレイテッド 電気化学触媒
JP2010201387A (ja) * 2009-03-05 2010-09-16 Sumitomo Electric Ind Ltd ガス分解素子および発電装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2363783Y (zh) * 1999-01-07 2000-02-16 马建炜 机动车尾气净化催化剂的金属载体
JP2002177794A (ja) * 2000-09-29 2002-06-25 Denso Corp セラミック触媒体およびセラミック担体
EP2143447A1 (en) * 2008-07-11 2010-01-13 Universität Konstanz Bioconjugates comprising Aß-autoantibody-specific epitopes for active immunotherapy and diagnosis of Alzheimer's disease
JP5691144B2 (ja) * 2008-09-24 2015-04-01 住友電気工業株式会社 ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置
US20110177407A1 (en) * 2008-09-24 2011-07-21 Sumitomo Electric Industries, Ltd. Electrochemical reactor, method for manufacturing the electrochemical reactor, gas decomposing element, ammonia decomposing element, and power generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022997B1 (ja) * 1969-06-07 1975-08-04
JP2004332047A (ja) * 2003-05-08 2004-11-25 Sumitomo Electric Ind Ltd 連鎖状金属粉末とその製造方法、及びそれを用いた導電性付与材
JP2009506500A (ja) * 2005-08-25 2009-02-12 本田技研工業株式会社 白金、タングステン、およびニッケルまたはジルコニウムを含有する電極触媒
JP2009543674A (ja) * 2006-07-07 2009-12-10 クアンタムスフィアー インコーポレイテッド 電気化学触媒
JP2010201387A (ja) * 2009-03-05 2010-09-16 Sumitomo Electric Ind Ltd ガス分解素子および発電装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251341A1 (ja) * 2020-06-11 2021-12-16 国立大学法人山梨大学 電極触媒、アニオン交換膜型電気化学セル

Also Published As

Publication number Publication date
KR101459406B1 (ko) 2014-11-07
US20130101920A1 (en) 2013-04-25
CN102958609A (zh) 2013-03-06
JP2012011338A (ja) 2012-01-19
KR20130044241A (ko) 2013-05-02
JP5648344B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5648344B2 (ja) 触媒、電極、燃料電池、ガス除害装置、並びに触媒および電極の製造方法
JP5691144B2 (ja) ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置
WO2010035691A1 (ja) 電気化学反応装置、その製造方法、ガス分解素子、アンモニア分解素子および発電装置
JP5568865B2 (ja) ガス分解素子
WO2011155423A1 (ja) ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置
JP5617572B2 (ja) ガス分解素子、ガス分解素子の製造方法及び発電装置
US9136552B2 (en) Gas decomposition component, ammonia decomposition component, power generation apparatus, electrochemical reaction apparatus, and method for producing gas decomposition component
JP2010159472A (ja) アンモニア分解素子
JP2010201387A (ja) ガス分解素子および発電装置
JP5640502B2 (ja) 電極接続構造および電極接続構造の製造方法
JP5569157B2 (ja) ガス分解素子
KR20130021415A (ko) 막 전극 복합체, 연료 전지, 가스 제해 장치 및, 막 전극 복합체의 제조 방법
JP2012016693A (ja) ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置
JP5521329B2 (ja) NOx分解素子
JP5742075B2 (ja) ガス分解素子、発電装置
JP2010174333A (ja) アンモニア分解素子および発電装置
JP5655508B2 (ja) ガス分解素子、発電装置及びガス分解方法
JP5569161B2 (ja) ガス分解素子およびその製造方法
JP2011255285A (ja) ガス分解システム
JP5621332B2 (ja) ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置
JP5787269B2 (ja) ガス分解素子、発電装置及びガス分解方法
JP2011255284A (ja) ガス分解素子、アンモニア分解素子、発電装置および電気化学反応装置
JP2012028088A (ja) 膜電極複合体、燃料電池、ガス除害装置、および膜電極複合体の製造方法
JP2010214240A (ja) ガス分解素子およびその製造方法
JP2010247033A (ja) ガス除害装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031783.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127033836

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13807394

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800774

Country of ref document: EP

Kind code of ref document: A1