WO2011132492A1 - 薄膜キャパシタ - Google Patents
薄膜キャパシタ Download PDFInfo
- Publication number
- WO2011132492A1 WO2011132492A1 PCT/JP2011/057100 JP2011057100W WO2011132492A1 WO 2011132492 A1 WO2011132492 A1 WO 2011132492A1 JP 2011057100 W JP2011057100 W JP 2011057100W WO 2011132492 A1 WO2011132492 A1 WO 2011132492A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- nitride
- thin film
- upper electrode
- film capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/008—Selection of materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/80—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple passive components, e.g. resistors, capacitors or inductors
- H10D86/85—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple passive components, e.g. resistors, capacitors or inductors characterised by only passive components
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
- H10D1/682—Capacitors having no potential barriers having dielectrics comprising perovskite structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
- H10D1/692—Electrodes
- H10D1/694—Electrodes comprising noble metals or noble metal oxides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
- H10D1/692—Electrodes
- H10D1/696—Electrodes comprising multiple layers, e.g. comprising a barrier layer and a metal layer
Definitions
- the present invention relates to a thin film capacitor having an MIM structure in which a lower electrode, a dielectric layer, and an upper electrode are sequentially formed on a substrate. More specifically, the present invention relates to IV characteristics and reliability when using an electrode instead of Pt. It is about maintenance.
- FIG. 7 shows a conventional thin film capacitor having an MIM structure.
- the thin film capacitor 100 shown in the figure has a structure in which a lower electrode 104, a dielectric layer 106, and an upper electrode 108 are sequentially laminated on a substrate 102.
- the lower electrode 104 and the upper electrode 108 are made of Pt and the dielectric layer 106 is made of BST, hydrogen accumulates in the device during the manufacturing process, and the IV characteristic and the capacity characteristic are deteriorated. To do. In order to recover these characteristics, it is effective to apply a heat treatment at 400 ° C. or higher under a low hydrogen partial pressure. Further, the adhesion of the Pt / BST interface is based on the mirror image force, and it is difficult to obtain a strong bond. For this reason, the adhesion at the Pt / BST interface is weak, and peeling occurs due to a high temperature bias test or a heat cycle test, and it is difficult to obtain reliability that can withstand practical use. For such characteristic deterioration, although dielectric materials are different, as shown in Patent Documents 1 and 2 below, it has been attempted to insert a conductive oxide electrode or the like at the electrode / dielectric layer interface. . *
- Patent Document 1 relates to improvement of fatigue characteristics of a Pt / PZT / Pt capacitor used for FeRAM. According to this technique, in order to maintain the hysteresis characteristic by reducing the leakage current, an SRO film (see reference numeral 5 and reference numeral 7 in FIG. 1 of the same publication) is inserted at the Pt / PZT interface, and diffusion barrier properties such as Pb are increased. It is effective to ensure and prevent the generation of oxygen defects. The SRO film is obtained by forming an amorphous SRO film at a low temperature and polycrystallizing it by heat treatment. Patent Document 2 relates to a ferroelectric PZT thin film capacitor.
- An oxide such as Al 2 O 3 , SiO 2 or a nitride such as Si 3 N 4 is applied to a buffer film (as disclosed in the same publication) on an Al / PZT interface. It is disclosed that it is inserted as reference numeral 7 in FIG.
- a buffer film By inserting the buffer film, it is possible to suppress the diffusion of Al, which is a low melting point metal, even when a high temperature treatment is performed, and it is possible to suppress deterioration of memory characteristics.
- the Pt electrode described above is excellent in terms of oxidation resistance and Schottky characteristics with the dielectric BSTO, but it is known that the Pt electrode is significantly more expensive than other general-purpose metals and exhibits hydrogen degradation. .
- the characteristics are recovered by annealing, but Pt attracts hydrogen easily. Therefore, in addition to the annealing, Pt is used as a barrier film against hydrogen entering from outside after the preparation. It is necessary to coat / BST / Pt. However, good reliability is not obtained even if such annealing treatment and barrier film are applied.
- the present invention focuses on the above points, and provides a thin film capacitor capable of maintaining IV characteristics and reliability even in the case of using an upper electrode in place of Pt in a thin film capacitor having an MIM structure.
- the purpose is to do.
- the upper electrode of the lower electrode or the upper electrode is a laminated electrode made of a nitride and a metal. It is characterized by that.
- the nitride contains a refractory metal.
