WO2016163343A1 - モータ制御装置及びそれを搭載した電動パワーステアリング装置 - Google Patents

モータ制御装置及びそれを搭載した電動パワーステアリング装置 Download PDF

Info

Publication number
WO2016163343A1
WO2016163343A1 PCT/JP2016/061061 JP2016061061W WO2016163343A1 WO 2016163343 A1 WO2016163343 A1 WO 2016163343A1 JP 2016061061 W JP2016061061 W JP 2016061061W WO 2016163343 A1 WO2016163343 A1 WO 2016163343A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
response
unit
motor
calculation unit
Prior art date
Application number
PCT/JP2016/061061
Other languages
English (en)
French (fr)
Inventor
吉田 圭太
洋介 今村
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to EP16776509.8A priority Critical patent/EP3282576B1/en
Priority to US15/559,123 priority patent/US10457322B2/en
Priority to CN201680021156.5A priority patent/CN107408910B/zh
Priority to JP2017510981A priority patent/JP6519650B2/ja
Publication of WO2016163343A1 publication Critical patent/WO2016163343A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque

Definitions

  • the present invention relates to a motor control device that controls a motor current that flows to a motor via a feedback mechanism based on a current command value that is a steering command, and in particular, a motor control device that can change the characteristics of a feedback mechanism in real time and the same
  • the present invention relates to an electric power steering apparatus.
  • An electric power steering device that assists and controls the steering system of a vehicle with the rotational force of a motor uses a driving force of the motor to transmit a steering assist force to a steering shaft or a rack shaft by a transmission mechanism such as a gear or a belt via a speed reducer.
  • EPS electric power steering device
  • Such a conventional electric power steering apparatus performs feedback control of the motor current in order to accurately generate the torque of the steering assist force.
  • the motor applied voltage is adjusted so that the difference between the current command value and the motor current detection value becomes small.
  • the adjustment of the motor applied voltage is performed by the duty of PWM (pulse width modulation) control. It is done by adjustment.
  • a column shaft (steering shaft, handle shaft) 2 of a handle 1 is a reduction gear 3, universal joints 4a and 4b, a pinion rack mechanism 5, a tie rod 6a, 6b is further connected to the steering wheels 8L and 8R via hub units 7a and 7b. Further, the column shaft 2 is provided with a torque sensor 10 for detecting the steering torque of the handle 1 and a steering angle sensor 14 for detecting the steering angle ⁇ , and the motor 20 for assisting the steering force of the handle 1 is provided with the reduction gear 3.
  • the control unit (ECU) 30 that controls the electric power steering apparatus is supplied with electric power from the battery 13 and also receives an ignition key (IG) signal via the ignition key 11.
  • the control unit 30 calculates a current command value of an assist (steering assist) command based on the steering torque Ts detected by the torque sensor 10 and the vehicle speed Vs detected by the vehicle speed sensor 12, and compensates the current command value.
  • the current supplied to the EPS motor 20 is controlled by the voltage control command value Vref subjected to.
  • the steering angle sensor 14 is not essential and may not be provided, and the steering angle can be obtained from a rotation sensor such as a resolver connected to the motor 20.
  • the control unit 30 is connected to a CAN (Controller Area Network) 100 that exchanges various vehicle information, and the vehicle speed Vs can be received from the CAN 100.
  • the control unit 30 can also be connected to a non-CAN 101 that exchanges communications, analog / digital signals, radio waves, and the like other than the CAN 100.
  • the control unit 30 is mainly composed of an MCU (including a CPU, MPU, etc.), and FIG. 2 shows general functions executed by a program inside the MCU.
  • the function and operation of the control unit 30 will be described with reference to FIG. 2.
  • the steering torque Ts detected by the torque sensor 10 and the vehicle speed Vs detected by the vehicle speed sensor 12 (or from the CAN 100) are represented by the current command value Iref 1.
  • the current command value calculation unit 31 to be calculated is input.
  • the current command value calculation unit 31 calculates a current command value Iref1, which is a control target value of the motor current supplied to the motor 20, using an assist map or the like based on the input steering torque Ts and vehicle speed Vs.
  • the voltage control command value Vref whose characteristics are improved by the PI control unit 35 is input to the PWM control unit 36, and the motor 20 is PWM driven via an inverter 37 as a drive unit.
  • the motor current value Im of the motor 20 is detected by the motor current detector 38 and fed back to the subtraction unit 32B.
  • the inverter 37 uses a FET as a drive element, and is configured by a bridge circuit of the FET.
  • a compensation signal CM from the compensation signal generator 34 is added to the adder 32A, and the compensation of the steering system system is performed by adding the compensation signal CM to improve the convergence and inertia characteristics.
  • Compensation signal generation unit 34 adds self-aligning torque (SAT) 34-3 and inertia 34-2 by addition unit 34-4, and further adds convergence 34-1 to the addition result by addition unit 34-5.
  • the addition result of the adder 34-5 is used as the compensation signal CM.
  • Two-degree-of-freedom control is a control system that can independently set two control characteristics: feedback characteristics such as robust stability and disturbance rejection characteristics, and output response characteristics (target value response characteristics) with respect to the target value.
  • the feedback control characteristic is set by the former element, and the target value response characteristic is set by the latter element.
  • the target value response characteristic is set by the latter element.
  • Both the target value response characteristic and the feedback characteristic have an effect on responsiveness and noise immunity.
  • the target value response characteristic greatly contributes to responsiveness
  • the feedback characteristic greatly contributes to noise immunity, so these characteristics are set individually. This makes it possible to achieve compatible performance.
  • Patent Document 1 proposes a control method using this two-degree-of-freedom control.
  • a response is obtained by considering a calculation time delay in a coefficient of a controller used as a feedforward control element and a feedback control element, and configuring a controller (feedback control element) in a closed loop with a second or higher order. Highly compatible with noise and noise resistance.
  • Patent Document 1 a control method is proposed in which a function for adjusting the gain of the feedback characteristic based on the motor angular velocity, which is one of the EPS states, has been proposed. There is a need to construct a controller that can be changed.
  • Patent Document 2 As a method of changing the characteristics of the controller in accordance with the state of the EPS, for example, there is a method proposed in Japanese Patent No. 5548645 (Patent Document 2).
  • the correction gain is determined according to the vehicle state or the steering state, and the P (proportional) gain and the I (integral) gain of the d-axis current controller are corrected to change the characteristics of the controller to the EPS state. It is changed according to.
  • the present invention has been made under the circumstances as described above, and a controller that can achieve higher compatibility by providing a controller that achieves both responsiveness and noise resistance to some extent and a mechanism that changes the control gain according to the state.
  • a method of configuring is proposed.
  • the object of the present invention is not the “control gain setting ⁇ frequency characteristic change” according to the state, but the “adjustment method of frequency control ⁇ automatic adjustment of the control gain” according to the state. It is to provide a motor control device that achieves desired performance more easily and with higher accuracy by providing a function having the above, and an electric power steering device equipped with the motor control device.
  • the present invention controls a current command value calculation unit that calculates a current command value of a motor that applies a steering assist force to a steering system of a vehicle, and controls a motor current that flows to the motor via a feedback mechanism based on the current command value.
  • a motor control device including a feedback unit that detects at least one state of the motor control device, and outputs the control device state as a control device state, according to the control device state.
  • a characteristic changing unit that changes the setting of the closed loop response characteristic of the feedback unit in real time.
  • the object of the present invention is to calculate the setting for changing the steady-state gain and response frequency as the setting of the closed-loop response characteristic, or to change the characteristic changing unit according to the state of the control device.
  • a steady gain calculation unit that calculates a set value of a steady gain
  • a response frequency calculation unit that calculates a set value of the response frequency according to the state of the control device, and each set value of the steady gain and the response frequency are realized.
  • the change amount of the set value is limited so as not to exceed a predetermined value, or the response frequency calculation unit and the steady gain calculation unit At least one of them includes a priority determination unit that calculates an individual setting value for the control device state and calculates a setting priority in the control device state, and according to the individual setting value and the setting priority
  • a priority determination unit that calculates an individual setting value for the control device state and calculates a setting priority in the control device state, and according to the individual setting value and the setting priority
  • the characteristic changing unit sets a closed loop response steady gain and a closed loop response as the setting of the closed loop response characteristic.
  • the characteristic changing unit is responsive to the control device state.
  • a steady gain calculation unit for calculating each set value of the closed loop response steady gain and the command value response steady gain, and calculating each set value of the closed loop response frequency and the command value response frequency according to the control device state.
  • the calculated change amount of each set value is limited so as not to exceed a predetermined value, or at least one of the response frequency calculation unit and the steady gain calculation unit.
  • a priority determining unit that calculates a setting priority in the control device state, and calculating a final setting value according to the individual setting value and the setting priority, By inputting to the coefficient calculation calculation unit or at least one of the response frequency calculation unit and the steady gain calculation unit, an individual setting value is calculated for the control device state, and the individual setting value By inputting the maximum value to the coefficient calculation calculation unit, or the control device state can be obtained by adding a current command value, motor current, motor angular velocity, motor angle addition. By at least one of the degrees and the motor temperature is more effectively achieved.
  • the motor control device is mounted on an electric power steering device, and the control device state is at least one of current command value, motor current, motor angular velocity, motor angular acceleration, motor temperature, steering torque, steering angle, steering angular velocity, and vehicle speed.
  • responsiveness and noise resistance can be flexibly made compatible by changing the characteristics of the feedback mechanism according to the state of the control device.
  • desired characteristics can be designed by enabling the design of the response frequency and the steady gain according to the state of the control device.
  • the characteristic from the current command value to the motor current value (command value response characteristic) and the characteristic of the feedback mechanism performing the feedback control of the motor current (closed loop response characteristic) are controlled by a control device for vehicle speed, motor angular velocity, etc. It changes according to the state (control device state). Specifically, the response frequency and steady gain of each of the command value response characteristic and the closed loop response characteristic are calculated from the control device state detected by the control device state detection unit.
  • the response frequency and steady gain When calculating the response frequency and steady gain, prepare a map that defines the relationship between each control device state and response frequency and steady gain in advance, and use that map to calculate. Therefore, the response frequency and steady gain of each characteristic can be directly adjusted by adjusting the map in the device design or prior adjustment, so that the desired characteristic can be set. In addition, you may define the relationship between each control apparatus state, a response frequency, and a stationary gain using a function etc. instead of a map, respectively.
  • the coefficient of the transfer function of the control unit of the feedback unit is automatically calculated from the calculated response frequency and steady gain.
  • FIG. 3 shows a configuration example (first embodiment) of the embodiment of the present invention corresponding to FIG. 2, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • a feedback control unit 60 is provided instead of the PI control unit in the feedback mechanism, and a response control unit 50 is interposed between the current command value calculation unit 31 and the feedback mechanism, and the feedback control unit 60 and a response control unit 50 are added with a characteristic changing unit 40 for setting coefficients of transfer functions.
  • the motor angular speed, the steering torque, and the vehicle speed are used as the control device state.
  • the rotation sensor 71 that detects the rotation angle ⁇ r of the motor, and the motor angular speed from the rotation angle ⁇ r.
  • a motor angular velocity calculation unit 72 for calculating ⁇ is added.
  • the rotation sensor 71, the torque sensor 10 for detecting the steering torque shown in FIG. 1, and the vehicle speed sensor 12 for detecting the vehicle speed function as a control device state detection unit.
  • the response control unit 50, the feedback control unit 60, the PWM control unit 36, the inverter 37, and the motor current detector 38 constitute the feedback unit 9.
  • the characteristic changing unit 40 inputs the motor angular speed ⁇ , the steering torque Ts, and the vehicle speed Vs as control device states, and the coefficient of the transfer function C 1 (s) (s is a Laplace operator) of the response control unit 50 and the feedback control unit 60.
  • the coefficient of the transfer function C 2 (s) is calculated.
  • the characteristic change unit 40 includes a response frequency calculation unit 41, a steady gain calculation unit 42, and a coefficient calculation calculation unit 43.
  • the response frequency calculation unit 41 inputs the motor angular speed ⁇ , the steering torque Ts, and the vehicle speed Vs as the control device state, the response frequency of the command value response characteristic (command value response frequency) Fr, and the response frequency of the closed loop response characteristic (closed loop response frequency). ) Calculate Ff.
  • the steady gain calculation unit 42 inputs the motor angular speed ⁇ and the steering torque Ts as the control device state, the steady gain (command value response steady gain) SGr of the command value response characteristic, and the steady gain (closed loop response steady gain) SGf of the closed loop response characteristic.
