WO2011155336A1 - 洗浄システムおよび洗浄方法 - Google Patents

洗浄システムおよび洗浄方法 Download PDF

Info

Publication number
WO2011155336A1
WO2011155336A1 PCT/JP2011/062059 JP2011062059W WO2011155336A1 WO 2011155336 A1 WO2011155336 A1 WO 2011155336A1 JP 2011062059 W JP2011062059 W JP 2011062059W WO 2011155336 A1 WO2011155336 A1 WO 2011155336A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfuric acid
acid solution
cleaning
unit
circulation line
Prior art date
Application number
PCT/JP2011/062059
Other languages
English (en)
French (fr)
Inventor
内田 稔
永井 達夫
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to JP2011543947A priority Critical patent/JP5751426B2/ja
Priority to KR1020127032747A priority patent/KR101676693B1/ko
Priority to TW100119229A priority patent/TWI463008B/zh
Publication of WO2011155336A1 publication Critical patent/WO2011155336A1/ja
Priority to US13/707,237 priority patent/US20130206176A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02076Cleaning after the substrates have been singulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/29Persulfates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/423Stripping or agents therefor using liquids only containing mineral acids or salts thereof, containing mineral oxidizing substances, e.g. peroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/121Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using electric energy supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention can be suitably used for cleaning a resist adhering to an electronic material such as a silicon wafer, and a cleaning apparatus for cleaning the resist with a sulfuric acid solution containing persulfuric acid obtained by electrolyzing a sulfuric acid solution.
  • the present invention relates to a cleaning system and a cleaning method to be supplied to the vehicle.
  • a single wafer type in addition to a batch type.
  • the single wafer type for example, an object to be cleaned is fixed on a turntable, and a chemical solution or the like is sprayed while being rotated, or is washed away by small amounts.
  • the degree of cleanliness of an electronic material substrate such as a wafer can be kept higher as compared with batch cleaning.
  • the chemical solution used in the single wafer cleaning device is required to have more severe characteristics than the electrolytic sulfuric acid solution used in the batch cleaning device.
  • a cleaning solution having a higher persulfuric acid concentration and a higher liquid temperature is required.
  • the present inventors have proposed a cleaning system equipped with a rapid heater, assuming that the temperature of the cleaning liquid needs to be raised in a very short time just before cleaning (see Patent Document 1).
  • the sulfuric acid solution is circulated between the electrolytic reaction device and the electrolytic solution storage tank while being electrolyzed, a part of the sulfuric acid solution is taken out, heated by the rapid heater, and supplied to the cleaning device.
  • cleaning apparatus can aim at decomposition
  • the sulfuric acid solution in which the residual organic matter has been decomposed in the drainage storage tank is reused by sending it to the electrolyte storage tank and again subjecting it to electrolysis.
  • the sulfuric acid solution is drained immediately after coming into contact with the material to be cleaned, so there is not enough time for decomposition of residual organic matter in the cleaning apparatus. Therefore, the necessity for decomposition in the drainage storage tank is high. If the residual organic matter in the drainage storage tank is not sufficiently decomposed, the contaminants are sent as they are to the electrolytic reaction device, causing contamination of the electrolytic reaction device, a decrease in electrolytic efficiency, and the like.
  • the single wafer cleaning is performed by alternately repeating a cleaning process and a material replacement process.
  • the electrolytic sulfuric acid solution is used for cleaning.
  • the supply of the sulfuric acid solution from the electrolytic solution storage tank to the rapid heater is stopped, and the electrolytic solution The total amount of sulfuric acid discharged from the storage tank is circulated between the electrolyzer.
  • the cleaning material replacement step since the high temperature cleaning waste liquid is not supplied to the waste liquid storage tank, the concentration of persulfuric acid gradually decreases without the supply of persulfuric acid. Moreover, the temperature in a tank will fall gradually.
  • the present invention has been made against the background of the above circumstances, and is capable of decomposing residual organic matter in the drainage storage tank even when cleaning is stopped, and is included in the cleaning drainage when cleaning is resumed. It is an object of the present invention to provide a cleaning system and a cleaning method capable of effectively decomposing residual organic substances.
  • the cleaning system of the present invention includes an electrolytic unit that electrolyzes a sulfuric acid solution to generate persulfuric acid, an electrolytic solution storage unit that stores the electrolyzed sulfuric acid solution, and the electrolytic unit and the electrolytic solution storage unit.
  • the sulfuric acid solution electrolyzed by the storage unit and the electrolysis unit is sent to the cleaning device via the heating unit, and the sulfuric acid solution used for cleaning by the cleaning device is circulated through the drainage storage unit.
  • electrolysis is performed while circulating the sulfuric acid solution during cleaning, and a part of the electrolyzed sulfuric acid solution is taken out and heated, and the heated sulfuric acid solution is used for cleaning the material to be cleaned.
  • the object to be cleaned that has been stored and transferred into the sulfuric acid solution is decomposed, and the sulfuric acid solution that has been stored is circulated to perform the electrolysis, and when the cleaning is stopped,
  • the sulfuric acid solution is circulated while being electrolyzed, and a part of the electrolyzed sulfuric acid solution is taken out and supplied to the stored sulfuric acid solution to be moved into the sulfuric acid solution.
  • the decomposition is performed, and the stored sulfuric acid solution is circulated to perform the electrolysis.
  • the sulfuric acid solution is circulated by the first circulation line between the electrolytic section and the electrolytic solution storage section, so that persulfuric acid can be continuously generated by electrolysis.
  • the sulfuric acid solution electrolyzed in the electrolysis unit is taken out in the second circulation line, heated in the heating unit, and then supplied to the cleaning device.
  • the sulfuric acid solution used for washing in the washing apparatus is circulated in the second circulation line. At that time, the liquid is once stored in the drainage storage part and decomposes the residual organic matter, and then subjected to electrolysis again.
  • the take-out position in the second circulation line may be any of the liquid discharge side of the electrolysis section, the first circulation line, and the electrolyte storage section, and the position of reflux is also the liquid discharge side of the electrolysis section, the first circulation.
  • Either a line or an electrolyte storage unit may be used.
  • As the stable removal and recirculation it is desirable to take out from the electrolytic solution storage part and return to the electrolytic solution storage part.
  • the sulfuric acid solution electrolyzed in the electrolysis unit is taken out in the third circulation line and supplied to the drainage storage unit without going through the cleaning unit.
  • the sulfuric acid solution used for cleaning from the cleaning device is supplied to the drainage reservoir by the second circulation line, the sulfuric acid solution may be supplied by the third circulation line.
  • a 3rd circulation line what sends the said sulfuric acid solution to the said drainage storage part via the above-mentioned heating part is desirable.
  • the heated sulfuric acid solution can be supplied to the drainage storage tank to effectively decompose the residual organic matter.
  • the sulfuric acid solution fed in the third circulation line can be heated to a temperature lower than that used for cleaning and supplied to the drainage reservoir.
  • the residual organic substance in a solution can be heated effectively, maintaining an oxidizing power.
  • a sulfuric acid solution heated so that the temperature of the drainage reservoir is 120 to 160 ° C. can be supplied.
  • the second circulation line and the third circulation line described above can be selectively used.
  • the sulfuric acid solution is supplied to the cleaning device using the second circulation line
  • the third circulation line is stopped, and the cleaning in the cleaning device is stopped by replacing the material to be cleaned. Stops the second circulation line and supplies the sulfuric acid solution to the drainage reservoir in the third circulation line.
  • the above selective use can be performed by operating an on-off valve or a switching valve provided in the line.
  • concentration of a drainage storage part can be raised and decomposition
  • the second circulation line and the third circulation line may be partially shared. Accordingly, some of the circulation lines are used as the second circulation line when the second circulation line and the third circulation line are selectively used, and when the washing is performed, When is stopped, there is also a form used as a third circulation line.
  • persulfuric acid is generated by electrolyzing the sulfuric acid solution to enhance the cleaning effect.
  • the generation efficiency of persulfuric acid is improved as the solution temperature is lower. Therefore, the electrolysis temperature when producing persulfuric acid is desirably 80 ° C. or lower.
  • the electrolysis efficiency is significantly reduced.
  • the temperature is desirably 40 ° C. or higher.
  • the sulfuric acid solution from the electrolytic solution storage part to the electrolytic part may be cooled by the first cooling part.
  • electrolysis is performed with the anode and cathode paired.
  • the material of these electrodes is not limited to a specific material in the present invention.
  • platinum which is widely used as an electrode
