WO2011145451A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2011145451A1
WO2011145451A1 PCT/JP2011/060421 JP2011060421W WO2011145451A1 WO 2011145451 A1 WO2011145451 A1 WO 2011145451A1 JP 2011060421 W JP2011060421 W JP 2011060421W WO 2011145451 A1 WO2011145451 A1 WO 2011145451A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque command
correction torque
amplitude
motor
correction
Prior art date
Application number
PCT/JP2011/060421
Other languages
English (en)
French (fr)
Inventor
章 田辺
裕幸 関口
英俊 池田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201180024580.2A priority Critical patent/CN102906994B/zh
Priority to DE112011101711.1T priority patent/DE112011101711B4/de
Priority to JP2012515809A priority patent/JP5538529B2/ja
Priority to US13/695,738 priority patent/US8779712B2/en
Priority to KR1020127030206A priority patent/KR101361869B1/ko
Publication of WO2011145451A1 publication Critical patent/WO2011145451A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/30Direct torque control [DTC] or field acceleration method [FAM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/90Specific system operational feature
    • Y10S388/902Compensation

Definitions

  • the present invention relates to a motor control device for driving an industrial machine such as a machine tool.
  • torque ripple In a device that controls a motor that drives an industrial machine device, it is known that torque pulsation occurs with a rotation position (rotation angle) due to the characteristics of the motor, which is called torque ripple.
  • a control device for suppressing torque ripple As a control device for suppressing torque ripple, a control device that cancels the torque ripple by using a corrected torque command having the same angular period according to the rotational position is known in consideration that the torque ripple is periodically generated with the rotational position. ing.
  • the amplitude and phase of the generated torque ripple vary depending on the motor due to variations in motor manufacturing, etc., the amplitude and phase of the correction torque command must also be set for each motor.
  • the following techniques have been proposed as a control device for obtaining the amplitude and phase of the correction torque command for each motor and suppressing torque ripple. That is, the step of changing the phase of the correction torque command having a sine wave shape with a predetermined step size in the entire range (from 0 to 360 degrees), and then the step of changing the amplitude of the correction torque command with a predetermined step size. And a technique for determining the amplitude and phase of the corrected torque command that minimizes the magnitude of the torque ripple by analyzing the phase of the corrected torque command and the magnitude of the torque ripple every time the amplitude is changed. (For example, refer to Patent Document 1).
  • a sampling unit that samples in accordance with the conditions for setting a corrected torque command that becomes a signal after adding the corrected torque command described above, an FFT calculation unit that calculates a Fourier coefficient by FFT calculation, and a correction value based on the Fourier coefficient Provide a correction value calculation unit for calculation, and execute the sampling by the sampling unit and the step of obtaining the Fourier coefficient of the sampled corrected torque command and updating the correction torque command as many times as set.
  • a technique for calculating a torque ripple correction value see, for example, Patent Document 2.
  • Patent Document 1 since the technique disclosed in Patent Document 1 performs a search using a predetermined step size, the time required for the adjustment work and the final adjustment accuracy are in a trade-off relationship, and the adjustment time and the high accuracy. There is a problem that it is difficult to achieve both.
  • Patent Document 2 has a problem that a large-scale memory is required because it is necessary to perform sampling of the number of data points that can be sufficiently analyzed according to the torque ripple frequency.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a motor control device that accurately estimates a correction torque command for suppressing torque ripple in a shorter time and with simpler processing.
  • the present invention provides a pre-correction torque command based on a difference between an operation command signal for commanding motor operation and a detection signal that is a detection result of the motor operation.
  • a tracking control unit calculates, a reference cycle signal calculation unit that calculates a reference cycle signal having a cycle dependent on the same motor position as the torque ripple generated by the motor, based on the detection signal
  • Correction torque calculating means for calculating a corrected torque command by adding a corrected torque command to the pre-correction torque command, a current control unit for outputting a drive current for driving the motor based on the corrected torque command, and Based on the reference periodic signal and the corrected torque command, the amplitude of the corrected torque command and the phase with respect to the reference periodic signal are sequentially estimated.
  • a width phase estimator wherein the correction torque calculation means uses the amplitude and phase of the corrected torque command estimated by the amplitude phase estimator to reduce a difference between the corrected torque command and the corrected
  • the amplitude and phase of the correction torque command can be updated based on the result of sequentially estimating the amplitude and phase in the pre-correction torque command or the post-correction torque command.
  • FIG. 1 is a block diagram showing a motor control device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the amplitude / phase estimation unit in the first embodiment of the present invention.
  • FIG. 3 is a vector diagram showing the estimation operation of the correction torque command in the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing a control system configuration according to Embodiment 1 of the present invention.
  • FIG. 5 is a waveform diagram showing an estimation result of the amplitude of the correction torque command in the first embodiment of the present invention.
  • FIG. 6 is a waveform diagram showing the estimation result of the phase of the correction torque command in the first embodiment of the present invention.
  • FIG. 1 is a block diagram showing a motor control device according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the amplitude / phase estimation unit in the first embodiment of the present invention.
  • FIG. 3 is a vector diagram showing the estimation operation
  • FIG. 7 is a waveform diagram of position deviation showing the estimation operation of the correction torque command in the first embodiment of the present invention.
  • FIG. 8 is a block diagram showing a motor control device according to Embodiment 2 of the present invention.
  • FIG. 9 is a block diagram showing a motor control device according to Embodiment 3 of the present invention.
  • FIG. 10 is a block diagram showing another motor control apparatus according to Embodiment 3 of the present invention.
  • FIG. 11 is a block diagram showing a motor control device according to Embodiment 4 of the present invention.
  • FIG. 12 is a block diagram showing another motor control apparatus according to Embodiment 4 of the present invention.
  • FIG. 1 is a block diagram showing a motor control device according to Embodiment 1 of the present invention. As shown in FIG. 1, an operation command signal R for the operation of the motor 1 such as a position command and a speed command is input to the motor control device.
  • an operation command signal R for the operation of the motor 1 such as a position command and a speed command is input to the motor control device.
  • the detector 2 is connected to the motor 1 and detects the position and speed of the motor 1. The detection result is output as a detection signal Rf.
  • the comparator 10 calculates the deviation between the operation command signal R and the detection signal Rf output from the detector 2.
  • the follow-up control unit 3 outputs a torque command by processing including proportional and integral calculations based on the deviation between the operation command signal R and the detection signal Rf given from the comparator 10.
  • the follow-up control unit 3 is set with gain values for processing including these proportional and integral calculations.
  • the current control unit 4 outputs a drive current for driving the motor 1 based on the input torque command.
  • the motor 1 is driven so as to follow the operation command signal R.
  • the adder 9 adds the disturbance torque ⁇ d to the above control system.
  • the disturbance torque ⁇ d represents the influence of torque ripple.
  • the pulsation component generated due to the structure of the motor is generated inside the motor.
  • the disturbance torque ⁇ d is added on the output side of the current control unit 4, but when the response band of the current control unit 4 is sufficiently high and can be ignored with respect to the disturbance torque ⁇ d, the current control unit 4 Can be equivalently converted to be added on the input side of the current control unit 4.
  • the description will be made assuming that the disturbance torque ⁇ d is added on the input side of the current control unit 4.
  • the adder 11 adds the correction torque command ⁇ c to the torque command output from the tracking control unit 3.