  • the coefficient calculation calculation unit 43 uses the command value response frequency Fr, the closed loop response frequency Ff, the command value response steady gain SGr, and the closed loop response steady gain SGf, and the coefficient and feedback of the transfer function C 1 (s) of the response control unit 50.
  • the coefficient of the transfer function C 2 (s) of the control unit 60 is calculated.
  • the response frequency calculation unit 41 includes the individual response frequency calculation units 411, 412, and 413 provided for the number of control device states input to the response frequency calculation unit 41, and the closed loop response frequency Ff. And maximum value selection units 414 and 415 for selecting and determining the command value response frequency Fr, respectively.
  • the individual response frequency calculation unit 411 inputs the motor angular velocity ⁇
  • the individual response frequency calculation unit 412 inputs the steering torque Ts
  • the individual response frequency calculation unit 413 inputs the vehicle speed Vs, and is a closed loop for each input control device state.
  • Use a map of response frequency hereinafter referred to as “closed loop individual response frequency”
  • command value response frequency hereinafter referred to as “command value individual response frequency”.
  • the closed loop individual response frequency and the command value individual response frequency are collectively referred to as an individual response frequency.
  • the maximum value selection unit 414 outputs the maximum value among the closed loop individual response frequencies calculated by the individual response frequency calculation units 411, 412 and 413 as the closed loop response frequency Ff.
  • the maximum value selection unit 415 outputs the maximum value among the command value individual response frequencies calculated by the individual response frequency calculation units 411, 412 and 413 as the command value response frequency Fr.
  • the individual response frequency map has two change points where the ratio of the change in the individual response frequency with respect to the change in the control device state changes suddenly.
  • the individual response frequency has a predetermined fixed value (hereinafter referred to as “first fixed value”) below the value of the control device state at the change point (hereinafter referred to as “first boundary value”). Above the value of the control device state at the change point (hereinafter referred to as “second boundary value”), the individual response frequency is another fixed value (hereinafter referred to as “second fixed value”).
  • the individual response frequency is a value obtained by linearly interpolating two change points. Note that there may be three or more change points, and interpolation between change points is not linear interpolation, but may be interpolation with a quadratic or higher curve or the like.
  • the individual response frequency map for the motor angular velocity will be described.
  • the driver can easily feel the vibration from the steering torque acquired from the sensor and the detection noise included in the detected motor current value. Consciousness is appropriate for steering and the external environment, and such vibrations tend to be less conscious. Therefore, as shown in FIG. 5, the individual response frequency is set to be small during low speed steering and large during high speed steering.
  • the individual response frequency is set to be smaller as the steering torque is larger, as shown in FIG.
  • the vehicle speed when the vehicle speed is slow, it tends to feel vibration due to the detection noise, etc., as in the case of the motor angular velocity.
  • the vehicle responds and follows even with minute steering as the vehicle speed increases.
  • the vibration described above is difficult to feel due to road noise. Therefore, as shown in FIG. 7, the individual response frequency is set to be small at a low vehicle speed and large at a high vehicle speed.
  • the steady gain calculation unit 42 includes the individual gain calculation units 421 and 422 provided for the number of control device states input to the steady gain calculation unit 42, the closed loop response steady gain SGf, and the command. Maximum value selection sections 423 and 424 are provided for selecting and determining the value response steady gain SGr, respectively.
  • the individual gain calculation unit 421 receives the motor angular velocity ⁇
  • the individual gain calculation unit 422 receives the steering torque Ts
  • the closed loop response steady gain (hereinafter referred to as “closed loop individual gain”) for each input control device state.
  • the command value response steady gain (hereinafter referred to as “command value individual gain”) is calculated using a map (hereinafter referred to as “individual gain map”).
  • the closed loop individual gain and the command value individual gain are collectively set as individual gains.
  • the maximum value selection unit 423 outputs the maximum value among the closed loop individual gains calculated by the individual gain calculation units 421 and 422 as the closed loop response steady gain SGf.
  • the maximum value selection unit 424 outputs the maximum value among the command value individual gains calculated by the individual gain calculation units 421 and 422 as the command value response steady gain SGr.
  • the steady gain calculation unit 42 adjusts the steady gain of the command value response characteristic and the closed loop response characteristic.
  • the closed loop response characteristic which is a feedback characteristic greatly contributes to the noise tolerance, but the noise included in the current command value and the disturbance until the output of the control unit is applied to the motor (in FIG. 11)
  • the command value response characteristic contributes greatly to the disturbance d).
  • the command value response characteristic which is the target value response characteristic, greatly contributes to responsiveness as described above. Therefore, for these noises, trade-off between responsiveness and noise resistance is possible even with 2-degree-of-freedom control. It has become a relationship.
  • noise included in the low frequency region may be difficult to suppress only by lowering the response frequency (closed loop response frequency, command value response frequency) of both characteristics.
  • the responsiveness of the entire frequency band is adjusted, and the vibration due to the noise is suppressed. That is, as shown in FIG. 8, the high frequency region noise is reduced by changing the response frequency as indicated by the broken line, and the low frequency region noise is indicated by a one-dot chain line. Reduction is achieved by changing the steady-state gain as in the case of characteristics.
  • FIGS. 9 and 10 Examples of individual gain maps for motor angular speed and steering torque are shown in FIGS. 9 and 10, respectively.
  • the individual gain map like the individual response frequency map, has two change points at which the rate of change of the individual gain with respect to the change of the control device state changes suddenly.
  • the individual gain is a predetermined fixed value (hereinafter referred to as “third fixed value”) below the control device state value (hereinafter referred to as “third boundary value”) at the change point with the smaller value of.
  • the individual gain is a different fixed value (hereinafter referred to as “fourth fixed value”) above the value of the control device state at the other change point (hereinafter referred to as “fourth boundary value”).
  • the individual gain is a value obtained by linearly interpolating two change points between the third boundary value and the fourth boundary value.
  • there may be three or more change points, and the interpolation between the change points may not be linear interpolation, but may be interpolation with a quadratic or higher curve or the like.
  • the individual gain map for the motor angular velocity will be explained.
  • noise resistance is emphasized during steering and extremely low speed steering because it tends to feel vibration due to noise or the like included in the current command value rather than responsiveness. Therefore, in the region where the motor angular velocity is low, the individual gain is set small as shown in FIG.
  • the coefficient calculation calculation unit 43 calculates a coefficient of the transfer function C 2 (s) of the feedback control unit 60 using the closed loop response frequency Ff and the closed loop response steady gain SGf. 431 and a response control coefficient calculation that calculates a coefficient of the transfer function C 1 (s) of the response control unit 50 using the command value response frequency Fr, the closed loop response frequency Ff, the command value response steady gain SGr, and the closed loop response steady gain SGf Part 432 is provided.
  • a transfer function (hereinafter referred to as “closed loop transfer function”) G L (s) of the characteristic (closed loop response characteristic) of the feedback mechanism including the feedback control unit 60 is set by a first order transfer function as shown in the following equation (1).
  • T 1 is a time constant, which is equal to the reciprocal of the closed-loop response frequency Ff calculated by the response frequency calculation unit 41, as shown in Equation 2 below.
  • the closed loop response steady gain SGf is calculated by the steady gain calculation unit 42.
  • the transfer function C 2 (s) of the feedback control unit 60 is set as shown in the following formula 4.
  • the closed loop transfer function G ′ L (s) derived from the transfer function C 2 (s) of the feedback control unit 60 and the transfer function P M (s) of the motor is expressed by the following equation (5).
  • the transfer function C 2 (s) of the feedback control unit 60 can be set using the closed loop response frequency Ff and the closed loop response steady gain SGf according to Equation 6.
  • a general PI control transfer function C PI (s) can be expressed by the following equation (7).
  • the design of the feedback control unit when the closed-loop transfer function is the first order is It shows that a control unit having characteristics close to PI control is designed from a closed loop response frequency. Further, when the closed loop transfer function is obtained from the transfer function C PI (s), the following equation 8 is obtained.
  • the control unit When the control unit is configured using PI control from Equation 8, K p and T 1 are involved in a complicated manner, and it is difficult to estimate the closed loop response frequency set using K p and T 1 .
  • the inductance L and the internal resistance R are included in the closed loop transfer function, and the motor characteristics also affect the closed loop response frequency. Therefore, in order to keep the closed loop frequency characteristics constant, control is performed every time the motor characteristics change. Redesign of the part is required.
  • the closed-loop transfer function is set from the closed-loop response frequency and the closed-loop response steady gain as shown in Equations 1 and 2, so that the above problem is solved.
  • the feedback control coefficient calculation unit 431 outputs the coefficients w 0 and w 1 as the control coefficient PRf.
  • Transfer function (hereinafter referred to as “command value transfer function”) G R (s) of the characteristic (command value response characteristic) from the current command value to the motor current value is set by the first-order transfer function as shown in the following formula 9. To do.
  • T 2 is a time constant, which is equal to the reciprocal of the command value response frequency Fr calculated by the response frequency calculation unit 41 as shown in Equation 10 below.
  • the command value response steady gain SGr is calculated by the steady gain calculation unit 42.
  • the command value transfer function derived from the transfer function C 1 (s) and the closed loop transfer function G L (s) ( G ′ L (s)) of the response control unit 50.
  • G ′ R (s) is represented by the following formula 11.
  • the transfer function C 1 (s) can be set.
  • the response control coefficient calculation unit 432 outputs T 1 , T 2 and SGr / SGf as the control coefficient PRr.
  • Response control unit 50 calculates control current command value Irefc from current command value Iref1 using transfer function C 1 (s) set based on control coefficient PRr output from characteristic changing unit 40.
  • the feedback control unit 60 uses the transfer function C 2 (s) set based on the control coefficient PRf output from the characteristic changing unit 40, and the deviation between the control current command value Irefc and the motor current value Im fed back.
  • the rotation sensor 71, the torque sensor 10, and the vehicle speed sensor 12 detect the rotation angle ⁇ r, the steering torque Ts, and the vehicle speed Vs of the motor 20, respectively (step S1).
  • the rotation angle ⁇ r is input to the motor angular velocity calculation unit 72, and the motor angular velocity calculation unit 72 calculates the motor angular velocity ⁇ by differentiating the rotation angle ⁇ r (step S2).
  • the steering torque Ts and the vehicle speed Vs are input to the current command value calculation unit 31 and the characteristic changing unit 40, and the motor angular velocity ⁇ is input to the characteristic changing unit 40.
  • the motor angular velocity ⁇ is input to the individual response frequency calculating unit 411 of the response frequency calculating unit 41 and the individual gain calculating unit 421 of the steady gain calculating unit 42, and the steering torque Ts is input to the individual response of the response frequency calculating unit 41.
  • the frequency calculation unit 412 and the individual gain calculation unit 422 of the steady gain calculation unit 42 are input, and the vehicle speed Vs is input to the individual response frequency calculation unit 413 of the response frequency calculation unit 41.
  • the individual response frequency calculation unit 411 calculates the closed loop individual response frequency Ff1 and the command value individual response frequency Fr1 using the individual response frequency map shown in FIG. Similarly, the individual response frequency calculation units 412 and 413 also use the individual response frequency maps shown in FIG. 6 and FIG. 7, respectively, and the closed loop individual response frequency Ff2, the command value individual response frequency Fr2, and the closed loop individual response frequency Ff3 and The command value individual response frequency Fr3 is calculated (step S3).
  • the closed loop individual response frequencies Ff1, Ff2, and Ff3 are input to the maximum value selection unit 414 of the response frequency calculation unit 41, and the maximum value selection unit 414 sets the maximum value among the closed loop individual response frequencies Ff1, Ff2, and Ff3 to the closed loop response frequency. Calculated as Ff (step S4).
  • the command value individual response frequencies Fr1, Fr2, and Fr3 are input to the maximum value selection unit 415 of the response frequency calculation unit 41, and the maximum value selection unit 415 is the maximum of the command value individual response frequencies Fr1, Fr2, and Fr3.
  • the value is calculated as a command value response frequency Fr (step S5).
  • the individual gain calculation unit 421 calculates the closed loop individual gain SGf1 and the command value individual gain SGr1 using the individual gain map shown in FIG. Similarly, the individual gain calculation unit 422 calculates the closed loop individual gain SGf2 and the command value individual gain SGr2 using the individual gain map shown in FIG. 10 (step S6).
  • the closed loop individual gains SGf1 and SGf2 are input to the maximum value selection unit 423 of the steady gain calculation unit 42, and the maximum value selection unit 423 calculates the maximum value of the closed loop individual gains SGf1 and SGf2 as the closed loop response steady gain SGf ( Step S7).
