WO2011126106A1 - 調光装置、及びled照明システム - Google Patents

調光装置、及びled照明システム Download PDF

Info

Publication number
WO2011126106A1
WO2011126106A1 PCT/JP2011/058879 JP2011058879W WO2011126106A1 WO 2011126106 A1 WO2011126106 A1 WO 2011126106A1 JP 2011058879 W JP2011058879 W JP 2011058879W WO 2011126106 A1 WO2011126106 A1 WO 2011126106A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
current
supplied
positive
negative
Prior art date
Application number
PCT/JP2011/058879
Other languages
English (en)
French (fr)
Inventor
武田 立
暁夫 笠倉
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020117012365A priority Critical patent/KR20120135003A/ko
Priority to EP11766006A priority patent/EP2557900A1/en
Priority to CN201180011139.0A priority patent/CN102783253B/zh
Publication of WO2011126106A1 publication Critical patent/WO2011126106A1/ja
Priority to US13/619,829 priority patent/US8810141B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a dimming device for an LED (Light Emitting Diode) light emitting device (LED lighting device), and an LED lighting system including the dimming device and the LED lighting device (LED lighting fixture).
  • LED lighting device Light Emitting Diode
  • LED lighting fixture an LED lighting system including the dimming device and the LED lighting device (LED lighting fixture).
  • a light source with a high color temperature such as a halogen lamp and a halogen lamp such as an incandescent lamp
  • Both the bulb light source with a lower color temperature are installed indoors, and the color temperature of the illumination light in the room is switched by controlling the on / off of each bulb light source with the individual switches provided on each bulb light source. It was done.
  • a large-scale lighting device that uses a white light bulb as a light source and uses various optical filters to adjust the hue and color temperature, such as stage lighting, where the color of the illumination light and the white color temperature are important stage elements. It was used for special purposes such as lighting.
  • LED lighting devices such as LED bulbs using LEDs (light emitting diodes) as light sources have begun to spread as lighting devices that replace conventional lighting devices.
  • the LED lighting device is characterized by low power consumption and high durability compared to incandescent bulbs and fluorescent lamps. It is desired to realize the adjustment of the hue and color temperature of the white light source as described above using a white LED.
  • control signal from the driver circuit performs conduction / non-conduction timing control for each half wave of the AC power supply for the first and second LED groups connected in reverse parallel, and the respective light emission times of the first and second LED groups.
  • LED drive circuit that separately controls (for example, Patent Document 4).
  • a plurality of white LEDs having different color temperatures are prepared, and the color temperature of the illumination light is adjusted by individual lighting / extinguishing control for these white LEDs. It is possible to make it.
  • the LED lighting fixture will be appealed to a wide range of users. It becomes possible to do.
  • One aspect of the present invention is to convert alternating current into direct current, further convert direct current into alternating current, and supply the first LED and the second LED connected in reverse parallel, while the luminance and color of the first and second LEDs or
  • An object of the present invention is to provide a technique capable of adjusting the color temperature.
  • a current having a total amount and a ratio of an average current for lighting the first LED and the second LED with a desired luminance and chromaticity is generated from the direct current converted from the alternating current. And it aims at providing the technique which can be supplied to 2nd LED.
  • a first aspect of the present invention is an LED lighting system including a LED lighting device including first and second LEDs having different chromaticities and connected in parallel with opposite polarities, and a dimming device
  • the light control device is: A direct current generator that generates direct current power from alternating current received from the alternating current power supply; A first operation unit for operating brightness of illumination light by lighting of the first LED and the second LED; A second operation unit for manipulating the chromaticity of illumination light by lighting the first LED and the second LED; A first control unit that determines a total amount of average current to be supplied to the first LED and the second LED at predetermined intervals according to an operation amount of the first operation unit; A second control unit that determines a ratio of an average current to be supplied to each of the first LED and the second LED for each predetermined period according to an operation amount of the second operation unit; Using the DC power source obtained by the DC generator, supply the first LED having a total amount of average current and a ratio of average current determined by the first and second controllers for each predetermined period.
  • Each of the first and second LEDs includes a single LED element connected in parallel with reverse polarity (reverse parallel connection), and a plurality of LED elements connected in series connected in reverse parallel Including both. Further, the first LED or the second LED may be configured by connecting a plurality of LED elements arranged in parallel with the same polarity in series.
  • the “emission wavelength region” of an LED is a concept including chromaticity, and chromaticity is a concept including hue and color temperature. Therefore, there are cases where the first and second LEDs having different hues are applied, and LEDs having different color temperatures are applied as the first and second LEDs.