  • the correction torque command ⁇ c is added to suppress the influence of the disturbance torque ⁇ d described above, and is added with a minus sign in FIG. 1 and added by the adder 11. Therefore, the correction torque command ⁇ c and the disturbance torque ⁇ d are added. If they match, the disturbance torque ⁇ d is canceled out, and the torque ripple is suppressed.
  • the torque command output from the follow-up control unit 3 is referred to as a pre-correction torque command ⁇ 1
  • the adder 11 subtracts the corrected torque command ⁇ c from ⁇ 1 (that is, adds ⁇ 1 and ⁇ c).
  • the torque command after the correction, that is, the torque command input to the current control unit 4 is referred to as a corrected torque command ⁇ 2.
  • the reference cycle signal calculation unit 8 calculates, based on the detection signal Rf output from the detector 2, a reference cycle signal having the same angular cycle as the torque ripple generated along with the rotational position of the motor. Based on the corrected torque command ⁇ 2 provided from the adder 11 and the reference periodic signal output from the reference periodic signal calculation unit 8, the amplitude / phase estimation unit 7 determines the amplitude of the corrected torque command ⁇ 2 corresponding to the rotational position of the motor, and The phase is estimated sequentially while the motor is driven. The detailed operation of the amplitude / phase estimation unit 7 will be described later.
  • the amplitude phase setting unit 6 receives the amplitude and phase estimation results estimated by the amplitude phase estimation unit 7, sets the amplitude and phase setting values of the correction torque command ⁇ c based on these estimation results, and sets the correction torque calculation unit 5 to the correction torque calculation unit 5. Output.
  • the correction torque calculation unit 5 calculates and outputs a correction torque command ⁇ c associated with the rotational position of the motor 1 based on the amplitude and phase set by the amplitude phase setting unit 6 and the detection signal Rf output from the detector 2. .
  • the correction torque command ⁇ c calculated by the correction torque calculator 5 is, for example, a periodically changing value having the same cycle as the reference cycle signal output from the reference cycle signal calculator 8, that is, the same angular cycle as the torque ripple.
  • the value depends on the rotation angle of the motor 1.
  • the correction torque calculation unit 5 may obtain a reference period signal having the same angular period as that of the torque ripple from the reference period signal calculation unit 8 or generate it based on the detection signal Rf output from the detector 2. It doesn't matter.
  • FIG. 2 is a block diagram showing the configuration of the amplitude / phase estimation unit 7.
  • the corrected torque command ⁇ 2 that is a signal to be estimated is a periodic signal represented by the following equation (1) by torque ripple.
  • the phase correction unit 71 generates a reference periodic signal having the same angular period as the torque ripple output from the reference periodic signal calculation unit 8, for example, a periodic signal in which the phase of the reference periodic signal is corrected based on sin ( ⁇ ) and the phase estimation value. Output.
  • the phase estimation value is ⁇
  • the periodic signal output from the phase correction unit 71 is expressed as the following equations (2) and (3).
  • the multiplier 72 receives the corrected torque command ⁇ 2 expressed by the above equation (1) and the reference period signal expressed by the above equation (2) and multiplies them. Therefore, the output signal of the multiplier 72 is expressed by the following equation (4).
  • the DC component calculation unit 73 calculates (A / 2) sin ( ⁇ ), which is a DC component of the above-described expression (4), which is an output signal of the multiplier 72, using, for example, a low-pass filter.
  • the PI control unit 74 changes the phase estimation value ⁇ so that the DC component is minimized based on the value of the input DC component.
  • the phase ⁇ of the corrected torque command ⁇ 2 becomes equal to the phase estimation value ⁇ , so that the phase ⁇ can be estimated sequentially.
  • the multiplier 75 receives the corrected torque command ⁇ 2 expressed by the above equation (1) and the reference period signal expressed by the above equation (3) and multiplies them. Therefore, the output signal of the multiplier 75 is expressed by the following equation (5).
  • the DC component calculation unit 76 calculates (A / 2) cos ( ⁇ ), which is a DC component of the above expression (5), which is an output signal of the multiplier 75, using, for example, a low-pass filter.
  • the value of the direct current component is A / 2 when the phase ⁇ of the corrected torque command ⁇ 2 is equal to the phase estimation value ⁇ .
  • the gain 77 amplifies the DC component input from the DC component calculation unit 76 and outputs an amplitude estimation value. As described above, it is possible to sequentially estimate the amplitude of the periodic signal associated with the rotational position of the motor according to the estimation of the phase estimation value ⁇ .
  • FIG. 3 is a vector diagram showing an estimation operation of the correction torque command.
  • information on the amplitude and phase of each torque signal at a frequency at which torque ripple occurs is represented as a vector on a complex plane.
  • the corrected torque command ⁇ 2 is obtained by subtracting the corrected torque command ⁇ c from the pre-correction torque command ⁇ 1, the relationship between ⁇ 1, ⁇ c, and ⁇ 2 is indicated by a dotted line in FIG. Thus, it can be expressed as a composition of vectors.
  • the amplitude in the pre-correction torque command ⁇ 1 becomes 0, and ⁇ c and ⁇ 2 coincide with each other. Therefore, the difference between ⁇ c and ⁇ 2 is used as the update amount of the correction torque command ⁇ c as an error from the ideal restrained state.
  • the above update process is equivalent to updating the corrected torque command ⁇ c to ⁇ 2 by obtaining the amplitude and phase of the corrected torque command ⁇ 2 by the amplitude / phase estimation unit 7.
  • FIG. 4 is a block diagram showing the configuration of the control system corresponding to FIG. 1 as a transfer function.
  • FIG. 4 shows a configuration of a general feedback control system.
  • the transfer function of the controller 12 corresponding to the follow-up control unit 3 is C (s), the current control unit 4, the motor 1, and the detector 2.
  • the transfer function of the control system 13 is represented as P (s).
  • the sensitivity function S and the complementary sensitivity function T are expressed by the following equations (6) and (7), respectively.
  • the corrected torque command ⁇ 2 is expressed by the following (8 ) Expression.
  • the corrected torque command ⁇ 2 (k + n) at the k + nth time is expressed by the following equation (10).
  • the corrected torque command ⁇ c for suppressing the torque ripple.
  • the sensitivity function S is generally smaller than 1 in the control band, it converges if the frequency of the torque ripple is in the control band.
  • the estimated amplitude and phase of - ⁇ 2 are used as they are as the update values of the amplitude and phase of the correction torque command ⁇ c.
  • the error is calculated by comparing ⁇ c before the update with - ⁇ 2, and ⁇ c is updated by adding a value obtained by multiplying the error by a learning gain so that the error becomes at least small. It is also possible to implement the processing to be performed.
  • the update amount of the correction torque command ⁇ c can be set by a learning gain. Therefore, it is possible to prevent the correction torque command ⁇ c from changing sharply. Even when the amplitude and phase of torque ripple vary, the average corrected torque command ⁇ c can be obtained.
  • the update process is determined to have been sufficiently converged and the update process is stopped. It is also possible to configure.
  • FIGS. 5 to 7 are waveform diagrams showing the estimation operation of the correction torque command ⁇ c in the present embodiment.
  • 5 and 6 show the estimation results of the amplitude and phase of the correction torque command ⁇ c, and the estimation operation is started from the time point of 1 [sec] which is the correction start point. Also, the broken lines in each figure indicate the amplitude and phase of torque ripple applied as disturbance torque, and it can be confirmed that the amplitude and phase of the corrected torque command ⁇ c and disturbance torque ⁇ d coincide with each other by the estimation operation.
  • the amplitude of the disturbance torque ⁇ d is 1 [p. u. ]
  • the phase is 30 [°].
  • FIG. 7 shows the correction effect associated with the estimation operation, and it can be confirmed that the position deviation during motor rotation decreases with the estimation operation of the correction torque command ⁇ c.
  • the magnitude of the vibration component is 1 [p. u. ] To be normalized.
  • the amplitude and phase of the corrected torque command ⁇ 2 corresponding to the rotational position of the motor 1 are sequentially estimated, and based on the estimation result.
  • the amplitude and phase of the correction torque command ⁇ c are updated.
  • the correction torque command ⁇ c for suppressing the torque ripple can be sequentially updated. That is, it is possible to obtain a correction torque command ⁇ c that suppresses periodic vibration due to torque ripple in a short time and with simple processing without requiring a large-scale memory because of sequential estimation.
  • FIG. 8 is a block diagram showing a motor control device according to Embodiment 2 of the present invention.
