JP6708843B2 - 駆動装置 - Google Patents

駆動装置 Download PDF

Info

Publication number
JP6708843B2
JP6708843B2 JP2016154603A JP2016154603A JP6708843B2 JP 6708843 B2 JP6708843 B2 JP 6708843B2 JP 2016154603 A JP2016154603 A JP 2016154603A JP 2016154603 A JP2016154603 A JP 2016154603A JP 6708843 B2 JP6708843 B2 JP 6708843B2
Authority
JP
Japan
Prior art keywords
voltage
power line
side power
axis
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016154603A
Other languages
English (en)
Other versions
JP2018023246A (ja
Inventor
智子 大庭
智子 大庭
康宏 寺尾
康宏 寺尾
健 利行
健 利行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016154603A priority Critical patent/JP6708843B2/ja
Publication of JP2018023246A publication Critical patent/JP2018023246A/ja
Application granted granted Critical
Publication of JP6708843B2 publication Critical patent/JP6708843B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、駆動装置に関し、詳しくは、モータとインバータとバッテリと昇圧コンバータとを備える駆動装置に関する。
従来、この種の駆動装置としては、モータと、複数の半導体スイッチング素子のスイッチングによってモータを駆動するインバータと、インバータに接続された直流電源と、を備えるものにおいて、インバータの入力電圧が低いときには高いときに比して複数の半導体スイッチング素子のスイッチングスピードを速くするものが提案されている(例えば、特許文献1参照)。この駆動装置では、インバータの入力電圧が高いときには、スイッチングスピードを遅くすることにより、半導体スイッチング素子に耐圧を超えるサージ電圧がかかるのを抑制している。また、インバータの入力電圧が低いときには、スイッチングスピードを速くすることにより、スイッチング時間を短くしてスイッチング損失を小さくしている。なお、インバータの入力電圧が低いときには、サージ電圧の絶対値が低くなることから、半導体スイッチング素子に耐圧を超えるサージ電圧がかかるのを抑制できる。
特開平9−23664号公報
上述の駆動装置では、インバータの入力電圧を検出するセンサに異常が生じるなどして、インバータの実際の入力電圧が高いにも拘わらずにインバータの入力電圧(検出値)が低いと判定されると、スイッチングスピードを速くすることによって、半導体スイッチング素子に耐圧を超えるサージ電圧がかかって半導体スイッチング素子が破損する場合が生じ得る。
本発明の駆動装置は、インバータのスイッチング素子が破損するのを抑制することを主目的とする。
本発明の駆動装置は、上述の主目的を達成するために以下の手段を採った。
本発明の駆動装置は、
モータと、
複数のスイッチング素子のスイッチングによって前記モータを駆動するインバータと、
バッテリと、
前記バッテリが接続された低電圧側電力ラインと前記インバータが接続された高電圧側電力ラインとの間で電圧の変換を伴って電力のやりとりを行なう昇圧コンバータと、
前記インバータと前記昇圧コンバータとを制御する制御装置と、
を備える駆動装置であって、
前記高電圧側電力ラインの電圧を検出する電圧センサを備え、