  • the command value individual gains SGr1 and SGr2 are input to the maximum value selection unit 424 of the steady gain calculation unit 42, and the maximum value selection unit 424 uses the maximum value of the command value individual gains SGr1 and SGr2 as the command value response steady state.
  • the gain SGr is calculated (step S8).
  • the closed loop response frequency Ff and the closed loop response steady gain SGf are input to the feedback control coefficient calculation unit 431 and the response control coefficient calculation unit 432 of the coefficient calculation calculation unit 43.
  • the command value response frequency Fr and the command value response steady gain SGr are input to the response control coefficient calculation unit 432 of the coefficient calculation calculation unit 43.
  • the feedback control coefficient calculation unit 431 calculates the coefficients w 0 and w 1 from Equation 6 using the closed loop response frequency Ff and the closed loop gain SGf, and outputs them as the control coefficient PRf (step S9).
  • the response control coefficient calculation unit 432 calculates time constants T 1 and T 2 from Equations 2 and 10 using the closed loop response frequency Ff, the closed loop response steady gain SGf, the command value response frequency Fr, and the command value response steady gain SGr. Then, together with the calculation result of SGr / SGf, it is output as the control coefficient PRr (step S10).
  • the current command value calculation unit 31 calculates the current command value Iref1 and outputs it to the response control unit 50 (step S11).
  • the response control unit 50 sets the transfer function C 1 (s) of Formula 12 using the control coefficient PRr output from the response control coefficient calculation unit 432, and uses the set transfer function C 1 (s) to A control current command value Irefc is calculated from the command value Iref1 (step S12).
  • the control current command value Irefc is input to the subtraction unit 32B, a deviation Ic from the motor current value Im detected and fed back by the motor current detector 38 is calculated, and the deviation Ic is input to the feedback control unit 60.
  • the feedback control unit 60 sets the transfer function C 2 (s) of Expression 4 using the control coefficient PRf output from the feedback control coefficient calculation unit 431, the preset inductance L, and the internal resistance R, and the set transfer
  • the voltage control command value Vrefc is calculated from the deviation Ic using the function C 2 (s) (step S13).
  • the voltage control command value Vrefc is input to the PWM control unit 36, and the motor 20 is further PWM driven via the inverter 37 (step S14).
  • the motor angular velocity, the steering torque, and the vehicle speed are used for calculating the response frequency (closed loop response frequency, command value response frequency), and the motor angular velocity is used for calculating the steady gain (closed loop response steady gain, command value response steady gain).
  • the vehicle speed may be used for calculating the steady-state gain
  • other control device states such as the steering angle, the motor current, the motor temperature, and the current command may be used for calculating the response frequency and the steady-state gain.
  • a controller state that can be acquired by a sensor such as a value, a motor angular acceleration, a steering angular velocity, or an estimation means.
  • FIGS. 13 to 15 show examples of individual response frequency maps with respect to the steering angle, motor current, and motor temperature, respectively.
  • EPS may be equipped with a rack end protection function that performs correction to gradually reduce the assist amount near the rack end in order to protect the rack end and improve heat resistance.
  • a rack end protection function that performs correction to gradually reduce the assist amount near the rack end in order to protect the rack end and improve heat resistance.
  • vibration problems that are different from normal times may occur.
  • FIG. 13 by reducing the individual response frequency in the vicinity of the rack end, vibration can be made difficult to occur.
  • the effect of the mechanism that reduces and absorbs vibration decreases as the motor current increases, and the rigidity of the entire EPS increases. As a result, the vibrations that were normally hidden are easily transmitted. Therefore, as shown in FIG. 14, the individual response frequency is set smaller as the motor current increases.
  • the feedback control unit is basically configured to cancel the motor characteristics, so the closed-loop response characteristics are not affected by the motor characteristics.
  • the internal resistance and inductance of the motor change depending on the motor temperature, an error may occur even if the set internal resistance and inductance are adjusted in advance assuming the motor temperature.
  • the model error is increased by increasing the individual response frequency as the distance from the reference temperature used at the time of motor model adjustment increases, that is, as the motor temperature decreases as shown in FIG. Can respond.
  • the individual response frequency map for the current command value is set smaller as the current command value becomes larger, as in the case of the motor current.
  • the individual response frequency is set to be small when it is small, and the individual response frequency is set to be large when it is large.
  • the order of the closed-loop transfer function, the command value transfer function, etc. is the first order, but is not limited to this, and may be any order of the second or higher order.
  • the components may be divided and integrated.For example, the individual response frequency calculating unit and the individual gain calculating unit are divided into a calculation for the closed loop response characteristic and a calculation for the command value response characteristic, respectively. Also good.
  • the amount of change from the previous value is limited with respect to the response frequency calculated by the response frequency calculation unit of the characteristic change unit and the steady gain calculated by the steady gain calculation unit.
  • the response frequency and steady-state gain can be flexibly changed according to the state of each control device, but the response frequency and steady-state gain may change suddenly or vibrate due to sudden changes in the noise or signal value included in the signal of each control device state. There is a possibility that. This becomes a new sound / vibration generation factor, so that the occurrence of sound / vibration is suppressed by suppressing the change amount of the response frequency and the steady-state gain below a certain level.
  • FIG. 16 shows an example of the configuration of the characteristic changing unit in the second embodiment, corresponding to the characteristic changing unit in the first embodiment shown in FIG. Is omitted.
  • the other component in 2nd Embodiment is the same as 1st Embodiment.
  • the closed loop response frequency, the command value response frequency, the closed loop response steady gain, and the command value response steady gain (hereinafter collectively referred to as “selection data”) calculated by the maximum value selection units 414, 415, 423, and 424.
  • selection data the maximum value selection units 414, 415, 423, and 424.
  • the memories 815, 816, 817, and 818 that store the previous selection data, the selection data calculated by the maximum value selection unit, and the memory are stored.
  • change amount limiting units 811, 812, and 813 that adjust the selection data so that the change amount (difference magnitude) does not become larger than a predetermined value (hereinafter referred to as “limit value”). And 814 are provided.
  • the change amount limiters 811, 812, 813, and 814 have limit values CFf, CFr, CSGf, and CSGr, respectively, and the selection data output from the maximum value selection unit and the previous selection data stored in the memory.
  • the selection data is added or subtracted so that the absolute value of the difference becomes the limit value.
  • the selection data output from the maximum value selection unit is output as it is.
  • the closed loop response frequency Ff output from the maximum value selection unit 414 is input to the change amount limiting unit 811.
  • ⁇ Ff the closed loop response frequency
  • Ffm the closed loop response frequency
  • the closed loop response frequency Ff is set as the closed loop response frequency Ffm.
  • the closed loop response frequency Ffm is output to the feedback control coefficient calculator 431 and stored in the memory 815.
  • the closed loop response frequency Ffm stored in the memory 815 is used for the next difference calculation.
  • the change amount limiting units 812, 813, and 814 also calculate and output the command value response frequency Frm, the closed loop response steady gain SGfm, and the command value response steady gain SGrm, respectively, by the same operation as the change amount limiting unit 811.
  • the maximum value among the individual response frequencies is set as a response frequency (closed loop response frequency, command value response frequency), and the maximum value among the individual gains is a steady gain (closed loop response steady gain, command value response steady gain).
  • priority (setting priority) is assigned to each control device state, and the individual response frequency and individual gain weighted by the priority are used as the response frequency and steady gain.
  • FIG. 17 shows a configuration example of the characteristic changing unit in the third embodiment in correspondence with the characteristic changing unit in the first embodiment shown in FIG. 4. Is omitted.
  • the other components in the third embodiment are the same as those in the first embodiment.
  • a priority determination unit 93 that determines the priority of each control device state is added, and the maximum value selection unit provided in the response frequency calculation unit and the steady-state gain calculation unit is eliminated.
  • Multipliers 911 to 916 and 921 to 924 for weighting the response frequency and the individual gain with priority, and multipliers 917, 918, 925 for calculating the response frequency and the steady gain from the weighted individual response frequency and individual gain, and 926 is provided.
  • the priority determination unit 93 determines the priority of each control device state (motor angular speed ⁇ , steering torque Ts, and vehicle speed Vs in this configuration example). The priority may be set in advance for each control device state, or may be variable according to the value of the input control device state.
  • the motor angular velocity ⁇ , the steering torque Ts, and the vehicle speed Vs input to the characteristic changing unit 90 are input to the priority determining unit 93, and the motor angular velocity ⁇ is calculated by the response frequency calculating unit 91 as in the first embodiment.
  • the individual response frequency calculation unit 411 and the individual gain calculation unit 421 of the steady gain calculation unit 92 are input to the steering torque Ts, and the individual response frequency calculation unit 412 of the response frequency calculation unit 91 and the individual gain calculation unit 422 of the steady gain calculation unit 92.
  • the vehicle speed Vs is input to the individual response frequency calculation unit 413 of the response frequency calculation unit 91 (step S21).
  • the priority determination unit 93 determines and outputs a priority Pw for the motor angular speed ⁇ , a priority Pt for the steering torque Ts, and a priority Pv for the vehicle speed Vs (step S22).
  • the individual response frequency calculation unit 411 calculates the closed loop individual response frequency Ff1 and the command value individual response frequency Fr1 by the same operation as in the first embodiment, and outputs them to the multipliers 911 and 912, respectively.
  • the multiplier 911 multiplies the closed loop individual response frequency Ff1 by the priority Pw, and outputs the multiplication result as the closed loop individual response frequency Ff1p.
  • the multiplier 912 multiplies the command value individual response frequency Fr1 by the priority Pw, and outputs the multiplication result as the command value individual response frequency Fr1p.
  • the individual response frequency calculation units 412 and 413 perform the same operation as in the first embodiment, and the multipliers 913 to 916 multiply the priorities for the respective control device states, respectively, and the closed loop individual response frequencies Ff2p, Ff3p, command values
  • the individual response frequencies Fr2p and Fr3p are output (step S23).
  • the closed loop individual response frequencies Ff1p, Ff2p, and Ff3p are input to the multiplier 917, and the multiplication result is output as the closed loop response frequency Ffp.
  • the command value individual response frequencies Fr1p, Fr2p, and Fr3p are input to the multiplier 918, and the multiplication result is output as the closed loop response frequency Frp (step S24).
  • the individual gain calculation unit 421 calculates the closed loop individual gain SGf1 and the command value individual gain SGr1 by the same operation as in the first embodiment, and outputs them to the multipliers 921 and 922, respectively.
  • the multiplier 921 multiplies the closed loop individual gain SGf1 by the priority Pw, and outputs the multiplication result as the closed loop individual gain SGf1p.
  • Multiplier 922 multiplies command value individual gain SGr1 by priority Pw, and outputs the multiplication result as command value individual gain SGr1p.
  • the individual gain calculation unit 422 also performs the same operation as in the first embodiment, and the multipliers 923 and 924 multiply the priority levels Pt, respectively, to output the closed loop individual gain SGf2p and the command value individual gain SGr2p (step S25). ).
  • the closed loop individual gains SGf1p and SGf2p are input to the multiplier 925, and the multiplication result is output as a closed loop response steady gain SGfp.
  • the command value individual gains SGr1p and SGr2p are input to the multiplier 926, and the multiplication result is output as the command value response steady gain SGrp (step S26).
  • the state of the control device can be reflected in the response frequency and steady gain.
  • the priority given to each control device state may be a different value instead of the same value for the individual response frequency and individual gain, or different values for the closed loop response characteristic and the command value response characteristic.
  • the change amount limiting unit added in the second embodiment may be added to limit the change amount from the previous value.
  • the response control unit and the feedback control unit are arranged at positions as shown in FIG. 3, but the arrangement of the control unit is not limited to this.
  • the command value response characteristic and the closed loop response characteristic can be formed, the command value response characteristic and the closed loop response characteristic may be arranged at arbitrary positions.
  • various configurations proposed as a two-degree-of-freedom control system may be used.
  • methods other than the method using the maximum value and the priority may be used in calculating the response frequency and the steady gain from the individual response frequency and the individual gain.
  • the minimum value or the average value may be used instead of the maximum value, and the maximum value and the individual gain may be set as the response frequency and the steady gain by combining the maximum value and the priority.
  • the characteristic changing unit calculates only the coefficient of the transfer function of the feedback control unit.
  • the conventional characteristic improving method can be incorporated into the present invention, and the amount of calculation of the characteristic changing unit can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