  • the same reference numerals as those in FIG. 1 represent the same components, and the description thereof will be omitted.
  • the amplitude / phase estimation unit 7a estimates the amplitude and phase of the pre-correction torque command ⁇ 1 according to the rotational position of the motor 1.
  • the configuration of the amplitude phase estimator 7a is the same as that of the amplitude phase estimator 7 shown in FIG. 2, but a pre-correction torque command ⁇ 1 is input instead of the corrected torque command ⁇ 2. Accordingly, the amplitude and phase of the pre-correction torque command ⁇ 1 are estimated using the reference periodic signal output from the reference periodic signal calculation unit 8.
  • the amplitude phase setting unit 6a is configured to estimate the amplitude and phase of the pre-correction torque command ⁇ 1 in the amplitude phase estimation unit 7a, and the amplitude and phase of the correction torque command ⁇ c at the time of estimation set in the correction torque calculation unit 5a. From this, the set values of the amplitude and phase of the new correction torque command ⁇ c are calculated and output to the correction torque calculator 5a.
  • the correction torque calculation unit 5a calculates and outputs a correction torque command ⁇ c associated with the rotational position of the motor based on the amplitude and phase set by the amplitude phase setting unit 6a and the detection signal Rf output from the detector 2. .
  • the amplitude and phase of the correction torque command ⁇ c are updated based on the estimated value of the pre-correction torque command ⁇ 1 and the amplitude and phase of the correction torque command ⁇ c at the time of estimation.
  • the amplitude and phase of the pre-correction torque command ⁇ 1 are estimated, and the amplitude and phase of the correction torque command ⁇ c at the time of estimation are known. Therefore, the vector shown in FIG.
  • the amplitude and phase of the corrected torque command ⁇ 2 can be obtained by the synthesis calculation. Even in this case, it is obvious that the update process of the correction torque command ⁇ c similar to that of the first embodiment can be realized.
  • the amplitude of - ⁇ 2 obtained by inverting the sign of the corrected torque command ⁇ 2 obtained as described above, the amplitude of the corrected torque command ⁇ c after updating the phase as it is, It may be used as a phase.
  • ⁇ c is updated by adding a value obtained by multiplying ⁇ 1 by a learning gain to ⁇ c before the update so that at least the error between ⁇ c and ⁇ 2, that is, the absolute value of the estimated pre-correction torque command ⁇ 1 becomes small. You may perform the process to do. As a result, the correction torque command ⁇ c can be prevented from changing sharply as described in the first embodiment.
  • the amplitude and phase in the pre-correction torque command ⁇ 1 are sequentially estimated, and the estimation result and the amplitude of the correction torque command ⁇ c at the time of estimation are calculated.
  • the amplitude and phase of the correction torque command ⁇ c are updated from the phase.
  • the correction torque command ⁇ c for suppressing the torque ripple can be sequentially updated, the correction torque command ⁇ c for suppressing the periodic vibration due to the torque ripple can be obtained in a short time and with a simple process.
  • FIG. 9 is a block diagram showing a motor control device according to Embodiment 3 of the present invention.
  • the same reference numerals as those in FIG. 1 represent the same components, and the description thereof will be omitted.
  • the correction torque determination unit 14 determines whether or not the amplitude of the correction torque command ⁇ c set by the amplitude phase setting unit 6b is equal to or larger than a predetermined value set in advance, and the determination result is sent to the amplitude phase setting unit 6b. Is output.
  • the amplitude phase setting unit 6b stops the estimation operation of the amplitude and phase of the correction torque command ⁇ c and corrects the correction torque command ⁇ c.
  • a signal for stopping the correction by is output to the correction torque calculator 5. That is, the correction torque command ⁇ c is not added to the pre-correction torque command ⁇ 1.
  • the motor control device that updates the correction torque command ⁇ c by estimating the amplitude and phase of the pre-correction torque command ⁇ 1 shown in FIG. 8 may be provided with the correction torque determination unit 14 to perform the same operation as described above.
  • the correction torque determination unit 14 determines whether or not the amplitude of the correction torque command ⁇ c set by the amplitude phase setting unit 6d is equal to or greater than a predetermined value, and the determination result is determined. Output to the amplitude / phase setting unit 6d. The subsequent operation of the amplitude phase setting unit 6d is the same as that of the amplitude phase setting unit 6b.
  • the same reference numerals as those in FIG. 8 represent the same components, and description thereof will be omitted.
  • the estimation operation is performed under conditions other than the convergence condition shown in the first embodiment (when the sensitivity function of the control system is smaller than 1). In this case, it is possible to prevent the estimation operation from becoming unstable and adding an excessive correction torque command to the pre-correction torque command. Accordingly, it is possible to realize a stable estimation operation. That is, it is possible to prevent the estimation of the correction torque command from malfunctioning depending on the operating conditions.
  • FIG. 11 is a block diagram showing a motor control device according to Embodiment 4 of the present invention.
  • the same reference numerals as those in FIG. 1 represent the same components, and the description thereof will be omitted.
  • the estimation operation determination unit 15 determines whether or not the estimation operation of the correction torque command ⁇ c is based on the gain value set in the tracking control unit 3 and the detection signal Rf, and sets the determination result as an amplitude phase setting. It outputs to the part 6c.
  • the condition for the estimation operation to converge is that the frequency of the torque ripple is within the control band as described in the first embodiment. If the number of torque ripples generated per motor revolution is known, the torque ripple frequency can be obtained from the position and speed of the motor. Further, the control band depends on the gain value set in the tracking control unit 3. Therefore, the estimated motion determination unit 15 can determine whether the estimated motion converges by comparing the two.
  • the amplitude phase setting unit 6c fixes the setting value output to the correction torque calculation unit 5 and corrects the correction torque command.
  • the update of ⁇ c is stopped.
  • the motor control device that estimates the amplitude and phase of the pre-correction torque command ⁇ 1 shown in FIG. 8 and updates the correction torque command ⁇ c may be provided with the estimated operation determination unit 15 to perform the same operation as described above.
  • the estimation operation determination unit 15 determines that the estimation operation of the correction torque command ⁇ c is not converged
  • the amplitude phase setting unit 6e outputs to the correction torque calculation unit 5a.
  • the set value is fixed and the update of the correction torque command ⁇ c is stopped.
  • the estimation operation is performed under conditions other than the convergence condition shown in the first embodiment (when the sensitivity function of the control system is smaller than 1). This can be prevented, and a stable estimation operation can be realized.
  • the motor control apparatus in the fourth embodiment it is possible to automatically determine the convergence condition and switch the execution / stop of the estimation operation. Therefore, the correction torque command ⁇ c is updated while the motor is being driven. It can always be implemented. That is, the correction torque command can always be validated by automatically determining the conditions under which the correction torque command estimation is stable. Therefore, for example, it is possible to cope with a case where the torque ripple characteristic changes, such as aging.
  • the motor control device is a method of sequentially estimating the amplitude and phase, which are feature quantities of the torque command before and after correction, and learning the correction torque using this.
  • the amplitude and phase can be obtained simultaneously and with simple processing. Since the amplitude and phase parameters can be estimated simultaneously with a simple process, the estimation can be performed in a short time. Further, by performing the sequential processing, the memory becomes unnecessary and the correction torque command can be always validated.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention in the implementation stage.
  • the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent requirements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and is described in the column of the effect of the invention. When an effect is obtained, a configuration in which this configuration requirement is deleted can be extracted as an invention.
  • the constituent elements over different embodiments may be appropriately combined.
  • the motor control device is useful for motor control that suppresses torque ripple caused by the characteristics of the motor simply and accurately in a short time, and in particular, motor control of a motor that drives an industrial machine device. Suitable for equipment.