  • the “LED” includes an organic EL (OLED: Organic light-emitting diode) in addition to the light emitting diode.
  • the 1st control part respond
  • a comparator that compares the reference voltage and outputs a positive and negative square wave voltage;
  • the second control unit determines a duty ratio of a current to be supplied to the LED illumination device in each of positive and negative periods in one cycle of the positive and negative rectangular wave voltage according to an operation amount of the first operation unit.
  • the supply unit supplies a positive current with a duty ratio determined by the pulse width adjustment circuit to one of the first and second LEDs during a positive period of the positive and negative rectangular wave voltage, and the positive and negative In the negative period of the rectangular wave voltage, a negative current may be supplied to the other of the first and second LEDs with a duty ratio determined by the pulse width adjustment circuit.
  • the supply unit receives a positive pulse and a negative pulse for each predetermined period, and supplies a positive current to the LED lighting device when the positive pulse is on.
  • a drive circuit for supplying a negative current to the LED lighting device during a period when the negative pulse is on The first control unit determines an ON time of a positive pulse and an ON time of a negative pulse in the predetermined cycle according to an operation amount of the first operation unit, The second control unit is configured to determine a ratio between an on time of a positive pulse and an on time of a negative pulse in the predetermined cycle according to an operation amount of the second operation unit. Also good.
  • the first control unit determines the number of positive and negative pulses each having a predetermined pulse width in the predetermined cycle according to an operation amount of the first operation unit.
  • the second control unit may be configured to determine a pulse width of the positive and negative pulses.
  • the light control device can be configured to be connected to the LED lighting device through only a pair of wires.
  • the second aspect of the present invention is a light control device connected to an LED lighting device including a first LED and a second LED that are connected in parallel with opposite polarities and having different emission wavelength ranges.
  • a direct current generator that generates direct current power from alternating current received from the alternating current power supply;
  • a first operation unit for operating brightness of illumination light by lighting of the first LED and the second LED;
  • a second operating unit for operating the color or color temperature of illumination light by lighting the first LED and the second LED;
  • a first control unit that determines a total amount of average current to be supplied to the first LED and the second LED at predetermined intervals according to an operation amount of the first operation unit;
  • a second control unit that determines a ratio of an average current to be supplied to each of the first LED and the second LED for each predetermined period according to an operation amount of the second operation unit;
  • Using the DC power source obtained by the DC generator supply the first LED having a total amount of average current and a ratio of average current determined by the first and second controllers for each predetermined period
  • a third aspect of the present invention is an LED lighting system including an LED lighting apparatus including first and second LEDs having different chromaticities, and a dimming device
  • the light control device is: A direct current generator that generates direct current power from alternating current received from the alternating current power supply; A first operation unit for operating brightness of illumination light by lighting of the first LED and the second LED; A second operation unit for manipulating the chromaticity of illumination light by lighting the first LED and the second LED; A first control unit that determines a total amount of average current to be supplied to the first LED and the second LED at predetermined intervals according to an operation amount of the first operation unit; A second control unit that determines a ratio of an average current to be supplied to each of the first LED and the second LED for each predetermined period according to an operation amount of the second operation unit; Using the DC power source obtained by the DC generator, supply the first LED having a total amount of average current and a ratio of average current determined by the first and second controllers for each predetermined period.
  • An LED lighting system including a supply unit
  • a first LED and a second LED having different chromaticities
  • a direct current generator for generating direct current from alternating current
  • Receiving means for receiving, from the dimming device, the total amount information of the average current to be supplied to the first LED and the second LED and the ratio information of the average current to be supplied to each of the first LED and the second LED;
  • Calculating means for calculating the total amount of the average current and the ratio of the average current using information from the receiving means for obtaining the total amount and ratio of the average current from the total amount information of the average current and the ratio information of the average current;
  • the LED lighting apparatus includes a supply unit that generates a current corresponding to a total amount of the average current and a ratio of the average current from the current generated by the DC generator and supplies the current to the first LED and the second LED.
  • the alternating current is converted into direct current, the direct current is further converted into alternating current, and supplied to the first LED and the second LED connected in reverse parallel, while the brightness of the first and second LEDs ( It is possible to provide a technique capable of adjusting the light emission amount) and the chromaticity (hue, color temperature).
  • a current having a total amount and a ratio of an average current for lighting the first LED and the second LED with a desired luminance and chromaticity is generated from a direct current converted from an alternating current.
  • the technology which can be supplied to 1st LED and 2nd LED can be provided.