制御装置の状態に合わせて周波数特性を設定し、その設定値から制御ゲインを自動で調整することにより、より簡単に、より高精度に、所望の性能を達成するモータ制御装置及びそれを搭載した電動パワーステアリング装置を提供するために、車両の操舵系に操舵補助力を付与するモータの電流指令値を演算する電流指令値演算部と、電流指令値を基準にフィードバック機構を介してモータに流れるモータ電流を制御するフィードバック部を備えるモータ制御装置において、モータ制御装置の少なくとも1つの状態を検出し、制御装置状態として出力する制御装置状態検出部と、制御装置状態に応じて、フィードバック部の閉ループ応答特性の設定をリアルタイムで変更する特性変更部とを備える。

Description

モータ制御装置及びそれを搭載した電動パワーステアリング装置
 本発明は、操舵指令となる電流指令値に基づいてフィードバック機構を介してモータに流れるモータ電流を制御するモータ制御装置に関し、特にフィードバック機構の特性をリアルタイムで変更できるモータ制御装置及びそれを搭載した電動パワーステアリング装置に関する。
 車両の操舵系をモータの回転力でアシスト制御する電動パワーステアリング装置(EPS)は、モータの駆動力で減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に操舵補助力(アシスト力)を付与するようになっている。かかる従来の電動パワーステアリング装置は、操舵補助力のトルクを正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、電流指令値とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM(パルス幅変調)制御のデューティの調整で行っている。
 電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクを検出するトルクセンサ10及び操舵角θを検出する舵角センサ14が設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)30には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー(IG)信号が入力される。コントロールユニット30は、トルクセンサ10で検出された操舵トルクTsと車速センサ12で検出された車速Vsとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、電流指令値に補償等を施した電圧制御指令値Vrefによって、EPS用モータ20に供給する電流を制御する。
 なお、舵角センサ14は必須のものではなく、配設されていなくても良く、また、モータ20に連結されたレゾルバ等の回転センサから操舵角を取得することも可能である。
 コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)100が接続されており、車速VsはCAN100から受信することも可能である。また、コントロールユニット30には、CAN100以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN101も接続可能である。
 コントロールユニット30は主としてMCU(CPU、MPU等も含む)で構成されるが、そのMCU内部においてプログラムで実行される一般的な機能を示すと図2のようになる。
 図2を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ10で検出された操舵トルクTs及び車速センサ12で検出された(若しくはCAN100からの)車速Vsは、電流指令値Iref1を演算する電流指令値演算部31に入力される。電流指令値演算部31は、入力された操舵トルクTs及び車速Vsに基づいてアシストマップ等を用いて、モータ20に供給するモータ電流の制御目標値である電流指令値Iref1を演算する。電流指令値Iref1は加算部32Aを経て電流制限部33に入力され、最大電流を制限された電流指令値Irefmが減算部32Bに入力され、フィードバックされているモータ電流値Imとの偏差I(=Irefm-Im)が演算され、その偏差Iが操舵動作の特性改善のためのPI(比例積分)制御部35に入力される。PI制御部35で特性改善された電圧制御指令値VrefがPWM制御部36に入力され、更に駆動部としてのインバータ37を介してモータ20がPWM駆動される。モータ20のモータ電流値Imはモータ電流検出器38で検出され、減算部32Bにフィードバックされる。インバータ37は駆動素子としてFETが用いられ、FETのブリッジ回路で構成されている。
 加算部32Aには補償信号生成部34からの補償信号CMが加算されており、補償信号CMの加算によって操舵システム系の特性補償を行い、収れん性や慣性特性等を改善するようになっている。補償信号生成部34は、セルフアライニングトルク(SAT)34-3と慣性34-2を加算部34-4で加算し、その加算結果に更に収れん性34-1を加算部34-5で加算し、加算部34-5の加算結果を補償信号CMとしている。
 このような電動パワーステリング装置においては、車両と運転者の操舵との一体感を向上させるために、電流制御系の応答性を高く設定することが望まれる一方で、センサから取得した操舵トルクやモータ電流検出値に含まれる検出ノイズに起因する音・振動を低減するため、ノイズ耐性を高くすることが望まれる。しかし一般に、電流制御系の応答性を高くするとノイズ耐性は低下してしまうため、この2つを両立させることは困難である。
 これを解決する手段として、例えば2自由度制御が利用されている。2自由度制御は、ロバスト安定性や外乱除去特性等のフィードバック特性と目標値に対する出力応答特性(目標値応答特性)の2つの制御特性を独立に設定できる制御系であり、フィードバック制御要素とフィードフォワード制御要素の2つの要素から構成され、フィードバック特性は前者の要素により、目標値応答特性は後者の要素により設定される。電動パワーステアリング装置への2自由度制御の応用では、電流指令値からモータ電流値までの目標値応答特性とフィードバック機構でのフィードバック特性を個別に設定することが可能である。この目標値応答特性とフィードバック特性は共に応答性とノイズ耐性に影響があるが、特に目標値応答特性は応答性に、フィードバック特性はノイズ耐性に大きく寄与するため、これらの特性を個別に設定することで、相反する性能を両立させることを可能としている。
 この2自由度制御を利用した制御手法が、例えば特許第5034633号公報(特許文献1)で提案されている。特許文献1では、フィードフォワード制御要素及びフィードバック制御要素として使用する制御器の係数に演算時間遅れを考慮し、かつ閉ループ内の制御器(フィードバック制御要素)を2次以上で構成することで、応答性とノイズ耐性を高度に両立している。
 しかしながら、制御器の性能に対する要求は年々高度化しており、特許文献1のように高度に応答性とノイズ耐性を両立しても、電動パワーステアリング装置(EPS)の状態によっては求められる性能が変化するため、対応が不十分となる場合がある。例えば、過半の車速領域では、ノイズ性能よりも微小な操舵に対しても車両が追従することが望まれる。従って、応答性を上げるべく目標値応答特性での応答周波数(指令値応答周波数)及びフィードバック特性での応答周波数(閉ループ応答周波数)は共に高めに設定することが望ましい。一方で、停車ないしクリープ走行中などの極低車速時は、前記の検出ノイズによる音・振動に対する感度が上がり、特に保舵時は顕著に感じられるため、ノイズ耐性を向上させる必要があり、閉ループ応答周波数を低く設定することが望ましく、車速状態で求められる性能がトレードオフの関係となっている。特許文献1において、EPSの状態の1つであるモータ角速度に基づいてフィードバック特性のゲインを調整する機能を追加した制御手法が提案されているが、より高い自由度で、EPSの状態によって特性を変更可能とする制御器を構成することが必要とされている。
 制御器の特性をEPSの状態に合わせて変更する手法としては、例えば特許第5548645号公報(特許文献2)で提案されている手法がある。特許文献2では、車両状態又は操舵状態に応じて補正ゲインを決定し、d軸電流制御器のP(比例)ゲイン及びI(積分)ゲインを補正することで、制御器の特性をEPSの状態に合わせて変更している。
特許第5034633号公報 特許第5548645号公報
 しかし、一般的にEPSの性能評価は、周波数領域で行われることが多い。これは、評価の主な指標(音・振動・応答性等)が振幅や周波数で解析され、かつ共振周波数や動作周期等と関連することが多いことによる。このことから、各制御ゲインも制御器の周波数特性を指標に設計される。このため、特許文献2のような制御ゲインを直接補正する手法では、設計時に制御ゲインの変化に対する周波数特性の変化を確認しながら設計を進める必要があり、かつ制御ゲインを同時に複数調整するため、設計が難しく、時間を要する。また、制御ゲインの設定から制御器がどのような周波数特性を持つかが分かりにくく、製品の納入先でのチューニングも非常に困難となる。さらに、制御ゲインの変化量と応答周波数の変化量が一致するとは限らず、所望の特性を作り出せない可能性がある。
 本発明は上述のような事情よりなされたものであり、応答性とノイズ耐性をある程度両立する制御器と制御ゲインを状態に合わせて変更する機構を設けることで、より高度に両立可能な制御器を構成する手法は提案されている。しかし、例えば2自由度のように複数の制御ゲインが絡んで性能を左右する複雑な制御器を、EPSの各状態に合わせて制御ゲインを調整し、かつ別次元の周波数特性で評価することは非常に困難であり、所望の性能を達成することができない可能性がある。
 そこで、本発明の目的は、状態に合わせて「制御ゲインを設定→周波数特性が変化」では無く、状態に合わせて「周波数特性を設定→制御ゲインは自動で調整」という従来と逆の調整手法を持つ機能を設けることで、より簡単に、より高精度に、所望の性能を達成するモータ制御装置及びそれを搭載した電動パワーステアリング装置を提供することにある。
 本発明は、車両の操舵系に操舵補助力を付与するモータの電流指令値を演算する電流指令値演算部と、前記電流指令値を基準にフィードバック機構を介して前記モータに流れるモータ電流を制御するフィードバック部を備えるモータ制御装置に関し、本発明の上記目的は、前記モータ制御装置の少なくとも1つの状態を検出し、制御装置状態として出力する制御装置状態検出部と、前記制御装置状態に応じて、前記フィードバック部の閉ループ応答特性の設定をリアルタイムで変更する特性変更部とを備えることにより達成される。
 本発明の上記目的は、前記特性変更部は、前記閉ループ応答特性の設定として定常ゲイン及び応答周波数を変更する設定を算出することにより、或いは前記特性変更部は、前記制御装置状態に応じて前記定常ゲインの設定値を算出する定常ゲイン算出部と、前記制御装置状態に応じて前記応答周波数の設定値を算出する応答周波数算出部と、前記定常ゲイン及び前記応答周波数の各設定値を実現するための前記フィードバック部の制御部の伝達関数の各種係数を算出する係数算出演算部とを具備することにより、或いは前記応答周波数算出部及び前記定常ゲイン算出部の少なくとも一方において、算出される前記各設定値の変化量が所定の値を超えないように制限されることにより、或いは前記応答周波数算出部及び前記定常ゲイン算出部の少なくとも一方において、前記制御装置状態に対して個別設定値を算出するとともに、前記制御装置状態における設定優先度を算出する優先度決定部を具備し、前記個別設定値及び前記設定優先度に応じて最終設定値を算出し、前記係数算出演算部に入力することにより、或いは前記応答周波数算出部及び前記定常ゲイン算出部の少なくとも一方において、前記制御装置状態に対して個別設定値を算出するとともに、前記個別設定値の中の最大値を前記係数算出演算部に入力することにより、或いは前記フィードバック部の構成が、前記閉ループ応答特性及び指令値応答特性を個別に設定可能とする2自由度制御構成であることにより、或いは前記特性変更部は、前記閉ループ応答特性の設定として閉ループ応答定常ゲイン及び閉ループ応答周波数を変更する設定を算出し、前記指令値応答特性の設定として指令値応答定常ゲイン及び指令値応答周波数を変更する設定を算出することにより、或いは前記特性変更部は、前記制御装置状態に応じて前記閉ループ応答定常ゲイン及び前記指令値応答定常ゲインの各設定値を算出する定常ゲイン算出部と、前記制御装置状態に応じて前記閉ループ応答周波数及び前記指令値応答周波数の各設定値を算出する応答周波数算出部と、前記閉ループ応答定常ゲイン、前記指令値応答定常ゲイン、前記閉ループ応答周波数及び前記指令値応答周波数の各設定値を実現するための前記フィードバック部の制御部の伝達関数の各種係数を算出する係数算出演算部とを具備することにより、或いは前記応答周波数算出部及び前記定常ゲイン算出部の少なくとも一方において、算出される前記各設定値の変化量が所定の値を超えないように制限されることにより、或いは前記応答周波数算出部及び前記定常ゲイン算出部の少なくとも一方において、前記制御装置状態に対して個別設定値を算出するとともに、前記制御装置状態における設定優先度を算出する優先度決定部を具備し、前記個別設定値及び前記設定優先度に応じて最終設定値を算出し、前記係数算出演算部に入力することにより、或いは前記応答周波数算出部及び前記定常ゲイン算出部の少なくとも一方において、前記制御装置状態に対して個別設定値を算出するとともに、前記個別設定値の中の最大値を前記係数算出演算部に入力することにより、或いは前記制御装置状態は、電流指令値、モータ電流、モータ角速度、モータ角加速度及びモータ温度の内の少なくとも1つであることにより、より効果的に達成される。
 上記モータ制御装置を電動パワーステアリング装置に搭載し、前記制御装置状態を電流指令値、モータ電流、モータ角速度、モータ角加速度、モータ温度、操舵トルク、操舵角、操舵角速度及び車速の内の少なくとも1つとすることにより、より簡単で、より高精度に制御可能な電動パワーステアリング装置を達成することができる。
