WO2015072048A1 - モータ駆動装置および制御方法 - Google Patents

モータ駆動装置および制御方法 Download PDF

Info

Publication number
WO2015072048A1
WO2015072048A1 PCT/JP2014/003831 JP2014003831W WO2015072048A1 WO 2015072048 A1 WO2015072048 A1 WO 2015072048A1 JP 2014003831 W JP2014003831 W JP 2014003831W WO 2015072048 A1 WO2015072048 A1 WO 2015072048A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase
information
correction value
correction
Prior art date
Application number
PCT/JP2014/003831
Other languages
English (en)
French (fr)
Inventor
哲 永野
智祥 森田
伸一 黒島
岩永 太志
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015547603A priority Critical patent/JP6312034B2/ja
Publication of WO2015072048A1 publication Critical patent/WO2015072048A1/ja
Priority to US15/152,475 priority patent/US9793837B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present disclosure relates to a motor drive device and a control method, and more particularly to drive control of a DC brushless motor.
  • FIG. 33 is a block diagram showing a configuration of a conventional embodiment.
  • the correction value table 2502 that outputs a correction value from a correction value table that records a correction value that matches a motor characteristic to be used in advance, with the correction value selection signal 2501 as an input
  • a function (motor phase detection unit 2504) that detects a motor phase that receives a motor phase signal 2503 and outputs a motor driving cycle, and a function that calculates a motor applied voltage signal 2506 using the correction value and the motor driving cycle as inputs ( Motor applied voltage calculation unit 2505).
  • FIG. 34 is a timing chart of the motor drive device or control method of the conventional embodiment. This timing chart illustrates a three-phase brushless motor.
  • the output terminals for driving the motor are U, V and W, and the corresponding hall signals are HU, HV and HW.
  • the motor current phase is delayed as compared with the Hall signal as shown in FIG.
  • the motor current phase maintains an appropriate phase difference from the Hall signal.
  • an object of the present disclosure is to provide a versatile motor drive device and control method that can maintain high driving efficiency and do not depend on motor characteristics.
  • the motor drive device detects the motor current phase by inputting the motor current phase signal, and outputs the detection result as motor current phase information, and detects the motor phase by inputting the motor phase signal.
  • a phase that outputs the detection result as motor phase information calculates a correction value based on the difference between the motor current phase information and the motor phase information, and outputs the calculation result as correction information.
  • the correction value calculation unit, the correction information, and the motor phase information are input, a motor applied voltage indicating a voltage applied to the motor is calculated, and the calculation result is output as a phase corrected motor applied voltage signal.
  • a motor applied voltage calculation unit is input, a motor applied voltage indicating a voltage applied to the motor is calculated, and the calculation result is output as a phase corrected motor applied voltage signal.
  • the motor phase and the motor current phase can be kept constant regardless of the motor characteristics. Therefore, it is possible to realize a versatile motor driving apparatus and control method that are highly efficient in driving and do not depend on motor characteristics.
  • FIG. 1 is a block diagram for explaining a motor driving apparatus and a control method according to the first embodiment.
  • FIG. 2 is a timing chart for explaining the motor driving apparatus and the control method according to the second embodiment.
  • FIG. 3 is a block diagram for explaining a motor driving apparatus and a control method according to the third embodiment.
  • FIG. 4 is a timing chart for explaining the motor driving apparatus and the control method according to the third embodiment.
  • FIG. 5 is a block diagram for explaining a motor driving apparatus and a control method according to the fourth embodiment.
  • FIG. 6 is a timing chart for explaining the motor driving apparatus and the control method according to the fourth embodiment.
  • FIG. 7 is a timing chart for explaining the motor driving apparatus and the control method according to the fifth embodiment.
  • FIG. 8 is a timing chart for explaining the motor driving apparatus and the control method according to the sixth embodiment.
  • FIG. 9 is a timing chart for explaining the motor driving apparatus and the control method according to the seventh embodiment.
  • FIG. 10 is a timing chart for explaining the motor driving apparatus and the control method according to the eighth embodiment.
  • FIG. 11 is a timing chart for explaining the motor drive device and the control method according to the ninth embodiment.
  • FIG. 12 is a block diagram for explaining a motor driving apparatus and a control method according to the tenth embodiment.
  • FIG. 13 is a timing chart for explaining the motor driving apparatus and the control method according to the tenth embodiment.
  • FIG. 14 is a timing chart for explaining the motor driving apparatus and the control method according to the eleventh embodiment.
  • FIG. 15 is a block diagram for explaining a motor drive device and a control method according to a twelfth embodiment.
  • FIG. 16 is a timing chart for explaining the motor driving apparatus and the control method according to the twelfth embodiment.
  • FIG. 17 is a block diagram for explaining a motor drive device and a control method according to a thirteenth embodiment.
  • FIG. 18 is a timing chart for explaining the motor drive device and the control method according to the fourteenth embodiment.
  • FIG. 19 is a block diagram for explaining the motor drive device and the control method according to the fifteenth embodiment.
  • FIG. 20 is a timing chart for explaining the motor driving apparatus and the control method according to the fifteenth embodiment.
  • FIG. 21 is a block diagram for explaining a motor driving device and a control method according to the sixteenth embodiment.
  • FIG. 22 is a timing chart for explaining the motor driving apparatus and the control method according to the sixteenth embodiment.
  • FIG. 23 is a timing chart for explaining the motor driving apparatus and the control method according to the seventeenth embodiment.
  • FIG. 24 is a timing chart for explaining the motor driving device and the control method according to the eighteenth embodiment.
  • FIG. 25 is a timing chart for explaining the motor driving device and the control method according to the nineteenth embodiment.
  • FIG. 26 is a timing chart for explaining the motor driving device and the control method according to the twentieth embodiment.
  • FIG. 27 is a timing chart for explaining the motor driving apparatus and the control method according to the twenty-first embodiment.
  • FIG. 28 is a block diagram for explaining a motor drive device and a control method according to the twenty-second embodiment.
  • FIG. 29 is a timing chart for explaining the motor driving apparatus and the control method according to the twenty-second embodiment.
  • FIG. 30 is a timing chart for explaining the motor drive device and the control method according to the twenty-third embodiment.
  • FIG. 31 is a block diagram for explaining a motor drive device and a control method according to a twenty-fourth embodiment.
  • FIG. 32 is a timing chart for explaining the motor driving device and the control method according to the twenty-fourth embodiment.
  • FIG. 33 is a block diagram for explaining a motor driving apparatus and a control method according to a conventional embodiment.
  • FIG. 34 is a timing chart for explaining a motor driving apparatus and a control method according to a conventional embodiment.
  • timing chart of a three-phase brushless motor is illustrated.
  • the output terminals for driving the motor are U, V and W, and the corresponding hall signals are HU, HV and HW.
  • the present disclosure is not limited to the three-phase brushless motor. It can also be applied to actuators.
  • a hall signal is used as a motor phase signal is illustrated, of course, the motor phase signal is not limited to the hall signal. What is necessary is just to be able to detect the motor phase, such as the back electromotive force of the motor. The above is the same in the following embodiments.
  • FIG. 1 is a block diagram for explaining a motor driving apparatus and a control method according to the first embodiment.
  • the motor drive device of FIG. 1 receives the input motor current phase signal 101, detects the motor current phase, outputs the detection result as motor current phase information, and the input motor phase.
  • a motor phase detector 104 that receives the signal 103, detects the motor phase, and outputs motor phase information as a detection result, and a correction value for correcting the phase based on the difference between the motor current phase information and the motor phase information.
  • a phase correction value calculation unit 105 that calculates and outputs correction information as a calculation result, receives correction information and motor phase information, calculates a motor applied voltage indicating a voltage to be applied to the motor based on these, and calculates As a result, it has a motor applied voltage calculation unit 106 that outputs a phase-corrected motor applied voltage signal 107.
  • the motor phase is corrected by the following control operation.
  • the motor current phase detection unit 102 When the motor current phase signal 101 is input to the motor current phase detection unit 102, the motor current phase detection unit 102 outputs motor current phase information.
  • the motor phase signal 103 When the motor phase signal 103 is input to the motor phase detection unit 104, the motor phase detection unit 104 outputs motor phase information.
  • the phase correction value calculation unit 105 compares the motor current phase information with the motor phase information, calculates a correction value that maintains an appropriate phase difference between the motor current and the motor phase information, and outputs the correction value as correction information. .
  • the motor application voltage calculation unit 106 When the correction information and the motor phase information as correction values are input to the motor application voltage calculation unit 106, the motor application voltage calculation unit 106 generates a corrected motor application voltage signal 107 to be applied to the motor.
  • the motor applied voltage signal 107 is supplied to, for example, a three-phase brushless motor as a direct current brushless motor.
  • the motor current phase and the motor phase are maintained at an appropriate phase difference that makes the motor drive highly efficient. Further, since the motor current phase and the motor phase can be detected and corrected each time, the versatility is high regardless of the motor characteristics.
  • the motor application voltage calculation unit 106 shown in FIG. 1 updates the motor phase information corrected for each discrete motor phase and applies a motor application voltage signal to the motor. 107 may be generated.
  • FIG. 2 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • the correction value is reflected on the output applied voltage at the timing of the falling edge of the Hall signal HV, that is, every 360 electrical degrees.
  • FIG. 2 shows an example in which the electrical angle of 360 degrees is a constant phase of the motor, but of course, the electrical angle is not limited to 360 degrees, and the correction value may be reflected at an arbitrary phase.
  • the motor current phase and the motor phase can be maintained at an appropriate phase difference for each constant phase of the motor.
  • FIG. 3 is a block diagram for explaining a motor driving apparatus and a control method according to the third embodiment.
  • the phase correction value calculation unit 105 includes a phase difference calculation unit 301 and a phase difference division unit 302.
  • the phase difference calculation unit 301 calculates a correction value from the difference between the motor current phase information and the motor phase information, and outputs the result as phase difference information that is correction information. That is, the phase difference calculation unit 301 calculates and outputs the phase difference between the motor current phase information and the motor phase information.
  • the phase difference dividing unit 302 divides the phase difference between the motor current phase information and the motor phase information by dividing the phase difference information output from the phase difference calculating unit 301.
  • the divided phase difference information that is, the divided correction value is output in a plurality of times.
  • FIG. 4 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • the detected phase difference is corrected by dividing it into three at the timing of the falling edges of the Hall signals HU, HV, and HW.
