JP2009118684A - 振動抑制制御装置 - Google Patents

振動抑制制御装置 Download PDF

Info

Publication number
JP2009118684A
JP2009118684A JP2007290824A JP2007290824A JP2009118684A JP 2009118684 A JP2009118684 A JP 2009118684A JP 2007290824 A JP2007290824 A JP 2007290824A JP 2007290824 A JP2007290824 A JP 2007290824A JP 2009118684 A JP2009118684 A JP 2009118684A
Authority
JP
Japan
Prior art keywords
motor
vibration
value
amplitude
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007290824A
Other languages
English (en)
Inventor
Seiseki Maekawa
清石 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007290824A priority Critical patent/JP2009118684A/ja
Publication of JP2009118684A publication Critical patent/JP2009118684A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)

Abstract

【課題】モータの状態量に含まれる減速機のトルクリップルに起因する振動の振幅及び位相が動作中に変動する場合も、変動した振動の振幅および位相を動作中に推定して補正することにより、減速機のトルクリップルに起因する振動を抑制することができる振動抑制制御装置を得る。
【解決手段】メカニカルシステムの各軸を駆動するモータの状態量と状態量の予測値との差から、モータ状態量に含まれる振動成分を算出する振動成分算出手段2と、振動成分算出手段2の出力とモータ変位とから減速機16に起因してモータ15に生じるリップルの振幅及び位相を逐次推定する振幅位相推定手段3と、推定した振幅および位相とモータ変位とからモータ状態量の補正値を算出する補正値算出手段4とを備え、フィードバック制御するモータ状態量を上記補正値に基づいて補正する。
【選択図】図1