前記制御装置は、前記電圧センサにより検出された高電圧側電力ラインの電圧が所定電圧未満のときにおいて、前記モータのd軸,q軸の電流または電圧の絶対値が閾値以上のときには、前記閾値未満のときに比して前記複数のスイッチング素子のスイッチングスピードを遅くする、
ことを要旨とする。
この本発明の駆動装置では、電圧センサにより検出された高電圧側電力ラインの電圧が所定電圧未満のときにおいて、モータのd軸,q軸の電流または電圧の絶対値が閾値以上のときには、閾値未満のときに比してインバータの複数のスイッチング素子のスイッチングスピードを遅くする。d軸,q軸の電流や電圧の絶対値が大きいほど、モータの実際のトルクが大きいと共に高電圧側電力ラインの実際の電圧も高いと考えられる。したがって、このようにスイッチングスピードを設定することにより、電圧センサにより検出された高電圧側電力ラインの電圧が電圧センサの異常などによって所定電圧未満であるが高電圧側電力ラインの実際の電圧が比較的高い(所定電圧以上である)と考えられるときに、スイッチング素子に耐圧を超えるサージ電圧がかかるのを抑制することができる。この結果、スイッチング素子が破損するのを抑制することができる。
こうした本発明の駆動装置において、前記制御装置は、前記電圧センサにより検出された高電圧側電力ラインの電圧が前記所定電圧未満で且つ前記d軸,q軸の電流または電圧の絶対値が前記閾値未満のときにおいて、前記高電圧側電力ラインの目標電圧が前記所定電圧以上のときには、前記所定電圧未満のときに比して前記複数のスイッチング素子のスイッチングスピードを遅くする、ものとしてもよい。こうすれば、高電圧側電力ラインの実際の電圧が所定電圧以上になったときにスイッチング素子に耐圧を超えるサージ電圧がかかるのを抑制できるように、前もって対処することができる。
本発明の一実施例としての駆動装置を搭載する電気自動車20の構成の概略を示す構成図である。 実施例の電子制御ユニット50により実行されるスイッチングスピード設定ルーチンの一例を示すフローチャートである。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の一実施例としての駆動装置を搭載する電気自動車20の構成の概略を示す構成図である。実施例の電気自動車20は、図示するように、モータ32と、インバータ34と、バッテリ36と、昇圧コンバータ40と、電子制御ユニット50と、を備える。
モータ32は、同期発電電動機として構成されており、永久磁石が埋め込まれた回転子と、三相コイルが巻回された固定子と、を備える。このモータ32の回転子は、駆動輪22a,22bにデファレンシャルギヤ24を介して連結された駆動軸26に接続されている。
インバータ34は、モータ32に接続されると共に高電圧側電力ライン42を介して昇圧コンバータ40に接続されている。このインバータ34は、6つのスイッチング素子としてのトランジスタT11〜T16と、6つのダイオードD11〜D16と、を有する。トランジスタT11〜T16は、それぞれ、高電圧側電力ライン42の正極母線と負極母線とに対して、ソース側とシンク側になるように、2個ずつペアで配置されている。6つのダイオードD11〜D16は、それぞれ、トランジスタT11〜T16に逆方向に並列接続されている。トランジスタT11〜T16の対となるトランジスタ同士の接続点の各々には、モータ32の三相コイル(U相,V相,W相)の各々が接続されている。したがって、インバータ34に電圧が作用しているときに、電子制御ユニット50によって、対となるトランジスタT11〜T16のオン時間の割合が調節されることにより、三相コイルに回転磁界が形成され、モータ32が回転駆動される。以下、トランジスタT11〜T13を「上アーム」,トランジスタT14〜T16を「下アーム」ということがある。高電圧側電力ライン42の正極母線と負極母線とには、平滑用のコンデンサ46が取り付けられている。
バッテリ36は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、低電圧側電力ライン44を介して昇圧コンバータ40に接続されている。低電圧側電力ライン44の正極母線と負極母線とには、平滑用のコンデンサ48が取り付けられている。