  • the conductive diamond electrode can efficiently generate persulfuric acid and has little electrode wear. Therefore, it is desirable that at least the anode in which persulfuric acid is generated among the electrodes of the electrolysis part is composed of a conductive diamond electrode, and it is more desirable that both the anode and the cathode are composed of a conductive diamond electrode.
  • the conductive diamond electrode examples include a semiconductor material such as a silicon wafer as a substrate, a conductive diamond thin film synthesized on the wafer surface, and a self-standing type conductive polycrystalline diamond deposited and synthesized in a plate shape. .
  • stacked on metal substrates such as Nb, W, and Ti, can also be utilized.
  • the conductive diamond thin film is a conductive thin film that is doped with a predetermined amount of boron or nitrogen during the synthesis of the diamond thin film, and is generally boron-doped. If the doping amount is too small, technical significance does not occur. If the doping amount is too large, the doping effect is saturated. Therefore, a doping amount in the range of 50 to 20,000 ppm with respect to the carbon amount of the diamond thin film is suitable. .
  • the temperature of the sulfuric acid solution in the electrolytic solution reservoir is preferably 50 to 90 ° C. Since the sulfuric acid solution in the electrolytic solution storage unit is sent to the electrolytic unit, if the temperature is high, it is necessary to cool in preparation for electrolysis and the cooling burden increases. In addition, if the temperature is lowered, there is a risk of electrode wear in the electrolytic section, so the temperature of the sulfuric acid solution in the electrolytic solution storage section is desirably 50 ° C. or higher.
  • the heating unit heats the sulfuric acid solution so that the sulfuric acid solution has a temperature of 150 to 220 ° C. in the single wafer type at the time of cleaning.
  • the heating temperature is less than 150 ° C., the oxidation performance due to self-decomposition of persulfuric acid cannot be sufficiently obtained.
  • the temperature of the sulfuric acid solution becomes excessively high, the decomposition rate of persulfuric acid becomes too fast, and the cleaning performance is lowered.
  • the heating unit can be configured by an upstream preheater that preheats the sulfuric acid solution and a downstream quick heater that rapidly heats the sulfuric acid solution.
  • a downstream quick heater that rapidly heats the sulfuric acid solution.
  • rapid heating can reduce the burden on the rapid heater. If the preheating temperature is less than 90 ° C., the effect of reducing the heating burden in the rapid heater is small, and if it exceeds 120 ° C., the self-decomposition of persulfuric acid proceeds and sufficient oxidation performance is obtained during cleaning. Since it cannot be obtained, the above temperature range is desirable for preheating.
  • the sulfuric acid solution used in the cleaning system has a sulfuric acid concentration of 85% by mass or more. If the sulfuric acid concentration is less than 85% by mass, even if the persulfuric acid concentration is high, the resist stripping performance in the cleaning apparatus decreases. On the other hand, when the sulfuric acid concentration exceeds 96% by mass, the current efficiency in the electrolysis process is lowered, so 96% by mass or less is desirable.
  • the present invention is suitable for applications in which cleaning is performed on electronic material substrates such as silicon wafers, glass substrates for liquid crystals, and photomask substrates. It is. More specifically, it can be used for a peeling process of an organic compound such as a resist residue attached on a semiconductor substrate. Further, it can be used for a foreign matter removing process such as fine particles and metal adhering to the semiconductor substrate.
  • the present invention can be used in a process of cleaning and removing contaminants attached to a substrate such as a silicon wafer with a high-concentration sulfuric acid solution, eliminating a pretreatment step such as an ashing process, and removing the resist / oxidizing effect. In order to increase this, it is desirable to produce a persulfuric acid solution on-site by an electrolysis unit and to use the sulfuric acid solution repeatedly as a system that does not require the addition of chemicals such as hydrogen peroxide and ozone from the outside.
  • an electrolytic unit that electrolyzes a sulfuric acid solution to generate persulfuric acid
  • an electrolytic solution storage unit that stores the electrolyzed sulfuric acid solution, the electrolytic unit, and the electrolytic solution
  • a first circulation line for circulating the sulfuric acid solution to and from the reservoir
  • a cleaning device for cleaning the material to be cleaned using the sulfuric acid solution containing persulfuric acid
  • a heating unit for heating the sulfuric acid solution used in the cleaning device
  • a drainage liquid for storing the sulfuric acid solution used in the cleaning device
  • the sulfuric acid solution electrolyzed by the storage unit and the electrolysis unit is sent to the cleaning device via the heating unit, and the sulfuric acid solution used for cleaning by the cleaning device is circulated through the drainage storage unit.
  • decomposition of residual organic matter in the sulfuric acid solution can be promoted.
  • the drainage reservoir is continuously increased by switching the supply of the sulfuric acid solution so that the third circulation line is operated. An oxidizing sulfuric acid solution is supplied, and the residual resist and the like can be reliably decomposed.
  • An electrolysis apparatus 1 corresponding to an electrolysis unit of the present invention is a diaphragm type, and an anode and a cathode (not shown) constituted by diamond electrodes are arranged inside without being separated by a diaphragm, and a DC power source 2 is connected to both electrodes. It is connected.
  • the electrolysis apparatus can be configured as a diaphragm type.
  • An electrolytic solution storage tank 20 corresponding to the electrolytic solution storage unit of the present invention is connected to the electrolytic device 1 through the first circulation line 11 so as to be able to circulate.
  • a gas-liquid separation tank 10 is interposed on the return side of the first circulation line 11.
  • the gas-liquid separation tank 10 contains a sulfuric acid solution containing a gas, separates the gas in the sulfuric acid solution, and discharges it out of the system.
  • a known one can be used. If liquid separation is possible, the structure is not particularly limited.
  • a circulation pump 12 that circulates the sulfuric acid solution and a cooler 13 that cools the sulfuric acid solution are interposed on the feed side of the first circulation line 11.
  • the cooler 13 corresponds to the first cooling section of the present invention, and may be any one that cools the sulfuric acid solution and enables electrolysis at a liquid temperature of 40 to 80 ° C.
  • the configuration is not particularly limited.
  • a liquid feed line 22 is connected to the electrolytic solution storage tank 20 via a supply pump 21.
  • the electrolysis unit A is constituted by the electrolysis apparatus 1, the DC power source 2, the first circulation line 11, the circulation pump 12, the cooler 13, the gas-liquid separation tank 10, the electrolyte storage tank 20, and the cooler 53 described later. Yes.
  • the electrolyte solution storage tank may serve as a gas-liquid separator.
  • a rapid heater 23 is interposed in the liquid feeding direction of the liquid feeding line 22.
  • the liquid feed line 22 is connected to the on-off valve 26 on the downstream side of the rapid heater 23.
  • a liquid supply line 27 is connected to the other end side of the on-off valve 26, and a liquid supply front end side of the liquid supply line 27 is connected to a single wafer cleaning device 40.
  • the rapid heater 23 corresponds to a heating unit of the present invention, and has a quartz pipe line.
  • a sulfuric acid solution is transiently passed by a near infrared heater, and a liquid temperature of 150 to 220 ° C. at the inlet of the cleaning device 40. The sulfuric acid solution is heated rapidly so that is obtained.
  • the liquid feed line 22 downstream of the rapid heater 23 is provided with a liquid temperature measuring device 24 for measuring the temperature of the sulfuric acid solution to be sent, and the measurement result of the liquid temperature measuring device 24 is as follows: It is output to the power supply unit 25 including a DC power supply.
  • the power supply unit 25 energizes the rapid heater 23 with a predetermined energization amount, receives the measurement result of the liquid temperature measuring device 24, and the rapid heater 23 so that the liquid temperature becomes a predetermined temperature.
  • the energization amount for is controlled.
  • the rapid heater 23, the liquid temperature measuring device 24, and the power supply unit 25 described above constitute a rapid heating unit B.
  • a liquid-feeding line 30 branches from the liquid-feeding line 22, and an on-off valve 31 is interposed in the liquid-feeding line 30.
  • the liquid feed front end side of the liquid feed line 30 is connected to a drainage storage tank 50 described later.
  • the single wafer cleaning apparatus 40 includes a nozzle 41 directed toward the electronic material substrate 100 that is the material to be cleaned, and the electronic material substrate is sprayed with a sulfuric acid solution as a cleaning solution or is gradually flown down by the nozzle 41.
  • a turntable 42 on which 100 is placed and rotated.
  • a sulfuric acid solution recovery unit 43 that recovers droplets of the sulfuric acid solution used for the cleaning is provided, and the sulfuric acid solution recovery unit 43 is connected to a circulation line 45 having a first circulation pump 44 interposed therebetween.
  • the above-described cleaning device 40, nozzle 41, turntable 42, sulfuric acid solution recovery unit 43, and first circulating pump 44 constitute a cleaning unit C.
  • the cleaning device is described as a single-wafer type, but the present invention is not limited to this type of cleaning device, and is a batch-type cleaning device. There may be.
