WO2011158659A1 - 金属ナノ粒子ペースト、並びに金属ナノ粒子ペーストを用いた電子部品接合体、ledモジュール及びプリント配線板の回路形成方法 - Google Patents

金属ナノ粒子ペースト、並びに金属ナノ粒子ペーストを用いた電子部品接合体、ledモジュール及びプリント配線板の回路形成方法 Download PDF

Info

Publication number
WO2011158659A1
WO2011158659A1 PCT/JP2011/062687 JP2011062687W WO2011158659A1 WO 2011158659 A1 WO2011158659 A1 WO 2011158659A1 JP 2011062687 W JP2011062687 W JP 2011062687W WO 2011158659 A1 WO2011158659 A1 WO 2011158659A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal nanoparticle
nanoparticle paste
group
metal nanoparticles
Prior art date
Application number
PCT/JP2011/062687
Other languages
English (en)
French (fr)
Inventor
中谷 功
正人 廣瀬
啓太 原嶋
聡 栗田
清田 達也
Original Assignee
独立行政法人物質・材料研究機構
株式会社タムラ製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構, 株式会社タムラ製作所 filed Critical 独立行政法人物質・材料研究機構
Priority to KR1020127032833A priority Critical patent/KR101867978B1/ko
Priority to US13/704,581 priority patent/US20130265735A1/en
Priority to CN201180029624.0A priority patent/CN103003891B/zh
Publication of WO2011158659A1 publication Critical patent/WO2011158659A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3485Applying solder paste, slurry or powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/2949Coating material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0425Solder powder or solder coated metal powder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/122Organic non-polymeric compounds, e.g. oil, wax or thiol
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components