  • FIG. 4 shows an example in which the correction value to be divided is not weighted, of course, the correction value may be equally divided, or the divided correction values may be different. That is, the divided correction values may be set arbitrarily. Further, although the correction value is divided into three, it is of course not limited to three, and may be divided into an arbitrary number. The timing for correcting the phase difference is not limited to the falling edges of the Hall signals HU, HV, and HW, and may be set at an arbitrary timing.
  • the motor current phase and the motor phase can be kept at an appropriate phase difference while driving and controlling so as to perform correction in a plurality of times.
  • FIG. 5 is a block diagram for explaining a motor driving apparatus and a control method according to the fourth embodiment.
  • the phase correction value calculation unit 105 includes a phase difference information detection unit 401 and a phase difference information accumulation unit 402.
  • the phase difference information detection unit 401 detects the phase difference of the leading phase or the lagging phase from the difference between the motor current phase information and the motor phase information, and outputs the phase difference information as a detection result.
  • the phase difference information accumulation unit 402 accumulates the phase difference information output from the phase difference information detection unit 401, calculates and holds a correction value, and outputs the correction value as correction information.
  • FIG. 6 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • correction is performed asymptotically so that the Hall signal and the motor current converge to an appropriate phase difference at the timing of each falling edge of the Hall signals HU, HV, and HW.
  • the phase difference information is a phase difference for the leading phase or the lagging phase, it converges with a constant amplitude.
  • FIG. 6 shows an example in which the asymptotic correction value is weighted
  • the asymptotic correction values may be equal or different, and may be set arbitrarily.
  • the timing for correcting the phase difference is not limited to the falling edges of the Hall signals HU, HV, and HW, and may be set to an arbitrary timing.
  • the motor current phase and the motor phase can be kept at an appropriate phase difference while driving and controlling so as to perform asymptotic correction.
  • the phase difference information detection unit 401 of the phase correction value calculation unit 105 in FIG. 5 detects a phase advance, slow phase, or maintenance phase difference from the difference between the motor current phase information and the motor phase information,
  • the phase difference information may be output as a detection result.
  • FIG. 7 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • asymptotic correction is performed so that the Hall signal and the motor current converge to an appropriate phase difference at the timing of each falling edge of the Hall signals HU, HV, and HW.
  • a maintenance signal is output from the phase difference information detection unit 401, whereby the appropriate phase difference is maintained.
  • FIG. 7 shows an example in which asymptotic correction values are weighted, but asymptotic correction values may be equal or different from each other, and may be set arbitrarily.
  • the timing for correcting the phase difference is not limited to the falling edges of the Hall signals HU, HV, and HW, and may be set to an arbitrary timing.
  • the motor current phase and the motor phase can be kept at an appropriate phase difference while driving and controlling so as to perform asymptotic correction.
  • the phase correction value calculation unit 105 illustrated in FIG. 1 may capture the motor current phase information at an arbitrary discrete timing.
  • FIG. 8 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • FIG. 8 shows a case where the motor current phase information is captured for each falling edge of the motor current IU.
  • FIG. 8 shows an example in which the motor current phase information is captured at the timing of the falling edge of the motor current IU.
  • the motor current IU is not limited to the falling edge of the motor current IU.
  • the motor current phase information may be taken in at any timing.
  • the motor current phase information can be updated discretely, and the motor current phase and the motor phase can be maintained at an appropriate phase difference.
  • the phase correction value calculation unit 105 shown in FIG. 1 may determine the timing for taking in the motor current phase information based on the motor phase information.
  • FIG. 9 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • FIG. 9 shows an example in which the motor current phase information of the motor current IU is captured at a timing 150 degrees later than the rising timing of the hall signal HU.
  • FIG. 9 illustrates the combination of the hall signal HU and the motor current IU.
  • the present invention is of course not limited to this combination, and any combination of motor current phases and hall signals, or a plurality of motor current phases and The timing may be set by a combination of hall signals.
  • the motor current phase information can be updated at a timing determined based on the motor phase information, and the motor current phase and the motor phase are kept at an appropriate phase difference. be able to.
  • the motor phase detector 104 shown in FIG. 1 may output current motor phase information based on the past motor phase.
  • FIG. 10 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • the period between the falling edges of the first hall signal HU and the period between the falling edges of the second hall signal HU are the same.
  • An example of updating motor phase information is shown.
  • the hall signal HU is used to update the next motor phase information from the immediately preceding cycle.
  • the hall signal to be used an arbitrary signal or an arbitrary plurality of signals may be used.
  • the motor phase information may be updated between the falling edges of the hall signals HU and HV.
  • the update timing of the motor phase information may be any timing as well.
  • the phase correction value calculation unit 105 shown in FIG. 1 detects the difference between the motor current phase information and the motor phase information a plurality of times for one phase correction, and calculates the correction value. An operation may be performed.
  • FIG. 11 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • the motor current phase information at the rising and falling edges of the motor current IV is compared with the motor phase information at the rising edge of the Hall signal HU, and the correction value is reflected at the timing of the falling edge of the Hall signal HU.
  • An example is shown.
  • the correction value is calculated within one cycle of the hall signal HU using the hall signal HU and the motor current IV.
  • the hall signal and motor current to be used can be any signal or any plurality of arbitrary signals. A signal may be used.
  • the calculation of the correction value is not limited to one cycle, and the correction value may be calculated every plural cycles or less than one cycle.
  • the motor phase information and the motor current phase information may be similarly updated at an arbitrary timing.
  • FIG. 12 is a block diagram for explaining a motor driving apparatus and a control method according to the tenth embodiment.
  • the phase correction value calculation unit 1001 is configured to maintain the phase difference thereafter when the phase difference between the motor current phase and the motor phase reaches a predetermined value.
  • the predetermined value is an appropriate phase difference between the motor current phase information and the motor phase information, for example, in driving the motor.
  • FIG. 13 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • FIG. 13 illustrates a case where phase correction is performed in multiple steps as in the third embodiment. Since the phase difference becomes optimal at the timing of the correction reflection 3, the phase correction value calculation unit 1001 does not calculate the subsequent correction value, maintains the correction value calculated at the timing of the correction reflection 3, and outputs this correction value. Keep doing.
  • the phase correction value calculation unit 1001 may perform correction again when the drive period of the motor changes.
  • FIG. 14 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • FIG. 14 illustrates a case where phase correction is performed in multiple steps as in the third embodiment. Since the phase difference becomes optimal at the timing of the correction reflection 3, the phase correction value calculation unit 1001 does not calculate the subsequent correction value, maintains the correction value calculated at the timing of the correction reflection 3, and outputs this correction value. To do. At this time, if the motor driving cycle changes, the correction value is calculated again. When the phase difference is optimal, the phase correction value calculator 1001 outputs the correction value while maintaining the correction value at that time.
  • FIG. 15 is a block diagram for explaining a motor drive device and a control method according to a twelfth embodiment.
  • the phase correction value calculation unit 1202 is configured to receive a torque signal 1201 for controlling the torque applied to the motor and perform correction again when the torque signal 1201 changes. Yes.
  • FIG. 16 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • FIG. 16 illustrates a case where phase correction is performed in multiple steps as in the third embodiment. Since the phase difference is optimal at the timing of the correction reflection 3, the phase correction value calculation unit 1202 does not calculate the subsequent correction value, maintains the correction value calculated at the timing of the correction reflection 3, and uses this correction value. Output. At this time, when a change in the torque command occurs, that is, when the torque signal 1201 changes, the correction value is calculated again.
  • FIG. 17 is a block diagram for explaining a motor drive device and a control method according to a thirteenth embodiment.
  • the motor drive device of FIG. 17 receives the input motor current phase signal 1301, detects the motor current phase, and outputs the detection result as motor current phase information, and the input motor phase.
  • a motor phase detector 1304 that receives the signal 1303, detects the motor phase, and outputs motor phase information as a detection result, and corrects the motor phase based on the difference between the motor current phase information and the corrected motor phase information.
  • a phase correction value calculation unit 1305 that calculates a correction value for output and outputs correction information as a calculation result, a motor applied voltage that receives the correction information and the motor phase information and indicates a voltage to be applied to the motor based on these And the phase-corrected motor applied voltage signal 1307 and the corrected motor phase information 13 are calculated. And a motor application voltage calculating unit 1306 outputs 8.
  • the motor phase is corrected by the following control operation.
  • the motor current phase detection unit 1302 When the motor current phase signal 1301 is input to the motor current phase detection unit 1302, the motor current phase detection unit 1302 outputs motor current phase information.
  • motor phase signal 1303 When motor phase signal 1303 is input to motor phase detector 1304, motor phase detector 1304 outputs motor phase information.
  • the phase correction value calculation unit 1305 compares the motor current phase information with the corrected motor phase information 1308, and calculates a correction value such that the motor current maintains an appropriate phase difference with respect to the corrected motor phase information 1308. And output.
  • correction information and motor phase information as correction values are input to the motor application voltage calculation unit 1306, the motor application voltage calculation unit 1306 displays the corrected motor phase information 1308 and the motor application indicating the voltage to be applied to the motor. The voltage is calculated, and a phase-corrected motor applied voltage signal 1307 is generated. Then, a motor applied voltage signal 1307 is supplied to, for example, a three-phase brushless motor.
  • the phase difference between the motor current phase and the corrected motor phase is kept appropriate, so that the motor driving device can be improved regardless of the accuracy of the motor phase signal. It can be driven with efficiency.
  • the phase difference between the motor current phase and the corrected motor phase is appropriately maintained, versatility is high regardless of motor characteristics.
  • the motor applied voltage calculation unit 1306 shown in FIG. 17 updates the motor phase information corrected for each discrete motor phase and applies a motor applied voltage signal to the motor. 1307 may be generated.
