WO2018168187A1 - 接合用金属ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法 - Google Patents

接合用金属ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2018168187A1
WO2018168187A1 PCT/JP2018/001442 JP2018001442W WO2018168187A1 WO 2018168187 A1 WO2018168187 A1 WO 2018168187A1 JP 2018001442 W JP2018001442 W JP 2018001442W WO 2018168187 A1 WO2018168187 A1 WO 2018168187A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal paste
bonding
mass
acid
particles
Prior art date
Application number
PCT/JP2018/001442
Other languages
English (en)
French (fr)
Inventor
祐貴 川名
偉夫 中子
征央 根岸
石川 大
千絵 須鎌
芳則 江尻
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to US16/493,427 priority Critical patent/US11370066B2/en
Priority to CN201880017472.4A priority patent/CN110461504B/zh
Priority to EP18767237.3A priority patent/EP3597330A4/en
Priority to KR1020197022623A priority patent/KR102499022B1/ko
Priority to SG11201908356W priority patent/SG11201908356WA/en
Priority to JP2019505730A priority patent/JP7222346B2/ja
Publication of WO2018168187A1 publication Critical patent/WO2018168187A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F7/064Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using an intermediate powder layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3618Carboxylic acids or salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49582Metallic layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/058Particle size above 300 nm up to 1 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • H01L2021/60007Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • H01L2224/40491Connecting portions connected to auxiliary connecting means on the bonding areas being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48175Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a bonding metal paste, a bonded body and a manufacturing method thereof, and a semiconductor device and a manufacturing method thereof.
  • Patent Document 1 proposes a technique for sintering silver nanoparticles at a low temperature to form a sintered silver layer. It is known that such sintered silver has high connection reliability with respect to the power cycle (see Non-Patent Document 1).
  • Patent Document 2 discloses a bonding paste containing cupric oxide particles and a reducing agent as a bonding material for bonding a semiconductor element and an electrode.
  • Patent Document 3 discloses a bonding material containing copper nanoparticles and copper microparticles or copper submicroparticles, or both.
  • the residual thermal stress between the semiconductor element and the support member is large, characteristic changes due to thermal strain on the semiconductor element and damage such as cracks on the semiconductor element, the bonding material, and the support member occur. Therefore, the residual thermal stress between the semiconductor element and the support member can cause a decrease in yield and long-term reliability.
  • the lower the temperature at which the semiconductor element and the support member are joined joint temperature
  • the bonding temperature is low, the energy required for manufacturing can be reduced. Therefore, the lower the bonding temperature between the semiconductor element and the support member, the better.
  • the bonding temperature is 250 ° C. or lower, an organic substrate such as a glass epoxy substrate can be applied as the support member, and application to logic, sensors, passive components, and the like becomes possible.
  • Patent Document 4 As a method for reducing the bonding temperature, a method using a low melting point alloy for solder (see Patent Document 4), a method for increasing the melting point by diffusing different metals into an alloy after melting the solder and forming an alloy (Patent Document 5). See also)).
  • the present invention has been made in view of the above circumstances, and a bonding metal paste that can be bonded at a low temperature of 250 ° C. or less and that can provide a bonded body having sufficient bonding strength, and the bonding metal paste It is an object of the present invention to provide a joined body including the sintered body and a manufacturing method thereof, a semiconductor device including the sintered body of the joining metal paste, and a manufacturing method thereof.
  • the inventors of the present invention have studied and studied a conventionally known sintered copper die-bonding material using a copper particle sintering phenomenon.
  • the conventional sintered copper die-bonding material is excellent in thermal conductivity and cycle fatigue resistance and has the features of being inexpensive, it requires a high temperature of 280 ° C. or higher for joining the sintered copper die-bonding material.
  • the present inventors have determined that, in a bonding metal paste containing copper particles, a combination of copper particles having a specific volume average particle size and a specific amount of a specific carboxylic acid at a low temperature. As a result, it was found that a bonded body having sufficient bonding strength was obtained, and the present invention was completed.
  • the bonding metal paste according to one aspect of the present invention contains metal particles and a monovalent carboxylic acid having 1 to 9 carbon atoms.
  • the metal particles include sub-micro copper particles having a volume average particle size of 0.12 to 0.8 ⁇ m, and the content of the monovalent carboxylic acid having 1 to 9 carbon atoms is 100 The amount is 0.015 to 0.2 parts by mass with respect to parts by mass.
  • bonding can be performed at a low temperature of 250 ° C. or lower, and a bonded body with sufficient bonding strength can be obtained.
  • bonding without pressure pressureless bonding
  • a bonded body having sufficient bonding strength can be obtained even with pressureless bonding.
  • the bonding metal paste further contains a carboxylic acid having 10 or more carbon atoms.
  • the content of the carboxylic acid having 10 or more carbon atoms is 0.07 to 2.10 parts by mass with respect to 100 parts by mass of the metal particles. In this aspect, the effect of the present invention is remarkable.
  • the metal particles further include flaky micro copper particles having a maximum diameter of 2 to 50 ⁇ m and an aspect ratio of 3.0 or more.
  • the content of the sub-micro copper particles is 30 to 90% by mass based on the total mass of the metal particles
  • the content of the micro-copper particles is 10 to 70 based on the total mass of the metal particles. % By mass.
  • the volume shrinkage when the bonding metal paste is sintered can be sufficiently reduced, and it becomes easy to secure the bonding strength of the bonded body manufactured by sintering the bonding metal paste. When the paste is used for joining semiconductor elements, the semiconductor device tends to exhibit better die shear strength and connection reliability.
  • the metal particles further include at least one metal particle selected from the group consisting of zinc and silver in an amount of 0.01 to 10% by mass based on the total mass of the metal particles.
  • the adherend is gold or silver, the bonding force is improved.
  • the monovalent carboxylic acid having 1 to 9 carbon atoms includes at least one selected from the group consisting of acetic acid, hexanoic acid and butyric acid. In this aspect, the effect of the present invention is remarkable.
  • the bonding metal paste contains a solvent component in an amount of 2 to 50% by mass based on the total mass of the bonding metal paste.
  • the bonding metal paste can be adjusted to a more appropriate viscosity, and the sintering of the copper particles is hardly hindered.
  • the solvent component includes a solvent component having a boiling point of 300 ° C. or higher.
  • the content of the solvent component having a boiling point of 300 ° C. or higher is 2 to 50% by mass based on the total mass of the bonding metal paste.
  • plasticity and adhesion are imparted to the joining metal paste until just before the start of sintering, and joining without pressure is facilitated.
  • the solvent component having a boiling point of 300 ° C. or higher includes at least one selected from the group consisting of isobornylcyclohexanol, tributyrin, butyl stearate, and octyl octoate. In this aspect, joining without pressure is further facilitated.
  • the method for manufacturing a joined body provides a laminated body in which the first member, the joining metal paste, and the second member are laminated in this order, A step of sintering at 250 ° C. or lower in a state where the first member receives its own weight or in a state where the first member receives its own weight and a pressure of 0.01 MPa or less.
  • a bonded body having sufficient bonding strength can be obtained by using the bonding metal paste.
  • the residual thermal stress between members can be reduced, the occurrence of damage such as cracks to the members can be prevented, and the yield improvement effect due to thermal strain reduction can be obtained. Further, the energy of the joining process can be reduced.
  • a method for manufacturing a semiconductor device provides a laminate in which a first member, the above-described bonding metal paste, and a second member are stacked in this order, A step of sintering at 250 ° C. or lower in a state where the first member receives its own weight or in a state where the first member receives its own weight and a pressure of 0.01 MPa or less.
  • at least one of the first member and the second member is a semiconductor element. According to this manufacturing method, a semiconductor device having sufficient bonding strength can be obtained by using the bonding metal paste.
  • the residual thermal stress between members can be reduced, it is possible to prevent changes in characteristics due to thermal strain on the semiconductor and the occurrence of damage such as cracks on the member, and the yield improvement effect due to thermal strain reduction can be obtained.
  • the energy of the bonding process can be reduced, and the semiconductor device manufactured by this manufacturing method can be excellent in connection reliability.
  • a joined body includes a first member, a second member, and a sintered body of the joining metal paste for joining the first member and the second member.
  • the first member and the second member are joined via the sintered body of the joining metal paste having a sufficient joining force.
  • this joined body can be excellent in the heat dissipation of a member by providing the sintered compact of the joining metal paste containing copper excellent in thermal conductivity.
  • At least one of the first member and the second member includes at least one metal selected from the group consisting of copper, nickel, silver, gold, and palladium on a surface in contact with the sintered body.
  • the adhesion between at least one of the first member and the second member and the sintered body can be further enhanced.
  • a semiconductor device includes a first member, a second member, and a sintered body of the joining metal paste for joining the first member and the second member.
  • this semiconductor device at least one of the first member and the second member is a semiconductor element.
  • This semiconductor device has a sufficient bond strength, has a sufficient die shear strength, and has excellent connection reliability by including a sintered body of a bonding metal paste containing copper having a high thermal conductivity and a high melting point. , It can be excellent in power cycle resistance.
  • a bonding metal paste that can be bonded at a low temperature of 250 ° C. or lower and that can obtain a bonded body having sufficient bonding strength, a bonded body including a sintered body of the bonding metal paste, and A manufacturing method thereof, a semiconductor device including a sintered body of the joining metal paste, and a manufacturing method thereof can be provided.
  • FIG. 3 is a schematic cross sectional view for illustrating the method for manufacturing the semiconductor device shown in FIG. 2.
  • FIG. 2 It is a schematic cross section which shows an example of the joined body manufactured using the metal paste for joining of this embodiment.
  • FIG. 3 is a schematic cross sectional view for illustrating the method for manufacturing the semiconductor device shown in FIG. 2.
  • FIG. 2 is a schematic cross section which shows an example of the joined body manufactured using the metal paste for joining of this embodiment.
  • FIG. 2 It is a schematic cross section which shows an example of the joined body manufactured using the metal paste for joining of this embodiment.
  • each component in the bonding metal paste is the sum of the plurality of substances present in the bonding metal paste unless there is a specific notice when there are multiple substances corresponding to each component in the bonding metal paste.
  • the numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or lower limit value of a numerical range of a certain step may be replaced with the upper limit value or lower limit value of the numerical range of another step.
  • the upper limit value and the lower limit value described in the present specification can be arbitrarily combined. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the term “layer” includes a structure formed in a part in addition to a structure formed in the entire surface when observed as a plan view.
  • the metal paste for joining of this embodiment is used in order to join a plurality of members, for example.
  • This bonding metal paste contains at least metal particles and a monovalent carboxylic acid having 1 to 9 carbon atoms.
  • the metal particles include sub-micro copper particles having a volume average particle size of 0.12 to 0.8 ⁇ m, and the content of the monovalent carboxylic acid having 1 to 9 carbon atoms is 100 The amount is 0.015 to 0.2 parts by mass with respect to parts by mass.
  • bonding can be performed at a low temperature of 250 ° C. or lower, and a bonded body with sufficient bonding strength can be obtained. Moreover, according to the metal paste for joining which concerns on this embodiment, sufficient joining strength is obtained even if it is no pressure. As described above, when the bonding metal paste according to the present embodiment is used, a thermocompression process involving pressurization is not necessary, and thermal stress generated between members having different thermal expansion coefficients, such as a chip and a substrate, is generated. Since the distortion of the bonded body due to heat can be reduced, production stability can be further improved when manufacturing a bonded body such as a semiconductor device.
  • the invention can also be applied to the case where a heat-sensitive material such as a glass epoxy substrate is included.
  • the metal paste for joining which concerns on this embodiment also contributes to the low energy of a joining process.
  • the bonding metal paste according to this embodiment can be advantageous in terms of cost.
  • copper particles used in bonding metal pastes are carboxylic acids having 10 or more carbon atoms (for example, long-chain alkylcarboxylic acids having an alkyl group having 9 or more carbon atoms) for the purpose of suppressing oxidation and improving dispersibility.
  • Acid This carboxylic acid is densely adsorbed on the surface of the copper particles to form a layer (for example, a long-chain alkyl carboxylic acid layer), thereby exhibiting an oxidation suppressing effect on the copper particle surface and an aggregation suppressing effect on the metal particles.
  • the densely adsorbed carboxylic acid hinders the contact of the copper particles, and therefore hinders the sintering of the bonding metal paste.
  • the carboxylic acid that coats the surface of the copper particles is thermally decomposed or thermally desorbed to advance the sintering. This is one of the reasons why a high temperature of 280 ° C. or higher (for example, 280 to 350 ° C.) is required for bonding of the sintered copper die bond material.
  • the substitution of the carboxylic acid having 10 or more carbon atoms and the monovalent carboxylic acid having 1 to 9 carbon atoms occurs, so that the carboxylic acid present on the surface of the bonding metal paste during sintering is reduced. It becomes a carboxylic acid of a molecule and is easily volatilized and removed, and the above-described substitution disturbs the packing of the carboxylic acid having 10 or more carbon atoms, and the carboxylic acid having 10 or more carbon atoms is easily detached during sintering, so that the above effect can be obtained. I guess.
  • the monovalent carboxylic acid having 1 to 9 carbon atoms is, for example, a carboxylic acid having a hydrocarbon group having 1 to 8 carbon atoms and one carboxyl group.
  • the hydrocarbon group may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group, and may be linear, branched or cyclic.
  • the monovalent carboxylic acid having 1 to 9 carbon atoms preferably has no hydroxy group.
  • the carbon number of the monovalent carboxylic acid having 1 to 9 carbon atoms is preferably 2 or more, more preferably from the viewpoint of further improving the bonding strength and the effect of reducing the sintering temperature. 4 or more. From the same viewpoint, the carbon number of the monovalent carboxylic acid having 1 to 9 carbon atoms is preferably 6 or less. That is, the carbon number of the monovalent carboxylic acid having 1 to 9 carbon atoms is preferably 2 to 9, more preferably 2 to 6, and further preferably 4 to 6. The carbon number of the monovalent carboxylic acid having 1 to 9 carbon atoms may be 6 or more, 4 or less, or 2 or less.
  • divalent or higher carboxylic acids increase the amount of low-molecular-weight carboxylic acid adsorbed on metal particles, thereby causing thickening of the metal paste for bonding, sedimentation of metal particles, and reduction of bonding force. .
  • the monovalent carboxylic acid having 1 to 9 carbon atoms may be liquid or solid at 1 atm. Further, as described above, it may have a carbon-carbon unsaturated bond.
  • Examples of the monovalent carboxylic acid having 1 to 9 carbon atoms include formic acid (CH 2 O 2 ), acetic acid (C 2 H 4 O 2 ), propionic acid or propanoic acid (C 3 H 6 O 2 ), butanoic acid.
  • butyric acid C 4 H 8 O 2
  • pentanoic acid or valeric acid C 5 H 10 O 2
  • caproic acid or hexanoic acid C 6 H 12 O 2
  • 2-methylpentanoic acid or 2-methylvaleric acid C 6 H 12 O 2
  • heptanoic acid or enanthic acid C 7 H 14 O 2
  • caprylic acid or octanoic acid C 8 H 16 O 2
  • pelargonic acid or nonanoic acid C 9 H 18 O 2
  • Crotonic acid C 4 H 6 O 2
  • methacrylic acid C 4 H 6 O 2
  • angelic acid C 5 H 8 O 2
  • tiglic acid C 5 H 8 O 2
  • pivalic acid C 5 H 10 O 2
  • 3-methyl-2-hex Senic acid C 7 H 12 O 2
  • 4-methyl-3-hexenoic acid C 7 H 12 O 2
  • 3-methylbutanoic acid C 4 H 8 O 2
  • a part of the monovalent carboxylic acid having 1 to 9 carbon atoms may be adsorbed on the surface of the metal particles by a hydrogen bond or the like.
  • a part of the monovalent carboxylic acid having 1 to 9 carbon atoms may exist as a carboxylate.
  • the monovalent carboxylic acid having 1 to 9 carbon atoms can function as a dispersion medium.
  • the content of the monovalent carboxylic acid having 1 to 9 carbon atoms is 0.015 to 0.2 parts by mass with respect to 100 parts by mass of the metal particles. If it is 0.015 mass part or more, joining temperature can be reduced, for example, even if the ultimate temperature at the time of joining is 225 degreeC, there exists a tendency which can be joined by die shear strength of 30 MPa or more. On the other hand, when the content exceeds 0.2 parts by mass, the viscosity of the bonding metal paste increases with time due to the aggregation of the metal particles, the metal particles are separated and settled, and the bonding strength is reduced. This is remarkable when the metal particles are treated with a carboxylic acid having 10 or more carbon atoms.
  • the content of the monovalent carboxylic acid having 1 to 9 carbon atoms is preferably 0.02 parts by mass or more and 0.03 parts by mass or more with respect to 100 parts by mass of the metal particles from the viewpoint of further reducing the bonding temperature. It is more preferable that it is 0.05 mass part or more.
  • the content of the monovalent carboxylic acid having 1 to 9 carbon atoms increases the time-dependent increase in the viscosity of the metal paste for bonding due to the aggregation of metal particles, and the viewpoint of preventing separation and settling of the metal particles and the bonding strength. From the viewpoint of becoming more sufficient, the amount is preferably 0.15 parts by mass or less, more preferably 0.10 parts by mass or less, and further preferably 0.08 parts by mass or less.
  • the content of the monovalent carboxylic acid having 1 to 9 carbon atoms is preferably 0.015 to 0.15 parts by mass, and more preferably 0.02 to 0.15 parts by mass.
  • the amount is more preferably 0.03 to 0.10 parts by mass, and particularly preferably 0.05 to 0.08 parts by mass.
  • the metal particles according to the present embodiment include at least sub-micro copper particles.
  • the metal particles may contain copper particles other than sub-micro copper particles, other metal particles other than copper particles, and the like.
  • Examples of copper particles other than the sub-micro copper particles include micro copper particles.
  • sub-micro copper particles mean copper particles having a particle diameter of 0.1 ⁇ m or more and less than 1 ⁇ m
  • micro-copper particles means copper particles having a particle diameter of 1 ⁇ m or more and less than 50 ⁇ m. To do.
  • an assembly of a plurality of metal particles may be referred to as “metal particles”. The same applies to the sub-micro copper particles, micro-copper particles, and other metal particles.
  • the sub-micro copper particles may contain a metal other than copper that is inevitably contained, but are substantially made of only copper.
  • Examples of the sub-micro copper particles include those containing copper particles having a particle size of 0.12 to 0.8 ⁇ m.
  • the sub-micro copper particles can contain 10% by mass or more of copper particles having a particle size of 0.12 to 0.8 ⁇ m. From the viewpoint of the sinterability of the bonding metal paste, the sub-micro copper particles can include 20% by mass or more of copper particles having a particle size of 0.12 to 0.8 ⁇ m, and can include 30% by mass or more. 100% by mass can be contained.
  • the content ratio of the copper particles having a particle size of 0.12 to 0.8 ⁇ m in the sub-micro copper particles is 20% by mass or more, the dispersibility of the copper particles is further improved, the viscosity is increased, and the paste concentration is further decreased. Can be suppressed.
  • the particle size of the copper particles can be determined by the following method.
  • the particle size of the copper particles can be calculated from an SEM image, for example.
  • the copper particle powder is placed on a carbon tape for SEM with a spatula to obtain a sample for SEM.
  • the sample for SEM is observed with a SEM apparatus at a magnification of 5000 times.
  • a quadrilateral circumscribing the copper particles of this SEM image is drawn by image processing software, and one side thereof is set as the particle size of the particles.
  • the volume average particle size of the sub-micro copper particles may be 0.12 ⁇ m or more and 0.8 ⁇ m or less. That is, the volume average particle diameter of the sub-micro copper particles may be 0.12 to 0.8 ⁇ m.
  • the volume average particle diameter of the sub-micro copper particles is 0.12 ⁇ m or more, effects such as suppression of the synthesis cost of the sub-micro copper particles, good dispersibility, and suppression of the use amount of the surface treatment agent are easily obtained.
  • the volume average particle diameter of the sub-micro copper particles is 0.8 ⁇ m or less, an effect that the sinterability of the sub-micro copper particles is excellent is easily obtained.
  • the volume average particle size of the sub-micro copper particles may be 0.15 ⁇ m or more, 0.2 ⁇ m or more, or 0.3 ⁇ m or more, and is 0.6 ⁇ m or less, 0.5 ⁇ m or less, or It may be 0.45 ⁇ m or less.
  • the volume average particle size of the sub-micro copper particles may be 0.15 to 0.8 ⁇ m, 0.15 to 0.6 ⁇ m, or 0.2 to 0.5 ⁇ m. It may be 0.3 to 0.45 ⁇ m.
  • the volume average particle diameter means a 50% volume average particle diameter.
  • the copper particles used as the raw material or the dried copper particles from which volatile components have been removed from the bonding metal paste are dispersed in a dispersion medium using a dispersant. It can be obtained by a method of measuring with a distribution measuring device (for example, a Shimadzu nanoparticle size distribution measuring device (SALD-7500 nano, manufactured by Shimadzu Corporation), etc.)
  • SALD-7500 nano manufactured by Shimadzu Corporation
  • a light scattering particle size distribution measuring device Hexane, toluene, ⁇ -terpineol, and the like can be used.
  • the content of the sub-micro copper particles may be 30% by mass or more, 35% by mass or more, 40% by mass or more, or 45% by mass based on the total mass of the metal particles, and is 90% by mass or less and 85% by mass or less. Or 80 mass% or less may be sufficient.
  • the content of the sub-micro copper particles may be 30 to 90% by mass, 35 to 90% by mass, or 40 to 85% by mass based on the total mass of the metal particles. It may be 45 to 80% by mass. If the content of the sub-micro copper particles is within the above range, it becomes easy to secure the joining strength of the joined body produced by sintering the joining metal paste, and the joining metal paste can be used for joining semiconductor elements. When used, the semiconductor device tends to exhibit good die shear strength and connection reliability.
  • the content does not include the amount of the surface treatment agent. Further, the total mass of the metal particles does not include the amount of the surface treatment agent adsorbed on the surface of the metal particles.
  • the lower limit of the content of the sub micro copper particles is preferably 30% by mass based on the total mass of the sub micro copper particles and the mass of the micro copper particles.
  • the upper limit value of the content of the micro copper particles is preferably 90% by mass based on the sum of the mass of the sub-micro copper particles and the mass of the micro copper particles. That is, the content of the sub-micro copper particles is preferably 30 to 90% by mass based on the sum of the mass of the sub-micro copper particles and the mass of the micro-copper particles. If the content of the sub-micro copper particles is 30% by mass or more, the space between the micro-copper particles can be filled, and the bonding strength of the bonded body manufactured by sintering the bonding metal paste is ensured.
  • the semiconductor device When the bonding metal paste is used for bonding semiconductor elements, the semiconductor device tends to exhibit good die shear strength and connection reliability. If the content of the sub-micro copper particles is 90% by mass or less, the volume shrinkage when the bonding metal paste is sintered can be sufficiently suppressed. Therefore, the bonded body manufactured by sintering the bonding metal paste. When the bonding metal paste is used for bonding semiconductor elements, the semiconductor device tends to exhibit good die shear strength and connection reliability. From the standpoint of further achieving the above effects, the content of the sub-micro copper particles is 35% by mass, 40% by mass or 45% by mass or more based on the total mass of the sub-micro copper particles and the mass of the micro-copper particles. It may be 85 mass% or less or 80 mass% or less.
  • the content of the sub-micro copper particles may be 35 to 85% by mass or 40 to 85% by mass based on the total mass of the sub-micro copper particles and the mass of the micro-copper particles. 45 to 80% by mass.
  • the content does not include the amount of the surface treatment agent.