Definitions

  • the present invention relates to a metal nanoparticle paste containing metal nanoparticles having a surface coated with a protective film and carboxylic acids, and more specifically, a substrate by heat treatment at a very low temperature by printing such as screen printing or inkjet printing.
  • the present invention relates to a metal nanoparticle paste capable of forming a wiring pattern thereon and bonding an electronic component on a substrate by a very low temperature heat treatment.
  • silver paste that can be electrically joined at a relatively low temperature has been used for mounting electronic components and modules that are unsuitable for soldering due to its heat resistance. Increases in resistance, generation of Kirkendall voids, costs, and the like are problems. On the other hand, in order to prevent an increase in conduction resistance, low melting point metals, conductive fillers, and metal nanoparticles are added to the silver paste.
  • Patent Documents 1 and 2 Examples of the method for producing metal nanoparticles whose surface is coated and colloidally dispersed include a gas evaporation method and a reduction precipitation method (Patent Documents 1 and 2).
  • the active continuous interfacial deposition method is also one of the methods for producing colloidally dispersed metal nanoparticles whose surface is coated.
  • the smallest, uniform size and shape of metal / alloy fine particle colloids is relatively simple. It can be obtained with an apparatus and can be applied to many kinds of metals and alloys (Patent Document 3).
  • metal nanoparticles have a large specific surface area and high reaction activity, they have the characteristic of low-temperature sintering that fuses at a low temperature compared to metal bulk.
  • a fusion-bonding phenomenon occurs due to a heat treatment of about 200 to 300 ° C., which is much lower than the original melting point of 964 ° C., and exhibits the same electrical conductivity as a metal bulk.
  • Patent Document 4 proposes a method of forming a wiring pattern using copper nanoparticles at a low temperature in a short time.
  • copper like tin, is also susceptible to oxidation in the atmosphere. Therefore, by reducing the copper oxide nanoparticles in a plasma atmosphere generated in the presence of a reducing gas, a sintered body of copper nanoparticles can be obtained. It is necessary to form. Therefore, the above-described technique has a problem that the reaction atmosphere must be strictly controlled and a special apparatus must be used.
  • the present invention can easily obtain a metallic bond excellent in conductivity and mechanical characteristics and form a wiring pattern excellent in conductivity using the low-temperature sintering characteristics of metal nanoparticles.
  • An object is to provide a metal nanoparticle paste.
  • An aspect of the present invention includes (A) metal nanoparticles, (B) a protective film covering the surface of the metal nanoparticles, (C) carboxylic acids, and (D) a dispersion medium. Metal nanoparticle paste. (A) Due to the intermolecular force caused by the electrostatic force generated between the metal nanoparticle and (B) the compound that is a component of the protective film, that is, electrostatic bonding, (A) the surface of the metal nanoparticle (B) A protective film couple
  • the metal nanoparticle paste can be stored in the dispersion medium in a state in which aggregation of the metal nanoparticles is prevented.
  • the metal nanoparticle paste is heat-treated at a predetermined temperature lower than the melting point of the metal nanoparticles, that is, sintered at a low temperature
  • the protective film and (C) the carboxylic acid react to produce (A) metal It is considered that the bond between the nanoparticles and (B) the protective film is broken due to the intermolecular force due to the electrostatic force, and (B) the protective film is separated from the surface of the metal nanoparticles (A).
  • an aspect of the present invention is the metal nanoparticle paste (A) wherein the metal nanoparticles have an average primary particle diameter of 1 to 100 nm.
  • the (A) metal nanoparticles are at least selected from the group consisting of gold, silver, copper, platinum, palladium, nickel, bismuth, lead, indium, tin, zinc, titanium, aluminum, and antimony. It is a metal nanoparticle paste characterized by being a kind of metal.
  • the metal nanoparticles (A) are at least selected from the group consisting of gold, silver, copper, platinum, palladium, nickel, bismuth, lead, indium, tin, zinc, titanium, aluminum, and antimony.
  • An embodiment of the present invention is the metal nanoparticle paste (A) wherein the metal nanoparticles are tin and the average primary particle diameter of the tin is 1 to 50 nm.
  • the protective film covering the surface of the metal nanoparticle can be coordinated by the lone electron pair with the metal nanoparticle
  • A) An oxygen atom, a nitrogen atom or a sulfur atom of an organic compound constituting the protective film (B) is bonded to the metal nanoparticles by an intermolecular force derived from an electrostatic force, whereby (B) the protective film becomes (A) It is thought to coat metal nanoparticles.
  • the group containing an oxygen atom includes a hydroxy group (—OH) or an oxy group (—O—), the group containing a nitrogen atom includes an amino group (—NH 2 ), and the sulfur atom.
  • the metal nanoparticle paste is characterized in that the group is a sulfanyl group (—SH).
  • the organic compound having a group containing an oxygen atom is represented by the following general formula (I):
  • R 1 , R 2 and R 3 each independently represents a monovalent group having 2 to 20 carbon atoms, which represents a saturated hydrocarbon group or an unsaturated hydrocarbon group).
  • This is a metal nanoparticle paste.
  • the general formula (I) is an ester of a sugar alcohol and a fatty acid that have been dehydrated intramolecularly, and the oxygen atom of the hydroxy group (—OH) of the sugar alcohol that has been dehydrated intramolecularly due to intermolecular force ( A) It is thought that (B) a protective film coats (A) metal nanoparticles by bonding to the surface of metal nanoparticles.
  • the sugar alcohol fatty acid ester of the general formula (I) reacts with carboxylic acids such as a monocarboxylic acid of the following general formula (II) and a dicarboxylic acid of the following general formula (III). It is considered that (B) the protective film is separated from the surface of the metal nanoparticle (B) by the reaction of the hydroxy group of carboxylic acid with the carboxyl group of the carboxylic acid.
  • the organic compound having a group containing a nitrogen atom is represented by the following general formula (IV):
  • R 6 is a monovalent group having 2 to 20 carbon atoms and represents a saturated hydrocarbon group or an unsaturated hydrocarbon group).
  • the general formula (IV) is an amine, and the nitrogen atom of the amino group is bonded to the surface of the metal nanoparticle (A) by intermolecular force due to electrostatic force, so that (B) the protective film becomes (A) metal nanoparticle. It is thought to coat the particles.
  • An aspect of the present invention is a metal nanoparticle paste, wherein the (C) carboxylic acid is a monocarboxylic acid or an anhydride thereof, or a dicarboxylic acid or an anhydride thereof.
  • the monocarboxylic acid is represented by the following general formula (II):
  • R 4 is a monovalent group having 6 to 10 carbon atoms and represents a saturated hydrocarbon group or an unsaturated hydrocarbon group
  • a metal nanoparticle paste characterized by It is.
  • the dicarboxylic acid is represented by the following general formula (III):
  • R 5 represents a divalent group having 1 to 12 carbon atoms which may have an ether bond
  • R 5 is a metal nanoparticle paste characterized by the above.
  • An aspect of the present invention is a metal nanoparticle paste characterized in that (A) the metal nanoparticles contain silver and (D) the dispersion medium is terpene alcohols. That is, (A) the metal species of the metal nanoparticles is silver or at least contains silver.
  • An aspect of the present invention is an electronic component joined body in which an electronic component is mounted on a substrate using the metal nanoparticle paste.
  • the metal nanoparticle paste is used as a conductive bonding material between the substrate and the electronic component.
  • An aspect of the present invention is an LED module characterized in that an LED element is bonded to a substrate with the metal nanoparticle paste.
  • An aspect of the present invention is to form electrodes and a wiring pattern on a printed wiring board by a screen printing method or an ink jet method using the metal nanoparticle paste, and to heat the wiring pattern by heating at 250 ° C. or higher.
  • the present invention using the low-temperature sintering characteristics of metal nanoparticles, it is possible to easily and inexpensively obtain a metallic bond excellent in conductivity and mechanical strength, and to form a wiring pattern excellent in conductivity. Further, since the surface of the metal nanoparticles is coated with the protective film, the dispersion stability can be improved by preventing aggregation of the metal nanoparticles during storage of the metal nanoparticle paste. Furthermore, when the metal nanoparticle paste is heat-treated at a temperature lower than the melting point, the protective film and the carboxylic acid react with each other, so that the protective film is separated from the surface of the metal nanoparticles, so that the dispersion stability during storage is excellent and easy. In addition, metal nanoparticles can be aggregated and sintered.
  • the coating film when a coating film is formed using a metal nanoparticle paste using terpene alcohols as a dispersion medium for metal nanoparticles containing silver, the coating film has not only excellent conductivity and mechanical strength but also high reflectivity. A membrane can be obtained. Moreover, the metal nanoparticle paste containing silver has excellent electrical conductivity and at the same time has high thermal conductivity and heat dissipation. Therefore, metal nanoparticle pastes containing silver-containing metal nanoparticles and terpene alcohols are excellent in reflectivity and thermal conductivity. For example, by coating on the circuit board surface, it is excellent in circuit boards. It is suitable as a bonding material for bonding an electronic component such as an LED element.
  • the metal nanoparticle paste of the present invention is a mixture containing (A) metal nanoparticles, (B) a protective film covering the surface of the metal nanoparticles, (C) carboxylic acids, and (D) a dispersion medium. is there.
  • the metal nanoparticle which is a component (A) is metal powder which has an average primary particle diameter of nano order.
  • the metal species of the metal nanoparticles are not particularly limited as long as they have good conductivity and can cover the protective film (B) described later.
  • tin and copper are preferable from the viewpoint of environmental load, cost, and prevention of migration phenomenon.
  • the metal species is preferably silver from the viewpoint of obtaining a high-luminance LED module.
  • the upper limit of the average primary particle diameter of the metal nanoparticles is 100 nm from the viewpoint of low-temperature sintering characteristics, and is preferably 50 nm from the viewpoint of promptly promoting low-temperature sintering. 20 nm is particularly preferable from the viewpoint of forming a wiring pattern.
  • the lower limit of the average primary particle diameter of the metal nanoparticles is 1 nm from the viewpoint of dispersion stability, preferably 2 nm from the viewpoint of low-temperature sinterability, and particularly preferably 3 nm from the viewpoint of production stability. These metal nanoparticles may be used alone or in combination of two or more.
  • the protective film covering the surface of the metal nanoparticle that is the component (B) can be obtained by (A) This is for preventing fusion and giving the metal nanoparticles uniform dispersion in the dispersion medium, that is, dispersion stability.
  • the component of the protective film is not particularly limited as long as it is a compound that coats the surface of the metal nanoparticle and exhibits uniform dispersibility for the metal nanoparticle in the dispersion medium, for example, the metal nanoparticle and the lone electron pair. And an organic compound having a group containing an oxygen atom, a nitrogen atom, or a sulfur atom that can form a coordinate bond with each other.
  • oxygen atom, nitrogen atom, or sulfur atom is bonded to the surface of the metal nanoparticle by intermolecular force due to electrostatic force, so that the protective film covers the metal nanoparticle.
  • organic compound since the organic compound has an affinity with a dispersion medium such as an organic solvent, it can have dispersion stability.
  • groups containing oxygen atoms include hydroxy groups (—OH) and oxy groups (—O—)
  • examples of groups containing nitrogen atoms include amino groups (—NH 2 )
  • groups containing sulfur atoms include a sulfanyl group (—SH).
  • the organic compound that is a constituent component of the protective film is an oxygen compound that can be coordinated by a metal nanoparticle and a lone electron pair from the viewpoint of thermal stability at room temperature and dispersibility of the metal nanoparticle.
  • An organic compound having a group containing an atom, nitrogen atom or sulfur atom and having a saturated or unsaturated hydrocarbon group having 2 to 20 carbon atoms is preferred, and coordination by metal nanoparticles and lone electron pairs is particularly preferred.
  • Examples of the organic compound that is a constituent component of the protective film described above include sugar alcohol and fatty acid ester.
  • Sugar alcohol is not particularly limited, for example, intramolecular dehydration of glycerin, sorbitol and sorbitol, intramolecular dehydration of mannitol and mannitol, intramolecular dehydration of xylitol and xylitol, and intramolecular dehydration of erythritol and erythritol Can be mentioned.
  • the fatty acid is not particularly limited, and examples thereof include butyric acid, caproic acid, enanthic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, and oleic acid.
  • examples of the sugar alcohol fatty acid ester include the following general formula (I):
  • R 1 , R 2 and R 3 each independently represents a monovalent group having 2 to 20 carbon atoms, which represents a saturated hydrocarbon group or an unsaturated hydrocarbon group).
  • Specific examples of the sugar alcohol fatty acid ester of the above general formula (I) include the following formula (I-1):
  • the organic compound that is a constituent of the protective film includes, for example, the following general formula (IV):
  • R 6 is a monovalent group having 2 to 20 carbon atoms and represents a saturated hydrocarbon group or an unsaturated hydrocarbon group
  • specific examples of the amine include Formula (IV-1) below
  • the compound represented by can be mentioned.
  • the upper limit of the coating amount of the protective film on the metal nanoparticles is 30 parts by mass with respect to 100 parts by mass of the metal nanoparticles from the viewpoint of preventing increase in conduction resistance value, and 20 parts by mass from the viewpoint of low-temperature sinterability. preferable.
  • the lower limit of the coating amount of the protective film on the metal nanoparticles is 5 parts by mass with respect to 100 parts by mass of the metal nanoparticles from the viewpoint of maintaining the dispersion stability of the metal nanoparticles at room temperature. 10 mass parts is preferable at the point which makes it more reliable.
  • These protective film components may be used alone or in combination of two or more.
  • covered with the protective film which is a component is not specifically limited,
  • the metal and alloy fine particle colloid which has a uniform size and shape can be manufactured easily, and tin, copper, and nickel
  • the active continuous interfacial deposition method described in Patent Document 3 is preferable in that even a base metal that is easily oxidized can be made into nanoparticles in a pure metal state.
  • a rotary vacuum chamber that stores a liquid medium in a lower part, an evaporation structure of a metal material disposed inside the rotary vacuum chamber, and the rotary vacuum chamber around a central axis of the vacuum chamber.
  • a device composed of a variable speed rotating mechanism that rotates at a constant speed is used.
  • the active continuous interface deposition method is a predetermined amount of a solution (for example, an alkylnaphthalene solution) in which 10% by mass of a constituent component of a protective film (for example, sorbitan fatty acid ester) is blended in a rotary vacuum chamber ( For example, 200 ml) is loaded, and a predetermined amount (for example, 10 g) of a metal lump as a raw material for metal nanoparticles is loaded into a resistance heating evaporation source.
  • a solution for example, an alkylnaphthalene solution
  • a protective film for example, sorbitan fatty acid ester
  • the rotary vacuum chamber is evacuated while rotating at a predetermined rotational speed (for example, 100 mm / s), the resistance heating evaporation source is heated in a vacuum of 5 ⁇ 10 ⁇ 5 Torr, and metal vapor is supplied at a predetermined speed ( E.g. 0.2 g / min). Under this condition, by operating for a predetermined time (for example, 120 minutes), the metal lump almost disappears, the evaporated metal is adsorbed to the solution, and a colloid of metal nanoparticles can be obtained at the bottom of the rotary vacuum chamber. .
  • a solution for example, a cyclohexane solution
  • Carboxylic acids (C) The carboxylic acids as the component (C) coat the metal nanoparticles under a predetermined heating condition, that is, under a heating temperature lower than the inherent melting point of the metal constituting the metal nanoparticles. By reacting with the protective film, the protective film is separated from the surface of the metal nanoparticles, and the function as the protective film is lost. When the protective film is separated from the surface of the metal nanoparticles under the above heating conditions, the metal nanoparticles are aggregated and sintered together. That is, the carboxylic acid functions as a protective membrane separating agent.
  • carboxylic acids react with a group containing an oxygen atom, a nitrogen atom, or a sulfur atom that can coordinately bond a metal nanoparticle with a lone electron pair of an organic compound that is a constituent of a protective film.
  • the sugar alcohol fatty acid ester of the general formula (I) when taken as an example of a constituent of the protective film, the carboxyl group of the carboxylic acid reacts with the hydroxy group of the sugar alcohol that has been dehydrated in the molecule and is esterified. As a result, the bond due to the intermolecular force between the sugar alcohol fatty acid ester and the metal nanoparticles caused by the hydroxy group of the sugar alcohol is broken, and the protective film is separated from the surface of the metal nanoparticles.
  • the amine of the general formula (IV) when taken as an example of the constituent component of the protective film, the amine group reacts with the carboxyl group of the carboxylic acid to be amidated, resulting in an amine / metal attributed to the amino group.
  • the bond due to the intermolecular force between the nanoparticles is broken, and the protective film is separated from the surface of the metal nanoparticles.