  • FIG. 18 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • the correction value is reflected in the output applied voltage at the timing of the falling edge of the corrected motor phase signal HV, that is, every 360 electrical degrees.
  • FIG. 18 shows an example in which an electrical angle of 360 degrees is a constant phase of the motor, but it is of course not limited to an electrical angle of 360 degrees, and the correction value may be reflected at an arbitrary phase.
  • the motor current phase and the motor phase can be maintained at an appropriate phase difference for each constant phase of the motor.
  • FIG. 19 is a block diagram for explaining the motor drive device and the control method according to the fifteenth embodiment.
  • the phase correction value calculation unit 1305 includes a phase difference calculation unit 1501 and a phase difference division unit 1502.
  • the phase difference calculation unit 1501 calculates a correction value from the difference between the motor current phase information and the corrected motor phase information 1308, and outputs the calculation result as phase difference information that is correction information.
  • the phase difference dividing unit 1502 divides the phase difference between the motor current phase information and the corrected motor phase information 1308 by dividing the phase difference information output from the phase difference calculating unit 1501.
  • the divided phase difference information that is, the divided correction value is output in a plurality of times.
  • FIG. 20 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • the present embodiment for example, a case where the detected phase difference is corrected by being divided into three at the timing of the falling edges of the corrected motor phase signals HU, HV, HW is illustrated.
  • FIG. 20 shows an example in which the correction values to be divided are not weighted or the like.
  • the correction values may be equally divided, or the divided correction values may be different. That is, the divided correction values may be set arbitrarily.
  • the correction value is divided into three, it is of course not limited to three, and may be divided into an arbitrary number.
  • the timing for correcting the phase difference is not limited to the falling edges of the corrected motor phase signals HU, HV, HW, and may be set to an arbitrary timing.
  • the motor current phase and the motor phase can be kept at an appropriate phase difference while driving and controlling so as to perform correction in a plurality of times.
  • FIG. 21 is a block diagram for explaining a motor driving device and a control method according to the sixteenth embodiment.
  • the phase correction value calculation unit 1305 includes a phase difference information detection unit 1601 and a phase difference information accumulation unit 1602.
  • the phase difference information detection unit 1601 detects the phase difference of the leading phase or the lagging phase from the difference between the motor current phase information and the corrected motor phase information 1308, and outputs the phase difference information as a detection result.
  • the phase difference information accumulation unit 1602 accumulates the phase difference information output from the phase difference information detection unit 1601, calculates and holds a correction value, and outputs the correction value as correction information.
  • FIG. 22 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • correction is performed asymptotically so that the corrected motor phase signal and the motor current converge to an appropriate phase difference at the timing of each falling edge of the corrected motor phase signals HU, HV, and HW. ing.
  • the phase difference information is the phase difference for the leading phase or the lagging phase, it converges with a constant amplitude.
  • FIG. 22 shows an example in which the asymptotic correction value is weighted, but of course, the asymptotic correction values may be equal or different, and may be set arbitrarily.
  • the timing for correcting the phase difference is not limited to the falling edges of the corrected motor phase signals HU, HV, and HW, and may be set to an arbitrary timing.
  • the motor current phase and the motor phase can be kept at an appropriate phase difference while driving and controlling so as to perform asymptotic correction.
  • the phase difference information detection unit 1601 of the phase correction value calculation unit 1305 in FIG. 21 detects a phase advance, delay phase, or maintenance phase difference from the difference between the motor current phase information and the motor phase information,
  • the phase difference information may be output as a detection result.
  • FIG. 23 is a timing chart of the motor driving device and the control method according to the present embodiment.
  • asymptotic correction is performed so that the corrected motor phase signal and the motor current converge to an appropriate phase difference at the timing of each falling edge of the corrected motor phase signals HU, HV, and HW. is doing.
  • a maintenance signal is output from the phase difference information detection unit 1601, thereby maintaining an appropriate phase difference.
  • FIG. 23 shows an example in which the asymptotic correction value is weighted, but of course, the asymptotic correction values may be equal or different, and may be set arbitrarily.
  • the timing for correcting the phase difference is not limited to the falling edges of the corrected motor phase signals HU, HV, and HW, and may be set to any timing.
  • the motor current phase and the motor phase can be kept at an appropriate phase difference while driving and controlling so as to perform asymptotic correction.
  • the phase correction value calculation unit 1305 shown in FIG. 17 may capture the motor current phase information at an arbitrary discrete timing.
  • FIG. 24 is a timing chart of the motor drive device and the control method according to the present embodiment.
  • FIG. 24 shows a case where the motor current phase information is captured for each falling edge of the motor current IU.
  • FIG. 24 shows an example in which the motor current phase information is captured at the timing of the falling edge of the motor current IU.
  • the present invention is not limited to the falling edge of the motor current IU, and can be arbitrarily discrete.
  • the motor current phase information may be taken in at any timing.
  • the motor current phase information can be updated discretely, and the motor current phase and the motor phase can be maintained at an appropriate phase difference.
  • the phase correction value calculation unit 1305 shown in FIG. 17 may determine the timing for taking in the motor current phase information based on the corrected motor phase information.
  • FIG. 25 is a timing chart of the motor drive device and the control method according to the present embodiment.
  • FIG. 25 shows an example in which the motor current phase information of the motor current IU is captured at a timing after an electrical angle of 150 degrees with respect to the rising timing of the corrected motor phase signal HU.
  • the combination of the corrected motor phase signal HU and the motor current IU is illustrated, but of course, the combination is not limited to this combination, and an arbitrary combination of the motor current phase and the corrected motor phase signal.
  • the timing may be set by a combination of a plurality of motor current phases and a corrected motor phase signal.
  • the motor current phase information can be updated at a timing determined based on the corrected motor phase information, and the motor current phase and the motor phase are appropriately adjusted. Can be kept in phase difference.
  • the motor phase detector 1304 shown in FIG. 17 may output the current motor phase information based on the past motor phase.
  • FIG. 26 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • the period between the falling edges of the first corrected motor phase signal HU and the period between the falling edges of the second corrected motor phase signal HU are corrected to be the same.
  • the motor phase information is updated at the timing of the falling edge of the motor phase signal HU.
  • the next motor phase information is updated from the immediately preceding cycle using the corrected motor phase signal HU.
  • the corrected motor phase signal may be updated between the falling edges of the corrected motor phase signals HU and HV.
  • the update timing of the motor phase information may be any timing as well.
  • the phase correction value calculation unit 1305 shown in FIG. 17 detects the difference between the motor current phase information and the corrected motor phase information multiple times for one phase correction, A correction value may be calculated.
  • FIG. 27 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • the motor current phase information at the rising and falling edges of the motor current IV is compared with the motor phase information at the rising edge of the corrected motor phase signal HU, and the falling edge of the corrected motor phase signal HU is compared.
  • the example which reflects a correction value at the timing of is shown.
  • the corrected motor phase signal HU and the motor current IV are used to calculate the correction value within one cycle of the corrected motor phase signal HU.
  • the corrected motor phase to be used is used.
  • the signal and the motor current an arbitrary signal or an arbitrary plurality of signals may be used.
  • the calculation of the correction value is not limited to one cycle, and the correction value may be calculated every plural cycles or less than one cycle.
  • the motor phase information and the motor current phase information may be similarly updated at an arbitrary timing.
  • FIG. 28 is a block diagram for explaining a motor drive device and a control method according to the twenty-second embodiment.
  • the phase correction value calculation unit 2201 is configured to maintain the phase difference thereafter when the phase difference between the motor current phase and the corrected motor phase reaches a predetermined value.
  • the predetermined value is an appropriate phase difference between the motor current phase information and the motor phase information, for example, in driving the motor.
  • FIG. 29 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • FIG. 29 illustrates a case where phase correction is performed in multiple steps as in the fifteenth embodiment. Since the phase difference is optimal at the timing of the correction reflection 3, the phase correction value calculation unit 2201 does not calculate the subsequent correction value, maintains the correction value calculated at the timing of the correction reflection 3, and outputs this correction value. Keep doing.
  • the phase correction value calculation unit 2201 shown in FIG. 28 may perform correction again when the motor drive cycle changes.
  • FIG. 30 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • FIG. 30 illustrates a case where phase correction is performed in multiple steps as in the fifteenth embodiment. Since the phase difference is optimal at the timing of the correction reflection 3, the phase correction value calculation unit 2201 does not calculate the subsequent correction value, maintains the correction value calculated at the timing of the correction reflection 3, and outputs this correction value. To do. At this time, when the motor drive cycle changes, the phase correction value calculator 2201 calculates the correction value again.
  • FIG. 31 is a block diagram for explaining a motor drive device and a control method according to a twenty-fourth embodiment.
  • the phase correction value calculation unit 2402 is configured to receive a torque signal 1201 for controlling the torque applied to the motor, and to perform correction again when the torque signal 1201 changes. Yes.
  • FIG. 32 is a timing chart for explaining the motor driving apparatus and the control method according to the present embodiment.
  • FIG. 32 illustrates a case where phase correction is performed in multiple steps as in the fifteenth embodiment. Since the phase difference is optimal at the timing of the correction reflection 3, the phase correction value calculation unit 2402 does not calculate the subsequent correction value, maintains the correction value calculated at the timing of the correction reflection 3, and uses this correction value. Output. However, when a change in the torque command occurs, that is, when the torque signal 1201 changes, the correction value is calculated again.
  • This disclosure is useful for motor driving devices and control methods because the motor can be driven with high efficiency without depending on the motor characteristics.
  • Motor current phase signal 102 1302 Motor current phase detection unit 103, 1303 Motor phase signal 104, 1304 Motor phase detection unit 105, 1001, 1202, 1305, 2201, 4022 Phase correction value calculation unit 106, 1306 Motor applied voltage Calculation unit 107, 1307 Motor applied voltage signal 301, 1501 Phase difference calculation unit 302, 1502 Phase difference division unit 401, 1601 Phase difference information detection unit 402, 1602 Phase difference information accumulation unit 1201 Torque signal 1308 Corrected motor phase information