  • the total mass of the metal particles does not include the amount of the surface treatment agent adsorbed on the surface of the metal particles.
  • the shape of the sub-micro copper particles is not particularly limited.
  • Examples of the shape of the sub-micro copper particles include a spherical shape, a lump shape, a needle shape, a flake shape, a substantially spherical shape, and an aggregate thereof.
  • the shape of the sub-micro copper particles may be spherical, substantially spherical, or flaky, and is combustible, dispersible, flaky micro-particles (for example, flaky micro-copper particles) ) Or a substantially spherical shape from the viewpoint of the mixing property with the other).
  • the “flakes” include flat shapes such as plates and scales.
  • the sub-micro copper particles may have an aspect ratio of 5.0 or less from the viewpoint of dispersibility, filling properties, and miscibility with flaky micro particles (for example, flaky micro copper particles). 0.0 or less.
  • the lower limit of the aspect ratio of the sub-micro copper particles is not particularly limited.
  • the aspect ratio of the sub-micro copper particles may be 1.0 or more, for example.
  • “aspect ratio” indicates the long side / thickness of a particle. The measurement of the long side and the thickness of the particle can be obtained, for example, from the SEM image of the particle.
  • the sub-micro copper particles may be treated with a specific surface treatment agent.
  • the surface treatment agent may be adsorbed on the surface of the sub-micro copper particles by hydrogen bonding or the like, or may react with the sub-micro copper particles and bind to the surface of the sub-micro copper particles. That is, the sub-micro copper particles may have a compound derived from a specific surface treatment agent.
  • Specific surface treatment agents include, for example, organic acids having 8 or more carbon atoms (excluding monovalent carboxylic acids having 1 to 9 carbon atoms).
  • Examples of the organic acid having 8 or more carbon atoms include polyvalent carboxylic acids having 8 to 9 carbon atoms, carboxylic acids having 10 or more carbon atoms (monovalent and polyvalent carboxylic acids), and alkyl groups having 8 or more carbon atoms. And alkylamines (long-chain alkylamines).
  • carboxylic acids having 10 or more carbon atoms are preferable.
  • the detachability during sintering of a carboxylic acid having 10 or more carbon atoms tends to be improved. Therefore, when a carboxylic acid having 10 or more carbon atoms is used, the effect of the present invention can be remarkable.
  • Such a surface treatment agent include capric acid, methylnonanoic acid, ethyloctanoic acid, propylheptanoic acid, butylhexanoic acid, undecanoic acid, methyldecanoic acid, ethylnonanoic acid, propyloctanoic acid, butylheptanoic acid, lauric acid, Methylundecanoic acid, ethyldecanoic acid, propylnonanoic acid, butyloctanoic acid, pentylheptanoic acid, tridecanoic acid, methyldodecanoic acid, ethylundecanoic acid, propyldecanoic acid, butylnonanoic acid, pentyloctanoic acid, myristic acid, methyltridecanoic acid, ethyl Dodecanoic acid, propylundecanoic acid, butyldecan
  • An organic acid may be used individually by 1 type, and may be used in combination of 2 or more type. By combining such an organic acid and the sub-micro copper particles, the dispersibility of the sub-micro copper particles and the detachability of the organic acid during sintering tend to be compatible.
  • the treatment amount of the surface treatment agent is 0.07% by mass or more, 0.10% by mass or more, 0.20% by mass or more, 0.50% by mass or more based on the total mass of the sub-micro copper particles after the surface treatment. Or it may be 0.80 mass% or more, and may be 2.10 mass% or less, 1.60 mass% or less, or 1.10 mass% or less.
  • the treatment amount of the surface treatment agent may be 0.07 to 2.10% by mass and 0.10 to 1.60% by mass based on the total mass of the sub-micro copper particles after the surface treatment. It may be 0.20 to 1.10% by mass, 0.50 to 1.10% by mass, or 0.80 to 1.10% by mass.
  • the treatment amount of the surface treatment agent may be an amount that adheres to a monolayer to a trilayer on the surface of the sub-micro copper particles.
  • This throughput is measured by the following method.
  • the surface-treated sub-micro copper particles were weighed into an alumina crucible (for example, manufactured by ASONE, model number: 1-7745-07) that had been treated at 700 ° C. for 2 hours in the atmosphere, and the atmosphere was 700 ° C. in the atmosphere. Bake for 1 hour. Then, it processes at 300 degreeC in hydrogen for 1 hour, and measures mass W2 (g) of the copper particle in a crucible.
  • the treatment amount of the surface treatment agent is calculated based on the following formula.
  • Treatment amount of surface treatment agent (mass%) (W1-W2) / W1 ⁇ 100
  • the specific surface area of the sub-micro copper particles may be 0.5 to 10 m 2 / g or 1.0 to 8.0 m 2 / g from the viewpoints of sinterability and packing between particles. 1.2 to 6.5 m 2 / g.
  • the specific surface area of the sub-micro copper particles can be calculated by measuring the dried sub-micro copper particles by the BET specific surface area measurement method.
  • the sub-micro copper particles have good sinterability.
  • it is possible to reduce problems such as expensive synthesis cost, unsatisfactory dispersibility, and decrease in volume shrinkage after sintering, which are mainly seen in bonding materials mainly using copper nanoparticles. it can.
  • sub-micro copper particles As the sub-micro copper particles according to the present embodiment, a commercially available material containing sub-micro copper particles can be used.
  • Examples of commercially available materials containing sub-micro copper particles include CH-0200 (Mitsui Metal Mining Co., Ltd., volume average particle size 0.36 ⁇ m), HT-14 (Mitsui Metal Mining Co., Ltd., volume average particles). Diameter 0.41 ⁇ m), CT-500 (manufactured by Mitsui Mining & Smelting Co., Ltd., volume average particle size 0.72 ⁇ m), and Tn—Cu100 (manufactured by Taiyo Nippon Sanso Corporation, volume average particle size 0.12 ⁇ m). It is done.
  • the micro copper particles may contain a metal other than copper that is inevitably contained, but are substantially made of only copper.
  • Examples of the micro copper particles include those containing copper particles having a particle size of 2 to 50 ⁇ m.
  • the micro copper particles can contain 50% by mass or more of copper particles having a particle size of 2 to 50 ⁇ m. From the viewpoint of orientation in the joint, reinforcing effect, and filling property of the joining paste, the micro copper particles can contain 70% by mass or more of copper particles having a particle size of 2 to 50 ⁇ m, and can contain 80% by mass or more. , 100% by mass.
  • the volume average particle diameter of the micro copper particles may be 2 ⁇ m or more and 50 ⁇ m or less. That is, the volume average particle diameter of the micro copper particles may be 2 to 50 ⁇ m. If the volume average particle size of the micro copper particles is within the above range, the volume shrinkage when the bonding metal paste is sintered can be sufficiently reduced, and the bonded body manufactured by sintering the bonding metal paste is bonded. It becomes easy to ensure the strength, and when the joining metal paste is used for joining the semiconductor elements, the semiconductor device tends to exhibit better die shear strength and connection reliability. From the viewpoint of further achieving the above effects, the volume average particle diameter of the micro copper particles may be 3 ⁇ m or more, or 20 ⁇ m or less. For example, the volume average particle diameter of the micro copper particles may be 3 to 50 ⁇ m or 3 to 20 ⁇ m.
  • the content of the micro copper particles may be 10% by mass or more, 15% by mass or more, or 20% by mass or more based on the total mass of the metal particles, and is 70% by mass or less, 50% by mass or less, and 45% by mass or less. Or 40 mass% or less may be sufficient.
  • the content of the micro copper particles may be 10 to 70% by mass, 10 to 50% by mass, or 15 to 45% by mass based on the total mass of the metal particles. 20 to 40% by mass. If the content of the micro copper particles is within the above range, it becomes easy to secure the joining strength of the joined body produced by sintering the joining metal paste, and the joining metal paste can be used for joining semiconductor elements. When used, the semiconductor device tends to exhibit better die shear strength and connection reliability.
  • the content does not include the amount of the surface treatment agent. Further, the total mass of the metal particles does not include the amount of the surface treatment agent adsorbed on the surface of the metal particles.
  • the total content of the sub-micro copper particles and the content of the micro-copper particles may be 80% by mass or more (for example, 80 to 100% by mass) based on the total mass of the metal particles. If the total content of the sub-micro copper particles and the content of the micro-copper particles is within the above range, the volume shrinkage when the bonding metal paste is sintered can be sufficiently reduced, and the bonding metal paste is sintered. It is easy to ensure the bonding strength of the bonded body manufactured in this manner. When the bonding metal paste is used for bonding semiconductor elements, the semiconductor device tends to exhibit good die shear strength and connection reliability.
  • the total content of the sub-micro copper particles and the content of the micro-copper particles may be 90% by mass or more based on the total mass of the metal particles, and 95% by mass.
  • the above may be sufficient and 100 mass% may be sufficient.
  • the content does not include the amount of the surface treatment agent.
  • the total mass of the metal particles does not include the amount of the surface treatment agent adsorbed on the surface of the metal particles.
  • the shape of the micro copper particles is preferably a flake shape having an aspect ratio of 3.0 or more.
  • the micro copper particles in the bonding metal paste can be oriented substantially parallel to the bonding surface. Thereby, volume shrinkage
  • the bonding metal paste is used for bonding semiconductor elements, the semiconductor device tends to exhibit good die shear strength and connection reliability.
  • the aspect ratio of the flaky micro copper particles is preferably 4.0 or more, and more preferably 6.0 or more.
  • the upper limit of the aspect ratio of the flaky micro copper particles is not particularly limited.
  • the aspect ratio of the flaky micro copper particles may be, for example, 50 or less.
  • the maximum diameter and the average maximum diameter of the flaky micro copper particles may be 2 ⁇ m or more, 3 ⁇ m, or 20 ⁇ m or less.
  • the maximum diameter and average maximum diameter of the flaky micro copper particles may be 2 to 50 ⁇ m, 3 to 50 ⁇ m, or 3 to 20 ⁇ m.
  • the measurement of the maximum diameter and the average maximum diameter of the flaky micro copper particles can be obtained, for example, from the SEM image of the particles, and is obtained as the major axis X and the average value Xav of the major axis of the flaky micro copper particles.
  • the major axis X is a parallel two plane selected so that the distance between the two parallel planes is the largest among the two parallel planes circumscribing the flake micro copper particles in the three-dimensional shape of the flake micro copper particles. Distance.
  • the shape of the flake-shaped micro copper particles can also be defined by parameters of a major axis (maximum diameter) X, a medium diameter Y (width), and a minor diameter (thickness) T.
  • the medium diameter Y is selected so that the distance between the parallel two planes is the largest among the parallel two planes that are perpendicular to the parallel two planes that give the major axis X and that circumscribe the flaky micro copper particles.
  • the short axis T is perpendicular to the parallel two planes giving the major axis X and the parallel two planes giving the medium diameter Y, and the distance between the two parallel planes is the largest of the two parallel planes circumscribing the flaky micro copper particles.
  • the average value Xav of the major axis may be 1 ⁇ m or more and 20.0 ⁇ m or less, 1 ⁇ m or more and 10 ⁇ m or less, or 3 ⁇ m or more and 10 ⁇ m or less. If Xav is within the above range, it is easy to form a sintered body of the joining metal paste with an appropriate thickness in a joined body manufactured by sintering the joining metal paste (joining copper paste).
  • Xav / Tav which is the ratio (aspect ratio) of the average value Xav of the major axis to the average value Tav of the minor axis, may be 4.0 or more, may be 6.0 or more, and may be 10.0 or more. There may be. If Xav / Tav is within the above range, the flaky micro copper particles in the joining metal paste are likely to be oriented substantially parallel to the joining surface, and the volume when the joining metal paste is sintered. Shrinkage can be suppressed, and it becomes easy to ensure the bonding strength of the bonded body manufactured by sintering the bonding metal paste. When the bonding metal paste is used for bonding semiconductor elements, it is easy to improve the die shear strength and connection reliability of the semiconductor device.
  • Xav / Yav which is the ratio of the average value Xav of the major axis to the average value Yav of the medium diameter, may be 2.0 or less, 1.7 or less, or 1.5 or less. . If Xav / Yav is within the above range, the shape of the flaky micro-copper particles becomes flaky particles having a certain area, and the flaky micro-copper particles in the bonding metal paste are substantially the same as the bonding surface. It becomes easy to orient in parallel, volume shrinkage when the bonding metal paste is sintered can be suppressed, and it becomes easy to secure the bonding strength of the bonded body manufactured by sintering the bonding metal paste.
  • the bonding metal paste When the bonding metal paste is used for bonding semiconductor elements, it is easy to improve the die shear strength and connection reliability of the semiconductor device.
  • Xav / Yav exceeds 2.0, it means that the shape of the flaky micro-copper particles approaches an elongated linear shape.
  • Yav / Tav which is the ratio of the average value Yav of the medium diameter to the average value Tav of the short diameter, may be 2.5 or more, 4.0 or more, or 8.0 or more Good. If Yav / Tav is within the above range, the flaky micro copper particles in the bonding copper paste are likely to be oriented substantially parallel to the bonding surface, and the volume when the bonding copper paste is sintered. Shrinkage can be suppressed, and it becomes easy to ensure the bonding strength of the bonded body manufactured by sintering the bonding copper paste. When the bonding copper paste is used for bonding semiconductor elements, it is easy to improve the die shear strength and connection reliability of the semiconductor device.
  • a method of calculating the long diameter X and the medium diameter Y of the flaky micro copper particles from the SEM image is illustrated.
  • the powder of flaky micro copper particles is placed on a carbon tape for SEM with a spatula to obtain a sample for SEM.
  • the sample for SEM is observed with a SEM apparatus at a magnification of 5000 times.
  • a rectangle circumscribing the flaky micro copper particles of this SEM image is drawn by image processing software, and the long side of the rectangle is the major axis X of the particle and the short side of the rectangle is the medium diameter Y of the particle.
  • This measurement is performed on 50 or more flaky micro copper particles using a plurality of SEM images, and the average value Xav of the long diameter and the average value Yav of the medium diameter are calculated.
  • the presence or absence of the treatment with the surface treatment agent is not particularly limited.
  • the micro copper particles may be treated with the aforementioned surface treatment agent (for example, a carboxylic acid having 10 or more carbon atoms).
  • Examples of such surface treatment agents include capric acid, methylnonanoic acid, ethyloctanoic acid, propylheptanoic acid, butylhexanoic acid, undecanoic acid, methyldecanoic acid, ethylnonanoic acid, propyloctanoic acid, butylheptanoic acid, lauric acid, methyl Undecanoic acid, ethyldecanoic acid, propylnonanoic acid, butyloctanoic acid, pentylheptanoic acid, tridecanoic acid, methyldodecanoic acid, ethylundecanoic acid, propyldecanoic acid, butylnonanoic acid, pentyloctanoic acid, myristic acid, methyltridecanoic acid, ethyldodecane Acid, propylundecanoic acid, butyldecanoic acid,
  • the treatment amount of the surface treatment agent may be an amount that adheres to one or more molecular layers on the particle surface.
  • the treatment amount of such a surface treatment agent varies depending on the specific surface area of the micro copper particles, the molecular weight of the surface treatment agent, and the minimum coating area of the surface treatment agent.
  • the treatment amount of the surface treatment agent may be 0.001% by mass or more based on the total mass of the micro copper particles after the surface treatment.
  • the specific surface area of the micro copper particles, the molecular weight of the surface treatment agent, and the minimum coating area of the surface treatment agent can be calculated by the method described above.
  • volume shrinkage and sintering shrinkage due to drying are difficult to increase, and are difficult to peel off from the adherend surface during sintering of the bonding metal paste. That is, by using the sub-micro copper particles and the micro-copper particles together, volume shrinkage when the bonding metal paste is sintered is suppressed, and the bonded body can have more sufficient bonding strength.
  • the bonding metal paste using the sub-micro copper particles and the micro-copper particles in combination is used for bonding of semiconductor elements, an effect that the semiconductor device exhibits better die shear strength and connection reliability can be obtained.
  • micro copper particles As the micro copper particles according to the present embodiment, a commercially available material containing micro copper particles can be used.
  • commercially available materials containing micro copper particles include MA-C025 (Mitsui Metal Mining Co., Ltd., volume average particle size 7.5 ⁇ m, average maximum diameter 4.1 ⁇ m), 3L3 (Fukuda Metal Foil Powder Industrial Co., Ltd.) Made by company, volume average particle size 8.0 ⁇ m, average maximum diameter 7.3 ⁇ m), 2L3 (Fukuda Metal Foil Powder Co., Ltd., volume average particle size 9.9 ⁇ m, average maximum diameter 9 ⁇ m), 2L3N / A (Fukuda Metals) Foil Powder Industry Co., Ltd., volume average particle size 9.4 ⁇ m, average maximum diameter 9 ⁇ m), 1110F (Mitsui Metal Mining Co., Ltd., volume average particle size 3.8 ⁇ m, average maximum diameter 5 ⁇ m) and HWQ 3.0 ⁇ m (Fukuda Metals)
  • Examples of other metal particles other than copper particles include at least one metal particle selected from the group consisting of zinc and silver. When such metal particles are mixed, the bonding force is improved when the adherend is gold or silver.
  • the other metal particles may be treated with a surface treatment agent.
  • the content of the other metal particles is preferably 0.01 to 10% by mass, more preferably 0.05 to 5% by mass, based on the total mass of the metal particles, from the viewpoint of further improving the adhesion. 0.1 to 2% by mass is more preferable.
  • the volume average particle diameter of the other metal particles may be 0.01 to 10 ⁇ m, 0.01 to 5 ⁇ m, or 0.05 to 3 ⁇ m.
  • the shape of other metal particles is not particularly limited.
  • the content does not include the amount of the surface treatment agent. Further, the total mass of the metal particles does not include the amount of the surface treatment agent adsorbed on the surface of the metal particles.
  • the joining metal paste may further contain components other than the metal particles and the monovalent carboxylic acid having 1 to 9 carbon atoms.
  • components include the above-described metal particle surface treatment agents, solvent components (excluding the above surface treatment agents), additives, and the like.
  • Examples of the surface treatment agent that can be contained in the bonding metal paste are as described above, and examples thereof include carboxylic acids having 10 or more carbon atoms.
  • the surface treating agent may be adsorbed on the metal particles by hydrogen bonding or the like, and a part thereof may be free or dispersed in the paste (for example, in the solvent component).
  • the content of the surface treatment agent may be 0.07 parts by mass or more, 0.10 parts by mass or more, or 0.20 parts by mass or more, and 2.10 parts by mass or less, based on 100 parts by mass of the metal particles. .60 parts by mass or less or 1.10 parts by mass or less may be used.
  • the content of the surface treatment agent may be 0.07 to 2.10 parts by mass, 0.10 to 1.60 parts by mass, or 0.1% to 100 parts by mass of the metal particles. It may be 20 to 1.10 parts by mass.
  • the component mentioned above as a surface treating agent does not necessarily need to be contained for the purpose of surface treatment of metal particles, and is contained in the metal paste for bonding for purposes other than the surface treatment (for example, as a dispersion medium). Also good.
  • the solvent component functions as a dispersion medium.
  • the solvent component is not particularly limited, and may be volatile, for example.
  • Examples of the volatile solvent component include monovalent and polyvalent solvents such as pentanol, hexanol, heptanol, octanol, decanol, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, ⁇ -terpineol, and isobornylcyclohexanol (MTPH).
  • Dihydric alcohols ethylene glycol butyl ether, ethylene glycol phenyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol isobutyl ether, diethylene glycol hexyl ether, triethylene glycol methyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol Dibutyl ether, diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol butyl methyl ether, propylene glycol propyl ether, dipropylene glycol methyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, dipropylene Ethers such as glycol butyl ether, dipropylene glycol dimethyl ether, tripropylene glycol methyl ether
  • Examples of mercaptans having an alkyl group having 1 to 18 carbon atoms include ethyl mercaptan, n-propyl mercaptan, i-propyl mercaptan, n-butyl mercaptan, i-butyl mercaptan, t-butyl mercaptan, pentyl mercaptan, and hexyl mercaptan. And dodecyl mercaptan.
  • Examples of mercaptans having a cycloalkyl group having 5 to 7 carbon atoms include cyclopentyl mercaptan, cyclohexyl mercaptan, and cycloheptyl mercaptan.
  • the content of the solvent component may be 2% by mass or more or 5% by mass or more based on the total mass of the bonding metal paste, and may be 50% by mass or less, 30% by mass or less, or 20% by mass or less. Good.
  • the content of the solvent component may be 2 to 50% by mass, 5 to 30% by mass, or 5 to 20% by mass based on the total mass of the bonding metal paste. Good.
  • the content of the solvent component may be 5 to 50 parts by mass with 100 parts by mass of the total mass of the metal particles. If the content of the solvent component is within the above range, the bonding metal paste can be adjusted to a more appropriate viscosity, and it is difficult to inhibit sintering of the copper particles.
  • the solvent component preferably includes a solvent component having a boiling point of 300 ° C. or higher.
  • a solvent component having a boiling point of 300 ° C. or higher plasticity and adhesion are imparted to the joining metal paste until just before the start of sintering, and joining without pressure is facilitated.
  • the boiling point of the solvent component having a boiling point of 300 ° C. or higher is 300% from the viewpoint of quickly evaporating and removing when the joining temperature is reached without interfering with sintering and densification during sintering of the joining metal paste. It may be ⁇ 450 ° C., 305 to 400 ° C., or 310 to 380 ° C.
  • Solvent components having a boiling point of 300 ° C. or higher include isobornylcyclohexanol (MTPH, manufactured by Nippon Terpene Chemical Co., Ltd.), butyl stearate, Exepal BS (manufactured by Kao Corporation), stearyl stearate, Exepal SS (Kao Corporation) Company), 2-ethylhexyl stearate, Exepal EH-S (manufactured by Kao Corporation), isotridecyl stearate, Exepal TD-S (manufactured by Kao Corporation), heptadecane, octadecane, nonadecane, eicosan, heneicosan, docosan, methylhepta Decane, tridecylcyclohexane, tetradecylcyclohexane, pentadecylcyclohexane, hexadecyl
  • At least one selected from the group consisting of isobornylcyclohexanol, tributyrin, butyl stearate, and octyl octoate is a solvent component having a boiling point of 300 ° C. or higher from the viewpoint of facilitating bonding without pressure. It is preferable to contain.
  • the content of the solvent component having a boiling point of 300 ° C. or higher may be 2% by mass, 2.2% by mass or 2.4% by mass based on the total mass of the bonding metal paste, and 50% by mass. % Or less, 45 mass% or less, 40 mass% or less, 20 mass% or less, 10 mass% or less, or 5 mass% or less.
  • the content of the solvent component may be 2 to 50% by mass based on the total mass of the bonding metal paste.
  • additives include wetting improvers such as nonionic surfactants and fluorosurfactants; antifoaming agents such as silicone oils; and ion trapping agents such as inorganic ion exchangers.
  • wetting improvers such as nonionic surfactants and fluorosurfactants
  • antifoaming agents such as silicone oils
  • ion trapping agents such as inorganic ion exchangers.
  • the content of the additive can also be appropriately adjusted within a range that does not impair the effects of the present invention.
  • the viscosity of the bonding metal paste described above is not particularly limited, and may be adjusted to a viscosity suitable for the molding method when molding by a technique such as printing or coating.
  • the Casson viscosity at 25 ° C. of the bonding metal paste may be 0.05 Pa ⁇ s or more or 0.06 Pa ⁇ s or more, and may be 2.0 Pa ⁇ s or less or 1.0 Pa ⁇ s or less.
  • the Casson viscosity at 25 ° C. of the bonding metal paste may be 0.05 to 2.0 Pa ⁇ s, or 0.06 to 1.0 Pa ⁇ s.
  • the metal paste for bonding according to the present embodiment is preferably stored at less than 30 ° C.
  • the monovalent carboxylic acid having 1 to 10 carbon atoms and the solvent component contained in some cases tend to volatilize, and the concentration of the joining metal paste may change.
  • the bonding metal paste of this embodiment may be stored frozen (for example, ⁇ 30 ° C.) or stored at a temperature lower than that.
  • the bonding metal paste according to the present embodiment is preferably used at room temperature (for example, 10 to 30 ° C.), it takes time to defrost when stored at less than ⁇ 30 ° C., and heating for defrosting is required. This leads to increased process costs.
  • the bonding metal paste preferably has a change in volume average particle size within 20% before and after storage.
  • the copper particles for example, sub-micro copper particles
  • the volume average particle size is increased.
  • voids are likely to enter after sintering, and the thermal conductivity may decrease. Further, the void becomes a stress concentration point, and cracks are easily generated, and it is difficult to obtain desired performance (for example, performance evaluated by a temperature cycle test and a power cycle test).
  • the bonding metal paste is a mixture of the above-mentioned sub-micro copper particles, monovalent carboxylic acid having 1 to 9 carbon atoms, and optionally containing micro-copper particles, other metal particles, additives and solvent components. Can be prepared. You may perform a stirring process after mixing of each component.