  • the carboxylic acids that can be blended in the metal nanoparticle paste are not particularly limited as long as they are organic compounds having a carboxyl group, such as monocarboxylic acids and their anhydrides, dicarboxylic acids and their anhydrides, tricarboxylic acids and their anhydrides.
  • monocarboxylic acid for example, general formula (II)
  • R 4 is a monovalent group having 6 to 10 carbon atoms and represents a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • saturated fatty acids such as heptanoic acid, octanoic acid, nonanoic acid and decanoic acid and anhydrides of the above saturated fatty acids, unsaturated fatty acids such as trans-3-hexenoic acid and 2-nonenoic acid, and Saturated fatty acid anhydrides can be mentioned, and nonanoic acid is preferred from the viewpoint of smooth protective membrane separation ability.
  • saturated fatty acids such as heptanoic acid, octanoic acid, nonanoic acid and decanoic acid and anhydrides of the above saturated fatty acids
  • unsaturated fatty acids such as trans-3-hexenoic acid and 2-nonenoic acid
  • Saturated fatty acid anhydrides can be mentioned, and nonanoic acid is preferred from the viewpoint of smooth protective membrane separation ability.
  • dicarboxylic acid include general
  • R 5 represents a divalent group having 1 to 12 carbon atoms which may have an ether bond.
  • Specific examples include glutaric acid, adipic acid, suberic acid, diglycolic acid, succinic acid, phthalic acid, and anhydrides and derivatives of each of the above acids. From the viewpoint of performance, diglycolic acid, diglycolic anhydride, and succinic anhydride are preferred.
  • Examples of tricarboxylic acid include citric acid, isocitric acid, aconitic acid and the like.
  • the upper limit of the compounding amount of the carboxylic acids is 300 parts by mass with respect to 100 parts by mass of the metal nanoparticles coated with the protective film from the viewpoint of preventing the metal nanoparticles from being oxidized by the carboxylic acids, 200 mass parts is preferable from the point of ensuring a metal ratio.
  • the lower limit of the compounding amount of the carboxylic acids is 30 parts by mass from the viewpoint of reliably separating the protective film from the surface of the metal nanoparticles with respect to 100 parts by mass of the metal nanoparticles coated with the protective film, and is conductive. 40 mass parts is preferable from the point which stabilizes.
  • These carboxylic acids may be used alone or in combination of two or more.
  • the dispersion medium (D) component adjusts the viscosity of the metal nanoparticle paste and functions as a lubricant when the metal nanoparticles move through the metal nanoparticle paste during low-temperature sintering. It is.
  • dispersion medium examples include saturated or unsaturated aliphatic hydrocarbons such as decane, tetradecane, and octadecane; ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; methyl cellosolve; Glycol ethers such as ethyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monoethyl ether; ethyl acetate, acetic acid Butyl, cellosolve acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether Esters such as cetate, propyl
  • terpene alcohols such as monoterpene alcohol, sesquiterpene alcohol, and diterpene alcohol may be used as a dispersion medium.
  • the use of the above-mentioned terpene alcohol dispersion medium enables the formation of a coating film having excellent conductivity and high reflectivity.
  • a paste can be obtained.
  • monoterpene alcohols include ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol, manool, borneol, terbinen-4-ol, and 1-hydroxy-p-menthane and 8-hydroxy-p-menthane.
  • dihydroterpineol examples of sesquiterpene alcohols include catolol, cedrol, nerolidol, patchoulol, ⁇ -bisabolol, viridiflorol, and casinodal.
  • These dispersion media are preferably organic solvents having a flash point of 50 ° C. or higher and a boiling point of 150 ° C. or higher from the viewpoint of being able to be stably stored at room temperature and suppressing transpiration during low-temperature sintering, for example, hexyl diglycol. be able to.
  • the protective film (B) is an organic solvent having a boiling point equal to or higher than the temperature at which the protective film is separated from the surface of the metal nanoparticles, for example, 250 ° C. or higher. Examples include squalane and tetradecane having a boiling point.
  • the blending amount of the dispersion medium can be appropriately blended according to the desired viscosity, but is, for example, 1 to 300 parts by weight with respect to 100 parts by weight of the metal nanoparticles coated with the protective film, and the coating film is cracked. 20 to 200 parts by mass is preferable from the viewpoint of preventing the above.
  • the viscosity of the metal nanoparticle paste in the B-type viscometer is, for example, 5 Pa ⁇ s to 400 Pa ⁇ s at 25 ° C., and preferably 20 Pa ⁇ s to 300 Pa ⁇ s at 25 ° C. from the viewpoint of coating workability.
  • 50 Pa ⁇ s to 200 Pa ⁇ s at 25 ° C. is particularly preferable from the viewpoint of application by a dispenser and a function as a lubricant.
  • these dispersion media may be used independently and may mix and use 2 or more types.
  • additives may be appropriately blended depending on the application.
  • additives include gloss imparting agents, metal corrosion inhibitors, stabilizers, fluidity improvers, dispersion stabilizers, thickeners, viscosity modifiers, humectants, thixotropic agents, antifoaming agents, and bactericides.
  • An agent, a filler, etc. can be mentioned.
  • These additives may be used alone or in combination of two or more.
  • the method for producing the metal nanoparticle paste is not particularly limited.
  • the metal nanoparticles coated with a protective film produced by a predetermined production method for example, active continuous interface deposition method
  • carboxylic acids are added and dispersed.
  • the metal nanoparticle paste of the present invention can be used for various applications.
  • the metal nanoparticle paste of the present invention contains metal nanoparticles at a high density, and has a temperature lower than the melting point of the metal nanoparticles (for example, about 150 to 200 ° C. for tin, 250 to 350 ° C. for silver and copper). Degree), that is, low-temperature sinterability, for example, a conductive bonding material for electrically and physically bonding electronic components to a wiring board, a film material for forming a conductive film, There is an application as a wiring material for forming a wiring pattern on a substrate.
  • the metal nanoparticle paste When used as a conductive bonding material, the metal nanoparticle paste is applied to the position where the electronic components on the wiring board are bonded, and after placing the electronic components on the applied metal nanoparticle paste film, firing treatment is performed, Electronic components are bonded on the wiring board.
  • the method for applying the metal nanoparticle paste is not particularly limited, and examples thereof include a screen printing method and a dispenser method.
  • the coating amount of the metal nanoparticle paste can be adjusted as appropriate. For example, it is applied at a thickness of 1 to 20 ⁇ m.
  • the firing temperature is not particularly limited as long as the protective film covering the surface of the metal nanoparticles is separated from the metal nanoparticles and the metal nanoparticles are fused to each other and sintered at a low temperature.
  • the temperature is 150 to 200 ° C., preferably 150 to 170 ° C., and the metal nanoparticles are copper or silver
  • the temperature is 250 to 350 ° C., preferably 280 to 320 ° C.
  • the firing time can be selected as appropriate, and is, for example, 5 to 120 minutes.
  • the material of the wiring board to be used is not particularly limited, and in addition to inorganic materials such as glass and metal oxides, the metal nanoparticle paste of the present invention has low-temperature sinterability, so it has higher heat resistance than inorganic materials.
  • Organic materials such as polyester resins, polycarbonate resins, styrene resins, and fluororesins, which are inferior, can also be used.
  • the electronic component can be bonded to a fine region on the wiring board.
  • the metal nanoparticle paste of the present invention can be bonded even to a 0402 chip or a mounting area with a narrow pitch of 0.3 mm or less, which causes a problem of variations in the printing supply amount with conventional solder.
  • a desired wiring pattern is drawn on a substrate with a metal nanoparticle paste, and the drawn wiring pattern is baked to form a sintered wiring pattern on the substrate.
  • the coating method of the metal nanoparticle paste is not particularly limited as long as it is a coating method capable of forming a wiring pattern, and examples thereof include a screen printing method and an ink jet printing method.
  • substrate which can be used are the same as that of the case where it uses as above-mentioned electroconductive joining material. This method of use can be applied to the formation of a fine wiring pattern by utilizing the fact that the metal particles are nano-sized.
  • the metal nanoparticle paste of the present invention uses silver-containing metal nanoparticles and a terpene alcohol dispersion medium, it is possible to form a coating film having excellent conductivity and high reflectance. It can also be used as a reflective coating / bonding material when manufacturing LED modules by bonding LED elements to a paste-coated circuit board using a die bonder.
  • Coated metal nanoparticle Metal nanoparticle coated with conductive material / protective film (hereinafter referred to as “coated metal nanoparticle”)
  • Coated metal nanoparticle I In the above-mentioned active continuous interface deposition method A tin nanoparticle coated with a protective film comprising a sorbitan fatty acid ester of the formula (I-1).
  • Coated metal nanoparticles II Tin nanoparticles coated with a protective film made of oleylamine of the formula (IV-1) by the above active continuous interface vapor deposition method.
  • Coated metal nanoparticles III Silver nanoparticles coated with a protective film comprising a sorbitan fatty acid ester of the formula (I-1) by the above active continuous interface deposition method.
  • Coated metal nanoparticles IV Copper nanoparticles coated with a protective film made of sorbitan fatty acid ester of formula (I-1) by the above-mentioned active continuous interface deposition method. From the thermal analysis (TG-DTA method), the content of the protective film component of the coated metal nanoparticles I to IV was 20% by mass. ⁇ About metal powder SAC305 solder powder: manufactured by Tamura Seisakusho Co., Ltd., manufactured by centrifugal atomization method. Dry powdered tin nanoparticles: those without a protective film. "Tin nanopowder" manufactured by Aldrich
  • a predetermined amount of cyclohexane dispersion obtained by the active continuous interface vapor deposition method and containing 20% by mass of coated metal nanoparticles is charged into an agate mortar. All the cyclohexane components were volatilized by drying under reduced pressure to obtain coated metal nanoparticles having a protective film component of 20% by mass.
  • a metal nanoparticle paste to be used as a conductive bonding material was prepared by adding a predetermined amount of carboxylic acid and a predetermined amount of solvent to the coated metal nanoparticles and mixing them for 5 minutes using a pestle.
  • the metal nanoparticle pastes of Examples 1 to 11 and Comparative Examples 1 to 6 were prepared by blending the components shown in Table 1 below in the proportions shown in Table 1 below using the method for preparing the conductive bonding material. Was prepared.
  • the blending amount shown in Table 1 below represents mass%.
  • Chip conduction resistance On a glass epoxy substrate having a copper foil land formed on the surface, the metal nanoparticle paste prepared as described above was printed with a metal squeegee using a 200 ⁇ mt metal mask, Using a chip mounter manufactured by YAMAHA, a tin-plated 1608CR chip having a resistance value of 0 ⁇ was mounted.
  • Examples 1 to 8 and Comparative Examples 1 and 3 to 4 in which coated metal nanoparticles with a metal species of tin are blended Comparative Example 2 in which dry powdered tin nanoparticles are blended, and Comparative Example 5 in which SAC305 solder powder is blended 6 and Examples in which coated metal nanoparticles of tin as a metal species, coated metal nanoparticles of a silver species as silver, and coated metal nanoparticles as a metal species are blended so as to have the same composition as the SAC305 solder powder 11 is the reflow profile of FIG.
  • Examples 9 to 10 in which the metal species is coated with silver or copper coated metal nanoparticles are the reflow profiles of FIG.
  • a test piece was prepared by joining the 1608CR chip placed on the glass epoxy substrate in the following example. With respect to this test piece, the shear strength of the 1608 CR chip was measured under the condition of 5 mm / min using a tensile tester (EZ-L manufactured by SHIMADZU Co., Ltd.). The measurement result is an average value of ten 1608CR chips whose shear strength was measured. (3) Surface state (1) About the joined body produced by the same method as the chip conduction resistance, the joint between the substrate and the chip was visually observed.
  • A Metallic luster and smooth surface.
  • Although there is a metallic luster, the surface is not smooth.
  • There is not much metallic luster, and there are irregularities and air bubbles on the surface.
  • X There is no metallic luster and there is no change before heating.
  • shear strength in Table 2 “not measurable” means that the shear strength could not be measured because the 1608 CR chip could not be bonded onto the glass epoxy substrate.
  • metal nanoparticle pastes (Examples 1 to 4 and 6 to 10) containing metal nanoparticles coated with sorbitan fatty acid ester film and carboxylic acids, and metal nanoparticles coated with oleylamine film
  • the chip conduction resistance value was lowered, and a bonded portion having excellent conductivity could be obtained.
  • the shear strength of the chip bonded on the substrate was increased, the mechanical strength of the bonded portion was improved, and the surface condition of the bonded portion was also good.
  • Example 11 even when the coated metal nanoparticle is a mixed product of three kinds of metal species of the metal nanoparticle, a joint having excellent conductivity can be obtained, and the surface state of the joint is also good. Met.
  • Example 11 compared with Examples 1 to 10, the shear strength of the chip was particularly increased and the mechanical strength of the joint was further improved.
  • the metal nanoparticle paste coated with the protective film was not blended with the carboxylic acid as the protective film separating agent, and from Comparative Examples 3 and 4, the metal nanoparticles coated with the protective film If a carboxylic acid is not blended as a protective membrane separating agent in the paste (combining an amine in Comparative Example 3 and a halogen-based activator in Comparative Example 4), the bonding itself becomes insufficient, and the electrical conductivity of the bonded portion was also not recognized. Furthermore, the surface state of the joint was also poor.
  • Comparative Examples 2 and 6 even when a carboxylic acid is blended in a paste using metal nanoparticles not coated with a protective film or conventional solder powder, the chip conduction resistance is high, and the conductivity of the joint is inferior. It was. In Comparative Examples 2, 5, and 6, as in Comparative Examples 1, 3, and 4, the bonding was insufficient and the surface state of the bonded portion was also poor.
  • metal nanoparticle paste Compounding component of metal nanoparticle paste
  • the conductive material-coated metal nanoparticle III and the coated metal nanoparticle IV are the same as the examples using the above-described metal nanoparticle paste as the conductive bonding material.
  • Metal nanoparticles VI are those without a protective film.
  • a predetermined amount of cyclohexane dispersion obtained by the above active continuous interface vapor deposition containing 20% by mass of coated metal nanoparticles is put into an agate mortar and dried under reduced pressure. As a result, all cyclohexane components were volatilized to obtain coated metal nanoparticles having a protective film component of 20% by mass.
  • a metal nanoparticle paste to be used as a wiring material was prepared by adding a predetermined amount of carboxylic acid and a predetermined amount of solvent to the coated metal nanoparticles and mixing for 5 minutes using a pestle.
  • the conductive material / coated metal nanoparticle III is the same as the coated metal nanoparticle III of the example using the metal nanoparticle paste described above as a conductive bonding material.
  • ⁇ Silver powder is "AgC-A" manufactured by Fukuda Metals.
  • Dispersion medium terpineol C: a mixture of ⁇ -terpineol, ⁇ -terpineol and ⁇ -terpineol manufactured by Nippon Terpene Co., Ltd. Existing chemical number 3-2323, CAS. No. 8000-41-7, purity 85% by mass or more. Dihydroterpineol: a mixture of 1-hydroxy-p-menthane and 8-hydroxy-p-menthane manufactured by Nippon Terpene Co., Ltd. Existing chemical number 3-2315, CAS. No. 498-81-7, purity 96% by mass or more.
  • the reflectance of the metal coating film at 450 nm was measured using a spectrophotometer “Hitachi spectrophotometer U-4100” manufactured by Hitachi High-Tech Co., Ltd. Further, the maximum value of the reflectance in the range of 250 to 800 ⁇ m was also measured. Reflectance was measured in both Examples and Comparative Examples using a YAG laser with an incident angle of 10 °, and incident with alumina as a reference sample (“standard white plate made of aluminum oxide” manufactured by Hitachi High-Tech Co., Ltd.). The total light relative reflectance was measured when the reflectance at an angle of 10 ° was 100.
  • (6) State of coating film The metal coating film formed by the same method as in the above (5) was visually observed. A metal coating film that was uniformly coated without cracking was evaluated as “uniform”, and a metal coating film that was cracked and not suitable for practical use was evaluated as “cracking”.
  • the volume resistance was measured by the same method as in (4) above, and the shear strength of the chip resistor component was measured by the same method as in (2) above.
  • the coated metal nanoparticles have a low volume resistance value and a high reflectance, and are excellent in the shear strength of the chip resistance component.
  • a membrane could be obtained.
  • Examples 15 to 19 and Comparative Examples 8 and 9 by using terpene alcohols as the dispersion medium, it was possible to improve the reflectance while preventing cracking of the coating film.
  • the reflectance of the coating film could be further improved by setting the firing atmosphere to air instead of inert gas. Further, from Examples 15 to 17 and 19, it was possible to further improve the reflectance of the coating film by setting the heating temperature to 250 ° C., particularly 300 ° C.
  • the metal nanoparticle paste of the present invention can electrically bond a substrate and an electronic component by a heat treatment at a temperature lower than the melting point of the metal nanoparticles, and can form a wiring pattern on the substrate by the low temperature heat treatment.
  • metal nanoparticle pastes containing silver-containing metal nanoparticles and terpene alcohols are excellent in reflectivity and thermal conductivity. As the utility value is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Screen Printers (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