 本発明のモータ制御装置によれば、フィードバック機構の特性を制御装置の状態に応じて変更することにより、応答性とノイズ耐性を柔軟に両立させることができる。さらに、制御装置の状態に応じた応答周波数及び定常ゲインの設計を可能とすることにより、所望の特性を設計することができる。
 さらに、本発明に係るモータ制御装置を搭載した電動パワーステアリング装置によれば、適切なアシストによりスムーズなハンドリングを可能することができる。
電動パワーステアリング装置の概要を示す構成図である。 電動パワーステアリング装置のコントロールユニット(ECU)の構成例を示すブロック図である。 本発明の構成例(第1実施形態)を示すブロック図である。 第1実施形態の特性変更部の構成例を示すブロック図である。 モータ角速度に対する個別応答周波数マップの例を示す特性図である。 操舵トルクに対する個別応答周波数マップの例を示す特性図である。 車速に対する個別応答周波数マップの例を示す特性図である。 応答周波数及びゲインの変更による応答特性(振幅特性)の変化の例を示す特性図である。 モータ角速度に対する個別ゲインマップの例を示す特性図である。 操舵トルクに対する個別ゲインマップの例を示す特性図である。 第1実施形態の伝達関数を示すブロック図である。 本発明の動作例(第1実施形態)を示すフローチャートである。 操舵角に対する個別応答周波数マップの例を示す特性図である。 モータ電流に対する個別応答周波数マップの例を示す特性図である。 モータ温度に対する個別応答周波数マップの例を示す特性図である。 本発明の構成例(第2実施形態)の特性変更部の構成例を示すブロック図である。 本発明の構成例(第3実施形態)の特性変更部の構成例を示すブロック図である。 本発明の動作例(第3実施形態)を示すフローチャートである。
 本発明では、電流指令値からモータ電流値までの特性(指令値応答特性)と、モータ電流のフィードバック制御を行っているフィードバック機構の特性(閉ループ応答特性)を、車速やモータ角速度等の制御装置の状態(制御装置状態)に応じて変更する。具体的には、指令値応答特性及び閉ループ応答特性それぞれの応答周波数及び定常ゲインを、制御装置状態検出部が検出した制御装置状態より算出する。このように、2つの特性(指令値応答特性、閉ループ応答特性)を個別に制御することにより応答性とノイズ耐性を両立させることができ、さらに制御装置状態に応じて特性を自動的に変更することにより、適切な制御ができる。
 応答周波数及び定常ゲインの算出に当たり、各制御装置状態と応答周波数及び定常ゲインの関係をそれぞれ定義したマップを予め用意し、そのマップを使用して算出する。よって、装置の設計或いは事前調整においてマップを調整することにより、各特性の応答周波数及び定常ゲインを直接調整することができるので、所望の特性を設定することができる。なお、マップではなく関数等を使用して、各制御装置状態と応答周波数及び定常ゲインの関係をそれぞれ定義しても良い。
 算出された応答周波数及び定常ゲインから、フィードバック部の制御部の伝達関数の係数が自動的に算出される。
 以下に、本発明の実施の形態を、図面を参照して説明する。
 図3は本発明の実施形態の構成例(第1実施形態)を図2に対応させて示しており、同一構成には同一符号を付して説明は省略する。
 本構成例では、フィードバック機構内のPI制御部に替わってフィードバック制御部60が設けられ、電流指令値演算部31とフィードバック機構の間には応答制御部50が介挿されており、フィードバック制御部60及び応答制御部50それぞれの伝達関数の係数を設定する特性変更部40が追加されている。また、本構成例では制御装置状態としてモータ角速度、操舵トルク及び車速を使用しており、モータ角速度を算出するために、モータの回転角θrを検出する回転センサ71と、回転角θrからモータ角速度ωを算出するモータ角速度演算部72が追加されている。この回転センサ71並びに図1に示されている操舵トルク検出のためのトルクセンサ10及び車速検出のための車速センサ12が制御装置状態検出部として機能する。また、応答制御部50、フィードバック制御部60、PWM制御部36、インバータ37及びモータ電流検出器38よりフィードバック部9が構成される。
 特性変更部40はモータ角速度ω、操舵トルクTs及び車速Vsを制御装置状態として入力し、応答制御部50の伝達関数C(s)(sはラプラス演算子)の係数及びフィードバック制御部60の伝達関数C(s)の係数を算出する。
 特性変更部40の構成例を図4に示す。特性変更部40は応答周波数算出部41、定常ゲイン算出部42及び係数算出演算部43を備えている。応答周波数算出部41は、制御装置状態としてモータ角速度ω、操舵トルクTs及び車速Vsを入力し、指令値応答特性の応答周波数(指令値応答周波数)Fr及び閉ループ応答特性の応答周波数(閉ループ応答周波数)Ffを算出する。定常ゲイン算出部42は、制御装置状態としてモータ角速度ω及び操舵トルクTs入力し、指令値応答特性の定常ゲイン(指令値応答定常ゲイン)SGr及び閉ループ応答特性の定常ゲイン(閉ループ応答定常ゲイン)SGfを算出する。係数算出演算部43は、指令値応答周波数Fr、閉ループ応答周波数Ff、指令値応答定常ゲインSGr及び閉ループ応答定常ゲインSGfを用いて、応答制御部50の伝達関数C(s)の係数及びフィードバック制御部60の伝達関数C(s)の係数を算出する。
 応答周波数算出部41は、図4に示されるように、応答周波数算出部41に入力される制御装置状態の数だけ備えられている個別応答周波数算出部411,412,413と、閉ループ応答周波数Ff及び指令値応答周波数Frをそれぞれ選択決定する最大値選択部414,415を備えている。個別応答周波数算出部411はモータ角速度ωを入力し、個別応答周波数算出部412は操舵トルクTsを入力し、個別応答周波数算出部413は車速Vsを入力し、入力された各制御装置状態に対する閉ループ応答周波数(以下、「閉ループ個別応答周波数」とする)及び指令値応答周波数(以下、「指令値個別応答周波数」とする)を、マップ(以下、「個別応答周波数マップ」とする)を使用して算出する。なお、閉ループ個別応答周波数及び指令値個別応答周波数を纏めて個別応答周波数とする。最大値選択部414は、個別応答周波数算出部411、412及び413で算出された閉ループ個別応答周波数の中の最大値を閉ループ応答周波数Ffとして出力する。最大値選択部415は、個別応答周波数算出部411、412及び413で算出された指令値個別応答周波数の中の最大値を指令値応答周波数Frとして出力する。
 ここで、個別応答周波数マップについて説明する。
 モータ角速度、操舵トルク及び車速に対する個別応答周波数マップの例を図5、図6及び図7にそれぞれ示す。
 図5~図7に示されるように、個別応答周波数マップは、制御装置状態の変化に対する個別応答周波数の変化の割合が急に変わる変化点が2つあり、制御装置状態の値が小さい方の変化点の制御装置状態の値(以下、「第1境界値」とする)以下では個別応答周波数は所定の固定値(以下、「第1固定値」とする)となっており、もう一方の変化点の制御装置状態の値(以下、「第2境界値」とする)以上では個別応答周波数は別の固定値(以下、「第2固定値」とする)となっている。そして、第1境界値と第2境界値の間では、個別応答周波数は2つの変化点を線形補間した値となっている。なお、変化点は3つ以上あっても良く、変化点間の補間も線形補間ではなく、2次以上の曲線等での補間でも良い。
 次に、各制御装置状態に対する個別応答周波数マップの例について説明する。
 まずはモータ角速度に対する個別応答周波数マップについて説明する。モータ角速度が遅い場合、センサから取得される操舵トルクやモータ電流検出値に含まれる検出ノイズ等からの振動を運転者は感じやすいが、モータ角速度が速い場合は、緊急回避や駐車操作等での操舵や外部環境に意識が向いており、前記のような振動は意識されにくい傾向にある。よって、個別応答周波数は、図5に示されるように、低速操舵時は小さく、高速操舵時には大きく設定される。
 操舵トルクについては、操舵トルクが大きくなるほどEPS内に設けられているゴムブッシュやギアの隙間等、振動を低減・吸収する機構の効果が低くなり、EPS全体の剛性が上がっていく。このため、通常時には隠れていた振動が伝わりやすくなってしまう。よって、個別応答周波数は、図6に示されるように、操舵トルクが大きくなるほど小さく設定される。
 車速については、車速が遅い場合、モータ角速度の場合と同様に、前記検出ノイズ等による振動を感じやすい傾向にあるが、車速が速くなるほど微小操舵に対しても車両が遅れなく反応・追従することを求められ、かつ前記のような振動はロードノイズ等にまぎれて感じにくくなる。よって、個別応答周波数は、図7に示されるように、低車速時には小さく、高車速時には大きく設定される。
 定常ゲイン算出部42は、図4に示されるように、定常ゲイン算出部42に入力される制御装置状態の数だけ備えられている個別ゲイン算出部421,422と、閉ループ応答定常ゲインSGf及び指令値応答定常ゲインSGrをそれぞれ選択決定する最大値選択部423,424を備えている。個別ゲイン算出部421はモータ角速度ωを入力し、個別ゲイン算出部422は操舵トルクTsを入力し、入力された各制御装置状態に対する閉ループ応答定常ゲイン(以下、「閉ループ個別ゲイン」とする)及び指令値応答定常ゲイン(以下、「指令値個別ゲイン」とする)を、マップ(以下、「個別ゲインマップ」とする)を使用して算出する。なお、閉ループ個別ゲイン及び指令値個別ゲインを纏めて個別ゲインとする。最大値選択部423は、個別ゲイン算出部421及び422で算出された閉ループ個別ゲインの中の最大値を閉ループ応答定常ゲインSGfとして出力する。最大値選択部424は、個別ゲイン算出部421及び422で算出された指令値個別ゲインの中の最大値を指令値応答定常ゲインSGrとして出力する。
 定常ゲイン算出部42は指令値応答特性及び閉ループ応答特性の定常ゲインを調整する。前述のように、ノイズ耐性についてはフィードバック特性である閉ループ応答特性が大きく寄与するが、電流指令値に含まれるノイズや制御部の出力がモータに印加されるまでにのる外乱(図11での外乱d)については、指令値応答特性が大きく寄与する。目標値応答特性である指令値応答特性は、前述のように、応答性に大きく寄与するため、これらのノイズに対しては、2自由度制御であっても、応答性とノイズ耐性がトレードオフの関係となっている。また、低周波領域に含まれるノイズも、両特性の応答周波数(閉ループ応答周波数、指令値応答周波数)を下げるだけでは抑制が困難な場合がある。そこで、両特性の定常ゲインを下げることで、全周波数帯域の応答性を調整し、前記ノイズによる振動を抑制する。つまり、図8に示されるように、高周波領域のノイズに対しては破線で示される特性のように応答周波数を変更することにより低減を図り、低周波領域のノイズに対しては一点鎖線で示される特性のように定常ゲインを変更することにより低減を図る。
 ここで、個別ゲインマップについて説明する。
 モータ角速度及び操舵トルクに対する個別ゲインマップの例を図9及び図10にそれぞれ示す。
 図9及び図10に示されるように、個別ゲインマップは、個別応答周波数マップと同様に、制御装置状態の変化に対する個別ゲインの変化の割合が急に変わる変化点が2つあり、制御装置状態の値が小さい方の変化点の制御装置状態の値(以下、「第3境界値」とする)以下では個別ゲインは所定の固定値(以下、「第3固定値」とする)となっており、もう一方の変化点の制御装置状態の値(以下、「第4境界値」とする)以上では個別ゲインは別の固定値(以下、「第4固定値」とする)となっている。そして、第3境界値と第4境界値の間では、個別ゲインは2つの変化点を線形補間した値となっている。なお、個別応答周波数マップの場合と同様に、変化点は3つ以上あっても良く、変化点間の補間も線形補間ではなく、2次以上の曲線等での補間でも良い。
 次に、各制御装置状態に対する個別ゲインマップの例について説明する。
 まずはモータ角速度に対する個別ゲインマップについて説明する。モータ角速度については、保舵中や極低速操舵中は応答性よりも電流指令値に含まれるノイズ等による振動を感じやすい傾向にあるため、ノイズ耐性が重視される。よって、モータ角速度が遅い領域では、図9に示されるように、個別ゲインは小さく設定される。
 操舵トルクについては、操舵トルクはセンサにより取得されるため、検出ノイズが含まれている。そのため、操舵トルクが小さく検出ノイズの影響が大きくなっている領域では、図10に示されるように、個別ゲインは小さく設定される。
 係数算出演算部43は、図4に示されるように、閉ループ応答周波数Ff及び閉ループ応答定常ゲインSGfを用いてフィードバック制御部60の伝達関数C(s)の係数を算出するフィードバック制御係数算出部431と、指令値応答周波数Fr、閉ループ応答周波数Ff、指令値応答定常ゲインSGr及び閉ループ応答定常ゲインSGfを用いて応答制御部50の伝達関数C(s)の係数を算出する応答制御係数算出部432を備える。
 ここで、フィードバック制御部60の伝達関数C(s)の係数及び応答制御部50の伝達関数C(s)の係数の算出について説明する。
 まず、フィードバック制御部60の伝達関数C(s)の係数の算出について説明する。
 フィードバック制御部60を含むフィードバック機構の特性(閉ループ応答特性)の伝達関数(以下、「閉ループ伝達関数」とする)G(s)を下記数1のように1次の伝達関数で設定する。
Figure JPOXMLDOC01-appb-M000001
は時定数であり、下記数2のように、応答周波数算出部41が算出する閉ループ応答周波数Ffの逆数と一致する。
Figure JPOXMLDOC01-appb-M000002
閉ループ応答定常ゲインSGfは定常ゲイン算出部42が算出する。
 これに対して、モータの伝達関数P(s)は、インダクタンスをL、内部抵抗をRとすると、下記数3で表わされる。
Figure JPOXMLDOC01-appb-M000003
そして、モータの特性を打ち消し、フィードバック機構を閉ループ応答特性で制御するために、フィードバック制御部60の伝達関数C(s)を下記数4のように設定する。
Figure JPOXMLDOC01-appb-M000004
 