  • a drainage storage tank 50 for storing the sulfuric acid solution used for cleaning is connected to the liquid feed front side of the reflux line 45.
  • the drainage reservoir 50 corresponds to the drainage reservoir of the present invention.
  • a recirculation line 52 is connected to the drainage reservoir 50 via a second recirculation pump 51, and a refrigerating device 53 corresponding to the second cooling unit of the present invention is interposed in the recirculation line 52.
  • the liquid feed front end of the reflux line 52 is connected to the electrolyte storage tank 20.
  • the drainage storage tank D and the second circulating pump 51 constitute a drainage storage unit D.
  • the liquid feed line 22, the liquid feed line 27, the reflux line 45, and the reflux line 52 constitute the second circulation line of the present invention
  • the liquid feed line 22, the liquid feed line 30, and the reflux line 52 constitute the second circulation line of the present invention.
  • Three circulation lines are formed. Therefore, the second circulation line and the third circulation line are configured so that the liquid feeding line 22 and the circulation line 52 share the same line.
  • the operation of the cleaning system having the above configuration will be described.
  • a sulfuric acid solution having a sulfuric acid concentration of 85 to 96 mass% and a liquid temperature of 50 to 90 ° C. is stored.
  • the sulfuric acid solution is fed by the circulation pump 12, adjusted to a temperature suitable for electrolysis (40 to 80 ° C.) by the cooler 13, and introduced to the liquid inlet side of the electrolysis apparatus 1.
  • the DC power source 2 is energized between the anode and the cathode, and the sulfuric acid solution introduced into the electrolysis apparatus 1 is electrolyzed.
  • the electrolysis apparatus 1 generates an oxidizing substance containing persulfuric acid on the anode side, generates oxygen gas, and generates hydrogen gas on the cathode side.
  • These oxidizing substances and gases are sent to the gas-liquid separation tank 10 through the first circulation line 11 in a mixed state with the sulfuric acid solution, and the gases are separated.
  • the gas is discharged out of the system and safely processed by a catalyst device (not shown).
  • the sulfuric acid solution from which the gas has been separated in the gas-liquid separation tank 10 contains persulfuric acid, and is further returned to the electrolyte storage tank 20 through the return side of the first circulation line 11, and then repeatedly into the electrolytic apparatus 1.
  • the concentration of persulfuric acid is increased by electrolysis.
  • a part of the sulfuric acid solution in the electrolytic solution storage tank 20 is sent to the rapid heater 23 by the liquid feed pump 21 through the liquid feed line 22.
  • the sulfuric acid solution containing persulfuric acid is heated by the near infrared heater while passing through the flow path. At that time, rapid heating is performed so that the liquid temperature is in the range of 150 ° C. to 220 ° C.
  • the rapid heater 23 when supplied to the cleaning device 40.
  • the heating temperature can be made substantially the same as the temperature at the time of use.
  • the heated sulfuric acid solution containing persulfuric acid is fed to the liquid feeding line 27 through the opening / closing valve 26 and supplied to the single wafer cleaning device 40 through the liquid feeding line 27 to clean the electronic material substrate 100. Used for.
  • the on-off valve 31 is closed, and the sulfuric acid solution is not supplied to the liquid feeding line 30.
  • the flow rate of the sulfuric acid solution is adjusted so that the liquid passing time from the inlet of the rapid heater 23 to the use of the cleaning device 40 is less than 1 minute during the liquid feeding.
  • the flow rate at 500 to 2000 mL / min. is set to an appropriate amount, and the flow path of the rapid heater 23 is set so that the liquid passing time is less than 1 minute at the flow rate.
  • the channel cross-sectional area, the line lengths of the liquid feeding lines 22 and 27 on the downstream side, the channel cross-sectional area, and the like are set.
  • an electronic material substrate 100 such as a silicon wafer provided with a resist ion-implanted at a high concentration of, for example, 1 ⁇ 10 15 atoms / cm 2 or more is an object to be cleaned. While the electronic material substrate 100 is rotated on a turntable 42, a high-temperature sulfuric acid solution containing persulfuric acid is sprayed from the nozzle 41 or is washed away little by little to come into contact with contaminants such as resist on the electronic material substrate 100. Effectively strips and removes. The sulfuric acid solution used for the cleaning is recovered by the sulfuric acid solution recovery unit 43, then discharged from the cleaning device 40, and sent and stored in the drainage storage tank 50 through the circulation line 45 by the first circulation pump 44.
  • the sulfuric acid solution contains residual organic matter such as a resist cleaned by the cleaning device 40, and the residual organic matter is oxidized by an oxidizing substance contained in the sulfuric acid solution while being stored in the drainage storage tank 50. Disassembled.
  • the storage time of the sulfuric acid solution in the drainage storage tank 50 can be arbitrarily adjusted depending on the content of residual organic matter and the like. At this time, a high-temperature sulfuric acid solution containing persulfuric acid is continuously supplied from the cleaning device 40, and the drainage storage tank 50 is maintained at an appropriate temperature.
  • the sulfuric acid solution in which the residual organic substances contained are oxidized and decomposed is circulated to the electrolyte storage tank 20 through the cooler 53 provided in the circulation line 52 by the second circulation pump 51.
  • a filter may be provided downstream of the drainage storage tank 50 and upstream of the cooler 53. Thereby, SS in the sulfuric acid solution which could not be processed in the drainage storage tank 50 is captured and removed by the filter. Further, when the high-temperature sulfuric acid solution is circulated to the electrolytic solution storage tank 20, decomposition of persulfuric acid in the sulfuric acid solution stored in the electrolytic solution storage tank 20 is promoted. After being cooled to an appropriate temperature by a cooler 53 that is a cooling unit, it is introduced into the electrolyte storage tank 20.
  • the sulfuric acid solution introduced into the electrolytic solution storage tank 20 is fed to the electrolysis apparatus 1 by the feeding side of the first circulation line 11 and persulfuric acid is generated by electrolysis, and by the return side of the first circulation line 11. It is sent to the electrolytic solution storage tank 20 again. By repeating this circulation in the electrolysis unit A, persulfuric acid is continuously generated.
  • the sulfuric acid solution containing persulfuric acid is sent from the electrolysis unit A to the rapid heating unit B, the cleaning unit C, and the drainage storage unit D and circulates to the electrolysis unit A as described above.
  • the on-off valve 26 is opened and the on-off valve 31 is opened while continuing the circulation and electrolysis of the sulfuric acid solution in the electrolysis unit A. open.
  • the sulfuric acid solution flows into the liquid feeding line 30, and the sulfuric acid solution is fed into the drainage storage tank 50.
  • the sulfuric acid solution is heated by the rapid heater 23, and a sulfuric acid solution containing persulfuric acid is supplied to the drainage storage tank 50 at a high temperature, and the temperature of the sulfuric acid solution in the drainage storage tank 50 is increased. The persulfuric acid concentration is properly maintained.
  • the energization amount may be controlled by the power supply unit 25 so that the heating temperature by the rapid heater 23 is lower than that at the time of cleaning. Further, by adjusting the liquid feeding pump 21, the amount of the sulfuric acid solution fed through the liquid feeding line 22 can be made smaller than that during washing.
  • the drainage storage tank 50 residual organic substances and the like contained in the sulfuric acid solution stored before the switching of the circulation line are effectively decomposed by the replenishment of the sulfuric acid solution.
  • the sulfuric acid solution is circulated and electrolyzed in the electrolytic unit A, and a part of the solution containing persulfuric acid is transferred from the electrolytic unit A to the rapid heating unit B. Then, the solution is fed to the drainage storage unit D and circulated to the electrolysis unit A, so that the residual organic matter in the sulfuric acid solution stored in the drainage storage tank is effectively decomposed while generating persulfuric acid. be able to.
  • a drain line is branched and connected to the reflux line 45 on the upstream side of the drainage storage tank 50, and the sulfuric acid solution is not sent to the drainage storage tank 50 at an appropriate time. You may comprise so that it can drain out of the system. By discharging the sulfuric acid solution little by little from the drainage line as needed, it is possible to prevent the resist dope element and other non-oxidatively decomposed substances accumulated in the solution in the system from accumulating to a high concentration.
  • the operation can be performed by opening / closing control of an opening / closing valve provided in the reflux line or the drain line.
  • the third circulation line is stopped when liquid is fed through the second circulation line.
  • liquid is fed through the second circulation line and cleaning is performed, It is also possible to send a part of the sulfuric acid solution through the three washing lines.
  • this invention was demonstrated based on the said embodiment, this invention is not limited to the content of the said embodiment, A suitable change is possible unless it deviates from this invention.
  • Electrolyzer 2 DC power supply 10 Gas-liquid separator 11 1st circulation line 13 Cooler 20 Electrolyte storage tank 22 Liquid feed line 23 Rapid heater 26 On-off valve 27 Liquid feed line 30 Liquid feed line 31 On-off valve 40 Cleaning device 50 Decomposition tank A Electrolysis unit B Rapid heating unit C Cleaning unit D Drainage storage unit