 金属ナノ粒子の低温焼結特性を用いて、簡易に、導電性及び機械的強度に優れた金属的接合を得、また導通性に優れた配線パターンを形成できる金属ナノ粒子ペーストを提供する。 (A)金属ナノ粒子と、(B)前記金属ナノ粒子の表面を被覆する保護膜と、(C)カルボン酸類と、(D)分散媒とを含むことを特徴とする金属ナノ粒子ペーストである。

Description

金属ナノ粒子ペースト、並びに金属ナノ粒子ペーストを用いた電子部品接合体、LEDモジュール及びプリント配線板の回路形成方法
 本発明は、表面が保護膜で被覆された金属ナノ粒子とカルボン酸類とを含有した金属ナノ粒子ペーストに関し、より具体的には、スクリーン印刷やインクジェット印刷などの印刷により非常に低温の熱処理で基板上に配線パターンを形成でき、また非常に低温の熱処理で基板上に電子部品を接合できる金属ナノ粒子ペーストに関する。
 近年、基板に電子部品を実装する分野において、電気的接合は、鉛フリーはんだ、特に、スズ-銀-銅合金はんだが主流となっているが、実装温度が240℃以上と非常に高温となるので、全ての電子部品や基板に対応できるものではない。例えば、PETなど耐熱性に劣った基板を用いる場合やモジュールの耐熱性の問題等で低温にて接合せざるを得ない場合には、比較的低温で電気的接合が可能なビスマスやインジウム系合金を使用していた。しかし、ビスマスは接合強度や合金の脆さに問題があり、インジウム系合金は高価という問題がある。
 また、耐熱性の点ではんだ付けに不向きな電子部品の実装やモジュールの組み立てには、比較的低温で電気的接合が可能な銀ペーストが用いられてきたが、スズ電極との局部電池による導通抵抗の上昇、カーケンダルボイドの発生及びコスト等が問題となっている。一方で、導通抵抗の上昇を防止するために、銀ペーストに低融点金属や導電フィラー、金属ナノ粒子を添加することが行なわれている。
 表面が被覆されコロイド状に分散した金属ナノ粒子の製造方法には、例えば、ガス中蒸発法や還元析出法等が挙げられる(特許文献1、特許文献2)。また、活性連続界面蒸着法も表面が被覆されコロイド状に分散した金属ナノ粒子の製造方法の一つであり、最も小さく、均一なサイズと均一な形状の金属・合金微粒子コロイドを比較的簡単な装置で得られ、かつ多くの種類の金属・合金に適用できる(特許文献3)。
 金属ナノ粒子は、比表面積が大きく反応活性が高いので、金属バルクと比較して、低温で融着する低温焼結という特性を有する。例えば、銀の場合、本来の融点964℃より格段に低い200~300℃程度の加熱処理で融着接合現象が起こり、金属バルクと同等の導通性を示すことが知られている。
 一方、近年、加熱工程の複雑化により、金属接点が再度熱に晒される可能性があり、その場合スズ-ビスマス合金に代表される低融点合金では再溶融による接続信頼性の低下が問題となっている。また、パワートランジスタ等の高温発熱箇所に適した高融点はんだには、依然として環境への悪影響が懸念される高鉛はんだを使用している。そこで、金属ナノ粒子、特に、銀ナノ粒子の低温焼結特性と焼結後は金属本来の融点に戻る性質を利用して、接続信頼性の低下防止と接合の耐高温性を図っている。このように、銀ナノ粒子を用いることで、金属が本来持つ融点よりもはるかに低い加熱温度で、電子部品を基板に接合でき、また配線パターンを形成できるようになったが、高いコストという問題点は解決されていない。
 そこで、特許文献4では、低温且つ短時間で銅ナノ粒子を用いた配線パターンを形成する方法が提案されている。しかし、スズと同様に銅も大気中で酸化を受け易いので、酸化銅ナノ粒子を還元性気体の存在下生起されるプラズマ雰囲気中にて還元反応させることにより、銅ナノ粒子の焼結体を形成させる必要がある。従って、上記記技術には、反応雰囲気を厳密にコントロールし、かつ特殊な装置を用いなければならないという問題がある。
WO2005/025787号公報 特開2005-26081号公報 特開2008-150630号公報 特開2004-119686号公報
 本発明は、上記事情に鑑み、金属ナノ粒子の低温焼結特性を用いて、簡易に、導電性及び機械的特性に優れた金属的接合を得、また導電性に優れた配線パターンを形成できる金属ナノ粒子ペーストを提供することを目的とする。
 本発明の態様は、(A)金属ナノ粒子と、(B)前記金属ナノ粒子の表面を被覆する保護膜と、(C)カルボン酸類と、(D)分散媒とを含むことを特徴とする金属ナノ粒子ペーストである。(A)金属ナノ粒子と(B)保護膜の構成成分である化合物との間で発生する静電力に起因した分子間力、すなわち静電的な結合により、(A)金属ナノ粒子の表面に(B)保護膜が結合し、(A)金属ナノ粒子が(B)保護膜に被覆されると考えられる。(A)金属ナノ粒子の表面が(B)保護膜で被覆されていることにより、(D)分散媒中において(A)金属ナノ粒子の凝集が防止された状態で金属ナノ粒子ペーストを保存できる。また、金属ナノ粒子ペーストを金属ナノ粒子の融点よりも低い所定温度で加熱処理、すなわち低温焼結させると、(B)保護膜と(C)カルボン酸類とが反応することで、(A)金属ナノ粒子と(B)保護膜との間の、静電力に起因した分子間力による結合が切れて、(A)金属ナノ粒子の表面から(B)保護膜が離れると考えられる。そして、上記加熱条件下、(A)金属ナノ粒子の表面から(B)保護膜が離れると、(A)金属ナノ粒子が相互に凝集、焼結する。なお、「低温焼結」とは、金属ナノ粒子を構成する金属の固有の融点よりも低い温度で、金属ナノ粒子が相互に融着して焼結することを意味する。
 本発明の態様は、前記(A)金属ナノ粒子の平均一次粒子径が、1~100nmであることを特徴とする金属ナノ粒子ペーストである。本発明の態様は、前記(A)金属ナノ粒子が、金、銀、銅、白金、パラジウム、ニッケル、ビスマス、鉛、インジウム、スズ、亜鉛、チタン、アルミニウム及びアンチモンからなる群から選択された少なくとも一種の金属であることを特徴とする金属ナノ粒子ペーストである。本発明の態様は、前記(A)金属ナノ粒子が、金、銀、銅、白金、パラジウム、ニッケル、ビスマス、鉛、インジウム、スズ、亜鉛、チタン、アルミニウム及びアンチモンからなる群から選択された少なくとも一種の金属合金であることを特徴とする金属ナノ粒子ペーストである。本発明の態様は、前記(A)金属ナノ粒子がスズであり、前記スズの平均一次粒子径が1~50nmであることを特徴とする金属ナノ粒子ペーストである。
 本発明の態様は、前記(B)金属ナノ粒子の表面を被覆する保護膜が、前記(A)金属ナノ粒子と孤立電子対による配位的な結合が可能である、酸素原子、窒素原子または硫黄原子を含んだ基を有する有機化合物を含むことを特徴とする金属ナノ粒子ペーストである。(A)金属ナノ粒子に、(B)保護膜を構成する有機化合物の酸素原子、窒素原子または硫黄原子が静電力由来の分子間力で結合することにより、(B)保護膜が(A)金属ナノ粒子を被覆すると考えられる。
 本発明の態様は、前記酸素原子を含んだ基がヒドロキシ基(-OH)またはオキシ基(-O-)、前記窒素原子を含んだ基がアミノ基(-NH2)、前記硫黄原子を含んだ基がスルファニル基(-SH)であることを特徴とする金属ナノ粒子ペーストである。(A)金属ナノ粒子に、(B)保護膜を構成する有機化合物のヒドロキシ基(-OH)若しくはオキシ基(-O-)の酸素原子、アミノ基(-NH2)の窒素原子またはスルファニル基(-SH)の硫黄原子が静電力に起因した分子間力で結合することにより、(B)保護膜が(A)金属ナノ粒子を被覆すると考えられる。
 本発明の態様は、前記酸素原子を含んだ基を有する有機化合物が、下記一般式(I)
Figure JPOXMLDOC01-appb-C000005
(式中、R1、R2、R3はそれぞれ独立に、炭素数2~20の一価の基で、飽和炭化水素基または不飽和炭化水素基を示す。)で表される化合物であることを特徴とする金属ナノ粒子ペーストである。一般式(I)は、分子内脱水された糖アルコールと脂肪酸のエステルであり、分子内脱水された糖アルコールのヒドロキシ基(-OH)の酸素原子が、静電力に起因した分子間力により(A)金属ナノ粒子表面と結合することで、(B)保護膜が(A)金属ナノ粒子を被覆すると考えられる。また、後述するように、一般式(I)の糖アルコール脂肪酸エステルは、下記一般式(II)のモノカルボン酸、下記一般式(III)のジカルボン酸等のカルボン酸類と反応する、すなわち糖アルコールのヒドロキシ基がカルボン酸類のカルボキシル基と反応することで(B)保護膜が(A)金属ナノ粒子表面から離れると考えられる。本発明の態様は、前記窒素原子を含んだ基を有する有機化合物が、下記一般式(IV)
Figure JPOXMLDOC01-appb-C000006
(式中、Rは炭素数2~20の一価の基で、飽和炭化水素基または不飽和炭化水素基を示す。)で表される化合物であることを特徴とする金属ナノ粒子ペーストである。一般式(IV)はアミンであり、アミノ基の窒素原子が、静電力に起因した分子間力により(A)金属ナノ粒子表面と結合することで、(B)保護膜が(A)金属ナノ粒子を被覆すると考えられる。
 本発明の態様は、前記(C)カルボン酸類が、モノカルボン酸若しくはその無水物、またはジカルボン酸若しくはその無水物であることを特徴とする金属ナノ粒子ペーストである。本発明の態様は、前記モノカルボン酸が、下記一般式(II)
Figure JPOXMLDOC01-appb-C000007
(式中、Rは、炭素数6~10の一価の基で、飽和炭化水素基または不飽和炭化水素基を示す。)で表される化合物であることを特徴とする金属ナノ粒子ペーストである。本発明の態様は、前記ジカルボン酸が、下記一般式(III)
Figure JPOXMLDOC01-appb-C000008
(式中、Rは、エーテル結合を有していてもよい炭素数1~12の二価の基を示す。)で表される化合物であることを特徴とする金属ナノ粒子ペーストである。
 本発明の態様は、前記(A)金属ナノ粒子が銀を含んでおり、前記(D)分散媒がテルペンアルコール類であることを特徴とする金属ナノ粒子ペーストである。すなわち、(A)金属ナノ粒子の金属種は銀であるか、または少なくとも銀を含有している。
 本発明の態様は、上記金属ナノ粒子ペーストを用いて基板に電子部品を実装したことを特徴とする電子部品接合体である。この態様では、基板と電子部品との導電性接合材料として上記金属ナノ粒子ペーストを用いている。
 本発明の態様は、上記金属ナノ粒子ペーストにて、基板にLED素子を接合したことを特徴とするLEDモジュールである。
 本発明の態様は、上記金属ナノ粒子ペーストを用いてスクリーン印刷法またはインクジェット法によりプリント配線板上に電極及び配線パターンを形成し、250℃以上で加熱することにより前記配線パターンを焼成処理することを特徴とするプリント配線板の回路形成方法である。この態様では、基板の配線材料として上記金属ナノ粒子ペーストを用いている。
 本発明によれば、金属ナノ粒子の低温焼結特性を用いて、安価かつ簡易に、導電性、機械的強度に優れた金属的接合を得、また導電性に優れた配線パターンを形成できる。また、本発明によれば、金属ナノ粒子の表面が保護膜で被覆されているので、金属ナノ粒子ペーストの保存時では金属ナノ粒子の凝集を防止して分散安定性を向上させることができる。さらに、金属ナノ粒子ペーストを融点よりも低温で加熱処理すると保護膜とカルボン酸類とが反応することにより、金属ナノ粒子の表面から保護膜が離れるので、保存時の分散安定性に優れつつ、容易に金属ナノ粒子が凝集、焼結できる。
 特に、銀を含有した金属ナノ粒子の分散媒としてテルペンアルコール類を用いた金属ナノ粒子ペーストを用いて塗膜を形成すると、導電性と機械的強度に優れるだけでなく、高反射率を有する塗膜を得ることができる。また、銀を含有した金属ナノ粒子ペーストは、優れた導電性を有すると同時に高い熱伝導性と熱散逸性を有している。従って、銀を含有した金属ナノ粒子とテルペンアルコール類とを配合した金属ナノ粒子ペーストは、反射率と熱伝導性にも優れるので、例えば、回路基板表面に塗工することで、回路基板に優れた反射率を付与するとともに、電子部品、例えばLED素子を接合するための接合材として適している。
金属ナノ粒子の金属種にスズまたははんだ粉を用いた場合のリフロー加熱プロファイルを説明する図である。 金属ナノ粒子の金属種に銀または銅を用いた場合のリフロー加熱プロファイルを説明する図である。 金属ナノ粒子の金属種に銀を用いた場合のリフロー加熱プロファイルを説明する図である。 金属ナノ粒子の金属種に銀を用いた場合の第2のリフロー加熱プロファイルを説明する図である。
 次に、本発明の金属ナノ粒子ペーストについて説明する。本発明の金属ナノ粒子ペーストは、(A)金属ナノ粒子と、(B)前記金属ナノ粒子の表面を被覆する保護膜と、(C)カルボン酸類と、(D)分散媒とを含む混合物である。
 (A)金属ナノ粒子
 (A)成分である金属ナノ粒子は、ナノオーダーの平均一次粒子径を有する金属粉である。ナノオーダーの平均一次粒子径を有することで、比表面積が大きく粒子表面の反応活性が高くなるので、金属本来の融点よりもはるかに低い加熱温度で、電子部品を基板に電気的に接合でき、また基板上に配線パターンを形成できる。金属ナノ粒子の金属種は、良導電性を有し、後述する(B)成分である保護膜を被覆できるものであれば特に限定されず、例えば、金、銀、銅、白金、パラジウム、ニッケル、ビスマス、鉛、インジウム、スズ、亜鉛、チタン、アルミニウム及びアンチモンなど、はんだに使用される金属単体や上記金属種を含有する金属合金を挙げることができる。上記金属種のうち、環境への負荷、コスト及びマイグレーション現象の発生防止の点からスズ、銅が好ましい。
 また、LED素子を回路基板に接合する導電性接合材料として金属ナノ粒子ペーストを使用する場合、高輝度のLEDモジュールを得る点から、上記金属種は銀が好ましい。
 金属ナノ粒子の平均一次粒子径の上限値は、低温焼結特性を奏する点から100nmであり、低温焼結を迅速に進める点から50nmが好ましく、緻密な電子部品接合部への適用及び微細な配線パターンの形成の点から20nmが特に好ましい。また、金属ナノ粒子の平均一次粒子径の下限値は、分散安定性の点から1nmであり、低温焼結性の点から2nmが好ましく、生産安定性の点から3nmが特に好ましい。これらの金属ナノ粒子は単独で使用してもよく、2種以上を混合して使用してもよい。
 (B)金属ナノ粒子の表面を被覆する保護膜