Abstract

 モータ1の動作を指令する信号とモータ動作の検出結果である検出信号の差分に基づき補正前トルク指令を算出する追従制御部3と、検出信号からモータが発生するトルクリプルと同じモータ位置に依存した周期の基準周期信号を算出する基準周期信号演算部8と、検出信号に基づいて算出した補正トルク指令を補正前トルク指令に加えて補正後トルク指令を算出する補正トルク演算手段5、11と、補正後トルク指令に基づいてモータを駆動する駆動電流を出力する電流制御部4と、基準周期信号と補正後トルク指令から補正後トルク指令の振幅、基準周期信号に対する位相を逐次的に推定する振幅位相推定部7を備え、補正トルク演算手段は振幅位相推定部が推定した補正後トルク指令の振幅、位相を用いて補正トルク指令と補正後トルク指令の差が小さくなるように補正トルク指令を逐次的に更新する。

Description

モータ制御装置
 本発明は、工作機械などの産業用機械装置を駆動するモータ制御装置に関する。
 産業用機械装置を駆動するモータを制御する装置においては、モータの特性によって回転位置(回転角度)に伴いトルクの脈動が発生することが知られており、トルクリプルと呼ばれる。
 例えば永久磁石同期モータにおいては、モータ内部の磁束変化に歪を持つことに起因して発生するコギングトルクがあり、モータ1回転(機械角ともいう)につきモータの構造(極数やスロット数)によって定まる回数(山数ともいう)の脈動が発生する。このようなトルクリプルは機械装置の動作に悪影響を与える場合があるため、制御装置によって抑制する方式が提案されている。
 トルクリプルを抑制する制御装置としては、トルクリプルが回転位置に伴い周期的に発生することを考慮し、回転位置に応じて同じ角度周期の補正トルク指令を用いることで前記トルクリプルを相殺するものが知られている。ここで、発生するトルクリプルの振幅、位相はモータ製造時のばらつき等によってモータ毎に異なるため、補正トルク指令の振幅、位相もモータ毎に設定する必要がある。
 このように、モータ毎に補正トルク指令の振幅、位相を求めトルクリプルを抑制する制御装置としては、例えば以下のような技術が提案されている。即ち、正弦波状となる補正トルク指令の位相を全範囲(0度から360度)で所定の刻み幅で変更するステップを行い、次に補正トルク指令の振幅を所定の刻み幅で変更するステップを行い、補正トルク指令の位相、及び振幅変更毎にトルクリプルの大きさをFFT演算手段によって解析することで、トルクリプルの大きさが最小となる補正トルク指令の振幅、位相を決定する技術が開示されている(例えば、特許文献1参照)。
 また、上記した補正トルク指令を加えた後の信号となる補正後トルク指令を設定した条件に従ってサンプリングするサンプリング部と、FFT演算によりフーリエ係数を算出するFFT演算部と、フーリエ係数に基づき補正値を演算する補正値演算部を備えた上で、上記サンプリング部によりサンプリングを行うステップと、サンプリングされた補正後トルク指令のフーリエ係数を求め補正トルク指令を更新するステップを設定した繰り返し回数だけ実行することでトルクリプル補正値を算出する技術が開示されている(例えば、特許文献2参照)。
特許第4144018号公報 特開2010-63343号公報
 しかしながら上記従来の技術によれば、例えば、特許文献1にて開示された技術では、補正トルク指令の振幅、位相をそれぞれ異なるステップで探索する必要があった。また、特に位相については全範囲での探索が必要であった。これにより、調整作業に時間を要する点や調整に関する処理が増大化するという問題があった。
 さらに、特許文献1にて開示された技術では、所定の刻み幅を用いた探索を行っているため、調整作業に要する時間と最終的な調整精度はトレードオフの関係となり、調整時間と高精度化を両立することが困難であるという問題があった。
 また、特許文献2にて開示された技術では、補正後トルク指令をサンプリングするステップとFFT演算によりフーリエ係数を算出し補正トルク指令を更新するステップを繰り返し実行する必要があった。特に、モータの回転位置(回転角度)に依存したトルクリプルの振幅、位相を求める必要がある。
 しかし、通常のデータサンプリングでは一定の時間毎にサンプリングを行うため、サンプリングしたデータとモータ角度の関係が対応付けられるようにFFT演算を行う必要があり、オフラインでのデータ操作が必須であった。これにより、調整作業に時間を要する点や調整に関する処理が増大化するという問題があった。
 また、特許文献2にて開示された技術では、トルクリプルの周波数に合わせて十分に解析可能なデータ点数のサンプリングを行う必要があるため、大規模なメモリが必要となるという問題があった。
 本発明は、上記に鑑みてなされたものであって、トルクリプルを抑制する補正トルク指令をより簡易な処理でかつ短時間で精度よく推定するモータ制御装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、モータの動作を指令する動作指令信号と前記モータの動作の検出結果である検出信号との差分に基づいて補正前トルク指令を算出する追従制御部と、前記検出信号に基づいて、前記モータが発生するトルクリプルと同じモータ位置に依存した周期の基準周期信号を算出する基準周期信号演算部と、前記検出信号に基づいて算出した補正トルク指令を前記補正前トルク指令に加えることにより補正後トルク指令を算出する補正トルク演算手段と、前記補正後トルク指令に基づいて前記モータを駆動する駆動電流を出力する電流制御部と、前記基準周期信号と前記補正後トルク指令とに基づいて、前記補正後トルク指令の振幅および前記基準周期信号に対する位相を逐次的に推定する振幅位相推定部とを備え、前記補正トルク演算手段は、前記振幅位相推定部が推定した前記補正後トルク指令の振幅および位相を用いて、前記補正トルク指令と前記補正後トルク指令の差が小さくなるように前記補正トルク指令を逐次的に更新することを特徴とする。
 本発明によれば、補正前トルク指令または補正後トルク指令における振幅、位相を逐次推定した結果に基づき補正トルク指令の振幅、位相をそれぞれ更新させることができるため、振幅と位相を個別のステップで決定する必要がなく、簡易な処理かつ短時間でトルクリプルを抑制する補正トルク指令を求めることができる。また、サンプリングによるFFT演算を繰り返し行う必要がなく、簡易な処理かつ短時間でトルクリプルを抑制する補正トルク指令を求めることができるという効果を奏する。
図1は、本発明の実施の形態1におけるモータ制御装置を示すブロック図である。 図2は、本発明の実施の形態1における振幅位相推定部の構成を示すブロック図である。 図3は、本発明の実施の形態1における補正トルク指令の推定動作を示すベクトル図である。 図4は、本発明の実施の形態1における制御系構成を示すブロック図である。 図5は、本発明の実施の形態1における補正トルク指令の振幅の推定結果を示す波形図である。 図6は、本発明の実施の形態1における補正トルク指令の位相の推定結果を示す波形図である。 図7は、本発明の実施の形態1における補正トルク指令の推定動作を示す位置偏差の波形図である。 図8は、本発明の実施の形態2におけるモータ制御装置を示すブロック図である。 図9は、本発明の実施の形態3におけるモータ制御装置を示すブロック図である。 図10は、本発明の実施の形態3における別のモータ制御装置を示すブロック図である。 図11は、本発明の実施の形態4におけるモータ制御装置を示すブロック図である。 図12は、本発明の実施の形態4における別のモータ制御装置を示すブロック図である。
 以下に、本発明にかかるモータ制御装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 以下、本発明の実施の形態1によるモータ制御装置について図1乃至図7を用いて説明する。図1は、本発明の実施の形態1におけるモータ制御装置を示すブロック図である。図1に示すように、モータ制御装置には位置指令や速度指令といったモータ1の動作に対する動作指令信号Rが入力される。
 検出器2はモータ1に連結されており、モータ1の位置や速度などを検出する。そして、その検出結果を検出信号Rfとして出力する。比較器10は動作指令信号Rと検出器2から出力される検出信号Rfの偏差を演算する。追従制御部3は、比較器10から与えられた動作指令信号Rと検出信号Rfとの偏差に基づいて比例、積分演算を含む処理によりトルク指令を出力する。追従制御部3には、これら比例、積分演算を含む処理のためのゲイン値などが設定されている。
 電流制御部4は、入力されるトルク指令に基づきモータ1を駆動する駆動電流を出力する。このようにモータ制御装置における基本的な動作として、動作指令信号Rに追従するようにモータ1を駆動することになる。
 次に、加算器9は上記の制御系に対して外乱トルクτdを加算している。ここで、外乱トルクτdはトルクリプルによる影響を表している。通常、モータの構造に起因して発生する脈動成分はモータ内部にて生じるものである。また、図1において外乱トルクτdは電流制御部4の出力側にて加算しているが、電流制御部4の応答帯域が十分に高く外乱トルクτdに対して無視できる場合や、電流制御部4とモータ1を合わせた制御対象とする場合には電流制御部4の入力側にて加算されるように等価的に変換することが可能である。以下、本実施の形態において説明を簡易にするため外乱トルクτdが電流制御部4の入力側にて加算されるものとして説明する。
 加算器11は、追従制御部3が出力するトルク指令に対して補正トルク指令τcを加算している。補正トルク指令τcは前述した外乱トルクτdの影響を抑制するために加えられるものであり、図1においてマイナス符合がつけられて加算器11において加算されることから、補正トルク指令τcと外乱トルクτdが一致すれば外乱トルクτdは相殺され、トルクリプルが抑制されることになる。
