WO2011152510A1 - 熱処理炉 - Google Patents

熱処理炉 Download PDF

Info

Publication number
WO2011152510A1
WO2011152510A1 PCT/JP2011/062753 JP2011062753W WO2011152510A1 WO 2011152510 A1 WO2011152510 A1 WO 2011152510A1 JP 2011062753 W JP2011062753 W JP 2011062753W WO 2011152510 A1 WO2011152510 A1 WO 2011152510A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
core tube
furnace
boat
gas introduction
Prior art date
Application number
PCT/JP2011/062753
Other languages
English (en)
French (fr)
Inventor
村上 貴志
渡部 武紀
大塚 寛之
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US13/701,953 priority Critical patent/US20130161313A1/en
Priority to KR1020127034348A priority patent/KR101424543B1/ko
Priority to AU2011259931A priority patent/AU2011259931B2/en
Priority to RU2012157235/28A priority patent/RU2573059C2/ru
Priority to EP11789911.2A priority patent/EP2579298B1/en
Priority to SG2012089033A priority patent/SG186159A1/en
Priority to CN201180035789.9A priority patent/CN103038865B/zh
Publication of WO2011152510A1 publication Critical patent/WO2011152510A1/ja
Priority to US15/084,276 priority patent/US9799535B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67754Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a batch of workpieces