  • FIG. 1 is a perspective view of a schematic configuration of a package in a semiconductor light emitting device (hereinafter referred to as “white LED”) constituting a light emitting module (LED module). It is a figure which shows the mounting state of the wiring which supplies electric power to the semiconductor light-emitting element (henceforth "LED chip") provided in the package.
  • FIG. 18 is a diagram schematically illustrating the package (white LED) illustrated in FIGS. 17A and 17B using electrical symbols. It is a figure which shows typically the state which connected white LED shown in FIG. 18 in series. It is sectional drawing at the time of cut
  • FIG. 22 is a diagram illustrating a configuration example of an LED system according to the sixth embodiment.
  • FIG. 23 is a diagram illustrating a relationship between an AC waveform of a commercial power source applied to the dimmer and an AC voltage supplied to the LED illuminator by triac firing.
  • FIG. 24 is an explanatory diagram of waveforms such as an alternating voltage and a drive current during dimming.
  • FIG. 25 is an explanatory diagram of waveforms such as an alternating voltage and a drive current during color matching.
  • FIG. 26 is a waveform diagram showing a change in drive current ratio by balance adjustment.
  • FIG. 27 is a diagram illustrating a circuit configuration example of the illumination system according to the seventh embodiment.
  • FIG. 23 is a diagram illustrating a relationship between an AC waveform of a commercial power source applied to the dimmer and an AC voltage supplied to the LED illuminator by triac firing.
  • FIG. 24 is an explanatory diagram of waveforms such as an alternating voltage
  • FIG. 28 is a diagram illustrating a relationship between an operation amount of the operation unit and an AC waveform.
  • FIG. 29 is a diagram illustrating a relationship between an operation amount of the operation unit and an AC waveform.
  • FIG. 30 shows a configuration example of an LED illumination system according to the eighth embodiment of the present application.
  • FIG. 31 shows a first form of the control signal generation circuit shown in FIG.
  • FIG. 32 shows a second form of the control signal generation circuit shown in FIG.
  • FIG. 33 shows a first form of the control circuit in the LED lighting apparatus shown in FIG.
  • FIG. 34 shows a second form of the control circuit in the LED lighting apparatus shown in FIG.
  • FIG. 1 is a diagram illustrating a circuit configuration example of an LED illumination system according to the first embodiment of the present invention.
  • the LED system includes an LED light control device A and an LED illumination device 20 (also referred to as “LED light-emitting device 20” or “light-emitting device 20”) connected to the light control device A.
  • the light control device A adjusts the luminance (light emission amount) and chromaticity (hue, color temperature) of illumination light obtained by light emission of the LED included in the LED lighting device 20.
  • the LED lighting device 20 includes a set of LEDs including an LED group 22A (first LED group) and an LED group 22B (second LED group) connected in parallel in opposite directions (reverse polarity). Groups 22A and 22B are included.
  • Each of the LED groups 22A and 22B includes a predetermined number (for example, 20) of LED elements connected in series. The number of LED elements constituting each of the LED groups 22A and 22B can be appropriately set to a number of 1 or more.
  • the LED groups 22A and 22B are manufactured on a sapphire substrate, for example.
  • the LED lighting device 20 further includes two terminals 23A and 23B drawn from the wirings that connect the LED group 22A and the LED group 22B in parallel.
  • a positive and negative drive current is passed between the two terminals 23A and 23B.
  • a positive current is applied, one of the LED group 22A and the LED group 22B is turned on and the other is turned off.
  • a negative current is applied, one is turned off and the other is turned on.
  • the LED group 22A when a positive drive current is supplied from the terminal 23A, the LED group 22A is lit, and when a negative drive current is supplied from the terminal 23A, the LED group 22B.
  • the light control device A and the LED lighting device 20 are connected in a circuit so that is lit.
  • each of the LED elements included in each of the LED groups 22A and 22B has a light emission wavelength of 410 nm and a terminal voltage of 3.5 V when a forward current is applied.
  • the maximum amount of light is generated with a direct current of 70V.
  • Each LED element constituting the LED group 22A constituting the light emitting device 20 is embedded with a phosphor that emits white light of about 3000 ° K when stimulated (excited) with light having an emission wavelength of 410 nm, and the terminals 23A and 23B. Lights up when one of the positive and negative alternating currents (positive in this embodiment) is supplied.
  • each LED element constituting the LED group 22B is embedded with a phosphor that emits white light of about 5000 ° K when stimulated (excited) with light having an emission wavelength of 410 nm, and is interposed between the terminals 23A and 23B. Lights by supplying the other of the positive and negative alternating currents supplied (negative in this embodiment).
  • the number of the plurality of LED elements constituting the LED groups 22A and 22B can be changed as appropriate, and may be one LED element.
