CN103904976A - 电机控制装置以及电机控制方法 - Google Patents

电机控制装置以及电机控制方法 Download PDF

Info

Publication number
CN103904976A
CN103904976A CN201310726732.4A CN201310726732A CN103904976A CN 103904976 A CN103904976 A CN 103904976A CN 201310726732 A CN201310726732 A CN 201310726732A CN 103904976 A CN103904976 A CN 103904976A
Authority
CN
China
Prior art keywords
motor
signal
external disturbance
vibration component
motor control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310726732.4A
Other languages
English (en)
Inventor
萩原淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Publication of CN103904976A publication Critical patent/CN103904976A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/12Observer control, e.g. using Luenberger observers or Kalman filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

电机控制装置以及电机控制方法。本发明的电机控制装置具备:状态变量检测部,其输出与电机的状态变量相应的检测信号;振动检测部,其基于转矩指令和所述检测信号,检测所述电机的外部干扰振动成分,输出与该检测结果相应的振动成分信号;速度信号生成部,其基于从所述检测信号减去所述振动成分信号而得到的结果,生成速度信号;以及速度控制部,其基于速度指令和所述速度信号之间的偏差,生成所述转矩指令。

Description

电机控制装置以及电机控制方法
相关申请的交叉参考
本申请基于2012年12月26日向日本特许厅提交的日本专利申请2012-282058号,因此将所述日本专利申请的全部内容以引用的方式并入本文。
技术领域
本发明涉及电机控制装置以及电机控制方法。
背景技术
以往,已知以连结有机械负载的电机为控制对象的电机控制装置。该电机控制装置的控制技术中,即使在控制对象的参数有变化的情况下,或在对控制对象作用外部干扰的情况下,也高响应地对控制对象进行控制。
例如,在日本特开平7-261843号公报中,公开了高响应地对控制对象进行控制的技术。该技术通过使用外部干扰观测器以及状态观测器,能够高精度地对负载侧的状态变量进行估计。将估计到的状态变量反馈至控制对象。
然而,上述文献记载的技术中,根据情况不同,有可能不能够充分地抑制振动,不能高响应地对控制对象进行控制。例如,在控制对象为3惯性系或者机台振动系的情况,或,因机械共振以外的原因而产生了转矩脉动的情况等。作为机械共振以外的产生转矩脉动的原因,有电机的齿槽效应,以及在电机为发电机的情况下产生的功率脉动等。
发明内容
本发明的一目的在于提供能够高响应地对控制对象进行控制的电机控制装置以及电机控制方法。
实施方式一形态的电机控制装置包括状态变量检测部、振动检测部、速度信号生成部、以及速度控制部。所述状态变量检测部输出与电机的状态变量相应的检测信号。所述振动检测部基于转矩指令和所述检测信号检测所述电机的外部干扰振动成分,输出与该检测结果相应的振动成分信号。所述速度信号生成部基于从所述检测信号减去所述振动成分信号而得到的结果,生成速度信号。所述速度控制部基于速度指令和所述速度信号之间的偏差,生成所述转矩指令。
根据实施方式的一形态,能够提供能够高响应地对控制对象进行控制的电机控制装置以及电机控制方法。
附图说明
图1是表示第1实施方式的电机控制装置的构成的框图。
图2是表示图1所示的电机控制装置的控制部的具体构成的框图。
图3是表示在以往的电机控制装置中,在将电机加速然后减速的情况下的、由转矩指令控制的产生转矩(转矩指令的状态,即转矩特性)和与电机的输出轴连结的机械负载的位置(机械负载4的位置特性)之间的关系的曲线图。
图4是表示在第1实施方式的电机控制装置中,在将电机加速然后减速的情况下的、由转矩指令控制的产生转矩(转矩指令的状态,即转矩特性)和与电机的输出轴连结的机械负载的位置(机械负载4的位置特性)之间的关系的曲线图。