Abstract

 洗浄装置排液でのレジストなどの分解を図る排液貯留部で、洗浄を停止している際にも前記分解を効果的に行うことを可能にする。 硫酸溶液を電解して過硫酸を生成する電解部と、電解された硫酸溶液を貯留する電解液貯留部と、電解部と電解液貯留部との間で硫酸溶液を循環させる第1の循環ラインと、過硫酸を含む前記硫酸溶液を用いて被洗浄材を洗浄する洗浄装置と、洗浄装置で用いられる硫酸溶液を加熱する加熱部と、洗浄装置で用いられた硫酸溶液を貯留する排液貯留部と、電解部で電解された硫酸溶液を前記加熱部を介して前記洗浄装置に送液し、前記洗浄装置で洗浄に用いた硫酸溶液を前記排液貯留部を介して環流させる第2の循環ラインと、前記電解部で電解された硫酸溶液を洗浄部を介することなく前記排液貯留部に送液し、環流させる第3の循環ラインを備える。

Description

洗浄システムおよび洗浄方法
 この発明は、シリコンウエハ等の電子材料に付着したレジストの洗浄に好適に使用することができ、硫酸溶液を電解して得られる過硫酸を含む硫酸溶液を、前記レジストの洗浄などを行う洗浄装置に供給する洗浄システムおよび洗浄方法に関するものである。 
 半導体製造におけるレジスト剥離工程において、硫酸溶液を電気分解して過硫酸(ペルオキソ二硫酸及びペルオキソ一硫酸;分子状過硫酸およびイオン状過硫酸)を生成し、過硫酸溶液を洗浄液として洗浄を行う硫酸電解法が知られている。レジスト剥離工程では洗浄液が高温であるほどレジスト剥離が効率的に進行する。これは硫酸電解法によって製造した洗浄液が所定の高温になると洗浄液中の過硫酸が自己分解して極めて酸化力の強い硫酸ラジカルを生成して洗浄に寄与するためであると考えられる。
 ラジカルは寿命が短いため、洗浄液を早い段階で昇温してしまうと、洗浄液に含まれる過硫酸の自己分解が早すぎて洗浄に寄与することなく消費されてしまう。また洗浄液を長時間(例えば数分程度)かけてゆっくり加熱した場合、高温化の途中で過硫酸の自己分解とそれに伴う硫酸ラジカルの分解が進行してしまい、高温化した時点では既に過硫酸濃度が低くなってしまうという問題がある。
 また、電子材料基板などを洗浄する方法としては、バッチ式の他に枚葉式がある。枚葉式では、例えば被洗浄物を回転台に固定し、これを回転させながら薬液などをスプレーしたり、少量ずつ流し落とすなどして洗浄する。枚葉式洗浄装置では、バッチ式洗浄と比較してウエハなどの電子材料基板の清浄度をより高く保つことができる。しかし、枚葉式洗浄装置に用いられる薬液には、バッチ式洗浄装置で用いられる電解硫酸液よりもさらに厳しい条件の特性が求められる。特に、1×1015atoms/cm以上の高濃度にイオン注入されたレジストの剥離洗浄においては、より高い過硫酸濃度と、より高い液温度をもつ洗浄液が求められる。
 以上の観点から、本発明者らは、洗浄液の昇温は洗浄直前にごく短時間で行う必要があるものとして、急速加熱器を備える洗浄システムを提案している(特許文献1参照)。
 該洗浄システムでは、電解反応装置と電解液貯留槽との間で硫酸溶液を電解しつつ循環させ、その一部の硫酸溶液を取りだして、前記急速加熱器で加熱し、洗浄装置に供給している。
 また、洗浄装置で洗浄に用いられた硫酸溶液は排液として一旦排液貯留槽に貯留させることで硫酸溶液中に移行した残留有機物の分解を図ることができる。該排液貯留槽で残留有機物の分解が行われた硫酸溶液は、電解液貯留槽に送液して再度電解に供することで再利用される。特に、枚葉式洗浄装置では、硫酸溶液は被洗浄材と接触した後、直ちに排液されるので、洗浄装置内で残留有機物の分解が進行する十分な時間がない。したがって、前記排液貯留槽における分解の必要性は高い。該排液貯留槽における残留有機物の分解が十分になされていないと、汚染物がそのまま電解反応装置に送り込まれ、電解反応装置の汚染、電解効率の低下などを招く。
特開2010-60147号公報
 ところで、枚葉式洗浄は、洗浄工程と被洗浄材入替工程とを交互に繰り返して行うものである。洗浄工程においては電解硫酸溶液を洗浄に供するが、被洗浄材入替工程では洗浄装置で電解硫酸溶液は不要なので、電解液貯留槽から急速加熱器への硫酸溶液の供給を停止して、電解液貯留槽から排出される硫酸の全量を電解装置との間で循環するようにしている。
 しかし、被洗浄材入替工程になると排液貯留槽への高温の洗浄排液の供給がなくなるため、過硫酸の補給がなく過硫酸濃度が徐々に低下してしまう。また、槽内温度が徐々に低下してしまう。これにより被洗浄材入替工程において残留レジストの分解が不十分になる。さらに、被洗浄材を入れ替えた後の次の洗浄工程の初期に、排液貯留槽内の過硫酸濃度は低く、また槽内温度も低いため、残留レジストの分解が不十分になる、という懸念がある。これに対し、槽内を加熱して槽内温度を高温に保つことが考えられるが、このためには別途ヒーターなどが必要になるという問題がある。また、前記ヒーターを設けても過硫酸の補給はなされないので、被洗浄材入替工程に切替わると過硫酸濃度が経時的に低下し、残留レジストが多い場合、過硫酸が不足してレジストが十分に分解できない懸念がある。
 本発明は、上記事情を背景としてなされたものであり、洗浄を停止している際にも排液貯留槽における残留有機物などの分解を図ることができ、また、洗浄再開時に洗浄排液に含まれる残留有機物などの分解を効果的に行うことができる洗浄システムおよび洗浄方法を提供することを目的とする。
 すなわち、本発明の洗浄システムは、硫酸溶液を電解して過硫酸を生成する電解部と、電解された前記硫酸溶液を貯留する電解液貯留部と、前記電解部と前記電解液貯留部との間で前記硫酸溶液を循環させる第1の循環ラインと、
 過硫酸を含む前記硫酸溶液を用いて被洗浄材を洗浄する洗浄装置と、前記洗浄装置で用いられる前記硫酸溶液を加熱する加熱部と、前記洗浄装置で用いられた硫酸溶液を貯留する排液貯留部と、前記電解部で電解された前記硫酸溶液を前記加熱部を介して前記洗浄装置に送液し、前記洗浄装置で洗浄に用いた硫酸溶液を前記排液貯留部を介して環流させる第2の循環ラインと、
 前記電解部で電解された前記硫酸溶液を前記洗浄部を介することなく前記排液貯留部に送液し、環流させる第3の循環ラインと、を備えることを特徴とする。
 また、本発明の洗浄方法は、洗浄中は硫酸溶液を循環しつつ電解するとともに、前記電解がされた硫酸溶液の一部を取り出して加熱し、加熱された硫酸溶液を被洗浄材の洗浄に供した後、貯留して硫酸溶液中に移行した被洗浄物の分解を図るとともに、前記貯留をしている前記硫酸溶液を前記電解を行うべく環流させ、前記洗浄を停止している際に、前記硫酸溶液を電解しつつ循環させるとともに、前記電解がされた硫酸溶液の一部を取り出して、前記貯留がされている前記硫酸溶液に供給して硫酸溶液中に移行している被洗浄物の分解を図り、前記貯留をしている前記硫酸溶液を前記電解を行うべく環流させることを特徴とする。
 本発明では、電解部と電解液貯留部との間で第1の循環ラインによって硫酸溶液を循環させることで、電解によって過硫酸を継続して生成することができる。