- the metal laminated with the nitride is the same as the refractory metal contained in the nitride.
- the refractory metal is Ta or Ti.
- the nitride contains Si.
- the upper electrode of the upper and lower electrodes is a laminated electrode in which a nitride and a metal are laminated.
- Embodiment 1 of the present invention will be described with reference to FIGS.
- a metal having a large work function is used as an electrode.
- Pt is the metal with the largest work function, it has the characteristic of easily storing hydrogen that degrades the MIM capacitor characteristics as described above, so forming a thin film capacitor without using Pt is an essential solution. It seems to be connected.
- the band structure of the dielectric is controlled by using at least the upper electrode of the upper and lower electrodes in contact with the dielectric layer as a laminated electrode in which a nitride and a metal are laminated.
- FIG. 1 is a cross-sectional view showing the laminated structure of the thin film capacitor of this example.
- the thin film capacitor 10 has an MIM structure in which a lower electrode 14, a dielectric layer 16, and an upper electrode 18 are sequentially formed on a substrate 12.
- the upper surface of the upper electrode 18 is covered with a protective film 20 and a photosensitive resin 22 at appropriate portions except for the terminal outlets 36A and 36B.
- the lower electrode 14 and the upper electrode 18 are connected to external electrodes 28A and 28B by embedded conductors 26A and 26B connected to the terminal outlets 36A and 36B.
- a barrier film 24 is provided around the embedded conductors 26A and 26B, and a plating seed film (not shown) is provided at the interface between the barrier film 24 and the embedded conductors 26A and 26B.
- a plating seed film (not shown) is provided at the interface between the barrier film 24 and the embedded conductors 26A and 26B.
- a Si substrate with a thermal oxide film is used as the substrate 12, Pt is used as the lower electrode 14, and BSTO is used as the dielectric layer 16, for example.
- the upper electrode 18 a laminated electrode in which a nitride and a metal are laminated is used.
- the nitride preferably contains a refractory metal such as Ta or Ti, and further preferably contains Si. Film formation of a refractory metal nitride containing Si (for example, TaSiN) can reduce film stress as compared with a film not containing Si (for example, TaN). As a result, the stress applied to the MIM can be reduced, and the deterioration of the MIM characteristics can be suppressed.
- the same thing as the refractory metal contained in the said nitride is utilized, for example.
- electrode deposition can be performed continuously, so movement between deposition chambers can be omitted and the deposition process can be shortened. Further, it is possible to prevent a decrease in the adhesion between the nitride and the metal.
- a TaSiN / Ta laminated electrode in which TaSiN as a nitride and Ta as a metal are laminated is used as the upper electrode 18.
- the protective film 20 for example, a TiO x / Al 2 O 3 film is used, and as the photosensitive resin 22, for example, a BCB resin is used.
- the photosensitive resin 22 for example, a BCB resin is used.
- Cu is used as the embedded conductors 26A and 26B, and TaN / Ta is used as the barrier film 24, for example.
- Cu is used as a plating seed film (not shown) provided on the surface of the barrier film 24.
- the external electrodes 28A and 28B for example, a Ni / Au laminated electrode is used.
- a substrate 12 made of Si with a thermal oxide film is prepared.
- Sputter deposition is sequentially performed so that BSTO is 150 nm as the body layer 16 and a TaSiN / Ta laminated film is 40 nm / 100 nm as the upper electrode.
- the resistivity of the upper electrode (nitride electrode) 18 is, for example, 0.01 ⁇ cm.
- a resist 30 is applied on the upper electrode 18, the upper electrode 18 and the dielectric layer 16 are processed by photolithography and dry etching, and a processed portion having a desired shape as shown in FIG. 32A and 32B are formed. Subsequently, the resist 30 is applied again including the processed portions 32A and 32B, and the lower electrode 14 is processed by photolithography and dry etching in the same manner as described above, thereby processing the desired shape shown in FIG. After forming the portion (dicing line portion) 34, the resist 30 is removed. Then, as shown in FIG. 2E, TiO x / Al 2 O 3 is formed to a thickness of 2 nm / 80 nm as the protective film 20 so as to cover the entire surface exposed after the removal of the resist 30.
- terminal take-out ports 36A and 36B are formed in the protective film 20 by photolithography and dry etching.
- one terminal outlet 36 ⁇ / b> A is in contact with the lower electrode 14, and the other terminal outlet 36 ⁇ / b> B is in contact with the upper electrode 18.