 以下の実施の形態の説明において、追従制御部3から出力されるトルク指令を補正前トルク指令τ1と称し、加算器11においてτ1から補正トルク指令τcを減算(即ち、τ1と-τcを加算)した後のトルク指令、即ち、電流制御部4に入力するトルク指令を補正後トルク指令τ2と称することにする。
 基準周期信号演算部8は、検出器2が出力した検出信号Rfに基づいて、モータの回転位置に伴い発生するトルクリプルと同じ角度周期の基準周期信号を演算により算出する。振幅位相推定部7は加算器11から与えられた補正後トルク指令τ2と基準周期信号演算部8が出力する基準周期信号に基づき、モータの回転位置に応じた補正後トルク指令τ2の振幅、及び位相をモータ駆動中に逐次推定する。ここで、振幅位相推定部7の詳細の動作については後述する。
 振幅位相設定部6は振幅位相推定部7において推定された振幅、位相の推定結果を受け取り、これらの推定結果に基づき補正トルク指令τcの振幅、位相設定値を設定し、補正トルク演算部5に出力する。
 補正トルク演算部5は、振幅位相設定部6により設定される振幅、位相と、検出器2から出力された検出信号Rfに基づきモータ1の回転位置に伴う補正トルク指令τcを算出して出力する。
 補正トルク演算部5により算出される補正トルク指令τcは、例えば、基準周期信号演算部8が出力する基準周期信号と同じ周期、即ち、トルクリプルと同じ角度周期を有する周期的に変動する値であって、モータ1の回転角に依存した値である。この場合、補正トルク演算部5は、トルクリプルと同じ角度周期を有する基準周期信号を基準周期信号演算部8から得てもよいし、検出器2から出力された検出信号Rfに基づいて生成しても構わない。
 次に、振幅位相推定部7の推定動作について図2を用いて詳細に説明する。図2は振幅位相推定部7の構成を示すブロック図である。まず、図2において、推定対象の信号となる補正後トルク指令τ2がトルクリプルによって以下の(1)式で表される周期信号であるとする。
        τ2=Asin(θ+α)     (1)式
 ここで、(1)式において、基準角度θはモータの回転位置に伴い発生するトルクリプルの周期的な変化を表しており、モータ1回転につき生じるトルクリプルの回数が既知であれば、モータの位置や速度から求めることができる。また、モータが一定速度で駆動している場合には角周波数ωと時間tを用いてθ=ωtと表すことができ、補正後トルク指令τ2は一定周期で振動する信号となる。また、振幅A、位相αの値が推定対象のパラメータとなる。
 位相修正部71は、基準周期信号演算部8から出力されるトルクリプルと同じ角度周期の基準周期信号、例えばsin(θ)と、位相推定値とに基づき基準周期信号の位相を修正した周期信号を出力する。ここで、位相推定値をβとすると、位相修正部71から出力される周期信号は以下の(2)式、及び(3)式のように表される。
        cos(θ+β)          (2)式
        sin(θ+β)             (3)式
 乗算器72には、上述した(1)式で表される補正後トルク指令τ2と、上記(2)式で表される基準周期信号とが入力されてそれらを乗算する。よって、乗算器72の出力信号は以下の(4)式となる。
 τ2・cos(θ+β)=
    (A/2)(sin(2θ+α+β)+sin(α-β))  (4)式
 直流成分演算部73は、例えばローパスフィルタによって、乗算器72の出力信号である上記(4)式の直流成分となる(A/2)sin(α-β)を演算する。PI制御部74は、入力される直流成分の値に基づき直流成分が最小となるように位相推定値βを変化させる。ここで、直流成分が最小となれば補正後トルク指令τ2の位相αと位相推定値βが等しくなるため、逐次的に位相αの推定を実現することができる。
 乗算器75には、上述した(1)式で表される補正後トルク指令τ2と、上記(3)式で表される基準周期信号とが入力されてそれらを乗算する。よって、乗算器75の出力信号は以下の(5)式となる。
 τ2・sin(θ+β)=
   -(A/2)(cos(2θ+α+β)-cos(α-β))  (5)式
 直流成分演算部76は、例えばローパスフィルタによって、乗算器75の出力信号である上記(5)式の直流成分となる(A/2)cos(α-β)を演算する。ここで、直流成分の値は、補正後トルク指令τ2の位相αと位相推定値βが等しい場合には、A/2となる。
 ゲイン77は、直流成分演算部76から入力される直流成分を増幅し、振幅推定値を出力する。以上のように、位相推定値βの推定に応じて逐次的にモータの回転位置に伴う周期信号の振幅の推定を実現することができる。
 次に、補正トルク指令τcの推定動作について図3を用いて詳細に説明する。図3は、補正トルク指令の推定動作を示すベクトル図である。図3では、トルクリプルの生じる周波数における各トルク信号の振幅、位相の情報を複素平面上でのベクトルとして表している。
 図1で示したように、補正前トルク指令τ1に対して補正トルク指令τcを減算することで補正後トルク指令τ2が求まることから、τ1、-τc、τ2の関係は図3における点線で示すようにベクトルの合成として表すことができる。
 ここで、トルクリプルによる影響を理想的に抑制できている状態では、補正前トルク指令τ1における振幅が0となるため-τcとτ2が一致することになる。このことから、理想的な抑制状態との誤差として-τcとτ2の差を補正トルク指令τcの更新量として用いる。ここで、上記の更新処理は、振幅位相推定部7により補正後トルク指令τ2の振幅および位相を求めることで、補正トルク指令τcを-τ2へ更新することと等価となる。
 次に、本実施の形態における補正トルク指令τcの算出方法により、τcがτdへ収束することを、図4を用いて説明する。図4は、図1に対応した制御系の構成を伝達関数で示したブロック図である。
 図4は、一般的なフィードバック制御系の構成となっており、追従制御部3に対応する制御器12の伝達関数をC(s)、電流制御部4、モータ1、および検出器2からなる制御システム13の伝達関数をP(s)として表している。その他、図1と同じ構成要素については同符号とし、説明を省略する。
 図4に示す制御系において、感度関数S、相補感度関数Tはそれぞれ、以下の(6)式、及び(7)式のようになる。
        S=1/(1+CP)         (6)式
        T=CP/(1+CP)        (7)式
 上記の感度関数S、相補感度関数Tを用い、補正後トルク指令τ2に関してトルクリプルの周波数成分のみに着目した記述とすると、補正後トルク指令τ2は補正トルク指令τcと外乱トルクτdにより以下の(8)式で表すことができる。
        τ2=-S・τc-T・τd      (8)式
 次に、前述したように、本実施の形態では補正トルク指令τcを-τ2に更新するため、(8)式によって求まる-τ2をτcとして用いる。(8)式で表されるτ2を任意のk回目の更新状態とすると、k+1回目における補正後トルク指令τ2(k+1)は以下の(9)式となる。
 τ2(k+1)=-S(S・τc(k)+T・τd)-T・τd
        =-S(S・τc(k)+T・τd)-(1-S)τd (9)式
 同様に、k+2回目、k+3回目と更新した場合、k+n回目における補正後トルク指令τ2(k+n)は以下の(10)式となる。
 τ2(k+n)=-S(S・τc(k)+T・τd)-(1-S)τd
                           (10)式
 ここで上記(10)式において、トルクリプルの周波数における感度関数Sが1より小さい場合には、Sは更新を繰り返すことにより0に収束することになる。すなわち、補正後トルク指令τ2は-τdに収束することなるため、-τ2へと更新を繰り返すτcは外乱トルクτdへ収束することになる。
 以上のようにしてトルクリプルを抑制する補正トルク指令τcを求めることが可能となる。ここで、感度関数Sは一般的には制御帯域内において1より小さくなるため、トルクリプルの周波数が制御帯域内であれば収束することになる。
 また、上記の説明では補正トルク指令τcを-τ2へ更新する処理において、推定された-τ2の振幅および位相をそのまま補正トルク指令τcの振幅および位相の更新値として用いるとして説明した。しかし、更新前のτcと-τ2とを比較することにより誤差を演算し、少なくとも誤差が小さくなるように当該誤差に学習用のゲインを乗じた値を更新前のτcに加えることによりτcを更新する処理とすることも実現可能である。
 このような構成とした場合、補正トルク指令τcの更新量を学習用のゲインによって設定することが可能となる。よって、補正トルク指令τcが急峻に変化することを防ぐことができる。また、トルクリプルの振幅および位相にばらつきがある場合においても平均的な補正トルク指令τcを求めることができる。
 また、上記のτcと-τ2の誤差の演算結果から、両者の差の絶対値等が所定値以下となった場合には、τcの更新が十分収束したものと判断し、更新処理を停止させる構成することも可能である。
 次に、本実施の形態における補正トルク指令τcの推定動作について図5乃至図7を用いて説明する。図5乃至図7は、本実施の形態における補正トルク指令τcの推定動作を示す波形図である。
 図5乃至図7では、モータ1回転につき30[回]のトルクリプルが発生するモータを模擬し、20[r/min]の一定速度で駆動中に補正トルク指令τcを推定する動作についてシミュレーションを行なった結果を示している。
 図5、及び図6は補正トルク指令τcの振幅、及び位相の推定結果を示しており、補正開始点である1[sec]の時点から推定動作を開始している。また、各図の破線は外乱トルクとして加えているトルクリプルの振幅、位相を示しており、推定動作によって補正トルク指令τcと外乱トルクτdの振幅、位相が一致していることが確認できる。ここで、外乱トルクτdの振幅は1[p.u.]と正規化しており、位相は30[°]としている。