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

モータの駆動装置は、モータ電流位相を検出し、当該検出結果をモータ電流位相情報として出力するモータ電流位相検出部(102)と、モータ位相を検出し、当該検出結果をモータ位相情報として出力するモータ位相検出部(104)と、モータ電流位相情報とモータ位相情報との差分に基づいて補正値を演算し、当該演算結果を補正情報として出力する位相補正値演算部(105)と、補正情報とモータ位相情報とを入力として、モータに印加される電圧を示すモータ印加電圧を演算し、当該演算結果を、位相補正されたモータ印加電圧信号(107)として出力するモータ印加電圧演算部(106)とを備えている。

Description

モータ駆動装置および制御方法
 本開示は、モータ駆動装置および制御方法に関し、特に、直流ブラシレスモータの駆動制御に関する。
 直流ブラシレスモータの駆動において、モータを高速に駆動させる際、モータに発生する誘起電圧などにより、モータ位相とモータ電流の位相変化が起こり、駆動は出来てもその効率が低下する。この問題に対して、使用するモータの特性を事前に記録し、駆動周波数に応じて位相を補正し、効率を改善する駆動装置が知られている。
 図33は、従来の実施形態の構成を示すブロック図である。図33のモータ駆動装置または制御方法は、補正値選択信号2501を入力として、あらかじめ使用するモータ特性に合わせた補正値を記録している補正値テーブルから補正値を出力する補正値テーブル2502と、モータ位相信号2503を入力としモータ駆動周期を出力するモータ位相を検出する機能(モータ位相検出部2504)と、前記補正値と前記モータ駆動周期を入力として、モータ印加電圧信号2506を演算する機能(モータ印加電圧演算部2505)とを有する。
 図34は、従来の実施形態のモータ駆動装置または制御方法のタイミングチャートである。このタイミングチャートでは、3相ブラシレスモータを例示している。なお、モータを駆動する出力端子をU,V,Wとし、それぞれに対応したホール信号をHU,HV,HWとしている。位相補正をしない場合、図34(A)のように、モータ電流位相は、ホール信号に比較して遅延する。位相補正を行う場合、図34(B)のように、モータ電流位相は、ホール信号と適切な位相差を保つ。
特開2008-125246号公報
 しかし、このような位相の補正は、事前に記録するモータの特性を、特定のモータ定数に合わせている為、異なるモータ定数を持つモータに同一のモータ駆動装置または制御方法を適用すると、駆動の効率が低下し、汎用性に欠ける。
 かかる点に鑑みて、本開示は、駆動の効率を高く維持することができるとともに、モータ特性に依存しない汎用性のあるモータ駆動装置および制御方法を提供することを課題とする。
 上記課題を解決するため本開示によって次のような解決手段を講じた。すなわち、モータの駆動装置は、モータ電流位相信号を入力としてモータ電流位相を検出し、当該検出結果をモータ電流位相情報として出力するモータ電流位相検出部と、モータ位相信号を入力としてモータ位相を検出し、当該検出結果をモータ位相情報として出力するモータ位相検出部と、前記モータ電流位相情報と前記モータ位相情報との差分に基づいて補正値を演算し、当該演算結果を補正情報として出力する位相補正値演算部と、前記補正情報と前記モータ位相情報とを入力として、前記モータに印加される電圧を示すモータ印加電圧を演算し、当該演算結果を、位相補正されたモータ印加電圧信号として出力するモータ印加電圧演算部とを備えている。
 本開示によれば、モータ特性によらずモータ位相とモータ電流位相を一定に保つことが出来る。したがって、駆動が高効率でモータ特性に依存しない汎用性のあるモータ駆動装置および制御方法を実現することが可能になる。
図1は、実施形態1によるモータ駆動装置および制御方法を説明するためのブロック図である。 図2は、実施形態2によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図3は、実施形態3によるモータ駆動装置および制御方法を説明するためのブロック図である。 図4は、実施形態3によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図5は、実施形態4によるモータ駆動装置および制御方法を説明するためのブロック図である。 図6は、実施形態4によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図7は、実施形態5によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図8は、実施形態6によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図9は、実施形態7によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図10は、実施形態8によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図11は、実施形態9によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図12は、実施形態10によるモータ駆動装置および制御方法を説明するためのブロック図である。 図13は、実施形態10によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図14は、実施形態11によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図15は、実施形態12によるモータ駆動装置および制御方法を説明するためのブロック図である。 図16は、実施形態12によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図17は、実施形態13によるモータ駆動装置および制御方法を説明するためのブロック図である。 図18は、実施形態14によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図19は、実施形態15によるモータ駆動装置および制御方法を説明するためのブロック図である。 図20は、実施形態15によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図21は、実施形態16によるモータ駆動装置および制御方法を説明するためのブロック図である。 図22は、実施形態16によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図23は、実施形態17によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図24は、実施形態18によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図25は、実施形態19によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図26は、実施形態20によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図27は、実施形態21によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図28は、実施形態22によるモータ駆動装置および制御方法を説明するためのブロック図である。 図29は、実施形態22によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図30は、実施形態23によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図31は、実施形態24によるモータ駆動装置および制御方法を説明するためのブロック図である。 図32は、実施形態24によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。 図33は、従来の実施形態によるモータ駆動装置および制御方法を説明するためのブロック図である。 図34は、従来の実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。
 以下、本開示の実施形態について、図面を参照しながら説明する。モータ駆動装置および制御方法の説明において、本開示と関係ない部分については、一部省略する場合がある。
 また、以後の実施形態に係るタイミングチャートにおいて、3相ブラシレスモータのタイミングチャートを例示している。なお、モータを駆動する出力端子をU,V,Wとし、それぞれに対応したホール信号をHU,HV,HWとしている。
 ただし、本開示は3相ブラシレスモータに限定されるものではない。アクチュエーターなどにも適用できる。また、モータ位相信号として、ホール信号を使用した場合を例示しているが、もちろんモータ位相信号をホール信号に限定するものではない。モータの逆起電圧などモータ位相を検出可能なものであればよい。以上のことは以後の実施形態において同様である。
 <実施形態1>
 図1は、実施形態1によるモータ駆動装置および制御方法を説明するためのブロック図である。図1のモータ駆動装置は、入力されたモータ電流位相信号101を受け、モータ電流位相を検出し、この検出結果をモータ電流位相情報として出力するモータ電流位相検出部102と、入力されたモータ位相信号103を受け、モータ位相を検出し、検出結果としてのモータ位相情報を出力するモータ位相検出部104と、モータ電流位相情報およびモータ位相情報の差分に基づいて位相を補正するための補正値を演算し、演算結果としての補正情報を出力する位相補正値演算部105と、補正情報とモータ位相情報とを受け、これらに基づいてモータに印加すべき電圧を示すモータ印加電圧を演算し、演算結果としての、位相補正されたモータ印加電圧信号107を出力するモータ印加電圧演算部106とを有する。