Description

この発明は、振動抑制制御装置に関し、特に、波動歯車減速機などの伝達機構を介してモータと負荷とが結合されたメカニカルシステムにおける伝達機構に発生するトルクリップルに起因する振動を抑制するための振動抑制制御装置に関する。
波動歯車減速機などの伝達機構を介してモータと負荷とが組み合わされてメカニカルシステム(機械系)を構成している場合、モータの回転数に応じた周期(例えばモータ回転周期の2倍)で伝達機構内部に加振力(以下、トルクリップルと呼ぶ。)が発生することがある。このとき、伝達機構が発生する加振力の周期とメカニカルシステムの固有振動数とが一致すると、トルクリップルにより励起される負荷における振動が大きくなるという問題がある。こうした振動を抑制するためにモータの回転に同期してフィードフォワード的に補正信号を加えることにより、トルクリップルを打消し、メカニカルシステムの振動を抑制する振動抑制制御装置が従来から検討されてきた。こうした振動抑制制御装置でトルクリップルを打ち消すには、加算する補正信号のゲインなどのパラメータを適切に設定する必要がある。
従来の制御方法においては、例えば、トルクリップルを打ち消す補正信号のゲインと発生周期とを、負荷側動作範囲内の、振動が小さくなる、異なった、少なくとも2箇所のゲイン及び位相より算出し、これにより、負荷の動作範囲全域において振動を抑制する補正信号を求めており、求めた補正信号をモータの回転に同期させてモータのトルク指令に加えることにより、トルク指令を補正して、振動を抑制することが提案されている(例えば、特許文献1参照。)。
特開平7−129251号公報
しかしながら、上記のような従来の振動抑制制御方法においては、補正信号のゲイン及び位相が固定されているが、伝達機構に起因してモータに見られるトルクリップルの振幅及び位相は、速度、動作方向および機械共振により異なるため、補正信号のゲイン及び位相が固定されていたのでは、十分な振動抑制効果が得られないという問題点があった。
この発明はかかる問題点を解決するためになされたものであり、モータの状態量に含まれる伝達機構のトルクリップルに起因する振動の振幅及び位相が動作中に変動する場合も、変動した振動の振幅および位相を動作中に推定して補正することにより、伝達機構のトルクリップルに起因する振動を抑制することができる振動抑制制御装置を得ることを目的とする。
この発明は、制御対象のメカニカルシステムの各軸を駆動するモータの状態量である、モータ位置、モータ速度、および、モータ電流のうちの少なくとも1つと前記状態量の予測値との差に基づいて、前記状態量に含まれる振動成分を算出する振動成分算出手段と、前記振動成分算出手段で算出した前記振動成分に基づいて、当該振動の振幅及び位相を推定する振幅位相推定手段と、前記振幅位相推定手段で推定した前記振幅および前記位相に基づいて、前記状態量の補正値を算出する補正値算出手段とを備え、前記補正値算出手段で算出した前記補正値を用いて、モータ位置及びモータ速度のフィードバック値もしくはモータ電流指令の少なくとも1つを補正することを特徴とする振動抑制制御装置である。
この発明は、(モータと負荷とを伝達機構を介して結合された)制御対象のメカニカルシステムの各軸を駆動するモータの状態量である、モータ位置、モータ速度、および、モータ電流のうちの少なくとも1つと前記状態量の予測値との差に基づいて、前記状態量に含まれる振動成分を算出する振動成分算出手段と、前記振動成分算出手段で算出した前記振動成分に基づいて、当該振動の振幅及び位相を推定する振幅位相推定手段と、前記振幅位相推定手段で推定した前記振幅および前記位相に基づいて、前記状態量の補正値を算出する補正値算出手段とを備え、前記補正値算出手段で算出した前記補正値を用いて、モータ位置及びモータ速度のフィードバック値もしくはモータ電流指令の少なくとも1つを補正することを特徴とする振動抑制制御装置であるので、モータの状態量に含まれる伝達機構のトルクリップルに起因する振動の振幅及び位相が動作中に変動する場合も、変動した振動の振幅および位相を動作中に推定して補正することにより、伝達機構のトルクリップルに起因する振動を抑制することができる。
実施の形態1.
図1は本発明の実施の形態1に係る振動抑制制御装置の構成を示すブロック図である。図1において、1はモータ位置・速度・加速度予測値算出手段、2は振動成分算出手段、3は振幅位相推定手段、4は補正値算出手段、5は推定誤差算出手段、6は位置制御手段、7は速度制御手段、8は微分手段、9は微分手段、10はゲイン、15はモータ、16は減速機、17は負荷、18は減算手段、19,20及び22は加算手段、21は加減算手段である。
図2は、モータ位置・速度・加速度予測値算出手段1の内部構成を示したブロック図である。図2において、11及び12はゲイン(定数)、13および14は積分手段である。図2に示すように、入力された位置指令と積分手段14から出力されるモータ位置予測値との差分が減算手段により求められてゲイン11に入力され、ゲイン11からの出力(位置指令とモータ位置予測値の差の定数倍)と積分手段13から出力されるモータ速度予測値との差分が減算手段により求められてゲイン12に入力される。また、ゲイン12から出力されるモータ加速度予測値(位置指令とモータ位置予測値の差の定数倍とモータ速度予測値との差の定数倍)は、モータ位置・速度・加速度予測値算出手段1の外部に出力されるとともに、積分手段13にも入力される。積分手段13から出力されるモータ速度予測値は、モータ位置・速度・加速度予測値算出手段1の外部に出力されるとともに、積分手段14にも入力される。積分手段14からのモータ位置予測値はモータ位置・速度・加速度予測値算出手段1の外部に出力されるとともに、ゲイン11の前段に設けられ、位置指令が入力される上記減算手段に入力される。
図1の構成を説明する。モータ位置・速度・加速度予測値算出手段1は、振動成分算出手段2、減算手段18、補正値算出手段4、加減算手段21、および、ゲイン10に接続されている。モータ位置・速度・加速度予測値算出手段1から出力されるモータ位置予測値は、振動成分算出手段2と減算手段18とに入力され、また、モータ位置・速度・加速度予測値算出手段1から出力されるモータ速度予測値は、補正値算出手段4と加減算手段21とに入力される。また、モータ位置・速度・加速度予測値算出手段1から出力されるモータ加速度予測値は、ゲイン10に入力される。また、減算手段18からの出力は位置制御手段6に入力され、位置制御手段6からの出力は加減算手段21に入力され、加減算手段21からの出力は速度制御装置7に入力され、速度制御手段7からの出力は加算手段22に入力され、加算手段22からの出力はモータ15に入力される。モータ15からの出力は、減速機16に入力され、減速機16からの出力は負荷17に入力される。また、ゲイン10の出力は、加算手段22に接続されている。また、モータ15から検出されるモータ位置は、微分手段9で微分(差分)されてモータ速度となり、モータ速度は、加算手段20に入力される。また、モータ位置は、振幅位相推定手段3と、振動成分算出手段2と、加算手段19と、補正値算出手段4とに入力される。また、振動成分算出手段2からの出力は、振幅位相推定手段3と推定誤差算出手段5とに入力される。推定誤差算出手段5からの出力は、補正値算出手段4に入力される。振幅位相推定手段3からの出力は、補正値算出手段4と推定誤差算出手段5とに入力される。また、補正値算出手段4からの出力は、加算手段19と微分手段8とに入力される。加算手段19からの出力は減算手段18に入力される。微分手段8からの出力は加算手段20に入力され、加算手段20による加算結果は加減算手段21に入力される。