 (B)成分である金属ナノ粒子の表面を被覆する保護膜は、(A)金属ナノ粒子表面の反応活性が高いことによる金属ナノ粒子相互の融着を防止して、金属ナノ粒子に分散媒中における均一な分散、すなわち分散安定性を与えるためのものである。前記保護膜の構成成分は、金属ナノ粒子表面を被覆して、分散媒中で金属ナノ粒子に均一な分散性を発揮させる化合物であれば特に限定されず、例えば、金属ナノ粒子と孤立電子対による配位的な結合が可能である、酸素原子、窒素原子または硫黄原子を含んだ基を有する有機化合物を挙げることができる。上記した酸素原子、窒素原子または硫黄原子が静電力に起因した分子間力により金属ナノ粒子表面に結合することにより、保護膜が金属ナノ粒子を被覆する。また、有機化合物は有機溶媒等の分散媒と親和性を有するので、分散安定性を有することができる。さらに、酸素原子を含んだ基の例としてヒドロキシ基(-OH)やオキシ基(-O-)、窒素原子を含んだ基の例としてアミノ基(-NH2)、硫黄原子を含んだ基の例としてスルファニル基(-SH)を挙げることができる。
 また、保護膜の構成成分である有機化合物は、室温での熱的安定性と金属ナノ粒子の分散性の点から、金属ナノ粒子と孤立電子対による配位的な結合が可能である、酸素原子、窒素原子または硫黄原子を含んだ基を有し、かつ炭素数2~20の飽和または不飽和炭化水素基を有する有機化合物が好ましく、特に好ましくは、金属ナノ粒子と孤立電子対による配位的な結合が可能である、酸素原子、窒素原子または硫黄原子を含んだ基を有し、かつ炭素数4~18の飽和または不飽和炭化水素基を複数有する有機化合物である。
 上記した保護膜の構成成分となる有機化合物には、例えば、糖アルコールと脂肪酸のエステルを挙げることができる。糖アルコールは、特に限定されず、例えば、グリセリン、ソルビトール及びソルビトールの分子内脱水したもの、マンニトール及びマンニトールの分子内脱水したもの、キシリトール及びキシリトールの分子内脱水したもの並びにエリトリトール及びエリトリトールの分子内脱水したもの等を挙げることができる。また、脂肪酸は、特に限定されず、例えば、ブチル酸、カプロン酸、エナント酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸等を挙げることができる。糖アルコール脂肪酸エステルには、例えば、下記一般式(I)
Figure JPOXMLDOC01-appb-C000009
(式中、R1、R2、R3はそれぞれ独立に、炭素数2~20の一価の基で、飽和炭化水素基または不飽和炭化水素基を示す。)で表される分子内脱水された糖アルコールと脂肪酸のエステルを挙げることができ、上記一般式(I)の糖アルコール脂肪酸エステルの具体例としては下記式(I-1)
Figure JPOXMLDOC01-appb-C000010
 で表される化合物を挙げることができる。さらに、保護膜の構成成分となる有機化合物には、例えば、下記一般式(IV)
Figure JPOXMLDOC01-appb-C000011
(式中、Rは炭素数2~20の一価の基で、飽和炭化水素基または不飽和炭化水素基を示す。)で表されるアミンを挙げることができ、アミンの具体例としては下記式(IV-1)
Figure JPOXMLDOC01-appb-C000012
 で表される化合物を挙げることができる。
 金属ナノ粒子に対する保護膜の被覆量の上限値は、金属ナノ粒子100質量部に対して、導通抵抗値の上昇防止の点から30質量部であり、低温焼結性の点から20質量部が好ましい。一方、金属ナノ粒子に対する保護膜の被覆量の下限値は、金属ナノ粒子100質量部に対して、金属ナノ粒子の室温における分散安定性を保持する点から5質量部であり、分散安定性をより確実にする点で10質量部が好ましい。これらの保護膜の構成成分は単独で使用してもよく、2種以上を混合して使用してもよい。
 (B)成分である保護膜で被覆された金属ナノ粒子の製造方法は、特に限定されないが、均一なサイズと形状を有する金属・合金微粒子コロイドを簡単に製造でき、また、スズ、銅及びニッケル等の酸化されやすい卑金属類であっても純金属の状態でナノ粒子化できる点で、上記特許文献3に記載の活性連続界面蒸着法が好ましい。
 活性連続界面蒸着法には、液体媒質を下部に貯留する回転式真空槽と、前記回転式真空槽内部に配置された金属材料の蒸発構造と、前記回転式真空槽を真空槽の中心軸周りに回転させる可変速回転機構とからなる装置が使用される。
 活性連続界面蒸着法とは、具体的には、回転式真空槽の内部に、保護膜の構成成分(例えば、ソルビタン脂肪酸エステル)を10質量%配合した溶液(例えばアルキルナフタレン溶液)を所定量(例えば200ml)装填し、抵抗加熱蒸発源に金属ナノ粒子の原料となる金属塊を所定量(例えば10g)装填する。回転式真空槽を所定の回転数(例えば100mm/s)で回転させながら、真空排気し、5×10-5Torrの真空中で、抵抗加熱蒸発源を加熱し、金属蒸気を所定の速度(例えば0.2g/min)で蒸発させる。この条件にて、所定時間(例えば120分)運転することにより、金属塊はほぼ消滅し、蒸発した金属が溶液に吸着して回転式真空槽の底部に金属ナノ粒子のコロイドを得ることができる。得られた金属ナノ粒子のコロイドから溶液(例えばシクロヘキサン溶液)を揮発させて、保護膜で被覆された金属ナノ粒子を製造できる。
 (C)カルボン酸類
 (C)成分であるカルボン酸類は、所定の加熱条件下、すなわち金属ナノ粒子を構成する金属の固有の融点よりも低い加熱温度の条件下、金属ナノ粒子を被覆している保護膜と反応することで、金属ナノ粒子の表面から保護膜を離して、保護膜としての機能を失わせるものである。上記加熱条件下、保護膜が金属ナノ粒子の表面から離れることで、金属ナノ粒子が相互に凝集し、焼結する。すなわち、カルボン酸類は、保護膜分離剤として機能する。例えば、カルボン酸類は、保護膜の構成成分である有機化合物の、金属ナノ粒子と孤立電子対による配位的な結合が可能である、酸素原子、窒素原子または硫黄原子を含んだ基と反応する。
 より具体的には、保護膜の構成成分として一般式(I)の糖アルコール脂肪酸エステルを例にすると、カルボン酸類のカルボキシル基が分子内脱水された糖アルコールのヒドロキシ基と反応してエステル化されることで、糖アルコールのヒドロキシ基に起因した、糖アルコール脂肪酸エステル・金属ナノ粒子間の分子間力による結合が切れて、金属ナノ粒子の表面から保護膜が分離する。また、保護膜の構成成分として一般式(IV)のアミンを例にすると、アミンのアミノ基がカルボン酸類のカルボキシル基と反応してアミド化されることで、アミノ基に起因した、アミン・金属ナノ粒子間の分子間力による結合が切れて、金属ナノ粒子の表面から保護膜が分離する。
 金属ナノ粒子ペーストに配合可能なカルボン酸類は、モノカルボン酸及びその無水物、ジカルボン酸及びその無水物、トリカルボン酸及びその無水物等、カルボキシル基を有する有機化合物であれば特に限定されない。モノカルボン酸としては、例えば、一般式(II)
Figure JPOXMLDOC01-appb-C000013
(式中、Rは、炭素数6~10の一価の基で、飽和炭化水素基または不飽和炭化水素基を示す。)で表される化合物を挙げることができる。具体例としては、ヘプタン酸、オクタン酸、ノナン酸、デカン酸等の飽和脂肪酸及び上記各飽和脂肪酸の無水物、並びにtrans-3-ヘキセン酸、2-ノネン酸等の不飽和脂肪酸及び上記各不飽和脂肪酸の無水物を挙げることができ、円滑な保護膜分離能の点からノナン酸が好ましい。ジカルボン酸としては、例えば、一般式(III)
Figure JPOXMLDOC01-appb-C000014
(式中、Rは、エーテル結合を有していてもよい炭素数1~12の二価の基を示す。)で表される化合物を挙げることができる。具体例としては、グルタル酸、アジピン酸、スベリン酸、ジグリコール酸、コハク酸、フタル酸及び上記したそれぞれの酸の無水物や誘導体等が挙げられ、残渣の残りにくさ及び円滑な保護膜分離能の点からジグリコール酸、ジグリコール酸無水物、コハク酸無水物が好ましい。また、トリカルボン酸の例としては、クエン酸、イソクエン酸、アコニット酸等を挙げることができる。
 カルボン酸類の配合量の上限値は、保護膜を被覆した金属ナノ粒子100質量部に対して、カルボン酸類による金属ナノ粒子の酸化防止の点から300質量部であり、金属ナノ粒子ペースト全体としての金属比率を確保する点から200質量部が好ましい。一方、カルボン酸類の配合量の下限値は、保護膜を被覆した金属ナノ粒子100質量部に対して、金属ナノ粒子の表面から保護膜を確実に分離させる点から30質量部であり、導通性を安定させる点から40質量部が好ましい。これらのカルボン酸類は単独で使用してもよく、2種以上を混合して使用してもよい。
 (D)分散媒
 (D)成分である分散媒は、金属ナノ粒子ペーストの粘度を調整するとともに、低温焼結時に金属ナノ粒子が金属ナノ粒子ペースト中を移動する際の潤滑剤として機能するものである。分散媒の例としては、デカン、テトラデカン、オクタデカン等の飽和または不飽和脂肪族炭化水素類、メチルエチルケトン、シクロヘキサノンなどのケトン類;トルエン、キシレン、テトラメチルベンゼンなどの芳香族炭化水素類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロプレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテルなどのグリコールエーテル類;酢酸エチル、酢酸ブチル、セロソルブアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート及び上記グリコールエーテル類のエステル化物などのエステル類;エタノール、プロパノール、エチレングリコール、プロピレングリコール、ヘキシルジグリコールなどのアルコール類、スクアランなど炭素数30以上の不飽和炭化水素類等を挙げることができる。
 また、分散媒として、モノテルペンアルコール、セスキテルペンアルコール及びジテルペンアルコール等のテルペンアルコール類を使用してもよい。金属ナノ粒子として、特に、銀を含有した金属ナノ粒子を用いる場合には、上記したテルペンアルコール類の分散媒を使用すると、導電性に優れかつ高反射率を有する塗膜を形成できる金属ナノ粒子ペーストを得ることができる。モノテルペンアルコールの例としては、α-テルピネオール、β-テルピネオール、γ-テルピネオール、δ-テルピネオール、マノオール、ボルネオール、テルビネン-4-オール、並びに1-ヒドロキシ-p-メンタン及び8-ヒドロキシ-p-メンタンなどのジヒドロテルピネオール等を挙げることができる。セスキテルペンアルコールの例としては、キャトロール、セドロール、ネロリドール、パチュロール、α-ビサボロール、ビリディフロロール、カジノール等を挙げることができる。
 これら分散媒は、室温で安定的に保存でき、さらに低温焼結時における蒸散を抑える点から、引火点が50℃以上かつ沸点が150℃以上の有機溶媒が好ましく、例えば、ヘキシルジグリコールを挙げることができる。また、低温焼結時における潤滑剤機能の点から、特に好ましくは(B)成分である保護膜が金属ナノ粒子表面から分離する温度以上の沸点を有する有機溶媒であり、例えば、250℃以上の沸点を有するスクアラン、テトラデカン等を挙げることができる。
 分散媒の配合量は、所望の粘度に応じて適宜配合可能であるが、保護膜で被覆された金属ナノ粒子100質量部に対して、例えば、1~300質量部であり、塗膜のひび割れを防止する点から20~200質量部が好ましい。金属ナノ粒子ペーストのB型粘度計における粘度は、例えば、25℃において5Pa・s~400Pa・sであり、塗布の作業性の点から25℃において20Pa・s~300Pa・sが好ましく、スクリーン印刷またはディスペンサーによる塗布及び潤滑剤としての機能の点から、25℃において50Pa・s~200Pa・sが特に好ましい。また、これらの分散媒は単独で使用してもよく2種以上を混合して使用してもよい。
 金属ナノ粒子ペーストには、用途に応じて、適宜、慣用の添加剤を配合してもよい。添加剤としては、例えば、光沢付与剤、金属腐食防止剤、安定剤、流動性向上剤、分散安定化剤、増粘剤、粘度調整剤、保湿剤、チクソトロピー性賦与剤、消泡剤、殺菌剤、充填材などを挙げることができる。これらの添加剤は、単独で使用してもよく、2種以上を混合して使用してもよい。
 次に、本発明の金属ナノ粒子ペーストの製造方法を説明する。金属ナノ粒子ペーストの製造方法は特に限定されず、例えば、所定の分散媒に、所定の製法(例えば、活性連続界面蒸着法)で製造された保護膜で被覆された金属ナノ粒子と、カルボン酸類とを添加し分散させることにより得られる。
 次に、本発明の金属ナノ粒子ペーストの用途例及び使用方法例について説明する。本発明の金属ナノ粒子ペーストは、種々の用途に使用可能である。本発明の金属ナノ粒子ペーストは、高密度で金属ナノ粒子を含み、また、金属ナノ粒子の融点よりも低い温度(例えば、スズの場合150~200℃程度、銀、銅の場合250~350℃程度)で焼結可能である、すなわち低温焼結性を有するので、例えば、配線基板に電子部品を電気的かつ物理的に接合する導電性接合材料、導電性膜を形成する膜材料、特に、基板に配線パターンを形成する配線材料としての用途がある。
 導電性接合材料として使用する場合、配線基板上の電子部品を接合する位置に、金属ナノ粒子ペーストを塗布し、塗布した金属ナノ粒子ペースト膜上に電子部品を載置後、焼成処理して、配線基板上に電子部品を接合する。金属ナノ粒子ペーストの塗布方法は、特に限定されず、例えば、スクリーン印刷法、ディスペンサー法などが挙げられる。金属ナノ粒子ペーストの塗布量は、適宜調整可能であり、例えば、1~20μmの厚さにて塗布する。焼成温度は、金属ナノ粒子表面を被覆していた保護膜が金属ナノ粒子から分離されて金属ナノ粒子が相互に融着して低温焼結する温度であれば、特に限定されず、例えば、金属ナノ粒子がスズであって、保護膜が式(I-1)のソルビタン脂肪酸エステルの場合、150~200℃であり、好ましくは150~170℃、金属ナノ粒子が銅または銀であって、保護膜が式(I-1)のソルビタン脂肪酸エステルの場合、250~350℃であり、好ましくは280~320℃である。また、焼成時間は、適宜選択可能であり、例えば、5~120分である。使用する配線基板の材質は、特に限定されず、ガラス類、金属酸化物等の無機材料に加えて、本発明の金属ナノ粒子ペーストは低温焼結性を有するので、無機材料に比べて耐熱性の劣るポリエステル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、フッ素樹脂などの有機材料も使用できる。
 この使用方法例は、金属粒子がナノサイズなので、配線基板上の微細な領域にも電子部品を接合することができる。例えば、本発明の金属ナノ粒子ペーストは、従来のはんだでは印刷供給量のばらつきが問題となる0402チップや0.3mm以下の狭ピッチの実装領域などでも接合可能である。