- the surface of the laminate formed by the above steps is covered with the BCB resin that is the photosensitive resin 22, and the positions corresponding to the terminal outlets 36A and 36B are obtained by photolithography as shown in FIG. A hole for forming a single terminal is formed in The thickness of the photosensitive resin 22 is set to about 3 ⁇ m in the portion formed on the upper electrode 18.
- a TaN / Ta film for example, 20 nm / 20 nm is formed as the barrier film 24 so as to cover the bottom and side surfaces of the holes formed in the step of FIG. 3A and the surface of the photosensitive resin 22.
- Sputtered to a thickness see FIG. 3B
- a Cu film as a plating seed film was sputtered to a thickness of, for example, 100 nm (not shown), and 200 ° C. Add a 30 minute Cu anneal. *
- FIG. 3C Cu is embedded as the plated conductor 26 by Cu electrolytic plating.
- FIG. 3D the excess plated conductor 26 is removed by CMP or the like to form embedded conductors 26A and 26B.
- lift-off resist patterning (not shown) for forming the external electrodes 28A and 28B connected to the embedded conductors 26A and 26B is performed, and Ni / Au is formed as the external electrodes 28A and 28B by a technique such as EB vapor deposition.
- a film is formed with a thickness of, for example, 10 nm / 100 nm (FIG. 2E). Thereafter, if necessary, it is divided (diced) into a desired element shape to obtain the thin film capacitor 10 shown in FIG.
- FIG. 4 shows the electrical characteristics (IV characteristics) of the thin film capacitor 10 of this example
- FIG. 5 shows the electrical characteristics of a conventional thin film capacitor as a comparative example.
- the structure of the thin film capacitor of the comparative example is a structure in which the upper electrode 18 of the thin film capacitor 10 of the present embodiment is replaced with Pt, and the material and the dimensions of the other parts are the same.
- 4 and FIG. 5 show the steps shown in FIG. 2E after the MIM formation in the step shown in FIG. 2C, after the buried conductor formation in the step shown in FIG. 3D (after Cu-CMP), respectively.
- the characteristics after dicing (not shown) are shown.
- the horizontal axis represents voltage [V]
- the vertical axis represents current [A]. From FIG.
- Table 1 below shows the results of a high temperature bias test and a heat cycle test performed on this example and the comparative example.
- the high temperature bias test was conducted under the conditions of 125 ° C. and ⁇ 6 V
- the heat cycle test was conducted under the conditions of ⁇ 55 ° C. to 125 ° C. and ⁇ 6 V. From the results shown in Table 1, it can be seen that the thin film capacitor 10 of this example has a longer lifetime than the comparative example of the conventional structure in both the high temperature bias test and the heat cycle test.
- FIG. 6 shows an image obtained by observing the sample after the reliability test (the high temperature bias test and the heat cycle test) with an ultrasonic microscope.
- Pt electrode is an image of the comparative example
- TaSiN / Ta electrode is an image of the present example.
- peeling was confirmed as shown by an arrow in the lower left figure, whereas in the sample of this example, it was confirmed that no peeling was observed.
- the upper electrode 18 is made of nitride. Since the laminated electrode is formed by laminating metals, the following effects are obtained. (1) Equivalent characteristics can be obtained without an annealing process for recovering characteristics required when Pt is used for the upper electrode 18. Moreover, it becomes possible to make the process after forming the dielectric layer 16 into a low temperature process. (2) The adhesion at the interface between the dielectric layer 16 and the upper electrode 18 is improved, and no peeling occurs. (3) Compared to the high temperature bias test and heat cycle test, the life of several hundred times longer than that of the conventional structure can be obtained, and the reliability is greatly improved. (4) Since the upper electrode 18 using nitride has a hydrogen barrier property, it is possible to suppress hydrogen degradation without necessarily providing the protective film 20 such as Al 2 O 3 .
- this invention is not limited to the Example mentioned above, A various change can be added in the range which does not deviate from the summary of this invention.
- the following are also included.
- the shape and dimensions shown in the above embodiment are merely examples, and may be appropriately changed as necessary.
- the materials shown in the above-described embodiments are also examples, and can be appropriately changed within the range where the same effects can be obtained.
- TaSiN is used as the nitride constituting the upper electrode 18, but this is also an example, and may include a refractory metal other than Ta (for example, Ti). Further, Si may be included as necessary.