Definitions

  • the present invention relates to a heat treatment furnace used in a heat treatment process of a semiconductor substrate such as a silicon substrate.
  • a heater, or the like in order to prevent contamination from outside air, a heater, or the like, as shown in FIG. 4, it is made of high-purity quartz or the like provided with an opening 22 at one end and a gas introduction tube 23 at the other end.
  • a furnace core tube 21 is inserted in advance inside a cylindrical heater 24 provided in the furnace, and a boat 26 made of high-purity quartz or the like on which a semiconductor substrate 25 is placed is inserted through an opening 22 of the furnace core tube 21.
  • heat treatment such as dopant diffusion and oxidation is performed while keeping the atmosphere inside the furnace clean by exhausting the purity gas outside the furnace.
  • FIG. 7 shows an example of a heat treatment flow when such a heat treatment furnace including a core tube is used
  • FIG. 10 shows an example of a time sequence of the heat treatment, and a conventional heat treatment method will be described.
  • a predetermined number of semiconductor substrates 25 are placed on the boat 26, and are put on standby at the boat station 30 (FIGS. 7A and 10I).
  • (2) Opening the lid 27 of the core tube 21, and using a rod or the like (not shown) made of high-purity quartz or the like, the boat 26 on which the semiconductor substrate 25 is placed is pushed from the boat station 30 to a predetermined position in the center of the furnace. (FIG. 7 (a), FIG.
  • the semiconductor substrate needs to be cooled at the boat station until the temperature reaches a level where it can be handled. In the meantime, there was a waiting time.
  • Patent Document 1 (Sony Corporation): Diffusion furnace.
  • the inner peripheral surface of the furnace core tube is disposed on the inner side of the open end inside the furnace core tube.
  • the semiconductor substrate in the case of a heat treatment furnace equipped with a furnace core tube having such a structure, the semiconductor substrate must be inserted into the furnace and removed from the furnace only from one end of the furnace core tube. Furthermore, as described above, since the semiconductor substrate taken out from the high-temperature furnace needs to be cooled at the boat station until it reaches a temperature at which it can be handled, when performing predetermined heat treatment continuously, In the meantime, there was a problem that extra waiting time occurred. In particular, when heat-treating a semiconductor device having a relatively short heat treatment time, such as a crystalline silicon solar cell, the ratio of the standby time to the total heat treatment time is relatively high, which is a major cause of limiting the productivity of the heat treatment process. It was.
  • a thin tubular gas introduction tube portion may be damaged during replacement or storage such as periodic cleaning of the furnace core tube. Since it is expensive, repair and new purchase costs are high, which is one of the factors that increase the running cost of the heat treatment process.
  • the present invention has been made in view of the above circumstances, and can reduce the waiting time between batches during continuous heat treatment of a semiconductor substrate to improve productivity, and also reduce the frequency of breakage of the gas introduction pipe portion.
  • An object of the present invention is to provide a heat treatment furnace capable of reducing the running cost of the heat treatment process.
  • the present inventors have made the structure of the core tube main body used for the heat treatment step into a cylindrical shape having openings of both sides so that a semiconductor substrate can be inserted and removed. Further, a cap is provided that closes the opening so that the reactor core tube can be substantially sealed and is detachably attached to the reactor core tube, and a thin tube capable of introducing gas into the reactor core body or lid body.
  • a gas-introduced pipe-shaped tube the furnace atmosphere during heat treatment can be kept clean, and at the time of insertion and removal of the semiconductor substrate, processing is performed by opening and closing the lids at both ends as necessary. It has been found that the waiting time between each batch of time can be reduced and productivity can be improved.
  • the structure of the furnace core tube is a simple cylindrical shape, the frequency of breakage of the gas introduction tube is reduced, and the cost of the furnace core tube itself is reduced, and as a result, the running cost of the heat treatment process can be reduced, It came to make this invention.
  • the present invention provides the following heat treatment furnace.
  • a heat treatment furnace used for a heat treatment process of a semiconductor substrate comprising a cylindrical furnace core tube having openings of a size capable of inserting and removing the semiconductor substrate on both side end faces.
  • the core tube includes a lid body that closes the opening so that the core tube can be substantially sealed and is detachably attached to the core tube.
  • the lid body has a thin tubular gas introduction tube that can penetrate the lid body and introduce gas into the furnace core tube.
  • the furnace core tube has a simple cylindrical shape, the frequency of breakage of the gas introduction tube portion is reduced, and the running cost of the heat treatment process can be reduced.
  • reference numeral 1 denotes a cylindrical furnace core tube having openings 2a and 2b on both end surfaces in the axial direction (longitudinal direction), and this is placed in a cylindrical heater 4 disposed in a heat treatment furnace (not shown). Concentric.
  • the boat 6 on which the semiconductor substrate 5 is placed can be taken in and out from both the openings 2a and 2b, and the openings 2a and 2b can be substantially sealed by the lids 7a and 7b, respectively.
  • the lids 7a and 7b are integrally formed with thin gas introduction pipes 8a and 8b through which the gas can be introduced into the core tube so as to penetrate the lids 7a and 7b, respectively.
  • the lids 7a and 7b are closed. In this state, it is possible to flow gas from any gas introduction pipe of the gas introduction pipes 8a and 8b.
  • the gas introduction pipes 8a and 8b do not necessarily have to protrude integrally with the lids 7a and 7b.
  • the holes and the gas introduction pipe portions formed in the lids 7a and 7b are connected and fixed by the sliding surfaces. Alternatively, the structure may be separated.
  • FIG. 2 shows another example of the structure of the core tube used in the heat treatment furnace according to the present invention.
  • 1 ′ is a cylindrical furnace core tube having openings 2a and 2b on both side end faces in the axial direction (longitudinal direction) and thin tubular gas introduction pipes 9a and 9b at the lower ends of both ends. It is concentrically housed in a cylindrical heater 4 disposed in (not shown).
  • the boat 6 on which the semiconductor substrate 5 is placed can be taken in and out from both the openings 2a and 2b, and the openings 2a and 2b can be substantially sealed by lids 7a and 7b, respectively. It is possible to flow gas from any gas introduction pipe of the gas introduction pipes 9a and 9b in a state in which 7a and 7b are closed.
  • the gas introduction pipes 9a and 9b do not necessarily have to protrude integrally with the furnace core pipe 1 ', but have a structure separated into a hole and a gas introduction pipe portion so as to be connected and fixed at a sliding surface. Also good
  • FIG. 3 shows another example of the structure of the core tube used in the heat treatment furnace according to the present invention.
  • reference numeral 1 ′′ denotes a cylindrical core tube having openings 2a and 2b on both end faces in the axial direction (longitudinal direction), and a gas introduction pipe 8c is provided at the upper part near the center in the longitudinal direction of the core tube. It is concentrically accommodated in a cylindrical heater 4 disposed in a heat treatment furnace (not shown), and a boat 6 on which a semiconductor substrate 5 is placed is provided in the openings 2a and 2b.
  • the openings 2a and 2b can be substantially sealed by the lids 7a and 7b, respectively, and a tubular gas introduction capable of introducing gas into the core tube is provided in the lids 7a and 7b.
  • the pipes 8a and 8b penetrate the lids 7a and 7b in an airtight manner, and the gas flows from any of the gas introduction pipes 8a to 8c with the lids 7a and 7b closed.
  • the lids 7a and 7b were opened. In this state, it is possible to flow the gas into the openings 2a and 2b by introducing the gas into the furnace from the gas introduction pipe 8c, which is not necessarily limited to the lids 7a and 7b or the core tube 1. It is not necessary to protrude integrally with "", and it may be a structure separated into a hole and a gas introduction pipe portion that is connected and fixed by a sliding surface.
  • the material of the core tube, the lid, and the gas introduction tube used in the present invention is typically high-purity quartz or high-purity silicon carbide (SiC) in order to withstand high temperatures due to heat treatment and to maintain cleanliness in the furnace. It is.
  • the size of the core tube is not particularly limited, and the inner diameter of the opening on both end faces of the core tube is not limited as long as the boat on which the semiconductor substrate is placed can be taken in and out, but 95% of the inner diameter of the central portion of the core tube.
  • the above is preferable, and it may be the same as the inner diameter of the central portion of the core tube.
  • the outer diameter of the gas introduction tube is preferably 5 to 25 mm, more preferably 10 to 20 mm, the inner diameter is preferably 3 to 20 mm, more preferably 5 to 15 mm, and the length of the protrusion is 50 to 200 mm. It is preferably 100 to 150 mm.
  • the position of the gas introduction pipe is preferably 10 to 200 mm inward from the opening, and more preferably 20 to 150 mm.