 図11に示されるように、フィードバック制御部60の伝達関数C(s)とモータの伝達関数P(s)から導き出される閉ループ伝達関数G’(s)は下記数5で表わされる。
Figure JPOXMLDOC01-appb-M000005
 
 よって、G(s)=G’(s)として、伝達関数C(s)の係数w、wを算出すると、下記数6のようになる。
Figure JPOXMLDOC01-appb-M000006
インダクタンスL及び内部抵抗Rを予め設定しておけば、数6より、閉ループ応答周波数Ff及び閉ループ応答定常ゲインSGfを用いてフィードバック制御部60の伝達関数C(s)を設定することができる。
 ところで、一般的なPI制御の伝達関数CPI(s)は下記数7で表わすことができる。
Figure JPOXMLDOC01-appb-M000007
このように、伝達関数CPI(s)は伝達関数C(s)と分子、分母共に次数が一致していることから、閉ループ伝達関数を1次とした場合のフィードバック制御部の設計は、PI制御に近い特性を持つ制御部を閉ループ応答周波数から設計していることを示している。また、伝達関数CPI(s)より閉ループ伝達関数を求めると、下記数8のようになる。
Figure JPOXMLDOC01-appb-M000008
数8よりPI制御を用いて制御部を構成した場合、KとTが複雑に絡んでおり、K及びTを用いて設定される閉ループ応答周波数を推測するのは困難である。また、閉ループ伝達関数にインダクタンスL及び内部抵抗Rも含まれており、モータの特性も閉ループ応答周波数に影響を及ぼすので、閉ループ周波数特性を一定に保つためには、モータの特性が変わる毎に制御部の再設計が必要となる。本構成例では、閉ループ伝達関数は数1及び数2のように閉ループ応答周波数と閉ループ応答定常ゲインから設定されているので、上記の問題点は解消される。
 フィードバック制御係数算出部431は、係数w及びwを制御係数PRfとして出力する。
 次に応答制御部50の伝達関数C(s)の係数の算出について説明する。
 電流指令値からモータ電流値までの特性(指令値応答特性)の伝達関数(以下、「指令値伝達関数」とする)G(s)を下記数9のように1次の伝達関数で設定する。
Figure JPOXMLDOC01-appb-M000009
は時定数であり、下記数10のように、応答周波数算出部41が算出する指令値応答周波数Frの逆数と一致する。
Figure JPOXMLDOC01-appb-M000010
指令値応答定常ゲインSGrは定常ゲイン算出部42が算出する。
 これに対して、図11に示されるように、応答制御部50の伝達関数C(s)と閉ループ伝達関数G(s)(=G’(s))から導き出される指令値伝達関数G’(s)は下記数11で表わされる。
Figure JPOXMLDOC01-appb-M000011
 