 また、図7は推定動作に伴う補正効果を示しており、モータ回転時における位置偏差が補正トルク指令τcの推定動作に伴い低減していることが確認できる。ここで、振動成分の大きさは1[sec]までの大きさが1[p.u.]となるように正規化している。
 以上説明したように、本発明の実施の形態1におけるモータ制御装置においては、モータ1の回転位置に応じた補正後トルク指令τ2の振幅および位相を逐次的に推定し、その推定結果に基づいて補正トルク指令τcの振幅および位相をそれぞれ更新する。
 これにより、トルクリプルを抑制する補正トルク指令τcを逐次的に更新することができる。即ち、逐次的な推定によりサンプリングが不要となり、大規模なメモリを要さずに短時間かつ簡易な処理でトルクリプルによる周期的な振動を抑制する補正トルク指令τcを求めることができる。
実施の形態2.
 以下、本発明の実施の形態2によるモータ制御装置について図8を用いて説明する。図8は、本発明の実施の形態2におけるモータ制御装置を示すブロック図である。ここで、図1と同一の符合は同一の構成要素を表わしており、説明を省略する。
 図8において、振幅位相推定部7aはモータ1の回転位置に応じた補正前トルク指令τ1の振幅および位相を推定する。振幅位相推定部7aの構成は図2に示した振幅位相推定部7の構成と同様であるが、補正後トルク指令τ2の代わりに補正前トルク指令τ1が入力される。これにより、基準周期信号演算部8から出力される基準周期信号を用いて補正前トルク指令τ1の振幅および位相が推定される。
 振幅位相設定部6aは、前記振幅位相推定部7aにおける補正前トルク指令τ1の振幅および位相の推定結果と、補正トルク演算部5aにおいて設定されている推定時の補正トルク指令τcの振幅および位相とから、新たな補正トルク指令τcの振幅および位相の設定値を算出して補正トルク演算部5aに出力する。
 補正トルク演算部5aは、前記振幅位相設定部6aにより設定される振幅および位相と、検出器2から出力された検出信号Rfに基づきモータの回転位置に伴う補正トルク指令τcを算出して出力する。
 このように本実施の形態においては、補正前トルク指令τ1の推定値と推定時の補正トルク指令τcの振幅および位相に基づいて補正トルク指令τcの振幅および位相の更新を行う。
 次に、補正トルク指令τcの推定動作について図3を用いて詳細に説明する。前述したように、図3において補正トルク指令τcを-τ2へ近づけるように更新させることでトルクリプルを抑制することが可能となる。
 ここで、本実施の形態においては、補正前トルク指令τ1の振幅および位相が推定されるとともに、推定時の補正トルク指令τcの振幅および位相は既知であることから、図3で示したベクトルの合成演算により補正後トルク指令τ2の振幅、位相を求めることが可能となる。この場合においても実施の形態1と同様の補正トルク指令τcの更新処理が実現できることは明らかである。
 具体的には、例えば、実施の形態1と同様、上記のようにして求められた補正後トルク指令τ2の符号を反転した-τ2の振幅、位相をそのまま更新後の補正トルク指令τcの振幅、位相として用いてもよい。あるいは、少なくともτcと-τ2の誤差、即ち推定された補正前トルク指令τ1の絶対値が小さくなるように、τ1に学習用のゲインを乗じた値を更新前のτcに加えることによりτcを更新する処理を行ってもよい。これにより、実施の形態1で説明したのと同様に補正トルク指令τcが急峻に変化することを防ぐことができる。
 以上説明したように、本発明の実施の形態2におけるモータ制御装置においては、補正前トルク指令τ1における振幅および位相を逐次的に推定し、その推定結果と推定時の補正トルク指令τcの振幅および位相とから補正トルク指令τcの振幅および位相をそれぞれ更新する。
 これにより、トルクリプルを抑制する補正トルク指令τcを逐次的に更新することができるため、短時間かつ簡易な処理でトルクリプルによる周期的な振動を抑制する補正トルク指令τcを求めることができる。
実施の形態3.
 以下、本発明の実施の形態3によるモータ制御装置について図9を用いて説明する。図9は、本発明の実施の形態3におけるモータ制御装置を示すブロック図である。ここで、図1と同一の符合は同一の構成要素を表しており、説明を省略する。
 図9において、補正トルク判定部14は振幅位相設定部6bにより設定される補正トルク指令τcの振幅が予め設定される所定値以上であるかどうかを判定し、判定結果を振幅位相設定部6bへと出力する。
 振幅位相設定部6bは、補正トルク判定部14によって補正トルク指令τcの振幅が所定値以上と判定された場合には、補正トルク指令τcの振幅および位相の推定動作を停止し、補正トルク指令τcによる補正を停止する信号を補正トルク演算部5に出力する。即ち、補正トルク指令τcを補正前トルク指令τ1に加えないようにする。
 また、図8に示した補正前トルク指令τ1の振幅および位相を推定して補正トルク指令τcを更新するモータ制御装置に補正トルク判定部14を備えて上記と同様な動作を行ってもよい。
 この場合、図10に示すように、補正トルク判定部14は振幅位相設定部6dにより設定される補正トルク指令τcの振幅が予め設定される所定値以上であるかどうかを判定し、判定結果を振幅位相設定部6dへと出力する。その後の振幅位相設定部6dの動作は上記振幅位相設定部6bと同様である。図10で、図8と同一の符合は同一の構成要素を表し説明を省略する。
 以上説明したように、本発明の実施の形態3におけるモータ制御装置においては、実施の形態1で示した収束条件(制御系の感度関数が1より小さい場合)以外の条件下で推定動作を行なった場合において、推定動作が不安定となり過大な補正トルク指令が補正前トルク指令に加算されることを防ぐことができる。従って、安定した推定動作を実現することが可能となる。即ち、運転条件によって補正トルク指令の推定が誤動作することを防ぐことができる。
実施の形態4.
 以下、本発明の実施の形態4によるモータ制御装置について図11を用いて説明する。図11は、本発明の実施の形態4におけるモータ制御装置を示すブロック図である。ここで、図1と同一の符合は同一の構成要素を表しており、説明を省略する。
 図11において、推定動作判定部15は追従制御部3において設定されたゲイン値と検出信号Rfに基づき補正トルク指令τcの推定動作が収束する条件となるかを判定し、判定結果を振幅位相設定部6cに出力する。
 ここで、推定動作が収束する条件は、実施の形態1において述べたようにトルクリプルの周波数が制御帯域内であることとなる。モータ1回転につき生じるトルクリプルの回数が既知であれば、トルクリプルの周波数はモータの位置や速度から求めることができる。また、制御帯域は追従制御部3において設定されたゲイン値に依存する。従って、推定動作判定部15は、両者を比較することにより推定動作が収束するかどうかを判定することができる。
 推定動作判定部15によって、補正トルク指令τcの推定動作が収束しない条件であると判定された場合には、振幅位相設定部6cは補正トルク演算部5に出力する設定値を固定とし補正トルク指令τcの更新を停止させる。
 また、図8に示した補正前トルク指令τ1の振幅および位相を推定して補正トルク指令τcを更新するモータ制御装置に推定動作判定部15を備えて上記と同様な動作を行ってもよい。
 この場合、図12に示すように、推定動作判定部15が補正トルク指令τcの推定動作が収束しない条件であると判定した場合には、振幅位相設定部6eは補正トルク演算部5aに出力する設定値を固定とし補正トルク指令τcの更新を停止させる。図12で、図8と同一の符合は同一の構成要素を表し説明を省略する。
 以上説明したように、本発明の実施の形態4におけるモータ制御装置によれば、実施の形態1で示した収束条件(制御系の感度関数が1より小さい場合)以外の条件下で推定動作を行うことを防ぐことができ、安定した推定動作を実現することが可能となる。
 また、実施の形態4におけるモータ制御装置によれば、上記収束条件を自動的に判別し、推定動作の実行/停止を切り替えることが可能となるため、モータ駆動中における補正トルク指令τcの更新を常時実施することができる。即ち、補正トルク指令の推定が安定動作する条件を自動判別することにより、補正トルク指令の常時有効化が実現できる。従って、例えば経年変化のようにトルクリプルの特性が変化した場合においても対応することができる。
 上記したように、本実施の形態のモータ制御装置は、補正前後いずれかのトルク指令の特徴量である振幅および位相を逐次的に推定し、これを用いて補正トルクを学習する方式となっており、振幅および位相を同時かつ簡易な処理で求めることができる。振幅および位相のパラメータを同時に簡易な処理で推定することができるため、短時間で推定が可能である。また、逐次的な処理を行うことにより、メモリが不要となり、補正トルク指令の常時有効化が可能となる。
 さらに、本願発明は上記実施の形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出されうる。例えば、実施の形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出されうる。更に、異なる実施の形態にわたる構成要素を適宜組み合わせてもよい。
 以上のように、本発明にかかるモータ制御装置は、モータの特性により生ずるトルクリプルを簡易かつ短時間で精度よく抑制するモータ制御に有用であり、特に、産業用機械装置を駆動するモータのモータ制御装置に適している。
 1 モータ
 2 検出器
 3 追従制御部
 4 電流制御部
 5、5a 補正トルク演算部
 6、6a、6b、6c、6d、6e 振幅位相設定部
 7、7a 振幅位相推定部
 8 基準周期信号演算部
 9、11 加算器
 10 比較器
 12 制御器
 13 制御システム
 14 補正トルク判定部
 15 推定動作判定部
 71 位相修正部
 72、75 乗算器
 73、76 直流成分演算部
 74 PI制御部
 77 ゲイン