  • the bonding metal paste may adjust the maximum particle size of the dispersion by classification operation. At this time, the maximum particle size of the dispersion liquid can be 20 ⁇ m or less, and can also be 10 ⁇ m or less.
  • the bonding metal paste is sub-micro copper.
  • Particles, a solvent component, and, if necessary, a carboxylic acid having 10 or more carbon atoms (for example, a long-chain alkyl carboxylic acid) are mixed in advance, and a dispersion treatment is performed to prepare a dispersion of sub-micro copper particles.
  • micro copper particles, other metal particles, and additives may be mixed, and finally a monovalent carboxylic acid having 1 to 9 carbon atoms may be added and mixed.
  • the dispersibility of the sub-micro copper particles is improved and the mixing with the micro copper particles is improved, and the performance of the metal paste for bonding is further improved. improves.
  • the stirring treatment can be performed using a stirrer.
  • the stirrer include a rotation / revolution stirrer, a lye mill, a hibis disper mix, a twin-screw kneader, a three-roll mill, a planetary mixer, and a thin-layer shear disperser.
  • the classification operation can be performed using, for example, filtration, natural sedimentation, centrifugation, or the like.
  • the filter for filtration include a metal mesh, a metal filter, and a nylon mesh.
  • Examples of the dispersion treatment include a thin layer shear disperser, a disperser, a bead mill, a hibis disper mix, an ultrasonic homogenizer, a high shear mixer, a narrow gap three-roll mill, a wet super atomizer, a supersonic jet mill, and an ultra high pressure.
  • a homogenizer etc. are mentioned.
  • FIG. 1 is a schematic cross-sectional view showing an example of a joined body manufactured using the joining metal paste of the present embodiment.
  • a joined body 100 shown in FIG. 1 includes a first member 2, a second member 3, a sintered body 1 of the joining metal paste for joining the first member 2 and the second member 3, Is provided.
  • Examples of the first member 2 and the second member 3 include semiconductor elements such as IGBT, diode, Schottky barrier diode, MOS-FET, thyristor, logic, sensor, analog integrated circuit, LED, semiconductor laser, and transmitter.
  • the surfaces 2a and 3a in contact with the sintered body 1 of the metal paste for joining of the first member 2 and the second member 3 may contain metal.
  • the metal include copper, nickel, silver, gold, palladium, platinum, lead, tin, and cobalt.
  • a metal may be used individually by 1 type and may be used in combination of 2 or more type.
  • the surface in contact with the sintered body may be an alloy containing the above metal. Examples of the metal used for the alloy include zinc, manganese, aluminum, beryllium, titanium, chromium, iron, and molybdenum in addition to the above metals.
  • a member containing metal on the surface in contact with the sintered body for example, a member having various metal plating (a chip having metal plating, a lead frame having various metal plating, etc.), a wire, a heat spreader, or a metal plate is attached.
  • a member having various metal plating a chip having metal plating, a lead frame having various metal plating, etc.
  • a wire, a heat spreader, or a metal plate is attached.
  • Examples include a ceramic substrate, a lead frame made of various metals, a copper plate, and a copper foil.
  • the die shear strength of the joined body 100 may be 15 MPa or more, 20 MPa or more, or 25 MPa or more, from the viewpoint of sufficiently joining the first member 2 and the second member 3. It may be 30 MPa or more.
  • the die shear strength can be measured using a universal bond tester (Royce 650, manufactured by Royce Instruments).
  • the thermal conductivity of the sintered metal paste 1 for bonding is 100 W / (m ⁇ K) or more, and 120 W / (m ⁇ K) or more, from the viewpoint of heat dissipation and connection reliability at high temperatures. It may be 150 W / (m ⁇ K) or more.
  • the thermal conductivity can be calculated from the thermal diffusivity, specific heat capacity, and density of the sintered body of the joining metal paste.
  • the joined body 100 when the first member 2 is a semiconductor element, the joined body 100 is a semiconductor device.
  • the obtained semiconductor device can have sufficient die shear strength and connection reliability.
  • FIG. 2 is a schematic cross-sectional view showing an example of a semiconductor device manufactured using the bonding metal paste of this embodiment.
  • the semiconductor device 110 shown in FIG. 2 includes a sintered metal paste 11 for bonding according to the present embodiment, a lead frame 15a, a lead frame 15b, wires 16, and a lead frame 15a via the sintered body 11. And a mold resin 17 for molding them.
  • the semiconductor element 18 is connected to the lead frame 15 b through the wire 16.
  • Examples of the semiconductor device manufactured using the bonding metal paste of the present embodiment include power modules such as diodes, rectifiers, thyristors, MOS gate drivers, power switches, power MOSFETs, IGBTs, Schottky diodes, and fast recovery diodes.
  • power modules such as diodes, rectifiers, thyristors, MOS gate drivers, power switches, power MOSFETs, IGBTs, Schottky diodes, and fast recovery diodes.
  • FIG. 3 is a schematic cross-sectional view for explaining a manufacturing method of the joined body 100.
  • the joining metal paste 10 and the second member 3 are laminated in this order on the first member 2 and the direction in which the weight of the first member 2 acts.
  • Prepared laminated body 50 (FIG. 3A)
  • the bonding metal paste 10 is subjected to the weight of the first member 2, or the weight of the first member 2 and a pressure of 0.01 MPa or less.
  • a step of sintering at 250 ° C. or lower Thereby, the joined body 100 is obtained (FIG. 3B).
  • the direction in which the weight of the first member 2 works can also be said to be the direction in which gravity works.
  • the laminated body 50 is, for example, a member (first member) in which the bonding metal paste 10 of the present embodiment is provided on a necessary portion of the first member 2 or the second member 3 and then bonded onto the bonding metal paste 10. Can be prepared by arranging the member 2 or the second member 3).
  • the method for providing the bonding metal paste 10 of the present embodiment on the necessary portions of the first member 2 and the second member 3 may be any method by which the bonding metal paste can be deposited.
  • Examples of such methods include screen printing, transfer printing, offset printing, relief printing, intaglio printing, gravure printing, stencil printing, jet printing, and the like, dispensers (for example, jet dispensers, needle dispensers), comma coaters.
  • dispensers for example, jet dispensers, needle dispensers
  • comma coaters for example, jet dispensers, needle dispensers
  • comma coaters for example, jet dispensers, needle dispensers
  • comma coaters for example, jet dispensers, needle dispensers
  • comma coaters for example, jet dispensers, needle dispensers
  • comma coaters for example, jet dispensers, needle dispensers
  • comma coaters for example, jet dispensers, needle dispensers
  • comma coaters for example, jet dispensers, needle dispensers
  • comma coaters for
  • the thickness of the bonding metal paste 10 may be 1 ⁇ m or more, 5 ⁇ m or more, 10 ⁇ m or more, 15 ⁇ m or more, 20 ⁇ m or more, or 50 ⁇ m or more, and 3000 ⁇ m or less, 1000 ⁇ m or less, 500 ⁇ m or less, 300 ⁇ m or less, 250 ⁇ m or less, or 150 ⁇ m or less. It may be.
  • the thickness of the bonding metal paste 10 may be 1-1000 ⁇ m, 10-500 ⁇ m, 50-200 ⁇ m, 10-3000 ⁇ m, 15-500 ⁇ m. It may be 20 to 300 ⁇ m, 5 to 500 ⁇ m, 10 to 250 ⁇ m, or 15 to 150 ⁇ m.
  • the bonding metal paste 10 provided on the member may be appropriately dried from the viewpoint of suppressing flow during sintering and generation of voids.
  • the gas atmosphere at the time of drying may be air, an oxygen-free atmosphere such as nitrogen or a rare gas, or a reducing atmosphere such as hydrogen or formic acid.
  • the drying method may be drying at room temperature (for example, 10 to 30 ° C.), heat drying, or vacuum drying.
  • heat drying or reduced pressure drying for example, hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic A heating device, a heater heating device, a steam heating furnace, a hot plate press device, or the like can be used.
  • the drying temperature and time may be appropriately adjusted according to the type and amount of volatile components used (for example, monovalent carboxylic acids having 1 to 9 carbon atoms and solvent components).
  • the drying conditions may be, for example, conditions of drying at 50 to 180 ° C. for 1 to 120 minutes.
  • a method of arranging one member on the other member for example, a method of arranging the first member 2 on the second member 3 provided with the bonding metal paste 10
  • a chip mounter or flip Examples include a method using a chip bonder, a positioning jig made of carbon, or ceramics.
  • the metal paste 10 for joining is sintered by heat-processing the laminated body 50. Thereby, the sintered compact 1 is obtained.
  • the heat treatment for example, hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device, A heater heating device, a steam heating furnace, or the like can be used.
  • the gas atmosphere at the time of sintering may be an oxygen-free atmosphere from the viewpoint of suppressing oxidation of the sintered body and the members (first member 2 and second member 3).
  • the gas atmosphere at the time of sintering may be a reducing atmosphere from the viewpoint of removing the surface oxide of the copper particles in the bonding metal paste.
  • the oxygen-free atmosphere include an oxygen-free gas atmosphere such as nitrogen or a rare gas, or a vacuum.
  • Examples of the reducing atmosphere include pure hydrogen gas atmosphere, mixed gas atmosphere of hydrogen and nitrogen typified by forming gas, nitrogen atmosphere containing formic acid gas, mixed gas atmosphere of hydrogen and rare gas, rare gas atmosphere containing formic acid gas, etc. Is mentioned.
  • the temperature during the heat treatment is 170 ° C. or higher, 190 ° C. or higher, from the viewpoint of reducing thermal damage to the members (first member 2 and second member 3) and improving yield. It may be 200 ° C. or more, and may be 250 ° C. or less, less than 250 ° C., 225 ° C. or less, or less than 225 ° C.
  • the maximum temperature reached may be 170 to 250 ° C., 170 to 250 ° C., 190 to 225 ° C., 190 to 225 ° C. 200 to 225 ° C. or 200 ° C. or more and less than 225 ° C.
  • the bonding metal paste 10 since the bonding metal paste 10 is used, sufficient bonding strength can be obtained even if the maximum temperature reached is 250 ° C. or less. If the ultimate temperature is 200 ° C. or higher, the sintering tends to proceed sufficiently when the ultimate temperature holding time is 60 minutes or less.
  • the maximum temperature reached may be lower than the boiling point of the solvent component at 1 atm. Even in this case, the solvent component can be volatilized and removed by the vapor pressure of the solvent component. Note that even if the maximum temperature reached is 170 ° C. or higher and lower than 200 ° C., the maximum temperature holding time is set to more than 60 minutes and not more than 120 minutes, whereby the sintering tends to proceed sufficiently.
  • the temperature during heating (attainable maximum temperature) is 250 ° C. or lower, but for the purpose of improving reliability in reliability tests such as temperature cycle tests and power cycle tests, 280 ° C. or higher and 400 ° C. or lower.
  • the heat treatment can also be performed under the conditions.
  • the maximum temperature holding time may be 1 minute or more from the viewpoint of volatilizing all volatile components (for example, monovalent carboxylic acid having 1 to 9 carbon atoms and solvent component) and improving the yield, and is 120 minutes. Hereinafter, it may be 60 minutes or less, less than 40 minutes, or less than 30 minutes. That is, the maximum temperature holding time may be 1 to 120 minutes, 1 to 60 minutes, 1 minute or more and less than 40 minutes, or 1 minute or more and less than 30 minutes. Good.
  • the bonded body can have sufficient bonding strength even when bonding is performed without pressure when the laminate 50 is sintered. That is, the laminate in a state in which only the own weight of the first member 2 laminated on the bonding metal paste 10 or a pressure of 0.01 MPa or less, preferably 0.005 MPa or less is applied in addition to the own weight of the first member 2. Even when 50 is sintered, sufficient bonding strength can be obtained. If the pressure applied during the sintering is within the above range, a special pressurizing device is not required, and the void reduction, die shear strength and connection reliability can be further improved without impairing the yield. Examples of the method in which the bonding metal paste 10 receives a pressure of 0.01 MPa or less include a method of placing a weight on a member (for example, the first member 2) disposed on the upper side in the vertical direction.
  • the semiconductor device according to the present embodiment can be manufactured in the same manner as the manufacturing method of the bonded body 100 described above. That is, the method for manufacturing a semiconductor device uses a semiconductor element as at least one of the first member and the second member, and the first member and the bonding metal paste on the side in which the weight of the first member acts. And a laminated body in which the second member is laminated in this order, and the bonding metal paste is subjected to the weight of the first member, or the weight of the first member and the pressure of 0.01 MPa or less.
  • the process of sintering at 250 degrees C or less in the received state is provided. For example, as shown in FIG. 4 (FIGS.
  • the semiconductor device 110 is obtained through the above steps (FIG. 4C).
  • the obtained semiconductor device 110 can have sufficient die shear strength and connection reliability even when bonding is performed without pressure.
  • the semiconductor device of this embodiment has sufficient die shear strength and sufficient connection reliability by including a sintered body of a bonding metal paste containing copper having sufficient bonding strength and high thermal conductivity and melting point. It can be excellent in power cycle resistance.
  • the joined body and the semiconductor device manufactured using the bonding metal paste of the present embodiment has been described.
  • the joined body and the semiconductor device manufactured using the bonding metal paste of the present embodiment are described above. It is not limited to form.
  • the joined body manufactured using the joining metal paste of the present embodiment may be, for example, the joined body shown in FIGS. 5 and 7.
  • the joined body 120 shown in FIG. 5 includes the first member 2, the second member 3, the third member 4, the fourth member 5, the first member 2, and the second member 3.
  • the joined body 120 has a third member 4 and a side in which the own weight of the third member 4 works.
  • a laminated body 70 having a third bonding metal paste 10c and a laminated portion in which the fourth member 5 is laminated in this order is prepared on the side in which the weight of the member 4 acts (FIG. 6A).
  • the first joining metal paste 10a, the second joining metal paste 10b, and the third joining metal paste 10c can be obtained by a method including sintering.
  • the first bonding metal paste 10a, the second bonding metal paste 10b, and the third bonding metal paste 10c are bonding metal pastes according to this embodiment, and the first bonding metal paste.
  • the sintered body 1a is obtained by sintering 10a
  • the sintered body 1b is obtained by sintering the second bonding metal paste 10b
  • the third bonding metal paste 10c is sintered.
  • the sintered body 1c is obtained.
  • the bonded body 120 is obtained by, for example, obtaining the bonded body 100, and then forming the second bonding metal paste 10 b and the first bonding member on the third member 4, the direction in which the weight of the third member 4 acts.
  • the third metal paste 10c and the fourth member 5 are arranged on the side where the self-weight of the third member 4 and the third member 4 works.
  • the second joining metal paste 10b and the third joining metal paste 10c are sintered. You can also.
  • the joined body 130 shown in FIG. 7 includes the first member 2, the second member 3, the third member 4, the fourth member 5, the fifth member 6, and the first member 2.
  • such a joined body 130 is formed on the third member 4 and the side in which the own weight of the third member 4 acts.
  • the fifth bonding metal paste 10e, the fifth member 6, the fourth bonding metal paste 10d, the first member 2, the first bonding metal paste 10a, and the second member 3 are laminated in this order.
  • a laminated body 80 is prepared (FIG.
  • a method comprising a step of sintering the metal paste 10d and the fifth bonding metal paste 10e. It can be obtained by ( Figure 8 (b)).
  • the first bonding metal paste 10a, the third bonding metal paste 10c, the fourth bonding metal paste 10d, and the fifth bonding metal paste 10e are bonding metal pastes according to this embodiment.
  • a sintered body 1a is obtained by sintering the first bonding metal paste 10a
  • a sintered body 1c is obtained by sintering the third bonding metal paste 10c.
  • Sintered body 1d is obtained by sintering metal paste 10d
  • sintered body 1e is obtained by sintering fifth metal paste 10e for bonding.
  • the joined body 130 has a fifth bonding metal paste 10e, a fifth member 6, and a fourth bonding metal paste 10d on the side where the third member 4 and the weight of the third member 4 act.
  • the first member 2, the first bonding metal paste 10 a, and the second member 3 are prepared in this order, and the first bonding is performed in the same manner as the manufacturing method of the bonded body 100.
  • the metal paste 10a, the fourth bonding metal paste 10d, and the fifth bonding metal paste 10e are sintered, the third member 4 and the third member 4 are moved in the direction in which their own weight acts.
  • the joined body 130 has the fifth member 4, the fifth joining metal paste 10 e, and the fifth member 6 on the side in which the weight of the third member 4 and the third member 4 acts.
  • the fourth bonding metal paste 10d and the first member 2 are laminated in this order, and the third member 4 and the third member 4 are connected to the direction in which the weight of the third member 4 acts.
  • Metal paste 10c and the fourth member 5 are laminated in this order, and the third metal paste 10c and the fourth joint are formed in the same manner as in the method of manufacturing the joined body 100. It can also be obtained by a method including a step of sintering the metal paste 10d and the fifth bonding metal paste 10e.
  • examples of the third member 4, the fourth member 5, and the fifth member 6 are the same as those of the second member 3.
  • connects the sintered compact of the metal paste for joining of the 3rd member 4, the 4th member 5, and the 5th member 6 may contain the metal.
  • the example of the metal which can be included is the same as the example of the metal which can be included in the surface where the first member 2 and the second member 3 are in contact with the sintered body of the bonding metal paste.
  • the first bonding metal paste 10a, the second bonding metal paste 10b, the third bonding metal paste 10c, the fourth bonding metal paste 10d, and the fifth bonding metal paste used in the above modified example. 10e may be the same or different.
  • Example 1 ⁇ Preparation of metal paste 1 for joining> Add 0.77 g of ⁇ -terpineol, 0.33 g of tributyrin, 0.0022 g of acetic acid, 6.23 g of CH-0200, and 2.67 g of 2L3N / A to an agate mortar, knead until dry powder disappears, and mix the mixture with a plastic bottle (Polyethylene container). The sealed plastic bottle was agitated for 2 minutes at 2000 min ⁇ 1 (2000 rpm) using a rotation / revolution type agitator (Planetary Vacuum Mixer ARV-310, manufactured by Sinky Corporation).
  • a plastic bottle Polyethylene container
  • the sealed plastic bottle was agitated for 2 minutes at 2000 min ⁇ 1 (2000 rpm) using a rotation / revolution type agitator (Planetary Vacuum Mixer ARV-310, manufactured by Sinky Corporation).
  • the obtained mixed solution and zinc particles (product number: 13789, manufactured by Alfa Aesar) were added to an agate mortar, kneaded until dry powder disappeared, and the mixed solution was transferred to a plastic bottle.
  • the sealed plastic bottle was stirred for 2 minutes at 2000 min ⁇ 1 (2000 rpm) using a rotation / revolution type stirring device (Planetary Vacuum Mixer ARV-310, manufactured by Shinky Corporation).
  • the obtained paste-like mixed solution was used as a bonding metal paste 1.
  • the content of the monovalent carboxylic acid having 1 to 9 carbon atoms in the bonding metal paste 1 was 0.025 parts by mass with respect to 100 parts by mass of the metal particles.
  • the “total amount of metal particles” in Table 1 is an amount that does not include the amount of the surface treatment agent.
  • the bonded body of Example 1 was manufactured according to the following method. First, a stainless steel metal mask (thickness: 100 ⁇ m) having 3 ⁇ 3 mm square openings in 3 rows and 3 columns on a 19 mm ⁇ 25 mm electrolytic nickel-plated copper plate (total thickness: 3 mm, plating thickness: 3-5 ⁇ m). ) And the joining metal paste 1 was applied on the copper plate by stencil printing using a metal squeegee. Next, a silicon chip in which titanium and nickel are sputter-treated in this order is prepared for a 3 mm ⁇ 3 mm silicon chip (thickness: 400 ⁇ m), and nickel is bonded onto the applied bonding metal paste.
  • the silicon chip was placed so as to be in contact with.
  • the silicon chip was brought into close contact with the bonding metal paste by lightly pressing with tweezers.
  • the obtained laminate was set in a tube furnace (manufactured by Ave Sea Co., Ltd.), and argon gas was allowed to flow through the tube furnace at 3 L / min to replace the air in the tube furnace with argon gas. Then, the temperature of the tube furnace was raised to 200 ° C. over 30 minutes while flowing hydrogen gas into the tube furnace at 500 ml / min. After the temperature rise, sintering was performed under the conditions of an ultimate temperature of 200 ° C.
  • Examples 2 and 3 and Comparative Examples 1 to 3 A paste-like mixed solution in the same manner as in Example 1, except that the amounts of ⁇ -terpineol, tributyrin, acetic acid, CH-0200, 2L3N / A and zinc particles used were changed to the values shown in Tables 1 and 2. And a metal paste for bonding was obtained. Subsequently, joined bodies of Examples 2 and 3 and Comparative Examples 1 to 3 were manufactured in the same manner as in Example 1 except that the above-prepared joining metal paste was used in place of the joining metal paste 1. .
  • Example 1 shows the amounts of carboxylic acids listed in Tables 1 to 3 and Tables 5 to 6 in place of acetic acid, and the amounts of ⁇ -terpineol, tributyrin, carboxylic acid, CH-0200, 2L3N / A, and zinc particles used.
  • a paste-like mixed solution was prepared in the same manner as in Example 1 except that the values were changed to the values shown in Tables 3 to 5 and Tables 5 to 6, and a joining metal paste was obtained. Subsequently, the joined bodies of Examples 4 to 13 and Comparative Examples 4 to 9 and 16 were used in the same manner as in Example 1 except that the joining metal paste prepared above was used instead of the joining metal paste 1.
  • content of the stearic acid in the metal paste for a joint of the comparative example 4 was 0.050 mass part with respect to 100 mass parts of metal particles.
  • the content of stearic acid in the bonding metal paste of Comparative Example 5 was 0.265 parts by mass with respect to 100 parts by mass of the metal particles.
  • the content of tartaric acid in the bonding metal paste of Comparative Example 6 was 0.050 part by mass with respect to 100 parts by mass of the metal particles.
  • the content of tartaric acid in the bonding metal paste of Comparative Example 7 was 0.265 parts by mass with respect to 100 parts by mass of the metal particles.
  • the content of succinic acid in the bonding metal paste of Comparative Example 8 was 0.050 part by mass with respect to 100 parts by mass of the metal particles.
  • the content of succinic acid in the bonding metal paste of Comparative Example 9 was 0.265 parts by mass with respect to 100 parts by mass of the metal particles.
  • the content of decanoic acid in the bonding metal paste of Comparative Example 16 was 0.063 parts by mass with respect to 100 parts by mass of the metal particles.
  • Comparative Example 15 A paste was obtained in the same manner as in Example 1 except that acetic acid was not used and that the amounts of ⁇ -terpineol, tributyrin, CH-0200, 2L3N / A and zinc particles used were changed to the values shown in Table 4. A mixed liquid was prepared to obtain a bonding metal paste. Next, a joined body of Comparative Example 15 was produced in the same manner as in Example 1 except that the joining metal paste prepared above was used in place of the joining metal paste 1.
  • the joint strength of the joined body was evaluated by die shear strength.
  • a universal bond tester (Royce 650, manufactured by Royce Instruments) equipped with a load cell (SMS-200K-24200, manufactured by Royce Instruments) was used as the joined body, and the copper block was horizontally mounted at a measuring speed of 5 mm / min and a measuring height of 50 ⁇ m.
  • the die shear strength of the joined body was measured by pushing in the direction.
  • the average value of the values measured for the eight bonded bodies was taken as the die shear strength. The results are shown in Tables 1-6.
  • Example 2 (50% volume average particle diameter of metal paste for bonding)
  • the joining metal paste of Example 2 was put in a glass sample tube (manufactured by ASONE Co., Ltd., product number: 9-852-09). Measurement of the 50% volume average particle size of the paste within 12 hours after preparation of the paste revealed that the 50% volume average particle size was 5.6 ⁇ m. Further, this paste was stored at 60% humidity and 25 ° C. for 84 hours. When the 50% volume average particle diameter of the paste was measured, the 50% volume average particle diameter was 6.6 ⁇ m. From these results, it was confirmed that the change in the 50% volume average particle diameter of the bonding metal paste of Example 2 was within 20%.
  • the 50% volume average particle size was measured using a Shimadzu nanoparticle size distribution measuring device (SALD-7500 nano, manufactured by Shimadzu Corporation) and attached software (WingSALDII-7500-for Japan V3, manufactured by Shimadzu Corporation). The measurement was made according to the following (1) to (5).
  • a monovalent carboxylic acid having 1 to 9 carbon atoms is not used (even if the carbon number is 1 to 9, components other than monovalent carboxylic acid (amine, amide, ester, nitrile, water, dicarboxylic acid or hydroxy
  • the die shear strength was less than 15 MPa (including the case of using an acid) and the case of using a monovalent carboxylic acid having 10 or more carbon atoms. Further, even when the content of the monovalent carboxylic acid having 1 to 9 carbon atoms is less than 0.015 parts by mass with respect to 100 parts by mass of the metal particles, the die shear strength is less than 15 MPa.
  • the content of the monovalent carboxylic acid having 1 to 9 carbon atoms is larger than 0.2 parts by mass with respect to 100 parts by mass of the metal particles, the storage stability of the metal paste for bonding is lowered and the die shear strength is less than 15 MPa. It became.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Die Bonding (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