  • At least one boat station for waiting the boat 6 on which the substrate 5 is placed is provided in the vicinity of the opening outside the core tube, preferably, separately from the core tube. It is preferable to provide one or more each at a position away from both openings by a predetermined distance.
  • the material of the boat station can also be the same as the core tube, the lid, and the gas introduction tube.
  • the size of the boat station is not particularly limited as long as the boat can be waited. For example, a boat station having a radius of 100 mm, a 60 ° arcuate curved surface, a thickness of 4 mm, a length of 1000 mm, and a width of about 200 mm. Can be used.
  • a semiconductor substrate is heat-treated using a heat treatment furnace including a furnace core tube having a structure as shown in FIGS. 1 to 3, and argon, nitrogen, oxygen, etc. It is preferable to introduce high-purity gas, and it is preferable to discharge these high-purity gases out of the furnace through a slight gap between the lid and the furnace core tube. It is possible to keep the furnace atmosphere clean during heat treatment. Thereby, heat treatment can be performed without significantly reducing the carrier lifetime of the semiconductor substrates arranged on the boat set in the center of the furnace core tube.
  • FIG. 5 shows an example of a heat treatment flow using a heat treatment furnace including the core tube of the present invention
  • FIG. 8 shows an example of a time sequence of the heat treatment, and a specific heat treatment method will be described.
  • the reactor core tube shown in FIG. 5 was the same as that shown in FIG. (1)
  • a predetermined number of semiconductor substrates 5 are placed on the boat 6 and waited at the boat station 10a (FIGS. 5A and 8I).
  • As the substrate a p-type or n-type silicon substrate or the like can be used.
  • the lid 7a of the furnace core tube 1 is opened, and the boat 6 on which the semiconductor substrate 5 is placed is pushed from the boat station 10a to a predetermined position in the center of the furnace (FIGS. 5A and 8I).
  • the atmosphere can be an inert gas such as nitrogen or argon, oxygen, phosphorus oxychloride, diborane, etc., and the treatment temperature and time depend on the required diffusion profile, oxide film thickness, etc. Since there is a difference, there is no particular limitation, but the effect of the present invention is high when the heat treatment profile has a short time.
  • the cleanliness of the furnace can be maintained by flowing a high-purity gas such as nitrogen, argon, or oxygen from the gas introduction pipe 8b when the boat is inserted and during the heat treatment.
  • the lid 7b is opened, the boat 6 on which the semiconductor substrate 5 is placed is pulled out from a predetermined position in the furnace to the boat station 10b, and cooled for 10 to 30 minutes (FIG. 5 (c), FIG. 8 (iv) ), (V)).
  • high purity gas such as nitrogen, argon and oxygen is allowed to flow from the gas introduction pipe 8a at a flow rate of 5 to 50 L / min, thereby maintaining the cleanliness in the furnace.
  • this boat can be cooled at one boat station 10b and the next batch of boats can be inserted from the other boat station 10a, thereby reducing the waiting time. Can do. Also, the boat can be inserted and removed at the same time. Note that a rod or the like (not shown) made of high-purity quartz or the like can be used when the boat is pushed into the furnace and pulled out of the furnace.
  • FIG. 6 shows another example of the heat treatment flow using the heat treatment furnace including the core tube of the present invention
  • FIG. 9 shows an example of the time sequence of the heat treatment.
  • the reactor core tube in FIG. 6 was the same as that in FIG. (1)
  • a predetermined number of semiconductor substrates 5 are placed on the boat 6 and waited at the boat station 10a (FIGS. 6A and 9I).
  • the lid 7a is closed and a predetermined thermal profile is applied to the semiconductor substrate 5 (FIGS. 6B and 9 (iii)).
  • the processing conditions and the like can be the same as described above.
  • the lids 7a and 7b are simultaneously opened, the boat 6 on which the semiconductor substrate 5 is placed is pulled out from a predetermined position in the furnace to the boat station 10b, and a new substrate is loaded from the boat station 10a to the predetermined position in the furnace.
  • the loaded boat is pushed in, the lids 7a and 7b are closed, and heat treatment is performed in the same manner as above (FIGS. 6 (a), 9 (iv), (i) to (iii)).
  • the above operation can be repeated to process another substrate.
  • a high-purity gas such as nitrogen, argon, oxygen or the like is flowed from a gas introduction tube 8c provided in the vicinity of the center portion in the longitudinal direction of the furnace core tube 1 ", and the openings 2a at both ends of the furnace core tube. , 2b and the lid 7a, 7b can be exhausted to a slight gap to maintain the cleanliness in the furnace, and during the heat treatment, the above-described high purity gas is allowed to flow from the gas introduction pipe 8b to reduce the cleanliness in the furnace.
  • the waiting time can be further reduced by simultaneously removing the heat-treated boat and inserting the next batch.
  • the structure of the heat treatment furnace that houses the above-described core tube is not particularly limited, and may be a horizontal furnace having a cylindrical heater along the furnace core tube.
  • the heat treatment furnace of the present invention is useful in a heat treatment process of a semiconductor substrate, and in particular, when a p-type or n-type dopant is diffusion-treated with respect to a silicon substrate for producing a solar cell element as a semiconductor substrate, or a silicon substrate is oxidized.
  • any heat treatment using a horizontal furnace can be suitably used.
  • Example 1 A boron-doped p-type silicon wrapped wafer (specific resistance 1 to 3 ⁇ ⁇ cm) manufactured by the CZ method and having a diameter of 100 mm, a thickness of 200 ⁇ m, and a plane orientation (100) was prepared. The ten wrapped wafers were manually arranged in a high-purity quartz boat having a width of 100 mm, a height of 30 mm, a depth of 540 mm, a groove pitch of 2.5 mm, and a groove number of 100 grooves.
  • a quartz furnace core tube 1 having an outer diameter of 150 mm, an inner diameter of 142 mm, a length of 3000 mm, and an opening having an inner diameter of 142 mm at both ends, and a disk having a diameter of 170 mm and a wall thickness of 4 mm as shown in FIG.
  • a cylindrical quartz box having an outer diameter of 141.5 mm and a width of 50 mm is melt-bonded to a cylindrical quartz plate, and gas introduction pipes 8a and 8b (inner diameter of 5 mm) are provided so as to penetrate the disk-like quartz plate and the cylindrical quartz box. Lids 7a and 7b were prepared.
  • a high-purity quartz boat station having a radius of 100 mm and an arcuate curved surface of 60 ° and having a wall thickness of 4 mm, a length of 1000 mm, and a width of 200 mm is prepared and separated from the furnace core tube opening by 250 mm. installed.
  • the distance from the boat standby position at the center of the boat station to the heat treatment position at the center of the furnace core tube was 2250 mm.
  • the insertion preparation time (standby time) for setting the boat on the boat station is about 1 minute per time, and the cooling time after taking out the boat after heat treatment is 15 minutes per batch. It was.
  • a quartz rod having a length of 2000 mm and an outer diameter of 15 mm having a protrusion of 30 mm in the vertical direction with respect to the longitudinal direction was prepared. This rod was set on a fully automatic boat loader, and the boat was inserted and removed at a constant speed of 200 mm / min.
  • the heat treatment furnace was always set at 830 ° C., and after the boat was inserted, phosphorus was deposited for 40 minutes. Subsequently, as a step of diffusing phosphorus deeper, drive-in was performed at 830 ° C. for 17 minutes, and the boat was taken out.
  • the gas composition during the heat treatment is a mixed gas of nitrogen 20 L / min, oxygen 0.3 L / min, and phosphorus oxychloride (POCl 3 ) 0.45 L / min during the deposition of phosphorus.
  • a gas mixture of nitrogen 20 L / min and oxygen 0.3 L / min was used when the lid was opened and closed, when the boat was inserted and removed, and during drive-in. Under these conditions, the diffusion heat treatment was performed with the heat treatment flow shown in FIG. 5 and the time sequence shown in FIG.
  • Example 2 As shown in FIG. 3, a gas introduction pipe having an outer diameter of 150 mm, an inner diameter of 142 mm, a length of 3000 mm, an opening having an inner diameter of 142 mm at both ends, and an inner diameter of 5 mm at positions 1500 mm from both end faces in the longitudinal direction of the furnace core tube.
  • a quartz furnace core tube was prepared. Except for the core tube, diffusion heat treatment was performed using the same semiconductor substrate and heat treatment furnace as in Example 1 with the heat treatment flow shown in FIG. 6 and the time sequence shown in FIG.
  • the substrates obtained in Examples 1 and 2 and Comparative Example 1 were evaluated by the following methods. 1. Sheet resistance measurement After immersing in 25% by mass HF for 4 minutes to remove the glass film, rinsing with pure water and drying were performed, and the sheet resistance at the center of the wafer was measured by the 4-short needle method. 2. Bulk lifetime measurement After immersing in 70 ° C., 25% by mass KOH for 10 minutes to remove the diffusion layer, rinsing with pure water, soaking in 1% by mass HF for 1 minute to make it water repellent, then chemical passivation by iodine methanol method Processing was performed, and bulk lifetime measurement was performed by the ⁇ PCD method. 3. The time required for one batch of diffusion heat treatment in the case of continuous treatment was measured.
  • Examples 1 and 2 were inferior in sheet resistance and bulk lifetime, and required time per diffusion batch could be greatly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)