次に、動作について説明する。本実施の形態においては、モータ15が減速機16からなる伝達機構を介して負荷17に接続されたメカニカルシステムにおいて、モータ15が減速機16を介して負荷17の各軸を駆動する。このとき、モータ位置・速度・加速度予測値算出手段1には、モータ15に対する位置指令が外部から入力され、これにより、モータ位置・速度・加速度予測値算出手段1は、当該位置指令に基づいて、モータ位置予測値、モータ速度予測値、および、モータ加速度予測値を算出する。算出されたモータ位置予測値Prは、図示しないエンコーダなどの測定器で測定したモータ位置Pmとともに、振動成分算出手段2に入力される。振動成分算出手段2では、モータ位置予測値Prとモータ位置Pmとの差Pvib=Pr-Pmを振動成分として算出し、振幅位相推定手段3と推定誤差算出手段5とに出力する。
減速機16のトルクリップルに起因する振動としては、減速機16の入力回転数の2倍の周期の振動が知られている。そこで、振幅位相推定手段3は、減速機16の入力回転数の2倍の周期の振動が、上述した振動成分算出手段2で算出された振動成分Pvibであるとみなして、振動成分の振幅vl、および、位相φを動作中のデータから逐次推定する。なお、図1のように、モータ15と減速機16とが直結されている場合、モータ15の回転数が減速機16の入力回転数と一致する。そこで、振動成分算出手段2で算出された振動成分Pvibがモータ回転数の2倍の周期の振動であるとみなすと、下式(1)となる。
Pvib = vl*sin(2*Pm+φ) (1)
そこで、para1=vl*cosφ、および、para2=vl*sinφと定義すると、上式(1)は、下式(2)となる。
Pvib = para1*sin(2*Pm)+para2*cos(2*Pm) (2)
第k回目の制御周期での値をkと記載する(例えば、Pmk, Pvibkなど)こととし、para1, para2の逐次推定値をph1, ph2とし、ベクトルypk、pk、rpkと行列Rpkを、それぞれ、下記の式(3)〜(6)で定義する。
ypk = [sin(2*Pmk), cos(2*Pmk)] T (3)
pk = [ph1k, ph2k] T (4)
Rpk= Rpk-1 + moit * (−σ* Rpk-1 + ypk ypk T) (5)
rpk = rpk-1 + moit * (−σ* rpk-1 + Pvibk *ypk) (6)
このとき、para1, para2の逐次推定値は、下式(7)で算出できる。
pk = pk-1−moit*G・(Rpk・pk-1−rpk) (7)
ここで、moitは推定周期、σは定数、Gは定数行列である。また、逐次推定した、振幅vlおよび位相φの第k周期での推定値は、下式(8)および(9)で算出される。
vlk=sqrt(ph1k * ph1k + ph2k * ph2k) (8)
φk=atan2(ph2k, ph1k) (9)
このようにして、振幅位相推定手段3で算出した振幅vlkおよび位相φkは補正値算出手段4に出力される。また、振幅位相推定手段3で、振幅vlkおよび位相φkとモータ位置Pmとに基づいて振動推定値Pvibhkを下記の式(10)により算出し、推定誤差算出手段5に出力する。
Pvibhk = vlk *sin(2*Pmkk) (10)
推定誤差算出手段5では、振動成分算出手段2から出力される振動成分Pvibkと振幅位相推定手段3から出力される振動推定値Pvibhkとから、振動推定誤差evibkを、下記の式(11)により、算出する。
evibk = Pvibk−Pvibhk (11)
次に、推定誤差算出手段5では、振動推定誤差evibも減速機16の入力回転数の2倍の周期の振動であると仮定し、振動推定誤差の振幅veおよび位相φeを、上記の式(1)〜(9)と同様に算出する。具体的には、振動推定誤差evibを下式(12)と定義する。
evib = ve*sin(2* Pm +φe) (12)
さらに、para1e=ve*cosφe、para2=ve*sinφeと定義すると、式(12)は、下記の式(13)となる。
evib = para1e*sin(2*Pm)+para2e*cos(2*Pm) (13)
第k回目の制御周期での値をkと記載する(例えば、Pmk, Pvibkなど)こととし、para1e, para2eの逐次推定値をph1e, ph2e、ベクトルypek、pek、rpekと行列Rpekをそれぞれ、下記の式(14)〜(17)で定義する。
ypek = [sin(2*Pmk), cos(2*Pmk)] T (14)
pek = [ph1ek, ph2ek] T (15)
Rpek= Rpek-1 +moit*(−σe* Rpek-1 + ypek ypek T) (16)
rpek = rpek-1 +moit*(−σe* rpek-1 + evibk *ypek) (17)
このとき、para1e, para2eの逐次推定値は、下記の式(18)で算出できる。
pek = pek-1−moit*Ge・(Rpek・pek-1−rpek) (18)
ここで、moitは推定周期、σeは定数、Geは定数行列である。
このようにして逐次推定した、逐次推定値pekに基づいて、振幅veおよび位相φeの第k周期での推定値は、下記の式(19)および(20)により算出される。
vek=sqrt(ph1ek * ph1ek + ph2ek * ph2ek) (19)
φek=atan2(ph2ek , ph1ek) (20)
σe=σの時は、Rpek-1、 ypek T ypekは、振幅位相推定手段3内部で算出するRpk-1、 ypk T ypkと同一の値となり、流用することも可能である。
補正値算出手段4では、振幅位相推定手段3から出力される振幅vlkおよび位相φkと、推定誤差算出手段5から出力される推定誤差振幅vekと、モータ位置Pmと、モータ位置・速度・加速度予測値算出手段1から出力されるモータ速度予測値とから、モータ位置及びモータ速度の補正値を算出する。まず、推定誤差振幅vekおよびモータ速度予測値からそれぞれ補正ゲインを算出する。推定誤差振幅vekに関しては閾値ek1、ek2を設け、図3に示す補正ゲイン1と振動推定誤差との関係からフィルタ前補正ゲインK10を算出し、さらに1次遅れフィルタに通して推定誤差振幅を考慮した補正ゲインK1を算出する。なお、補正ゲイン1は、図3に示すように、振動推定誤差が0〜ek1までの範囲においては1で、それ以降は、一定の比率で値が減少し、振動推定誤差がek2のときに0となる。このように、減速機16に起因する振動の振幅・位相の推定精度が低い区間では補正ゲインを下げることにより、効果がある区間のみ補正することができる。