金属粒子と、炭素数1~9の1価カルボン酸と、を含有し、金属粒子は、体積平均粒径が0.12~0.8μmであるサブマイクロ銅粒子を含み、炭素数1~9の1価カルボン酸の含有量は、金属粒子100質量部に対して、0.015~0.2質量部である、接合用金属ペースト。

Description

接合用金属ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法
 本発明は、接合用金属ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法に関する。
 半導体装置を製造する際、半導体素子とリードフレーム等(支持部材)とを接合させるため、さまざまな接合材が用いられている。半導体装置の中でも、150℃以上の高温で動作させるパワー半導体、LSI等の接合には、接合材として高融点鉛はんだが用いられてきた。近年、半導体素子の高容量化及び省スペース化により動作温度が高融点鉛はんだの融点近くまで上昇しており、接続信頼性を確保することが難しくなってきている。一方で、RoHS規制強化に伴い、鉛を含有しない接合材が求められている。
 これまでにも、鉛はんだ以外の材料を用いた半導体素子の接合が検討されている。例えば、下記特許文献1には、銀ナノ粒子を低温焼結させ、焼結銀層を形成する技術が提案されている。このような焼結銀はパワーサイクルに対する接続信頼性が高いことが知られている(非特許文献1参照。)。
 さらに別の材料として、銅粒子を焼結させ、焼結銅層を形成する技術も提案されている。例えば、下記特許文献2には、半導体素子と電極とを接合するための接合材として、酸化第2銅粒子及び還元剤を含む接合用ペーストが開示されている。また、下記特許文献3には、銅ナノ粒子と、銅マイクロ粒子もしくは銅サブマイクロ粒子、あるいはそれら両方を含む接合材が開示されている。
 ところで、半導体素子と支持部材との間の残留熱応力が大きい場合には、半導体素子への熱ひずみによる特性変化、並びに、半導体素子、接合材及び支持部材へのクラック等のダメージが発生する。そのため、半導体素子と支持部材との間の残留熱応力は歩留まりの低下及び長期信頼性の低下の原因となり得る。一方、一般に、半導体素子と支持部材とを接合させる際の温度(接合温度)は低ければ低いほど、半導体素子と支持部材との間の残留熱応力を低減することできる。また、接合温度が低い場合には、製造にかかるエネルギーの低減が可能となる。そのため、半導体素子と支持部材との接合温度は低ければ低いほど好ましい。特に、250℃以下の接合温度であれば、支持部材としてガラスエポキシ基板のような有機基板を適用することが可能となり、ロジック、センサー、受動部品等への応用が可能となる。
 接合温度を低減する方法としては、はんだに低融点の合金を用いる方法(特許文献4参照。)、はんだの溶融後にはんだに異種金属を拡散し合金化させて融点を上昇させる方法(特許文献5参照。)等が報告されている。
特許第4928639号 特許第5006081号 特開2014-167145号公報 特許第6060199号 特許第3736797号
R. Khazaka, L. Mendizabal, D. Henry: J. ElecTron. Mater, 43(7), 2014,  2459-2466
 しかしながら、特許文献4の方法では、はんだの融点とデバイスの使用温度が近い場合には、使用温度ではんだが軟らかくなり、接続信頼性が低下する。また、接合工程以降の工程にはんだの融点以上で加熱する工程が含まれる場合には、加熱によりはんだが再溶融するため不良の原因となる。また、特許文献5の方法は、接合時に生成する金属間化合物が脆いため、充分な接合強度が得られず、サイクル信頼性に劣ること、及び、熱伝導率が低いことが課題となっている。
 本発明は、上記事情に鑑みてなされたものであり、250℃以下の低温で接合することができ、充分な接合強度を有する接合体を得ることができる接合用金属ペースト、該接合用金属ペーストの焼結体を備える接合体及びその製造方法、並びに、該接合用金属ペーストの焼結体を備える半導体装置及びその製造方法を提供することを目的とする。
 本発明者らは、従来知られていた、銅粒子の焼結現象を利用した焼結銅ダイボンド材に着目し検討を行った。従来の焼結銅ダイボンド材は、熱伝導性及びサイクル疲労耐性に優れると共に、安価である特長を有するものの、焼結銅ダイボンド材の接合には280℃以上の高温を必要としており、従来の焼結銅ダイボンド材を用いた場合、接合温度(焼結温度)を250℃以下とすることは困難であった。しかしながら、本発明者らは、鋭意検討の結果、銅粒子を含む接合用金属ペーストにおいて、特定の体積平均粒径を有する銅粒子と、所定量の特定のカルボン酸とを組み合わせることで、低温での接合が可能となり、充分な接合強度を有する接合体が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明の一側面に係る接合用金属ペーストは、金属粒子と、炭素数1~9の1価カルボン酸と、を含有する。この接合用金属ペーストにおいて、金属粒子は、体積平均粒径が0.12~0.8μmであるサブマイクロ銅粒子を含み、炭素数1~9の1価カルボン酸の含有量は、金属粒子100質量部に対して、0.015~0.2質量部である。この接合用金属ペーストによれば、250℃以下の低温で接合することができ、充分な接合強度の接合体を得ることができる。また、この接合用金属ペーストによれば、無加圧での接合(無加圧接合)が可能であり、無加圧接合であっても充分な接合強度を有する接合体を得ることができる。
 一態様において、上記接合用金属ペーストは、炭素数10以上のカルボン酸を更に含有する。この態様において、炭素数10以上のカルボン酸の含有量は、金属粒子100質量部に対して、0.07~2.10質量部である。この態様では、本発明の効果が顕著となる。
 一態様において、上記金属粒子は、最大径が2~50μmであり、アスペクト比が3.0以上であるフレーク状のマイクロ銅粒子を更に含む。この態様において、サブマイクロ銅粒子の含有量は、金属粒子の全質量を基準として、30~90質量%であり、マイクロ銅粒子の含有量は、金属粒子の全質量を基準として、10~70質量%である。この態様では、接合用金属ペーストを焼結した際の体積収縮を充分に低減でき、接合用金属ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用金属ペーストを半導体素子の接合に用いる場合は半導体装置がより良好なダイシェア強度及び接続信頼性を示す傾向にある。
 一態様において、上記金属粒子は、亜鉛及び銀からなる群より選択される少なくとも1種の金属粒子を、金属粒子の全質量を基準として、0.01~10質量%の量で更に含む。この態様では、被着体が金又は銀である場合に接合力が向上する。
 一態様において、上記炭素数1~9の1価カルボン酸は、酢酸、ヘキサン酸及び酪酸からなる群より選択される少なくとも1種を含む。この態様では、本発明の効果が顕著となる。
 一態様において、上記接合用金属ペーストは、溶剤成分を、接合用金属ペーストの全質量を基準として、2~50質量%で含有する。この態様では、接合用金属ペーストをより適切な粘度に調整でき、また、銅粒子の焼結が阻害されにくい。
 一態様において、上記溶剤成分は300℃以上の沸点を有する溶剤成分を含む。この態様において、300℃以上の沸点を有する溶剤成分の含有量は、接合用金属ペーストの全質量を基準として、2~50質量%である。この態様では、焼結開始直前まで接合用金属ペーストに可塑性と密着性が付与され、無加圧での接合が容易になる。
 一態様において、上記300℃以上の沸点を有する溶剤成分は、イソボルニルシクロヘキサノール、トリブチリン、ステアリン酸ブチル及びオクタン酸オクチルからなる群より選択される少なくとも1種を含む。この態様では、無加圧での接合が一層容易になる。
 本発明の一側面に係る接合体の製造方法は、第一の部材、上記接合用金属ペースト、及び第二の部材がこの順に積層されている積層体を用意し、該接合用金属ペーストを、第一の部材の自重を受けた状態、又は第一の部材の自重及び0.01MPa以下の圧力を受けた状態で、250℃以下で焼結する工程を備える。この製造方法によれば、上記接合用金属ペーストを用いることにより、充分な接合強度の接合体を得ることができる。また、部材間の残留熱応力を低減できるため、部材へのクラック等のダメージの発生を防止でき、熱歪み低減による歩留まり向上効果が得られる。また、接合工程の低エネルギー化を図ることもできる。
 本発明の一側面に係る半導体装置の製造方法は、第一の部材、上記接合用金属ペースト、及び第二の部材がこの順に積層されている積層体を用意し、該接合用金属ペーストを、第一の部材の自重を受けた状態、又は第一の部材の自重及び0.01MPa以下の圧力を受けた状態で、250℃以下で焼結する工程を備える。この方法では、第一の部材及び第二の部材の少なくとも一方が半導体素子である。この製造方法によれば、上記接合用金属ペーストを用いることにより、充分な接合強度の半導体装置を得ることができる。また、部材間の残留熱応力を低減できるため、半導体への熱ひずみによる特性変化、部材へのクラック等のダメージの発生を防止でき、熱歪み低減による歩留まり向上効果が得られる。また、接合工程の低エネルギー化を図ることができると共に、この製造方法によって製造される半導体装置は接続信頼性に優れたものになり得る。
 本発明の一側面に係る接合体は、第一の部材と、第二の部材と、第一の部材と第二の部材とを接合する上記接合用金属ペーストの焼結体と、を備える。この接合体は、第一の部材及び第二の部材が充分な接合力を有する上記接合用金属ペーストの焼結体を介して接合されている。また、この接合体は、熱伝導率に優れた銅を含む接合用金属ペーストの焼結体を備えることにより、部材の放熱性に優れたものになり得る。
 一態様において、第一の部材及び第二の部材の少なくとも一方は、焼結体と接する面に、銅、ニッケル、銀、金及びパラジウムからなる群より選択される少なくとも1種の金属を含む。この態様では、第一の部材及び第二の部材の少なくとも一方と、焼結体との接着性を更に高めることができる。
 本発明の一側面に係る半導体装置は、第一の部材と、第二の部材と、第一の部材と第二の部材とを接合する上記接合用金属ペーストの焼結体と、を備える。この半導体装置において、第一の部材及び第二の部材の少なくとも一方は半導体素子である。この半導体装置は、充分な接合力を有し、熱伝導率及び融点が高い銅を含む接合用金属ペーストの焼結体を備えることにより、充分なダイシェア強度を有し、接続信頼性に優れるとともに、パワーサイクル耐性にも優れたものになり得る。
 本発明によれば、250℃以下の低温で接合することができ、充分な接合強度を有する接合体を得ることができる接合用金属ペースト、該接合用金属ペーストの焼結体を備える接合体及びその製造方法、並びに、該接合用金属ペーストの焼結体を備える半導体装置及びその製造方法を提供することができる。
本実施形態の接合用金属ペーストを用いて製造される接合体の一例を示す模式断面図である。 本実施形態の接合用金属ペーストを用いて製造される半導体装置の一例を示す模式断面図である。 図1に示す接合体の製造方法を説明するための模式断面図である。 図2に示す半導体装置の製造方法を説明するための模式断面図である。 本実施形態の接合用金属ペーストを用いて製造される接合体の一例を示す模式断面図である。 図5に示す接合体の製造方法を説明するための模式断面図である。 本実施形態の接合用金属ペーストを用いて製造される接合体の一例を示す模式断面図である。 図7に示す接合体の製造方法を説明するための模式断面図である。
 本明細書において、例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。接合用金属ペースト中の各成分の含有量は、接合用金属ペースト中に各成分に該当する物質が複数存在する場合、特に断らない限り、接合用金属ペースト中に存在する当該複数の物質の合計量を意味する。「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載の上限値及び下限値は、任意に組み合わせることができる。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。
 以下、本発明の実施形態について詳細に説明する。ただし、本発明は、以下の実施形態に限定されるものではない。
<接合用金属ペースト>
 本実施形態の接合用金属ペーストは、例えば、複数の部材同士を接合するために用いられる。この接合用金属ペーストは、少なくとも、金属粒子と、炭素数1~9の1価カルボン酸と、を含有する。この接合用金属ペーストにおいて、金属粒子は、体積平均粒径が0.12~0.8μmであるサブマイクロ銅粒子を含み、炭素数1~9の1価カルボン酸の含有量は、金属粒子100質量部に対して、0.015~0.2質量部である。
 本実施形態に係る接合用金属ペーストを用いる場合、250℃以下の低温で接合することができ、充分な接合強度の接合体を得ることができる。また、本実施形態に係る接合用金属ペーストによれば、無加圧であっても充分な接合強度が得られる。このように、本実施形態に係る接合用金属ペーストを用いる場合、加圧を伴う熱圧着プロセスが不要であること、及び、チップと基板等、熱膨張率差の異なる部材間に生じる熱応力を低減することができ、熱による接合体の歪みを低減できることから、例えば半導体装置等の接合体を製造する場合に生産安定性を一層高めることが可能となる。また、デバイスの信頼性を向上させることができるほか、ガラスエポキシ基板等の熱に弱い材料を含む場合にも適用が可能となる。また、本実施形態に係る接合用金属ペーストは、接合工程の低エネルギー化にも寄与する。また、銅粒子は、銀粒子と比較して安価であるため、本実施形態に係る接合用金属ペーストはコストの点においても有利となり得る。
 ところで、一般に、接合用金属ペーストで用いられる銅粒子は、酸化の抑制と分散性の向上を目的として、炭素数10以上のカルボン酸(例えば、炭素数9以上のアルキル基を有する長鎖アルキルカルボン酸)により処理されている。このカルボン酸は銅粒子の表面に緻密に吸着して層(例えば長鎖アルキルカルボン酸の層)を形成することで銅粒子表面の酸化抑制効果及び金属粒子の凝集抑制効果を発現する。しかしながら、この緻密に吸着したカルボン酸は、銅粒子同士の接触を妨げるため、接合用金属ペーストの焼結を妨げる原因となる。そのため、焼結時は銅粒子表面をコートしている上記カルボン酸を熱分解又は熱脱離させて焼結を進行させる。これは、焼結銅ダイボンド材の接合に280℃以上の高温(例えば280~350℃)が必要となる原因の一つである。
 一方、本実施形態では、金属粒子(例えば銅粒子)が炭素数10以上のカルボン酸により処理されている場合に接合温度の低減効果が顕著となる。この理由は明らかではないが、本発明者らは、接合用金属ペーストに含有される低分子量のカルボン酸(炭素数1~9の1価カルボン酸)と、金属粒子表面に吸着した上記炭素数10以上のカルボン酸とが、吸着平衡で部分的に置き換わるために上記効果が得られると推察している。すなわち、本実施形態では、上記炭素数10以上のカルボン酸と炭素数1~9の1価カルボン酸との置換が起こることにより、焼結時に接合用金属ペーストの表面に存在するカルボン酸が低分子のカルボン酸となり揮発除去されやすくなると共に、上記置換によって炭素数10以上のカルボン酸のパッキングが乱れ、焼結時に炭素数10以上のカルボン酸が脱離しやすくなるために、上記効果が得られると推察している。
(炭素数1~9の1価カルボン酸)
 炭素数1~9の1価カルボン酸は、例えば、炭素数1~8の炭化水素基と、1つのカルボキシル基と、を有するカルボン酸である。炭化水素基は飽和炭化水素基又は不飽和炭化水素基のいずれであってもよく、直鎖状、分枝状又は環状のいずれであってもよい。なお、炭素数1~9の1価カルボン酸は、ヒドロキシ基を有しないことが好ましい。
 炭素数1~9の1価カルボン酸の炭素数は、接合強度をより向上させることができる観点及び焼結温度の低減効果が得られやすくなる観点から、好ましくは2以上であり、より好ましくは4以上である。同様の観点から、炭素数1~9の1価カルボン酸の炭素数は、好ましくは6以下である。すなわち、炭素数1~9の1価カルボン酸の炭素数は好ましくは2~9であり、より好ましくは2~6であり、更に好ましくは4~6である。炭素数1~9の1価カルボン酸の炭素数は、6以上であってよく、4以下又は2以下であってもよい。一方、炭素数が10以上では、焼結温度の低減効果が低くなり、2価以上のカルボン酸では充分な接合力が得られにくくなる。これは、金属粒子が炭素数10以上のカルボン酸で処理されている場合に顕著である。この理由は、炭素数が大きくなるとカルボン酸が嵩高くなり、金属表面に密に吸着した表面処理剤(炭素数10以上のカルボン酸)の中に入っていき難くなり、且つ銅表面に吸着した後、脱離し難くなるためであると推察される。また、2価以上のカルボン酸では、金属粒子への低分子量のカルボン酸の吸着量が増加するため、接合用金属ペーストの増粘、金属粒子の沈降及び接合力の低下を引き起こすと推察される。
 炭素数1~9の1価カルボン酸は、1気圧25℃において、液体であってよく、固体であってもよい。また、上述のとおり炭素-炭素間の不飽和結合を有していてもよい。このような炭素数1~9の1価カルボン酸としては、蟻酸(CH)、酢酸(C)、プロピオン酸又はプロパン酸(C)、ブタン酸又は酪酸(C)、ペンタン酸又は吉草酸(C10)、カプロン酸又はヘキサン酸(C12)、2-メチルペンタン酸又は2-メチル吉草酸(C12)、ヘプタン酸又はエナント酸(C14)、カプリル酸又はオクタン酸(C16)、ペラルゴン酸又はノナン酸(C18)、クロトン酸(C)、メタクリル酸(C)、アンゲリカ酸(C)、チグリン酸(C)、ピバル酸(C10)、3-メチル-2-ヘキセン酸(C12)、4-メチル-3-ヘキセン酸(C12)、3-メチルブタン酸(C10)、シクロヘキサンカルボン酸(C712)等が例示される。炭素数1~9の1価カルボン酸は、本発明の効果が顕著となる観点から、酢酸、ヘキサン酸及び酪酸からなる群より選択される少なくとも1種を含むことが好ましい。
 炭素数1~9の1価カルボン酸は、その一部が水素結合等によって金属粒子表面に吸着していてもよい。また、炭素数1~9の1価カルボン酸は、その一部がカルボン酸塩として存在していてもよい。なお、本実施形態において炭素数1~9の1価カルボン酸は分散媒としても機能し得る。
 炭素数1~9の1価カルボン酸の含有量は、金属粒子100質量部に対し、0.015~0.2質量部である。0.015質量部以上であれば、接合温度を低減でき、例えば接合時の到達最高温度が225℃であっても30MPa以上のダイシェア強度で接合できる傾向がある。一方、含有量が0.2質量部を超えると、金属粒子の凝集による接合用金属ペーストの粘度の経時的な上昇、金属粒子の分離及び沈降、接合強度の低下が引き起こされる。これは、金属粒子が炭素数10以上のカルボン酸で処理されている場合に顕著である。この理由は、金属粒子(例えば銅粒子)の表面に予め吸着していた炭素数10以上のカルボン酸の大半が低分子量のカルボン酸(炭素数1~9の1価カルボン酸)に置き換えられ、低分子量のカルボン酸は長鎖アルキルカルボン酸と比較して分散性向上効果に劣るため、金属粒子の分散性が低下して、上述した粘度の上昇、金属粒子の沈降及び接合力の低下が引き起こされると考える。なお、上記金属粒子100質量部には、金属粒子の表面に吸着した表面処理剤の量は含まない。
 炭素数1~9の1価カルボン酸の含有量は、接合温度をより低減できる観点から、金属粒子100質量部に対し、0.02質量部以上であることが好ましく、0.03質量部以上であることがより好ましく、0.05質量部以上であることが更に好ましい。また、炭素数1~9の1価カルボン酸の含有量は、金属粒子の凝集による接合用金属ペーストの粘度の経時的な上昇、並びに、金属粒子の分離及び沈降を防止できる観点及び接合強度がより充分となる観点から、0.15質量部以下であることが好ましく、0.10質量部以下であることがより好ましく、0.08質量部以下であることが更に好ましい。これらの観点から、炭素数1~9の1価カルボン酸の含有量は、0.015~0.15質量部であることが好ましく、0.02~0.15質量部であることがより好ましく、0.03~0.10質量部であることが更に好ましく、0.05~0.08質量部であることが特に好ましい。
(金属粒子)
 本実施形態に係る金属粒子は、サブマイクロ銅粒子を少なくとも含む。金属粒子は、サブマイクロ銅粒子以外の銅粒子、銅粒子以外のその他の金属粒子等を含んでいてもよい。サブマイクロ銅粒子以外の銅粒子としては、例えばマイクロ銅粒子が挙げられる。なお、本明細書において、サブマイクロ銅粒子とは、0.1μm以上1μm未満の粒子径を有する銅粒子を意味し、マイクロ銅粒子とは、1μm以上50μm未満の粒子径を有する銅粒子を意味する。本明細書では、便宜上、複数の金属粒子の集合を「金属粒子」と称することがある。サブマイクロ銅粒子、マイクロ銅粒子及びその他の金属粒子についても同様である。
[サブマイクロ銅粒子]
 サブマイクロ銅粒子は、不可避的に含まれる銅以外の金属を含んでいてもよいが、実質的に銅のみからなる粒子である。サブマイクロ銅粒子としては、例えば、粒径が0.12~0.8μmの銅粒子を含むものが挙げられる。
 サブマイクロ銅粒子は、粒径が0.12~0.8μmの銅粒子を10質量%以上含むことができる。接合用金属ペーストの焼結性の観点から、サブマイクロ銅粒子は、粒径が0.12~0.8μmの銅粒子を20質量%以上含むことができ、30質量%以上含むことができ、100質量%含むことができる。サブマイクロ銅粒子における粒径が0.12~0.8μmの銅粒子の含有割合が20質量%以上であると、銅粒子の分散性がより向上し、粘度の上昇、ペースト濃度の低下をより抑制することができる。
 銅粒子の粒径は、下記方法により求めることができる。銅粒子の粒径は、例えば、SEM像から算出することができる。銅粒子の粉末を、SEM用のカーボンテープ上にスパチュラで載せ、SEM用サンプルとする。このSEM用サンプルをSEM装置により5000倍で観察する。このSEM像の銅粒子に外接する四角形を画像処理ソフトにより作図し、その一辺をその粒子の粒径とする。