Abstract

 半導体基板の熱処理工程に用いる熱処理炉であって、両側端面に半導体基板の挿入及び取り出し可能な大きさの開口部を有する円筒状の炉心管を具備することを特徴とする熱処理炉に関するものであり、本発明によれば、半導体の連続熱処理時の各バッチ間の待機時間を減少させ、生産性を向上することが可能となった。また、炉芯管の構造を単純な円筒状形状としたことで、ガス導入管部分の破損頻度が低下し、熱処理工程のランニングコストを削減することができる。

Description

熱処理炉
 本発明は、シリコン基板等の半導体基板の熱処理工程に用いられる熱処理炉に関する。
 従来、半導体の熱処理工程では、外気やヒーターなどからの汚染を防ぐため、図4に示すように、一端に開口部22と他端にガス導入管23とが設けられた高純度石英等からなる炉芯管21を、予め炉内に設けられた円筒状ヒーター24の内側に挿入しておき、半導体基板25を載せた高純度石英等からなるボート26をこの炉芯管21の開口部22から挿入セットし、高純度石英等からなる蓋27を閉じて略密閉し、ガス導入管23から窒素、アルゴン等の高純度ガスを流して、炉21と蓋27との間の僅かな隙間から高純度ガスを炉外に排気することで、炉内雰囲気を清浄に保ちつつ、ドーパント拡散や酸化等の熱処理を行うことが一般的であった。
 図7にこのような炉心管を含む熱処理炉を用いた場合の熱処理フローの一例を、図10に同熱処理のタイムシーケンスの一例を示し、従来の熱処理方法について説明する。
(1)所定枚数の半導体基板25をボート26に載置し、これをボートステーション30で待機させる(図7(a),図10(i))。
(2)炉心管21の蓋27を開け、高純度石英等からなるロッド等(非図示)を用いて、ボートステーション30から炉内中央部の所定位置まで半導体基板25を載せたボート26を押し込む(図7(a),図10(ii),(iii))
(3)蓋27を閉め、半導体基板25に所定の熱プロファイルを施す(図7(b),図10(iv))。
(4)熱処理後、蓋27を開け、ロッド等で、炉内所定の位置からボートステーション30へと半導体基板25を載せたボート26を引出し、冷却する(図7(c),図10(v)~(vii))。
 ボート挿入から取り出しまで、ガス導入管23から常に窒素等の高純度ガスを流し、炉内清浄度を保つことができる。
 この方法では、ボート取り出し後、半導体基板は取り扱い可能な温度となるまでボートステーションで冷却が必要となるため、所定の熱処理を連続実施する場合、次バッチの挿入準備ができず、各熱処理バッチの間には、待機時間が生じてしまっていた。
 また、上記炉心管以外にも、半導体基板の熱処理工程に用いられる熱処理炉の構造が、例えば、特開平5-102054号公報(特許文献1、(ソニー株式会社):拡散炉)などに提案されている。この例では、炉芯管の一端が開口し、この開口端を閉塞するシャッターを開閉可能に設けた熱処理炉において、上記炉芯管の内部の上記開口端の稍内側に、炉芯管内周面との間に適宜の間隙ができるように隔板を設け、上記シャッターに排気口を設けることで、外気の侵入による悪影響をなくすことができるとしている。
特開平5-102054号公報
 しかし、このような構造の炉芯管を備えた熱処理炉の場合、半導体基板の炉内への挿入及び炉外への取り出しは、その構造上、炉芯管の一端のみから実施しなければならず、更には、上述したように、高温の炉から取り出した半導体基板は、取り扱い可能な温度となるまでボートステーションで冷却が必要となるため、所定の熱処理を連続実施する場合、各熱処理バッチの間には、余計な待機時間が生じてしまう問題があった。特に、結晶系シリコン太陽電池など、比較的熱処理時間が短い半導体デバイスの熱処理を行う場合、全熱処理時間に対する待機時間の割合が相対的に高くなるため、熱処理工程の生産性を制限する大きな原因となっていた。また、前述した構造の炉心管の場合、炉芯管の定期洗浄などの入替え時や保管時に、細い管状のガス導入管部分を破損してしまうことがあり、高純度石英等の炉芯管は高価なため、修理や新規購入費用が高く、熱処理工程のランニングコストを上昇させる要因の一つであった。
 更に、ベルト方式やウォーキングビーム方式に代表されるような、出口と入口を持つ連続式の熱処理炉を用いた場合は、ベルトやビームの存在のため、出入口にシャッターを持つ構造であっても、密閉性が悪く、外気の流入が防ぎ切れず、熱処理によって半導体基板のキャリアライフタイムが大幅に低下する問題があった。このようなベルト方式やウォーキングビーム方式等の連続式熱処理炉は、単位面積あたりの同時処理可能枚数が少なく、熱効率が低いことも問題であった。
 本発明は、上記事情に鑑みなされたものであり、半導体基板の連続熱処理時の各バッチ間の待機時間を減少させて生産性を向上させることができ、しかもガス導入管部分の破損頻度を低下させて熱処理工程のランニングコストを削減することができる熱処理炉を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意検討した結果、熱処理工程に用いる炉心管本体の構造を、両側端面に半導体基板の挿入及び取り出し可能な大きさの開口部を有する円筒状形状とし、更にこの炉心管を略密閉可能に上記開口部を閉塞して上記炉心管に着脱可能に装着される蓋体を設けると共に、炉心管本体又は蓋体に、炉心管内にガスを導入可能な細管状のガス導入管を設けることで、熱処理時の炉内雰囲気を清浄に保つことができると共に、半導体基板の挿入及び取り出し時には必要に応じて両端の蓋を開閉して処理することで、連続熱処理時の各バッチ間の待機時間を減少させ、生産性を向上することが可能となることを見出した。また、炉芯管の構造を単純な円筒状形状としたことで、ガス導入管の破損頻度が低下し、炉芯管自体のコストも低下した結果、熱処理工程のランニングコストを削減できることを見出し、本発明をなすに至った。
 従って、本発明は、下記熱処理炉を提供する。
(1)半導体基板の熱処理工程に用いる熱処理炉であって、両側端面に半導体基板の挿入及び取り出し可能な大きさの開口部を有する円筒状の炉心管を具備することを特徴とする熱処理炉。
(2)上記炉心管が、上記炉心管を略密閉可能に上記開口部を閉塞し、上記炉心管に着脱可能に装着される蓋体を具備する(1)記載の熱処理炉。
(3)上記蓋体が、この蓋体を貫通して上記炉心管内にガスを導入可能な細管状ガス導入管を有する(1)又は(2)記載の熱処理炉。
(4)上記炉心管が、上記炉心管の両端側にそれぞれこの炉心管内にガスを導入可能な細管状ガス導入管を有する(1)~3のいずれかに記載の熱処理炉。
(5)上記炉心管が、上記炉心管の長手方向中央部付近にこの炉心管内にガスを導入可能な細管状ガス導入管を有する(1)~(4)のいずれかに記載の熱処理炉。
(6)上記炉心管の開口部の内径が、上記炉心管中央部の内径に対して95%以上である(1)~(5)のいずれかに記載の熱処理炉。
(7)更に、上記炉心管外部の開口部近傍に、半導体基板を載置したボートを待機させるためのボートステーションを少なくとも一つ具備する(1)~(6)のいずれかに記載の熱処理炉。
(8)熱処理が、シリコン基板にp型又はn型ドーパントを拡散する処理である(1)~(7)のいずれかに記載の熱処理炉。
(9)熱処理が、シリコン基板を酸化する処理である(1)~(7)のいずれかに記載の熱処理炉。
 本発明によれば、半導体の連続熱処理時の各バッチ間の待機時間を減少させ、生産性を向上することが可能となった。また、炉芯管の構造を単純な円筒状形状としたことで、ガス導入管部分の破損頻度が低下し、熱処理工程のランニングコストを削減することができた。