  • the LED groups 22A and 22B emit white light having different color temperatures.
  • the term “emission wavelength region” is a concept including chromaticity (hue and color temperature), and the LED groups 22A and 22B may have different chromaticities. . As long as the chromaticities of the LED groups 22A and 22B are different from each other, the chromaticities of the LED groups 22A and 22B can be appropriately set.
  • the LED lighting device (light emitting device) 20 is driven by a drive circuit 120. That is, the dimmer A supplies a drive current to the light emitting device 20 using a self-excited oscillation frequency that is independent of the commercial AC frequency.
  • the input AC voltage from the commercial power source (for example, 100 V, 50 Hz) input from the input terminal 10 ⁇ / b> A is rectified by the rectifier circuit 90. That is, the positive voltage is rectified by the diode 11, the positive direct current voltage of about 120V is supplied to the wiring 201, the negative voltage is rectified by the diode 12, and the negative direct current voltage of about 120V is supplied to the wiring 301. Is done.
  • the wiring 200 has a common ground potential for the wiring 201 and the wiring 301.
  • comparators (op-amps) 101 and 102 and the pulse width adjustment circuit 130 included in the clock generation circuit 100 and the duty ratio adjustment circuit 110 are respectively connected to a common ground potential from the power supply circuit (not shown) for circuit operation. ⁇ 15V is supplied.
  • FIG. 2A shows an AC voltage input to the input terminal 10A.
  • FIG. 2B shows an output waveform from the comparator 101.
  • FIG. 2C shows a triangular wave formed by an integrator (resistor R0 and capacitor C0) included in the duty ratio adjustment circuit 110.
  • FIG. 2D shows an output waveform from the comparator 102.
  • 3A shows the output waveform from the comparator 102
  • FIG. 3B schematically shows the current waveform supplied to the LED groups 22A and 22B
  • FIG. 3C shows the LED group 22A and the LED group 22A.
  • the current waveform supplied to 22B is shown typically.
  • the input AC voltage (50 Hz, 100 V) of the input terminal 10A is supplied from the wiring 210, and the divided voltage determined by the ratio (R1 / R2) of the resistors R1 and R2 is input to the comparator 101.
  • a rectangular wave voltage as shown in FIG. 2B is output to the wiring 203 on the output side of the comparator 101.
  • the rectangular wave voltage is used as a clock that is turned on / off every half cycle period t0 of the input AC voltage (FIG. 2A).
  • a triangular wave is generated by an integrating circuit including a resistor R0 and a capacitor C0, and is input to the non-inverting input terminal (+ V) of the comparator 102.
  • the inverting input terminal ( ⁇ V) of the comparator 102 is connected to the movable point of the variable resistor 61A having one end connected to the wiring 201 via the resistor R3 and the other end connected to the wiring 200.
  • a voltage corresponding to the position of the movable point of the variable resistor 61A is input to the inverting input terminal of the comparator 102 as a reference voltage.
  • the resistance value of the variable resistor 61A can be operated by the operation unit 56 (second operation unit) for toning (chromaticity adjustment).
  • the reference voltage acts as a slice level of a triangular wave input from the non-inverting input terminal. That is, the comparator 102 outputs positive when the triangular wave is higher than the slice level, and outputs negative when the triangular wave is lower than the slice level. Therefore, the comparator 102 outputs a rectangular wave in which a positive period t1 in which the voltage is higher than the reference voltage and a negative period t2 in which the voltage is lower than the reference voltage are alternately repeated (see FIG. 2D). The period t1 becomes shorter as the slice level (reference voltage) becomes higher when the triangular wave input from the non-inverting input terminal is constant. Thus, the comparator 102 functions as a second control unit that determines the ratio of the positive and negative average currents in one cycle.
  • the drive circuit 120 includes transistors 31, 32, 33, and 34.
  • the transistors 33 and 31 connect the wiring 220 to the LED group 22 ⁇ / b> A of the light emitting device 20 in the period t ⁇ b> 1 in which the output of the comparator 102 is a positive period.
  • the transistors 34 and 32 function as switches that supply a negative drive current to the LED group 22B through the wiring 220 in the period t2 in which the output of the comparator 102 is a negative period. Function.
  • the self-excited oscillation frequency type pulse width adjustment circuit 130 is an adjustment circuit for the amount of drive current supplied to the LED groups 22A and 22B in the periods t1 and t2, and is composed of a pulse width modulation (PWM) circuit. That is, the pulse width modulation circuit 130 includes a self-excited transmission circuit 95, a pulse / duty ratio adjustment circuit 96, and a variable resistor 51B as main components.