 図1のモータ駆動装置では、例えば、以下のような制御動作により、モータの位相補正が行われる。
 モータ電流位相信号101がモータ電流位相検出部102に入力されると、モータ電流位相検出部102はモータ電流位相情報を出力する。また、モータ位相信号103がモータ位相検出部104に入力されると、モータ位相検出部104はモータ位相情報を出力する。位相補正値演算部105は、モータ電流位相情報とモータ位相情報とを比較し、モータ位相情報に対してモータ電流が適切な位相差を保つような補正値を算出して、補正情報として出力する。補正値としての補正情報およびモータ位相情報がモータ印加電圧演算部106に入力されると、モータ印加電圧演算部106は、モータに印加されるべき、補正されたモータ印加電圧信号107を生成する。そして、モータ印加電圧信号107は、例えば、直流ブラシレスモータとしての3相ブラシレスモータに供給される。
 このようにモータ駆動装置を制御することで、モータ電流位相とモータ位相は、モータの駆動が高効率となる適切な位相差に保たれる。また、モータ電流位相およびモータ位相を都度検出して補正することが可能であるため、モータ特性に依存せず汎用性が高い。
 <実施形態2>
 本実施形態に係るモータ駆動装置において、図1に示すモータ印加電圧演算部106は、任意の離散的なモータの位相毎に補正されたモータ位相情報を更新し、モータに印加するモータ印加電圧信号107を生成してもよい。
 図2は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。図2では、ホール信号HVの立下りエッジのタイミング、つまり電気角360度毎に、補正値を出力印加電圧に反映している。
 なお、図2では、電気角360度をモータの一定位相としている例を示しているが、もちろん、電気角360度に限定するものではなく、任意の位相で補正値を反映してよい。
 このように構成することで、本実施形態では、モータの一定位相毎にモータ電流位相とモータ位相とを適切な位相差に保つことができる。
 <実施形態3>
 図3は、実施形態3によるモータ駆動装置および制御方法を説明するためのブロック図である。本実施形態において、位相補正値演算部105は、位相差演算部301と位相差分割部302とを有する。
 位相差演算部301は、モータ電流位相情報とモータ位相情報との差分から補正値を演算し、その結果を補正情報である位相差情報として出力する。つまり、位相差演算部301は、モータ電流位相情報とモータ位相情報との位相差を演算して出力する。
 位相差分割部302は、位相差演算部301から出力された位相差情報を分割することによって、モータ電流位相情報とモータ位相情報との位相差を分割する。そして、位相を補正する場合、分割された位相差情報、つまり分割された補正値を複数回に分けて出力する。
 図4は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。本実施形態では、例えば、検出された位相差を、ホール信号HU,HV,HWの立下りエッジのタイミングで3分割して補正する場合を示している。
 なお、図4では、分割する補正値に重み付けなどを行っていない例を示しているが、もちろん、補正値を等分割してもよいし、分割した補正値がそれぞれ異なっていてもよい。つまり、分割した補正値を任意に設定してもよい。また、補正値は3分割されているが、もちろん、3分割に限定するものではなく、任意の数に分割してもよい。そして、位相差を補正するタイミングもホール信号HU,HV,HWの立下りエッジに限るものではなく、任意のタイミングに設定してもよい。
 このように構成することで、本実施形態では、複数回に分けて補正を行うように駆動制御しながら、モータ電流位相とモータ位相とを適切な位相差に保つことができる。
 <実施形態4>
 図5は、実施形態4によるモータ駆動装置および制御方法を説明するためのブロック図である。本実施形態において、位相補正値演算部105は、位相差情報検出部401と位相差情報累積部402とを有する。
 位相差情報検出部401は、モータ電流位相情報とモータ位相情報との差分から進相、または遅相の位相差を検出し、検出結果として位相差情報を出力する。
 位相差情報累積部402は、位相差情報検出部401から出力された位相差情報を累積して補正値を演算して保持し、補正情報として当該補正値を出力する。
 図6は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。本実施形態では、ホール信号HU,HV,HWのそれぞれの立下りエッジのタイミングで、ホール信号とモータ電流が適切な位相差に収束するように漸近的に補正している。ただし、位相差情報は進相または遅相についての位相差であるため、一定の振幅をもって収束している。
 なお、図6では、漸近する補正値に重み付けを行っている例を示しているが、もちろん、漸近する補正値は、それぞれ等しくても異なっていてもよく、任意に設定すればよい。また、位相差を補正するタイミングはホール信号HU,HV,HWの立下りエッジに限るものではなく、任意のタイミングに設定してもよい。
 このように構成することで、本実施形態では、漸近的に補正を行うように駆動制御しながら、モータ電流位相とモータ位相とを適切な位相差に保つことができる。
 <実施形態5>
 本実施形態では、図5における位相補正値演算部105の位相差情報検出部401は、モータ電流位相情報とモータ位相情報との差分から進相、遅相、または維持の位相差を検出し、検出結果として位相差情報を出力するものであってもよい。
 図7は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。本実施形態では、ホール信号HU,HV,HWのそれぞれの立下りエッジのタイミングで、ホール信号とモータ電流とが適切な位相差に収束するように漸近的に補正している。適切な位相差に収束した後は、位相差情報検出部401から維持信号が出力されることによって、適切な位相差が維持される。
 なお、図7では、漸近する補正値に重み付けを行っている例を示しているが、もちろん、漸近する補正値は、それぞれ等しくても異なっていてもよく、任意に設定すればよい。また、位相差を補正するタイミングはホール信号HU,HV,HWの立下りエッジに限るものではなく、任意のタイミングに設定してもよい。
 このように構成することで、本実施形態では、漸近的に補正を行うように駆動制御しながら、モータ電流位相とモータ位相とを適切な位相差に保つことができる。
 <実施形態6>
 本実施形態に係るモータ駆動装置において、図1に示す位相補正値演算部105は、任意の離散的なタイミングで、モータ電流位相情報を取り込んでもよい。
 図8は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。図8では、モータ電流IUの立下りエッジ毎に、モータ電流位相情報を取り込む場合を示している。
 なお、図8では、モータ電流IUの立下りエッジのタイミングで、モータ電流位相情報を取り込む例を示しているが、もちろん、モータ電流IUの立下りエッジに限定するものではなく、任意の離散的なタイミングでモータ電流位相情報を取り込むようにしてもよい。
 このように構成することで、本実施形態では、離散的にモータ電流位相情報を更新することが可能となり、モータ電流位相とモータ位相とを適切な位相差に保つことができる。
 <実施形態7>
 本実施形態に係るモータ駆動装置において、図1に示す位相補正値演算部105は、モータ電流位相情報を取り込むタイミングを、モータ位相情報に基づいて決定してもよい。
 図9は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。図9では、ホール信号HUの立上りタイミングに対して、電気角150度後のタイミングで、モータ電流IUのモータ電流位相情報を取り込む例を示している。
 なお、図9では、ホール信号HUとモータ電流IUとの組み合わせを例示したが、もちろん、この組み合わせに限定するものではなく、任意のモータ電流相およびホール信号の組み合わせ、あるいは複数のモータ電流相およびホール信号の組み合わせで、タイミングを設定してもよい。
 このように構成することで、本実施形態では、モータ位相情報に基づいて決定されるタイミングによって、モータ電流位相情報の更新が可能であり、モータ電流位相とモータ位相とを適切な位相差に保つことができる。
 <実施形態8>
 本実施形態に係るモータ駆動装置において、図1に示すモータ位相検出部104は、過去のモータの位相に基づいて、現在のモータ位相情報を出力してもよい。
 図10は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。図10では、1回目のホール信号HUの立下りエッジ間の周期と、2回目のホール信号HUの立下りエッジ間の周期とが同様になるように、ホール信号HUの立下りエッジのタイミングでモータ位相情報を更新する例を示している。
 なお、図10では、ホール信号HUを用いて、直前の周期から次回のモータ位相情報を更新するようにしたが、もちろん、直前の周期である必要はない。例えば、過去数回の周期を平均するなどしてもよい。また、使用するホール信号は、任意の信号あるいは任意の複数の信号を用いてもよい。例えば、ホール信号HU,HVの立下りエッジ間でモータ位相情報を更新するなどしてもよい。さらに、モータ位相情報の更新タイミングも同様に任意のタイミングであってもよい。
 <実施形態9>
 本実施形態に係るモータ駆動装置において、図1に示す位相補正値演算部105は、1回の位相補正に対して、モータ電流位相情報とモータ位相情報の差分を複数回検出し、補正値の演算を行ってもよい。