Claims (6)

  1.  モータの動作を指令する動作指令信号と前記モータの動作の検出結果である検出信号との差分に基づいて補正前トルク指令を算出する追従制御部と、
     前記検出信号に基づいて、前記モータが発生するトルクリプルと同じモータ位置に依存した周期の基準周期信号を算出する基準周期信号演算部と、
     前記検出信号に基づいて算出した補正トルク指令を前記補正前トルク指令に加えることにより補正後トルク指令を算出する補正トルク演算手段と、
     前記補正後トルク指令に基づいて前記モータを駆動する駆動電流を出力する電流制御部と、
     前記基準周期信号と前記補正後トルク指令とに基づいて、前記補正後トルク指令の振幅および前記基準周期信号に対する位相を逐次的に推定する振幅位相推定部とを備え、
     前記補正トルク演算手段は、前記振幅位相推定部が推定した前記補正後トルク指令の振幅および位相を用いて、前記補正トルク指令と前記補正後トルク指令の差が小さくなるように前記補正トルク指令を逐次的に更新する
     ことを特徴とするモータ制御装置。
  2.  モータの動作を指令する動作指令信号と前記モータの動作の検出結果である検出信号との差分に基づいて補正前トルク指令を算出する追従制御部と、
     前記検出信号に基づいて、前記モータが発生するトルクリプルと同じモータ位置に依存した周期の基準周期信号を算出する基準周期信号演算部と、
     前記検出信号に基づいて算出した補正トルク指令を前記補正前トルク指令に加えることにより補正後トルク指令を算出する補正トルク演算手段と、
     前記補正後トルク指令に基づいて前記モータを駆動する駆動電流を出力する電流制御部と、
     前記基準周期信号と前記補正前トルク指令とに基づいて、前記補正前トルク指令の振幅および前記基準周期信号に対する位相を逐次的に推定する振幅位相推定部とを備え、
     前記補正トルク演算手段は、前記振幅位相推定部が推定した前記補正前トルク指令の振幅および位相を用いて、前記補正トルク指令と前記補正後トルク指令の差が小さくなるように前記補正トルク指令を逐次的に更新する
     ことを特徴とするモータ制御装置。
  3.  前記補正トルク演算手段において更新された前記補正トルク指令の振幅が所定の閾値以上であるかどうかを判定する補正トルク判定部を更に備え、
     前記補正トルク指令の振幅が閾値以上である場合は、前記補正トルク演算手段は前記補正トルク指令を前記補正前トルク指令に加えない
     ことを特徴とする請求項1または2に記載のモータ制御装置。
  4.  前記追従制御部において前記補正前トルク指令の算出のために設定されたゲイン値と前記検出信号から得られた前記トルクリプルの周波数とから、前記周波数が制御帯域内であるかどうかを判定する推定動作判定部を更に備え、
     前記周波数が制御帯域を超えた場合は、前記補正トルク演算手段は前記補正トルク指令の更新をしない
     ことを特徴とする請求項1または2に記載のモータ制御装置。
  5.  前記振幅位相推定部は、前記基準周期信号に基づき生成した周期信号と補正後トルク指令を逐次的に乗算した信号に基づいて前記補正後トルク指令の振幅および前記基準周期信号に対する位相を推定する
     ことを特徴とする請求項1に記載のモータ制御装置。
  6.  前記振幅位相推定部は、前記基準周期信号に基づき生成した周期信号と補正前トルク指令を逐次的に乗算した信号に基づいて前記補正前トルク指令の振幅および前記基準周期信号に対する位相を推定する
     ことを特徴とする請求項2に記載のモータ制御装置。
PCT/JP2011/060421 2010-05-20 2011-04-28 モータ制御装置 WO2011145451A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180024580.2A CN102906994B (zh) 2010-05-20 2011-04-28 马达控制装置
DE112011101711.1T DE112011101711B4 (de) 2010-05-20 2011-04-28 Motorsteuerungsvorrichtung
JP2012515809A JP5538529B2 (ja) 2010-05-20 2011-04-28 モータ制御装置
US13/695,738 US8779712B2 (en) 2010-05-20 2011-04-28 Motor control device
KR1020127030206A KR101361869B1 (ko) 2010-05-20 2011-04-28 모터 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010116071 2010-05-20
JP2010-116071 2010-05-20