モータ速度予測値に関しても同様で、モータ速度予測値の絶対値を求め、モータ速度予測値の絶対値と図4に示す補正ゲイン2の関係からフィルタ前の補正ゲインK20を算出し、さらに1次遅れフィルタを通してモータ速度予測値を考慮した補正ゲインK2を算出する。なお、補正ゲイン2は、図4に示すように、モータ速度予測値の絶対値が0〜vk1までの範囲においては1で、それ以降は、一定の比率で値が減少し、モータ速度予測値の絶対値がvk2のときに0となる。この場合も同様に、減速機16に起因する振動の振幅・位相の推定精度が低い区間では補正ゲインを下げることにより、効果がある区間のみ補正することができる。モータ速度予測値及び推定誤差振幅が0の場合の補正ゲインをK0とし、補正ゲインKhを下記の式(21)で算出する。
Kh=K0*K1*K2 (21)
また、補正値算出手段4は、算出した補正ゲインKhを用いてモータ位置への補正値Hpを、下式(22)で算出する。
Hp=Kh* vlk *sin(2*Pmkk) (22)
次に、補正値算出手段4で算出した補正値Hpとモータ位置Pmとを式(23)のように加算手段19で加算して、モータ位置Pmを補正する。
Pmh=Pm+Hp (23)
このようにして補正されたモータ位置Pmhを位置制御手段6にフィードバックする。具体的には、補正されたモータ位置Pmhとモータ位置予測値との差分を減算手段18により求め、位置制御手段6に入力する。また、補正値算出手段4により求めた補正値Hpの微分(差分)dHpを微分手段8で求め、当該微分(差分)dHpを下記の式(24)のように加算手段20でモータ速度Vmに加算して、モータ速度Vmを補正する。
Vmh=Vm+dHp (24)
補正したモータ速度Vmhは、速度制御手段7にフィードバックされる。具体的には、モータ速度予測値と位置制御手段6からの出力との和から、補正したモータ速度Vmhの値を差し引いた値を加減算手段21により求め、速度制御手段7に入力する。なお、速度制御手段7からの出力とゲイン10からの出力との和を加算手段22により求め、モータ15に入力する。
なお、位置制御手段6及び速度制御手段7はそれぞれ一般に広く使われている比例制御、比例積分制御を行っている。また、上記の説明においては、補正ゲインK2の算出にモータ速度予測値を用いたが、モータ速度を用いてもかまわない。
以上のように、本実施の形態によれば、メカニカルシステムの各軸を駆動するモータ15の状態量と状態量の予測値との差から、モータ状態量に含まれる振動成分を算出する振動成分算出手段2と、振動成分算出手段2の出力とモータ変位から減速機16に起因してモータ15に現れるリップルの振幅及び位相を逐次推定する振幅位相推定手段3と、推定した振幅および位相とモータ変位とからモータ状態量の補正値を算出する補正値算出手段4とを備え、補正値算出手段4の出力に基づいて、フィードバック制御するモータ状態量を補正するようにしたので、モータの状態量に含まれる減速機16のリップルに起因する振動の振幅及び位相が動作中に変動する場合も、変動結果に追従して振動を抑制できる効果がある。また、推定精度が低い場合、あるいは、速度が高く遅れの影響が大きい場合には補正を抑えることにより、過補正になることを防止できる効果がある。さらに、減速機16の軸の回転速度に応じて補正値算出手段4の出力を変更するようにしたので、減速機16に起因する振動が機械共振と一致する速度近辺でのみ補正を有効にし、振動が大きくなる条件でのみ補正することが可能となる効果がある。
実施の形態2.
図5は、本発明の実施の形態2の振動抑制制御装置の構成を示すブロック図である。実施の形態1とは、振動成分算出手段2の入力のみ異なるため、振動成分算出手段2の入力に関してのみ説明する。上述の実施の形態1においては、モータ位置・速度・加速度予測値算出手段1からモータ位置予測値が振動成分算出手段2に入力されていたが、本実施の形態においては、図5に示すように、モータ位置予測値算出手段23が振動成分算出手段2に接続されており、位置指令が、減算手段18に入力されるとともに、モータ位置予測値算出手段23にも入力され、モータ位置予測値算出手段23からの出力が、振動成分算出手段2に入力される。なお、本実施の形態においては、図1に示したモータ位置・速度・加速度予測値算出手段1、ゲイン10、および、加算手段22が設けられていない。
動作について説明する。まず、位置指令をモータ位置予測値算出手段23に入力する。モータ位置予測値算出手段23内部には、位置制御手段6の比例ゲインに対応する時定数の1次遅れフィルタが備えられており、1次遅れフィルタに位置指令を入力したときの出力をモータ位置予測値として振動成分算出手段2に出力する。また、減算手段18は、位置指令と加算手段19からの出力との差分を求めて、位置制御手段6に入力する。減算手段21は、位置制御手段6からの出力と加算手段20からの出力との差分を求めて、速度制御手段7に入力する。また、速度制御手段7からの出力は、直接、モータ15に入力される。他の構成および動作については、上述の実施の形態1と同じであるため、ここではその説明を省略する。
以上のように、本実施の形態においても、フィードバック制御するモータ状態量を補正するようにしたので、実施の形態1と同様に、減速機16のリップルに起因する振動の振幅及び位相が動作中に変動する場合でも、振動を抑制できる効果がある。また、推定精度が低い場合、あるいは速度が高く遅れの影響が大きい場合には補正を抑えることにより過補正になることを防止できる効果がある。
実施の形態3.
図6は本発明の実施の形態3の振動抑制制御装置の構成を示すブロック図である。上述の実施の形態1とは、振動成分算出手段2、振幅位相推定手段3、および、推定誤差算出手段5の内部処理は同一であるが、それらの入出力が異なる。そこで、以下では、振動成分算出手段2、振幅位相推定手段3、および、推定誤差算出手段5の入出力と補正値算出手段4の処理についてのみ説明する。なお、本実施の形態においては、補正値算出手段4と加算手段19との間に積分手段24が設けられている。
本実施の形態においては、振動成分算出手段2には、モータ位置・速度・加速度予測値算出手段1で算出したモータ速度予測値Vrとモータ速度Vmとを入力する。振動成分算出手段2では、それらの速度差Vvib=Vr-Vmを算出し、算出結果のVvibを振動成分として振幅位相推定手段3と推定誤差算出手段5とに入力する。振幅位相推定手段3と推定誤差算出手段5においては、モータ位置から求めた振動成分Pvibの代わりに、モータ速度から求めた振動成分Vvibを用いて、上述の式(1)〜(20)の計算を行う。
また、補正値算出手段4では、補正ゲインKhを実施の形態1で示した方法で算出する。また、算出した補正ゲインKhを用いてモータ速度への補正値Hvを下式(25)で算出する。