图5为将图3所示的机械负载的位置特性的一部分放大后的图。
图6为将图4所示的机械负载的位置特性的一部分放大后的图。
图7是表示第2实施方式的电机控制装置的构成的框图。
图8是表示第3实施方式的电机控制装置的构成的框图。
在下面的详细说明中,出于说明的目的,为了提供对所公开的实施方式的彻底的理解,提出了许多具体的细节。然而,显然可以在没有这些具体细节的前提下实施一个或更多的实施方式。在其它的情况下,为了简化制图,示意性地示出了公知的结构和装置。
具体实施方式
以下,参照附图,对本发明的电机控制装置以及电机控制方法的实施方式详细地进行说明。此外,该电机控制装置以及电机控制方法不限于以下所示的实施方式。此外,在本说明书,术语“电机控制”是指本领域技术人员所周知的电机控制,例如,包括对电机内流动的电流进行控制来控制电机的产生转矩的转矩控制、根据速度指令电压无级地改变速度的速度控制、通过位置指令对电机的旋转角度(位置)和旋转速度(移动速度)进行控制的位置控制。
(第1实施方式)
图1是表示第1实施方式的电机控制装置1的构成的框图。如图1所示,第1实施方式的电机控制装置1具备有驱动部10和控制部11。驱动部10具有电力变换器12和PWM信号生成器13。电力变换器12与外部的直流电源2连接。PWM信号生成器13将对电压进行控制的信号发送至电力变换器12。此外,PWM信号生成器13是在控制部11的控制之下的。从而,该电机控制装置1使用电力变换器12,将从直流电源2供给的直流电变换为具有所希望的频率以及电压的三相交流电。通过利用PWM信号生成器13进行的公知的PWM(Pulse Width Modulation,脉冲宽度调制)控制进行该变换。将变换后的电力输出至三相交流电机3(以下,记载为电机3)。
电机3例如是永磁同步电机。在该电机3的输出轴连结有机械负载4。此外,电机3例如也可以是线性电机。另外,电机3不限于具有驱动功能的电机。电机3也可以是具有发电功能的电动发电机或发电机。例如,电机3也可以是与风车的转子等连接的发电机。
位置检测器6(状态变量检测部的一例)对电机3的位置(电机3的构成部件的旋转位置)进行检测。位置检测器6输出与检测位置相应的检测信号xm(以下,记载为电机位置信号xm)。位置检测器6例如与电机3的输出轴连结。在这种情况下,位置检测器6例如对电机3的输出轴的旋转位置进行检测。
如图1所示,电力变换器12连接于直流电源2与电机3之间。电力变换器12将来自直流电源2的电流以及电压,根据从PWM信号生成器13供给的PWM信号进行变换,并供给至电机3。电力变换器12例如是包含连接成三相桥的6个开关元件的三相逆变器电路。PWM信号生成器13基于控制部11的控制信号,生成使构成电力变换器12的开关元件导通/截止的PWM信号。将该PWM信号输出至电力变换器12。
此外,直流电源2也可以具有将交流电变换为直流电并输出的构成。例如,直流电源2也可以具有将利用二极管的整流电路以及平滑用电容器组合而得到的构成。在这种情况下,交流电源与整流电路的输入侧连接。
控制部11生成基于位置检测器6的电机位置信号xm的转矩指令Tref。控制部11将与该转矩指令Tref相应的控制信号输出至驱动部10。
控制部11从用于反馈控制的电机位置信号xm中除去作用于电机3的外部干扰的振动成分。根据该构成,控制部11能够提高速度控制的反馈增益。由此,控制部11能够高响应地对包括电机3以及机械负载4的控制对象5进行控制。以下,具体地对控制部11的构成进行说明。
参照图2对控制部11的构成更详细地进行说明。图2是表示控制部11的具体构成的框图。如图2所示,控制部11具备位置控制部21、设置于该位置控制部21的上游以及下游侧的减法器20以及22、速度控制部23、振动检测部24、以及速度信号生成部25。此外,为了方便说明,在图2中,省略了控制部11的一部份构成(例如,根据转矩指令Tref生成针对驱动部10的控制信号的电流控制器)。
在图2所示的例子中,将控制对象5表示为机械共振模型。该机械共振模型中,反共振频率ωa例如是30×2π[rad/s]。另外,共振频率ωh例如是40×2π[rad/s]。另外,惯性J1例如是2.0×10-5[kg·m2]。
减法器20从位置指令xref减去电机位置信号xm,并将其结果输出至位置控制部21。位置控制部21具有比例控制增益Kp。位置控制部21以使位置指令xref和电机位置信号xm之间的偏差为零的方式,通过使用了比例控制增益Kp的P控制(比例控制),生成速度指令vref并输出至减法器22。减法器22从速度指令vref减去电机速度估计信号v^(速度信号的一例),并将其结果输出至速度控制部23。