 図11は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。図11では、モータ電流IVの立上りエッジおよび立下りエッジにおけるモータ電流位相情報とホール信号HUの立上りエッジにおけるモータ位相情報とを比較し、ホール信号HUの立下りエッジのタイミングで補正値を反映する例を示している。
 なお、図11では、ホール信号HUおよびモータ電流IVを用いて、ホール信号HUの1周期内で補正値を演算したが、もちろん、使用するホール信号およびモータ電流は任意の信号あるいは任意の複数の信号を用いてもよい。また、補正値の演算も1周期内に限定するものではなく、複数周期または1周期未満ごとに補正値を演算してもよい。さらに、モータ位相情報およびモータ電流位相情報も、同様に任意のタイミングで更新するようにしてよい。
 <実施形態10>
 図12は、実施形態10によるモータ駆動装置および制御方法を説明するためのブロック図である。本実施形態のモータ駆動装置において、位相補正値演算部1001は、モータ電流位相とモータ位相との位相差が所定値になったとき、以後はその位相差を維持するように構成されている。ここで、所定値とは、モータ電流位相情報およびモータ位相情報が、例えば、モータの駆動における適切な位相差である。
 図13は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。図13では、実施形態3のように、複数回に分けて位相の補正を行っている場合を例示している。補正反映3のタイミングで位相差が最適となるため、位相補正値演算部1001は、以後の補正値を演算せず、補正反映3のタイミングで演算した補正値を維持し、この補正値を出力し続ける。
 なお、図13では、実施形態3で説明した場合と同様の場合を例示したが、もちろん、これに限定されるものではない。
 <実施形態11>
 本実施形態に係るモータ駆動装置において、位相補正値演算部1001は、モータの駆動周期が変化した場合、補正を再度行うようにしてもよい。
 図14は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。図14では、実施形態3のように、複数回に分けて位相の補正を行っている場合を例示している。補正反映3のタイミングで位相差が最適となるため、位相補正値演算部1001は、以後の補正値を演算せず、補正反映3のタイミングで演算した補正値を維持し、この補正値を出力する。このとき、モータの駆動周期が変化した場合、補正値を再度演算する。そして、位相差が最適となると、位相補正値演算部1001は、そのときの補正値を維持しながら出力する。
 なお、図14では、実施形態3で説明した場合と同様の場合を例示したが、もちろん、これに限定されるものではない。
 <実施形態12>
 図15は、実施形態12によるモータ駆動装置および制御方法を説明するためのブロック図である。本実施形態のモータ駆動装置において、位相補正値演算部1202は、モータへ印加するトルクを制御するためのトルク信号1201を受け、トルク信号1201が変化した場合、補正を再度行うように構成されている。
 図16は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。図16では、実施形態3のように、複数回に分けて位相の補正を行っている場合を例示している。補正反映3のタイミングで、位相差が最適となるため、位相補正値演算部1202は、以後の補正値を演算せず、補正反映3のタイミングで演算した補正値を維持し、この補正値を出力する。このとき、トルク指令の変化が発生したとき、つまりトルク信号1201が変化したとき、補正値を再度演算する。
 なお、図16では、実施形態3で説明した場合と同様の場合を例示したが、もちろん、これに限定されるものではない。
 <実施形態13>
 図17は、実施形態13によるモータ駆動装置および制御方法を説明するためのブロック図である。図17のモータ駆動装置は、入力されたモータ電流位相信号1301を受け、モータ電流位相を検出し、この検出結果をモータ電流位相情報として出力するモータ電流位相検出部1302と、入力されたモータ位相信号1303を受け、モータ位相を検出し、検出結果としてのモータ位相情報を出力するモータ位相検出部1304と、モータ電流位相情報および補正されたモータ位相情報の差分に基づいてモータの位相を補正するための補正値を演算し、演算結果としての補正情報を出力する位相補正値演算部1305と、補正情報とモータ位相情報とを受け、これらに基づいてモータに印加すべき電圧を示すモータ印加電圧を演算し、演算結果としての、位相補正されたモータ印加電圧信号1307、および補正されたモータ位相情報1308を出力するモータ印加電圧演算部1306とを有する。
 図17のモータ駆動装置では、例えば、以下のような制御動作により、モータの位相補正が行われる。
 モータ電流位相信号1301がモータ電流位相検出部1302に入力されると、モータ電流位相検出部1302はモータ電流位相情報を出力する。また、モータ位相信号1303がモータ位相検出部1304に入力されると、モータ位相検出部1304はモータ位相情報を出力する。位相補正値演算部1305は、モータ電流位相情報と補正されたモータ位相情報1308とを比較し、補正されたモータ位相情報1308に対してモータ電流が適切な位相差を保つような補正値を算出して出力する。補正値としての補正情報およびモータ位相情報がモータ印加電圧演算部1306に入力されると、モータ印加電圧演算部1306は、補正されたモータ位相情報1308、およびモータに印加すべき電圧を示すモータ印加電圧を演算し、位相補正されたモータ印加電圧信号1307を生成する。そして、モータ印加電圧信号1307が例えば3相ブラシレスモータに供給される。
 このようにモータ駆動装置を制御することで、モータ電流位相と補正されたモータ位相との位相差が適切となるように保たれるため、モータ位相信号の精度によらず、モータ駆動装置を高効率で駆動することができる。また、モータ電流位相と補正されたモータ位相との位相差が適切に保たれるため、モータ特性に依存せず汎用性が高い。
 <実施形態14>
 本実施形態に係るモータ駆動装置において、図17に示すモータ印加電圧演算部1306は、任意の離散的なモータの位相毎に補正されたモータ位相情報を更新し、モータに印加するモータ印加電圧信号1307を生成してもよい。
 図18は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。図18では、補正されたモータ位相信号HVの立下りエッジのタイミング、つまり電気角360度毎に、補正値を出力印加電圧に反映している。
 なお、図18では、電気角360度をモータの一定位相としている例を示しているが、もちろん電気角360度に限定するものではなく、任意の位相で補正値を反映してよい。
 このように構成することで、本実施形態では、モータの一定位相毎にモータ電流位相とモータ位相とを適切な位相差に保つことができる。
 <実施形態15>
 図19は、実施形態15によるモータ駆動装置および制御方法を説明するためのブロック図である。本実施形態において、位相補正値演算部1305は、位相差演算部1501と位相差分割部1502とを有する。
 位相差演算部1501は、モータ電流位相情報と補正されたモータ位相情報1308との差分から補正値を演算し、演算結果を補正情報である位相差情報として出力する。
 位相差分割部1502は、位相差演算部1501から出力された位相差情報を分割することによって、モータ電流位相情報と補正されたモータ位相情報1308との位相差を分割する。そして、位相を補正する場合、分割された位相差情報、つまり分割された補正値を複数回に分けて出力する。
 図20は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。本実施形態では、例えば、検出された位相差を、補正されたモータ位相信号HU,HV,HWの立下りエッジのタイミングで3分割して補正する場合を例示している。
 なお、図20では、分割する補正値に重み付けなどを行っていない例を示しているが、もちろん、補正値を等分割してもよいし、分割した補正値がそれぞれ異なっていてもよい。つまり、分割した補正値を任意に設定してもよい。また、補正値は3分割されているが、もちろん、3分割に限定するものではなく、任意の数に分割してもよい。そして、位相差を補正するタイミングも、補正されたモータ位相信号HU,HV,HWの立下りエッジに限るものではなく、任意のタイミングに設定してもよい。
 このように構成することで、本実施形態では、複数回に分けて補正を行うように駆動制御しながら、モータ電流位相とモータ位相とを適切な位相差に保つことができる。
 <実施形態16>
 図21は、実施形態16によるモータ駆動装置および制御方法を説明するためのブロック図である。本実施形態において、位相補正値演算部1305は、位相差情報検出部1601と位相差情報累積部1602とを有する。
 位相差情報検出部1601は、モータ電流位相情報と補正されたモータ位相情報1308との差分から進相、または遅相の位相差を検出し、検出結果として位相差情報を出力する。
 位相差情報累積部1602は、位相差情報検出部1601から出力された位相差情報を累積して補正値を演算して保持し、補正情報として当該補正値を出力する。
 図22は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。本実施形態では、補正されたモータ位相信号HU,HV,HWのそれぞれの立下りエッジのタイミングで、補正されたモータ位相信号とモータ電流が適切な位相差に収束するように漸近的に補正している。ただし、位相差情報が進相または遅相についての位相差であるため、一定の振幅をもって収束している。