 伝達関数C(s)は、閉ループ応答特性を消去し、指令値応答を指令値応答特性で制御するために、G(s)=G’(s)として、下記数12のように設定する。
Figure JPOXMLDOC01-appb-M000012
 よって、数12より、指令値応答周波数Fr(=1/T)、閉ループ応答周波数Ff(=1/T)、指令値応答定常ゲインSGr及び閉ループ応答定常ゲインSGfを用いて応答制御部50の伝達関数C(s)を設定することができる。
 応答制御係数算出部432は、T、T及びSGr/SGfを制御係数PRrとして出力する。
 応答制御部50は、特性変更部40から出力される制御係数PRrに基づいて設定される伝達関数C(s)を用いて、電流指令値Iref1から制御電流指令値Irefcを算出する。
 フィードバック制御部60は、特性変更部40から出力される制御係数PRfに基づいて設定される伝達関数C(s)を用いて、制御電流指令値Irefcとフィードバックされるモータ電流値Imとの偏差Ic(=Irefc-Im)から電圧制御指令値Vrefcを算出する。
 このような構成において、その動作例を図12のフローチャートを参照して説明する。
 動作が開始すると、回転センサ71、トルクセンサ10及び車速センサ12がそれぞれモータ20の回転角θr、操舵トルクTs及び車速Vsを検出する(ステップS1)。回転角θrはモータ角速度演算部72に入力され、モータ角速度演算部72は回転角θrを微分することによりモータ角速度ωを算出する(ステップS2)。
 操舵トルクTs及び車速Vsは電流指令値演算部31及び特性変更部40に入力され、モータ角速度ωは特性変更部40に入力される。
 特性変更部40では、モータ角速度ωは応答周波数算出部41の個別応答周波数算出部411及び定常ゲイン算出部42の個別ゲイン算出部421に入力され、操舵トルクTsは応答周波数算出部41の個別応答周波数算出部412及び定常ゲイン算出部42の個別ゲイン算出部422に入力され、車速Vsは応答周波数算出部41の個別応答周波数算出部413に入力される。
 個別応答周波数算出部411は、図5に示される個別応答周波数マップを使用して、閉ループ個別応答周波数Ff1及び指令値個別応答周波数Fr1を算出する。同様に、個別応答周波数算出部412及び413も、図6及び図7に示される個別応答周波数マップを使用して、それぞれ閉ループ個別応答周波数Ff2及び指令値個別応答周波数Fr2並びに閉ループ個別応答周波数Ff3及び指令値個別応答周波数Fr3を算出する(ステップS3)。
 閉ループ個別応答周波数Ff1、Ff2及びFf3は応答周波数算出部41の最大値選択部414に入力され、最大値選択部414は、閉ループ個別応答周波数Ff1、Ff2及びFf3の中の最大値を閉ループ応答周波数Ffとして算出する(ステップS4)。
 同様に、指令値個別応答周波数Fr1、Fr2及びFr3は応答周波数算出部41の最大値選択部415に入力され、最大値選択部415は、指令値個別応答周波数Fr1、Fr2及びFr3の中の最大値を指令値応答周波数Frとして算出する(ステップS5)。
 個別ゲイン算出部421は、図9に示される個別ゲインマップを使用して、閉ループ個別ゲインSGf1及び指令値個別ゲインSGr1を算出する。同様に、個別ゲイン算出部422は、図10に示される個別ゲインマップを使用して、閉ループ個別ゲインSGf2及び指令値個別ゲインSGr2を算出する(ステップS6)。
 閉ループ個別ゲインSGf1及びSGf2は定常ゲイン算出部42の最大値選択部423に入力され、最大値選択部423は、閉ループ個別ゲインSGf1及びSGf2の中の最大値を閉ループ応答定常ゲインSGfとして算出する(ステップS7)。
 同様に、指令値個別ゲインSGr1及びSGr2は定常ゲイン算出部42の最大値選択部424に入力され、最大値選択部424は、指令値個別ゲインSGr1及びSGr2の中の最大値を指令値応答定常ゲインSGrとして算出する(ステップS8)。
 閉ループ応答周波数Ff及び閉ループ応答定常ゲインSGfは係数算出演算部43のフィードバック制御係数算出部431及び応答制御係数算出部432に入力される。指令値応答周波数Fr及び指令値応答定常ゲインSGrは係数算出演算部43の応答制御係数算出部432に入力される。
 フィードバック制御係数算出部431は、閉ループ応答周波数Ff及び閉ループゲインSGfを用いて、数6より係数w、wを算出し、制御係数PRfとして出力する(ステップS9)。
 応答制御係数算出部432は、閉ループ応答周波数Ff、閉ループ応答定常ゲインSGf、指令値応答周波数Fr及び指令値応答定常ゲインSGrを用いて、数2、数10より時定数T及びTを算出し、SGr/SGfの演算結果と共に、制御係数PRrとして出力する(ステップS10)。
 操舵トルクTs及び車速Vsを入力した電流指令値演算部31は電流指令値Iref1を演算し、応答制御部50に出力する(ステップS11)。
 応答制御部50は、応答制御係数算出部432から出力された制御係数PRrを用いて数12の伝達関数C(s)を設定し、設定した伝達関数C(s)を用いて、電流指令値Iref1から制御電流指令値Irefcを算出する(ステップS12)。
 制御電流指令値Irefcは減算部32Bに入力され、モータ電流検出器38で検出されフィードバックされたモータ電流値Imとの偏差Icが演算され、偏差Icはフィードバック制御部60に入力される。
 フィードバック制御部60は、フィードバック制御係数算出部431から出力された制御係数PRfと予め設定されたインダクタンスL及び内部抵抗Rを用いて数4の伝達関数C(s)を設定し、設定した伝達関数C(s)を用いて、偏差Icから電圧制御指令値Vrefcを算出する(ステップS13)。
 電圧制御指令値VrefcはPWM制御部36に入力され、更にインバータ37を介してモータ20がPWM駆動される(ステップS14)。
 なお、第1実施形態では、応答周波数(閉ループ応答周波数、指令値応答周波数)算出にモータ角速度、操舵トルク及び車速を用い、定常ゲイン(閉ループ応答定常ゲイン、指令値応答定常ゲイン)算出にモータ角速度及び操舵トルクを用いているが、定常ゲイン算出に車速を用いても良く、さらに、応答周波数及び定常ゲイン算出に、これら以外の制御装置状態、例えば、操舵角、モータ電流、モータ温度、電流指令値、モータ角加速度、操舵角速度等のセンサや推定手段にて取得可能な制御装置状態を用いても良い。図13~図15に、操舵角、モータ電流及びモータ温度に対する個別応答周波数マップの例をそれぞれ示す。
 操舵角に対する個別応答周波数マップの例について説明する。EPSには、ラック端の保護や熱耐性向上のため、ラック端近くになるとアシスト量を徐々に絞るような補正を行うラック端保護機能が搭載されることがあるが、この機能によりラック端付近では出力が急変しやすくなっているため、通常時とは異なる振動問題が起こることがある。これに対して、図13に示されるように、ラック端付近で個別応答周波数を小さくすることで、振動を起こしにくくすることができる。
 モータ電流については、操舵トルクと同様に、モータ電流が大きくなるほどEPS内に設けられているゴムブッシュやギアの隙間など振動を低減・吸収する機構の効果が低くなり、EPS全体の剛性が上がっていくので、通常時には隠れていた振動が伝わりやすくなってしまう。よって、図14に示されるように、個別応答周波数はモータ電流が大きくなるほど小さく設定される。
 モータ温度については、基本的にはフィードバック制御部がモータの特性を打ち消すように構成されるため、閉ループ応答特性はモータの特性に左右されない。しかし、モータの内部抵抗やインダクタンスはモータ温度により変化するため、設定される内部抵抗やインダクタンスを、モータ温度を想定して予め調整しても、誤差を生じる場合がある。この場合、応答性が低下するため、モータモデル調整時に用いた基準温度から離れるほど、つまり、図15に示されるように、モータ温度が低くなるほど、個別応答周波数を大きくすることにより、モデル誤差に対応することができる。
 電流指令値に対する個別応答周波数マップは、モータ電流の場合と同様に、電流指令値が大きくなるほど個別応答周波数は小さく設定される。
 モータ角加速度及び操舵角速度それぞれに対する個別応答周波数マップは、モータ角速度の場合と同様に、小さいときには個別応答周波数は小さく、大きいときには個別応答周波数は大きく設定される。
 第1実施形態では、閉ループ伝達関数や指令値伝達関数等の次数は1次としたが、これに限定されず、2次以上の任意の次数としても良い。また、特性変更部の構成において、構成要素の分割及び統合を行っても良く、例えば個別応答周波数算出部及び個別ゲイン算出部を、それぞれ閉ループ応答特性向け算出と指令値応答特性向け算出に分けても良い。
 次に、本発明の第2実施形態について説明する。
 第2実施形態では、特性変更部の応答周波数算出部で算出される応答周波数及び定常ゲイン算出部で算出される定常ゲインに対して、前回値からの変化量を制限するようにする。応答周波数及び定常ゲインは各制御装置状態により柔軟に変更することができるが、各制御装置状態の信号に含まれるノイズや信号の値が急変することにより、応答周波数及び定常ゲインが急変や振動してしまう可能性がある。これは、新たな音・振動の発生要因となってしまうので、応答周波数及び定常ゲインの変化量を一定以下に抑えることで、音・振動の発生を抑制する。
 図16は第2実施形態での特性変更部の構成例を、図4に示される第1実施形態での特性変更部に対応させて示しており、同一構成には同一符号を付して説明は省略する。なお、第2実施形態での他の構成要素は、第1実施形態と同じである。
 本構成例では、最大値選択部414、415、423及び424で算出される閉ループ応答周波数、指令値応答周波数、閉ループ応答定常ゲイン及び指令値応答定常ゲイン(以下、纏めて「選択データ」とする)に対して前回値からの変化量を制限するために、前回の選択データを格納するメモリ815、816、817及び818と、最大値選択部で算出される選択データとメモリに格納されている前回の選択データとを比較し、変化量(差分の大きさ)が所定の値(以下、「制限値」とする)より大きくならないように選択データを調整する変化量制限部811、812、813及び814が設けられている。
 変化量制限部811、812、813及び814は、それぞれ制限値CFf、CFr、CSGf及びCSGrを有しており、最大値選択部から出力される選択データとメモリに格納されている前回の選択データの差分の絶対値が制限値より大きい場合、差分の絶対値が制限値になるように選択データを加減算する。差分の絶対値が制限値以下の場合は、最大値選択部から出力される選択データをそのまま出力する。
 このような構成における変化量制限部811の動作例について説明する。
 最大値選択部414から出力された閉ループ応答周波数Ffは変化量制限部811に入力される。
 変化量制限部811は、メモリ815に格納されている前回の閉ループ応答周波数Ffpと最大値選択部414から出力された閉ループ応答周波数Ffの差分ΔFf(=Ff-Ffp)を算出する。そして、ΔFfの絶対値が制限値CFfより大きい場合、下記数13より閉ループ応答周波数Ffmを算出する。
Figure JPOXMLDOC01-appb-M000013
ΔFfの絶対値が制限値CFf以下の場合、閉ループ応答周波数Ffを閉ループ応答周波数Ffmとする。
 閉ループ応答周波数Ffmはフィードバック制御係数算出部431に出力されると共に、メモリ815に格納される。メモリ815に格納された閉ループ応答周波数Ffmは、次回の差分算出に使用される。
 変化量制限部812、813及び814も、変化量制限部811と同様の動作により、指令値応答周波数Frm、閉ループ応答定常ゲインSGfm及び指令値応答定常ゲインSGrmをそれぞれ算出し、出力する。
 なお、変化量として差分の大きさではなく、差分の割合等を使用しても良い。例えば、前回値に対する差分の割合が所定の値より大きい場合、差分の割合が所定の値になるように選択データを調整する。
 次に、本発明の第3実施形態について説明する。
 第1実施形態では個別応答周波数の中の最大値を応答周波数(閉ループ応答周波数、指令値応答周波数)とし、個別ゲインの中の最大値を定常ゲイン(閉ループ応答定常ゲイン、指令値応答定常ゲイン)としているが、第3実施形態では、各制御装置状態に優先度(設定優先度)を付け、個別応答周波数及び個別ゲインを優先度で重み付けしたものを応答周波数及び定常ゲインとする。
 図17は第3実施形態での特性変更部の構成例を、図4に示される第1実施形態での特性変更部に対応させて示しており、同一構成には同一符号を付して説明は省略する。なお、第3実施形態での他の構成要素は、第1実施形態と同じである。
 本構成例では、各制御装置状態の優先度を決定する優先度決定部93が追加され、応答周波数算出部及び定常ゲイン算出部に設けられていた最大値選択部がなくなり、その代わりに、個別応答周波数及び個別ゲインを優先度で重み付ける乗算器911~916及び921~924と、重み付けられた個別応答周波数及び個別ゲインから応答周波数及び定常ゲインを算出するための乗算器917、918、925及び926が設けられている。
 優先度決定部93は、各制御装置状態(本構成例ではモータ角速度ω、操舵トルクTs及び車速Vs)の優先度を決定する。優先度は制御装置状態毎に予め設定しておいても良いし、入力される制御装置状態の値等に応じて可変としても良い。
 このような構成における優先度決定部93、応答周波数算出部91及び定常ゲイン算出部92の動作例を図18のフローチャートを参照して説明する。
 特性変更部90に入力されたモータ角速度ω、操舵トルクTs及び車速Vsは優先度決定部93に入力されると共に、第1実施形態の場合と同様に、モータ角速度ωは応答周波数算出部91の個別応答周波数算出部411及び定常ゲイン算出部92の個別ゲイン算出部421に入力され、操舵トルクTsは応答周波数算出部91の個別応答周波数算出部412及び定常ゲイン算出部92の個別ゲイン算出部422に入力され、車速Vsは応答周波数算出部91の個別応答周波数算出部413に入力される(ステップS21)。
 優先度決定部93は、モータ角速度ωに対する優先度Pw、操舵トルクTsに対する優先度Pt及び車速Vsに対する優先度Pvを決定し、出力する(ステップS22)。
 個別応答周波数算出部411は、第1実施形態と同様の動作により、閉ループ個別応答周波数Ff1及び指令値個別応答周波数Fr1を算出し、それぞれ乗算器911及び912に出力する。乗算器911では閉ループ個別応答周波数Ff1に優先度Pwが乗算され、乗算結果が閉ループ個別応答周波数Ff1pとして出力される。乗算器912では指令値個別応答周波数Fr1に優先度Pwが乗算され、乗算結果が指令値個別応答周波数Fr1pとして出力される。
 個別応答周波数算出部412、413も第1実施形態と同様の動作を実施し、さらに乗算器913~916において各制御装置状態に対する優先度がそれぞれ乗算され、閉ループ個別応答周波数Ff2p、Ff3p、指令値個別応答周波数Fr2p、Fr3pが出力される(ステップS23)。
 閉ループ個別応答周波数Ff1p、Ff2p及びFf3pは乗算器917に入力され、乗算結果が閉ループ応答周波数Ffpとして出力される。指令値個別応答周波数Fr1p、Fr2p及びFr3pは乗算器918に入力され、乗算結果が閉ループ応答周波数Frpとして出力される(ステップS24)。
 個別ゲイン算出部421は、第1実施形態と同様の動作により、閉ループ個別ゲインSGf1及び指令値個別ゲインSGr1を算出し、それぞれ乗算器921及び922に出力する。乗算器921では閉ループ個別ゲインSGf1に優先度Pwが乗算され、乗算結果が閉ループ個別ゲインSGf1pとして出力される。乗算器922では指令値個別ゲインSGr1に優先度Pwが乗算され、乗算結果が指令値個別ゲインSGr1pとして出力される。
 個別ゲイン算出部422も第1実施形態と同様の動作を実施し、さらに乗算器923及び924において優先度Ptがそれぞれ乗算され、閉ループ個別ゲインSGf2p及び指令値個別ゲインSGr2pが出力される(ステップS25)。
 閉ループ個別ゲインSGf1p及びSGf2pは乗算器925に入力され、乗算結果が閉ループ応答定常ゲインSGfpとして出力される。指令値個別ゲインSGr1p及びSGr2pは乗算器926に入力され、乗算結果が指令値応答定常ゲインSGrpとして出力される(ステップS26)。
 このように各制御装置状態に優先度を付けて応答周波数及び定常ゲインを算出することにより、応答周波数及び定常ゲインに制御装置の状態を細かに反映させることができる。
 なお、より細かい調整を可能にするべく、各制御装置状態に付ける優先度を、個別応答周波数及び個別ゲインで同じ値ではなく違う値にしても良く、閉ループ応答特性及び指令値応答特性で違う値にしても良い。
 また、第3実施形態において、第2実施形態で追加された変化量制限部を追加して、前回値からの変化量を制限しても良い。
 上述の実施形態(第1実施形態~第3実施形態)では、応答制御部及びフィードバック制御部を図3に示されるような位置に配置しているが、制御部の配置についてはこれに限られず、指令値応答特性及び閉ループ応答特性を形成可能であれば任意の位置に配置して良く、例えば2自由度制御系として提案されている様々な構成を使用しても良い。
 また、個別応答周波数及び個別ゲインから応答周波数及び定常ゲインの算出において、最大値や優先度を使用した方法以外の方法を使用しても良い。例えば、最大値ではなく最小値や平均値を使用しても良く、最大値と優先度を組み合わせて、重み付けられた個別応答周波数及び個別ゲインの最大値を応答周波数及び定常ゲインとしても良い。
 さらに、応答制御部の代わりに、例えば図2に示されるような電流制限部及び補償信号生成部を備える構成を配置しても良い。この場合、特性変更部はフィードバック制御部の伝達関数の係数のみを算出することになる。これにより、従来からの特性改善手法を本発明に組み込むと共に、特性変更部の演算量を低減することができる。
1              ハンドル
2              コラム軸(ステアリングシャフト、ハンドル軸)
9              フィードバック部
10             トルクセンサ
12             車速センサ
14             舵角センサ
20             モータ
30             コントロールユニット(ECU)
31             電流指令値演算部
33             電流制限部
34             補償信号生成部
35             PI制御部
36             PWM制御部
37             インバータ
38             モータ電流検出器
40、80、90       特性変更部
41、81、91       応答周波数算出部
42、82、92       定常ゲイン算出部
43             係数算出演算部
50             応答制御部
60             フィードバック制御部
71             回転センサ
72             モータ角速度演算部
93             優先度決定部
411、412、413    個別応答周波数算出部
421、422        個別ゲイン算出部
414、415、423、424  最大値選択部
431            フィードバック制御係数算出部
432            応答制御係数算出部
811、812、813、814  変化量制限部
815、816、817、818  メモリ
911、912、913、914、915、916、917、918、921、922、923、924、925、926  乗算器