- the nitride composition need not be constant, and the composition may be inclined in the thickness direction. For example, by tilting the composition, it is possible to control the resistance of the electrode and thus the ESR of the MIM capacitor. Further, by changing the nitride composition so as to be the same toward the metal above it, there is an advantage that continuous film formation is possible along with stress reduction.
- a nitride and metal laminated electrode is used for the upper electrode 18, but a nitride and metal laminated electrode may also be used for the lower electrode 14.
- an insulating hydrogen barrier film such as TiO x / Al 2 O 3 is provided, but the nitride itself used for the upper electrode 18 also functions as a hydrogen barrier film.
- the protective film 20 since the resistance against hydrogen diffusion from the outside can be imparted after the element is formed, the protective film 20 may be provided as necessary.
- the nitride may be insulative or conductive. The resistivity can be controlled by the film composition according to the ESR required for the element.
- the upper electrode of the lower electrode or the upper electrode is a laminated electrode in which a nitride and a metal are laminated.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/642,004 US20130094120A1 (en) | 2010-04-19 | 2011-03-24 | Thin-film capacitor |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010096521A JP2011228462A (ja) | 2010-04-19 | 2010-04-19 | 薄膜キャパシタ |
| JP2010-096521 | 2010-04-19 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2011132492A1 true WO2011132492A1 (ja) | 2011-10-27 |
Family
ID=44834028
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2011/057100 Ceased WO2011132492A1 (ja) | 2010-04-19 | 2011-03-24 | 薄膜キャパシタ |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US20130094120A1 (enExample) |
| JP (1) | JP2011228462A (enExample) |
| WO (1) | WO2011132492A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2025052736A1 (ja) * | 2023-09-04 | 2025-03-13 | ソニーセミコンダクタソリューションズ株式会社 | 光検出素子 |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015133424A (ja) * | 2014-01-14 | 2015-07-23 | 住友電工デバイス・イノベーション株式会社 | 電子部品の製造方法 |
| JP6736892B2 (ja) | 2015-01-26 | 2020-08-05 | Tdk株式会社 | 薄膜キャパシタ |
| JP6736891B2 (ja) | 2015-01-26 | 2020-08-05 | Tdk株式会社 | 薄膜キャパシタ |
| US11038010B2 (en) * | 2015-01-29 | 2021-06-15 | Taiwan Semiconductor Manufacturing Company Limited | Capacitor structure and method of making the same |
| KR101792381B1 (ko) * | 2016-01-04 | 2017-11-01 | 삼성전기주식회사 | 전자부품 및 그 제조방법 |
| KR102762892B1 (ko) * | 2016-12-15 | 2025-02-07 | 삼성전기주식회사 | 박막 커패시터 |
| CN110800098B (zh) | 2017-07-31 | 2023-09-22 | 株式会社村田制作所 | 薄膜电容器及其制造方法 |
| CN108123039B (zh) * | 2017-12-15 | 2020-08-28 | 南京溧水高新创业投资管理有限公司 | Mim电容器及其制作方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05258361A (ja) * | 1992-03-13 | 1993-10-08 | Sharp Corp | 光磁気記憶媒体及びその製造方法 |
| JP2003060054A (ja) * | 2001-08-10 | 2003-02-28 | Rohm Co Ltd | 強誘電体キャパシタを有する半導体装置 |
| JP2004335993A (ja) * | 2002-10-17 | 2004-11-25 | Samsung Electronics Co Ltd | 集積回路キャパシタ構造 |
| JP2005142322A (ja) * | 2003-11-06 | 2005-06-02 | Fujitsu Ltd | キャパシタ及びその製造方法、並びに半導体装置及びその製造方法 |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3542704B2 (ja) * | 1997-10-24 | 2004-07-14 | シャープ株式会社 | 半導体メモリ素子 |
| JP2001144032A (ja) * | 1999-11-17 | 2001-05-25 | Tokyo Electron Ltd | TiSiN薄膜およびその成膜方法、半導体装置およびその製造方法、ならびにTiSiN薄膜の成膜装置 |
| US6320244B1 (en) * | 1999-01-12 | 2001-11-20 | Agere Systems Guardian Corp. | Integrated circuit device having dual damascene capacitor |