Publications (1)

Publication Number Publication Date
WO2011145451A1 true WO2011145451A1 (ja) 2011-11-24

Family

ID=44991562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060421 WO2011145451A1 (ja) 2010-05-20 2011-04-28 モータ制御装置

Country Status (7)

Country Link
US (1) US8779712B2 (ja)
JP (1) JP5538529B2 (ja)
KR (1) KR101361869B1 (ja)
CN (1) CN102906994B (ja)
DE (1) DE112011101711B4 (ja)
TW (1) TWI466432B (ja)
WO (1) WO2011145451A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017099232A (ja) * 2015-11-27 2017-06-01 オークマ株式会社 トルクリップル補正機能を備えた制御装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2501565B (en) * 2012-11-15 2014-10-01 Control Tech Ltd Reduction of periodic disturbances
JP6295243B2 (ja) * 2013-02-13 2018-03-14 日本電産サンキョー株式会社 産業用ロボットおよび産業用ロボットの制御方法
CN105103435B (zh) 2013-04-10 2017-03-22 三菱电机株式会社 旋转机控制装置
JP5673727B2 (ja) * 2013-04-26 2015-02-18 株式会社明電舎 トルク指令生成装置
US9729094B2 (en) * 2013-06-10 2017-08-08 Meidensha Corporation Automatic suppression device for cyclic disturbance
JP5650814B1 (ja) * 2013-07-05 2015-01-07 ファナック株式会社 フィードフォワード制御を備えたモータ制御装置
JP6242512B2 (ja) * 2015-02-04 2017-12-06 三菱電機株式会社 電動機用制御装置及び産業用機械装置
US10033308B2 (en) * 2015-03-17 2018-07-24 Intuitive Surgical Operations, Inc. Systems and methods for motor torque compensation
CN106154158B (zh) * 2015-04-10 2019-06-14 小米科技有限责任公司 终端马达测试方法及装置
JP5968572B1 (ja) * 2015-06-18 2016-08-10 三菱電機株式会社 制御パラメータ調整装置
JP6457432B2 (ja) * 2016-05-16 2019-01-23 ファナック株式会社 揺動切削を行う工作機械のサーボ制御装置、制御方法及びコンピュータプログラム
CN110235357B (zh) * 2017-01-30 2022-12-13 日立安斯泰莫株式会社 逆变器控制装置
WO2018154733A1 (ja) * 2017-02-24 2018-08-30 三菱電機株式会社 電動機のトルク脈動補正装置および補正方法、エレベーターの制御装置
US10486678B2 (en) * 2017-07-28 2019-11-26 Ford Global Technologies, Llc Engine torque estimate correction
FR3074926B1 (fr) * 2017-12-07 2019-11-29 Ixblue Procede d'optimisation des performances d'un asservissement d'un systeme mecatronique, dispositif adapte
CN111010060B (zh) * 2019-12-13 2021-04-27 苏州智感电子科技有限公司 用于步进电机的直流补偿方法及电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044974A (ja) * 2000-07-24 2002-02-08 Yaskawa Electric Corp トルクリプル補正方法およびモータ制御回路
JP2004032944A (ja) * 2002-06-27 2004-01-29 Okuma Corp 同期電動機の制御装置及び同期電動機
JP2004282888A (ja) * 2003-03-14 2004-10-07 Toshiba Corp モータ駆動装置およびモータ駆動方法
JP2008000503A (ja) * 2006-06-26 2008-01-10 Matsushita Electric Ind Co Ltd 洗濯機
JP2009118684A (ja) * 2007-11-08 2009-05-28 Mitsubishi Electric Corp 振動抑制制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144018A (ja) 1990-10-03 1992-05-18 Nippon Laser Denshi Kk フォトラインセンサ
JP3242223B2 (ja) * 1993-08-02 2001-12-25 オークマ株式会社 電動機の制御装置
JP4144018B2 (ja) 2000-01-07 2008-09-03 株式会社安川電機 トルクリップル低減装置
JP3941351B2 (ja) 2000-07-26 2007-07-04 オンキヨー株式会社 音場処理装置および音場処理方法
JP5187172B2 (ja) 2008-08-06 2013-04-24 株式会社安川電機 モータ制御装置とそのトルクリップル補正方法及びモータ制御システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002044974A (ja) * 2000-07-24 2002-02-08 Yaskawa Electric Corp トルクリプル補正方法およびモータ制御回路
JP2004032944A (ja) * 2002-06-27 2004-01-29 Okuma Corp 同期電動機の制御装置及び同期電動機
JP2004282888A (ja) * 2003-03-14 2004-10-07 Toshiba Corp モータ駆動装置およびモータ駆動方法
JP2008000503A (ja) * 2006-06-26 2008-01-10 Matsushita Electric Ind Co Ltd 洗濯機
JP2009118684A (ja) * 2007-11-08 2009-05-28 Mitsubishi Electric Corp 振動抑制制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017099232A (ja) * 2015-11-27 2017-06-01 オークマ株式会社 トルクリップル補正機能を備えた制御装置

Also Published As

Publication number Publication date
CN102906994B (zh) 2015-05-20
DE112011101711B4 (de) 2022-02-10
KR101361869B1 (ko) 2014-02-12
KR20130030754A (ko) 2013-03-27
TW201218615A (en) 2012-05-01
US20130057186A1 (en) 2013-03-07
CN102906994A (zh) 2013-01-30
DE112011101711T5 (de) 2013-03-14
US8779712B2 (en) 2014-07-15
TWI466432B (zh) 2014-12-21
JPWO2011145451A1 (ja) 2013-07-22
JP5538529B2 (ja) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5538529B2 (ja) モータ制御装置
JP5637042B2 (ja) 電動機の脈動抑制装置および電動機の脈動抑制方法
JP2019146479A (ja) 電動パワーステアリング装置
JP5877733B2 (ja) 電動モータの制御装置
JP6471834B2 (ja) 電動パワーステアリング装置
EP3526895B1 (en) Control system for electric motor circuit
JP6344151B2 (ja) 位置推定装置、モータ駆動制御装置、位置推定方法及びプログラム
JP6485810B2 (ja) 誘導モーターのローター角速度を制御するための方法及びシステム
KR102117976B1 (ko) 파라미터의 추정을 이용한 영구 자석 동기 전동기의 제어 장치 및 방법
JP5449569B2 (ja) モータ制御装置
JP4670405B2 (ja) 同期電動機のベクトル制御方法
JP2010057223A (ja) 制御装置およびモータ制御装置
WO2021084739A1 (ja) モータインダクタンス測定装置、モータ駆動システム、及びモータインダクタンス測定方法
JP5074318B2 (ja) 同期電動機のロータ位置推定装置
JP2010035352A (ja) 同期電動機のロータ位置推定装置
JP2012226411A (ja) 周期外乱抑制装置および周期外乱抑制方法
JP6966978B2 (ja) 工作機械用モータ駆動装置
JP4680754B2 (ja) Dcブラシレスモータのロータ角度推定方法及びdcブラシレスモータの制御装置
JP4811727B2 (ja) 永久磁石界磁同期電動機制御装置
JP4653640B2 (ja) Dcブラシレスモータのロータ角度推定方法及びdcブラシレスモータの制御装置
JP2015133872A (ja) モータ制御装置及びロータ角度推定方法
JP5106295B2 (ja) 同期電動機のロータ位置推定装置
JP2014158336A (ja) モータ制御装置
WO2015072048A1 (ja) モータ駆動装置および制御方法
KR20210078849A (ko) 모터 구동 시스템 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024580.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515809

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13695738

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127030206

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112011101711

Country of ref document: DE

Ref document number: 1120111017111

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11783388

Country of ref document: EP

Kind code of ref document: A1