本発明の炉心管本体とガス導入管を有する蓋体の構造の一例を示す概略断面図である。 本発明の両端側下部にガス導入管を有する炉心管本体と蓋体の構造の一例を示す概略断面図である。 本発明の中央部付近にガス導入管を有する炉心管本体と蓋体の構造の一例を示す概略断面図である。 一般的な炉心管の構造の一例を示す概略断面図である。 本発明の熱処理炉を用いた熱処理フローの一例を示す概略断面図である。 本発明の熱処理炉を用いた熱処理フローの他の例を示す概略断面図である。 一般的な熱処理炉を用いた熱処理フローの一例を示す概略断面図である。 本発明の熱処理炉を用いた熱処理のタイムシーケンスの一例を示す説明図である。 本発明の熱処理炉を用いた熱処理のタイムシーケンスの他の例を示す説明図である。 一般的な熱処理炉を用いた熱処理のタイムシーケンスの一例を示す説明図である。
 以下、図面を参照して本発明の実施形態を詳細に説明するが、本発明は下記の実施形態に限定されるものではない。なお、実施の形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
 本発明に係る熱処理炉に用いる炉心管の構造の一例を図1に示す。図中、1は軸方向(長手方向)両側端面に開口部2a,2bを有する円筒状の炉心管であり、熱処理炉(図示せず)内に配設された円筒状ヒーター4内にこれと同心円状に収められている。半導体基板5を載置したボート6は、開口部2a,2bのどちらからも出し入れ可能になっており、開口部2a,2bは、それぞれ蓋7a,7bによって略密閉することができる。蓋7a,7bには、炉心管内にガスを導入可能な細管状のガス導入管8a,8bがこれら蓋7a,7bをそれぞれ気密に貫通して一体となっており、これら蓋7a,7bを閉じた状態で、ガス導入管8a,8bの任意のガス導入管からガスを流すことが可能である。ガス導入管8a,8bは必ずしも蓋7a,7bと一体になって突出している必要はなく、摺り合わせ面で接続して固定するような、蓋7a,7bに形成された穴とガス導入管部分に分離した構造であっても良い。
 本発明に係る熱処理炉に用いる炉心管の構造の他の例を図2に示す。図中、1’は軸方向(長手方向)両側端面に開口部2a,2bを有すると共に、両端側下部にそれぞれ細管状のガス導入管9a,9bを有する円筒状の炉心管であり、熱処理炉(図示せず)内に配設された円筒状ヒーター4内にこれと同心円状に収められている。半導体基板5を載置したボート6は、上記開口部2a,2bのどちらからも出し入れ可能になっており、開口部2a,2bは、それぞれ蓋7a,7bによって略密閉することができ、これら蓋7a,7bを閉じた状態で、ガス導入管9a,9bの任意のガス導入管からガスを流すことが可能である。ガス導入管9a,9bは必ずしも炉芯管1’と一体になって突出している必要はなく、摺り合わせ面で接続して固定するような、穴とガス導入管部分に分離した構造であっても良い。
 本発明に係る熱処理炉に用いる炉心管の構造の別の例を図3に示す。図中、1”は軸方向(長手方向)両側端面に開口部2a,2bを有する円筒状の炉心管であって、この炉心管の長手方向中央部付近上部にはガス導入管8cが設けられており、熱処理炉(図示せず)内に配設された円筒状ヒーター4内にこれと同心円状に収められている。半導体基板5を載置したボート6は、上記開口部2a,2bのどちらからも出し入れ可能になっており、開口部2a,2bは、それぞれ蓋7a,7bによって略密閉することができる。蓋7a,7bには、炉心管内にガスを導入可能な細管状のガス導入管8a,8bがこれら蓋7a,7bをそれぞれ気密に貫通して一体となっており、これら蓋7a,7bを閉じた状態で、ガス導入管8a~8cの任意の導入管からガスを流すことができる。また、蓋7a,7bを開けた状態で、ガス導入管8cからガスを炉内へ導入することで、開口部2a,2bへとガスを流すことが可能である。ガス導入管8a~8cは必ずしも蓋7a,7b又は炉心管1”と一体になって突出している必要はなく、摺り合わせ面で接続して固定するような、穴とガス導入管部分に分離した構造であっても良い。
 ここで、本発明で用いる炉心管、蓋及びガス導入管の材質は、熱処理による高温に耐えられ、かつ炉内清浄度を保つため、高純度石英や高純度炭化珪素(SiC)等が一般的である。
 炉心管の大きさは特に制限されず、炉心管両側端面の開口部の内径は、半導体基板を載置したボートを出し入れ可能な大きさであればよいが、炉心管中央部の内径の95%以上であることが好ましく、通常、炉心管中央部の内径と同じでよい。
 ガス導入管の外径は、5~25mmが好ましく、より好ましくは10~20mmであり、内径は3~20mmが好ましく、より好ましくは5~15mmであり、突出部の長さは50~200mmが好ましく、より好ましくは100~150mmである。図2に示すように、炉心管両端側下部にガス導入管を設ける場合、ガス導入管の位置は開口部から内側に10~200mmが好ましく、より好ましくは20~150mmである。
 なお、図1~3では図示していないが、炉心管とは別に、基板5を載置したボート6を待機させるためのボートステーションを、炉心管外部の開口部近傍に少なくとも一つ、好ましくは両開口部から所定距離離れた位置にそれぞれ一つ以上設けることが好ましい。ボートステーションの材質も、炉心管、蓋及びガス導入管と同じものを用いることができる。ボートステーションの大きさは、ボートを待機させられる大きさであれば特に制限されないが、例えば、半径100mm、60°の円弧状曲面を有する、肉厚4mm、長さ1000mm、幅200mm程度のものを用いることができる。
 本発明の熱処理炉による熱処理方法について説明すると、図1~3に示すような構成の炉心管を含む熱処理炉を用いて半導体基板を熱処理するが、ガス導入管からはアルゴン、窒素、酸素などの高純度ガスを導入することが好ましく、蓋と炉芯管の間の僅かな隙間から、これら高純度ガスを炉外へと流出させることが好ましく、このようにすることで、外気の炉内への流入を防ぎ、熱処理中の炉内雰囲気を清浄に保つことが可能である。これにより、炉芯管の中央部にセットしたボート上に並べられた半導体基板のキャリアライフタイムを大幅に低下させることなく、熱処理を施すことができる。
 次に、図5に本発明の炉心管を含む熱処理炉を用いた熱処理フローの一例を、図8に同熱処理のタイムシーケンスの一例を示して具体的な熱処理方法について説明する。図5の炉心管は図1のものと同じものを用いた。
(1)所定枚数の半導体基板5をボート6に載置し、これをボートステーション10aで待機させる(図5(a),図8(i))。基板は、p型又はn型のシリコン基板等を用いることができる。
(2)炉心管1の蓋7aを開け、ボートステーション10aから炉内中央部の所定位置まで半導体基板5を載せたボート6を押し込む(図5(a),図8(ii))。
(3)蓋7aを閉め、半導体基板5に所定の熱プロファイルを施す(図5(b),図8(iii))。例えば、ドーパント拡散処理する場合、雰囲気は窒素、アルゴン等の不活性ガス、酸素、オキシ塩化リン、ジボラン等とすることができ、処理温度と時間は、必要とする拡散プロファイルや酸化膜厚等により異なるため、特に制限はないが、短時間の熱処理プロファイルを持つ場合に本発明の効果が高い。
 ボート挿入時及び熱処理中は、ガス導入管8bから窒素、アルゴン、酸素等の高純度ガスを流すことで、炉内清浄度を保つことができる。