 なお、図22では、漸近する補正値に重み付けを行っている例を示しているが、もちろん、漸近する補正値は、それぞれ等しくても異なっていてもよく、任意に設定すればよい。また、位相差を補正するタイミングは補正されたモータ位相信号HU,HV,HWの立下りエッジに限るものではなく、任意のタイミングに設定してよい。
 このように構成することで、本実施形態では、漸近的に補正を行うように駆動制御しながら、モータ電流位相とモータ位相とを適切な位相差に保つことができる。
 <実施形態17>
 本実施形態では、図21における位相補正値演算部1305の位相差情報検出部1601は、モータ電流位相情報とモータ位相情報との差分から進相、遅相、または維持の位相差を検出し、検出結果として位相差情報を出力するものであってもよい。
 図23は、本実施形態によるモータ駆動装置および制御方法のタイミングチャートである。本実施形態では、補正されたモータ位相信号HU,HV,HWのそれぞれの立下りエッジのタイミングで、補正されたモータ位相信号とモータ電流とが適切な位相差に収束するように漸近的に補正している。適切な位相差に収束した後は、位相差情報検出部1601から維持信号が出力されることによって、適切な位相差が維持される。
 なお、図23では、漸近する補正値に重み付けを行っている例を示しているが、もちろん、漸近する補正値は、それぞれ等しくても異なっていてもよく、任意に設定すればよい。また、位相差を補正するタイミングは、補正されたモータ位相信号HU,HV,HWの立下りエッジに限るものではなく、任意のタイミングに設定してよい。
 このように構成することで、本実施形態では、漸近的に補正を行うように駆動制御しながら、モータ電流位相とモータ位相とを適切な位相差に保つことができる。
 <実施形態18>
 本実施形態に係るモータ駆動装置において、図17に示す位相補正値演算部1305は、任意の離散的なタイミングで、モータ電流位相情報を取り込んでもよい。
 図24は、本実施形態によるモータ駆動装置および制御方法のタイミングチャートである。図24では、モータ電流IUの立下りエッジ毎に、モータ電流位相情報を取り込む場合を示している。
 なお、図24では、モータ電流IUの立下りエッジのタイミングで、モータ電流位相情報を取り込む例を示しているが、もちろん、モータ電流IUの立下りエッジに限定するものではなく、任意の離散的なタイミングでモータ電流位相情報の取り込むようにしてもよい。
 このように構成することで、本実施形態では、離散的にモータ電流位相情報を更新することが可能となり、モータ電流位相とモータ位相とを適切な位相差に保つことができる。
 <実施形態19>
 本実施形態に係るモータ駆動装置において、図17に示す位相補正値演算部1305は、モータ電流位相情報を取り込むタイミングを、補正されたモータ位相情報に基づいて決定してもよい。
 図25は、本実施形態によるモータ駆動装置および制御方法のタイミングチャートである。図25では、補正されたモータ位相信号HUの立上りタイミングに対して、電気角150度後のタイミングで、モータ電流IUのモータ電流位相情報を取り込む例を示している。
 なお、図25では、補正されたモータ位相信号HUとモータ電流IUとの組み合わせを例示したが、もちろん、この組み合わせに限定するものではなく、任意のモータ電流相および補正されたモータ位相信号の組み合わせ、あるいは複数のモータ電流相および補正されたモータ位相信号の組み合わせで、タイミングを設定してもよい。
 このように構成することで、本実施形態では、補正されたモータ位相情報に基づいて決定されるタイミングによって、モータ電流位相情報の更新が可能であり、モータ電流位相とモータ位相とを適切な位相差に保つことができる。
 <実施形態20>
 本実施形態に係るモータ駆動装置において、図17に示すモータ位相検出部1304は、過去のモータの位相に基づいて、現在のモータ位相情報を出力してもよい。
 図26は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。図26では、1回目の補正されたモータ位相信号HUの立下りエッジ間の周期と、2回目の補正されたモータ位相信号HUの立下りエッジ間の周期は同様になるように、補正されたモータ位相信号HUの立下りエッジのタイミングで、モータ位相情報を更新する。
 なお、図26では、補正されたモータ位相信号HUを用いて、直前の周期から次回のモータ位相情報を更新したが、もちろん、直前の周期である必要はない。例えば、過去数回の周期を平均するなどしてもよい。また、使用する、補正されたモータ位相信号は、任意の信号あるいは任意の複数の信号を用いてもよい。例えば、補正されたモータ位相信号HU,HVの立下りエッジ間でモータ位相情報を更新するなどしてもよい。さらに、モータ位相情報の更新タイミングも同様に任意のタイミングであってもよい。
 <実施形態21>
 本実施形態に係るモータ駆動装置において、図17に示す位相補正値演算部1305は、1回の位相補正に対して、モータ電流位相情報と補正されたモータ位相情報の差分を複数回検出し、補正値の演算を行ってもよい。
 図27は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。図27では、モータ電流IVの立上りエッジおよび立下りエッジにおけるモータ電流位相情報と補正されたモータ位相信号HUの立上りエッジにおけるモータ位相情報とを比較し、補正されたモータ位相信号HUの立下りエッジのタイミングで補正値を反映する例を示している。
 なお、図27では、補正されたモータ位相信号HUおよびモータ電流IVを用いて、補正されたモータ位相信号HUの1周期内で補正値を演算したが、もちろん、使用する、補正されたモータ位相信号およびモータ電流は任意の信号あるいは任意の複数の信号を用いてもよい。また、補正値の演算も1周期内に限定するものではなく、複数周期または1周期未満ごとに補正値を演算してもよい。さらに、モータ位相情報およびモータ電流位相情報も、同様に任意のタイミングで更新するようにしてもよい。
 <実施形態22>
 図28は、実施形態22によるモータ駆動装置および制御方法を説明するためのブロック図である。本実施形態のモータ駆動装置において、位相補正値演算部2201は、モータ電流位相と補正されたモータ位相との位相差が所定値になったとき、以後はその位相差を維持するように構成されている。ここで、所定値とは、モータ電流位相情報およびモータ位相情報が、例えば、モータの駆動における適切な位相差である。
 図29は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。図29では、実施形態15のように、複数回に分けて位相の補正を行っている場合を例示している。補正反映3のタイミングで位相差が最適となるため、位相補正値演算部2201は、以後の補正値を演算せず、補正反映3のタイミングで演算した補正値を維持し、この補正値を出力し続ける。
 なお、図29では、実施形態15で説明した場合と同様の場合を例示したが、もちろん、これに限定されるものではない。
 <実施形態23>
 本実施形態に係るモータ駆動装置において、図28に示す位相補正値演算部2201は、モータの駆動周期が変化した場合、補正を再度行うようにしてもよい。
 図30は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。図30では、実施形態15のように、複数回に分けて位相の補正を行っている場合を示している。補正反映3のタイミングで位相差が最適となるため、位相補正値演算部2201は、以後の補正値を演算せず、補正反映3のタイミングで演算した補正値を維持し、この補正値を出力する。このとき、モータの駆動周期が変化した場合、位相補正値演算部2201は、補正値を再度演算する。
 なお、図30では、実施形態15で説明した場合と同様の場合を例示したが、もちろん、これに限定されるものではない。
 <実施形態24>
 図31は、実施形態24によるモータ駆動装置および制御方法を説明するためのブロック図である。本実施形態のモータ駆動装置において、位相補正値演算部2402は、モータへ印加するトルクを制御するためのトルク信号1201を受け、トルク信号1201が変化した場合、補正を再度行うように構成されている。
 図32は、本実施形態によるモータ駆動装置および制御方法を説明するためのタイミングチャートである。図32では、実施形態15のように、複数回に分けて位相の補正を行っている場合を例示している。補正反映3のタイミングで、位相差が最適となるため、位相補正値演算部2402は、以後の補正値を演算せず、補正反映3のタイミングで演算した補正値を維持し、この補正値を出力する。しかし、トルク指令の変化が発生したとき、つまりトルク信号1201が変化したとき、補正値を再度演算する。
 なお、図32では、実施形態15で説明した場合と同様の場合を例示したが、もちろん、これに限定されるものではない。
 本開示は、モータ特性に依存せず、高効率にモータを駆動することができるので、モータ駆動装置および制御方法などについて有用である。
 101,1301           モータ電流位相信号
 102,1302           モータ電流位相検出部
 103,1303           モータ位相信号
 104,1304           モータ位相検出部
 105,1001,1202,1305,2201,2402 位相補正値演算部
 106,1306           モータ印加電圧演算部
 107,1307           モータ印加電圧信号
 301,1501           位相差演算部
 302,1502           位相差分割部
 401,1601           位相差情報検出部
 402,1602           位相差情報累積部
 1201               トルク信号
 1308               補正されたモータ位相情報