 サブマイクロ銅粒子の体積平均粒径は、0.12μm以上であってよく、0.8μm以下であってよい。すなわち、サブマイクロ銅粒子の体積平均粒径は、0.12~0.8μmであってよい。サブマイクロ銅粒子の体積平均粒径が0.12μm以上であれば、サブマイクロ銅粒子の合成コストの抑制、良好な分散性、表面処理剤の使用量の抑制といった効果が得られやすくなる。サブマイクロ銅粒子の体積平均粒径が0.8μm以下であれば、サブマイクロ銅粒子の焼結性に優れるという効果が得られやすくなる。より一層上記効果を奏する観点から、サブマイクロ銅粒子の体積平均粒径は、0.15μm以上、0.2μm以上又は0.3μm以上であってもよく、0.6μm以下、0.5μm以下又は0.45μm以下であってもよい。例えば、サブマイクロ銅粒子の体積平均粒径は、0.15~0.8μmであってもよく、0.15~0.6μmであってもよく、0.2~0.5μmであってもよく、0.3~0.45μmであってもよい。
 なお、本願明細書において体積平均粒径とは、50%体積平均粒径を意味する。銅粒子の体積平均粒径を求める場合、原料となる銅粒子、又は接合用金属ペーストから揮発成分を除去した乾燥銅粒子を、分散剤を用いて分散媒に分散させたものを光散乱法粒度分布測定装置(例えば、島津ナノ粒子径分布測定装置(SALD-7500nano、株式会社島津製作所製)で測定する方法等により求めることができる。光散乱法粒度分布測定装置を用いる場合、分散媒としては、ヘキサン、トルエン、α-テルピネオール等を用いることができる。
 サブマイクロ銅粒子の含有量は、金属粒子の全質量を基準として、30質量%以上、35質量%以上、40質量%以上又は45質量%であってよく、90質量%以下、85質量%以下又は80質量%以下であってもよい。例えば、サブマイクロ銅粒子の含有量は、金属粒子の全質量を基準として、30~90質量%であってもよく、35~90質量%であってもよく、40~85質量%であってもよく、45~80質量%であってもよい。サブマイクロ銅粒子の含有量が上記範囲内であれば、接合用金属ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用金属ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。なお、上記含有量には表面処理剤の量は含まれない。また、金属粒子の全質量には、金属粒子の表面に吸着した表面処理剤の量は含まない。
 金属粒子がマイクロ銅粒子を含む場合、サブマイクロ銅粒子の含有量の下限値は、サブマイクロ銅粒子の質量及びマイクロ銅粒子の質量の合計を基準として、30質量%であることが好ましく、サブマイクロ銅粒子の含有量の上限値は、サブマイクロ銅粒子の質量及びマイクロ銅粒子の質量の合計を基準として、90質量%であることが好ましい。すなわち、サブマイクロ銅粒子の含有量は、サブマイクロ銅粒子の質量及びマイクロ銅粒子の質量の合計を基準として、30~90質量%であることが好ましい。サブマイクロ銅粒子の上記含有量が30質量%以上であれば、マイクロ銅粒子の間を充填することができ、接合用金属ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用金属ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。サブマイクロ銅粒子の上記含有量が90質量%以下であれば、接合用金属ペーストを焼結した時の体積収縮を充分に抑制できるため、接合用金属ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用金属ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。より一層上記効果を奏する観点から、サブマイクロ銅粒子の含有量は、サブマイクロ銅粒子の質量及びマイクロ銅粒子の質量の合計を基準として、35質量%以上、40質量%以上又は45質量%以上であってもよく、85質量%以下又は80質量%以下であってもよい。例えば、サブマイクロ銅粒子の含有量は、サブマイクロ銅粒子の質量及びマイクロ銅粒子の質量の合計を基準として、35~85質量%であってもよく、40~85質量%であってもよく、45~80質量%であってもよい。なお、上記含有量には表面処理剤の量は含まれない。また、金属粒子の全質量には、金属粒子の表面に吸着した表面処理剤の量は含まない。
 サブマイクロ銅粒子の形状は、特に限定されるものではない。サブマイクロ銅粒子の形状としては、例えば、球状、塊状、針状、フレーク状、略球状及びこれらの凝集体が挙げられる。分散性及び充填性の観点から、サブマイクロ銅粒子の形状は、球状、略球状又はフレーク状であってもよく、燃焼性、分散性、フレーク状のマイクロ粒子(例えば、フレーク状のマイクロ銅粒子)との混合性等の観点から、球状又は略球状であってもよい。本明細書において、「フレーク状」とは、板状、鱗片状等の平板状の形状を包含する。
 サブマイクロ銅粒子は、分散性、充填性、及びフレーク状のマイクロ粒子(例えば、フレーク状のマイクロ銅粒子)との混合性の観点から、アスペクト比が5.0以下であってもよく、3.0以下であってもよい。サブマイクロ銅粒子のアスペクト比の下限は、特に限定されない。サブマイクロ銅粒子のアスペクト比は、例えば、1.0以上であってよい。本明細書において、「アスペクト比」とは、粒子の長辺/厚さを示す。粒子の長辺及び厚さの測定は、例えば、粒子のSEM像から求めることができる。
 サブマイクロ銅粒子は、特定の表面処理剤で処理されていてもよい。表面処理剤は、例えば、サブマイクロ銅粒子の表面に水素結合等によって吸着していてよく、サブマイクロ銅粒子と反応してサブマイクロ銅粒子の表面に結合していてもよい。すなわち、サブマイクロ銅粒子が特定の表面処理剤由来の化合物を有していてもよい。特定の表面処理剤としては、例えば、炭素数8以上の有機酸(ただし、炭素数1~9の1価カルボン酸は除く)が挙げられる。炭素数8以上の有機酸としては、例えば、炭素数8~9の多価カルボン酸、前述の炭素数10以上のカルボン酸(1価及び多価カルボン酸)、炭素数8以上のアルキル基を有するアルキルアミン(長鎖アルキルアミン)等が挙げられる。これらの中でも炭素数10以上のカルボン酸が好ましい。本実施形態では、炭素数10以上のカルボン酸の焼結時の脱離性が向上する傾向がある。そのため、炭素数10以上のカルボン酸を用いる場合には本発明の効果が顕著となりうる。
 このような表面処理剤の具体例としては、カプリン酸、メチルノナン酸、エチルオクタン酸、プロピルヘプタン酸、ブチルヘキサン酸、ウンデカン酸、メチルデカン酸、エチルノナン酸、プロピルオクタン酸、ブチルヘプタン酸、ラウリン酸、メチルウンデカン酸、エチルデカン酸、プロピルノナン酸、ブチルオクタン酸、ペンチルヘプタン酸、トリデカン酸、メチルドデカン酸、エチルウンデカン酸、プロピルデカン酸、ブチルノナン酸、ペンチルオクタン酸、ミリスチン酸、メチルトリデカン酸、エチルドデカン酸、プロピルウンデカン酸、ブチルデカン酸、ペンチルノナン酸、ヘキシルオクタン酸、ペンタデカン酸、メチルテトラデカン酸、エチルトリデカン酸、プロピルドデカン酸、ブチルウンデカン酸、ペンチルデカン酸、ヘキシルノナン酸、パルミチン酸、メチルペンタデカン酸、エチルテトラデカン酸、プロピルトリデカン酸、ブチルドデカン酸、ペンチルウンデカン酸、ヘキシルデカン酸、ヘプチルノナン酸、プロピルシクロヘキサンカルボン酸、ブチルシクロヘキサンカルボン酸、ペンチルシクロヘキサンカルボン酸、ヘキシルシクロヘキサンカルボン酸、ヘプチルシクロヘキサンカルボン酸、オクチルシクロヘキサンカルボン酸、ノニルシクロヘキサンカルボン酸等の飽和脂肪酸;デセン酸、ウンデセン酸、ドデセン酸、トリデセン酸、テトラデセン酸、ミリストレイン酸、ペンタデセン酸、ヘキサデセン酸、パルミトレイン酸、サビエン酸等の不飽和脂肪酸;テレフタル酸、ピロメリット酸、o-フェノキシ安息香酸、プロピル安息香酸、ブチル安息香酸、ペンチル安息香酸、ヘキシル安息香酸、ヘプチル安息香酸、オクチル安息香酸、ノニル安息香酸等の芳香族カルボン酸などが挙げられる。有機酸は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。このような有機酸と上記サブマイクロ銅粒子とを組み合わせることで、サブマイクロ銅粒子の分散性と焼結時における有機酸の脱離性とを両立できる傾向にある。
 表面処理剤の処理量は、表面処理後のサブマイクロ銅粒子の全質量を基準として、0.07質量%以上、0.10質量%以上、0.20質量%以上、0.50質量%以上又は0.80質量%以上であってよく、2.10質量%以下、1.60質量%以下又は1.10質量%以下であってもよい。例えば、表面処理剤の処理量は、表面処理後のサブマイクロ銅粒子の全質量を基準として、0.07~2.10質量%であってよく、0.10~1.60質量%であってもよく、0.20~1.10質量%であってもよく、0.50~1.10質量%であってもよく、0.80~1.10質量%であってもよい。
 表面処理剤の処理量は、サブマイクロ銅粒子の表面に一分子層~三分子層付着する量であってもよい。この処理量は、以下の方法により測定される。大気中、700℃で2時間処理したアルミナ製るつぼ(例えば、アズワン製、型番:1-7745-07)に、表面処理されたサブマイクロ銅粒子をW1(g)量り取り、大気中700℃で1時間焼成する。その後、水素中、300℃で1時間処理し、るつぼ内の銅粒子の質量W2(g)を計測する。次いで、下記式に基づき、表面処理剤の処理量を算出する。
 表面処理剤の処理量(質量%)=(W1-W2)/W1×100
 サブマイクロ銅粒子の比表面積は、焼結性、粒子間のパッキング等の観点から、0.5~10m/gであってよく、1.0~8.0m/gであってもよく、1.2~6.5m/gであってもよい。サブマイクロ銅粒子の比表面積は、乾燥させたサブマイクロ銅粒子をBET比表面積測定法で測定することで算出できる。
 上記サブマイクロ銅粒子は良好な焼結性を有する。上記サブマイクロ銅粒子を用いることで、銅ナノ粒子を主に用いた接合材にみられる高価な合成コスト、良好でない分散性、焼結後の体積収縮量の低下等の課題を低減することもできる。
 本実施形態に係るサブマイクロ銅粒子としては、市販されているサブマイクロ銅粒子を含む材料を用いることができる。市販されているサブマイクロ銅粒子を含む材料としては、例えば、CH-0200(三井金属鉱業株式会社製、体積平均粒径0.36μm)、HT-14(三井金属鉱業株式会社製、体積平均粒径0.41μm)、CT-500(三井金属鉱業株式会社製、体積平均粒径0.72μm)、及び、Tn-Cu100(大陽日酸株式会社製、体積平均粒径0.12μm)が挙げられる。
[マイクロ銅粒子]
 マイクロ銅粒子は、不可避的に含まれる銅以外の金属を含んでいてもよいが、実質的に銅のみからなる粒子である。マイクロ銅粒子としては、例えば、粒径が2~50μmの銅粒子を含むものが挙げられる。
 マイクロ銅粒子は、粒径が2~50μmの銅粒子を50質量%以上含むことができる。接合体内での配向、補強効果及び接合ペーストの充填性の観点から、マイクロ銅粒子は、粒径が2~50μmの銅粒子を70質量%以上含むことができ、80質量%以上含むことができ、100質量%含むことができる。
 マイクロ銅粒子の体積平均粒径は、2μm以上であってよく、50μm以下であってよい。すなわち、マイクロ銅粒子の体積平均粒径は、2~50μmであってよい。マイクロ銅粒子の体積平均粒径が上記範囲内であれば、接合用金属ペーストを焼結した際の体積収縮を充分に低減でき、接合用金属ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用金属ペーストを半導体素子の接合に用いる場合は半導体装置がより良好なダイシェア強度及び接続信頼性を示す傾向にある。より一層上記効果を奏する観点から、マイクロ銅粒子の体積平均粒径は、3μm以上であってもよく、20μm以下であってもよい。例えば、マイクロ銅粒子の体積平均粒径は、3~50μmであってもよく、3~20μmであってもよい。
 マイクロ銅粒子の含有量は、金属粒子の全質量を基準として、10質量%以上、15質量%以上又は20質量%以上であってよく、70質量%以下、50質量%以下、45質量%以下又は40質量%以下であってもよい。例えば、マイクロ銅粒子の含有量は、金属粒子の全質量を基準として、10~70質量%であってよく、10~50質量%であってもよく、15~45質量%であってもよく、20~40質量%であってもよい。マイクロ銅粒子の含有量が、上記範囲内であれば、接合用金属ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用金属ペーストを半導体素子の接合に用いる場合は半導体装置がより良好なダイシェア強度及び接続信頼性を示す傾向にある。なお、上記含有量には表面処理剤の量は含まれない。また、金属粒子の全質量には、金属粒子の表面に吸着した表面処理剤の量は含まない。
 サブマイクロ銅粒子の含有量及びマイクロ銅粒子の含有量の合計は、金属粒子の全質量を基準として、80質量%以上(例えば80~100質量%)であってよい。サブマイクロ銅粒子の含有量及びマイクロ銅粒子の含有量の合計が上記範囲内であれば、接合用金属ペーストを焼結した際の体積収縮を充分に低減でき、接合用金属ペーストを焼結させて製造される接合体の接合強度を確保することが容易となる。接合用金属ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。より一層上記効果を奏するという観点から、サブマイクロ銅粒子の含有量及びマイクロ銅粒子の含有量の合計は、金属粒子の全質量を基準として、90質量%以上であってもよく、95質量%以上であってもよく、100質量%であってもよい。なお、上記含有量には表面処理剤の量は含まれない。また、金属粒子の全質量には、金属粒子の表面に吸着した表面処理剤の量は含まない。
 マイクロ銅粒子の形状は、アスペクト比が3.0以上のフレーク状が好ましい。フレーク状のマイクロ銅粒子を用いることで、接合用金属ペースト内のマイクロ銅粒子を接合面に対して略平行に配向させることができる。これにより、接合用金属ペーストを焼結させたときの体積収縮を抑制でき、接合用金属ペーストを焼結させて製造される接合体の接合強度を確保することが容易となる。接合用金属ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。より一層上記効果を奏する観点から、フレーク状のマイクロ銅粒子のアスペクト比は4.0以上が好ましく、6.0以上がより好ましい。フレーク状のマイクロ銅粒子のアスペクト比の上限は、特に限定されない。フレーク状のマイクロ銅粒子のアスペクト比は、例えば、50以下であってよい。また、フレーク状のマイクロ銅粒子の最大径及び平均最大径は、2μm以上又は3μmであってよく、20μm以下であってよい。例えば、フレーク状のマイクロ銅粒子の最大径及び平均最大径は、2~50μmであってよく、3~50μmであってもよく、3~20μmであってもよい。フレーク状のマイクロ銅粒子の最大径及び平均最大径の測定は、例えば、粒子のSEM像から求めることができ、フレーク状のマイクロ銅粒子の長径X及び長径の平均値Xavとして求められる。長径Xは、フレーク状のマイクロ銅粒子の三次元形状において、フレーク状のマイクロ銅粒子に外接する平行二平面のうち、この平行二平面間の距離が最大となるように選ばれる平行二平面の距離である。
 フレーク状のマイクロ銅粒子の形状は、長径(最大径)X、中径Y(幅)、短径(厚さ)Tというパラメータで規定することもできる。中径Yは、長径Xを与える平行二平面に直行し、且つ、フレーク状のマイクロ銅粒子に外接する平行二平面のうち、この平行二平面間の距離が最大となるように選ばれる平行二平面の距離である。短径Tは、長径Xを与える平行二平面及び中径Yを与える平行二平面に直行し、且つ、フレーク状のマイクロ銅粒子に外接する平行二平面のうち、平行二平面間の距離が最大となるように選ばれる平行二平面の距離である。
 長径の平均値Xavは、1μm以上20.0μm以下であってもよく、1μm以上10μm以下であってもよく、3μm以上10μm以下であってもよい。Xavが上記範囲内であれば、接合用金属ペースト(接合用銅ペースト)を焼結させて製造される接合体において、接合用金属ペーストの焼結体を適切な厚みで形成しやすい。
 短径の平均値Tavに対する長径の平均値Xavの比(アスペクト比)であるXav/Tavは、4.0以上であってもよく、6.0以上であってもよく、10.0以上であってもよい。Xav/Tavが上記範囲内であれば、接合用金属ペースト内のフレーク状のマイクロ銅粒子が、接合面に対して略平行に配向しやすくなり、接合用金属ペーストを焼結させたときの体積収縮を抑制でき、接合用金属ペーストを焼結させて製造される接合体の接合強度を確保することが容易となる。接合用金属ペーストを半導体素子の接合に用いる場合は半導体装置のダイシェア強度及び接続信頼性を向上させやすくなる。
 中径の平均値Yavに対する長径の平均値Xavの比であるXav/Yavは、2.0以下であってもよく、1.7以下であってもよく、1・5以下であってもよい。Xav/Yavが上記範囲内であれば、フレーク状のマイクロ銅粒子の形状がある程度の面積を有するフレーク状の粒子となり、接合用金属ペースト内のフレーク状のマイクロ銅粒子が接合面に対して略平行に配向しやすくなり、接合用金属ペーストを焼結させたときの体積収縮を抑制でき、接合用金属ペーストを焼結させて製造される接合体の接合強度を確保することが容易となる。接合用金属ペーストを半導体素子の接合に用いる場合は半導体装置のダイシェア強度及び接続信頼性を向上させやすくなる。Xav/Yavが2.0を超える場合、フレーク状のマイクロ銅粒子の形状が細長い線状に近づくことを意味する。
 短径の平均値Tavに対する中径の平均値Yavの比であるYav/Tavは、2.5以上であってもよく、4.0以上であってもよく、8.0以上であってもよい。Yav/Tavが上記範囲内であれば、接合用銅ペースト内のフレーク状のマイクロ銅粒子が、接合面に対して略平行に配向しやすくなり、接合用銅ペーストを焼結させたときの体積収縮を抑制でき、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となる。接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置のダイシェア強度及び接続信頼性を向上させやすくなる。
 フレーク状のマイクロ銅粒子の長径X及び中径YをSEM像から算出する方法を例示する。フレーク状のマイクロ銅粒子の粉末を、SEM用のカーボンテープ上にスパチュラで載せ、SEM用サンプルとする。このSEM用サンプルをSEM装置により5000倍で観察する。このSEM像のフレーク状のマイクロ銅粒子に外接する長方形を画像処理ソフトにより作図し、長方形の長辺をその粒子の長径X、長方形の短辺をその粒子の中径Yとする。複数のSEM像を用いて、この測定を50個以上のフレーク状のマイクロ銅粒子に対して行い、長径の平均値Xav及び中径の平均値Yavを算出する。
 マイクロ銅粒子において、表面処理剤の処理の有無は特に限定されるものではない。分散安定性及び耐酸化性の観点から、マイクロ銅粒子は前述の表面処理剤(例えば炭素数が10以上のカルボン酸)で処理されていてもよい。このような表面処理剤としては、例えば、カプリン酸、メチルノナン酸、エチルオクタン酸、プロピルヘプタン酸、ブチルヘキサン酸、ウンデカン酸、メチルデカン酸、エチルノナン酸、プロピルオクタン酸、ブチルヘプタン酸、ラウリン酸、メチルウンデカン酸、エチルデカン酸、プロピルノナン酸、ブチルオクタン酸、ペンチルヘプタン酸、トリデカン酸、メチルドデカン酸、エチルウンデカン酸、プロピルデカン酸、ブチルノナン酸、ペンチルオクタン酸、ミリスチン酸、メチルトリデカン酸、エチルドデカン酸、プロピルウンデカン酸、ブチルデカン酸、ペンチルノナン酸、ヘキシルオクタン酸、ペンタデカン酸、メチルテトラデカン酸、エチルトリデカン酸、プロピルドデカン酸、ブチルウンデカン酸、ペンチルデカン酸、ヘキシルノナン酸、パルミチン酸、メチルペンタデカン酸、エチルテトラデカン酸、プロピルトリデカン酸、ブチルドデカン酸、ペンチルウンデカン酸、ヘキシルデカン酸、ヘプチルノナン酸、プロピルシクロヘキサンカルボン酸、ブチルシクロヘキサンカルボン酸、ペンチルシクロヘキサンカルボン酸、ヘキシルシクロヘキサンカルボン酸、ヘプチルシクロヘキサンカルボン酸、オクチルシクロヘキサンカルボン酸、ノニルシクロヘキサンカルボン酸等の飽和脂肪酸;デセン酸、ウンデセン酸、ドデセン酸、トリデセン酸、テトラデセン酸、ミリストレイン酸、ペンタデセン酸、ヘキサデセン酸、パルミトレイン酸、サビエン酸等の不飽和脂肪酸;テレフタル酸、ピロメリット酸、o-フェノキシ安息香酸、プロピル安息香酸、ブチル安息香酸、ペンチル安息香酸、ヘキシル安息香酸、ヘプチル安息香酸、オクチル安息香酸、ノニル安息香酸等の芳香族カルボン酸が挙げられる。上記表面処理剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 表面処理剤の処理量は、粒子表面に一分子層以上付着する量であってもよい。このような表面処理剤の処理量は、マイクロ銅粒子の比表面積、表面処理剤の分子量、及び表面処理剤の最小被覆面積により変化する。表面処理剤の処理量は、表面処理後のマイクロ銅粒子の全質量を基準として、0.001質量%以上であってよい。マイクロ銅粒子の比表面積、表面処理剤の分子量、及び表面処理剤の最小被覆面積については、上述した方法により算出することができる。
 上記サブマイクロ銅粒子とマイクロ銅粒子とを併用する場合、乾燥に伴う体積収縮及び焼結収縮が大きくなりにくく、接合用金属ペーストの焼結時に被着面より剥離しにくくなる。すなわち、サブマイクロ銅粒子とマイクロ銅粒子とを併用することで、接合用金属ペーストを焼結させたときの体積収縮が抑制され、接合体はより充分な接合強度を有することができる。上記サブマイクロ銅粒子とマイクロ銅粒子とを併用した接合用金属ペーストを半導体素子の接合に用いる場合は半導体装置がより良好なダイシェア強度及び接続信頼性を示すという効果が得られる。