速度控制部23具备比例控制器30、积分控制器31、加法器32、乘法器33。速度控制部23进行追加积分控制(I控制)后的P控制即PI控制。即,速度控制部23以使速度指令vref和电机速度估计信号v^之间的偏差为零的方式,通过PI控制(比例积分控制)生成转矩指令Tref。
比例控制器30具有比例增益Kv。例如将该比例增益Kv设定为Kp×2π。积分控制器31具有积分增益Ki。例如将积分增益Ki设定为Kv/2π。乘法器33将转动惯量标称值Jn作为系数乘以加法器32的输出。转动惯量标称值Jn例如是J1×ωh2/ωa2[kg·m2]。
振动检测部24基于转矩指令Tref与电机位置信号xm,检测电机3的外部干扰振动成分。将检测结果作为振动成分位置信号xdist输出。振动成分位置信号xdist为将围绕电机3输出轴的外部干扰转矩所包含的振动成分使用电机3的位置的振动成分进行表达的信号。
振动检测部24具备外部干扰观测器40、滤波器41、以及模型42。外部干扰观测器40基于转矩指令Tref和电机位置信号xm,估计围绕电机3的输出轴而起作用的外部干扰转矩。将估计结果作为外部干扰转矩估计信号d^输出至滤波器41。例如,外部干扰观测器40能够基于下述式(1),计算外部干扰转矩估计信号d^,并输出至滤波器41。
数式1
d dt x ^ v ^ d ^ = 0 1 0 0 0 1 / Jn 0 0 0 x ^ v ^ d ^ + 1 Jn 0 1 0 Tref + G 1 G 2 G 3 ( xm - x ^ ) . . . ( 1 )
上述式(1)中,“G1~G3”表示观测器反馈增益。“^”表示估计值。此外,例如将外部干扰观测器40的极点设定为100×2π[rad/s]。另外,“x^”为电机3的估计位置。此外,对于观测器反馈增益G1~G3,能够根据极点的值进行运算,或作为设定参数由外部的操作部(未图示)来设定。
振动检测部24例如根据外部干扰转矩估计信号d^或后述的外部干扰转矩振动成分信号d2^,对振动成分的频率进行判定。从而,振动检测部24也能够改变外部干扰观测器40的极点。
滤波器41除去从外部干扰观测器40输出的外部干扰转矩估计信号d^的DC成分以及低频率成分。由此,滤波器41提取出外部干扰转矩的振动成分。滤波器41将该振动成分作为外部干扰转矩振动成分信号d2^输出至模型42。
滤波器41例如具有串联连接的2个高通滤波器。各高通滤波器例如具有下述式(2)所示的特性。将截止频率Kh设定为比外部干扰观测器40的极点低。
数式2
s s + Kh . . . ( 2 )
例如,将各高通滤波器的截止频率Kh设定为20×2π[rad/s]。此外,滤波器41也可以具有一个高通滤波器或串联连接的三个以上的高通滤波器。另外,滤波器41也可以具有带通滤波器来代替高通滤波器。
外部干扰转矩振动成分信号d2^为外部干扰观测器40的极点与滤波器41的截止频率之间的频带中的频率成分。在本实施方式的电机控制装置1中,以包含于外部干扰观测器40的极点与滤波器41的截止频率之间的频带的方式设定外部干扰转矩的振动频率。由此,高精度地提取与围绕电机3的输出轴而产生的外部干扰转矩的振动成分对应的外部干扰转矩振动成分信号d2^。
例如,反共振频率ωa为30×2π[rad/s]。共振频率ωh为40×2π[rad/s]。这些值位于外部干扰观测器40的极点(100×2π[rad/s])与滤波器41的截止频率(20×2π[rad/s])之间。
此外,振动检测部24例如根据外部干扰转矩估计信号d^或外部干扰转矩振动成分信号d2^判定振动成分的频率。振动检测部24也可以根据该判定结果改变滤波器41的滤波器截止频率。
模型42具有将转矩信号变换为位置信号的运算器。模型42根据从滤波器41输出的外部干扰转矩振动成分信号d2^,计算振动成分位置信号xdist,并输出至速度信号生成部25。例如,模型42进行下述模型式(3)所示那样的以转动惯量标称值Jn的倒数作为积分增益的2阶积分。
数式3
1 Jn · s 2 . . . ( 3 )
速度信号生成部25具备减法器51与状态估计观测器52。速度信号生成部25基于从电机位置信号xm减去振动成分位置信号xdist而得到的结果,生成电机速度估计信号v^。
减法器51从电机位置信号xm减去振动成分位置信号xdist而生成电机位置信号x。电机位置信号x为从电机位置信号xm中除去围绕电机3的输出轴而作用的外部干扰转矩的振动成分后的信号。将所生成的电机位置信号x输出至状态估计观测器52。
状态估计观测器52根据转矩指令Tref与电机位置信号x生成电机速度估计信号v^。电机速度估计信号v^为表示电机3的速度估计值的信号。将电机速度估计信号v^输出至减法器22。状态估计观测器52例如基于上述式(1),生成电机速度估计信号v^。此外,状态估计观测器52的极点例如为100×2π[rad/s]。速度信号生成部25也能够根据外部干扰转矩估计信号d^或外部干扰转矩振动成分信号d2^判定振动成分的频率,并改变状态估计观测器52的极点。
电机速度估计信号v^中除去了围绕电机3的输出轴而作用的外部干扰转矩的振动成分。因此,形成了将外部干扰转矩的振动成分去除了的反馈回路。由此,即使增大比例增益Kv来提高回路增益,也能够抑制由于外部干扰转矩的振动成分放大而带来的影响。
从而,即使在控制对象5为3惯性系或者机台振动系的情况下,电机控制装置1也能够抑制机械共振带来的影响,而高响应地对控制对象5进行控制。另外,即使在因机械共振以外的原因而产生了转矩脉动的情况下,电机控制装置1也能够高响应地对控制对象5进行控制。作为机械共振以外的产生转矩脉动的原因,有电机3的齿槽效应,以及在电机3为发电机的情况下产生的功率脉动等。
并且,状态估计观测器52能够忽略状态估计观测器52的极点以上的频率,并且,生成相位推进后的电机速度估计信号v^。由此,能够更高响应地对控制对象5进行控制。此外,也可以设置微分器来代替状态估计观测器52。在这种情况下,也可以利用微分器根据电机位置信号x生成电机速度估计信号v^。
这里,参照图3~图6对本实施方式的电机控制装置1的特性进行说明。图3是表示在以往的电机控制装置中,在将电机3加速然后减速的情况下的、由转矩指令控制的产生转矩(转矩指令的状态,即转矩特性)和与电机3的输出轴连结的机械负载4的位置(机械负载4的位置特性)之间的关系的曲线图。图4是表示本实施方式的电机控制装置1中,在将电机3加速然后减速的情况下的、由转矩指令控制的产生转矩(转矩指令的状态,即转矩特性)和与电机3的输出轴连结的机械负载4的位置(机械负载4的位置特性)之间的关系的曲线图。图5为图3所示的机械负载4的位置特性的部分放大图。图6为图4所示的机械负载4的位置特性的部分放大图。此外,在图3~图6所示的例子中,将电机控制装置1的速度控制部23中的比例增益Kv设定为与以往的电机控制装置的速度控制部中的比例增益相等的值。
关于电机控制装置1的转矩特性,将图4和图3进行比较。图4与图3中,速度控制部23中的比例增益Kv是相等的值。尽管如此,与图3所示的以往的电机控制装置的转矩特性相比,图4所示的本实施方式的电机控制装置1的转矩特性中,脉动成分大幅度地降低了。即,可知,本实施方式的电机控制装置1中,抑制了由于外部干扰转矩的振动成分放大而带来的影响。
接着,关于由电机控制装置控制的连结于电机3的输出轴的机械负载4的位置,将图6和图5进行比较。图6与图5中,速度控制部23中的比例增益Kv是相等的值。尽管如此,与图5所示的以往的电机控制装置的位置特性相比,图6所示的本实施方式的电机控制装置1的位置特性中,振动成分更快地收敛。即,可知,本实施方式的电机控制装置1中,高响应地对控制对象5进行控制。
第1实施方式的电机控制装置1具备振动检测部24以及速度信号生成部25。由此,形成了将外部干扰转矩的振动成分去除的反馈回路。从而,能够高响应地对控制对象5进行控制。
(第2实施方式)
下面,对第2实施方式的电机控制装置1A进行说明。第2实施方式的电机控制装置1A根据外部干扰转矩的振动成分的大小,决定是否形成去除了外部干扰转矩的振动成分的反馈回路。在这一点,第2实施方式的电机控制装置1A与第1实施方式的电机控制装置1不同。此外,对于与上述第1实施方式的构成部件对应的构成部件,标以与第1实施方式相同的符号。另外,适当地省略与第1实施方式重复的说明。
图7是表示第2实施方式的电机控制装置1A中的控制部11A的构成例的框图。如图7所示,第2实施方式的电机控制装置1A的控制部11A的速度信号生成部25A中具备切换器53。在这一点,第2实施方式的控制部11A与第1实施方式的控制部11不同。
切换器53将与外部干扰转矩振动成分信号d2^的值相应的信号输出至减法器51。在外部干扰转矩振动成分信号d2^小于规定值的情况下,切换器53向减法器51输出零值。在外部干扰转矩振动成分信号d2^为规定值以上的情况下,切换器53向减法器51输出振动成分位置信号xdist。
速度信号生成部25A生成电机速度估计信号v^。在外部干扰转矩的振动成分小于规定值的情况下,速度信号生成部25A不从电机位置信号xm减去振动成分位置信号xdist,来生成电机速度估计信号v^并输出至减法器22。另一方面,在外部干扰转矩的振动成分为规定值以上的情况下,速度信号生成部25A从电机位置信号xm减去振动成分位置信号xdist后,生成电机速度估计信号v^并输出至减法器22。
如此,形成与外部干扰转矩的振动成分的影响大小相应的反馈回路。在外部干扰转矩的振动成分的影响小的情况下,形成不去除外部干扰转矩的振动成分的反馈回路。在外部干扰转矩的振动成分的影响大的情况下,形成去除外部干扰转矩的振动成分的反馈回路。由此,能够高响应地对控制对象进行控制。此外,切换器53也可以代替外部干扰转矩振动成分信号d2^而将与外部干扰转矩估计信号d^相应的信号输出至减法器51。在这种情况下,在外部干扰转矩估计信号d^小于规定值的情况下,切换器53向减法器51输出零值。在外部干扰转矩估计信号d^为规定值以上的情况下,切换器53向减法器51输出振动成分位置信号xdist。
另外,切换器53也能够持续地保持在设置电机控制装置1A时(例如,电机控制装置1A为设定模式时)进行判定而得到的结果。例如,切换器53在判定为外部干扰转矩的振动成分为规定值以上之后,与外部干扰转矩的振动成分的大小无关地,从电机位置信号xm减去振动成分位置信号xdist后,生成电机速度估计信号v^。另外,例如,切换器53在判定为外部干扰转矩的振动成分小于规定值之后,与外部干扰转矩的振动成分的大小无关地,从电机位置信号xm减去零值后,生成电机速度估计信号v^。然后,振动检测部24停止动作。
另外,也可以将切换器53设置于振动检测部24内而不是设置于速度信号生成部25A内。另外,切换器53在不基于外部干扰转矩的振动成分的大小切换要输出的信号的情况下,也可以通过使用了外部的操作部(未图示)的设定,对要输出的信号进行转换。
(第3实施方式)
下面,对第3实施方式的电机控制装置1B进行说明。在第1实施方式的电机控制装置1中,作为电机3的状态变量而对电机3的位置进行检测并反馈。对此,在第3实施方式的电机控制装置1B中,作为电机3的状态变量而对电机3的速度进行检测并反馈。此外,对于与上述第1实施方式的构成部件对应的构成部件,标以与第1实施方式相同的符号。另外,适当地省略与第1实施方式重复的说明。
图8表示第3实施方式的电机控制装置1B中的控制部11B的构成例。如图8所示,第3实施方式的电机控制装置1B的控制部11B具有速度检测部26(状态变量检测部的一例)。反馈利用速度检测部26检测出的电机3的速度。从而,第3实施方式的电机控制装置1B不具有图2所示的减法器20以及位置控制部21。
速度检测部26对电机位置信号xm进行微分。由此,速度检测部26生成与电机3的速度对应的电机速度信号vm(检测信号的一例),并输出。振动检测部24B的外部干扰观测器40B基于转矩指令Tref与电机速度信号vm,对围绕电机3的输出轴而作用的外部干扰转矩进行估计。将估计结果作为外部干扰转矩估计信号d^输出至滤波器41。例如,外部干扰观测器40B基于下述式(4),计算外部干扰转矩估计信号d^,并输出。
数式4
d dt v ^ d ^ = 0 1 / Jn 0 0 v ^ d ^ + 1 Jn 1 0 Tref + G 4 G 5 ( vm - v ^ ) . . . ( 4 )
上述式(4)中,“G4以及G5”表示观测器反馈增益。“^”表示估计值。此外,例如将外部干扰观测器40B的极点设定为100×2π[rad/s]。此外,对于观测器反馈增益G4以及G5,能够根据极点的值计算,或者作为设定参数而使用外部的操作部(未图示)进行设定。
滤波器41将从外部干扰观测器40B输出的外部干扰转矩估计信号d^的DC成分以及低周波成分除去。由此,滤波器41从外部干扰转矩估计信号d^提取振动成分。滤波器41将该振动成分作为外部干扰转矩振动成分信号d2^输出到模型42B。
模型42B具有将转矩信号转换为速度信号的运算器。模型42B根据外部干扰转矩振动成分信号d2^计算振动成分速度信号vdist,并输出到速度信号生成部25B。振动成分速度信号vdist是将围绕电机3的输出轴的外部干扰转矩所包含的振动成分使用电机3的速度的振动成分进行表示的信号。
例如,模型42B进行下述模型式(5)所示那样的以转动惯量标称值Jn的倒数为积分增益的积分。模型42B根据从滤波器41输出的外部干扰转矩振动成分信号d2^计算振动成分速度信号vdist。
数式5
1 Jn · s . . . ( 5 )
速度信号生成部25B具备减法器51B和状态估计观测器52B。速度信号生成部25B基于从电机速度信号vm减去振动成分速度信号vdist而得到的结果生成电机速度估计信号v^。
减法器51B从电机速度信号vm减去振动成分速度信号vdist来生成电机速度信号v。由此,将除去了围绕电机3的输出轴而作用的外部干扰转矩的振动成分后的电机速度信号v输出到状态估计观测器52B。
状态估计观测器52B根据转矩指令Tref和电机速度信号v生成表示电机3的速度估计值的电机速度估计信号v^,并输出到减法器22。状态估计观测器52B例如基于上述式(4)生成电机速度估计信号v^。此外,状态估计观测器52B的极点例如为100×2π[rad/s]。
电机速度估计信号v^中除去了围绕电机3的输出轴而作用的外部干扰转矩的振动成分。因此,电机速度估计信号v^可以形成去除了外部干扰转矩的振动成分后的反馈回路。由此,即使提高回路增益,也能够抑制外部干扰转矩的振动成分放大而产生的影响。
从而,即使在控制对象5为3惯性系或者机台振动系的情况下,电机控制装置1B也能够抑制机械共振带来的影响,高响应地对控制对象5进行控制。另外,即使在由于机械共振以外的原因而产生转矩脉动的情况下,电机控制装置1B也能够高响应地对控制对象5进行控制。作为机械共振以外的产生转矩脉动的原因,有电机3的齿槽效应、以及在电机3为发电机的情况下产生的功率脉动等。
此外,在电机控制装置1B中,也可以如电机控制装置1A那样设置切换器。在这种情况下,切换器例如在外部干扰转矩振动成分信号d2^小于规定值时,向减法器51B输出零值。另外,切换器在外部干扰转矩振动成分信号d2^为规定值以上时,向减法器51B输出振动成分速度信号vdist。
上述的电机控制装置1、1A以及1B中,位置检测器6对电机3的位置以及速度进行检测。但是,不限于此,位置检测器6例如也可以利用伴随电机3的转子旋转,定子侧绕组线圈的电感发生变化这一情况,检测电机3的位置或速度。
本领域技术人员能够容易地导出进一步的效果以及变形例。因此,本发明的更宽范围的形态不限于以上表示且描述的特定的细节以及代表性的实施方式。从而,在不脱离由附加的权利要求以及其等同物定义的总括性的发明概念的精神或范围的情况下,可以对本发明的形态进行各种变更。
另外,本发明的电机控制装置也可以是以下的第1~第7电机控制装置、以及第1电机控制方法。
第1电机控制装置具备:状态变量检测部,其输出与电机的位置或速度相应的检测信号;振动检测部,其基于转矩指令和所述检测信号,检测所述电机的外部干扰振动成分,输出与该检测结果相应的振动成分信号;速度信号生成部,其基于从所述检测信号减去所述振动成分信号而得到的结果,生成速度信号;以及速度控制部,其基于速度指令和所述速度信号之间的偏差,生成所述转矩指令。
第2电机控制装置在第1电机控制装置的基础上,所述速度信号生成部具备:减法器,其从所述检测信号减去所述振动成分信号;以及状态估计观测器,其基于所述减法器的减法运算结果和所述转矩指令计算所述速度信号。
第3电机控制装置在第1或者第2电机控制装置的基础上,所述振动检测部具备外部干扰观测器,该外部干扰观测器基于所述转矩指令和所述检测信号对所述电机的外部干扰转矩进行估计,输出与该估计结果相应的外部干扰转矩估计信号,所述振动检测部根据所述外部干扰转矩估计信号生成所述振动成分信号。
第4电机控制装置在第3电机控制装置的基础上,所述振动检测部具备从所述外部干扰转矩估计信号提取所述外部干扰转矩的振动成分的滤波器,使用规定的模型,根据所述外部干扰转矩的振动成分生成所述振动成分信号。
第5电机控制装置在第4电机控制装置的基础上,所述滤波器具备高通滤波器。
第6电机控制装置在上述第3~第5中任意一项的电机控制装置的基础上,在所述外部干扰转矩的振动成分小于规定值的情况下,所述速度信号生成部不从所述检测信号减去所述振动成分信号,来生成所述速度信号,在所述外部干扰转矩的振动成分为规定值以上的情况下,所述速度信号生成部从所述检测信号减去所述振动成分信号后,生成所述速度信号。
第7电机控制装置具有:驱动部(10),其将从电源供给的电力变换为规定的状态并输出到电机(3);状态变量检测部(6),其输出与所述电机(3)的状态变量相应的检测信号;以及控制部(11),其基于从所述状态变量检测部(6)输出的检测信号对所述驱动部的动作进行控制,所述控制部(11)具有:位置控制部(21),其输出速度指令;速度控制部(23),其输出转矩指令;以及振动检测部(24,24B),其基于所述转矩指令和所述检测信号,检测所述电机(3)的外部干扰振动成分,输出与该检测结果相应的振动成分信号,所述速度信号生成部(25,25A、25B)基于从所述检测信号减去所述振动成分信号而得到的结果生成所述速度信号,所述速度控制部(23)基于所述速度指令和所述速度信号之间的偏差生成所述转矩指令。
第1电机控制方法包括:检测与电机的位置或速度相应的状态变量的步骤;基于转矩指令和所述状态变量检测所述电机的外部干扰振动成分的步骤;基于从所述状态变量减去所述外部干扰振动成分而得到的结果,生成速度信号的步骤;基于速度指令和所述速度信号之间的偏差,生成所述转矩指令的步骤;以及基于所述转矩指令对所述电机进行控制的步骤。
出于示例和说明的目的已经给出了所述详细的说明。根据上面的教导,许多变形和改变都是可能的。所述的详细说明并非没有遗漏或者旨在限制在这里说明的主题。尽管已经通过文字以特有的结构特征和/或方法过程对所述主题进行了说明,但应当理解的是,权利要求书中所限定的主题不是必须限于所述的具体特征或者具体过程。更确切地说,将所述的具体特征和具体过程作为实施权利要求书的示例进行了说明。

Claims (10)

1.一种电机控制装置,具备:
状态变量检测部,其输出与电机的状态变量相应的检测信号;
振动检测部,其基于转矩指令和所述检测信号,检测所述电机的外部干扰振动成分,输出与该检测结果相应的振动成分信号;
速度信号生成部,其基于从所述检测信号减去所述振动成分信号而得到的结果,生成速度信号;以及
速度控制部,其基于速度指令和所述速度信号之间的偏差,生成所述转矩指令。
2.根据权利要求1所述的电机控制装置,其中,基于所述转矩指令对所述电机进行控制。
3.根据权利要求1所述的电机控制装置,其中,所述电机的状态变量为电机的位置或速度。
4.根据权利要求1所述的电机控制装置,其中,所述速度信号生成部具备:
减法器,其从所述检测信号减去所述振动成分信号;以及
状态估计观测器,其基于所述减法器的减法运算结果和所述转矩指令计算所述速度信号。
5.根据权利要求1至4中任意一项所述的电机控制装置,其中,
所述振动检测部具备外部干扰观测器,该外部干扰观测器基于所述转矩指令和所述检测信号,对所述电机的外部干扰转矩进行估计,输出与该估计结果相应的外部干扰转矩估计信号,
所述振动检测部根据所述外部干扰转矩估计信号生成所述振动成分信号。
6.根据权利要求5所述的电机控制装置,其中,
所述振动检测部具备从所述外部干扰转矩估计信号中提取所述外部干扰转矩的振动成分的滤波器,
所述振动检测部使用规定的模型,根据所述外部干扰转矩的振动成分生成所述振动成分信号。
7.根据权利要求6所述的电机控制装置,其中,
所述滤波器具备高通滤波器或带通滤波器。
8.根据权利要求5所述的电机控制装置,其中,
在所述外部干扰转矩的振动成分小于规定值的情况下,所述速度信号生成部不从所述检测信号减去所述振动成分信号,来生成所述速度信号,
在所述外部干扰转矩的振动成分为规定值以上的情况下,所述速度信号生成部从所述检测信号减去所述振动成分信号后,生成所述速度信号。
9.一种电机控制方法,包括:
检测电机的状态变量的步骤;
基于转矩指令和所述状态变量,检测所述电机的外部干扰振动成分的步骤;
基于从所述状态变量减去所述外部干扰振动成分而得到的结果,生成速度信号的步骤;
基于速度指令和所述速度信号之间的偏差,生成所述转矩指令的步骤;以及
基于所述转矩指令,对所述电机进行控制的步骤。
10.根据权利要求9所述的电机控制方法,其中,所述电机的状态变量为电机的位置或速度。
CN201310726732.4A 2012-12-26 2013-12-25 电机控制装置以及电机控制方法 Pending CN103904976A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-282058 2012-12-26
JP2012282058A JP5741566B2 (ja) 2012-12-26 2012-12-26 モータ制御装置およびモータ制御方法