(4)熱処理後、蓋7bを開け、炉内所定の位置からボートステーション10bへと半導体基板5を載せたボート6を引出し、10~30分間冷却する(図5(c),図8(iv),(v))。
 ボート挿入時及び取り出し時はガス導入管8aから窒素、アルゴン、酸素等の高純度ガスを流速5~50L/minで流すことで、炉内清浄度を保つことができる。
 この例では、ボートステーションが2つあるため、ボート取り出し後、このボートを一方のボートステーション10bで冷却し、もう一方のボートステーション10aから次バッチのボートを挿入可能なため、待機時間を減らすことができる。また、ボートの挿入、取り出しは同時に行うことも可能である。なお、ボートを炉内へ押し込む際及び炉外へ引出す際は、高純度石英等からなるロッド等(非図示)を用いることができる。
 図6に本発明の炉心管を含む熱処理炉を用いた熱処理フローの他の例を、図9に同熱処理のタイムシーケンスの一例を示す。図6の炉心管は図3のものと同じものを用いた。
(1)所定枚数の半導体基板5をボート6に載置し、これをボートステーション10aで待機させる(図6(a),図9(i))。
(2)炉心管1”の蓋7aを開け、ボートステーション10aから炉内中央部の所定位置まで半導体基板5を載せたボート6を押し込む(図6(a),図9(ii))。
(3)蓋7aを閉め、半導体基板5に所定の熱プロファイルを施す(図6(b),図9(iii))。処理条件等は、上記と同様とすることができる。
(4)熱処理後、蓋7a,7bを同時に開け、炉内所定の位置からボートステーション10bへと半導体基板5を載せたボート6を引出すと共に、ボートステーション10aから炉内所定位置まで新たな基板を載せたボートを押し込み、蓋7a,7bを閉めて上記と同様に熱処理する(図6(a),図9(iv),(i)~(iii))。上記操作を繰り返して更に別の基板を処理することができる。
 ボート挿入時及び取り出し時は、炉芯管1”の長手方向の中央部付近に設けられたガス導入管8cから窒素、アルゴン、酸素等の高純度ガスを流し、炉芯管両端の開口部2a,2bと蓋7a,7bとの僅かな隙間へと排気することで、炉内清浄度を保つことができる。熱処理中はガス導入管8bから上述した高純度ガスを流し、炉内清浄度を保つことができる。この例でも、熱処理済みボートの取り出しと次バッチの挿入を同時に行うことで、待機時間を更に減らすことができる。
 本発明においては、上述した炉心管を収容する熱処理炉の構造は特に制限されず、炉芯管に沿った円筒状のヒーターを持つ横型炉であればよい。
 本発明の熱処理炉は、半導体基板の熱処理工程において有用であり、特に半導体基板として太陽電池素子作成用等のシリコン基板に対しp型又はn型ドーパントを拡散処理する場合やシリコン基板を酸化処理する場合に好適であるが、これらドーパント拡散処理、基板酸化処理以外に、横型炉を用いた熱処理ならいかなる熱処理でも好適に用いられる。
 以下、実施例及び比較例を示し、本発明をより具体的に説明するが、本発明は下記の実施例に制限されるものではない。
  [実施例1]
 直径100mm、厚さ200μm、面方位(100)の、CZ法で製造されたボロンドープp型シリコンラップドウェーハ(比抵抗1~3Ω・cm)を準備した。
 上記ラップドウェーハ10枚を、幅100mm、高さ30mm、奥行き540mm、溝ピッチ2.5mm、溝数100溝の高純度石英製ボートに手並べした。
 本発明の熱処理炉として、図1に示したような外径150mm、内径142mm、長さ3000mm、両端に内径142mmの開口部を持つ石英製炉芯管1と、直径170mm、肉厚4mmの円盤状石英板に、外径141.5mm、幅50mmの円筒状石英箱を溶融接着させ、さらにこれら円盤状石英板と円筒状石英箱を貫く形でガス導入管8a,8b(内径5mm)を有する蓋7a,7bをそれぞれ準備した。
 熱処理前後のボート待機場所として、半径100mm、60°の円弧状曲面を有する、肉厚4mm、長さ1000mm、幅200mmの高純度石英製ボートステーションを準備し、炉芯管開口部から250mm離して設置した。ボートステーション中央のボート待機位置から、炉芯管の中央の熱処理位置までの距離は2250mmであった。
 各熱処理バッチにおいて、ボートをボートステーション上にセットするための挿入準備時間(待機時間)は1回あたり1分程度であり、熱処理の終わったボートを取り出した後の冷却時間は1バッチあたり15分とした。
 ボートの挿入・取り出しには、長手方向に対し垂直方向に長さ30mmの突出部を持つ、長さ2000mm、外径15mmの石英製ロッドを用意した。このロッドを全自動のボートローダーにセットし、200mm/minの一定速度でボートの挿入・取り出しを行った。
 熱処理炉は常時830℃にセットし、ボート挿入後、40分間リンのデポジションを行い、続いてより深くリンを拡散させる工程として、830℃で17分間ドライブインを行い、ボートを取り出した。
 熱処理時のガス組成は、リンのデポジション中は、窒素20L/minと酸素0.3L/minとオキシ塩化リン(POCl3)0.45L/minとの混合ガスとし、それ以外の待機中、蓋開閉時、ボート挿入・取り出し時及びドライブイン中は、窒素20L/minと酸素0.3L/minとの混合ガスとした。これらの条件の下、図5に示した熱処理フロー、及び図8に示したタイムシーケンスで拡散熱処理を実施した。
  [実施例2]
 図3に示したような、外径150mm、内径142mm、長さ3000mm、両端に内径142mmの開口部を持ち、さらに炉芯管の長手方向両側端面から1500mmの位置に内径5mmのガス導入管を有する石英製炉芯管を準備した。
 上記炉心管以外は、上記実施例1と同じ半導体基板及び熱処理炉を用い、図6に示した熱処理フロー、及び図9に示したタイムシーケンスで、拡散熱処理を実施した。
  [比較例1]
 図4に示したような、外径150mm、内径142mm、長さ3000mmで、一端に内径142mmの開口部を持ち、他端にガス導入管(内径5mm)を持つ、一般的な石英製炉芯管と、直径170mm、肉厚4mmの円盤状石英板に、外径141.5mm、幅50mmの円筒状石英箱を溶融接着させた構造を持つ蓋を準備した。
 上記炉芯管と蓋以外は上記実施例1と同じ半導体基板及び熱処理炉を用い、図7に示した熱処理フロー、及び図10に示したタイムシーケンスで、拡散熱処理を実施した。
 実施例1,2及び比較例1で得られた基板について、以下の方法で評価を行った。
1.シート抵抗測定
 25質量%HFに4分間浸漬してガラス膜を除去後、純水リンスし、乾燥させ、4短針法でウェーハ中心のシート抵抗測定を行った。
2.バルクライフタイム測定
 70℃,25質量%KOHに10分間浸漬して拡散層を除去後、純水リンスし、1質量%HFに1分間浸漬させて撥水性とした後、ヨウ素メタノール法でケミカルパッシベーション処理を行い、μPCD法でバルクライフタイム測定を行った。
3.連続処理した場合の、拡散熱処理1バッチあたりの所要時間を測定した。
Figure JPOXMLDOC01-appb-T000001
 比較例1に対し、実施例1及び2は、シート抵抗及びバルクライフタイムは遜色ない結果が得られ、1拡散バッチあたりの所要時間を大幅に削減することができた。
 1,1’,1”,21 炉心管
 2a,2b,22 開口部
 4,24 ヒーター
 5,25 半導体基板
 6,26 ボート
 7a,7b,27 蓋
 8a,8b,8c,9a,9b,23 ガス導入管
 10a,10b,30 ボートステーション