 本実施形態に係るマイクロ銅粒子としては、市販されているマイクロ銅粒子を含む材料を用いることができる。市販されているマイクロ銅粒子を含む材料としては、例えば、MA-C025(三井金属鉱業株式会社製、体積平均粒径7.5μm、平均最大径4.1μm)、3L3(福田金属箔粉工業株式会社製、体積平均粒径8.0μm、平均最大径7.3μm)、2L3(福田金属箔粉工業株式会社製、体積平均粒径9.9μm、平均最大径9μm)、2L3N/A(福田金属箔粉工業株式会社製、体積平均粒径9.4μm、平均最大径9μm)、1110F(三井金属鉱業株式会社製、体積平均粒径3.8μm、平均最大径5μm)及びHWQ3.0μm(福田金属箔粉工業株式会社製、体積平均粒径3.0μm)が挙げられる。
[銅粒子以外のその他の金属粒子]
 銅粒子以外のその他の金属粒子としては、亜鉛及び銀からなる群より選択される少なくとも1種の金属粒子が挙げられる。このような金属粒子が混合された場合、被着体が金又は銀である場合に接合力が向上する。上記その他の金属粒子は、表面処理剤によって処理されていてもよい。上記その他の金属粒子の含有量は、より一層の接着性向上効果の観点から、金属粒子の全質量を基準として、0.01~10質量%が好ましく、0.05~5質量%がより好ましく、0.1~2質量%が更に好ましい。上記その他の金属粒子の体積平均粒径は、0.01~10μmであってよく、0.01~5μmであってもよく、0.05~3μmであってもよい。その他の金属粒子の形状は、特に限定されるものではない。なお、上記含有量には表面処理剤の量は含まれない。また、金属粒子の全質量には、金属粒子の表面に吸着した表面処理剤の量は含まない。
(金属粒子及び炭素数1~9の1価カルボン酸以外の成分)
 接合用金属ペーストは、金属粒子及び炭素数1~9の1価カルボン酸以外の成分を更に含有していてもよい。このような成分としては、例えば、上述した金属粒子の表面処理剤、溶剤成分(上記表面処理剤は除く)、添加剤等が挙げられる。
[表面処理剤]
 接合用金属ペーストが含有し得る表面処理剤の例は、上述のとおりであり、例えば、炭素数10以上のカルボン酸が挙げられる。表面処理剤は、水素結合等により金属粒子に吸着していてよく、その一部がペースト中(例えば溶剤成分中)に遊離又は分散していてもよい。表面処理剤の含有量は、金属粒子100質量部に対して、0.07質量部以上、0.10質量部以上又は0.20質量部以上であってよく、2.10質量部以下、1.60質量部以下又は1.10質量部以下であってもよい。例えば、表面処理剤の含有量は、金属粒子100質量部に対して、0.07~2.10質量部であってよく、0.10~1.60質量部であってもよく、0.20~1.10質量部であってもよい。なお、表面処理剤として上述した成分は、必ずしも金属粒子の表面処理を目的として含有されている必要はなく、表面処理以外の目的で(例えば、分散媒として)接合用金属ペーストに含有されていてもよい。
[溶剤成分]
 溶剤成分は分散媒として機能する。溶剤成分は特に限定されるものではなく、例えば、揮発性のものであってよい。揮発性の溶剤成分としては、例えば、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、α-テルピネオール、イソボルニルシクロヘキサノール(MTPH)等の1価及び多価アルコール類;エチレングリコールブチルエーテル、エチレングリコールフェニルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールイソブチルエーテル、ジエチレングリコールヘキシルエーテル、トリエチレングリコールメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル類;エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート(DPMA)、乳酸エチル、乳酸ブチル、γ-ブチロラクトン、炭酸プロピレン等のエステル類;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の酸アミド;シクロヘキサン、オクタン、ノナン、デカン、ウンデカン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;炭素数1~18のアルキル基を有するメルカプタン類;炭素数5~7のシクロアルキル基を有するメルカプタン類などが挙げられる。炭素数1~18のアルキル基を有するメルカプタン類としては、例えば、エチルメルカプタン、n-プロピルメルカプタン、i-プロピルメルカプタン、n-ブチルメルカプタン、i-ブチルメルカプタン、t-ブチルメルカプタン、ペンチルメルカプタン、ヘキシルメルカプタン及びドデシルメルカプタンが挙げられる。炭素数5~7のシクロアルキル基を有するメルカプタン類としては、例えば、シクロペンチルメルカプタン、シクロヘキシルメルカプタン及びシクロヘプチルメルカプタンが挙げられる。
 溶剤成分の含有量は、接合用金属ペーストの全質量を基準として、2質量%以上又は5質量%以上であってよく、50質量%以下、30質量%以下又は20質量%以下であってもよい。例えば、溶剤成分の含有量は、接合用金属ペーストの全質量を基準として、2~50質量%であってよく、5~30質量%であってもよく、5~20質量%であってもよい。また、溶剤成分の含有量は金属粒子の全質量を100質量部として、5~50質量部であってよい。溶剤成分の含有量が上記範囲内であれば、接合用金属ペーストをより適切な粘度に調整でき、また、銅粒子の焼結を阻害しにくい。
 溶剤成分は、300℃以上の沸点を有する溶剤成分を含むことが好ましい。300℃以上の沸点を有する溶剤成分を含むことで、焼結開始直前まで接合用金属ペーストに可塑性と密着性が付与され、無加圧での接合が容易になる。300℃以上の沸点を有する溶剤成分の沸点は、接合用金属ペーストの焼結時において、焼結及び緻密化を妨げず、接合温度に達した際に速やかに蒸発し除去される観点から、300~450℃であってもよく、305~400℃であってもよく、310~380℃であってもよい。
 300℃以上の沸点を有する溶剤成分としては、イソボルニルシクロヘキサノール(MTPH、日本テルペン化学株式会社製)、ステアリン酸ブチル、エキセパールBS(花王株式会社製)、ステアリン酸ステアリル、エキセパールSS(花王株式会社製)、ステアリン酸2-エチルヘキシル、エキセパールEH-S(花王株式会社製)、ステアリン酸イソトリデシル、エキセパールTD-S(花王株式会社製)、ヘプタデカン、オクタデカン、ノナデカン、エイコサン、ヘネイコサン、ドコサン、メチルヘプタデカン、トリデシルシクロヘキサン、テトラデシルシクロヘキサン、ペンタデシルシクロヘキサン、ヘキサデシルシクロヘキサン、ウンデシルベンゼン、ドデシルベンゼン、テトラデシルベンゼン、トリデシルベンゼン、ペンタデシルベンゼン、ヘキサデシルベンゼン、ヘプタデシルベンゼン、ノニルナフタレン、ジフェニルプロパン、オクタン酸オクチル、ミリスチン酸メチル、ミリスチン酸エチル、リノール酸メチル、ステアリン酸メチル、トリエチレングリコールビス(2-エチルヘキサン酸)、クエン酸トリブチル、セバシン酸ジブチル、メトキシフェネチルアルコール、ベンジルフェノール(C1312O)、ヘキサデカンニトリル、ヘプタデカンニトリル、安息香酸ベンジル、シンメチリン、アジピン酸ビス(2―エチルヘキシル)等が挙げられる。無加圧での接合が一層容易になる観点から、300℃以上の沸点を有する溶剤成分が、イソボルニルシクロヘキサノール、トリブチリン、ステアリン酸ブチル及びオクタン酸オクチルからなる群より選択される少なくとも1種を含むことが好ましい。
 300℃以上の沸点を有する溶剤成分の含有量は、接合用金属ペーストの全質量を基準として、2質量%以上、2.2質量%以上又は2.4質量%以上であってよく、50質量%以下、45質量%以下、40質量%以下、20質量%以下、10質量%以下又は5質量%以下であってもよい。例えば、溶剤成分の含有量は、接合用金属ペーストの全質量を基準として、2~50質量%であってよい。
[添加剤]
 添加剤としては、ノニオン系界面活性剤、フッ素系界面活性剤等の濡れ向上剤;シリコーン油等の消泡剤;無機イオン交換体等のイオントラップ剤などが挙げられる。添加剤の含有量は、本発明の効果を阻害しない範囲で適宜調整することもできる。
 上述した接合用金属ペーストの粘度は特に限定されず、印刷、塗布等の手法で成型する場合には、成型方法に適した粘度に調整してよい。接合用金属ペーストの25℃におけるCasson粘度は、0.05Pa・s以上又は0.06Pa・s以上であってよく、2.0Pa・s以下又は1.0Pa・s以下であってよい。例えば、接合用金属ペーストの25℃におけるCasson粘度は、0.05~2.0Pa・sであってよく、0.06~1.0Pa・sであってもよい。
 本実施形態に係る接合用金属ペーストは30℃未満で保管されることが好ましい。30℃以上で保管すると炭素数1~10の1価カルボン酸及び場合により含有される溶剤成分が揮発しやすくなり、接合用金属ペーストの濃度が変わることがある。その結果、接合用金属ペーストを部材上に配置する場合に、所望の部分に配置しにくくなることがある。本実施形態の接合用金属ペーストは、冷凍(例えば-30℃)で保管してもよく、それ以下の温度で保管してもよい。ただし、本実施形態に係る接合用金属ペーストは室温(例えば10~30℃)で使用されることが好ましいため、-30℃未満で保管する場合、解凍に時間が掛かり、解凍のために加熱を要する等、プロセスコスト増加に繋がる。
 接合用金属ペーストは保管前後で体積平均粒径の変化が20%以内であることが好ましい。接合用金属ペーストを構成する銅粒子(例えばサブマイクロ銅粒子)が接合用金属ペースト内で凝集し二次粒子になると、体積平均粒径が大きくなる。体積平均粒径が大きくなると、焼結後にボイドが入りやすくなり、熱伝導率が低下する場合がある。また、ボイドが応力集中点となり亀裂を生じやすくなり、所望の性能(例えば温度サイクル試験及びパワーサイクル試験で評価される性能)が得られにくくなる。
<接合用金属ペーストの調製>
 接合用金属ペーストは、上述のサブマイクロ銅粒子と、炭素数1~9の1価カルボン酸と、場合により含有されるマイクロ銅粒子、その他の金属粒子、添加剤及び溶剤成分とを混合して調製することができる。各成分の混合後に、撹拌処理を行ってもよい。接合用金属ペーストは、分級操作により分散液の最大粒径を調整してもよい。このとき、分散液の最大粒径は20μm以下とすることができ、10μm以下とすることもできる。
 サブマイクロ銅粒子及び炭素数1~9の1価カルボン酸以外の成分(例えば、マイクロ銅粒子、その他の金属粒子、添加剤及び溶剤成分)を添加する場合、接合用金属ペーストは、サブマイクロ銅粒子と、溶剤成分と、必要に応じて炭素数10以上のカルボン酸(例えば長鎖アルキルカルボン酸)と、をあらかじめ混合して、分散処理を行ってサブマイクロ銅粒子の分散液を調製し、更にマイクロ銅粒子、その他の金属粒子、及び添加剤を混合し、最後に炭素数1~9の1価カルボン酸を添加して混合して調製してもよい。このような手順とすることで、例えば、マイクロ銅粒子を用いる場合には、サブマイクロ銅粒子の分散性が向上してマイクロ銅粒子との混合性が良くなり、接合用金属ペーストの性能がより向上する。また、サブマイクロ銅粒子の分散液を分級操作によって凝集物を除去してもよい。
 撹拌処理は、撹拌機を用いて行うことができる。撹拌機としては、例えば、自転公転型攪拌装置、ライカイ機、ハイビスディスパーミックス、二軸混練機、三本ロールミル、プラネタリーミキサー、薄層せん断分散機等が挙げられる。
 分級操作は、例えば、ろ過、自然沈降、遠心分離等を用いて行うことができる。ろ過用のフィルタとしては、例えば、金属メッシュ、メタルフィルター、ナイロンメッシュ等が挙げられる。
 分散処理としては、例えば、薄層せん断分散機、ディスパライザー、ビーズミル、ハイビスディスパーミックス、超音波ホモジナイザー、ハイシアミキサー、狭ギャップ三本ロールミル、湿式超微粒化装置、超音速式ジェットミル、超高圧ホモジナイザー等が挙げられる。
<接合体及び半導体装置>
 以下、図面を参照しながら本実施形態に係る接合体及び半導体装置について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は、図示の比率に限られるものではない。
 図1は、本実施形態の接合用金属ペーストを用いて製造される接合体の一例を示す模式断面図である。
 図1に示す接合体100は、第一の部材2と、第二の部材3と、第一の部材2と第二の部材3とを接合する上記接合用金属ペーストの焼結体1と、を備える。
 第一の部材2及び第二の部材3としては、例えば、IGBT、ダイオード、ショットキーバリヤダイオード、MOS-FET、サイリスタ、ロジック、センサー、アナログ集積回路、LED、半導体レーザー、発信器等の半導体素子;リードフレーム;金属板貼付セラミックス基板(例えばDBC);LEDパッケージ等の半導体素子搭載用基材;銅リボン及び金属フレーム等の金属配線;金属ブロック等のブロック体;端子等の給電用部材;放熱板;水冷板などが挙げられる。
 第一の部材2及び第二の部材3の接合用金属ペーストの焼結体1と接する面2a及び3aは金属を含んでいてもよい。金属としては、例えば、銅、ニッケル、銀、金、パラジウム、白金、鉛、錫、コバルト等が挙げられる。金属は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。また、焼結体と接する面は、上記金属を含む合金であってもよい。合金に用いられる金属としては、上記金属の他に、亜鉛、マンガン、アルミニウム、ベリリウム、チタン、クロム、鉄、モリブデン等が挙げられる。焼結体と接する面に金属を含む部材としては、例えば、各種金属メッキを有する部材(金属メッキを有するチップ、各種金属メッキを有するリードフレーム等)、ワイヤ、ヒートスプレッダ、金属板が貼り付けられたセラミックス基板、各種金属からなるリードフレーム、銅板、銅箔などが挙げられる。
 接合体100のダイシェア強度は、第一の部材2及び第二の部材3を充分に接合する観点から、15MPa以上であってよく、20MPa以上であってもよく、25MPa以上であってもよく、30MPa以上であってもよい。ダイシェア強度は、ユニバーサルボンドテスタ(Royce 650, Royce Instruments社製)を用いて測定することができる。
 接合用金属ペーストの焼結体1の熱伝導率は、放熱性及び高温化での接続信頼性の観点から、100W/(m・K)以上であってよく、120W/(m・K)以上であってもよく、150W/(m・K)以上であってもよい。熱伝導率は、接合用金属ペーストの焼結体の熱拡散率、比熱容量、及び密度から、算出することができる。
 上記接合体100において、第一の部材2が半導体素子である場合、上記接合体100は半導体装置となる。得られる半導体装置は充分なダイシェア強度及び接続信頼性を有することができる。
 図2は、本実施形態の接合用金属ペーストを用いて製造される半導体装置の一例を示す模式断面図である。図2に示す半導体装置110は、本実施形態に係る接合用金属ペーストの焼結体11と、リードフレーム15aと、リードフレーム15bと、ワイヤ16と、焼結体11を介してリードフレーム15a上に接続された半導体素子18と、これらをモールドするモールドレジン17と、を備える。半導体素子18は、ワイヤ16を介してリードフレーム15bに接続されている。
 本実施形態の接合用金属ペーストを用いて製造される半導体装置としては、例えば、ダイオード、整流器、サイリスタ、MOSゲートドライバ、パワースイッチ、パワーMOSFET、IGBT、ショットキーダイオード、ファーストリカバリダイオード等のパワーモジュール;発信機;増幅器;高輝度LEDモジュール;センサーなどが挙げられる。
<接合体及び半導体装置の製造方法>
 以下、本実施形態の接合用金属ペーストを用いた接合体及び半導体装置の製造方法について説明する。
 図3(図3(a)及び図3(b))は、接合体100の製造方法を説明するための模式断面図である。本実施形態に係る接合体100の製造方法は、第一の部材2、該第一の部材2の自重が働く方向側に、上記接合用金属ペースト10、及び第二の部材3がこの順に積層された積層体50を用意し(図3(a))、接合用金属ペースト10を、第一の部材2の自重を受けた状態、又は第一の部材2の自重及び0.01MPa以下の圧力を受けた状態で、250℃以下で焼結する工程を備える。これにより接合体100が得られる(図3(b))。第一の部材2の自重が働く方向とは、重力が働く方向ということもできる。
 上記積層体50は、例えば、第一の部材2又は第二の部材3の必要な部分に本実施形態の接合用金属ペースト10を設け、次いで接合用金属ペースト10上に接合する部材(第一の部材2又は第二の部材3)を配置することにより用意することができる。
 本実施形態の接合用金属ペースト10を、第一の部材2及び第二の部材3の必要な部分に設ける方法としては、接合用金属ペーストを堆積させられる方法であればよい。このような方法としては、例えば、スクリーン印刷、転写印刷、オフセット印刷、凸版印刷、凹版印刷、グラビア印刷、ステンシル印刷、ジェット印刷等の印刷による方法、ディスペンサ(例えば、ジェットディスペンサ、ニードルディスペンサ)、カンマコータ、スリットコータ、ダイコータ、グラビアコータ、スリットコート、バーコータ、アプリケータ、スプレーコータ、スピンコータ、ディップコータ等を用いる方法、ソフトリソグラフィによる方法、粒子堆積法、電着塗装による方法などが挙げられる。
 接合用金属ペースト10の厚さは、1μm以上、5μm以上、10μm以上、15μm以上、20μm以上又は50μm以上であってよく、3000μm以下、1000μm以下、500μm以下、300μm以下、250μm以下又は150μm以下であってよい。例えば、接合用金属ペースト10の厚さは、1~1000μmであってよく、10~500μmであってもよく、50~200μmであってもよく、10~3000μmであってもよく、15~500μmであってもよく、20~300μmであってもよく、5~500μmであってもよく、10~250μmであってもよく、15~150μmであってもよい。
 部材上に設けられた接合用金属ペースト10は、焼結時の流動及びボイドの発生を抑制する観点から、適宜乾燥させてもよい。乾燥時のガス雰囲気は大気中であってよく、窒素、希ガス等の無酸素雰囲気中であってもよく、水素、ギ酸等の還元雰囲気中であってもよい。乾燥方法は、常温放置(例えば10~30℃)による乾燥であってよく、加熱乾燥であってもよく、減圧乾燥であってもよい。加熱乾燥又は減圧乾燥には、例えば、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。乾燥の温度及び時間は、使用した揮発成分(例えば炭素数1~9の1価カルボン酸及び溶剤成分)の種類及び量に合わせて適宜調整してもよい。乾燥条件(乾燥の温度及び時間)は、例えば、50~180℃で1~120分間乾燥させる条件であってよい。
 一方の部材を他方の部材上に配置する方法(例えば、接合用金属ペースト10が設けられた第二の部材3上に第一の部材2を配置する方法)としては、例えば、チップマウンター、フリップチップボンダー、カーボン製又はセラミックス製の位置決め冶具等を用いる方法が挙げられる。
 積層体50を加熱処理することで、接合用金属ペースト10の焼結を行う。これにより焼結体1が得られる。加熱処理には、例えば、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉等を用いることができる。
 焼結時のガス雰囲気は、焼結体、部材(第一の部材2及び第二の部材3)の酸化抑制の観点から、無酸素雰囲気であってもよい。焼結時のガス雰囲気は、接合用金属ペースト中の銅粒子の表面酸化物を除去するという観点から、還元雰囲気であってもよい。無酸素雰囲気としては、例えば、窒素、希ガス等の無酸素ガス雰囲気、又は真空が挙げられる。還元雰囲気としては、例えば、純水素ガス雰囲気、フォーミングガスに代表される水素及び窒素の混合ガス雰囲気、ギ酸ガスを含む窒素雰囲気、水素及び希ガスの混合ガス雰囲気、ギ酸ガスを含む希ガス雰囲気等が挙げられる。
 加熱処理時の温度(到達最高温度)は、部材(第一の部材2及び第二の部材3)への熱ダメージを低減できる観点及び歩留まりを向上させる観点から、170℃以上、190℃以上又は200℃以上であってよく、250℃以下、250℃未満、225℃以下又は225℃未満であってよい。例えば、到達最高温度は、170~250℃であってもよく、170℃以上250℃未満であってもよく、190~225℃であってもよく、190℃以上225℃未満であってもよく、200~225℃であってもよく、200℃以上225℃未満であってもよい。本実施形態では、上記接合用金属ペースト10を用いるため、到達最高温度が250℃以下であっても、充分な接合強度が得られる。到達最高温度が、200℃以上であれば、到達最高温度保持時間が60分以下において焼結が充分に進行する傾向にある。溶剤成分を含む場合、到達最高温度は,溶剤成分の1気圧における沸点より低い温度であってもよい。この場合でも溶剤成分の蒸気圧により溶剤成分を揮発させて除去することができる。なお、到達最高温度が170℃以上200℃未満であっても、到達最高温度保持時間を60分超120分以下とすることで、焼結が充分に進行する傾向にある。本実施形態では、加熱処理時の温度(到達最高温度)は250℃以下であるが、温度サイクル試験、パワーサイクル試験等の信頼性試験における信頼性を向上させる目的で、280℃以上400℃以下の条件で加熱処理をすることもできる。
 到達最高温度保持時間は、揮発成分(例えば、炭素数1~9の1価カルボン酸及び溶剤成分)を全て揮発させ、また、歩留まりを向上させる観点から、1分間以上であってよく、120分間以下、60分間以下、40分間未満又は30分間未満であってよい。すなわち、到達最高温度保持時間は、1~120分間であってよく、1~60分間であってもよく、1分間以上40分間未満であってもよく、1分間以上30分間未満であってもよい。