 また、配線材料として使用する場合、基板上に、金属ナノ粒子ペーストにて所望の配線パターンを描画し、描画された配線パターンを焼成処理して、基板上に焼結した配線パターンを形成する。金属ナノ粒子ペーストの塗布方法は、配線パターンの形成可能な塗布方法であれば特に限定されず、例えば、スクリーン印刷法、インクジェット印刷法などが挙げられる。なお、金属ナノ粒子ペーストの塗布量、焼成条件、使用可能な基板の材質は、上記した導電性接合材料として使用する場合と同様である。この使用方法例は、金属粒子がナノサイズであることを利用して、微細な配線パターンの形成にも適用することができる。
 さらに、本発明の金属ナノ粒子ペーストは、銀を含有した金属ナノ粒子と、テルペンアルコール類の分散媒を使用すると、導電性に優れかつ高反射率を有する塗膜を形成できるので、金属ナノ粒子ペーストを塗工した回路基板にLED素子をダイボンダーを用いて接合してLEDモジュールを製造する際の、反射塗膜・接合用材料としても使用できる。
 次に、実施例を用いて本発明をさらに詳細に説明する。ただし、本発明は、以下に示す実施例の態様に限定されるものではない。
 実施例1~11、比較例1~6
 以下に、本発明の金属ナノ粒子ペーストを導電性接合材料として使用した実施例を説明する。
 (1)金属ナノ粒子ペーストの配合成分について
 導電性材料
・保護膜で被覆された金属ナノ粒子(以下、「被覆金属ナノ粒子」と表す)について
被覆金属ナノ粒子I:上記活性連続界面蒸着法にて、スズナノ粒子に式(I-1)のソルビタン脂肪酸エステルからなる保護膜を被覆したもの。
被覆金属ナノ粒子II:上記活性連続界面蒸着法にて、スズナノ粒子に式(IV-1)のオレイルアミンからなる保護膜を被覆したもの。
被覆金属ナノ粒子III:上記活性連続界面蒸着法にて、銀ナノ粒子に式(I-1)のソルビタン脂肪酸エステルからなる保護膜を被覆したもの。
被覆金属ナノ粒子IV:上記活性連続界面蒸着法にて、銅ナノ粒子に式(I-1)のソルビタン脂肪酸エステルからなる保護膜を被覆したもの。
熱分析(TG-DTA法)より、上記被覆金属ナノ粒子I~IVの保護膜成分の含有量はいずれも20質量%であった。
・金属粉について
SAC305はんだ粉:(株)タムラ製作所製、遠心アトマイズ法により作製。
乾粉スズナノ粒子:保護膜による被膜の無いもの。アルドリッチ(株)製、「Tin nanopowder」
 (2)導電性接合材料として使用する金属ナノ粒子ペーストの調製方法
 上記活性連続界面蒸着法により得られた、被覆金属ナノ粒子を20質量%含有したシクロヘキサン分散液を、メノウ乳鉢に所定量投入し減圧乾燥によりシクロヘキサン分を全て揮発させて保護膜成分を20質量%有した被覆金属ナノ粒子を得た。この被覆金属ナノ粒子に、所定量のカルボン酸類と所定量の溶剤とを加え、乳棒を用いて5分間混合することで導電性接合材料として使用する金属ナノ粒子ペーストを調製した。
 前記導電性接合材料の調製方法を用いて、下記表1に示す各成分を下記表1に示す配合割合にて配合することで、実施例1~11及び比較例1~6の金属ナノ粒子ペーストを調製した。下記表1に示す配合量は質量%を表す。
Figure JPOXMLDOC01-appb-T000015
 (3)性能評価
 (一)チップ導通抵抗
 表面に銅箔ランドが形成されたガラスエポキシ基板上に、上記のように調製した金属ナノ粒子ペーストを200μmtのメタルマスクを用いてメタルスキージで印刷し、YAMAHA(株)製チップマウンターを用いて抵抗値が0Ωであるスズめっきの1608CRチップを搭載した。そして、リフロー加熱(金属種がスズの被覆金属ナノ粒子を配合した実施例1~8と比較例1、3~4、乾粉スズナノ粒子を配合した比較例2、SAC305はんだ粉を配合した比較例5~6、並びにSAC305はんだ粉と同様の組成となるように、金属種がスズの被覆金属ナノ粒子、金属種が銀の被覆金属ナノ粒子及び金属種が銅の被覆金属ナノ粒子を配合した実施例11は、図1に示すリフロープロファイル(リフロー加熱時の酸素濃度は50ppm以下)、金属種が銀または銅の被覆金属ナノ粒子を配合した実施例9~10は、図2に示すリフロープロファイル(リフロー加熱時の酸素濃度は50ppm以下))にてガラスエポキシ基板上に搭載した1608CRチップを接合し、この接合体の導通抵抗の値を、岩通計測(株)製マイクロメーターを用いて測定した。
(二)チップ抵抗部品のせん断強度
 表面に銅箔ランドが形成されたガラスエポキシ基板上に、上記のように調製した金属ナノ粒子ペーストを150μmtのメタルマスクを用いてメタルスキージで印刷し、スズめっきの1608CRチップを銅箔ランドの印刷膜上に10個載置した。そして、リフロー加熱(金属種がスズの被覆金属ナノ粒子を配合した実施例1~8と比較例1、3~4、乾粉スズナノ粒子を配合した比較例2、SAC305はんだ粉を配合した比較例5~6、並びにSAC305はんだ粉と同様の組成となるように、金属種がスズの被覆金属ナノ粒子、金属種が銀の被覆金属ナノ粒子及び金属種が銅の被覆金属ナノ粒子を配合した実施例11は、図1のリフロープロファイル(リフロー加熱時の酸素濃度は50ppm以下)、金属種が銀または銅の被覆金属ナノ粒子を配合した実施例9~10は、図2のリフロープロファイル(リフロー加熱時の酸素濃度は50ppm以下))にてガラスエポキシ基板上に載置した1608CRチップを接合して試験片を作製した。この試験片について、引張り試験機(SHIMADZU(株)製EZ-L)を用いて、5mm/minの条件で1608CRチップのせん断強度を測定した。なお、測定結果は、せん断強度を測定した10個の1608CRチップの平均値である。
(三)表面状態
 上記(一)チップ導通抵抗と同様の方法にて作製した接合体について、基板・チップ間の接合部を目視にて観察した。評価は、下記4段階で行なった。
◎:金属光沢があり、表面が滑らかである。
○:金属光沢があるが、表面は滑らかではない。
△:金属光沢があまり無く、表面に凸凹と空泡有り。
×:金属光沢が無く加熱前と変化が無い。 
 実施例1~11、比較例1~6の評価結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000016
 表2のせん断強度について、「測定不可」とは、1608CRチップをガラスエポキシ基板上に接合できなかったために、せん断強度を測定できなかったことを意味する。
 表2に示すように、ソルビタン脂肪酸エステル膜が被覆された金属ナノ粒子とカルボン酸類とを配合した金属ナノ粒子ペースト(実施例1~4、6~10)及びオレイルアミン膜が被覆された金属ナノ粒子とカルボン酸類とを配合した金属ナノ粒子ペースト(実施例5)を用いて基板にチップを接合すると、チップ導通抵抗値が低くなり、優れた導通性を有する接合部を得ることができた。また、実施例1~10では、基板上に接合されたチップのせん断強度が増して接合部の機械的強度が向上し、接合部の表面状態も良好であった。実施例11に示すように、被覆金属ナノ粒子を金属ナノ粒子の金属種が3種類からなる混合品としても、優れた導通性を有する接合部を得ることができ、接合部の表面状態も良好であった。また、実施例11では、実施例1~10と比較して、特にチップのせん断強度が増して接合部の機械的強度がより向上した。
 実施例1、3~6、8~11と実施例2の比較から、ジグリコール酸、ジグリコール酸無水物またはオクテニルコハク酸無水物の配合比率を30質量%以上とすると、接合部の導通性、せん断強度及び表面状態のいずれも、より向上した。また、ジカルボン酸またはジカルボン酸の無水物を使用すると(実施例1、5、6、8~11)、モノカルボン酸を使用する場合(実施例7)と比較して、接合部の導通性、せん断強度及び表面状態のいずれも、より一層向上した。実施例9、10より、金属種が銀(実施例9)または銅(実施例10)である被覆金属ナノ粒子に、分散媒として高沸点の炭化水素系溶媒であるスクアランを用いると、接合部の導通性と表面状態が特に優れていた。
 一方、比較例1から、保護膜が被覆された金属ナノ粒子のペーストに保護膜分離剤であるカルボン酸類を配合せず、また、比較例3、4から、保護膜が被覆された金属ナノ粒子のペーストに保護膜分離剤としてカルボン酸類を配合しないと(比較例3ではアミンを配合、比較例4ではハロゲン系活性剤を配合)、いずれも、接合自体が不十分となり、接合部の導通性も認められなかった。さらに、接合部の表面状態も不良であった。また、比較例2、6から、保護膜で被覆されていない金属ナノ粒子や従来のはんだ粉を用いたペーストにカルボン酸類を配合しても、チップ導通抵抗が高く、接合部の導通性は劣っていた。また、比較例2、5、6は、比較例1、3、4と同様に、接合が不十分で、接合部の表面状態も不良であった。
 実施例12~14、比較例7
 以下に、本発明の金属ナノ粒子ペーストを配線材料として使用した実施例を説明する。
 (1)金属ナノ粒子ペーストの配合成分について
 導電性材料
被覆金属ナノ粒子III、被覆金属ナノ粒子IVは、上記した金属ナノ粒子ペーストを導電性接合材料として使用した実施例と同様である。
金属ナノ粒子VIは、保護膜による被膜の無いもの。
 (2)配線材料として使用する金属ナノ粒子ペーストの調製方法
 上記活性連続界面蒸着法により得られた、被覆金属ナノ粒子を20質量%含有したシクロヘキサン分散液を、メノウ乳鉢に所定量投入し減圧乾燥によりシクロヘキサン分を全て揮発させて保護膜成分を20質量%有した被覆金属ナノ粒子を得た。この被覆金属ナノ粒子に、所定量のカルボン酸類と所定量の溶剤とを加え、乳棒を用いて5分間混合することで配線材料として使用する金属ナノ粒子ペーストを調製した。
 前記配線材料の調製方法を用いて、下記表3に示す各成分を下記表3に示す配合割合にて配合することで、実施例12~14及び比較例7の金属ナノ粒子ペーストを調製した。
下記表3に示す配合量は質量%を表す。
Figure JPOXMLDOC01-appb-T000017
(3)性能評価
(四)体積抵抗
 スライドガラス上に、上記のように調製した金属ナノ粒子ペーストをスクリーン印刷で長さ5cm×幅1cm塗布し、下記表4に示す焼成条件(図2にリフロープロファイルを示す)にて塗膜を焼成後、膜厚を測定し、岩通計測(株)製マイクロメーターを用いて抵抗値を測定することにより、体積抵抗(比抵抗)値を算出した。
 実施例12~14、比較例7の評価結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000018
 表4に示すように、ソルビタン脂肪酸エステル膜で表面が被覆された金属ナノ粒子にカルボン酸類を配合すると、体積抵抗値が抑えられた配線パターンを形成できた。
 実施例15~19、比較例8~10
 以下に、本発明の金属ナノ粒子ペーストについて、高反射率を有する塗膜・接合用材料として使用した実施例を説明する。
 (1)金属ナノ粒子ペーストの配合成分について
 導電性材料
・被覆金属ナノ粒子IIIは、上記した金属ナノ粒子ペーストを導電性接合材料として使用した実施例の被覆金属ナノ粒子IIIと同様である。
・銀粉は、福田金属(株)製、「AgC-A」。
 分散媒
・ターピネオールC:日本テルペン(株)製、α-テルピネオール、β-テルピネオール及びγ-テルピネオールの混合物。既存化学物質番号3-2323、CAS.No.8000-41-7、純度85質量%以上。
・ジヒドロターピネオール:日本テルペン(株)製、1-ヒドロキシ-p-メンタン及び8-ヒドロキシ-p-メンタンの混合物。既存化学物質番号3-2315、CAS.No.498-81-7、純度96質量%以上。
 (2)基板の塗膜(反射塗膜・LED素子接合用材料)として使用する被覆金属ナノ粒子ペーストの調製方法
 上記活性連続界面蒸着法により得られた、被覆金属ナノ粒子を20質量%含有したシクロヘキサン分散液を、メノウ乳鉢に所定量投入し減圧乾燥によりシクロヘキサン分を全て揮発させて保護膜成分を20質量%有した被覆金属ナノ粒子を得た。この被覆金属ナノ粒子に、所定量のカルボン酸類と所定量の溶剤とを加え、乳棒を用いて5分間混合することでLED素子の基板への接合材料として使用する金属ナノ粒子ペーストを調製した。
 前記調製方法を用いて、下記表5に示す各成分を下記表5に示す配合割合にて配合することで、実施例15~19及び比較例8~10の金属ナノ粒子ペーストを調製した。下記表5に示す配合量は質量%を表す。
Figure JPOXMLDOC01-appb-T000019
 (3)性能評価
(五)反射率
 6cm×3cmのスライドガラス上に、上記のように調製した金属ナノ粒子ペーストを200μmtのメタルマスクを用いてメタルスキージで印刷した。印刷後、下記表6に示す焼成条件にて加熱(金属種が銀の被覆金属ナノ粒子を配合した実施例15~19のうちの実施例15、18、19と比較例8~10は図2に示すリフロープロファイル、実施例16は図3に示すリフロー加熱プロファイル、実施例17は図4に示すリフロー加熱プロファイル)して、スライドガラス上に3cm×2cmの金属塗膜を形成した。焼成した前記金属塗膜について、日立ハイテク(株)製の分光光度計「日立分光光度計U-4100」を用いて、450nmにおける金属塗膜の反射率を測定した。また、250~800μmの範囲における反射率の最大値もあわせて測定した。反射率の測定は、実施例、比較例ともに、YAGレーザーにて入射角10°として行なったものであり、アルミナを基準試料(日立ハイテク(株)製「酸化アルミニウム製標準白色板」)として入射角10°におけるその反射率を100とした場合の、全光相対反射率として測定した。
(六)塗膜の状態
 上記(五)と同様の方法で形成した金属塗膜を目視にて観察した。金属塗膜にひび割れが生じずに均一に塗工されているものを「均一」、金属塗膜にひび割れが生じて実用に適しないものを「ひび割れ」と評価した。
 なお、体積抵抗は上記(四)、チップ抵抗部品のせん断強度は上記(二)と同様の手法で測定した。
 実施例15~19、比較例8~10の評価結果を下記表6に示す。
Figure JPOXMLDOC01-appb-T000020
 表6に示すように、被覆金属ナノ粒子の金属種を銀とし、分散媒にテルペンアルコール類を使用すると、低体積抵抗値と高反射率を有し、チップ抵抗部品のせん断強度に優れた塗膜を得ることができた。また、実施例15~19と比較例8、9より、分散媒にテルペンアルコール類を使用することにより、塗膜のひび割れを防止しつつ反射率を向上させることができた。焼成の雰囲気を不活性ガスではなく大気とすることで塗膜の反射率をさらに向上させることができた。また、実施例15~17、19より、加熱温度を250℃、特に300℃とすることで、塗膜の反射率をさらに向上させることができた。
 本発明の金属ナノ粒子ペーストは、金属ナノ粒子の融点よりも低温の熱処理で基板と電子部品を電気的に接合でき、また前記低温の熱処理で基板上に配線パターンを形成できるので、基板上に電子部品を実装する分野で利用価値が高い。また、銀を含有した金属ナノ粒子とテルペンアルコール類とを配合した金属ナノ粒子ペーストは、反射率と熱伝導性にも優れるので、特に、基板の反射塗膜材料及びLED素子を接合する接合材料として利用価値が高い。