  • PWM pulse width modulation
  • the pulse width adjustment circuit 130 converts the duty ratio of the 500 Hz basic pulse generated by the self-excited oscillation circuit 95 to the resistance value of the variable resistor 51B by pulse width modulation (PWM) control by the pulse / duty ratio adjustment circuit 96. Adjust the duty ratio according to the output. Here, the duty ratio increases as the resistance value of the variable resistor 51B increases.
  • the resistance value of the variable resistor 51B is operated by the brightness adjusting operation unit 55 (first operation unit).
  • the pulse width adjustment circuit 130 functions as a second control unit that determines the total amount of positive and negative currents supplied to the light emitting device 20 in one cycle.
  • the output (pulse) of the pulse width adjustment circuit 130 is input to an AND (logical product) circuit 35 and an OR (logical sum) circuit 36 to which the output of the comparator 102 is input.
  • the output terminal of the AND circuit 35 is input to the base of the transistor 33, and the base of the transistor 31 is connected to the collector of the transistor 31. Therefore, when the output of the comparator 102 is positive and the output from the pulse width adjustment circuit 130 is on, the AND circuit 35 is turned on, the transistor 33 is turned on, and then the transistor 31 is turned on. Thus, a drive current with a positive voltage is supplied to the LED group 22A, and the LED group 22A is lit.
  • the OR circuit 36 is turned on, the transistor 34 and the transistor 32 are turned on in the interval where the output of the pulse width adjustment circuit 130 is off, and the LED group 22B. In contrast, a drive current with a negative voltage is supplied, and the LED group 22B is lit.
  • the pulsed drive current corresponding to the number of pulses and the pulse width output from the pulse width adjustment circuit 130 is LED. It is supplied to the group 22A and the LED group 22B.
  • the drive current supply period (duty ratio) in each LED group 22A, 22B in one cycle is changed by the operation unit 56 (knob or the like) of the variable resistor 61A.
  • the power supply amount (drive current amount: average current) for the LED group 22A and the LED group 22B can be made different. That is, the color temperature of the light emitting device 20 can be made variable.
  • the resistance value of the variable resistor 51B is adjusted by an operation unit 55 (knob or the like) (not shown) and the duty ratio of the pulse output from the pulse width adjustment circuit 130 is increased, as shown in FIG.
  • the pulse width supplied to the LED groups 22A and 22B becomes wider. That is, the average amount of drive current for each LED group 22A, 22B can be increased. If the reverse operation is performed, the average amount of drive current for each LED group 22A, 22B can be reduced. In this way, the total light emission amount (luminance) of the light emitting device 20 can be made variable.
  • the LED group 22A blinks in the positive half cycle of the input AC voltage, and the LED group is in the negative half cycle of the input AC voltage. It is longer than the time when 22B blinks.
  • Such blinking of the LED groups 22A and 22B is not perceived by human eyes, and the lighting time of the LED group 22B having a color temperature (5000 ° K) higher than the color temperature (3000 ° K) of the LED group 22A is dominant. Therefore, it is perceived as bluish white by human eyes.
  • variable resistor 61A provides the color tone adjustment function as described above, the white color temperature irradiated by the light emitting device 20 can be continuously varied between 3000 ° K and 5000 ° K. .
  • the total light emission amount that is, the luminance of the light emitting device 20 can be adjusted by adjusting the resistance value of the variable resistor 51B.
  • the wiring 220 the light emitting device 20 that connects between the transistors 31 and 32 and one terminal of the light emitting device 20 is used. Since the pulse width of the pulsed current flowing in the other terminal is connected (grounded) to the wiring 200), as shown in FIG. 3C, both positive and negative polarities are increased. The average current value increases at, and the total light emission amount of the light emitting device 20 increases. Therefore, the luminance (light emission amount) by the light emitting device 20 can be adjusted.
  • the drive circuit (drive circuit 120 in the first embodiment) of the LED light emitting device 20 can be configured by at least one push-pull drive circuit.
  • a known circuit chip having four semiconductor switches (transistors) called a H-type full bridge and a control circuit instead of the drive circuit 120 and the pulse width adjustment circuit 130.
  • the drive control of the light emitting device 20 based on the output from the comparator 102 can be performed using (H-type full bridge drive circuit: TA8428K (S) manufactured by Toshiba, for example).
  • the input terminal 10A of the first embodiment may receive power from a commercial power supply by a plug (not shown), or the input terminal 10A may be connected to a fixed wiring of an indoor commercial power supply to receive power. .
  • FIG. 4 is a diagram illustrating a configuration example of the LED illumination system according to the second embodiment.