 本実施形態の接合用金属ペースト10を用いることにより、積層体50を焼結する際、無加圧での接合を行う場合であっても、接合体は充分な接合強度を有することができる。すなわち、接合用金属ペースト10に積層した第一の部材2による自重のみ、又は第一の部材2の自重に加え、0.01MPa以下、好ましくは0.005MPa以下の圧力を受けた状態で積層体50を焼結する場合であっても、充分な接合強度を得ることができる。焼結時に受ける圧力が上記範囲内であれば、特別な加圧装置が不要なため歩留まりを損なうこと無く、ボイドの低減、ダイシェア強度及び接続信頼性をより一層向上させることができる。接合用金属ペースト10が0.01MPa以下の圧力を受ける方法としては、例えば、鉛直方向上側に配置される部材(例えば第一の部材2)上に重りを載せる方法等が挙げられる。
 本実施形態に係る半導体装置は、上述した接合体100の製造方法と同様にして製造することができる。すなわち、半導体装置の製造方法は、第一の部材及び第二の部材の少なくとも一方に半導体素子を用い、第一の部材、該第一の部材の自重が働く方向側に、上記接合用金属ペースト、及び第二の部材がこの順に積層された積層体を用意し、接合用金属ペーストを、第一の部材の自重を受けた状態、又は第一の部材の自重及び0.01MPa以下の圧力を受けた状態で、250℃以下で焼結する工程を備える。例えば、図4(図4(a)~図4(c))に示すように、リードフレーム15a上に接合用金属ペースト20を設け、半導体素子18を配置して積層体60を得た後(図4(a))、この積層体60を加熱し、接合用金属ペースト20を焼結させることにより接合体105を得る(図4(b))。次いで、得られた接合体105におけるリードフレーム15bと半導体素子18とをワイヤ16によって接続し、封止樹脂によりこれらを封止する。以上の工程により半導体装置110が得られる(図4(c))。得られる半導体装置110は、無加圧での接合を行った場合であっても、充分なダイシェア強度及び接続信頼性を有することができる。本実施形態の半導体装置は、充分な接合力を有し、熱伝導率及び融点が高い銅を含む接合用金属ペーストの焼結体を備えることにより、充分なダイシェア強度を有し、接続信頼性に優れるとともに、パワーサイクル耐性にも優れたものになり得る。
 以上、本実施形態の接合用金属ペーストを用いて製造される接合体及び半導体装置の一例を説明したが、本実施形態の接合用金属ペーストを用いて製造される接合体及び半導体装置は上記実施形態に限られない。本実施形態の接合用金属ペーストを用いて製造される接合体は、例えば、図5及び図7に示す接合体であってもよい。
 図5に示す接合体120は、第一の部材2と、第二の部材3と、第三の部材4と、第四の部材5と、第一の部材2と第二の部材3とを接合する上記接合用金属ペーストの焼結体1aと、第一の部材2と第三の部材4とを接合する上記接合用金属ペーストの焼結体1bと、第三の部材4と第四の部材5とを接合する上記接合用金属ペーストの焼結体1cと、を備える。
 このような接合体120は、例えば、図6(図6(a)及び図6(b))に示すように、第三の部材4、該第三の部材4の自重が働く方向側に、第二の接合用金属ペースト10b、第一の部材2、第一の接合用金属ペースト10a、及び第二の部材3がこの順に積層された積層部分と、第三の部材4、該第三の部材4の自重が働く方向側に、第三の接合用金属ペースト10c、及び第四の部材5がこの順に積層された積層部分とを有する積層体70を用意し(図6(a))、上記接合体100の製造方法と同様にして、第一の接合用金属ペースト10a、第二の接合用金属ペースト10b及び第三の接合用金属ペースト10cを焼結する工程を備える方法で得ることができる(図6(b))。上記方法において、第一の接合用金属ペースト10a、第二の接合用金属ペースト10b及び第三の接合用金属ペースト10cは本実施形態に係る接合用金属ペーストであり、第一の接合用金属ペースト10aが焼結することにより焼結体1aが得られ、第二の接合用金属ペースト10bが焼結することにより焼結体1bが得られ、第三の接合用金属ペースト10cが焼結することにより焼結体1cが得られる。
 また、接合体120は、例えば、上記接合体100を得た後、第三の部材4、該第三の部材4の自重が働く方向側に、第二の接合用金属ペースト10b、及び第一の部材2がこの順に積層された積層部分と、第三の部材4、該第三の部材4の自重が働く方向側に、第三の接合用金属ペースト10c、及び第四の部材5がこの順に積層された積層部分とを形成し、上記接合体100の製造方法と同様にして、第二の接合用金属ペースト10b及び第三の接合用金属ペースト10cを焼結する工程を備える方法で得ることもできる。
 図7に示す接合体130は、第一の部材2と、第二の部材3と、第三の部材4と、第四の部材5と、第五の部材6と、第一の部材2と第二の部材3とを接合する上記接合用金属ペーストの焼結体1aと、第三の部材4と第四の部材5とを接合する上記接合用金属ペーストの焼結体1cと、第一の部材2と第五の部材6とを接合する上記接合用金属ペーストの焼結体1dと、第三の部材4と第五の部材6とを接合する上記接合用金属ペーストの焼結体1eと、を備える。
 このような接合体130は、例えば、図8(図8(a)及び図8(b))に示すように、第三の部材4、該第三の部材4の自重が働く方向側に、第五の接合用金属ペースト10e、第五の部材6、第四の接合用金属ペースト10d、第一の部材2、第一の接合用金属ペースト10a、及び第二の部材3がこの順に積層された積層部分と、第三の部材4、該第三の部材4の自重が働く方向側に、第三の接合用金属ペースト10c、及び第四の部材5がこの順に積層された積層部分とを有する積層体80を用意し(図8(a))、上記接合体100の製造方法と同様にして、第一の接合用金属ペースト10a、第三の接合用金属ペースト10c、第四の接合用金属ペースト10d及び第五の接合用金属ペースト10eを焼結する工程を備える方法で得ることができる(図8(b))。上記方法において、第一の接合用金属ペースト10a、第三の接合用金属ペースト10c、第四の接合用金属ペースト10d及び第五の接合用金属ペースト10eは本実施形態に係る接合用金属ペーストであり、第一の接合用金属ペースト10aが焼結することにより焼結体1aが得られ、第三の接合用金属ペースト10cが焼結することにより焼結体1cが得られ、第四の接合用金属ペースト10dが焼結することにより焼結体1dが得られ、第五の接合用金属ペースト10eが焼結することにより焼結体1eが得られる。
 また、接合体130は、第三の部材4、該第三の部材4の自重が働く方向側に、第五の接合用金属ペースト10e、第五の部材6、第四の接合用金属ペースト10d、第一の部材2、第一の接合用金属ペースト10a、及び第二の部材3がこの順に積層された積層体を用意し、上記接合体100の製造方法と同様にして、第一の接合用金属ペースト10a、第四の接合用金属ペースト10d及び第五の接合用金属ペースト10eを焼結した後、第三の部材4、該第三の部材4の自重が働く方向側に、第三の接合用金属ペースト10c、及び第四の部材5がこの順に積層された積層部分を形成し、上記接合体100の製造方法と同様にして、第三の接合用金属ペースト10cを焼結する工程を備える方法で得ることもできる。
 また、接合体130は、上記接合体100を得た後、第三の部材4、該第三の部材4の自重が働く方向側に、第五の接合用金属ペースト10e、第五の部材6、第四の接合用金属ペースト10d、及び第一の部材2がこの順に積層された積層部分と、第三の部材4、該第三の部材4の自重が働く方向側に、第三の接合用金属ペースト10c、及び第四の部材5がこの順に積層された積層部分とを形成し、上記接合体100の製造方法と同様にして、第三の接合用金属ペースト10c、第四の接合用金属ペースト10d及び第五の接合用金属ペースト10eを焼結する工程を備える方法で得ることもできる。
 上記変形例において、第三の部材4、第四の部材5及び第五の部材6の例としては、第二の部材3の例と同一である。また、第三の部材4、第四の部材5及び第五の部材6の接合用金属ペーストの焼結体と接する面は金属を含んでいていてもよい。含みうる金属の例は、第一の部材2及び第二の部材3が接合用金属ペーストの焼結体と接する面に含みうる金属の例と同一である。また、上記変形例において用いる第一の接合用金属ペースト10a、第二の接合用金属ペースト10b、第三の接合用金属ペースト10c、第四の接合用金属ペースト10d、第五の接合用金属ペースト10eは、それぞれ同一であっても異なっていてもよい。
 以下、実施例により本発明をさらに具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
 実施例及び比較例では以下の材料を用いた。
[金属粒子]
・CH-0200(三井金属鉱業株式会社製、形状:擬球状、表面処理剤:ラウリン酸(ドデカン酸)、表面処理量:0.973質量%(CH-0200の全質量基準)、50%体積平均粒径:0.36μm、0.1μm以上1μm未満の粒子径(最大径)を有する銅粒子の含有量:100質量%)
・2L3N/A(福田金属箔粉工業株式会社製、形状:フレーク状、表面処理量:0.8質量%(2L3N/Aの全質量基準)、50%体積平均粒径:9.4μm、BET比表面積:13400cm/g、アスペクト比:5.25、1μm以上50μm未満の粒子径(最大径)を有する銅粒子の含有量:100質量%、最大径2~50μmの銅粒子の含有量:100質量%)
・亜鉛粒子(製品番号:13789、Alfa Aesar社製)
[炭素数1~9の1価カルボン酸]
・酢酸(和光純薬工業株式会社製)
・酪酸(和光純薬工業株式会社製)
・ヘキサン酸(和光純薬工業株式会社製)
・ノナン酸(和光純薬工業株式会社製)
・シクロヘキサンカルボン酸(和光純薬工業株式会社製)
・2-メチル吉草酸(東京化成工業株式会社製)
[金属粒子及び炭素数1~9の1価カルボン酸以外の成分]
・α-テルピネオール(和光純薬工業株式会社製)
・トリブチリン(和光純薬工業株式会社製)
・ステアリン酸(和光純薬工業株式会社製)
・酒石酸(和光純薬工業株式会社製)
・こはく酸(和光純薬工業株式会社製)
・2,2-ビス(ヒドロキシメチル)プロピオン酸(東京化成工業株式会社)
・デカン酸(和光純薬工業株式会社製)
・ドデシルアミン(和光純薬工業株式会社製)
・N,N-ジメチルホルムアミド(和光純薬工業株式会社製)
・酢酸エチル(和光純薬工業株式会社製)
・アセトニトリル(和光純薬工業株式会社製)
・水(超純水、和光純薬工業株式会社製)
(実施例1)
<接合用金属ペースト1の調製>
 α-テルピネオール 0.77g、トリブチリン 0.33g、酢酸 0.0022g、CH-0200 6.23g、及び2L3N/A 2.67gをメノウ乳鉢に加え、乾燥粉がなくなるまで混練し、混合液をポリ瓶(ポリエチレン製の容器)に移した。密栓をしたポリ瓶を、自転公転型攪拌装置(Planetary Vacuum Mixer ARV-310、株式会社シンキー製)を用いて、2000min-1(2000回転/分)で2分間撹拌した。その後、得られた混合液と、亜鉛粒子(製品番号:13789、Alfa Aesar社製)0.018gをメノウ乳鉢に加え、乾燥粉がなくなるまで混練し、混合液をポリ瓶に移した。密栓をしたポリ瓶を自転公転型攪拌装置(Planetary Vacuum Mixer ARV-310、株式会社シンキー製)を用いて、2000min-1(2000回転/分)で2分間撹拌した。得られたペースト状の混合液を接合用金属ペースト1とした。表1に示すように、接合用金属ペースト1における炭素数1~9の1価カルボン酸の含有量は、金属粒子100質量部に対して、0.025質量部であった。なお、表1中の「金属粒子の合計量」は、表面処理剤の量を含まない量である。
<接合体の製造>
 接合用金属ペースト1を用いて、以下の方法に従って実施例1の接合体を製造した。
 まず、19mm×25mmの電解ニッケルめっきされた銅板(総厚:3mm、めっき厚:3~5μm)上に、3mm×3mm正方形の開口を3行3列有するステンレス製のメタルマスク(厚さ:100μm)を載せ、メタルスキージを用いたステンシル印刷により接合用金属ペースト1を銅板上に塗布した。次いで、3mm×3mmのシリコンチップ(厚さ:400μm)に対して、チタン及びニッケルがこの順番でスパッタ処理されたシリコンチップを用意し、塗布した接合用金属ペースト上に、ニッケルが接合用金属ペーストと接するように該シリコンチップを載せた。シリコンチップは、ピンセットで軽く押さえることで接合用金属ペーストに密着させた。得られた積層体をチューブ炉(株式会社エイブイシー製)にセットし、チューブ炉内にアルゴンガスを3L/minで流してチューブ炉内の空気をアルゴンガスに置換した。その後、チューブ炉内に水素ガスを500ml/minで流しながら、30分間かけてチューブ炉の温度を200℃まで昇温した。昇温後、到達最高温度200℃(電解ニッケルめっきされた銅板を測定)、到達最高温度保持時間60分間の条件で焼結処理して、ニッケルめっきされた銅板と、ニッケルがスパッタ処理されたシリコンチップとを接合した接合体を得た。焼結後、アルゴンガスの流入速度を0.3L/minにかえて冷却し、50℃以下で接合体を空気中に取り出した。以上の操作により、加圧を行うことなく接合用金属ペースト1を焼結させて実施例1の接合体を得た。
(実施例2及び3、並びに比較例1~3)
 α-テルピネオール、トリブチリン、酢酸、CH-0200、2L3N/A及び亜鉛粒子の使用量を表1及び表2に示す値に変更したこと以外は、実施例1と同様にして、ペースト状の混合液を調製し、接合用金属ペーストを得た。次いで、接合用金属ペースト1に代えて上記で調製した接合用金属ペーストを用いたこと以外は実施例1と同様にして、実施例2及び3、並びに比較例1~3の接合体を製造した。
(実施例4~13、並びに、比較例4~9及び16)
 酢酸に代えて表1~3及び表5~6に記載のカルボン酸を用いたこと、並びに、α-テルピネオール、トリブチリン、カルボン酸、CH-0200、2L3N/A及び亜鉛粒子の使用量を表1~3及び表5~6に示す値に変更したこと以外は、実施例1と同様にして、ペースト状の混合液を調製し、接合用金属ペーストを得た。次いで、接合用金属ペースト1に代えて上記で調製した接合用金属ペーストを用いたこと以外は実施例1と同様にして、実施例4~13、並びに、比較例4~9及び16の接合体を製造した。なお、比較例4の接合用金属ペーストにおけるステアリン酸の含有量は金属粒子100質量部に対して0.050質量部であった。比較例5の接合用金属ペーストにおけるステアリン酸の含有量は金属粒子100質量部に対して0.265質量部であった。比較例6の接合用金属ペーストにおける酒石酸の含有量は金属粒子100質量部に対して0.050質量部であった。比較例7の接合用金属ペーストにおける酒石酸の含有量は金属粒子100質量部に対して0.265質量部であった。比較例8の接合用金属ペーストにおけるこはく酸の含有量は金属粒子100質量部に対して0.050質量部であった。比較例9の接合用金属ペーストにおけるこはく酸の含有量は金属粒子100質量部に対して0.265質量部であった。比較例16の接合用金属ペーストにおけるデカン酸の含有量は金属粒子100質量部に対して0.063質量部であった。
(比較例10~14)
 酢酸に変えて表4に記載のカルボン酸以外の成分(2,2-ビス(ヒドロキシメチル)プロピオン酸、ドデシルアミン、N,N-ジメチルスルホアミド、酢酸エチル、アセトニトリル又は水))を0.028g用いたこと、並びに、α-テルピネオール、トリブチリン、CH-0200、2L3N/A及び亜鉛粒子の使用量を表4に示す値に変更したこと以外は、実施例1と同様にして、ペースト状の混合液を調製し、接合用金属ペーストを得た。次いで、接合用金属ペースト1に代えて上記で調製した接合用金属ペーストを用いたこと以外は実施例1と同様にして、比較例10~14の接合体を製造した。なお、比較例10~14の接合用金属ペーストにおけるドデシルアミン、N,N-ジメチルスルホアミド、酢酸エチル、アセトニトリル又は水の含有量は、それぞれ、金属粒子100質量部に対して、0.632質量部であった。
(比較例15)
 酢酸を用いなかったこと、並びに、α-テルピネオール、トリブチリン、CH-0200、2L3N/A及び亜鉛粒子の使用量を表4に示す値に変更したこと以外は、実施例1と同様にして、ペースト状の混合液を調製し、接合用金属ペーストを得た。次いで、接合用金属ペースト1に代えて上記で調製した接合用金属ペーストを用いたこと以外は実施例1と同様にして、比較例15の接合体を製造した。
<評価>
 以下の手順に従って、接合体のダイシェア強度、並びに、84時間保管前後における接合用金属ペーストの50%体積平均粒径を測定した。
(ダイシェア強度)
 接合体の接合強度は、ダイシェア強度により評価した。接合体を、ロードセル(SMS-200K-24200, Royce Instruments社製)を装着したユニバーサルボンドテスタ(Royce 650, Royce Instruments社製)を用い、測定スピード5mm/min、測定高さ50μmで銅ブロックを水平方向に押し、接合体のダイシェア強度を測定した。8個の接合体を測定した値の平均値をダイシェア強度とした。結果を表1~6に示す。
(接合用金属ペーストの50%体積平均粒径)
 実施例2の接合用金属ペーストを、ガラス製のサンプル管(アズワン株式会社製,品番:9-852-09)中に入れた。このペーストを調製してから12時間以内に、このペーストの50%体積平均粒径の測定を行ったところ、50%体積平均粒径は5.6μmだった。さらに、このペーストを湿度60%、25℃で84時間保管した。このペーストの50%体積平均粒径を測定したところ、50%体積平均粒径は6.6μmだった。これらの結果から、実施例2の接合用金属ペーストの50%体積平均粒径の変化が20%以内であることを確認した。なお、50%体積平均粒径は、島津ナノ粒子径分布測定装置(SALD-7500nano、株式会社島津製作所製)と付属のソフトウェア(WingSALDII-7500- for Japanese V3.、株式会社島津製作所製)を用いて、以下の(1)~(5)に従って測定した。
(1)ソフトウェアの設定
 測定装置付属のパソコンでWingSALDII-7500- for Japanese V3.1を起動し、マニュアルを押し装置の初期化を行った。初期化が終わった後に、保存ファイル名を指定し「次へ」をクリックし、測定条件及び粒子径分布計算条件を以下のように設定し、「次へ」をクリックした。
(測定条件)
・回折/散乱光の検出
 平均回数(測定回数:1):128、測定回数:1、測定間隔(秒):2
・測定吸光範囲
 最大値:0.2、最小値:0
・ブランク領域/測定領域
 ブランク測定許容変動最大値:150、測定最適範囲(MAX):45000、測定最適範囲(MIN):15000
(粒子径分布計算条件)
屈折率の選択:参照試料/順金属/半導体など(固体値)
サンプルの物質:4 Copper(銅)
屈折率の選択:1.18-2.21、「側方/後方センサを評価する」にチェックを入れた。
(2)ブランク測定
 島津ナノ粒子径分布測定装置SALD-7500nano用回分セル(SALD-BC75、株式会社島津製作所製)をSALD-7500nanoに取り付けて測定を行った。SALD-BC75に付属のロート付き回分セル(部品番号S347-61030-41、株式会社島津製作所製、以下「回分セル」という。)内にα-テルピネオール(和光純薬工業株式会社製)を回分セルの2つの標線の間に収まるようにスポイトで滴下した。WingSALDII-7500- for Japanese V3.の画面上から「診断」、「調整」を選択し、位置センサー出力が装置許容範囲内であることを確認した。「キャンセル」をクリックし元の画面に戻り、ブランク測定を選択し測定を行った。
(3)測定溶液の調製
 SALD-BC75に付属の回分セルホルダ(部品番号S347-62301、株式会社島津製作所製)のかくはんレバー上に測定したい接合用金属ペーストを2mg載せ、ロート付き回分セルにセットした。次に、WingSALDII-7500- for Japanese V3.の画面上から「スターラ」を選択し、15分間撹拌を行った。
(4)測定
 撹拌後、WingSALDII-7500- for Japanese V3.の画面上から「測定」を選択し測定を行った。(1)~(4)の操作を4回繰り返し、4回測定した。
(5)統計
 WingSALDII-7500- for Japanese V3.を起動し、「開く」をクリックし、測定したファイルを選択し、WingSALDII-7500- for Japanese V3.の画面上に測定データを表示した。「重ね描き」をクリックし、画面下段に50.000%径を表示し、4回の平均値を50%体積平均粒径とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例及び比較例を比較すると、炭素数1~9の1価カルボン酸の含有量が金属粒子100質量部に対して0.015~0.2質量部であれば、到達最高温度が200℃であってもダイシェア強度は15MPa以上となることが分かる。一方、炭素数1~9の1価カルボン酸を用いない場合(炭素数が1~9であっても、1価カルボン酸以外の成分(アミン、アミド、エステル、ニトリル、水、ジカルボン酸又はヒドロキシ酸)を用いる場合及び炭素数10以上の1価カルボン酸を用いる場合を含む)ダイシェア強度が15MPa未満となった。また、炭素数1~9の1価カルボン酸の含有量が金属粒子100質量部に対して0.015質量部未満であっても、ダイシェア強度が15MPa未満となった。また、炭素数1~9の1価カルボン酸の含有量が金属粒子100質量部に対して0.2質量部より大きい場合、接合用金属ペーストの保存安定性が低下し、ダイシェア強度が15MPa未満となった。
1,1a,1b,1c,1d,1e,11…接合用金属ペーストの焼結体、2…第一の部材、3…第二の部材、10,10a,10b,10c,10d,10e,20…接合用金属ペースト、15a,15b…リードフレーム、16…ワイヤ、17…モールドレジン、18…半導体素子、50,60,70,80…積層体、100,105,120,130…接合体、110…半導体装置。