Hv=Kh* vlk *sin(2*Pmkk) (25)
また、補正値Hvによりモータ速度Vmを下式(26)で補正する。なお、下式(26)の演算は、加算手段20により行う。
Vmh=Vm+Hv (26)
次に、補正したモータ速度Vmhを速度制御手段7にフィードバックする。具体的には、加減算手段21で、モータ速度予測値に位置制御手段6からの出力を加算し、当該値から補正したモータ速度Vmhを差し引いた値を速度制御手段7に入力する。また、モータ位置の補正に関してはHp=Hvとし、Hpを積分手段24により積分してから、加算手段19でモータ位置に加算して補正したモータ位置Pmhを算出し、算出したPmhをモータ位置として位置制御手段6にフィードバックする。具体的には、減算手段18により、モータ位置予測値と算出したPmhとの差分を求めて、位置制御手段6に入力する。なお、他の構成および動作については、実施の形態1と同じであるため、ここでは、その説明を省略する。
以上のように、本実施の形態においても、実施の形態1と同様に、フィードバック制御するモータ状態量を補正するようにしたので、減速機のリップルに起因する振動の振幅及び位相が動作中に変動する場合でも振動を抑制できる効果がある。また、推定精度が低い場合、あるいは速度が高く遅れの影響が大きい場合には補正を抑えることにより過補正になることを防止できる効果がある。
実施の形態4.
図7は本発明の実施の形態4の振動抑制制御装置の構成を示すブロック図である。実施の形態1とはモータ速度を補正しないことのみ異なっている。従って、本実施の形態においては、微分手段8と加算手段20とが設けられておらず、補正しないそのままのモータ速度が、加減算手段21に入力されている。他の構成および動作については、実施の形態1と同じであるため、ここではその説明を省略する。
本実施の形態においては、モータ速度は補正しないが、モータ位置は補正するため、減速機のリップルに起因する振動の振幅及び位相が動作中に変動する場合でも振動を抑制できる効果がある。また、推定精度が低い場合、あるいは速度が高く遅れの影響が大きい場合には補正を抑えることにより過補正になることを防止できる効果がある。
実施の形態5.
図8は本発明の実施の形態5の振動抑制制御装置の構成を示すブロック図である。図6に示した実施の形態3とはモータ位置を補正しないことのみ異なっている。従って、本実施の形態においては、図6に示した積分手段24と加算手段19とが設けられておらず、補正しないそのままのモータ位置が減算手段18に入力されている。他の構成および動作については、実施の形態1および3と同じであるため、ここでは説明を省略する。
以上のように、本実施の形態においては、モータ位置は補正しないが、モータ速度は補正するので、減速機のリップルに起因する振動の振幅及び位相が動作中に変動する場合でも振動を抑制できる効果がある。また、推定精度が低い場合、あるいは速度が高く遅れの影響が大きい場合には補正を抑えることにより過補正になることを防止できる効果がある。
実施の形態6.
図9は本発明の実施の形態6の振動抑制制御装置の構成を示すブロック図である。本実施の形態においては、振動成分算出手段2にモータ位置予測値を入力せずに、振動成分算出手段2にモータトルク推定値算出手段25が接続され、モータトルク推定値算出手段25から出力されるモータ電流推定値が振動成分算出手段2に入力される。また、モータトルク推定値算出手段25には、モータ位置・速度・加速度予測値算出手段1で算出した、モータ位置予測値、モータ速度予測値、モータ加速度予測値が入力される。さらに、振動成分算出手段2にモータ位置を入力せずに、モータ電流(モータトルク)が入力される。また、本実施の形態においては、モータ位置およびモータ速度は補正されずに、それぞれ、減算手段18および加減算手段21に入力される。また、補正値算出手段4からの出力は、加算手段22に入力される。従って、本実施の形態においては、実施の形態1で示した図1の加算手段19、微分手段8、および、加算手段20が設けられていない。他の構成については、実施の形態1と同じであるため、ここではその説明を省略する。
以上の構成において、モータ位置・速度・加速度予測値算出手段1で算出したモータ位置予測値、モータ速度予測値及びモータ加速度予測値をモータトルク推定値算出手段25に入力する。モータトルク推定値算出手段25では、振動抑制制御装置により駆動されるメカニカルシステムの運動方程式を内蔵し、内蔵した運動方程式にモータ位置予測値、モータ速度予測値、モータ加速度予測値を入力することによりモータトルク推定値を算出し、トルク定数で除してモータ電流推定値を算出する。振動成分算出手段2では、モータ電流推定値とモータ電流との差Tvibを算出し、当該差TvibをPvibの代わりに振幅位相推定手段3および推定誤差算出手段5に出力する。振幅位相推定手段3および推定誤差算出手段5では、モータ位置から求めた振動成分Pvibの代わりに、モータ電流から求めた振動成分Tvibを用いて、上述した式(1)〜(20)の計算を行う。
補正値算出手段4では、実施の形態1と同一の方法で、補正ゲインKhを算出し、モータ電流補正値Htを下式(27)により算出する。
Ht=Kh* vlk *sin(2*Pmkk) (27)
補正値算出手段4は、このようにして算出した電流補正値Htを加算手段22に入力して、モータ15に与える電流指令に加算する。他の動作については、実施の形態1と同じであるため、ここではその説明を省略する。
以上のように、本実施の形態においては、モータ15に与える電流指令に電流補正値を加算して補正するようにしたので、減速機16のリップルに起因する振動の振幅及び位相が動作中に変動する場合でも振動を抑制できる効果がある。また、推定精度が低い場合、あるいは速度が高く遅れの影響が大きい場合には補正を抑えることにより過補正になることを防止できる効果がある。
実施の形態7.
図10は本発明の実施の形態7の振動抑制制御装置の構成を示すブロック図である。実施の形態1との違いは、図1に示した推定誤差算出手段5が設けられていないことである。したがって、補正値算出手段4内部で補正ゲインKhを算出する際は、下式(28)で算出する。
Kh=K0*K2 (28)
算出した補正ゲインKhを用いて、実施の形態1と同様に、モータ位置への補正値Hpを上述した式(22)により算出する。他の構成および動作については、実施の形態と同様であるため、ここではその説明を省略する。
以上のように、本実施の形態においては、モータ速度予測値及び推定誤差振幅が0の場合の補正ゲインK0と、1次遅れフィルタを通してモータ速度予測値を考慮した補正ゲインK2とを用いて、補正ゲインKhを求めて、それにより、モータ位置を補正するようにしたので、減速機のリップルに起因する振動の振幅及び位相が動作中に変動する場合でも振動を抑制できる効果がある。また、速度が高く遅れの影響が大きい場合には補正を抑えることにより過補正になることを防止できる効果がある。
実施の形態8.