Claims (16)

  1.  (A)金属ナノ粒子と、(B)前記金属ナノ粒子の表面を被覆する保護膜と、(C)カルボン酸類と、(D)分散媒とを含むことを特徴とする金属ナノ粒子ペースト。
  2.  前記(A)金属ナノ粒子の平均一次粒子径が、1~100nmであることを特徴とする請求項1に記載の金属ナノ粒子ペースト。
  3.  前記(A)金属ナノ粒子が、金、銀、銅、白金、パラジウム、ニッケル、ビスマス、鉛、インジウム、スズ、亜鉛、チタン、アルミニウム及びアンチモンからなる群から選択された少なくとも一種の金属であることを特徴とする請求項1または2に記載の金属ナノ粒子ペースト。
  4.  前記(A)金属ナノ粒子が、金、銀、銅、白金、パラジウム、ニッケル、ビスマス、鉛、インジウム、スズ、亜鉛、チタン、アルミニウム及びアンチモンからなる群から選択された少なくとも一種の金属合金であることを特徴とする請求項1または2に記載の金属ナノ粒子ペースト。
  5.  前記(A)金属ナノ粒子がスズであり、前記スズの平均一次粒子径が1~50nmであることを特徴とする請求項1乃至4のいずれか1項に記載の金属ナノ粒子ペースト。
  6.  前記(B)金属ナノ粒子の表面を被覆する保護膜が、前記(A)金属ナノ粒子と孤立電子対による配位的な結合が可能である、酸素原子、窒素原子または硫黄原子を含んだ基を有する有機化合物を含むことを特徴とする請求項1に記載の金属ナノ粒子ペースト。
  7.  前記酸素原子を含んだ基がヒドロキシ基(-OH)またはオキシ基(-O-)、前記窒素原子を含んだ基がアミノ基(-NH2)、前記硫黄原子を含んだ基がスルファニル基(-SH)であることを特徴とする請求項6に記載の金属ナノ粒子ペースト。
  8.  前記酸素原子を含んだ基を有する有機化合物が、下記一般式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1、R2、R3はそれぞれ独立に、炭素数2~20の一価の基で、飽和炭化水素基または不飽和炭化水素基を示す。)で表される化合物であることを特徴とする請求項6または7に記載の金属ナノ粒子ペースト。
  9.  前記窒素原子を含んだ基を有する有機化合物が、下記一般式(IV)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは炭素数2~20の一価の基で、飽和炭化水素基または不飽和炭化水素基を示す。)で表される化合物であることを特徴とする請求項6または7に記載の金属ナノ粒子ペースト。
  10.  前記(C)カルボン酸類が、モノカルボン酸若しくはその無水物、またはジカルボン酸若しくはその無水物であることを特徴とする請求項1に記載の金属ナノ粒子ペースト。
  11.  前記モノカルボン酸が、下記一般式(II)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、炭素数6~10の一価の基で、飽和炭化水素基または不飽和炭化水素基を示す。)で表される化合物であることを特徴とする請求項10に記載の金属ナノ粒子ペースト。
  12.  前記ジカルボン酸が、下記一般式(III)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは、エーテル結合を有していてもよい炭素数1~12の二価の基を示す。)で表される化合物であることを特徴とする請求項10に記載の金属ナノ粒子ペースト。
  13.  前記(A)金属ナノ粒子が銀を含んでおり、前記(D)分散媒がテルペンアルコール類であることを特徴とする請求項1に記載の金属ナノ粒子ペースト。
  14.  請求項1乃至13のいずれか1項に記載の金属ナノ粒子ペーストを用いて基板に電子部品を実装したことを特徴とする電子部品接合体。
  15.  請求項13に記載の金属ナノ粒子ペーストにて、基板にLED素子を接合したことを特徴とするLEDモジュール。
  16.  請求項1乃至13のいずれか1項に記載の金属ナノ粒子ペーストを用いてスクリーン印刷法またはインクジェット法によりプリント配線板上に電極及び配線パターンを形成し、250℃以上で加熱することにより前記配線パターンを焼成処理することを特徴とするプリント配線板の回路形成方法。
PCT/JP2011/062687 2010-06-16 2011-06-02 金属ナノ粒子ペースト、並びに金属ナノ粒子ペーストを用いた電子部品接合体、ledモジュール及びプリント配線板の回路形成方法 WO2011158659A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127032833A KR101867978B1 (ko) 2010-06-16 2011-06-02 금속 나노 입자 페이스트, 금속 나노 입자 페이스트를 이용한 전자 부품 접합체, led 모듈, 및 프린트 배선판의 회로 형성 방법
US13/704,581 US20130265735A1 (en) 2010-06-16 2011-06-02 Metal nanoparticle paste, electronic component assembly using metal nanoparticle paste, led module, and method for forming circuit for printed wiring board
CN201180029624.0A CN103003891B (zh) 2010-06-16 2011-06-02 金属纳米粒子糊