  • the LED illumination system includes a light control device B and the LED illumination device (light emitting device) 20 described in the first embodiment.
  • the dimmer B includes an AC power supply input terminal 10A connected to a commercial AC power supply (for example, 50 Hz, 100 V), a two-voltage DC power supply circuit 140 (hereinafter referred to as a power supply circuit 140) as a DC generator, and A main power switch 141, an H-type full bridge drive circuit 150 (hereinafter referred to as a drive circuit 150), a memory built-in microprocessor 180 (hereinafter referred to as a microcomputer 180) as first and second control units, XY matrix type push button switch 185 (hereinafter referred to as XY switch 185) is provided as first and second operation units.
  • the drive circuit 150 includes four switching elements (semiconductor switches) and a control circuit 151.
  • the drive circuit 150 for example, TA8428K (S) manufactured by Toshiba Corporation can be applied.
  • the transistors TR1 to TR4 are applied as the switching elements, but FETs may be used instead of the transistors.
  • the above-described components of the dimming circuit B are housed in an insulating case of about 10 cm in length and width, not shown, and constitute the dimming device B (lighting control device) of the light emitting device 20.
  • An XY switch 185 is provided on one surface of the insulating case so as to be operable from the outside.
  • the insulated case is installed, for example, with the back surface of the one surface on the wall surface of the building, or with the one surface exposed to the outside and partially embedded in the wall of the building.
  • the input terminal 10A may be a female connector provided in an insulated case, and the input terminal 10A may include a power cable and a plug.
  • the installation location is not limited to the wall surface of the building.
  • the light emitting device 20 is the same as that described in the first embodiment. In many cases, the light emitting device 20 is fixed to the ceiling of the room. The two terminals 23A and 23B of the light emitting device 20 are connected to the light control device B through the wirings 221 and 222, but this is not restrictive.
  • a positive DC voltage of about 24V is supplied to the wiring 201A connecting the power supply circuit 140 and the power supply terminal of the control circuit 151, and 3.3V is supplied to the wiring 202A connecting the power supply circuit 140 and the power supply terminal of the microcomputer 180.
  • a positive DC voltage is supplied.
  • the power supply circuit 140, the microcomputer 180, and the control circuit 151 are connected using the wiring 200A as a common ground potential.
  • the wiring 201A supplies power for lighting the light emitting device 20, and the wiring 202A supplies driving power for the microcomputer 180.
  • the XY switch 185 has a circuit structure in which both of the X-ray and the Y-line are short-circuited to the ground terminal G when any one of the nine intersections of the X-ray and the Y-line is pushed down.
  • the wiring b0 to b5 connected to the input terminal of the microcomputer 180 has a circuit structure that is maintained at about 3.3V.
  • the microcomputer 180 can be an inexpensive microprocessor (MP) with a built-in memory whose master clock operates at 4 MHz from the oscillator 181. In addition to the power reset terminal res, there are six input terminals b0 to b5 as input terminals. Further, the microcomputer 180 has a “setN + register” and a “setN ⁇ register” each having a 4-bit width, and the value of the setN + register and the value of the setN ⁇ register can be set to the timer 186 at the next stage from the output terminal. It has become.
  • MP microprocessor
  • the timer 186 is a timer and a counter, and is driven by a ceramic oscillator 187 having a predetermined self-excited oscillation frequency (1 MHz in this embodiment), and wirings 241 and 242 connecting the output terminal and the input terminal of the control circuit 151.
  • the self-excited output of the complementary burst pulses shown in FIGS. 5A (b) and 5 (c) is performed at a preset timing.
  • the frequency of the complementary burst pulse is set to the timer 186 in advance so that the pulse frequency is 10 kHz and the burst repetition frequency (FIG. 5A (a)) is about 500 Hz.
  • the pulse frequency and the burst repetition frequency are examples, and appropriate values can be set.
  • the register value of the setN + register set in timer 186 is used to control the number of burst pulses delivered in the positive half cycle. That is, the larger the register value of the setN + register, the more burst pulses are supplied in the positive half cycle.
  • the register value of the setN-register set in timer 186 is used to control the number of burst pulses delivered in the negative half cycle. That is, the larger the register value in the setN ⁇ register, the more burst pulses supplied in the negative half cycle.
  • a polarity conversion switch 290 is provided between the wiring 221 and the wiring 222 that connect the control circuit 150 and the light emitting device 20.
  • the polarity conversion switch 290 when the wirings 222 and 221 and the terminals 23A and 23B of the light emitting device 20 are connected in reverse, the wiring 222 and the terminal 23A are substantially connected by performing a manual switching operation. In addition, the wiring 221 and the terminal 23B are connected.