図11は本発明の実施の形態8の振動抑制制御装置の構成を示すブロック図である。実施の形態1とは、補正値算出手段4にモータ加速度予測値が入力されて、補正値算出手段4でモータ加速度を考慮して補正ゲインKhを算出する点のみが異なっているため、本実施の形態においては、補正ゲインKhの算出方法のみ説明する。
本実施の形態においては、補正値算出手段4が、モータ加速度予測値絶対値と図12に示す補正ゲイン3との関係からフィルタ前の補正ゲインK30を算出し、さらに1次遅れフィルタを通してモータ加速度予測値を考慮した補正ゲインK3を算出する。モータ速度予測値及び推定誤差振幅が0の場合の補正ゲインをK0とし、補正ゲインKhを下式(29)で算出する。
Kh=K0*K1*K2*K3 (29)
他の構成および動作については、実施の形態1と同じである。なお、補正ゲイン3は、図12に示すように、モータ加速度予測値(絶対値)が0〜ak1までの範囲においては1で、それ以降は、一定の比率で値が減少し、モータ加速度予測値(絶対値)がak2のときに0となる。このように、減速機16に起因する振動の振幅・位相の推定精度が低い区間では補正ゲインを下げることにより、効果がある区間のみ補正することができる。
以上のように、本実施の形態においては、補正値算出手段4でモータ加速度を考慮して補正ゲインKhを算出するようにしたので、減速機のリップルに起因する振動の振幅及び位相が動作中に変動する場合でも振動を抑制できる効果がある。また、推定精度が低い場合、あるいは加速度もしくは速度が高く遅れの影響が大きい場合には補正を抑えることにより過補正になることを防止できる効果がある。
実施の形態9.
図13は本発明の実施の形態9の振動抑制制御装置の構成を示すブロック図である。実施の形態1とは、振幅位相推定手段3に、モータ加速度予測値とモータ速度予測値とが入力されて、振幅位相推定手段3で振幅・位相に関するパラメータを逐次推定する際のゲインGをモデル速度予測値およびモデル加速度予測値に基づいて変更することが異なっている。本実施の形態においては、ゲインGの算出方法についてのみ説明する。
振幅位相推定手段3では、モータ速度予測値絶対値と図14に示す補正ゲイン2bとの関係からフィルタ前の補正ゲインK2b0を算出し、さらに1次遅れフィルタを通してモータ速度予測値を考慮した補正ゲインK2bを算出する。またモータ加速度予測値絶対値と図15に示す補正ゲイン3bの関係からフィルタ前の補正ゲインK3b0を算出し、さらに1次遅れフィルタを通してモータ加速度予測値を考慮した補正ゲインK3bを算出する。モータ加速度予測値及びモータ速度予測値がいずれも0のときの逐次推定ゲイン行列をG0とし、下式(30)により、上述した式(7)で用いる逐次推定ゲインGを算出する。
G=G0*K2b0*k3b0 (30)
他の構成および動作については、実施の形態1と同じである。なお、補正ゲイン2bは、図14に示すように、モータ速度予測値(絶対値)が0〜vk1bまでの範囲においては1で、それ以降は、一定の比率で値が減少し、モータ速度予測値(絶対値)がvk2bのときに0となる。また、補正ゲイン3bは、図15に示すように、モータ加速度予測値(絶対値)が0〜ak1bまでの範囲においては1で、それ以降は、一定の比率で値が減少し、モータ加速度予測値(絶対値)がak2bのときに0となる。このように、減速機16に起因する振動の振幅・位相の推定精度が低い区間では補正ゲインを下げることにより、効果がある区間のみ補正することができる。
以上のように、本実施の形態においては、振幅位相推定手段3で振幅・位相に関するパラメータを逐次推定する際のゲインGをモデル速度予測値およびモデル加速度予測値に基づいて変更するようにしたので、減速機のリップルに起因する振動の振幅及び位相が動作中に変動する場合でも振動を抑制できる効果がある。また、推定精度が低い場合、あるいは速度が高く遅れの影響が大きい場合には補正を抑えることにより過補正になることを防止できる効果がある。また速度もしくは加速度が高く推定精度の悪化が予想される際には逐次推定をとめることにより、過補正になることを防止できる効果がある。
実施の形態10.
図16は本発明の実施の形態10の振動抑制制御装置の構成を示すブロック図である。実施の形態1とは、補正値算出手段4にモータ速度予測値が入力されずに、補正値算出手段4内部で補正ゲインKhを算出する際に、モータ速度予測値を考慮しないことが異なっている。したがって、本実施の形態においては、補正値算出手段4内部で補正ゲインKhを算出する際も、下式(31)で算出する。
Kh=K0*K1 (31)
他の構成および動作については実施の形態1と同様である。
以上のように、本実施の形態においては、モータ速度予測値及び推定誤差振幅が0の場合の補正ゲインK0と、1次遅れフィルタを通して推定誤差振幅を考慮した補正ゲインK1とを用いて、補正ゲインKhを求めて、それにより、モータ位置を補正するようにしたので、減速機のリップルに起因する振動の振幅及び位相が動作中に変動する場合でも振動を抑制できる効果がある。また、推定精度が低い場合には補正を抑えることにより過補正になることを防止できる効果がある。
本発明の実施の形態1の振動抑制制御装置の構成を示したブロック図である。 本発明の実施の形態1の振動抑制制御装置に設けられたモータ位置・速度・加速度予測値算出手段の内部構成を示したブロック図である。 本発明の実施の形態1の振動抑制制御装置における補正ゲイン1と推定誤差振幅の関係図である。 本発明の実施の形態1の振動抑制制御装置における補正ゲイン2とモータ速度予測値の関係図である。 本発明の実施の形態2の振動抑制制御装置の構成を示したブロック図である。 本発明の実施の形態3の振動抑制制御装置の構成を示したブロック図である。 本発明の実施の形態4の振動抑制制御装置の構成を示したブロック図である。 本発明の実施の形態5の振動抑制制御装置の構成を示したブロック図である。 本発明の実施の形態6の振動抑制制御装置の構成を示したブロック図である。 本発明の実施の形態7の振動抑制制御装置の構成を示したブロック図である。 本発明の実施の形態8の振動抑制制御装置の構成を示したブロック図である。 本発明の実施の形態8の振動抑制制御装置における補正ゲイン3とモータ加速度予測値の関係図である。 本発明の実施の形態9の振動抑制制御装置の構成を示したブロック図である。 本発明の実施の形態9の振動抑制制御装置における補正ゲイン2bとモータ速度予測値の関係図である。 本発明の実施の形態9の振動抑制制御装置における補正ゲイン3bとモータ加速度予測値の関係図である。 本発明の実施の形態10の振動抑制制御装置の構成を示したブロック図である。
符号の説明
1 モータ位置・速度・加速度予測値算出手段、2 振動成分算出手段、3 振幅位相推定手段、4 補正値算出手段、5 推定誤差算出手段、6 位置制御手段、7 速度制御手段、8,9 微分手段、13,14,24 積分手段、10 ゲイン、11,12 ゲイン、15 モータ、16 減速機、17 負荷、18 減算手段、19,20,22 加算手段、21 加減算手段、23 モータ位置予測値算出手段、25 モータトルク推定値算出手段。