Claims (14)

  1.  車両の操舵系に操舵補助力を付与するモータの電流指令値を演算する電流指令値演算部と、前記電流指令値を基準にフィードバック機構を介して前記モータに流れるモータ電流を制御するフィードバック部を備えるモータ制御装置において、
     前記モータ制御装置の少なくとも1つの状態を検出し、制御装置状態として出力する制御装置状態検出部と、
     前記制御装置状態に応じて、前記フィードバック部の閉ループ応答特性の設定をリアルタイムで変更する特性変更部とを備えることを特徴とするモータ制御装置。
  2.  前記特性変更部は、前記閉ループ応答特性の設定として定常ゲイン及び応答周波数を変更する設定を算出する請求項1に記載のモータ制御装置。
  3.  前記特性変更部は、
     前記制御装置状態に応じて前記定常ゲインの設定値を算出する定常ゲイン算出部と、
     前記制御装置状態に応じて前記応答周波数の設定値を算出する応答周波数算出部と、
     前記定常ゲイン及び前記応答周波数の各設定値を実現するための前記フィードバック部の制御部の伝達関数の各種係数を算出する係数算出演算部とを具備する請求項2に記載のモータ制御装置。
  4.  前記応答周波数算出部及び前記定常ゲイン算出部の少なくとも一方において、算出される前記各設定値の変化量が所定の値を超えないように制限される請求項3に記載のモータ制御装置。
  5.  前記応答周波数算出部及び前記定常ゲイン算出部の少なくとも一方において、前記制御装置状態に対して個別設定値を算出するとともに、前記制御装置状態における設定優先度を算出する優先度決定部を具備し、前記個別設定値及び前記設定優先度に応じて最終設定値を算出し、前記係数算出演算部に入力する請求項3又は4に記載のモータ制御装置。
  6.  前記応答周波数算出部及び前記定常ゲイン算出部の少なくとも一方において、前記制御装置状態に対して個別設定値を算出するとともに、前記個別設定値の中の最大値を前記係数算出演算部に入力する請求項3又は4に記載のモータ制御装置。
  7.  前記フィードバック部の構成が、前記閉ループ応答特性及び指令値応答特性を個別に設定可能とする2自由度制御構成である請求項1に記載のモータ制御装置。
  8.  前記特性変更部は、前記閉ループ応答特性の設定として閉ループ応答定常ゲイン及び閉ループ応答周波数を変更する設定を算出し、前記指令値応答特性の設定として指令値応答定常ゲイン及び指令値応答周波数を変更する設定を算出する請求項7に記載のモータ制御装置。
  9.  前記特性変更部は、
     前記制御装置状態に応じて前記閉ループ応答定常ゲイン及び前記指令値応答定常ゲインの各設定値を算出する定常ゲイン算出部と、
     前記制御装置状態に応じて前記閉ループ応答周波数及び前記指令値応答周波数の各設定値を算出する応答周波数算出部と、
     前記閉ループ応答定常ゲイン、前記指令値応答定常ゲイン、前記閉ループ応答周波数及び前記指令値応答周波数の各設定値を実現するための前記フィードバック部の制御部の伝達関数の各種係数を算出する係数算出演算部とを具備する請求項8に記載のモータ制御装置。
  10.  前記応答周波数算出部及び前記定常ゲイン算出部の少なくとも一方において、算出される前記各設定値の変化量が所定の値を超えないように制限される請求項9に記載のモータ制御装置。
  11.  前記応答周波数算出部及び前記定常ゲイン算出部の少なくとも一方において、前記制御装置状態に対して個別設定値を算出するとともに、前記制御装置状態における設定優先度を算出する優先度決定部を具備し、前記個別設定値及び前記設定優先度に応じて最終設定値を算出し、前記係数算出演算部に入力する請求項9又は10に記載のモータ制御装置。
  12.  前記応答周波数算出部及び前記定常ゲイン算出部の少なくとも一方において、前記制御装置状態に対して個別設定値を算出するとともに、前記個別設定値の中の最大値を前記係数算出演算部に入力する請求項9又は10に記載のモータ制御装置。
  13.  前記制御装置状態は、電流指令値、モータ電流、モータ角速度、モータ角加速度及びモータ温度の内の少なくとも1つである請求項1乃至12のいずれかに記載のモータ制御装置。
  14.  請求項1乃至12のいずれかに記載のモータ制御装置が搭載され、前記制御装置状態は、電流指令値、モータ電流、モータ角速度、モータ角加速度、モータ温度、操舵トルク、操舵角、操舵角速度及び車速の内の少なくとも1つである電動パワーステアリング装置。
PCT/JP2016/061061 2015-04-10 2016-04-05 モータ制御装置及びそれを搭載した電動パワーステアリング装置 WO2016163343A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16776509.8A EP3282576B1 (en) 2015-04-10 2016-04-05 Motor control device and electric power steering device equipped with same
US15/559,123 US10457322B2 (en) 2015-04-10 2016-04-05 Motor control unit and electric power steering apparatus equipped with the same
CN201680021156.5A CN107408910B (zh) 2015-04-10 2016-04-05 电动机控制装置以及搭载了该电动机控制装置的电动助力转向装置
JP2017510981A JP6519650B2 (ja) 2015-04-10 2016-04-05 モータ制御装置及びそれを搭載した電動パワーステアリング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-080664 2015-04-10
JP2015080664 2015-04-10

Publications (1)

Publication Number Publication Date
WO2016163343A1 true WO2016163343A1 (ja) 2016-10-13

Family

ID=57072055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061061 WO2016163343A1 (ja) 2015-04-10 2016-04-05 モータ制御装置及びそれを搭載した電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US10457322B2 (ja)
EP (1) EP3282576B1 (ja)
JP (1) JP6519650B2 (ja)
CN (1) CN107408910B (ja)
WO (1) WO2016163343A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10277821B2 (en) * 2016-04-19 2019-04-30 Semiconductor Components Industries, Llc Methods and apparatus for optical image stabilization
KR102205254B1 (ko) * 2017-04-27 2021-01-21 현대모비스 주식회사 전동식 파워 스티어링 시스템의 모터 제어 장치 및 방법
JP7006471B2 (ja) * 2018-04-12 2022-01-24 オムロン株式会社 状態変化検出装置及び状態変化検出方法
US10768075B2 (en) * 2018-06-14 2020-09-08 GM Global Technology Operations LLC Rack disturbance test for determining the frequency response of an electric power steering system
JP7047686B2 (ja) * 2018-09-18 2022-04-05 株式会社デンソー モータ駆動装置、及び操舵システム
DE102021202482B4 (de) * 2021-03-15 2023-06-29 Continental Automotive Technologies GmbH Regelungseinrichtung und Verfahren zur Lenkwinkelregelung eines Fahrzeugs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628006A (ja) * 1992-04-06 1994-02-04 Mitsubishi Electric Corp 2自由度制御装置及び電動機のサーボ制御装置
JP2008055994A (ja) * 2006-08-30 2008-03-13 Toyota Motor Corp 車両の制駆動力制御装置
JP5548645B2 (ja) * 2011-04-05 2014-07-16 アスモ株式会社 電動パワーステアリング制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034633A (ja) 1973-07-31 1975-04-03
JPH0471959A (ja) 1990-07-10 1992-03-06 Fujitsu Ltd 電動式パワーステアリング装置
JP3231932B2 (ja) * 1994-01-10 2001-11-26 本田技研工業株式会社 電動式パワーステアリング装置
US6046560A (en) 1998-03-20 2000-04-04 Trw Inc. Electric assist steering system having an improved motor current controller with gain scheduler
JP2004129416A (ja) * 2002-10-03 2004-04-22 Yaskawa Electric Corp モータ制御装置の制振制御方法および装置
JP4367383B2 (ja) 2005-07-08 2009-11-18 トヨタ自動車株式会社 車両の操舵アシスト装置
US8080957B2 (en) * 2006-04-11 2011-12-20 Nsk, Ltd. Motor control device and motor-driven power steering system using the same
JP2008030675A (ja) * 2006-07-31 2008-02-14 Nsk Ltd 電動パワーステアリング装置
US8222853B2 (en) * 2007-01-17 2012-07-17 Panasonic Corporation Servo motor control apparatus and control method
TWI404322B (zh) * 2009-04-14 2013-08-01 Mitsubishi Electric Corp 馬達控制裝置
JP5573126B2 (ja) 2009-11-27 2014-08-20 株式会社ジェイテクト 電動パワーステアリング装置
JP5556845B2 (ja) * 2012-04-26 2014-07-23 株式会社デンソー 3相回転機の制御装置
JP5835091B2 (ja) * 2012-05-11 2015-12-24 日本精工株式会社 電動パワーステアリング装置
WO2014171027A1 (ja) * 2013-04-17 2014-10-23 日本精工株式会社 多相モータの制御装置及びそれを用いた電動パワーステアリング装置
US10099721B2 (en) * 2014-11-19 2018-10-16 Nsk Ltd. Electric power steering apparatus
WO2016098244A1 (ja) * 2014-12-19 2016-06-23 日本精工株式会社 モータ制御装置及びそれを用いた電動パワーステアリング装置
CN108631680B (zh) * 2017-03-22 2022-06-03 操纵技术Ip控股公司 永磁同步机及使用振动感应凸极确定电机位置的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628006A (ja) * 1992-04-06 1994-02-04 Mitsubishi Electric Corp 2自由度制御装置及び電動機のサーボ制御装置
JP2008055994A (ja) * 2006-08-30 2008-03-13 Toyota Motor Corp 車両の制駆動力制御装置
JP5548645B2 (ja) * 2011-04-05 2014-07-16 アスモ株式会社 電動パワーステアリング制御装置

Also Published As

Publication number Publication date
US10457322B2 (en) 2019-10-29
CN107408910B (zh) 2019-12-10
CN107408910A (zh) 2017-11-28
JPWO2016163343A1 (ja) 2017-11-09
EP3282576B1 (en) 2020-02-12
US20180273090A1 (en) 2018-09-27
JP6519650B2 (ja) 2019-06-05
EP3282576A4 (en) 2018-11-21
EP3282576A1 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
WO2016163343A1 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP7264058B2 (ja) 操舵制御装置
US10526009B2 (en) Electric power steering apparatus
JP4868397B2 (ja) 電動可変ギア伝達装置と電動パワーステアリング装置の制御装置
JPWO2018084190A1 (ja) 電動パワーステアリング装置
JP6022117B2 (ja) 電動パワーステアリング装置
US9061701B2 (en) Dynamic system compensator for actively controlled power steering systems
JP5387878B2 (ja) モータ制御装置
US11447174B2 (en) Electrical power assisted steering system
JP6229821B2 (ja) 電動パワーステアリング装置の制御装置
JP5994480B2 (ja) 電動パワーステアリング装置
US20130066520A1 (en) Inertia compensation with frequency dependent damping
JPWO2020115973A1 (ja) 車両用操向装置
CN111038576B (zh) 电动助力转向系统中的抖动噪声管理
JP6720714B2 (ja) 電動車両の制御方法、及び電動車両の制御装置
JPWO2018179043A1 (ja) 電動パワーステアリング装置
JP7117233B2 (ja) 電子制御装置、制御方法、及び電子制御プログラム
JP5040730B2 (ja) 電動パワーステアリング装置の制御装置
CN106394654B (zh) 用于改进的eps系统稳定性的惯性补偿频率整形
JP2009018808A (ja) 電動パワーステアリング装置
JP6614031B2 (ja) 電動パワーステアリング制御装置の検査装置及びそれを搭載した電動パワーステアリング装置
JPWO2020170602A1 (ja) 車両用操向装置
JP4413098B2 (ja) 電動パワーステアリング装置
JP6701957B2 (ja) 電動パワーステアリング制御装置の検査装置及びそれを搭載した電動パワーステアリング装置
CN114867652A (zh) 车辆用转向装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776509

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017510981

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15559123

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016776509

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE