WO2011135652A1 - モータ制御装置 - Google Patents
モータ制御装置 Download PDFInfo
- Publication number
- WO2011135652A1 WO2011135652A1 PCT/JP2010/057379 JP2010057379W WO2011135652A1 WO 2011135652 A1 WO2011135652 A1 WO 2011135652A1 JP 2010057379 W JP2010057379 W JP 2010057379W WO 2011135652 A1 WO2011135652 A1 WO 2011135652A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- current
- torque
- phase current
- actual torque
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/024—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
- H02P29/0241—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0038—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the present invention relates to a motor control device, and more particularly to a motor control device including a current sensor and a rotation angle sensor (resolver).
- a DC voltage from a DC power source is converted into an AC voltage by an inverter to drive a motor generator (MG).
- a current flowing through each phase of the MG is detected by a current sensor, and a voltage command value to be applied to the coil of each phase of the MG is calculated.
- the inverter drives the MG with the commanded torque command value by turning on / off the switching transistor based on the voltage command of each phase coil.
- Patent Document 1 discloses a motor drive control device including an abnormality detection unit that detects an abnormality of a motor based on a torque command value required for the motor and an estimation of an actual torque generated in the motor. .
- the actual torque detects the driving current of each phase supplied to the motor, calculates the q-axis current that becomes the torque current component of the motor based on the detected driving current, and calculates the calculated q-axis current and the magnetic flux of the motor. And estimation from the angular velocity of the motor.
- Patent Document 2 a first phase (for example, u phase) and a second phase (for example, v phase) of three phase AC currents flowing in a three phase AC motor are detected, and a predetermined period of the first phase current detection value is detected. And an integral value of the second phase current detection value for a predetermined period of time are compared, and it is disclosed that if the difference between the two exceeds a predetermined value, the current sensor is determined to be abnormal. ing.
- the abnormality of the motor can be detected.
- the abnormal mode or the abnormal part cannot be specified. That is, if the current sensor is abnormal, the torque command value and the actual torque are different, but even if the angular velocity sensor is abnormal, the torque command value and the actual torque are also different.
- the present invention provides an inverter that supplies electric power to a multiphase motor, a current sensor that is provided on the output side of the inverter and detects a first phase current and a second phase current of the multiphase motor, and the current sensor An estimation means for estimating the other current from at least one of the first-phase current and the second-phase current detected in step, and based on the difference between the detected current and the estimated current And determining means for determining abnormality of the current sensor.
- the estimation means includes means for estimating a second phase current based on the first phase current detected by the current sensor, and the first phase detected by the current sensor.
- the first phase current is estimated based on the two-phase current, the first phase current detected by the current sensor, and the estimated second-phase current.
- the determination means is based on a difference between a torque command value for driving the multiphase motor with a desired torque and the first actual torque, and a difference between the torque command value and the second actual torque. The abnormality of the current sensor is determined.
- the determination means includes a difference between a torque command value for driving the multiphase motor with a desired torque and the first actual torque, or the torque command value and the second When there is a difference with the actual torque, it is determined that the current sensor is abnormal, and when there is no difference between the torque command value and the first actual torque and there is no difference between the torque command value and the second actual torque, It is determined that the sensor is not abnormal.
- the determination means may determine that the difference between the torque command value and the first actual torque is greater than the difference between the torque command value and the second actual torque.
- a rotation angle sensor for detecting a rotation angle of the multiphase motor, and the estimation means is based on the first phase current detected by the current sensor.
- Means for estimating a second phase current means for estimating a first phase current based on the second phase current detected by the current sensor; and a first phase current detected by the current sensor.
- Estimated second-phase current means for estimating the first actual torque of the multi-phase motor based on the rotation angle, and second-phase current detected by the current sensor, A first phase current; a means for estimating a second actual torque of the multiphase motor based on the rotation angle; a first phase current detected by the current sensor; and a first phase detected by the current sensor.
- the multi-phase motor 3 Based on the two-phase current and the rotation angle, the multi-phase motor 3 and a means for estimating an actual torque, wherein the determining means includes a difference between a torque command value for driving the multiphase motor with a desired torque and the first actual torque, and the torque command value and the first torque. Whether the current sensor is abnormal or the rotation angle sensor is abnormal is determined based on the difference between the two actual torques and the difference between the torque command value and the third actual torque.
- the determination means includes a difference between a torque command value for driving the multiphase motor with a desired torque and the first actual torque, or the torque command value and the first torque. If there is a difference between the two actual torques, it is determined that the current sensor is abnormal, there is no difference between the torque command value and the first actual torque, and there is no difference between the torque command value and the second actual torque. When there is a difference between the command value and the third actual torque, it is determined that the rotation angle sensor is abnormal.
- the apparatus further comprises means for driving the multiphase motor with zero torque
- the determination means includes the difference between the torque command value and the first actual torque, and the torque command value.
- the present invention it is possible to easily identify whether the current sensor is abnormal or any other abnormality without using a double current sensor.
- the motor control device mounted on a hybrid vehicle. As shown in FIG. 1, the motor control device includes a battery 10 that is a power source, a hybrid ECU (electronic control device) 15, and a PCU (power control unit) 20.
- a battery 10 that is a power source
- a hybrid ECU electronic control device
- PCU power control unit
- the battery 10 is composed of a nickel metal hydride battery, a lithium ion battery, or the like, and supplies a DC voltage to the PCU 20 and is charged by the DC voltage from the PCU 20.
- the hybrid ECU 15 comprehensively controls the hybrid vehicle based on outputs of various sensors indicating the driving situation and the vehicle situation, for example, sensor outputs such as the accelerator opening degree and the wheel speed.
- PCU 20 boosts the DC voltage from battery 10 in accordance with a control command from hybrid ECU 15 during powering operation of motor generators MG1 and MG2, and converts the boosted DC voltage into an AC voltage to drive and control MG1 and MG2. Further, during regenerative braking of MG1 and MG2, PCU 20 charges battery 10 by converting the AC voltage generated by MG1 and MG2 into a DC voltage in accordance with a control command from hybrid ECU 15.
- the PCU 20 includes system main relays SMR1 and SMR2, a converter 110, a smoothing capacitor C2, inverters 112 and 114, a resolver 124, and an MGECU 140.
- System main relays SMR1, SMR2 turn on / off the power supply path from battery 10 to inverters 112, 114.
- System main relay SMR 1 is connected between the positive electrode of battery 10 and power supply line 103.
- System main relay SMR ⁇ b> 2 is connected between the negative electrode of battery 10 and ground line 102.
- System main relays SMR1 and SMR2 are on / off controlled by control signal SE from MGECU 140, respectively.
- Converter 110 includes a step-up / step-down chopper circuit, and includes reactor L1, power semiconductor switching elements Q1, Q2, and diodes D1, D2.
- Switching elements Q1, Q2 are connected in series between power supply line 103 and ground line 102.
- Reactor L1 is connected between system main relay SMR1 and a connection node of switching elements Q1, Q2.
- Anti-parallel diodes D1 and D2 are connected between the emitters and collectors of switching elements Q1 and Q2, respectively, so that current flows from the emitter side to the collector side.
- a gate control signal is supplied to the gates of the switching elements Q1 and Q2, and the switching elements Q1 and Q2 are on / off controlled in response to the gate control signal.
- the switching elements Q1, Q2 are composed of, for example, an IGBT (Insulated Gate Bipolar Transistor).
- Converter 110 receives voltage Vb from battery 10 between power supply line 103 and ground line 102, and boosts input voltage Vb by switching control of switching elements Q1 and Q2 to drive a voltage (motor operation). Voltage).
- the step-up ratio in converter 110 is determined according to the on-period ratio of switching elements Q1, Q2, that is, the duty ratio.
- converter 110 steps down the regenerated voltage during regenerative braking and returns it to battery 10. That is, converter 110 is a bidirectional converter.
- MGECU 140 generates voltage command value Vm * of the motor operating voltage based on torque command values Tm1 * and Tm2 * of MG1 and MG2 from hybrid ECU 15, and boosts voltage in converter 110 based on the generated voltage command value Vm *. Determine the ratio. Then, MGECU 140 outputs a gate control signal to switching elements Q1 and Q2 so that this step-up ratio is realized.
- the smoothing capacitor C2 is connected between the power supply line 103 and the earth line 102, smoothes the motor operating voltage output from the converter 110, and supplies it to the inverters 112 and 114.
- the voltage sensor 122 detects the voltage across the smoothing capacitor C2, that is, the motor operating voltage, and outputs it to the MGECU 140.
- the inverter 112 converts the motor operating voltage into three-phase alternating current and outputs it to the MG 2 that drives the wheels. Inverter 112 returns the electric power generated in MG2 due to regenerative braking to converter 110.
- Inverter 112 includes switching elements Q3 to Q8 that constitute U-phase arm 115, V-phase arm 116, and W-phase arm 117, which are arranged in parallel between power supply line 103 and earth line 102.
- Antiparallel diodes D3 to D8 are connected between collectors and emitters of switching elements Q3 to Q8, respectively.
- An intermediate point of each phase arm of inverter 112 is connected to each phase end of each phase coil of MG2, which is a three-phase permanent magnet motor.
- each phase coil is commonly connected to a neutral point.
- a current sensor is provided in two phases of the three phases, and current is detected.
- current sensors 125 are provided for the V phase and the W phase, respectively, and the V phase current and the W phase current are detected.
- the V-phase current sensor and the W-phase current sensor output the detected V-phase current and W-phase current to the MGECU 140, respectively.
- the resolver 124 detects the rotation angles of MG1 and MG2 and outputs them to the MGECU 140.
- the inverter 114 is connected to the converter 110 in parallel with the inverter 112. Inverter 114 converts the motor operating voltage output from converter 110 to MG1 into a three-phase alternating current and outputs the same. The inverter 114 drives MG1 when starting the engine, for example. Inverter 114 also returns to converter 110 the electric power generated by MG1 by the rotational torque transmitted from crankshaft 50 of the engine.
- the configuration of the inverter 114 is the same as that of the inverter 112.
- the hybrid ECU 15 generates an operation command for MG1 and MG2 based on the output 17 from the various sensors, and outputs it to the MGECU 140 so that desired driving force generation and power generation are executed.
- the operation commands include operation permission / prohibition of MG1 and NG2, and torque command values Tm1 * and Tm2 *.
- the MGECU 140 performs switching so that the MG1 operates in accordance with the operation command from the hybrid ECU 15 by Fordback control based on the V-phase and W-layer currents from the current sensor 125 and resolver 124 provided in the MG1 and the rotation angle of the rotor.
- the switching operation of elements Q3 to Q8 is controlled.
- the MGECU 140 performs MG2 according to the operation command from the hybrid ECU 15 by Fordback control based on the V-phase, W-layer current from the current sensor and the rotation angle sensor (resolver 124) arranged in the MG2, and the rotation angle of the rotor.
- the switching operations of the switching elements Q3 to Q8 are controlled so as to operate.
- MGECU 140 generates a voltage command value Vm * of the motor operating voltage for increasing the efficiency of MG1 and MG2 based on the operation command from hybrid ECU 15, and based on voltage command value Vm *, Determine the step-up ratio. Further, MGECU 140 controls converter 110 so as to step down the DC voltage supplied from inverters 112 and 114 during regenerative braking.
- the MGECU 140 performs the V-phase, W-layer current, and rotor rotation from the current sensor 125 and resolver 124 (rotation angle sensor) provided in the MG1.
- Ford-back control based on the angle controls the switching operation of the switching elements Q3 to Q8 so that the MG1 operates in accordance with the operation command from the hybrid ECU 15, and also controls the V phase from the current sensor 125 and the resolver 124 arranged in the MG2.
- the switching operation of the switching elements Q3 to Q8 is controlled by the Ford back control based on the current of the W layer and the rotation angle of the rotor so that the MG2 operates in accordance with the operation command from the hybrid ECU 15. For this reason, if an abnormality occurs in the current sensor 125 or the resolver 124, it becomes difficult for the MGECU 140 to drive the MG1 and MG2 with a desired torque. It is necessary to detect these abnormalities.
- the current sensor 125 for each of the V phase and the W phase is a double system, and it is determined whether or not the difference between the sensor outputs forming the double system is within a predetermined value. Although it is possible to detect by this, the cost increases. Therefore, it is preferable that the abnormality of the current sensor 125 can be detected without making the current sensor 125 a double system.
- the MGECU 140 in the present embodiment detects the presence or absence of abnormality by comparing the torque command values Tm1 * and Tm2 * with the actual torque estimated values, and estimates the W-phase current from the V-phase current and estimates the estimated W The actual torque is estimated based on the phase current and compared with the torque command value. Further, the V-phase current is estimated from the W-phase current, the actual torque is estimated based on the estimated V-phase current, and compared with the torque command value. If an abnormality occurs in the current sensor that detects the V-phase current, an abnormality also occurs in the W-phase current estimated from the V-phase current, and the actual torque estimated based on the estimated W-phase current. Since the value also indicates an abnormal value, the deviation from the torque command value increases.
- the MGECU 140 identifies whether the current sensor 125 is abnormal or the resolver 124 is abnormal.
- the MGECU 140 identifies abnormalities in the current sensor 125 and the resolver 124 arranged in each of the MG1 and MG2 with the same algorithm. Therefore, in the following description, the abnormality in the current sensor 125 and the resolver 124 arranged in the MG2 is detected. A case of identification will be described as an example.
- FIG. 2 shows a functional block diagram of the MGECU 140.
- the MGECU 140 includes a W-phase current estimation unit 140a, a V-phase current estimation unit 140b, an actual torque estimation unit 140c, a comparison unit 140d, and a determination unit 140e.
- the W-phase current estimation unit 140a estimates the W-phase current of MG2 based on the V-phase current output from the U-phase current sensor that detects the V-phase current of MG2. That is, the W-phase current sensor detects the W-phase current of MG2, and the W-phase current is detected. Separately, the W-phase current is estimated from the V-phase current (detected V-phase current). Since the W phase is delayed by 120 ° from the V phase, the W phase current can be estimated by delaying the phase of the detected V phase current by 120 °. W-phase current estimation unit 140a outputs the estimated W-phase current (estimated W-phase current) to actual torque estimation unit 140c.
- the V-phase current estimation unit 140b estimates the V-phase current of MG2 based on the W-phase current output from the W-phase current sensor that detects the W-phase current of MG2. That is, the V-phase current is detected by the V-phase current sensor that detects the V-phase current of MG2, but separately, the V-phase current is estimated from the W-phase current (detected W-phase current). Since the V phase is delayed by 240 ° from the W phase, the V phase current can be estimated by delaying the phase of the detected W phase current by 240 °. V-phase current estimation unit 140b outputs the estimated V-phase current (estimated V-phase current) to actual torque estimation unit 140c.
- the actual torque estimating unit 140c estimates the actual torque based on the estimated V-phase current from the V-phase current estimating unit 140b, and estimates the actual torque based on the estimated W-phase current from the W-phase current estimating unit 140a.
- the actual torque of MG2 is generally calculated using magnetic flux ⁇ , q-axis current and angular velocity ⁇ .
- Actual torque ⁇ ⁇ q-axis current ⁇
- the d-axis is the direction of the magnetic flux formed by the magnetic poles of the rotor in the MG2 vector control
- the q-axis is an axis orthogonal to the d-axis.
- the angular velocity ⁇ is obtained from the rotation angle detected by the resolver 124.
- the actual torque estimation unit 140 c estimates the actual torque based on the detected V-phase current, the estimated W-phase current, and the rotation angle detected by the resolver 124. That is, the actual torque estimating unit 140c calculates the remaining U-phase current using the detected V-phase current and the estimated W-phase current, estimates the q-axis current, and estimates the actual torque using the q-axis current.
- the actual torque estimated in this way is used as the actual torque based on the estimated W-phase current.
- the actual torque estimation unit 140 c estimates the actual torque based on the detected W-phase current, the estimated V-phase current, and the rotation angle detected by the resolver 124. That is, the actual torque estimating unit 140c calculates the remaining U-phase current using the detected W-phase current and the estimated V-phase current, estimates the q-axis current, and estimates the actual torque using the q-axis current.
- the actual torque estimated in this way is used as the actual torque based on the estimated V-phase current.
- the actual torque estimation unit 140c outputs the actual torque based on the estimated W-phase current and the actual torque based on the estimated V-phase current to the comparison unit 140d.
- the actual torque estimation unit 140c estimates the actual torque using the V-phase current detected by the V-phase current sensor and the W-phase current detected by the W-phase current sensor. The actual torque detected in this way is set as an actual torque based on the detected current. The actual torque estimation unit 140c outputs the actual torque based on the detected current to the comparison unit 140d. The actual torque based on the detected current is used for initial determination as to whether or not there is any abnormality in the control of MG2.
- the comparison unit 140d compares the torque command value TM2 * output from the hybrid ECU 15 with each estimated torque output from the actual torque estimation unit 140c. Specifically, the comparison unit 140d compares the torque command value Tm2 * with the actual torque based on the detected current. Further, the comparison unit 140d compares the difference value between the torque command value Tm2 * and the actual torque based on the estimated W phase, and the difference value between the torque command value Tm2 * and the actual torque based on the estimated V phase. The comparison unit 140d outputs these comparison results to the determination unit 140e.
- the determination unit 140e identifies whether or not any abnormality has occurred in the control of the MG2 by using the comparison result in the comparison unit 140d and whether or not an abnormality has occurred in the current sensor.
- FIG. 3 shows a flowchart of the abnormality detection process executed by the MGECU 140.
- the W-phase current estimation unit 140a of the MGECU 140 generates an estimated W-phase current based on the detected V-phase current
- the V-phase current estimation unit 140b generates an estimated V-phase current based on the detected W-phase current ( S101).
- the MGECU 140 determines whether or not a torque execution monitoring diagnosis has occurred (S102).
- the torque execution monitoring diagnosis is a process for determining whether or not the difference value between the torque command value Tm2 * and the actual torque based on the detected current is greater than or equal to a predetermined value.
- the torque command value Tm2 * and the detected current If the difference value from the actual torque based on is greater than or equal to a predetermined value, it is determined that some abnormality has occurred, and a diagnosis signal is generated.
- the predetermined value can be set arbitrarily, but can be set to 40 N ⁇ m, for example.
- the difference between the torque command value Tm2 * and the actual torque based on the detected current is determined. It may be determined whether or not the value is equal to or greater than a predetermined value for a predetermined time or longer.
- the predetermined time can also be set arbitrarily, but can be set to 1 second, for example. This torque execution monitoring can be executed by the comparison unit 140d.
- the comparison unit 140d compares the actual torque difference value (absolute value) based on the torque command value Tm2 * and the estimated W-phase current, The torque command value Tm2 * is compared with the difference value (absolute value) of the actual torque based on the estimated V-phase current, and it is determined whether or not the magnitude relationship continues for a predetermined time.
- the difference value (absolute value) between the torque command value Tm2 * and the actual torque based on the estimated W-phase current is greater than the difference value (absolute value) between the torque command value Tm2 * and the estimated V-phase current.
- the actual torque based on the estimated W-phase current is T (vw * ⁇ )
- the actual torque based on the estimated V-phase current is T (v * w ⁇ ).
- T (vw * ⁇ ) v is the detected V-phase current
- w * is the estimated W-phase current
- ⁇ is the rotation angle
- the difference value (absolute value) between the torque command value Tm2 * and the actual torque based on the estimated W-phase current is larger than the difference value (absolute value) between the torque command value Tm2 * and the estimated V-phase current, If this magnitude relationship continues for a predetermined time, the result is output to the determination unit 140e.
- the determination unit 140e increases the difference value between the torque command value Tm2 * and the actual torque because there is an abnormality in the estimated W-phase current, that is, the detected V-phase current that is the basis for estimating the estimated W-phase current is It is determined that the V-phase current sensor is abnormal (S105).
- the difference value (absolute value) between the actual torque based on the torque command value Tm2 * and the estimated V-phase current becomes the torque command value Tm2 * and the estimated W-phase current. It is determined whether or not the magnitude difference is larger than the difference value (absolute value) of the actual torque and the magnitude relationship continues for a predetermined time (S106). The difference value (absolute value) between the torque command value Tm2 * and the actual torque based on the estimated V-phase current is larger than the difference value (absolute value) between the torque command value Tm2 * and the estimated W-phase current, If this magnitude relationship continues for a predetermined time, the result is output to the determination unit 140e.
- the determination unit 140e has a difference between the torque command value Tm2 * and the actual torque due to an abnormality in the estimated V-phase current, that is, the detected W-phase current that is the basis for estimating the estimated V-phase current is It is determined that the W-phase current sensor is abnormal as abnormal (S107).
- the determination unit 140e has no abnormality in the V-phase current sensor and the W-phase current sensor, and other than these current sensors, for example, the resolver 124 It is determined that there is an abnormality (S108).
- the MGECU 140 determines whether or not there is an abnormality in the control of the MG2, and if there is an abnormality, it can further identify whether or not the abnormality is caused by the current sensor 125. .
- FIG. 4 shows a flowchart of another abnormality detection process executed by the MGECU 140.
- the processing of S201 to S207 is the same as the processing of S101 to S107 in FIG.
- the MGECU 140 then performs zero torque control (field weakening control) (S208).
- the actual torque is estimated based on the detected V-phase current, the detected W-phase current and the rotation angle ⁇ detected by the resolver 124 by the actual torque estimating unit 140c, and whether the estimated actual torque is substantially zero by the comparing unit 140d. Specifically, it is determined whether the estimated actual torque is greater than zero (S209). This determination is made for each of the small, medium, and large d-axis current commands. Since zero torque control is performed in S208, the actual torque estimated in S209 should be zero if it was originally, but if the actual rotation angle of the rotor is shifted due to an abnormality in the resolver 124, the actual torque Does not become zero.
- the determination unit 140e determines that the resolver 124 is abnormal when the actual torque is not zero in all of the small, medium, and large d-axis current command values (S210). Note that since it is determined that there is no abnormality in the current sensor 125 in S204 and S206, it can be determined that the resolver 124 is abnormal in S210.
- the d-axis current command value is executed in three steps of small, medium, and large in the process of S208, but only one of the command values is executed and whether or not the actual torque is zero. May be determined.
- the d-axis current command value is fixed to any value in the process of S208 and the MG2 is driven a plurality of times. If the actual torque is not zero at any of the plurality of times, it is determined that the resolver 124 is abnormal. May be.
- the current sensor 125 detects the V-phase current and the W-phase current.
- the U-phase current and the V-phase current may be detected, or the U-phase current and the W-phase current are detected. May be.
- the present invention can be applied to a configuration in which the current sensor 125 detects an arbitrary two-phase current of the U, V, and W phases. The reason why it is not necessary to detect the three-phase current with the current sensor 125 is that the sum of the three-phase currents is zero and the current of the remaining phases can be calculated if the two-phase current can be detected. Needless to say, the present invention can be applied to a configuration in which the current sensor 125 detects the current of the current.
- MG1 and MG2 are three-phase motors, but the present invention is not necessarily limited to this, and can be similarly applied to a three-phase or more multiphase motor.
- the abnormality of the current sensor 125 is determined using the difference between the torque command value and the estimated actual torque.
- the estimated W-phase current and the detected W-phase current are compared, or the estimated V-phase current and the detected V-phase current are compared.
- the abnormality of the current sensor 125 can be determined.
- the former is a torque-based current sensor abnormality determination
- the latter is a current-based current sensor abnormality determination.
- FIG. 5 shows a flowchart of the abnormality determination process in this case.
- the processing of S301 to S303 is the same as the processing of S101 to S103 in FIG. 3 and the processing of S201 to S203 in FIG.
- a difference value between a detected W-phase current (abbreviated as W in the figure) and an estimated W-phase current (abbreviated as W * in the figure) by the comparison unit 140d It is determined whether or not (absolute value) is substantially zero, that is, a state where the difference value is greater than zero continues for a predetermined time (S304). If an abnormality occurs in the V-phase current sensor, an abnormality also occurs in the estimated W-phase current generated based on the detected V-phase current. Therefore, a difference occurs between the detected W-phase current and the estimated W-phase current. .
- the determination unit 140e It is determined that the current sensor is abnormal (S305).
- the difference value between the detected V-phase current (abbreviated as V in the figure) and the estimated V-phase current (abbreviated as V * in the figure) is compared (140).
- (Absolute value) is not substantially zero, that is, it is determined whether or not a state where the difference value is greater than zero continues for a predetermined time (S306). If an abnormality occurs in the W-phase current sensor, an abnormality also occurs in the estimated V-phase current generated based on the detected W-phase current. Therefore, a difference occurs between the detected V-phase current and the estimated V-phase current. .
- the determination unit 140e determines that the current sensor is abnormal (S307). Moreover, when it determines with NO by the process of S306, it determines with abnormality other than a current sensor (S308).
- the process of S302 may be omitted. Further, only the process of S304 or only the process of S306 may be executed. In this case, the V-phase current and the W-phase current are detected by the current sensor, the other current is estimated from at least one of the V-phase current and the W-phase current, and the difference between the detected current and the estimated current is determined. It can be said that abnormality of the current sensor is determined.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
まず、モータ制御装置の基本構成について説明する。ハイブリッド車両に搭載されるモータ制御装置である。モータ制御装置は、図1に示されるように、電源であるバッテリ10と、ハイブリッドECU(電子制御装置)15と、PCU(パワーコントロールユニット)20とを備える。
2.1 第1異常検出処理
上記のように、MGECU140は、MG1に設けられた電流センサ125及びレゾルバ124(回転角センサ)からのV相、W層の電流及び回転子の回転角に基づくフォードバック制御により、ハイブリッドECU15からの運転指令に従ってMG1が動作するようにスイッチング素子Q3~Q8のスイッチング動作を制御し、また、MG2に配置された電流センサ125及びレゾルバ124からのV相、W層の電流及び回転子の回転角に基づくフォードバック制御により、ハイブリッドECU15からの運転指令に従ってMG2が動作するようにスイッチング素子Q3~Q8のスイッチング動作を制御する。このため、電流センサ125あるいはレゾルバ124に異常が生じると、MGECU140はMG1,MG2を所望のトルクで駆動することが困難となるため、これらのセンサに異常が生じた場合には、迅速かつ確実にこれらの異常を検出することが必要である。
実トルク=φ×q軸電流×|ω|
で算出される。磁束φはMG2のコイルの巻数や界磁電流等から算出され、q軸電流はMG2の三相電流から公知の三相/二相変換の関数を用いて算出される。ここで、d軸はMG2のベクトル制御における、回転子の磁極が形成する磁束の方向であり、q軸はd軸に直交する軸である。角速度ωはレゾルバ124で検出される回転角から得られる。実トルク推定部140cは、検出V相電流と推定W相電流とレゾルバ124で検出された回転角に基づいて実トルクを推定する。すなわち、実トルク推定部140cは、検出V相電流と推定W相電流を用いて残りのU相電流を算出するとともにq軸電流を推定し、このq軸電流を用いて実トルクを推定する。このようして推定された実トルクを推定W相電流に基づく実トルクとする。また、実トルク推定部140cは、検出W相電流と推定V相電流とレゾルバ124で検出された回転角に基づいて実トルクを推定する。すなわち、実トルク推定部140cは、検出W相電流と推定V相電流を用いて残りのU相電流を算出するとともにq軸電流を推定し、このq軸電流を用いて実トルクを推定する。このようにして推定された実トルクを推定V相電流に基づく実トルクとする。実トルク推定部140cは、推定W相電流に基づく実トルクと、推定V相電流に基づく実トルクを比較部140dに出力する。
図3に、MGECU140で実行される異常検出処理のフローチャートを示す。まず、MGECU140のW相電流推定部140aで検出V相電流に基づいて推定W相電流を生成し、また、V相電流推定部140bで検出W相電流に基づいて推定V相電流を生成する(S101)。
図4に、MGECU140で実行される他の異常検出処理のフローチャートを示す。S201~S207の処理は、図3におけるS101~S107の処理と同一であるからその説明は省略する。
トルク=φ×q軸電流×|ω|
で与えられるから、q軸電流をゼロとすればMG2のトルクはゼロとなる。そして、d軸電流指令値を小、中、大の3段階に変化させ、それぞれ所定時間(例えば500ミリ秒)だけMG2に印加する。小、中、大はそれぞれ任意に設定でき、例えば小は10A、中は40A、大は70Aとすることができる。
以上、本発明の実施形態について説明したが、本発明はこれらの実施形態に限定されるものではなく、種々の変更が可能である。
Claims (10)
- 多相モータに電力を供給するインバータと、
前記インバータの出力側に設けられ、前記多相モータのうちの第1相及び第2相の電流を検出する電流センサと、
前記電流センサで検出された第1相の電流と第2相の電流の少なくともいずれか一方の電流から他方の電流を推定する推定手段と、
検出された電流と、推定された電流との相違に基づいて前記電流センサの異常を判定する判定手段と、
を備えることを特徴とするモータ制御装置。 - 請求項1記載のモータ制御装置において、
前記推定手段は、
前記電流センサで検出された前記第1相の電流に基づいて第2相の電流を推定する手段と、
前記電流センサで検出された前記第2相の電流に基づいて第1相の電流を推定する手段と、
前記電流センサで検出された第1相の電流と、推定された第2相の電流とに基づいて前記多相モータの第1実トルクを推定する手段と、
前記電流センサで検出された第2相の電流と、推定された第1相の電流とに基づいて前記多相モータの第2実トルクを推定する手段と、
を備え、
前記判定手段は、前記多相モータを所望のトルクで駆動するためのトルク指令値と前記第1実トルクとの相違、及び前記トルク指令値と前記第2実トルクとの相違に基づいて前記電流センサの異常を判定することを特徴とするモータ制御装置。 - 請求項2記載のモータ制御装置において、
前記判定手段は、多相モータを所望のトルクで駆動するためのトルク指令値と前記第1実トルクとの相違、あるいは前記トルク指令値と前記第2実トルクとの相違がある場合に前記電流センサの異常と判定し、前記トルク指令値と前記第1実トルクとの相違及び前記トルク指令値と前記第2実トルクとの相違がない場合に電流センサの異常でないと判定することを特徴とするモータ制御装置。 - 請求項3記載のモータ制御装置において、
前記判定手段は、前記トルク指令値と前記第1実トルクとの相違が、前記トルク指令値と前記第2実トルクとの相違よりも大きい場合に前記第1相の電流を検出する電流センサの異常と判定し、前記トルク指令値と前記第2実トルクとの相違が、前記トルク指令値と前記第1実トルクとの相違よりも大きい場合に前記第2相の電流を検出する電流センサの異常と判定することを特徴とするモータ制御装置。 - 請求項2記載のモータ制御装置において、さらに、
前記多相モータの回転角を検出する回転角センサ
を備え、
前記推定手段は、
前記電流センサで検出された前記第1相の電流に基づいて第2相の電流を推定する手段と、
前記電流センサで検出された前記第2相の電流に基づいて第1相の電流を推定する手段と、
前記電流センサで検出された第1相の電流と、推定された第2相の電流と、前記回転角に基づいて前記多相モータの第1実トルクを推定する手段と、
前記電流センサで検出された第2相の電流と、推定された第1相の電流と、前記回転角に基づいて前記多相モータの第2実トルクを推定する手段と、
前記電流センサで検出された第1相の電流と、前記電流センサで検出された第2相の電流と、前記回転角に基づいて前記多相モータの第3実トルクを推定する手段と、
を備え、
前記判定手段は、前記多相モータを所望のトルクで駆動するためのトルク指令値と前記第1実トルクとの相違、及び前記トルク指令値と前記第2実トルクとの相違、並びに前記トルク指令値と前記第3実トルクとの相違に基づいて前記電流センサの異常か前記回転角センサの異常かを判定することを特徴とするモータ制御装置。 - 請求項5記載のモータ制御装置において、
前記判定手段は、多相モータを所望のトルクで駆動するためのトルク指令値と前記第1実トルクとの相違、あるいは前記トルク指令値と前記第2実トルクとの相違がある場合に前記電流センサの異常と判定し、前記トルク指令値と前記第1実トルクとの相違及び前記トルク指令値と前記第2実トルクとの相違がなく前記トルク指令値と前記第3実トルクとの相違がある場合に前記回転角センサの異常と判定することを特徴とするモータ制御装置。 - 請求項6記載のモータ制御装置において、さらに、
前記多相モータをゼロトルクで駆動する手段
を備え、
前記判定手段は、前記トルク指令値と前記第1実トルクとの相違及び前記トルク指令値と前記第2実トルクとの相違がなく前記トルク指令値と前記第3実トルクとの相違がある場合に、前記駆動手段で駆動した後の前記第3実トルクがゼロでない場合に前記回転角センサの異常と判定し、前記駆動手段で駆動した後の前記第3実トルクがゼロである場合に前記電流センサ及び前記回転角センサ以外の異常と判定することを特徴とするモータ制御装置。 - 請求項1記載のモータ制御装置において、
前記多相モータはU相、V相、W相からなる三相モータであり、
前記第1相及び第2相は、前記U相、V相、W相のうちのいずれか2つの相であることを特徴とするモータ制御装置。 - 請求項2記載のモータ制御装置において、
前記多相モータはU相、V相、W相からなる三相モータであり、
前記第1相は前記V相、前記第2相はW相であり、
前記推定手段は、
前記電流センサで検出された前記V相の電流に基づいてW相の電流を推定する手段と、
前記電流センサで検出された前記W相の電流に基づいてV相の電流を推定する手段と、
前記電流センサで検出されたV相の電流と、推定されたW相の電流とに基づいて前記多相モータの第1実トルクを推定する手段と、
前記電流センサで検出された第2相の電流と、推定された第1相の電流とに基づいて前記多相モータの第2実トルクを推定する手段と、
を備え、
前記判定手段は、前記多相モータを所望のトルクで駆動するためのトルク指令値と前記第1実トルクとの相違、及び前記トルク指令値と前記第2実トルクとの相違に基づいて前記電流センサの異常を判定することを特徴とするモータ制御装置。 - 請求項5記載のモータ制御装置において、
前記多相モータはU相、V相、W相からなる三相モータであり、
前記第1相は前記V相、前記第2相はW相であり、
前記推定手段は、
前記電流センサで検出された前記V相の電流に基づいてW相の電流を推定する手段と、
前記電流センサで検出されたW相の電流に基づいてV相の電流を推定する手段と、
前記電流センサで検出されたV相の電流と、推定されたW相の電流と、前記回転角に基づいて前記多相モータの第1実トルクを推定する手段と、
前記電流センサで検出されたW相の電流と、推定されたV相の電流と、前記回転角に基づいて前記多相モータの第2実トルクを推定する手段と、
前記電流センサで検出されたV相の電流と、前記電流センサで検出されたW相の電流と、前記回転角に基づいて前記多相モータの第3実トルクを推定する手段と、
を備え、
前記判定手段は、前記多相モータを所望のトルクで駆動するためのトルク指令値と前記第1実トルクとの相違、及び前記トルク指令値と前記第2実トルクとの相違、並びに前記トルク指令値と前記第3実トルクとの相違に基づいて前記電流センサの異常か前記回転角センサの異常かを判定することを特徴とするモータ制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10850671.8A EP2566046B1 (en) | 2010-04-26 | 2010-04-26 | Motor control apparatus |
JP2012512558A JP5454676B2 (ja) | 2010-04-26 | 2010-04-26 | モータ制御装置 |
US13/643,349 US9054626B2 (en) | 2010-04-26 | 2010-04-26 | Motor control apparatus |
PCT/JP2010/057379 WO2011135652A1 (ja) | 2010-04-26 | 2010-04-26 | モータ制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/057379 WO2011135652A1 (ja) | 2010-04-26 | 2010-04-26 | モータ制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011135652A1 true WO2011135652A1 (ja) | 2011-11-03 |
Family
ID=44860999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/057379 WO2011135652A1 (ja) | 2010-04-26 | 2010-04-26 | モータ制御装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9054626B2 (ja) |
EP (1) | EP2566046B1 (ja) |
JP (1) | JP5454676B2 (ja) |
WO (1) | WO2011135652A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014132815A (ja) * | 2012-12-03 | 2014-07-17 | Denso Corp | 交流電動機の制御装置 |
JP2015186401A (ja) * | 2014-03-26 | 2015-10-22 | ダイキン工業株式会社 | 流量制御装置 |
US9257922B2 (en) | 2013-03-15 | 2016-02-09 | Honeywell International Inc. | Parallel harness current imbalance and failure detection |
WO2017110855A1 (ja) * | 2015-12-21 | 2017-06-29 | 日産自動車株式会社 | モータの診断方法及びこれを用いた電力変換装置 |
JP2018093609A (ja) * | 2016-12-01 | 2018-06-14 | トヨタ自動車株式会社 | モータ制御システム |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10254374B2 (en) | 2013-07-16 | 2019-04-09 | Ford Global Technologies, Llc | Method of current sensor related torque error estimation for IPMSM e-drive system |
JP6137045B2 (ja) * | 2014-05-08 | 2017-05-31 | トヨタ自動車株式会社 | 車両の駆動電動機制御装置 |
JP5994816B2 (ja) * | 2014-05-14 | 2016-09-21 | 株式会社デンソー | 回転電機制御システム |
JP5994815B2 (ja) * | 2014-05-14 | 2016-09-21 | 株式会社デンソー | 回転電機制御装置 |
JP6350208B2 (ja) * | 2014-10-24 | 2018-07-04 | トヨタ自動車株式会社 | 自動車 |
US9937813B2 (en) * | 2015-05-28 | 2018-04-10 | Toyota Jidosha Kabushiki Kaisha | Vehicle |
JP2017177255A (ja) * | 2016-03-29 | 2017-10-05 | ソニー株式会社 | 制御装置及び制御方法 |
US9806656B1 (en) * | 2016-11-30 | 2017-10-31 | Steering Solutions Ip Holding Corporation | Fault tolerant phase current measurement for motor control systems |
JP6652073B2 (ja) * | 2017-01-06 | 2020-02-19 | 株式会社デンソー | モータ制御装置 |
JP6969342B2 (ja) * | 2017-12-14 | 2021-11-24 | 株式会社デンソー | モータ駆動装置 |
JP7400682B2 (ja) * | 2020-10-06 | 2023-12-19 | トヨタ自動車株式会社 | 電気自動車 |
CN113246732B (zh) * | 2021-05-28 | 2022-11-29 | 联合汽车电子有限公司 | 控制方法、可读存储介质及控制器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09172791A (ja) * | 1995-12-18 | 1997-06-30 | Toyota Motor Corp | 交流モータ制御回路の異常検出装置 |
JP2000116176A (ja) * | 1998-10-05 | 2000-04-21 | Nissan Motor Co Ltd | 3相交流モータの制御装置 |
JP2004056889A (ja) | 2002-07-18 | 2004-02-19 | Nissan Motor Co Ltd | 電流センサ診断装置 |
JP2008022645A (ja) * | 2006-07-13 | 2008-01-31 | Ihi Corp | モータ制御装置、電流センサの故障診断方法、モータ制御方法 |
JP2008092708A (ja) | 2006-10-03 | 2008-04-17 | Hitachi Ltd | モータ駆動制御装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001008483A (ja) | 1999-06-16 | 2001-01-12 | Yamaha Motor Co Ltd | 電動車両の駆動制御装置 |
JP2004201487A (ja) * | 2002-11-28 | 2004-07-15 | Nsk Ltd | モータ及びその駆動制御装置 |
JP4267976B2 (ja) | 2003-07-29 | 2009-05-27 | 本田技研工業株式会社 | 電動パワーステアリング装置 |
-
2010
- 2010-04-26 EP EP10850671.8A patent/EP2566046B1/en not_active Not-in-force
- 2010-04-26 US US13/643,349 patent/US9054626B2/en not_active Expired - Fee Related
- 2010-04-26 JP JP2012512558A patent/JP5454676B2/ja not_active Expired - Fee Related
- 2010-04-26 WO PCT/JP2010/057379 patent/WO2011135652A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09172791A (ja) * | 1995-12-18 | 1997-06-30 | Toyota Motor Corp | 交流モータ制御回路の異常検出装置 |
JP2000116176A (ja) * | 1998-10-05 | 2000-04-21 | Nissan Motor Co Ltd | 3相交流モータの制御装置 |
JP2004056889A (ja) | 2002-07-18 | 2004-02-19 | Nissan Motor Co Ltd | 電流センサ診断装置 |
JP2008022645A (ja) * | 2006-07-13 | 2008-01-31 | Ihi Corp | モータ制御装置、電流センサの故障診断方法、モータ制御方法 |
JP2008092708A (ja) | 2006-10-03 | 2008-04-17 | Hitachi Ltd | モータ駆動制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2566046A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014132815A (ja) * | 2012-12-03 | 2014-07-17 | Denso Corp | 交流電動機の制御装置 |
US9356549B2 (en) | 2012-12-03 | 2016-05-31 | Denso Corporation | Control device of AC motor |
US9257922B2 (en) | 2013-03-15 | 2016-02-09 | Honeywell International Inc. | Parallel harness current imbalance and failure detection |
JP2015186401A (ja) * | 2014-03-26 | 2015-10-22 | ダイキン工業株式会社 | 流量制御装置 |
WO2017110855A1 (ja) * | 2015-12-21 | 2017-06-29 | 日産自動車株式会社 | モータの診断方法及びこれを用いた電力変換装置 |
JPWO2017110855A1 (ja) * | 2015-12-21 | 2018-09-06 | 日産自動車株式会社 | モータの診断方法及びこれを用いた電力変換装置 |
US10715074B2 (en) | 2015-12-21 | 2020-07-14 | Nissan Motor Co., Ltd. | Motor diagnosis method and power conversion device using same |
JP2018093609A (ja) * | 2016-12-01 | 2018-06-14 | トヨタ自動車株式会社 | モータ制御システム |
Also Published As
Publication number | Publication date |
---|---|
JP5454676B2 (ja) | 2014-03-26 |
US9054626B2 (en) | 2015-06-09 |
US20130038342A1 (en) | 2013-02-14 |
JPWO2011135652A1 (ja) | 2013-07-18 |
EP2566046B1 (en) | 2016-08-10 |
EP2566046A1 (en) | 2013-03-06 |
EP2566046A4 (en) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5454676B2 (ja) | モータ制御装置 | |
US9903931B2 (en) | Diagnostic device for voltage sensors | |
JP6458762B2 (ja) | 自動車 | |
JP5348324B2 (ja) | 車両の制御装置 | |
JP5760778B2 (ja) | モータ駆動制御システム | |
US20090195199A1 (en) | Motor drive device | |
JP2008141868A (ja) | 電動機システム | |
WO2008001949A1 (fr) | Dispositif d'entraînement de moteur | |
JP6458763B2 (ja) | 自動車 | |
JP2010119268A (ja) | インバータの異常検出装置および異常検出方法 | |
JP2011091962A (ja) | 電流センサの異常判定装置および異常判定方法 | |
US9057334B2 (en) | Vehicle, and control method for vehicle | |
JP2010011688A (ja) | 回転電機駆動制御装置 | |
JP2011050183A (ja) | インバータ装置 | |
CN110481335B (zh) | 车辆的驱动装置及车辆的控制方法 | |
JP5934295B2 (ja) | インバータシステムにおける電力ケーブルの状態検出方法 | |
JP6173516B1 (ja) | 電動機制御装置および電動機制御方法 | |
JP6827560B2 (ja) | 回転電機制御装置及び電動車両 | |
JP2017028966A (ja) | 電流センサ異常診断装置 | |
JP2019170057A (ja) | モータ制御装置 | |
JP6203318B1 (ja) | 電動機制御装置および電動機制御方法 | |
US11942889B2 (en) | Motor control device | |
JP6332015B2 (ja) | 駆動装置 | |
JP6708843B2 (ja) | 駆動装置 | |
JP2011166989A (ja) | 駆動装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10850671 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2012512558 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13643349 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010850671 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010850671 Country of ref document: EP |