Claims (3)

  1. 制御対象のメカニカルシステムの各軸を駆動するモータの状態量である、モータ位置、モータ速度、および、モータ電流のうちの少なくとも1つと前記状態量の予測値との差に基づいて、前記状態量に含まれる振動成分を算出する振動成分算出手段と、
    前記振動成分算出手段で算出した前記振動成分に基づいて、当該振動の振幅及び位相を推定する振幅位相推定手段と、
    前記振幅位相推定手段で推定した前記振幅および前記位相に基づいて、前記状態量の補正値を算出する補正値算出手段と
    を備え、
    前記補正値算出手段で算出した前記補正値を用いて、モータ位置及びモータ速度のフィードバック値もしくはモータ電流指令の少なくとも1つを補正することを特徴とする振動抑制制御装置。
  2. 前記振幅位相推定手段は、さらに、推定した前記振幅および前記位相を用いて振動推定値を算出するものであって、
    前記振動移相推定手段で算出した前記振動推定値と前記振動成分算出手段で算出した振動成分の値との差に応じて、振動推定誤差の振幅を推定する振動推定誤差算出手段をさらに備え、
    前記振動推定誤差算出手段の出力に応じて前記補正値算出手段の出力を変更することを特徴とする請求項1に記載の振動抑制制御装置。
  3. 前記軸の回転速度に応じて前記補正値算出手段の出力を変更することを特徴とする請求項1に記載の振動抑制制御装置。
JP2007290824A 2007-11-08 2007-11-08 振動抑制制御装置 Pending JP2009118684A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007290824A JP2009118684A (ja) 2007-11-08 2007-11-08 振動抑制制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007290824A JP2009118684A (ja) 2007-11-08 2007-11-08 振動抑制制御装置