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010137494 2010-06-16
JP2010-137494 2010-06-16
JP2010286550A JP5811314B2 (ja) 2010-06-16 2010-12-22 金属ナノ粒子ペースト、並びに金属ナノ粒子ペーストを用いた電子部品接合体、ledモジュール及びプリント配線板の回路形成方法
JP2010-286550 2010-12-22

Publications (1)

Publication Number Publication Date
WO2011158659A1 true WO2011158659A1 (ja) 2011-12-22

Family

ID=45348067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062687 WO2011158659A1 (ja) 2010-06-16 2011-06-02 金属ナノ粒子ペースト、並びに金属ナノ粒子ペーストを用いた電子部品接合体、ledモジュール及びプリント配線板の回路形成方法

Country Status (6)

Country Link
US (1) US20130265735A1 (ja)
JP (1) JP5811314B2 (ja)
KR (1) KR101867978B1 (ja)
CN (1) CN103003891B (ja)
TW (1) TWI516556B (ja)
WO (1) WO2011158659A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145699A (ja) * 2012-01-16 2013-07-25 Murata Mfg Co Ltd 金属粉末、その製造方法、導電性ペースト、および電子部品
US20140183421A1 (en) * 2012-12-28 2014-07-03 Nthdegree Technologies Worldwide, Inc. Nickel inks and oxidation resistant and conductive coatings
EP2812139A4 (en) * 2012-02-10 2015-07-01 Lockheed Corp NANOPARTICLE PASTE FORMULATIONS AND METHOD FOR THE PRODUCTION AND USE THEREOF
WO2016076306A1 (ja) * 2014-11-12 2016-05-19 ハリマ化成株式会社 導電性ペースト
WO2024111095A1 (ja) * 2022-11-24 2024-05-30 花王株式会社 接合用組成物、及び接合体の製造方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153076B2 (ja) * 2013-05-22 2017-06-28 株式会社豊田中央研究所 金属ナノ粒子ペースト、それを含有する接合材料、及びそれを用いた半導体装置
US10507524B2 (en) 2013-07-25 2019-12-17 Ishihara Sangyo Kaisha, Ltd. Metallic copper dispersion, method for manufacturing same, and usage for same
US9053405B1 (en) * 2013-08-27 2015-06-09 Flextronics Ap, Llc Printed RFID circuit
US10174208B2 (en) 2013-11-22 2019-01-08 Toyo Seikan Group Holdings, Ltd. Curable resin composition having antibacterial power
WO2015098658A1 (ja) * 2013-12-24 2015-07-02 Dic株式会社 金属ナノ粒子を含有する接合用材料
EP2942129B1 (de) * 2014-05-05 2017-07-05 Heraeus Deutschland GmbH & Co. KG Metallpaste und deren Verwendung zum Verbinden von Bauelementen
JP6373066B2 (ja) * 2014-05-30 2018-08-15 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
JP6367013B2 (ja) * 2014-06-05 2018-08-01 三井金属鉱業株式会社 スズ粉及びその製造方法
US9966479B2 (en) * 2014-06-12 2018-05-08 E I Du Pont De Nemours And Company Aluminum-tin paste and its use in manufacturing solderable electrical conductors
CN104259455B (zh) * 2014-09-17 2016-08-17 长沙市宇顺显示技术有限公司 纳米铜粉的在线包覆制备方法及装置
KR102101474B1 (ko) 2015-12-15 2020-04-16 주식회사 엘지화학 금속 페이스트 및 열전 모듈
US11311942B2 (en) 2016-01-29 2022-04-26 Hewlett-Packard Development Company, L.P. Metal-connected particle articles
US20170283629A1 (en) * 2016-03-29 2017-10-05 University Of North Texas Metal-based ink for additive manufacturing process
JP6796448B2 (ja) * 2016-10-20 2020-12-09 Dowaエレクトロニクス株式会社 導電性ペーストおよびその製造方法、ならびに太陽電池セル
WO2018168187A1 (ja) * 2017-03-15 2018-09-20 日立化成株式会社 接合用金属ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法
WO2019093119A1 (ja) * 2017-11-13 2019-05-16 京セラ株式会社 ペースト組成物、半導体装置及び電気・電子部品
CN110294965A (zh) * 2018-03-21 2019-10-01 Tcl集团股份有限公司 墨水及其制备方法
US11515281B2 (en) * 2019-04-22 2022-11-29 Panasonic Holdings Corporation Bonded structure and bonding material
CN110967889A (zh) * 2019-12-23 2020-04-07 Tcl华星光电技术有限公司 显示面板
JP7561698B2 (ja) * 2021-06-18 2024-10-04 スタンレー電気株式会社 車載用灯具

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035554A1 (fr) * 2000-10-25 2002-05-02 Harima Chemicals, Inc. Pate metallique electro-conductrice et procede de production de cette pate
JP2009097074A (ja) * 2007-09-27 2009-05-07 Mitsuboshi Belting Ltd 金属ナノ粒子ペーストおよびパターン形成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4205393B2 (ja) 2002-09-26 2009-01-07 ハリマ化成株式会社 微細配線パターンの形成方法
JP4414145B2 (ja) * 2003-03-06 2010-02-10 ハリマ化成株式会社 導電性ナノ粒子ペースト
JP2005026081A (ja) 2003-07-02 2005-01-27 Nippon Paint Co Ltd 導電性金属ペースト、導電性ペースト用添加剤、及び、導電性構造物
WO2005025787A1 (ja) 2003-09-12 2005-03-24 National Institute Of Advanced Industrial Science And Technology 微細な液滴の形状で噴射し、積層塗布可能な金属ナノ粒子分散液
JP4246134B2 (ja) * 2003-10-07 2009-04-02 パナソニック株式会社 半導体素子の実装方法、及び半導体素子実装基板
JP5164239B2 (ja) * 2006-09-26 2013-03-21 Dowaエレクトロニクス株式会社 銀粒子粉末、その分散液および銀焼成膜の製造法
JP2008150630A (ja) 2006-12-14 2008-07-03 National Institute For Materials Science 微粒子コロイド製造方法とそれを実施するための装置
JP2009068053A (ja) * 2007-09-11 2009-04-02 Dowa Electronics Materials Co Ltd 銀粒子の製造方法および銀粒子分散液
JP2010095789A (ja) * 2007-12-26 2010-04-30 Dowa Electronics Materials Co Ltd 金属粒子分散液、塗膜、金属膜および導電ペースト並びに金属膜の製造方法
JP5399110B2 (ja) * 2008-04-23 2014-01-29 トヨタ自動車株式会社 接合材料及び接合材料の成分算出方法
JP5301385B2 (ja) * 2008-10-29 2013-09-25 ニホンハンダ株式会社 金属製部材用接合剤、金属製部材接合体の製造方法、金属製部材接合体および電気回路接続用バンプの製造方法
JP5176893B2 (ja) * 2008-11-18 2013-04-03 日立金属株式会社 はんだボール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002035554A1 (fr) * 2000-10-25 2002-05-02 Harima Chemicals, Inc. Pate metallique electro-conductrice et procede de production de cette pate
JP2009097074A (ja) * 2007-09-27 2009-05-07 Mitsuboshi Belting Ltd 金属ナノ粒子ペーストおよびパターン形成方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145699A (ja) * 2012-01-16 2013-07-25 Murata Mfg Co Ltd 金属粉末、その製造方法、導電性ペースト、および電子部品
EP2812139A4 (en) * 2012-02-10 2015-07-01 Lockheed Corp NANOPARTICLE PASTE FORMULATIONS AND METHOD FOR THE PRODUCTION AND USE THEREOF
US20140183421A1 (en) * 2012-12-28 2014-07-03 Nthdegree Technologies Worldwide, Inc. Nickel inks and oxidation resistant and conductive coatings
CN104870578A (zh) * 2012-12-28 2015-08-26 无限科技全球公司 镍墨水和抗氧化剂和导电涂料
US9815998B2 (en) 2012-12-28 2017-11-14 Printed Energy Pty Ltd Nickel inks and oxidation resistant and conductive coatings
US10329444B2 (en) * 2012-12-28 2019-06-25 Printed Energy Pty Ltd Nickel inks and oxidation resistant and conductive coatings
US10961408B2 (en) 2012-12-28 2021-03-30 Printed Energy Pty Ltd Nickel inks and oxidation resistant and conductive coatings
WO2016076306A1 (ja) * 2014-11-12 2016-05-19 ハリマ化成株式会社 導電性ペースト
JPWO2016076306A1 (ja) * 2014-11-12 2017-08-24 ハリマ化成株式会社 導電性ペースト
WO2024111095A1 (ja) * 2022-11-24 2024-05-30 花王株式会社 接合用組成物、及び接合体の製造方法
WO2024111501A1 (ja) * 2022-11-24 2024-05-30 花王株式会社 銅ナノ粒子含有組成物

Also Published As

Publication number Publication date
CN103003891A (zh) 2013-03-27
JP5811314B2 (ja) 2015-11-11
KR20130107207A (ko) 2013-10-01
CN103003891B (zh) 2015-06-24
KR101867978B1 (ko) 2018-06-15
TWI516556B (zh) 2016-01-11
US20130265735A1 (en) 2013-10-10
JP2012023014A (ja) 2012-02-02
TW201207055A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5811314B2 (ja) 金属ナノ粒子ペースト、並びに金属ナノ粒子ペーストを用いた電子部品接合体、ledモジュール及びプリント配線板の回路形成方法
JP5887086B2 (ja) 導電性材料
JP6214600B2 (ja) 接合材料および接合体
JP4928639B2 (ja) 接合材およびそれを用いた接合方法
JP4353380B2 (ja) ペースト状銀粒子組成物、固形状銀の製造方法、固形状銀、接合方法およびプリント配線板の製造方法
KR101709302B1 (ko) 저온 소결성 접합재 및 상기 접합재를 이용한 접합 방법
JP3764349B2 (ja) 金属微粒子分散液を用いたメッキ代替導電性金属皮膜の形成方法
JPWO2002035554A1 (ja) 導電性金属ペースト及びその製造方法
JP2012084514A (ja) 焼結される銀ペーストにおける溶媒としての、脂肪族炭化水素およびパラフィンの使用
JP5011225B2 (ja) 金属製部材用接合剤、金属製部材接合体の製造方法、金属製部材接合体、および電気回路接続用バンプの製造方法
KR20130034013A (ko) 접합재 및 이것을 이용한 접합방법
TW201841843A (zh) 導電性組成物及端子電極之製造方法
JP2016525495A (ja) 焼結が難しい貴金属表面および非貴金属表面上に酸化銀が被覆された焼結ペースト
JP5468885B2 (ja) 導電性アルミニウムペースト
TWI690946B (zh) 導電性糊劑
TW201729304A (zh) 接合用組成物
JP5988762B2 (ja) 金属被膜の形成方法、スルーホール用導電性被膜の形成方法及び電子部品の固定方法
JP6669420B2 (ja) 接合用組成物
JP2017100176A (ja) Au−Snはんだ粉末及びこの粉末を含むはんだ用ペースト
JP4106447B2 (ja) 導電性金ペーストを用いた無電解金メッキ代替導電性金皮膜の形成方法
JP5707726B2 (ja) 導電性金属ペースト用金属微粒子および導電性金属ペーストならびに金属膜
JP7184847B2 (ja) 金属粉焼結ペースト及びその製造方法、導電性材料の製造方法
JP2017128782A (ja) ニッケル微粒子含有組成物及び接合材
JP2016129101A (ja) 複合粒子及びその製造方法、導電性ペースト、焼結体、並びに半導体装置
TW201627096A (zh) 接合用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127032833

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13704581

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11795567

Country of ref document: EP

Kind code of ref document: A1