 また、前記電解部で電解された前記硫酸溶液は、第2の循環ラインで取り出され、加熱部で加熱された後、洗浄装置に供給される。洗浄装置で洗浄に用いられた硫酸溶液は、第2の循環ラインで環流される。その際に排液貯留部で一旦貯留されて残留有機物などの分解が図られた後、再度電解に供される。第2の循環ラインにおける取り出し位置は、電解部の出液側、第1の循環ライン、電解液貯留部のいずれであってもよく、環流する位置も電解部の出液側、第1の循環ライン、電解液貯留部のいずれであってもよい。安定した取り出し、環流としては、電解液貯留部からの取り出し、電解液貯留部への環流が望ましい。
 また、前記電解部で電解された前記硫酸溶液は、第3の循環ラインで取り出され、洗浄部を介することなく排液貯留部に供給される。これにより洗浄装置からの硫酸溶液の供給が停止している際にも排液貯留部に過硫酸が補給され、排液貯留部に貯留された硫酸溶液に含まれる残留有機物等が効果的に分解される。また、洗浄装置から洗浄に利用された硫酸溶液が第2の循環ラインによって排液貯留部に供給されている際に、第3の循環ラインによって硫酸溶液を供給するようにしてもよい。これにより排液貯留部における残留有機物濃度が特に高いような場合に過硫酸を多く供給して効果的な分解を図ることができる。
 なお、第3の循環ラインは、前記した加熱部を介して前記排液貯留部に前記硫酸溶液を送液するものが望ましい。これにより、洗浄を停止した際にも排液貯留槽に加熱した硫酸溶液を供給して残留有機物の効果的な分解を図ることができる。これにより排液貯留部にヒーターなどを設けることなく貯留されている硫酸溶液の温度低下を防止することができる。
 第3の循環ラインで送液される硫酸溶液は、洗浄に供する際よりも低い温度に加熱して排液貯留部に供給することができる。これにより酸化力を維持して溶液中の残留有機物を効果的に加熱することができる。この際に、排液貯留部の温度が120~160℃になるように加熱した硫酸溶液を供給することができる。なお、排液貯留部の温度が、さらに130~160℃となるように加熱した硫酸溶液を供給するのが望ましい。
 また、排液貯留部の硫酸溶液を第2の循環ライン、第3の循環ラインで環流する際には、第2の冷却部によって冷却するのが望ましい。これにより電解液貯留部等で硫酸溶液の温度が高くなって、過硫酸の自己分解が進行したり、電解に適した温度を超えたり、電解部側での冷却負担を増加させたりするのを防止する。
 上記した第2の循環ラインと第3の循環ラインとは、選択的に使用されるものとすることができる。この場合、第2の循環ラインを使用して洗浄装置に硫酸溶液を供給する際には、第3の循環ラインを停止し、被洗浄材の入れ替えなどで洗浄装置での洗浄を停止する際には第2の循環ラインを停止して、第3の循環ラインで硫酸溶液を排液貯留部に供給する。上記の選択的な使用は、ラインに設けた開閉弁や切換弁の操作によって行うことができる。
 また、第2の循環ラインと第3の循環ラインとを常時または必要に応じて同時に使用するようにしてもよい。これにより、排液貯留部の過硫酸濃度を高めて分解能力を上げることができる。
 また、第2の循環ラインと第3の循環ラインとは、一部を共用するようにしてもよい。したがって一部の循環ラインは、第2の循環ラインと第3の循環ラインとが選択的に使用される場合には、洗浄が行われている際には第2の循環ラインとして使用され、洗浄が停止している際には、第3の循環ラインとして使用される形態もある。
 なお、電解部では、上記のように硫酸溶液を電解して洗浄効果を高める過硫酸を生成する。この電解においては、溶液温度が低いほど過硫酸の生成効率が良くなる。したがって、過硫酸を生成するときの電解温度は80℃以下が望ましい。上記温度範囲を超えると、電解効率が著しく低下する。一方、温度が低すぎると電極の損耗が激しくなる。したがって、上記温度は40℃以上が望ましい。
 上記適温を得るため、電解液貯留部から電解部に至る硫酸溶液を第1の冷却部で冷却するようにしてもよい。
 上記電解部では、陽極と陰極とを対にして電解がなされる。これら電極の材質は、本発明としては特定のものに限定されない。しかし、電極として一般に広く利用されている白金を本発明の電解部の陽極として使用した場合、過硫酸を効率的に製造することができず、白金が溶出するという問題がある。これに対し、導電性ダイヤモンド電極は、過硫酸の生成を効率よく行えるとともに、電極の損耗が小さい。したがって、電解部の電極のうち、少なくとも、過硫酸の生成がなされる陽極を導電性ダイヤモンド電極で構成するのが望ましく、陽極、陰極ともに導電性ダイヤモンド電極で構成するのが一層望ましい。導電性ダイヤモンド電極は、シリコンウエハ等の半導体材料を基板とし、このウエハ表面に導電性ダイヤモンド薄膜を合成させたものや、板状に析出合成したセルフスタンド型導電性多結晶ダイヤモンドを挙げることができる。また、Nb、W、Tiなどの金属基板上に積層したものも利用できる。なお、導電性ダイヤモンド薄膜は、ダイヤモンド薄膜の合成の際にボロンまたは窒素の所定量をドープして導電性を付与したものであり、通常はボロンドープしたものが一般的である。これらのドープ量は、少なすぎると技術的意義が発生せず、多すぎてもドープ効果が飽和するため、ダイヤモンド薄膜の炭素量に対して、50~20,000ppmの範囲のものが適している。
 なお、電解液貯留部の硫酸溶液の温度は、50~90℃が望ましい。電解液貯留部の硫酸溶液は、電解部に送液されるため、温度が高いと電解に備えて冷却することが必要になり冷却負担が大きくなるため、90℃以下が望ましい。また、温度を低くすると、電解部の電極損耗の懸念があるので、電解液貯留部の硫酸溶液の温度は50℃以上が望ましい。
 また、加熱部は、洗浄に際し、枚葉式では硫酸溶液が150~220℃の温度を有しているように硫酸溶液を加熱するのが望ましい。加熱温度が150℃未満であると、過硫酸の自己分解による酸化性能が十分に得られない。一方、硫酸溶液の温度が過度に高くなると、過硫酸の分解速度が速くなりすぎて、却って洗浄性能が低下するので、220℃以下が望ましい。
 なお、加熱部は、1つの加熱器などによって構成する他、複数の加熱器などで構成するようにしてもよい。例えば、硫酸溶液を予備加熱する上流側の予備加熱器と、硫酸溶液を急速加熱する下流側の急速加熱器などによって加熱部を構成することができる。例えば、予備加熱器で、硫酸溶液を90℃~120℃程度に加熱した後、急速加熱することで急速加熱器の負担を軽減できる。なお、予備加熱の温度が90℃未満であると、急速加熱器における加熱負担の軽減効果が小さく、120℃を超えると過硫酸の自己分解が進行して、洗浄の際に十分な酸化性能を得られなくなるので、予備加熱としては上記温度範囲が望ましい。
 上記洗浄システムで用いられる硫酸溶液は、硫酸濃度が85質量%以上であるのが望ましい。硫酸濃度が85質量%未満では、仮に過硫酸濃度が高かったとしても洗浄装置でのレジスト剥離性能が低下する。一方、硫酸濃度が96質量%を超えると、電解工程での電流効率が低下するので、96質量%以下が望ましい。