Publications (1)

Publication Number Publication Date
JP2009118684A true JP2009118684A (ja) 2009-05-28

Family

ID=40785167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007290824A Pending JP2009118684A (ja) 2007-11-08 2007-11-08 振動抑制制御装置

Country Status (1)

Country Link
JP (1) JP2009118684A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147267A (ja) * 2010-01-14 2011-07-28 Fuji Electric Co Ltd モータ制御装置
WO2011145451A1 (ja) * 2010-05-20 2011-11-24 三菱電機株式会社 モータ制御装置
JP2012086343A (ja) * 2010-10-22 2012-05-10 Makita Corp 動力工具
WO2012086550A1 (ja) * 2010-12-20 2012-06-28 三菱電機株式会社 モータ制御装置
WO2013054662A1 (ja) * 2011-10-13 2013-04-18 三菱電機株式会社 サーボ制御装置
CN103427728A (zh) * 2012-05-23 2013-12-04 富士电机株式会社 电动机性能试验装置
JP2014025856A (ja) * 2012-07-27 2014-02-06 Tdk Corp 物理量検出値補正装置
CN103904976A (zh) * 2012-12-26 2014-07-02 株式会社安川电机 电机控制装置以及电机控制方法
CN104838584A (zh) * 2012-09-18 2015-08-12 日产自动车株式会社 电机控制装置以及电机控制方法
US9122258B2 (en) 2011-05-24 2015-09-01 Mitsubishi Electric Corporation Motor control device
CN105359406A (zh) * 2013-07-09 2016-02-24 松下知识产权经营株式会社 电动机的控制装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150085A (ja) * 1989-11-06 1991-06-26 Sanyo Denki Co Ltd 減速機付サーボモータの制御装置
JPH05176580A (ja) * 1991-10-15 1993-07-13 Hitachi Ltd モータの制御装置
JPH0715991A (ja) * 1993-06-25 1995-01-17 Hitachi Ltd モータ制御装置
JPH0956183A (ja) * 1995-08-18 1997-02-25 Yaskawa Electric Corp 機械振動検出装置および制振制御装置
JPH11155295A (ja) * 1997-11-21 1999-06-08 Yaskawa Electric Corp 制振制御装置
JP2002325473A (ja) * 2001-04-26 2002-11-08 Yaskawa Electric Corp 振動抑制装置
JP2004023970A (ja) * 2002-06-20 2004-01-22 Meidensha Corp 可変速装置
JP2006211872A (ja) * 2005-01-31 2006-08-10 Yaskawa Electric Corp 電動機制御装置とその制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150085A (ja) * 1989-11-06 1991-06-26 Sanyo Denki Co Ltd 減速機付サーボモータの制御装置
JPH05176580A (ja) * 1991-10-15 1993-07-13 Hitachi Ltd モータの制御装置
JPH0715991A (ja) * 1993-06-25 1995-01-17 Hitachi Ltd モータ制御装置
JPH0956183A (ja) * 1995-08-18 1997-02-25 Yaskawa Electric Corp 機械振動検出装置および制振制御装置
JPH11155295A (ja) * 1997-11-21 1999-06-08 Yaskawa Electric Corp 制振制御装置
JP2002325473A (ja) * 2001-04-26 2002-11-08 Yaskawa Electric Corp 振動抑制装置
JP2004023970A (ja) * 2002-06-20 2004-01-22 Meidensha Corp 可変速装置
JP2006211872A (ja) * 2005-01-31 2006-08-10 Yaskawa Electric Corp 電動機制御装置とその制御方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147267A (ja) * 2010-01-14 2011-07-28 Fuji Electric Co Ltd モータ制御装置
WO2011145451A1 (ja) * 2010-05-20 2011-11-24 三菱電機株式会社 モータ制御装置
TWI466432B (zh) * 2010-05-20 2014-12-21 Mitsubishi Electric Corp 馬達控制裝置
US8779712B2 (en) 2010-05-20 2014-07-15 Mitsubishi Electric Corporation Motor control device
JP2012086343A (ja) * 2010-10-22 2012-05-10 Makita Corp 動力工具
WO2012086550A1 (ja) * 2010-12-20 2012-06-28 三菱電機株式会社 モータ制御装置
JP5496365B2 (ja) * 2010-12-20 2014-05-21 三菱電機株式会社 モータ制御装置
DE112011104448B4 (de) * 2010-12-20 2021-05-06 Mitsubishi Electric Corp. Motorsteuerungsvorrichtung
US9075400B2 (en) 2010-12-20 2015-07-07 Mitsubishi Electric Corporation Motor control device
US9122258B2 (en) 2011-05-24 2015-09-01 Mitsubishi Electric Corporation Motor control device
US9122262B2 (en) 2011-10-13 2015-09-01 Mitsubishi Electric Corporation Servo control device
WO2013054662A1 (ja) * 2011-10-13 2013-04-18 三菱電機株式会社 サーボ制御装置
TWI461877B (zh) * 2011-10-13 2014-11-21 Mitsubishi Electric Corp 伺服控制裝置
KR101490664B1 (ko) 2011-10-13 2015-02-05 미쓰비시덴키 가부시키가이샤 서보 제어 장치
CN103427728A (zh) * 2012-05-23 2013-12-04 富士电机株式会社 电动机性能试验装置
JP2014025856A (ja) * 2012-07-27 2014-02-06 Tdk Corp 物理量検出値補正装置
CN104838584A (zh) * 2012-09-18 2015-08-12 日产自动车株式会社 电机控制装置以及电机控制方法
EP2899878A4 (en) * 2012-09-18 2015-12-09 Nissan Motor MOTOR CONTROL DEVICE AND MOTOR CONTROL METHOD
US9252689B2 (en) 2012-09-18 2016-02-02 Nissan Motor Co., Ltd. Motor control device and motor control method
CN104838584B (zh) * 2012-09-18 2016-12-28 日产自动车株式会社 电机控制装置以及电机控制方法
JP2014128089A (ja) * 2012-12-26 2014-07-07 Yaskawa Electric Corp モータ制御装置およびモータ制御方法
US9250614B2 (en) 2012-12-26 2016-02-02 Kabushiki Kaisha Yaskawa Denki Motor control apparatus and motor control method
CN103904976A (zh) * 2012-12-26 2014-07-02 株式会社安川电机 电机控制装置以及电机控制方法
CN105359406A (zh) * 2013-07-09 2016-02-24 松下知识产权经营株式会社 电动机的控制装置
CN105359406B (zh) * 2013-07-09 2017-03-29 松下知识产权经营株式会社 电动机的控制装置

Similar Documents

Publication Publication Date Title
JP2009118684A (ja) 振動抑制制御装置
KR100951754B1 (ko) 기계 위치 제어 장치
JP4767315B2 (ja) 電動パワーステアリング制御装置
US10985684B2 (en) Motor control device
JP4685071B2 (ja) モータ制御装置及びモータ制御方法
JP5541314B2 (ja) ダイナモメータシステムの制御装置
KR20060127233A (ko) 전동기 제어 장치
JP3892823B2 (ja) モータの速度制御装置
JP5800108B2 (ja) 周期外乱自動抑制装置
US11669055B2 (en) Vibration suppression device, method and computer-readable medium using estimated vibration torque
US20090251092A1 (en) Position controller
WO2000075739A1 (fr) Unite de commande de position pour moteur
JP6491497B2 (ja) モータ制御装置
JP2010051104A (ja) モータ制御装置
JP4419625B2 (ja) 車両用制振制御装置および車両用制振制御方法
WO2016163343A1 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
US11415948B2 (en) Device for controlling electric motor
JP2004147368A (ja) モータの位置制御装置
CN110955192B (zh) 伺服控制装置、机器人及伺服控制方法
JP2008228484A (ja) モータ制御装置およびモータ制御方法
JPWO2020100268A1 (ja) 電動車両の制御方法、及び、制御装置
JP2007060767A (ja) 機械定数同定装置を備えたモータ制御装置
JP4893039B2 (ja) 電動機制御方法およびその装置
JP5780058B2 (ja) 周期外乱抑制装置
JP2009081985A (ja) 慣性共振系を制御対象とする特性同定方法及びモータ制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724