Claims (9)

  1.  半導体基板の熱処理工程に用いる熱処理炉であって、両側端面に半導体基板の挿入及び取り出し可能な大きさの開口部を有する円筒状の炉心管を具備することを特徴とする熱処理炉。
  2.  上記炉心管が、上記炉心管を略密閉可能に上記開口部を閉塞し、上記炉心管に着脱可能に装着される蓋体を具備する請求項1記載の熱処理炉。
  3.  上記蓋体が、この蓋体を貫通して上記炉心管内にガスを導入可能な細管状ガス導入管を有する請求項1又は2記載の熱処理炉。
  4.  上記炉心管が、上記炉心管の両端側にそれぞれこの炉心管内にガスを導入可能な細管状ガス導入管を有する請求項1乃至3のいずれか1項記載の熱処理炉。
  5.  上記炉心管が、上記炉心管の長手方向中央部付近にこの炉心管内にガスを導入可能な細管状ガス導入管を有する請求項1乃至4のいずれか1項記載の熱処理炉。
  6.  上記炉心管の開口部の内径が、上記炉心管中央部の内径に対して95%以上である請求項1乃至5のいずれか1項記載の熱処理炉。
  7.  更に、上記炉心管外部の開口部近傍に、半導体基板を載置したボートを待機させるためのボートステーションを少なくとも一つ具備する請求項1乃至6のいずれか1項記載の熱処理炉。
  8.  熱処理が、シリコン基板にp型又はn型ドーパントを拡散する処理である請求項1乃至7のいずれか1項記載の熱処理炉。
  9.  熱処理が、シリコン基板を酸化する処理である請求項1乃至7のいずれか1項記載の熱処理炉。
PCT/JP2011/062753 2010-06-04 2011-06-03 熱処理炉 WO2011152510A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US13/701,953 US20130161313A1 (en) 2010-06-04 2011-06-03 Heat-treatment furnace
KR1020127034348A KR101424543B1 (ko) 2010-06-04 2011-06-03 열처리로
AU2011259931A AU2011259931B2 (en) 2010-06-04 2011-06-03 Heat-treatment furnace
RU2012157235/28A RU2573059C2 (ru) 2010-06-04 2011-06-03 Печь термообработки
EP11789911.2A EP2579298B1 (en) 2010-06-04 2011-06-03 Heat-treatment furnace
SG2012089033A SG186159A1 (en) 2010-06-04 2011-06-03 Heat-treatment furnace
CN201180035789.9A CN103038865B (zh) 2010-06-04 2011-06-03 热处理炉
US15/084,276 US9799535B2 (en) 2010-06-04 2016-03-29 Heat-treatment furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010128998 2010-06-04
JP2010-128998 2010-06-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/701,953 A-371-Of-International US20130161313A1 (en) 2010-06-04 2011-06-03 Heat-treatment furnace
US15/084,276 Division US9799535B2 (en) 2010-06-04 2016-03-29 Heat-treatment furnace

Publications (1)

Publication Number Publication Date
WO2011152510A1 true WO2011152510A1 (ja) 2011-12-08

Family

ID=45066865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062753 WO2011152510A1 (ja) 2010-06-04 2011-06-03 熱処理炉

Country Status (11)

Country Link
US (2) US20130161313A1 (ja)
EP (1) EP2579298B1 (ja)
JP (1) JP5532016B2 (ja)
KR (1) KR101424543B1 (ja)
CN (1) CN103038865B (ja)
AU (1) AU2011259931B2 (ja)
MY (1) MY164113A (ja)
RU (1) RU2573059C2 (ja)
SG (1) SG186159A1 (ja)
TW (1) TWI545298B (ja)
WO (1) WO2011152510A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130344246A1 (en) * 2012-06-21 2013-12-26 Xuesong Li Dual-Chamber Reactor for Chemical Vapor Deposition
CN103151248B (zh) * 2013-03-07 2016-04-20 武汉电信器件有限公司 一种光电探测器制作中锌的扩散装置及其扩散方法
JP6504974B2 (ja) * 2015-09-11 2019-04-24 東京エレクトロン株式会社 磁化処理装置及び磁化処理方法
KR102466140B1 (ko) 2016-01-29 2022-11-11 삼성전자주식회사 가열 장치 및 이를 갖는 기판 처리 시스템
CN109371472A (zh) * 2017-08-11 2019-02-22 中天科技精密材料有限公司 退火装置及退火方法
US11521876B2 (en) * 2018-03-07 2022-12-06 Tokyo Electron Limited Horizontal substrate boat
WO2021250499A1 (en) * 2020-06-08 2021-12-16 Okinawa Institute Of Science And Technology School Corporation Rapid hybrid chemical vapor deposition for perovskite solar modules