  • the main power switch 141 is closed.
  • rectification and voltage conversion operations are performed by the power supply circuit 140, and driving power (DC 3.3V) is supplied to the microcomputer 180.
  • driving power DC 3.3V
  • the reset terminal res becomes a high potential (hereinafter referred to as “H”) with a delay of about 50 msec due to the time constant of the resistor R and the capacitor C, and the operation as the microcomputer 180 is started.
  • the main power switch 141 can be installed at the center of the XY switch 185.
  • the main power switch 141 is a normal main power switch that does not respond to the button operation of the XY switch 185.
  • the microcomputer 180 starts an initialization operation by a known method, loads an operation program recorded in a built-in ROM (Read Only Memory) (not shown) into a RAM (Random Access Memory) (not shown), and programs the operation according to the program. Start sequentially from the beginning of
  • step S01 a lighting initialization operation for setting the light emitting device 20 to a predetermined standard lighting state is performed.
  • voltages (pulses) having waveforms shown in (b) and (c) of FIG. 5A are supplied from the wirings 242 and 241 to the drive circuit 150, respectively.
  • the burst pulse is supplied from the wiring 242 to the control circuit 151, and in the period T2 in the second half cycle, the burst is transmitted from the wiring 241.
  • a pulse is supplied to the control circuit 151.
  • the control circuit 151 receives the burst pulse supplied from the wirings 242 and 241 and controls the on / off operation (switching operation) of the transistors TR1 to TR4 according to the burst pulse. That is, the control circuit 151 turns off the transistors TR1 to TR4 when there is no pulse input from the wirings 241 and 242. On the other hand, when a pulse is input from the wiring 242, the control circuit 151 turns on the transistors TR1 and TR4 while turning off the transistors TR2 and TR3. As a result, a direct current from the power supply circuit 140 flows through the transistor TR1 to the wiring 222 and is consumed for lighting the LED group 22A. Thereafter, the current is grounded through the wiring 221 and the transistor TR4.
  • the control circuit 151 turns on the transistors T3 and T2 while turning off the transistors TR1 and TR4. As a result, a direct current from the power supply circuit 140 flows through the transistor TR3 to the wiring 221 and is consumed for lighting the LED group 22B. Thereafter, the current is grounded through the wiring 222 and the transistor TR2.
  • a positive pulse group (positive driving current) and a negative pulse group (negative driving current) are alternately supplied.
  • alternating currents having different polarities are supplied as drive currents to the LED groups 22A and 22B.
  • a burst pulse group (FIG. 5A (b)) is supplied from the wiring 242 to the control circuit 151, whereby a positive burst signal is supplied to the wiring 222.
  • a pulsed current is supplied.
  • a burst pulse group (FIG. 5A (c)) is supplied from the wiring 241 to the control circuit 151 in the period T2 (FIG.
  • the waveform of the positive and negative burst pulse-like current supplied to the wiring 222 is the positive and negative burst pulse (that is, the driving circuit) supplied via the wirings 242 and 241.
  • “Isomorphic waveform” means a waveform in which the relative on and off timings of pulses are substantially the same, and includes both cases where the pulse heights are the same and different.
  • the LED group 22A is lit with a positive drive current from the wiring 222, while the LED group 22B is lit with a negative drive current from the wiring 222.
  • the LED group 22A and the LED group 22B are lit to the same extent (substantially equal), and the color of the middle Maintain the white state of the temperature.
  • one cycle T0 is set to 2 msec (500 Hz), and the burst pulse output periods T1 and T2 in the first half and the second half of one cycle are each set to 500 ⁇ sec. . Therefore, the envelope waveform of one cycle shown in FIG. 5A (a) is a rectangular alternating current of 500 Hz. Therefore, the actual current waveform flowing to the light emitting device 20 via the wiring 222 is alternately repeated between a positive burst having a pulse width of 50 ⁇ sec (t1) and a negative burst having the same width (see FIG. 5A (d)). The operation up to this point proceeds only by closing the main power switch 141.
  • step S01 in FIG. 5B since it is difficult to express a pulse having a pulse width of 50 ⁇ sec, it is schematically shown with a pulse width wider than actual. This completes the operation in step S01 in FIG. 5B.
  • the microcomputer 180 starts the contact scanning operation of the XY switch 185 and continues the standby state until the pressing is detected (FIG. 5B, loops of steps S02 and S03).
  • the microcomputer 180 causes the XY switch 185 to include an “U (UP)” button, a “D (DOWN)” button, and an “L (LOW) button.