昇圧コンバータ40は、高電圧側電力ライン42と低電圧側電力ライン44とに接続されている。この昇圧コンバータ40は、2つのトランジスタT31,T32と、2つのダイオードD31,D32と、リアクトルLと、を有する。トランジスタT31は、高電圧側電力ライン42の正極母線に接続されている。トランジスタT32は、トランジスタT31と、高電圧側電力ライン42および低電圧側電力ライン44の負極母線と、に接続されている。2つのダイオードD31,D32は、それぞれ、トランジスタT31,T32に逆方向に並列接続されている。リアクトルLは、トランジスタT31,T32同士の接続点と、低電圧側電力ライン44の正極母線と、に接続されている。昇圧コンバータ40は、電子制御ユニット50によって、トランジスタT31,T32のオン時間の割合が調節されることにより、低電圧側電力ライン44の電力を電圧の昇圧を伴って高電圧側電力ライン42に供給したり、高電圧側電力ライン42の電力を電圧の降圧を伴って低電圧側電力ライン44に供給したりする。
電子制御ユニット50は、CPU52を中心とするマイクロプロセッサとして構成されており、CPU52の他に、処理プログラムを記憶するROM54やデータを一時的に記憶するRAM56,入出力ポートを備える。
電子制御ユニット50には、各種センサからの信号が入力ポートを介して入力されている。電子制御ユニット50に入力される信号としては、例えば、モータ32の回転子の回転位置を検出する回転位置検出センサ(例えばレゾルバ)32aからの回転位置θm,モータ32の各相に流れる電流を検出する電流センサ32u,32vからの相電流Iu,Ivを挙げることができる。また、バッテリ36の端子間に取り付けられた電圧センサ36aからの電圧VB,バッテリ36の出力端子に取り付けられた電流センサ36bからの電流IBも挙げることができる。さらに、コンデンサ46の端子間に取り付けられた電圧センサ46aからのコンデンサ46(高電圧側電力ライン42)の電圧VH,コンデンサ48の端子間に取り付けられた電圧センサ48aからのコンデンサ48(低電圧側電力ライン44)の電圧VLも挙げることができる。加えて、イグニッションスイッチ60からのイグニッション信号,シフトレバー61の操作位置を検出するシフトポジションセンサ62からのシフトポジションSP,アクセルペダル63の踏み込み量を検出するアクセルペダルポジションセンサ64からのアクセル開度Acc,ブレーキペダル65の踏み込み量を検出するブレーキペダルポジションセンサ66からのブレーキペダルポジションBPも挙げることができる。また、車速センサ68からの車速Vも挙げることができる。
電子制御ユニット50からは、各種制御信号が出力ポートを介して出力されている。電子制御ユニット50から出力される信号としては、例えば、インバータ34のトランジスタT11〜T16へのスイッチング制御信号,昇圧コンバータ40のトランジスタT31,T32へのスイッチング制御信号を挙げることができる。
電子制御ユニット50は、回転位置検出センサ32aからのモータ32の回転子の回転位置θmに基づいてモータ32の電気角θeや角速度ωm,回転数Nmを演算している。また、電子制御ユニット50は、電流センサ36bからのバッテリ36の電流IBの積算値に基づいてバッテリ36の蓄電割合SOCを演算している。ここで、蓄電割合SOCは、バッテリ36の全容量に対するバッテリ36から放電可能な電力の容量の割合である。
こうして構成された実施例の電気自動車20では、電子制御ユニット50は、以下の走行制御を行なう。走行制御では、アクセルペダルポジションセンサ64からのアクセル開度Accと車速センサ68からの車速Vとに基づいて駆動軸26に要求される要求トルクTd*を設定し、設定した要求トルクTd*をモータ32のトルク指令Tm*に設定し、モータ32がトルク指令Tm*で駆動されるようにインバータ34のトランジスタT11〜T16のスイッチング制御を行なう。また、モータ32をトルク指令Tm*で駆動できるように高電圧側電力ライン42の目標電圧VH*を設定し、電圧センサ46aからの高電圧側電力ライン42の電圧VHが目標電圧VH*となるように昇圧コンバータ40のトランジスタT31,T32のスイッチング制御を行なう。