 なお、本発明では、種々の被洗浄材を対象にして洗浄を行うことができるが、シリコンウエハ、液晶用ガラス基板、フォトマスク基板などの電子材料基板を対象にして洗浄処理をする用途に好適である。さらに具体的には、半導体基板上に付着したレジスト残渣などの有機化合物の剥離プロセスに利用することができる。また、半導体基板上に付着した微粒子、金属などの異物除去プロセスに利用することができる。
 また、本発明は、シリコンウエハなどの基板上に付着した汚染物を高濃度硫酸溶液で洗浄剥離するプロセスに利用することができ、アッシングプロセスなどの前処理工程を省略してレジスト剥離・酸化効果を高めるために過硫酸溶液を電解部によってオンサイト製造して、硫酸溶液を繰り返し利用して外部からの過酸化水素やオゾンなどの薬液添加を必要としないシステムとして用いるのが望ましい。
 以上、説明したように、本発明によれば、硫酸溶液を電解して過硫酸を生成する電解部と、電解された前記硫酸溶液を貯留する電解液貯留部と、前記電解部と前記電解液貯留部との間で前記硫酸溶液を循環させる第1の循環ラインと、
 過硫酸を含む前記硫酸溶液を用いて被洗浄材を洗浄する洗浄装置と、前記洗浄装置で用いられる前記硫酸溶液を加熱する加熱部と、前記洗浄装置で用いられた硫酸溶液を貯留する排液貯留部と、前記電解部で電解された前記硫酸溶液を前記加熱部を介して前記洗浄装置に送液し、前記洗浄装置で洗浄に用いた硫酸溶液を前記排液貯留部を介して環流させる第2の循環ラインと、
 前記電解部で電解された前記硫酸溶液を前記洗浄部を介することなく前記排液貯留部に送液し、環流させる第3の循環ラインと、を備えるので、排液貯留部に過硫酸を補給して硫酸溶液中の残留有機物などの分解を促進することができる。さらに、被洗浄材の入替工程などによって洗浄を停止する際にも、硫酸溶液の供給を切り替えて第3の循環ラインとが稼働するようにすることにより、排液貯留部には連続的に高酸化性の硫酸溶液が供給され、残留レジスト等の分解を確実に行うことができる。
本発明の一実施形態の洗浄システムを示すフロー図である。
(実施形態1)
 以下に、本発明の洗浄システムにおける一実施形態を図1に基づいて説明する。
 本発明の電解部に相当する電解装置1は無隔膜型であり、ダイヤモンド電極により構成された陽極および陰極(図示しない)が隔膜で隔てることなく内部に配置され、両電極には直流電源2が接続されている。なお、本発明としては、電解装置を隔膜型によって構成することも可能である。
 上記電解装置1には、本発明の電解液貯留部に相当する電解液貯留槽20が第1の循環ライン11を介して循環通液可能に接続されている。第1の循環ライン11の戻り側には気液分離槽10が介設されている。該気液分離槽10は、気体を含んだ硫酸溶液を収容して硫酸溶液中の気体を分離して系外に排出するものであり、既知のものを用いることができ、本発明としては気液分離が可能であれば、特にその構成が限定されるものではない。
 また、第1の循環ライン11の送り側には、硫酸溶液を循環させる循環ポンプ12と、硫酸溶液を冷却する冷却器13が介設されている。冷却器13は、本発明の第1の冷却部に相当するものであり、硫酸溶液を冷却して40~80℃の液温で電解できるようにするものであればよく、本発明としてはその構成が特に限定されるものではない。
 また、前記電解液貯留槽20には、供給ポンプ21を介して送液ライン22が接続されている。
 上記電解装置1、直流電源2、第1の循環ライン11、循環ポンプ12、冷却器13、気液分離槽10、電解液貯留槽20および後述する冷却器53によって、電解ユニットAが構成されている。
 なお、上記では、気液分離槽10と電解液貯留槽20とをそれぞれ備えるものについて説明したが、電解液貯留槽で気液分離器を兼ねるものであってもよい。
 送液ライン22の送液方向には、急速加熱器23が介設されている。急速加熱器23の下流側で送液ライン22は開閉弁26に接続されている。開閉弁26の他端側には、送液ライン27が接続されており、送液ライン27の送液先端側は枚葉式の洗浄装置40に接続されている。
 上記急速加熱器23は、本発明の加熱部に相当し、石英製の管路を有し、例えば近赤外線ヒータによって硫酸溶液を一過式で、洗浄装置40入口で150~220℃の液温が得られるように硫酸溶液を急速加熱する。
 また、急速加熱器23の下流側の送液ライン22には、送液される硫酸溶液の温度を測定する液温測定器24が設けられており、該液温測定器24の測定結果は、直流電源を含む電源部25に出力されている。電源部25は、急速加熱器23に所定の通電量で通電するものであり、前記液温測定器24の測定結果を受けて、前記液温が所定の温度となるように前記急速加熱器23に対する通電量を制御する。
 上記した急速加熱器23、液温測定器24、電源部25は、急速加熱ユニットBを構成している。
 上記開閉弁26の上流側では、送液ライン22から送液ライン30が分岐しており、該送液ライン30に開閉弁31が介設されている。送液ライン30の送液先端側は、後述する排液貯留槽50に接続されている。
 上記した枚葉式の洗浄装置40では、搬入された被洗浄材である電子材料基板100に向けたノズル41を備え、該ノズル41で洗浄液として硫酸溶液がスプレーされるか少量ずつ流れ落ちる電子材料基板100を載置して回転させる回転台42を備えている。さらに、洗浄に用いられた硫酸溶液の液滴を回収する硫酸溶液回収部43が備えられており、該硫酸溶液回収部43には、第1環流ポンプ44を介設した環流ライン45が接続されている。
 上記した洗浄装置40、ノズル41、回転台42、硫酸溶液回収部43、第1環流ポンプ44は、洗浄ユニットCを構成している。
 なお、この実施形態では、洗浄装置が枚葉式のものであるとして説明しているが、本発明としては、洗浄装置の種別がこれに限定されるものではなく、バッチ式などの洗浄装置であってもよい。
 環流ライン45の送液先端側は、洗浄に用いられた硫酸溶液を貯留する排液貯留槽50が接続されている。排液貯留槽50は、本発明の排液貯留部に相当する。該排液貯留槽50には、第2環流ポンプ51を介して環流ライン52が接続されており、該環流ライン52には、本発明の第2の冷却部に相当する冷却器53が介設され、環流ライン52の送液先端部は前記電解液貯留槽20に接続されている。
 上記排液貯留槽50と第2環流ポンプ51によって排液貯留ユニットDが構成されている。
 上記送液ライン22、送液ライン27、環流ライン45、環流ライン52によって本発明の第2の循環ラインが構成され、上記送液ライン22、送液ライン30、環流ライン52によって本発明の第3の循環ラインが構成されている。
 したがって、第2の循環ラインと第3の循環ラインとは、送液ライン22、環流ライン52でラインを共用して構成されている。
 次に、上記構成からなる洗浄システムの動作について説明する。