Claims (15)

  1.  モータの駆動装置であって、
     モータ電流位相信号を入力としてモータ電流位相を検出し、当該検出結果をモータ電流位相情報として出力するモータ電流位相検出部と、
     モータ位相信号を入力としてモータ位相を検出し、当該検出結果をモータ位相情報として出力するモータ位相検出部と、
     前記モータ電流位相情報と前記モータ位相情報との差分に基づいて補正値を演算し、当該演算結果を補正情報として出力する位相補正値演算部と、
     前記補正情報と前記モータ位相情報とを入力として、前記モータに印加される電圧を示すモータ印加電圧を演算し、当該演算結果を、位相補正されたモータ印加電圧信号として出力するモータ印加電圧演算部とを備えている
    ことを特徴とするモータ駆動装置。
  2.  請求項1のモータ駆動装置において、
     前記位相補正値演算部は、前記モータ電流位相情報と補正されたモータ位相情報との差分に基づいて前記補正値を演算し、当該演算結果を補正情報として出力し、
     前記モータ印加電圧演算部は、前記補正情報と前記モータ位相情報とを入力として、前記補正されたモータ位相情報を出力する一方、前記モータに印加される電圧を示す前記モータ印加電圧を演算し、当該演算結果を、位相補正された前記モータ印加電圧信号として出力する
    ことを特徴とするモータ駆動装置。
  3.  請求項1または2のいずれかのモータ駆動装置において、
     前記モータ印加電圧演算部は、任意の離散的な前記モータの位相毎に位相を補正する
    ことを特徴とするモータ駆動装置。
  4.  請求項2のモータ駆動装置において、
     前記位相補正値演算部は、
      前記モータ電流位相情報と前記モータ位相情報との差分に基づいて前記補正値を演算し、当該演算結果を前記補正情報として出力する位相差演算部と、
      前記補正情報を分割し、位相を補正する際に、当該分割された補正情報を複数回に分けて出力する位相差分割部とを有する
    ことを特徴とするモータ駆動装置。
  5.  請求項2のモータ駆動装置において、
     前記位相補正値演算部は、
      前記モータ電流位相情報と前記モータ位相情報との差分に基づいて、進相または遅相の位相差を検出し、当該検出結果を位相差情報として出力する位相差情報検出部と、
      前記位相差情報を入力として、当該位相差情報を累積して前記補正値を演算し、当該演算結果を前記補正情報として出力する位相差情報累積部とを有する
    ことを特徴とするモータ駆動装置。
  6.  請求項1または2のいずれかのモータ駆動装置において、
     前記位相補正値演算部は、
      前記モータ電流位相情報と前記モータ位相情報との差分に基づいて、進相、遅相または維持の位相差を検出し、当該検出結果を位相差情報として出力する位相差情報検出部と、
      前記位相差情報を入力として、当該位相差情報を累積して前記補正値を演算し、当該演算結果を前記補正情報として出力する位相差情報累積部とを有する
    ことを特徴とするモータ駆動装置。
  7.  請求項1または2のいずれかのモータ駆動装置において、
     前記位相補正値演算部は、任意の離散的なタイミングで、前記モータ電流位相情報を取り込む
    ことを特徴とするモータ駆動装置。
  8.  請求項1または2のいずれかのモータ駆動装置において、
     前記位相補正値演算部は、前記モータ位相情報に基づいて、前記モータ電流位相情報を取り込むタイミングを決定する
    ことを特徴とするモータ駆動装置。
  9.  請求項1または2のいずれかのモータ駆動装置において、
     前記モータ位相検出部は、前記モータの過去の位相に基づく前記モータ位相情報を出力する
    ことを特徴とするモータ駆動装置。
  10.  請求項2のモータ駆動装置において、
     前記位相補正値演算部は、1回の位相補正に対して、前記モータ電流位相情報および前記モータ位相情報の差分検出を複数回行う
    ことを特徴とするモータ駆動装置。
  11.  請求項2のモータ駆動装置において、
     前記位相補正値演算部は、前記モータ電流位相情報および前記モータ位相情報の位相差が所定値になったとき、当該位相差を維持する
    ことを特徴とするモータ駆動装置。
  12.  請求項2のモータ駆動装置において、
     前記位相補正値演算部は、前記モータの駆動周期が変化した場合、前記補正値を再度演算する
    ことを特徴とするモータ駆動装置。
  13.  請求項2のモータ駆動装置において、
     前記位相補正値演算部は、前記モータへ印加するトルクを制御するトルク信号を入力として、当該入力されるトルク信号が変化した場合、前記補正値を再度演算する
    ことを特徴とするモータ駆動装置。
  14.  モータの制御方法であって、
     モータ電流位相信号を入力としてモータ電流位相を検出し、当該検出結果をモータ電流位相情報として出力する第1のステップと、
     モータ位相信号を入力としてモータ位相を検出し、当該検出結果をモータ位相情報として出力する第2のステップと、
     前記モータ電流位相情報と前記モータ位相情報との差分に基づいて補正値を演算し、当該演算結果を補正情報として出力する第3のステップと、
     前記補正情報と前記モータ位相情報とを入力として、前記モータに印加される電圧を示すモータ印加電圧を演算し、当該演算結果を、位相補正されたモータ印加電圧信号として出力する第4のステップとを備えている
    ことを特徴とするモータ制御方法。
  15.  請求項14のモータ制御方法において、
     前記第3のステップは、前記モータ電流位相情報と補正されたモータ位相情報との差分に基づいて補正値を演算し、当該演算結果を補正情報として出力し、
     前記第4のステップは、前記補正情報と前記モータ位相情報とを入力として、前記補正されたモータ位相情報を出力する一方、前記モータに印加される電圧を示すモータ印加電圧を演算し、当該演算結果を、位相補正されたモータ印加電圧信号として出力する
    ことを特徴とするモータ制御方法。
     
PCT/JP2014/003831 2013-11-13 2014-07-18 モータ駆動装置および制御方法 WO2015072048A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015547603A JP6312034B2 (ja) 2013-11-13 2014-07-18 モータ駆動装置および制御方法
US15/152,475 US9793837B2 (en) 2013-11-13 2016-05-11 Motor driver and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-235053 2013-11-13
JP2013235053 2013-11-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/152,475 Continuation US9793837B2 (en) 2013-11-13 2016-05-11 Motor driver and control method

Publications (1)

Publication Number Publication Date
WO2015072048A1 true WO2015072048A1 (ja) 2015-05-21

Family

ID=53057006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003831 WO2015072048A1 (ja) 2013-11-13 2014-07-18 モータ駆動装置および制御方法

Country Status (3)

Country Link
US (1) US9793837B2 (ja)
JP (1) JP6312034B2 (ja)
WO (1) WO2015072048A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6695247B2 (ja) * 2016-09-23 2020-05-20 株式会社ミツバ モータ制御装置及びモータ制御装置の制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336876A (ja) * 2003-05-07 2004-11-25 Denso Corp 三相電圧形インバータ装置および三相電圧形インバータ装置の三相交流電流位相検出方法
JP2006034086A (ja) * 2004-06-15 2006-02-02 Matsushita Electric Ind Co Ltd モータ駆動装置、モータ駆動方法及び電子装置
JP2009033922A (ja) * 2007-07-30 2009-02-12 Panasonic Corp モータ駆動方法及びそれを用いたモータ駆動装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066622B2 (ja) 1992-08-04 2000-07-17 本田技研工業株式会社 電気自動車用同期モータ制御装置
JP3420317B2 (ja) 1993-12-24 2003-06-23 株式会社ミツバ ブラシレスモータの進角制御方法
US7365506B2 (en) 2004-06-15 2008-04-29 Matsushita Electric Industrial Co., Ltd. Motor driving device, motor driving method, and motor apparatus
JP4261523B2 (ja) * 2004-09-03 2009-04-30 パナソニック株式会社 モータ駆動装置および駆動方法
US7304452B2 (en) * 2005-03-11 2007-12-04 Kabushiki Kaisha Toshiba Motor control device
JP2008125246A (ja) 2006-11-13 2008-05-29 Matsushita Electric Ind Co Ltd モータ制御装置
JP5250979B2 (ja) 2007-02-07 2013-07-31 日本精工株式会社 電動パワーステアリング装置の制御装置
JP5428745B2 (ja) * 2008-12-02 2014-02-26 パナソニック株式会社 モータ駆動装置および圧縮機および冷蔵庫
US20110279070A1 (en) * 2009-01-14 2011-11-17 Panasonic Corporation Motor driving device and electric equipment using the same
WO2013031120A1 (ja) * 2011-08-30 2013-03-07 パナソニック株式会社 変調信号検出装置及び変調信号検出方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336876A (ja) * 2003-05-07 2004-11-25 Denso Corp 三相電圧形インバータ装置および三相電圧形インバータ装置の三相交流電流位相検出方法
JP2006034086A (ja) * 2004-06-15 2006-02-02 Matsushita Electric Ind Co Ltd モータ駆動装置、モータ駆動方法及び電子装置
JP2009033922A (ja) * 2007-07-30 2009-02-12 Panasonic Corp モータ駆動方法及びそれを用いたモータ駆動装置

Also Published As

Publication number Publication date
US20160254765A1 (en) 2016-09-01
JP6312034B2 (ja) 2018-04-18
JPWO2015072048A1 (ja) 2017-03-16
US9793837B2 (en) 2017-10-17

Similar Documents

Publication Publication Date Title
TWI466432B (zh) 馬達控制裝置
JP2011147236A (ja) ステッピングモータの駆動装置
JP5130876B2 (ja) 永久磁石同期電動機のV/f制御装置
WO2016161213A1 (en) Fractional delay adjustment in a field-oriented control architecture
US9991835B2 (en) Control device for electric compressor
US9035592B2 (en) Apparatus and method for controlling speed of motor
US20170110998A1 (en) Motor driving control apparatus
JP2012135097A (ja) モータ制御装置及び方法
US10381964B2 (en) Motor driving control device and motor driving control method
JP6312034B2 (ja) モータ駆動装置および制御方法
KR102270421B1 (ko) 브러쉬리스 직류 모터의 전류 센싱 보정 장치 및 방법
JP4735439B2 (ja) 永久磁石式同期電動機の初期磁極位置推定装置
US10895866B1 (en) Position error correction for electric motors
TWI581557B (zh) 高精確度馬達驅動系統及其方法
JP5428796B2 (ja) モータ駆動制御装置
JP6207458B2 (ja) 電動機の制御装置
JP6384199B2 (ja) 位置推定装置、モータ駆動制御装置、位置推定方法及びプログラム
JP2021106456A (ja) モータ制御装置およびモータ制御装置の制御方法
JP6758494B2 (ja) 回転角度検出装置および交流回転機制御装置
JP2010200498A (ja) モータ制御装置
JP6232580B2 (ja) モータ駆動装置
JP2005304133A (ja) モータ駆動方法およびモータ駆動装置
JP2004208385A (ja) モータ制御方法およびモータ制御装置
JP6236867B2 (ja) モータ制御装置
KR20190100626A (ko) 전동기 홀센서의 위치오차 검출 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547603

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861427

Country of ref document: EP

Kind code of ref document: A1