ここで、インバータ34の制御について説明する。まず、モータ32のトルク指令Tm*と電圧センサ46aからの高電圧側電力ライン42の電圧VHとに基づいてd軸,q軸の電流指令Id*,Iq*を設定する。具体的には、モータ32のトルク指令Tm*が大きいほど且つ高電圧側電力ライン42の電圧VHが高いほど電流指令Id*,Iq*の絶対値が大きくなるように電流指令Id*,Iq*を設定する。また、モータ32のU相,V相,W相に流れる電流の総和が値0であるとして、回転位置検出センサ32aからのモータ32の回転子の回転位置θmに基づくモータ32の電気角θeを用いて、電流センサ32u,32vからのU相,V相の電流Iu,Ivをd軸,q軸の電流Id,Iqに座標変換(三相二相変換)する。そして、d軸,q軸の電流指令Id*,Iq*とd軸,q軸の電流Id,Iqとの差分ΔId,ΔIqに基づくフィードバック項と、d軸,q軸の各軸相互に干渉する項をキャンセルするためのフィードフォワード項と、の和としてd軸,q軸の電圧指令Vd*,Vq*を演算する。次に、モータ32の電気角θeと高電圧側電力ライン42の電圧VHとを用いて、d軸,q軸の電圧指令Vd*,Vq*をU相,V相,W相の電圧指令Vu*,Vv*,Vw*に座標変換(二相三相変換)し、この電圧指令Vu*,Vv*,Vw*をトランジスタT11〜T16のPWM信号に変換する。そして、このトランジスタT11〜T16のPWM信号と、後述のスイッチングスピード設定ルーチンによって設定されるスイッチングスピードVswと、をトランジスタT11〜T16のそれぞれに対応する各ドライバICに出力する。各ドライバICは、PWM信号に基づいて、対応するトランジスタのスイッチング制御をスイッチングスピードVswで行なう。
次に、こうして構成された実施例の電気自動車20の動作、特に、インバータ34のトランジスタT11〜T16のスイッチング制御を行なう際のスイッチングスピードVswを設定する処理について説明する。図2は、実施例の電子制御ユニット50により実行されるスイッチングスピード設定ルーチンの一例を示すフローチャートである。このルーチンは、所定時間(例えば、数msec)毎に繰り返し実行される。
スイッチングスピード設定ルーチンが実行されると、電子制御ユニット50のCPU52は、まず、高電圧側電力ライン42の電圧VHや目標電圧VH*,d軸,q軸の電圧Vd,Vqなどのデータを入力する(ステップS100)。ここで、高電圧側電力ライン42の電圧VHは、電圧センサ46aにより検出されたものを入力するものとした。高電圧側電力ライン42の目標電圧VH*は、上述の走行制御によって設定されたものを入力するものとした。d軸,q軸の電圧Vd,Vqは、モータ32の角速度ωmとd軸,q軸の電流Id,Iqとを用いて式(1),(2)により演算されたものを入力するものとした。式(1),(2)中、「Ld」,「Lq」はd軸,q軸のインダクタンスを示し、「φ」は鎖交磁束を示す。
Vd=-ωm・Lq・Iq (1)
Vq=ωm・Ld・Id+ωm・φ (2)
こうしてデータを入力すると、入力した高電圧側電力ライン42の電圧VHを閾値VHrefと比較し(ステップS110)、d軸の電圧Vdの絶対値を閾値Vdrefと比較し(ステップS120)、q軸の電圧Vqの絶対値を閾値Vqrefと比較し(ステップS130)、高電圧側電力ライン42の目標電圧VH*を閾値VHrefと比較する(ステップS140)。ここで、閾値VHrefや閾値Vdref,閾値Vqrefは、トランジスタT11〜T16のスイッチングスピードVswを比較的速くするとトランジスタT11〜T16に耐圧を超えるサージ電圧がかかるか否かを判定するために用いられる閾値である。実施例では、閾値Vdref,Vqrefは、以下の内容を踏まえて、高電圧側電力ライン42の実際の電圧VHactが閾値VHrefに等しくなると考えられるd軸,q軸の電圧Vd,Vqの絶対値を用いるものとした。まず、上述したように、モータ32のトルク指令Tm*が大きいほど且つ高電圧側電力ライン42の電圧VHが高いほど電流指令Id*,Iq*の絶対値が大きくなるように電流指令Id*,Iq*を設定する。また、式(1),(2)から分かるように、d軸,q軸の電流Id,Iqの絶対値が大きいほどd軸,q軸の電圧Vd,Vqの絶対値が大きくなる。これらから、d軸,q軸の電圧Vd,Vqの絶対値が大きいほど、モータ32の実際のトルクTmactが大きいと共に高電圧側電力ライン42の実際の電圧VHactも高いと考えられる。
ステップS110〜S140で、高電圧側電力ライン42の電圧VHが閾値VHref未満で且つd軸の電圧Vdの絶対値が閾値Vdref未満で且つq軸の電圧Vqの絶対値が閾値Vqref未満で且つ高電圧側電力ライン42の目標電圧VH*が閾値VHref未満のときには、スイッチングスピードVswに比較的速い所定スピードVsw1を設定して(ステップS150)、本ルーチンを終了する。この場合、スイッチングスピードVswを比較的速くすることにより、トランジスタT11〜T16のスイッチング時間を短くしてスイッチング損失を低減することができる。
ステップS110〜S140で、高電圧側電力ライン42の電圧VHが閾値VHref以上のときや、d軸の電圧Vdの絶対値が閾値Vdref以上のとき,q軸の電圧Vqの絶対値が閾値Vqref以上のとき,高電圧側電力ライン42の目標電圧VH*が閾値VHref以上のときには、スイッチングスピードVswに所定スピードVsw1よりも遅い所定スピードVsw2を設定して(ステップS160)、本ルーチンを終了する。この場合、スイッチングスピードVswを比較的遅くすることにより、トランジスタT11〜T16に耐圧を超えるサージ電圧がかかるのを抑制することができ、トランジスタT11〜T16が破損するのを抑制することができる。
このように高電圧側電力ライン42の電圧VHだけでなくd軸,q軸の電圧Vd,Vqの絶対値や高電圧側電力ライン42の目標電圧VH*も用いてスイッチングスピードVswを設定することにより、以下の効果を奏する。ここで、比較例として、高電圧側電力ライン42の電圧VHだけを用いてスイッチングスピードVswを設定する場合を考える。電圧センサ46aが正常に機能しているときには、高電圧側電力ライン42の電圧VHだけを用いてスイッチングスピードVswを設定する場合でも問題はないと考えられる。しかし、比較例の場合、電圧センサ46aからの高電圧側電力ライン42の電圧VHが閾値VHref未満のときには、スイッチングスピードVswを比較的速い所定スピードVsw1とする。このため、電圧センサ46aからの高電圧側電力ライン42の電圧VHが電圧センサ46aの異常などによって閾値VHref未満であるが高電圧側電力ライン42の実際の電圧VHactが比較的高い(閾値VHref以上である)と考えられるときに、トランジスタT11〜T16に耐圧を超えるサージ電圧がかかり、トランジスタT11〜T16が破損する場合が生じ得る。これに対して、実施例では、電圧センサ46aからの高電圧側電力ライン42の電圧VHが閾値VHref未満のときでも、d軸の電圧Vdの絶対値が閾値Vdref以上のときやq軸の電圧Vqの絶対値が閾値Vq以上のとき即ち高電圧側電力ライン42の実際の電圧VHactが比較的高い(閾値VHref以上である)と考えられるときには、スイッチングスピードVswを比較的遅い所定スピードVsw2とする。これにより、電圧センサ46aからの高電圧側電力ライン42の電圧VHが電圧センサ46aの異常などによって閾値VHref未満であるが高電圧側電力ライン42の実際の電圧VHactが比較的高い(閾値VHref以上である)と考えられるときに、トランジスタT11〜T16に耐圧を超えるサージ電圧がかかるのを抑制し、トランジスタT11〜T16が破損するのを抑制することができる。また、実施例では、高電圧側電力ライン42の電圧VHが閾値VHref未満のときでも、高電圧側電力ライン42の目標電圧VH*が閾値VHref以上のときには、スイッチングスピードVswを所定スピードVsw2とする。これにより、高電圧側電力ライン42の実際の電圧VHactが閾値VHref以上になったときにトランジスタT11〜T16に耐圧を超えるサージ電圧がかかるのを抑制できるように、前もって対処しておくことができる。