Publications (1)

Publication Number Publication Date
CN103904976A true CN103904976A (zh) 2014-07-02

Family

ID=49582678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310726732.4A Pending CN103904976A (zh) 2012-12-26 2013-12-25 电机控制装置以及电机控制方法

Country Status (4)

Country Link
US (1) US9250614B2 (zh)
EP (1) EP2750286A2 (zh)
JP (1) JP5741566B2 (zh)
CN (1) CN103904976A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110703820A (zh) * 2019-09-05 2020-01-17 首钢京唐钢铁联合有限责任公司 一种控制氧枪横移车的方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3503333B1 (en) * 2017-12-22 2020-09-16 Inalfa Roof Systems Group B.V. Controlling a motor of a closure and/or blind in a vehicle body based on a disturbance observer signal
JP7068133B2 (ja) * 2018-10-19 2022-05-16 国立大学法人 東京大学 制御システム、制御方法、及び制御プログラム
JP7311319B2 (ja) * 2019-06-19 2023-07-19 ファナック株式会社 時系列データ表示装置
US20230188067A1 (en) * 2020-06-01 2023-06-15 Hitachi Astemo, Ltd. Motor control device and motor controlling method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118684A (ja) * 2007-11-08 2009-05-28 Mitsubishi Electric Corp 振動抑制制御装置
WO2009084258A1 (ja) * 2007-12-27 2009-07-09 Kabushiki Kaisha Yaskawa Denki モータ制御装置
CN102195561A (zh) * 2010-03-11 2011-09-21 松下电器产业株式会社 电动机驱动装置
US20120007540A1 (en) * 2009-04-14 2012-01-12 Mitsubishi Electric Corporation Motor control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538176A (ja) * 1991-07-24 1993-02-12 Mitsubishi Electric Corp 電動機速度制御装置
JP2959270B2 (ja) * 1992-04-15 1999-10-06 松下電器産業株式会社 外乱推定補償器
JPH06253569A (ja) * 1993-03-03 1994-09-09 Mitsubishi Heavy Ind Ltd 直流電動機の制御装置
JP3220589B2 (ja) 1994-03-17 2001-10-22 三菱電機株式会社 メカニカルシステムの制御装置
US7929848B2 (en) * 2006-02-14 2011-04-19 Nikon Corporation Vibration detection device, optical device, and method of operation of vibration detection device
KR101562218B1 (ko) * 2013-08-29 2015-10-21 현대모비스 주식회사 전동식 동력 조향장치의 제어장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118684A (ja) * 2007-11-08 2009-05-28 Mitsubishi Electric Corp 振動抑制制御装置
WO2009084258A1 (ja) * 2007-12-27 2009-07-09 Kabushiki Kaisha Yaskawa Denki モータ制御装置
US20120007540A1 (en) * 2009-04-14 2012-01-12 Mitsubishi Electric Corporation Motor control device
CN102195561A (zh) * 2010-03-11 2011-09-21 松下电器产业株式会社 电动机驱动装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110703820A (zh) * 2019-09-05 2020-01-17 首钢京唐钢铁联合有限责任公司 一种控制氧枪横移车的方法及装置

Also Published As

Publication number Publication date
JP5741566B2 (ja) 2015-07-01
US20140176036A1 (en) 2014-06-26
JP2014128089A (ja) 2014-07-07
EP2750286A2 (en) 2014-07-02
US9250614B2 (en) 2016-02-02

Similar Documents

Publication Publication Date Title
Datta et al. A simple position-sensorless algorithm for rotor-side field-oriented control of wound-rotor induction machine
CN102197583B (zh) 用于控制ac发电机的方法和控制设备
CN100586003C (zh) 一种用于交流异步电机的无速度传感器的矢量控制方法
EP2757670B1 (en) Method and apparatus for controlling power converter with inverter output filter
Leidhold et al. Field-oriented controlled induction generator with loss minimization
CN103904976A (zh) 电机控制装置以及电机控制方法
CN102868353B (zh) 用于双馈感应机器的控制系统
CN109546913B (zh) 一种电容小型化电机驱动装置
CN106059419B (zh) 一种永磁同步电机并联矢量控制方案
CN106208868A (zh) 无电解电容电机驱动系统及其控制方法、装置
US11223313B2 (en) Inverter control device and motor drive system
Maamoun et al. Fuzzy logic based speed controller for permanent-magnet synchronous motor drive
Benchabane et al. Sensorless direct torque control for salient-pole PMSM based on extended Kalman filter fed by AC/DC/AC converter
Abdel-Rahim et al. Torsional vibration control of large induction motors using constant air gap flux scheme
CN104076738A (zh) 生成位置控制增益的上位控制装置
EP3171508A1 (en) Method for the scalar control of an induction motor, particularly at low speed operation, and scalar control system for an induction motor
Shaltout et al. Speed control of induction motors using proposed closed loop Volts/hertz control scheme
Guzinski et al. Sensorless induction motor drive with voltage inverter and sine-wave filter
CN103532461B (zh) 一种用于平稳控制永磁同步电机低速小转矩状态切换的装置
Benchabane et al. Direct field oriented control scheme for space vector modulated AC/DC/AC converter fed induction motor
Xiao et al. ESC based optimal stator frequency control of DFIG-DC system for efficiency enhancement
Xu et al. Instantaneous torque control of a permanent magnet wind power generator without a position sensor
Pati et al. Improvement of transient and steady state performance of a scalar controlled induction motor using sliding mode controller
Kumar et al. Sensorless speed control of brushless doubly-fed reluctance machine for pump storage and wind power application
JP6640659B2 (ja) 電力変換器の制御装置、電力変換システム、圧縮機駆動システム、フライホイール発電システム、及び、電力変換器の制御方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140702