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156470A (en) * 1978-05-30 1979-12-10 Mitsubishi Electric Corp Gas phase diffusion method
JPS58154227A (ja) * 1982-03-09 1983-09-13 Matsushita Electronics Corp 半導体基板の拡散処理方法
JPS63213925A (ja) * 1987-03-02 1988-09-06 Nec Corp 半導体ウエ−ハ熱処理炉用ボ−トロ−ダシステム
JPS6430234A (en) * 1987-07-27 1989-02-01 Matsushita Electronics Corp Apparatus for manufacturing semiconductor device
JPH04364028A (ja) * 1991-06-11 1992-12-16 Fuji Electric Co Ltd 熱処理方法
JPH05102054A (ja) 1991-10-11 1993-04-23 Sony Corp 拡散炉

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2048155A1 (de) * 1970-09-30 1972-04-06 Siemens Ag Anordnung zum Abscheiden von kri stallinem Halbleitermaterial
JPS5496359A (en) * 1977-12-28 1979-07-30 Nec Home Electronics Ltd Heat treatment method for semiconductor device
JPS584811B2 (ja) * 1978-10-31 1983-01-27 富士通株式会社 半導体装置の製造方法
JPS60240121A (ja) * 1984-05-15 1985-11-29 Fujitsu Ltd 横型炉
JPS6159722A (ja) * 1984-08-30 1986-03-27 Fujitsu Ltd 横型熱処理炉
JPS6181619A (ja) * 1984-09-28 1986-04-25 Nec Corp 半導体ウエハ熱処理炉用ボ−トロ−ダシステム
JPS61280614A (ja) * 1985-06-05 1986-12-11 Nec Corp 半導体装置の製造装置
JPS6482971A (en) 1987-09-26 1989-03-28 Toshiba Corp Emphatic pattern generating device
JPS6489514A (en) 1987-09-30 1989-04-04 Nec Corp Diffusion furnace for manufacturing semiconductor integrated circuit
JPH01156470A (ja) 1987-12-14 1989-06-20 Seiko Epson Corp スパツタリング用ターゲツトの製造方法
JPH02205318A (ja) * 1989-02-03 1990-08-15 Fujitsu Ltd 熱処理装置
JPH02306619A (ja) 1989-05-22 1990-12-20 Sharp Corp 不純物拡散装置
JPH04155821A (ja) * 1990-10-19 1992-05-28 Hitachi Ltd 熱処理装置
FR2824663B1 (fr) * 2001-05-14 2004-10-01 Semco Sa Procede et dispositif de dopage, diffusion et oxydation pyrolithique de plaquettes de silicium a pression reduite
CN200964448Y (zh) * 2006-06-13 2007-10-24 上海太阳能科技有限公司 晶体硅硅片扩散炉
KR100877102B1 (ko) * 2007-05-28 2009-01-09 주식회사 하이닉스반도체 열처리 장치 및 이를 이용한 열처리 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54156470A (en) * 1978-05-30 1979-12-10 Mitsubishi Electric Corp Gas phase diffusion method
JPS58154227A (ja) * 1982-03-09 1983-09-13 Matsushita Electronics Corp 半導体基板の拡散処理方法
JPS63213925A (ja) * 1987-03-02 1988-09-06 Nec Corp 半導体ウエ−ハ熱処理炉用ボ−トロ−ダシステム
JPS6430234A (en) * 1987-07-27 1989-02-01 Matsushita Electronics Corp Apparatus for manufacturing semiconductor device
JPH04364028A (ja) * 1991-06-11 1992-12-16 Fuji Electric Co Ltd 熱処理方法
JPH05102054A (ja) 1991-10-11 1993-04-23 Sony Corp 拡散炉

Also Published As

Publication number Publication date
JP5532016B2 (ja) 2014-06-25
AU2011259931A1 (en) 2013-01-10
MY164113A (en) 2017-11-30
AU2011259931B2 (en) 2014-09-11
US20130161313A1 (en) 2013-06-27
TW201217734A (en) 2012-05-01
CN103038865A (zh) 2013-04-10
SG186159A1 (en) 2013-01-30
RU2012157235A (ru) 2014-07-20
EP2579298A4 (en) 2017-03-15
US20160329216A1 (en) 2016-11-10
KR20130036261A (ko) 2013-04-11
JP2012015501A (ja) 2012-01-19
EP2579298B1 (en) 2020-07-08
KR101424543B1 (ko) 2014-07-31
EP2579298A1 (en) 2013-04-10
TWI545298B (zh) 2016-08-11
RU2573059C2 (ru) 2016-01-20
US9799535B2 (en) 2017-10-24
CN103038865B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5532016B2 (ja) 熱処理炉及び熱処理方法
JP5690462B2 (ja) Iii−v族ウェーハの加熱装置およびプロセス、ならびにアニールiii−v族半導体単結晶ウェーハ
JP4263410B2 (ja) オートドーピングおよび後面ハローがないエピタキシャルシリコンウエハ
JP5616364B2 (ja) 化学気相成長システムおよび化学気相成長プロセス
JP4809175B2 (ja) 半導体装置の製造方法
CN101764049A (zh) 基板处理装置
JP5069967B2 (ja) 熱処理用部材の製造方法
JP2004503086A (ja) 削剥領域を備えたシリコンウエハの製造方法及び製造装置
JP2018190903A (ja) 半導体ウェハの製造方法及び半導体ウェハ
JP3298467B2 (ja) エピタキシャルウェーハの製造方法
TW200931500A (en) Vapor-phase growth apparatus and vapor-phase growth method
JP2008028307A (ja) 基板の製造方法及び熱処理装置
US7199057B2 (en) Method of eliminating boron contamination in annealed wafer
JP2008053605A (ja) 半導体装置の製造方法及び層生成制御方法
JP2010283153A (ja) 半導体装置の製造方法、熱処理装置、及び熱処理用部材
JP5032059B2 (ja) 半導体装置の製造方法、基板処理方法、及び基板処理装置
KR20230110199A (ko) 복수의 기판 상에 에피택셜 스택을 형성하는 방법
JPH08279472A (ja) 処理された半導体基板の製造方法
US9070820B2 (en) Method for heat-treating a silicon substrate for the production of photovoltaic cells, and photovoltaic cell production method
JP2002184961A (ja) Soi基板の熱処理方法およびsoi基板
JPH0845852A (ja) 気相成長装置と気相成長方法
JP2009176861A (ja) 基板処理装置、熱処理用部材、及び熱処理用部材の製造方法
JPH08203840A (ja) 半導体ウェハへのアルミニウムの拡散装置及び拡散方法
JP2012199566A (ja) 基板の製造方法、半導体装置の製造方法、基板処理方法、クリーニング方法及び処理装置
JP2009010165A (ja) 基板処理装置及び半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180035789.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10129/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011789911

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1201006521

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20127034348

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012157235

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011259931

Country of ref document: AU

Date of ref document: 20110603

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13701953

Country of ref document: US