 電解液貯留槽20には、硫酸濃度85~96質量%、液温度50~90℃の硫酸溶液が貯留される。前記硫酸溶液は、循環ポンプ12によって送液され、冷却器13で電解に好適な温度(40~80℃)に調整されて電解装置1の入液側に導入される。電解装置1では、直流電源2によって陽極、陰極間に通電され、電解装置1内に導入された硫酸溶液が電解される。なお、該電解によって電解装置1では、陽極側で過硫酸を含む酸化性物質が生成されるとともに酸素ガスが発生し、陰極側では水素ガスが発生する。これらの酸化性物質とガスは、前記硫酸溶液と混在した状態で第1の循環ライン11を通して気液分離槽10に送られ、前記ガスが分離される。なお、前記ガスは本システム系外に排出されて触媒装置(図示しない)などにより安全に処理される。
 気液分離槽10でガスが分離された前記硫酸溶液は、過硫酸を含んでおり、さらに第1の循環ライン11の戻り側を通して電解液貯留槽20に戻された後、繰り返し電解装置1に送られ電解により過硫酸の濃度が高められる。過硫酸濃度が適度になると、電解液貯留槽20内の硫酸溶液の一部は送液ライン22を通して送液ポンプ21によって急速加熱器23へと送られる。
 急速加熱器23では、過硫酸を含む硫酸溶液が流路を通過しながら近赤外線ヒーターによって加熱される。その際には、洗浄装置40に供給された際に150℃~220℃の範囲の液温を有するように急速加熱が行われる。急速加熱器23を洗浄装置40の近傍に配置することで、加熱温度を利用時の温度と略同じにすることができる。
 そして、加熱された、過硫酸を含む硫酸溶液は、開閉弁26を通して送液ライン27へと送液され、送液ライン27によって枚葉式の洗浄装置40に供給され、電子材料基板100の洗浄に使用される。
 この際に、開閉弁31は閉じられており、送液ライン30への硫酸溶液の供給はなされない。
 上記送液に際し前記硫酸溶液は、急速加熱器23の入口から洗浄装置40で使用されるまでの通液時間が1分未満となるように、流量が調整されているのが望ましい。なお、枚葉式洗浄装置40では、500~2000mL/min.での流量が適量とされており、該流量において、前記通液時間が1分未満となるように、急速加熱器23の流路の長さ、流路断面積およびその下流側での送液ライン22、27のライン長、流路断面積などを設定する。
 洗浄装置40では、例えば1×1015atoms/cm以上の高濃度にイオン注入されたレジストが設けられたシリコンウェハなどの電子材料基板100が洗浄対象になる。該電子材料基板100を回転台42上で回転させつつ前記ノズル41から過硫酸を含む高温の硫酸溶液をスプレーするか少量ずつ流し落として接触させることで電子材料基板100上のレジストなどの汚染物を効果的に剥離除去する。
 洗浄に使用された硫酸溶液は、硫酸溶液回収部43で回収された後、洗浄装置40から排出され、第1環流ポンプ44によって環流ライン45を通して排液貯留槽50に送液され貯留される。前記硫酸溶液には洗浄装置40で洗浄されたレジストなどの残留有機物が含まれており、排液貯留槽50に貯留されている間に、前記残留有機物が硫酸溶液に含まれる酸化性物質によって酸化分解される。なお、排液貯留槽50における前記硫酸溶液の貯留時間は、残留有機物などの含有量などによって、任意に調整することができる。この際に、洗浄装置40から継続して高温かつ過硫酸を含む硫酸溶液が供給されており、排液貯留槽50は適温に維持される。
 排液貯留槽50において、含有する残留有機物が酸化分解された硫酸溶液は、第2環流ポンプ51により環流ライン52に介設された冷却器53を通して電解液貯留槽20に環流される。なお、排液貯留槽50の下流側であって冷却器53の上流側にフィルタを介設してもよい。これにより、排液貯留槽50で処理しきれなかった硫酸溶液中のSSがフィルタによって捕捉除去される。
 また、高温の硫酸溶液が電解液貯留槽20に環流されると、電解液貯留槽20に貯留されている硫酸溶液中の過硫酸の分解が促進されてしまうため、前記硫酸溶液は第2の冷却部である冷却器53により適温に冷却された後、電解液貯留槽20内に導入される。電解液貯留槽20内に導入された硫酸溶液は、第1の循環ライン11の送り側によって電解装置1に送液されて電解により過硫酸が生成され、第1の循環ライン11の戻り側により再度電解液貯留槽20に送られる。この循環を電解ユニットAで繰り返すことで過硫酸が継続して生成される。
 上記本システムの動作によって、上記のように過硫酸を含む硫酸溶液が、電解ユニットAから急速加熱ユニットB、洗浄ユニットC、排液貯留ユニットDに送液されて、電解ユニットAに環流することで、使用側である洗浄装置40に高濃度の過硫酸を含む高温の洗浄液を連続して供給することが可能になる。
 また、洗浄装置40で電子材料基板100の入れ替えに伴って洗浄を停止する際には、電解ユニットAにおける硫酸溶液の循環、電解を継続しつつ、開閉弁26を開じるとともに、開閉弁31を開く。これにより、送液ライン30に硫酸溶液が流入し、排液貯留槽50に該硫酸溶液が送液される。この際に、硫酸溶液は急速加熱器23によって加熱されており、高温で過硫酸を含む硫酸溶液が排液貯留槽50に供給されることになり、排液貯留槽50内の硫酸溶液の温度、過硫酸濃度が適切に維持される。なお、この際には、急速加熱器23による加熱温度を、洗浄時よりも低い温度となるように電源部25で通電量を制御するようにしてもよい。また、送液ポンプ21の調整によって、送液ライン22で送られる硫酸溶液の送液量を洗浄時よりも少ない量にすることができる。排液貯留槽50では、循環ラインの切換前に貯留されていた硫酸溶液に含まれる残留有機物等が硫酸溶液の補給もあって効果的に分解される。
 以上により、電子材料基板の入れ替えなどによって洗浄を停止する際にも、電解ユニットAで硫酸溶液の循環、電解が行われつつ、過硫酸を含む溶液の一部が電解ユニットAから急速加熱ユニットB、排液貯留ユニットDに送液されて、電解ユニットAに環流することで、過硫酸を生成しつつ、排液貯留槽に貯留されている硫酸溶液中の残留有機物等を効果的に分解することができる。
 なお、上記では説明しなかったが、排液貯留槽50の上流側で環流ライン45に排液ラインを分岐接続しておき、適宜時に、硫酸溶液を排液貯留槽50に送液せずに系外に排液できるように構成しても良い。
 排液ラインより随時硫酸溶液を少量ずつ排出することにより、系内の溶液中に蓄積するレジストドープ元素やその他の酸化分解されない物質が高濃度に至るまで蓄積するのを防止することができる。該動作は、環流ラインや排液ラインに設けた開閉弁の開閉制御などにより行うことができる。
 なお、上記では、第2の循環ラインで送液する際には第3の循環ラインは停止するものとして説明したが、第2の循環ラインで送液して洗浄を行っている際に、第3の洗浄ラインで硫酸溶液の一部を送液することも可能である。
 以上、本発明について上記実施形態に基づいて説明を行ったが、本発明は、上記実施形態の内容に限定されるものではなく、本発明を逸脱しない限りは適宜の変更が可能である。
 1  電解装置
 2  直流電源
10  気液分離器
11  第1の循環ライン
13  冷却器
20  電解液貯留槽
22  送液ライン
23  急速加熱器
26  開閉弁
27  送液ライン
30  送液ライン
31  開閉弁
40  洗浄装置
50  分解槽
A   電解ユニット
B   急速加熱ユニット
C   洗浄ユニット
D   排液貯留ユニット