Claims (13)

  1.  金属粒子と、炭素数1~9の1価カルボン酸と、を含有し、
     前記金属粒子は、体積平均粒径が0.12~0.8μmであるサブマイクロ銅粒子を含み、
     前記炭素数1~9の1価カルボン酸の含有量は、前記金属粒子100質量部に対して、0.015~0.2質量部である、接合用金属ペースト。
  2.  炭素数10以上のカルボン酸を更に含有し、
     前記炭素数10以上のカルボン酸の含有量は、前記金属粒子100質量部に対して、0.07~2.10質量部である、請求項1に記載の接合用金属ペースト。
  3.  前記金属粒子は、最大径が2~50μmであり、アスペクト比が3.0以上であるフレーク状のマイクロ銅粒子を更に含み、
     前記サブマイクロ銅粒子の含有量は、前記金属粒子の全質量を基準として、30~90質量%であり、
     前記マイクロ銅粒子の含有量は、前記金属粒子の全質量を基準として、10~70質量%である、請求項1又は2に記載の接合用金属ペースト。
  4.  前記金属粒子は、亜鉛及び銀からなる群より選択される少なくとも1種の金属粒子を、前記金属粒子の全質量を基準として、0.01~10質量%の量で更に含む、請求項1~3のいずれか一項に記載の接合用金属ペースト。
  5.  前記炭素数1~9の1価カルボン酸は、酢酸、ヘキサン酸及び酪酸からなる群より選択される少なくとも1種を含む、請求項1~4のいずれか一項に記載の接合用金属ペースト。
  6.  溶剤成分を、前記金属ペーストの全質量を基準として、2~50質量%で含有する、請求項1~5のいずれか一項に記載の接合用金属ペースト。
  7.  前記溶剤成分は300℃以上の沸点を有する溶剤成分を含み、
     前記300℃以上の沸点を有する溶剤成分の含有量は、前記金属ペーストの全質量を基準として、2~50質量%である、請求項6に記載の接合用金属ペースト。
  8.  前記300℃以上の沸点を有する溶剤成分は、イソボルニルシクロヘキサノール、トリブチリン、ステアリン酸ブチル及びオクタン酸オクチルからなる群より選択される少なくとも1種を含む、請求項7に記載の接合用金属ペースト。
  9.  第一の部材、請求項1~8のいずれか一項に記載の接合用金属ペースト、及び第二の部材がこの順に積層されている積層体を用意し、前記接合用金属ペーストを、前記第一の部材の自重を受けた状態、又は前記第一の部材の自重及び0.01MPa以下の圧力を受けた状態で、250℃以下で焼結する工程を備える、接合体の製造方法。
  10.  第一の部材、請求項1~8のいずれか一項に記載の接合用金属ペースト、及び第二の部材がこの順に積層されている積層体を用意し、前記接合用金属ペーストを、前記第一の部材の自重を受けた状態、又は前記第一の部材の自重及び0.01MPa以下の圧力を受けた状態で、250℃以下で焼結する工程を備え、
     前記第一の部材及び前記第二の部材の少なくとも一方は半導体素子である、半導体装置の製造方法。
  11.  第一の部材と、第二の部材と、前記第一の部材と前記第二の部材とを接合する請求項1~8のいずれか一項に記載の接合用金属ペーストの焼結体と、を備える、接合体。
  12.  前記第一の部材及び前記第二の部材の少なくとも一方は、前記焼結体と接する面に、銅、ニッケル、銀、金及びパラジウムからなる群より選択される少なくとも1種の金属を含む、請求項11に記載の接合体。
  13.  第一の部材と、第二の部材と、前記第一の部材と前記第二の部材とを接合する請求項1~8のいずれか一項に記載の接合用金属ペーストの焼結体と、を備え、
     前記第一の部材及び前記第二の部材の少なくとも一方は半導体素子である、半導体装置。
PCT/JP2018/001442 2017-03-15 2018-01-18 接合用金属ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法 WO2018168187A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/493,427 US11370066B2 (en) 2017-03-15 2018-01-18 Metal paste for joints, assembly, production method for assembly, semiconductor device, and production method for semiconductor device
CN201880017472.4A CN110461504B (zh) 2017-03-15 2018-01-18 接合用金属糊料、接合体及其制造方法以及半导体装置及其制造方法
EP18767237.3A EP3597330A4 (en) 2017-03-15 2018-01-18 METAL PASTE FOR BONDING, BONDED BODY AS WELL AS A METHOD FOR MANUFACTURING THE SAME, AND A SEMICONDUCTOR DEVICE AS WELL AS A METHOD FOR MANUFACTURING THE SAME
KR1020197022623A KR102499022B1 (ko) 2017-03-15 2018-01-18 접합용 금속 페이스트, 접합체 및 그 제조 방법, 그리고 반도체 장치 및 그 제조 방법
SG11201908356W SG11201908356WA (en) 2017-03-15 2018-01-18 Metal paste for joints, assembly, production method for assembly, semiconductor device, and production method for semiconductor device
JP2019505730A JP7222346B2 (ja) 2017-03-15 2018-01-18 接合用金属ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017050091 2017-03-15
JP2017-050091 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018168187A1 true WO2018168187A1 (ja) 2018-09-20

Family

ID=63522923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001442 WO2018168187A1 (ja) 2017-03-15 2018-01-18 接合用金属ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法

Country Status (8)

Country Link
US (1) US11370066B2 (ja)
EP (1) EP3597330A4 (ja)
JP (1) JP7222346B2 (ja)
KR (1) KR102499022B1 (ja)
CN (1) CN110461504B (ja)
SG (1) SG11201908356WA (ja)
TW (1) TWI756359B (ja)
WO (1) WO2018168187A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060525A1 (ja) * 2019-09-27 2021-04-01 昭和電工マテリアルズ株式会社 電磁波シールド用組成物、電磁波シールド用シート、電磁波シールド用焼結体及び電子部品装置
WO2021066026A1 (ja) * 2019-09-30 2021-04-08 昭和電工マテリアルズ株式会社 接合用銅ペースト、接合体の製造方法及び接合体
EP3889317A4 (en) * 2018-11-29 2021-11-24 Showa Denko Materials Co., Ltd. METHOD OF MANUFACTURING A CONNECTED OBJECT AND SEMICONDUCTOR COMPONENT AND COPPER COMPOUND PASTE
CN114502301A (zh) * 2019-09-30 2022-05-13 昭和电工材料株式会社 接合用铜糊料、接合体的制造方法及接合体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7391678B2 (ja) * 2020-01-24 2023-12-05 大陽日酸株式会社 接合材

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928639B1 (ja) 1969-06-17 1974-07-27
JPS506081B1 (ja) 1970-12-09 1975-03-11
JP3736797B2 (ja) 2001-11-20 2006-01-18 Tdk株式会社 高温クリームはんだ用組成物およびインダクタ
JP2013047365A (ja) * 2011-08-29 2013-03-07 Hitachi Cable Ltd 銅微粒子分散液およびその製造方法、銅微粒子およびその製造方法、銅微粒子を含む銅ペースト、並びに銅被膜およびその製造方法
JP2014167145A (ja) 2013-02-28 2014-09-11 Osaka Univ 接合材
JP2015227476A (ja) * 2014-05-30 2015-12-17 協立化学産業株式会社 被覆銅粒子及びその製造方法
JP6060199B2 (ja) 2015-03-24 2017-01-11 ハリマ化成株式会社 はんだ合金、ソルダペーストおよび電子回路基板

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1737072B (zh) * 2004-08-18 2011-06-08 播磨化成株式会社 导电粘合剂及使用该导电粘合剂制造物件的方法
JP5006081B2 (ja) 2007-03-28 2012-08-22 株式会社日立製作所 半導体装置、その製造方法、複合金属体及びその製造方法
JP5060199B2 (ja) 2007-08-08 2012-10-31 株式会社今仙電機製作所 リクライニング装置
JP4928639B2 (ja) 2010-03-15 2012-05-09 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
WO2011155055A1 (ja) 2010-06-11 2011-12-15 Dowaエレクトロニクス株式会社 低温焼結性接合材および該接合材を用いた接合方法
JP5811314B2 (ja) * 2010-06-16 2015-11-11 国立研究開発法人物質・材料研究機構 金属ナノ粒子ペースト、並びに金属ナノ粒子ペーストを用いた電子部品接合体、ledモジュール及びプリント配線板の回路形成方法
WO2012059974A1 (ja) * 2010-11-01 2012-05-10 Dowaエレクトロニクス株式会社 低温焼結性導電性ペーストおよびそれを用いた導電膜と導電膜の形成方法
US20140370311A1 (en) * 2011-12-13 2014-12-18 Dow Corning Corporation Composition And Conductor Formed Therefrom
WO2013114930A1 (ja) * 2012-01-31 2013-08-08 株式会社村田製作所 金属端子接合用導電ペースト、金属端子付き電子部品およびその製造方法
JP5980574B2 (ja) * 2012-05-29 2016-08-31 ハリマ化成株式会社 導電性金属厚膜形成用材料および導電性金属厚膜の形成方法
JP5880300B2 (ja) * 2012-06-14 2016-03-08 日立化成株式会社 接着剤組成物及びそれを用いた半導体装置
JP6089175B2 (ja) * 2012-06-29 2017-03-08 荒川化学工業株式会社 導電性ペーストの製造方法
WO2014069074A1 (ja) * 2012-10-30 2014-05-08 化研テック株式会社 導電性ペーストおよびダイボンディング方法
EP3069396A2 (en) * 2013-11-13 2016-09-21 R. R. Donnelley & Sons Company Battery
JP2015142059A (ja) * 2014-01-30 2015-08-03 株式会社日立製作所 パワー半導体モジュール
EP3157695B1 (en) * 2014-06-23 2024-01-31 Alpha Assembly Solutions Inc. Multilayered metal nanoparticles
KR102097368B1 (ko) 2014-08-29 2020-04-06 미쓰이금속광업주식회사 도전체의 접속 구조 및 그 제조 방법, 도전성 조성물 그리고 전자부품 모듈
MY182241A (en) * 2014-09-01 2021-01-18 Dowa Electronics Materials Co Bonding material and bonding method using same
JP6091019B2 (ja) * 2015-02-02 2017-03-08 田中貴金属工業株式会社 熱伝導性導電性接着剤組成物
CN107405691B (zh) * 2015-03-05 2020-06-02 国立大学法人大阪大学 铜颗粒制造方法、铜颗粒和铜膏
JP6067191B1 (ja) * 2015-05-25 2017-01-25 積水化学工業株式会社 導電材料及び接続構造体
EP3009211B1 (de) * 2015-09-04 2017-06-14 Heraeus Deutschland GmbH & Co. KG Metallpaste und deren verwendung zum verbinden von bauelementen
JP7006872B2 (ja) * 2017-11-29 2022-01-24 国立大学法人北海道大学 低温焼結性銅粒子とそれを用いた焼結体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928639B1 (ja) 1969-06-17 1974-07-27
JPS506081B1 (ja) 1970-12-09 1975-03-11
JP3736797B2 (ja) 2001-11-20 2006-01-18 Tdk株式会社 高温クリームはんだ用組成物およびインダクタ
JP2013047365A (ja) * 2011-08-29 2013-03-07 Hitachi Cable Ltd 銅微粒子分散液およびその製造方法、銅微粒子およびその製造方法、銅微粒子を含む銅ペースト、並びに銅被膜およびその製造方法
JP2014167145A (ja) 2013-02-28 2014-09-11 Osaka Univ 接合材
JP2015227476A (ja) * 2014-05-30 2015-12-17 協立化学産業株式会社 被覆銅粒子及びその製造方法
JP6060199B2 (ja) 2015-03-24 2017-01-11 ハリマ化成株式会社 はんだ合金、ソルダペーストおよび電子回路基板

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. KHAZAKAL. MENDIZABALD. HENRY, J. ELECTRON. MATER, vol. 43, no. 7, 2014, pages 2459 - 2466
See also references of EP3597330A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3889317A4 (en) * 2018-11-29 2021-11-24 Showa Denko Materials Co., Ltd. METHOD OF MANUFACTURING A CONNECTED OBJECT AND SEMICONDUCTOR COMPONENT AND COPPER COMPOUND PASTE
US11890681B2 (en) 2018-11-29 2024-02-06 Resonac Corporation Method for producing bonded object and semiconductor device and copper bonding paste
WO2021060525A1 (ja) * 2019-09-27 2021-04-01 昭和電工マテリアルズ株式会社 電磁波シールド用組成物、電磁波シールド用シート、電磁波シールド用焼結体及び電子部品装置
WO2021066026A1 (ja) * 2019-09-30 2021-04-08 昭和電工マテリアルズ株式会社 接合用銅ペースト、接合体の製造方法及び接合体
CN114502301A (zh) * 2019-09-30 2022-05-13 昭和电工材料株式会社 接合用铜糊料、接合体的制造方法及接合体

Also Published As

Publication number Publication date
JP7222346B2 (ja) 2023-02-15
US20200130109A1 (en) 2020-04-30
KR20190126299A (ko) 2019-11-11
JPWO2018168187A1 (ja) 2020-01-16
KR102499022B1 (ko) 2023-02-13
SG11201908356WA (en) 2019-10-30
TW201835264A (zh) 2018-10-01
EP3597330A1 (en) 2020-01-22
EP3597330A4 (en) 2020-11-25
CN110461504B (zh) 2022-07-01
TWI756359B (zh) 2022-03-01
CN110461504A (zh) 2019-11-15
US11370066B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
JP7192842B2 (ja) 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法
JP6866893B2 (ja) 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法
JP7056724B2 (ja) 接合体及び半導体装置
WO2018168187A1 (ja) 接合用金属ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法
JP6819598B2 (ja) 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法
WO2018168186A1 (ja) 接合用金属ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法
JP6782416B2 (ja) 接合用銅ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法
JP2020020015A (ja) 接合用金属ペースト、接合体及び接合体の製造方法
JP7392728B2 (ja) 接合用銅ペースト、接合体の製造方法及び接合体
JP7107355B2 (ja) 無加圧接合用銅ペースト、接合体、及び半導体装置
JP7127407B2 (ja) 接合用金属ペースト、接合体及び接合体の製造方法
JP7463681B2 (ja) 接合体の製造方法及び接合体
WO2020110271A1 (ja) 接合体及び半導体装置の製造方法、並びに接合用銅ペースト
JP2021097072A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767237

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505730

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197022623

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018767237

Country of ref document: EP

Effective date: 20191015