| US6278147B1 (en) * | 2000-01-18 | 2001-08-21 | International Business Machines Corporation | On-chip decoupling capacitor with bottom hardmask |
| JP2002246558A (ja) * | 2001-02-20 | 2002-08-30 | Sony Corp | 半導体装置の製造方法 |
| JP2003174092A (ja) * | 2001-12-04 | 2003-06-20 | Toshiba Corp | 半導体装置及びその製造方法 |
| JP2004303994A (ja) * | 2003-03-31 | 2004-10-28 | Seiko Epson Corp | 強誘電体メモリ素子およびその製造方法 |
| JP4997757B2 (ja) * | 2005-12-20 | 2012-08-08 | 富士通株式会社 | 薄膜キャパシタ及びその製造方法、電子装置並びに回路基板 |
| JP4586732B2 (ja) * | 2006-01-06 | 2010-11-24 | セイコーエプソン株式会社 | 電気光学装置及びその製造方法並びに電子機器 |
| KR100924879B1 (ko) * | 2007-12-24 | 2009-11-02 | 주식회사 동부하이텍 | Mim 구조 커패시터 제조방법 |
| WO2009090979A1 (ja) * | 2008-01-18 | 2009-07-23 | Tokyo Electron Limited | キャパシタ、半導体装置、およびこれらの作製方法 |
-
2010
- 2010-04-19 JP JP2010096521A patent/JP2011228462A/ja not_active Withdrawn
-
2011
- 2011-03-24 US US13/642,004 patent/US20130094120A1/en not_active Abandoned
- 2011-03-24 WO PCT/JP2011/057100 patent/WO2011132492A1/ja not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05258361A (ja) * | 1992-03-13 | 1993-10-08 | Sharp Corp | 光磁気記憶媒体及びその製造方法 |
| JP2003060054A (ja) * | 2001-08-10 | 2003-02-28 | Rohm Co Ltd | 強誘電体キャパシタを有する半導体装置 |
| JP2004335993A (ja) * | 2002-10-17 | 2004-11-25 | Samsung Electronics Co Ltd | 集積回路キャパシタ構造 |
| JP2005142322A (ja) * | 2003-11-06 | 2005-06-02 | Fujitsu Ltd | キャパシタ及びその製造方法、並びに半導体装置及びその製造方法 |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2025052736A1 (ja) * | 2023-09-04 | 2025-03-13 | ソニーセミコンダクタソリューションズ株式会社 | 光検出素子 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20130094120A1 (en) | 2013-04-18 |
| JP2011228462A (ja) | 2011-11-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2011132492A1 (ja) | 薄膜キャパシタ | |
| US7981761B2 (en) | Method of manufacturing semiconductor device having MIM capacitor | |
| US8586958B2 (en) | Switching element and manufacturing method thereof | |
| TW200845206A (en) | Method for manufacturing insulated gate field effect transistor | |
| US20130128410A1 (en) | Method of manufacturing thin film capacitor and thin film capacitor | |
| WO2006014753A1 (en) | Capacitors with high energy storage density and low esr | |
| CN101118903B (zh) | 电容器及制造电容器的方法、半导体装置和液晶显示装置 | |
| TW200414284A (en) | Semiconductor device and the manufacturing method thereof | |
| TW200915429A (en) | Semiconductor device and method for manufacturing the same | |
| US20190080849A1 (en) | Thin film capacitor and electronic apparatus | |
| TW201112355A (en) | Methods of forming capacitors | |
| JP4370206B2 (ja) | 半導体装置及びその製造方法 | |
| WO2009090979A1 (ja) | キャパシタ、半導体装置、およびこれらの作製方法 | |
| US6613641B1 (en) | Production of metal insulator metal (MIM) structures using anodizing process | |
| US20110164345A1 (en) | Metal-insulator-metal capacitor and method for manufacturing the same | |
| JP4703349B2 (ja) | アモルファス膜の成膜方法 | |
| WO2008114609A1 (ja) | 半導体装置及びその製造方法 | |
| US20050056939A1 (en) | Thin-film capacitor and method of producing the capacitor | |
| US7759718B2 (en) | Method manufacturing capacitor dielectric | |
| JPH03276615A (ja) | セラミック電子部品及びその製造方法 | |
| JPH10242078A (ja) | 酸化物導電体を用いた多層構造電極 | |
| JP2010536159A (ja) | 半導体装置及びその製造方法 | |
| JPH1093036A (ja) | 誘電体薄膜素子 | |
| WO2015198882A1 (ja) | Pzt薄膜積層体及びpzt薄膜積層体の製造方法 | |
| US10403709B2 (en) | Method for manufacturing semiconductor device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11771829 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 13642004 Country of ref document: US |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 11771829 Country of ref document: EP Kind code of ref document: A1 |