Claims (11)

  1.  硫酸溶液を電解して過硫酸を生成する電解部と、電解された前記硫酸溶液を貯留する電解液貯留部と、前記電解部と前記電解液貯留部との間で前記硫酸溶液を循環させる第1の循環ラインと、
     過硫酸を含む前記硫酸溶液を用いて被洗浄材を洗浄する洗浄装置と、前記洗浄装置で用いられる前記硫酸溶液を加熱する加熱部と、前記洗浄装置で用いられた硫酸溶液を貯留する排液貯留部と、前記電解部で電解された前記硫酸溶液を前記加熱部を介して前記洗浄装置に送液し、前記洗浄装置で洗浄に用いた硫酸溶液を前記排液貯留部を介して環流させる第2の循環ラインと、
     前記電解部で電解された前記硫酸溶液を前記洗浄部を介することなく前記排液貯留部に送液し、環流させる第3の循環ラインと、を備えることを特徴とする洗浄システム。
  2.  前記第3の循環ラインは、前記硫酸溶液を前記加熱部を介して前記排液貯留部に送液するものであることを特徴とする請求項1記載の洗浄システム。
  3.  前記第2の循環ラインと前記第3の循環ラインとは選択的に使用されるものであることを特徴とする請求項1または2に記載の洗浄システム。
  4.  前記第2の循環ラインは、前記加熱部の下流側で前記第3の循環ラインが分岐する分岐部を有しており、前記第2の循環ラインは、該分岐部から前記洗浄装置への送液を停止し、該分岐部から前記第3の循環ラインへの送液が可能であることを特徴とする請求項1~3のいずれかに記載の洗浄システム。
  5.  前記電解部で電解される前記硫酸溶液の温度が80℃以下、前記加熱部で加熱されて前記洗浄装置で利用される前記硫酸溶液の温度が150~220℃であり、前記排液貯留部に貯留される前記硫酸溶液の温度が120~160℃であることを特徴とする請求項1~4のいずれかに記載の洗浄システム。
  6.  前記硫酸溶液の硫酸濃度が85質量%以上であることを特徴とする請求項1~5のいずれかに記載の洗浄システム。
  7.  前記電解液貯留部から前記電解部に至る前記硫酸溶液を冷却する第1の冷却部を備えることを特徴とする請求項1~6のいずれかに記載の洗浄システム。
  8.  前記排液貯留部から前記電解液貯留部に至る前記硫酸溶液を冷却する第2の冷却部を備えることを特徴とする請求項1~7のいずれかに記載の洗浄システム。
  9.  前記洗浄装置が、枚葉式洗浄装置であることを特徴とする請求項1~8のいずれかに記載の洗浄システム。
  10.  洗浄中は硫酸溶液を循環しつつ電解するとともに、前記電解がされた硫酸溶液の一部を取り出して加熱し、加熱された硫酸溶液を被洗浄材の洗浄に供した後、貯留して硫酸溶液中に移行した被洗浄物の分解を図るとともに、前記貯留をしている前記硫酸溶液を前記電解を行うべく環流させ、前記洗浄を停止している際に、前記硫酸溶液を電解しつつ循環させるとともに、前記電解がされた硫酸溶液の一部を取り出して、前記貯留がされている前記硫酸溶液に供給して硫酸溶液中に移行している被洗浄物の分解を図り、前記貯留をしている前記硫酸溶液を前記電解を行うべく環流させることを特徴とする洗浄方法。
  11.  前記電解がされて取り出された前記硫酸溶液を加熱した後、前記貯留がされている硫酸溶液に供給することを特徴とする請求項10記載の洗浄方法。
PCT/JP2011/062059 2010-06-07 2011-05-26 洗浄システムおよび洗浄方法 WO2011155336A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011543947A JP5751426B2 (ja) 2010-06-07 2011-05-26 洗浄システムおよび洗浄方法
KR1020127032747A KR101676693B1 (ko) 2010-06-07 2011-05-26 세정 시스템 및 세정 방법
TW100119229A TWI463008B (zh) 2010-06-07 2011-06-01 洗淨系統以及洗淨方法
US13/707,237 US20130206176A1 (en) 2010-06-07 2012-12-06 Cleaning system and cleaning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-130573 2010-06-07
JP2010130573 2010-06-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/707,237 Continuation US20130206176A1 (en) 2010-06-07 2012-12-06 Cleaning system and cleaning method

Publications (1)

Publication Number Publication Date
WO2011155336A1 true WO2011155336A1 (ja) 2011-12-15

Family

ID=45097944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062059 WO2011155336A1 (ja) 2010-06-07 2011-05-26 洗浄システムおよび洗浄方法

Country Status (5)

Country Link
US (1) US20130206176A1 (ja)
JP (1) JP5751426B2 (ja)
KR (1) KR101676693B1 (ja)
TW (1) TWI463008B (ja)
WO (1) WO2011155336A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049391A (ja) * 2010-08-27 2012-03-08 Kurita Water Ind Ltd 洗浄方法および洗浄システム
WO2015133647A1 (ja) * 2014-03-07 2015-09-11 栗田工業株式会社 気液分離溶液貯留装置、過硫酸生成システムおよび電解溶液の気液分離方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783548B (zh) * 2016-12-30 2020-01-03 通富微电子股份有限公司 一种晶圆的背胶方法
CN115881578A (zh) * 2021-09-29 2023-03-31 盛美半导体设备(上海)股份有限公司 基板处理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019507A (ja) * 2006-06-16 2008-01-31 Toshiba Corp 洗浄システム及び洗浄方法
WO2008087902A1 (ja) * 2007-01-15 2008-07-24 Shibaura Mechatronics Corporation 硫酸の電解装置、電解方法及び基板の処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6936142B2 (en) * 1997-12-22 2005-08-30 George Hradil Spouted bed apparatus for contacting objects with a fluid
JP2002270592A (ja) * 2000-12-04 2002-09-20 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP4462146B2 (ja) * 2004-09-17 2010-05-12 栗田工業株式会社 硫酸リサイクル型洗浄システムおよび硫酸リサイクル型過硫酸供給装置
JP2007059603A (ja) * 2005-08-24 2007-03-08 Kurita Water Ind Ltd 硫酸リサイクル型洗浄システム
JP5173500B2 (ja) * 2008-03-11 2013-04-03 大日本スクリーン製造株式会社 処理液供給装置およびそれを備えた基板処理装置
JP5610679B2 (ja) * 2008-09-01 2014-10-22 栗田工業株式会社 液体加熱器および液体加熱方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019507A (ja) * 2006-06-16 2008-01-31 Toshiba Corp 洗浄システム及び洗浄方法
WO2008087902A1 (ja) * 2007-01-15 2008-07-24 Shibaura Mechatronics Corporation 硫酸の電解装置、電解方法及び基板の処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049391A (ja) * 2010-08-27 2012-03-08 Kurita Water Ind Ltd 洗浄方法および洗浄システム
WO2015133647A1 (ja) * 2014-03-07 2015-09-11 栗田工業株式会社 気液分離溶液貯留装置、過硫酸生成システムおよび電解溶液の気液分離方法

Also Published As

Publication number Publication date
KR101676693B1 (ko) 2016-11-16
TW201202410A (en) 2012-01-16
KR20130064755A (ko) 2013-06-18
JP5751426B2 (ja) 2015-07-22
TWI463008B (zh) 2014-12-01
JPWO2011155336A1 (ja) 2013-08-01
US20130206176A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
WO2011114885A1 (ja) 電子材料の洗浄方法および洗浄システム
JP5761521B2 (ja) 洗浄システムおよび洗浄方法
JP4412301B2 (ja) 洗浄システム
JP2012049391A (ja) 洗浄方法および洗浄システム
JP5660279B2 (ja) 機能性溶液供給システムおよび供給方法
JP5751426B2 (ja) 洗浄システムおよび洗浄方法
JP2007059603A (ja) 硫酸リサイクル型洗浄システム
JP2006228899A (ja) 硫酸リサイクル型洗浄システム
JP5939373B2 (ja) 電子材料洗浄方法および洗浄装置
JP2007266497A (ja) 半導体基板洗浄システム
JP4573043B2 (ja) 硫酸リサイクル型洗浄システム
JP4600666B2 (ja) 硫酸リサイクル型枚葉式洗浄システム
JP2007266477A (ja) 半導体基板洗浄システム
JP4600667B2 (ja) 硫酸リサイクル型洗浄システムおよび硫酸リサイクル型洗浄方法
JP5024521B2 (ja) 高温高濃度過硫酸溶液の生成方法および生成装置
JP6609919B2 (ja) 半導体基板の洗浄方法
JP5126478B2 (ja) 洗浄液製造方法および洗浄液供給装置ならびに洗浄システム
JP2016167560A (ja) 電解硫酸溶液の製造方法および電解硫酸溶液製造装置
JP4862981B2 (ja) 硫酸リサイクル型洗浄システムおよびその運転方法
JP2008294020A (ja) 洗浄液供給システムおよび洗浄システム
JP4771049B2 (ja) 硫酸リサイクル型洗浄システム
JP4557167B2 (ja) 硫酸リサイクル型洗浄システム
JP2012069974A (ja) 洗浄液供給システムおよび洗浄システム
JP2006278689A (ja) 硫酸リサイクル型洗浄システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011543947

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127032747

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11792293

Country of ref document: EP

Kind code of ref document: A1