以上説明した実施例の電気自動車20に搭載される駆動装置では、高電圧側電力ライン42の電圧VHが閾値VHref未満のときにおいて、d軸の電圧Vdの絶対値が閾値Vdref以上のときやq軸の電圧Vqの絶対値が閾値Vqref以上のときには、d軸の電圧Vdの絶対値が閾値Vdref未満で且つq軸の電圧Vqの絶対値が閾値Vqref未満のときに比してスイッチングスピードVswを遅くする。これにより、電圧センサ46aからの高電圧側電力ライン42の電圧VHが電圧センサ46aの異常などによって閾値VHref未満であるが高電圧側電力ライン42の実際の電圧VHactが比較的高い(閾値VHref以上である)と考えられるときに、トランジスタT11〜T16に耐圧を超えるサージ電圧がかかるのを抑制し、トランジスタT11〜T16が破損するのを抑制することができる。
実施例の電気自動車20に搭載される駆動装置では、高電圧側電力ライン42の電圧VHとd軸,q軸の電圧Vd,Vqとを用いてスイッチングスピードVswを設定するものとした。しかし、d軸,q軸の電圧Vd,Vqに代えてまたは加えて、d軸,q軸の電流Id,Iqを用いてスイッチングスピードVswを設定するものとしてもよい。d軸,q軸の電圧Vd,Vqに代えてd軸,q軸の電流Id,Iqを用いる場合、高電圧側電力ライン42の電圧VHが閾値VHref未満のときにおいて、d軸の電流Idの絶対値を閾値Idrefと比較すると共にq軸の電流Iqの絶対値を閾値Iqrefと比較し、d軸の電流Idの絶対値が閾値Idref未満で且つq軸の電流Iqの絶対値が閾値Iqref未満のときには、高電圧側電力ライン42の目標電圧VH*に応じてスイッチングスピードVswを設定し、d軸の電流Idの絶対値が閾値Idrefよりも大きいときやq軸の電流Iqの絶対値が閾値Iqrefよりも大きいときには、スイッチングスピードVswに所定スピードVsw2を設定するものとしてもよい。ここで、d軸,q軸の電流Id,Iqの絶対値が大きいほど、モータ32の実際のトルクTmactが大きく、高電圧側電力ライン42の実際の電圧VHactも高いと考えられる。これを踏まえて、閾値Idref,Vqrefは、高電圧側電力ライン42の実際の電圧VHactが閾値VHrefに等しくなると考えられるd軸,q軸の電流Id,Iqの絶対値を用いるものとしてもよい。
実施例の電気自動車20に搭載される駆動装置では、高電圧側電力ライン42の電圧VHやd軸,q軸の電圧Vd,Vqに加えて、高電圧側電力ライン42の目標電圧VH*も用いてスイッチングスピードVswを設定するものとした。しかし、高電圧側電力ライン42の目標電圧VH*を用いずにスイッチングスピードVswを設定するものとしてもよい。
実施例では、電気自動車20に搭載される駆動装置の構成とした。しかし、モータとインバータとバッテリと昇圧コンバータとを備える構成であればよいから、電気自動車以外の自動車、例えば、ハイブリッド自動車や燃料電池車に搭載される駆動装置の構成としてもよいし、建設設備などの移動しない設備に搭載される駆動装置の構成としてもよい。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、モータ32が「モータ」に相当し、インバータ34が「インバータ」に相当し、バッテリ36が「バッテリ」に相当し、昇圧コンバータ40が「昇圧コンバータ」に相当し、電圧センサ46aが「電圧センサ」に相当し、図2のスイッチングスピード設定ルーチンを実行すると共にインバータ34と昇圧コンバータ40とを制御する電子制御ユニット50が「制御装置」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、駆動装置の製造産業などに利用可能である。
20 電気自動車、22a,22b 駆動輪、24 デファレンシャルギヤ、26 駆動軸、32 モータ、32a 回転位置検出センサ、32u,32v,36b 電流センサ、34 インバータ、36 バッテリ、36a,46a,48a 電圧センサ、40 昇圧コンバータ、42 高電圧側電力ライン、44 低電圧側電力ライン、46,48 コンデンサ、50 電子制御ユニット、52 CPU、54 ROM、56 RAM、60 イグニッションスイッチ、61 シフトレバー、62 シフトポジションセンサ、63 アクセルペダル、64 アクセルペダルポジションセンサ、65 ブレーキペダル、66 ブレーキペダルポジションセンサ、68 車速センサ、D11〜D16,D31,D32 ダイオード、L リアクトル、T11〜T16,T31,T32 トランジスタ。

Claims (1)

  1. モータと、
    複数のスイッチング素子のスイッチングによって前記モータを駆動するインバータと、
    バッテリと、
    前記バッテリが接続された低電圧側電力ラインと前記インバータが接続された高電圧側電力ラインとの間で電圧の変換を伴って電力のやりとりを行なう昇圧コンバータと、
    前記インバータと前記昇圧コンバータとを制御する制御装置と、
    を備える駆動装置であって、
    前記高電圧側電力ラインの電圧を検出する電圧センサを備え、
    前記制御装置は、前記電圧センサにより検出された高電圧側電力ラインの電圧が所定電圧未満のときにおいて、前記モータのd軸,q軸の電流または電圧の絶対値が閾値以上のときには、前記閾値未満のときに比して前記複数のスイッチング素子のスイッチングスピードを遅くする、
    駆動装置。
JP2016154603A 2016-08-05 2016-08-05 駆動装置 Active JP6708843B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016154603A JP6708843B2 (ja) 2016-08-05 2016-08-05 駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016154603A JP6708843B2 (ja) 2016-08-05 2016-08-05 駆動装置

Publications (2)

Publication Number Publication Date
JP2018023246A JP2018023246A (ja) 2018-02-08
JP6708843B2 true JP6708843B2 (ja) 2020-06-10

Family

ID=61164712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016154603A Active JP6708843B2 (ja) 2016-08-05 2016-08-05 駆動装置

Country Status (1)

Country Link
JP (1) JP6708843B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7354953B2 (ja) 2020-07-21 2023-10-03 株式会社デンソー 電力変換装置の制御装置、プログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3052792B2 (ja) * 1995-07-07 2000-06-19 株式会社デンソー インバータ装置
JP2011142752A (ja) * 2010-01-07 2011-07-21 Toshiba Corp ゲートドライブ回路
JP5782866B2 (ja) * 2011-06-29 2015-09-24 トヨタ自動車株式会社 駆動装置および車両
KR101601444B1 (ko) * 2014-07-04 2016-03-21 현대자동차주식회사 모터 구동 시스템의 인버터 6-스텝 제어 장치 및 방법

Also Published As

Publication number Publication date
JP2018023246A (ja) 2018-02-08

Similar Documents

Publication Publication Date Title
US9903931B2 (en) Diagnostic device for voltage sensors
US8054031B2 (en) Converter device, rotating electrical machine control device, and drive device
US9935568B2 (en) Control apparatus of rotary electric machine
JP6458763B2 (ja) 自動車
JP2008141868A (ja) 電動機システム
US9425724B2 (en) Motor abnormality detection apparatus
US10099563B2 (en) Power supply device for vehicle and method for controlling the same
JP5720644B2 (ja) 車両
JP2013005618A (ja) インバータ制御装置および車両
US10348188B2 (en) Vehicle and control method therefor
JPWO2019102539A1 (ja) 回転電機制御装置及び電動車両
JP6708843B2 (ja) 駆動装置
JP2020156223A (ja) 駆動装置
JP6696382B2 (ja) 駆動装置
JP6668933B2 (ja) 自動車
JP6332015B2 (ja) 駆動装置
JP6668926B2 (ja) 自動車
JP6733579B2 (ja) モータ駆動装置
JP6683052B2 (ja) コンバータ装置
JP6935739B2 (ja) 昇圧システム
JP2012223026A (ja) 駆動装置
JP6751495B2 (ja) 自動車
JP6699327B2 (ja) 自動車
JP6751497B2 (ja) 昇圧システム
JP6965695B2 (ja) 電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200401

R150 Certificate of patent or registration of utility model

Ref document number: 6708843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250