  • Which of the “H (HIGH)” buttons is pressed is determined based on the on / off (1/0) pattern of the wirings b0 to b5 (step S04), and the operation proceeds when each button is pressed. To do.
  • step S05 a luminance (light emission amount) increase process
  • step S06 a luminance (light emission amount) decrease process
  • step S07 a chromaticity (color temperature in this embodiment) increase process
  • step S08 chromaticity (color temperature in this embodiment) is executed. Details of the processes in steps S05 to S08 will be described later.
  • steps S05 to S08 the values of “setN + register” and “setN ⁇ register” of the microcomputer 180 change.
  • step S09 the microcomputer 180 sets the values of “setN + register” and “setN ⁇ register” in the timer 186 (step S09), returns the processing to step S02, and performs contact scan processing. Resume.
  • step S05 an operation for a user (operator) operation intended to increase or decrease the luminance (light emission amount) of the light emitting device 20
  • the microcomputer 180 detects the depression of the U button, and performs the process in step S05, that is, the process according to the brightness increasing process shown in FIG. 6B.
  • the microcomputer 180 drives an electronic sound generator (not shown) to generate a detection sound (for example, “beep” sound) in order to notify the operator that the button has been pressed (step S051). .
  • the light control device B may be provided with an LED lamp for depressing detection notification, and the LED lamp may be lit for a predetermined time together with the output of the detection sound or instead of the detection sound.
  • the microcomputer 180 refers to the value N of the setN + register (not shown) and the setN ⁇ register (not shown) built in itself, and determines whether the value N is equal to or greater than a predetermined upper limit value. (Step S052). At this time, if the value N is equal to or greater than the upper limit value (S052, NO), it is assumed that the user has repeatedly increased the luminance and kept pressing the button beyond the maximum luminance determined by the performance of the LED element, and the error processing routine The process jumps to (Step S055) and is notified of an operation error.
  • the microcomputer 180 drives the output port for the wiring 183, and sets, for example, the value “100” to the setN + register built in the timer 186. (Decimal number 4) "is written (step S053). Before this writing, the setN + register holds the initial value “011 (decimal number 3)” written to the register in the initialization operation (step S01), and the value of the setN + register is obtained by the process of step S053. Will increase.
  • the microcomputer 180 drives the output port for the wiring 184 and writes the same value “100” as the increment value of the setN + register in the setN ⁇ register built in the timer 186 (step S054).
  • the setN-register holds the initial value “011” in the initialization operation, and the value of the setN-register increases by the writing in step S054. Thereafter, the process returns to step S09.
  • steps S053 and S054 four pulses are output to the out + line (wiring 242) of the timer (counter) 186, for example, in a predetermined period T1 in the first half of one cycle, as shown in FIG. 6A (d). Then, four pulses are output to the out-line (wiring 241) of the timer (counter) 186, for example, in a predetermined period T2 in the latter half of one cycle, as shown in FIG. 6A (e).
  • the light emitting device 20 driven by the control circuit 150 is supplied with a pulse current that is four thirds of the initial value, that is, 33% larger than the initial value, as shown in FIG.
  • the luminance (light emission amount) from the light emitting device 20 is increased by approximately 33%.
  • the reduction of luminance is performed in almost the same procedure as the luminance increase. That is, when the D button, which is a luminance reduction button, is pressed, the luminance reduction processing of S061 to S064 shown in FIG. 6C is performed as the processing from step S04 (FIG. 5B) to step S06. In steps S061 to S064, when the register value N is equal to or smaller than the predetermined lower limit value in step S062, error processing (step S065) is performed, and register values are decreased in steps S063 and S064. Except for this, the process is the same as that shown in FIG. 6B. Each time the D button is pressed, the register value is reduced by “001” in binary.
  • the D button is pressed once immediately after the initialization operation (step S01)
  • the total light amount (luminance) is reduced by 2/3 of the initial value, that is, 33%, and the button is pressed twice.
  • a total light quantity reduction of one third of the initial value, that is, 66% is obtained.
  • the rate at which the luminance (light emission amount) increases or decreases by pressing the U button or D button once can be set as appropriate.
  • the light emitting device 20 includes an LED group 22A having a low color temperature of 2500 ° K (K is Kelvin temperature) and an LED group 22B having a high color temperature of 6000 ° K. Therefore, if the drive current flowing through the LED 22A is increased and the drive current flowing through the LED 22B is decreased, the color temperature of the entire light emitting device 20 can be lowered.
  • step S07 When lowering the color temperature, the user (operator) presses the L button of the XY switch 185. Then, after the determination process of step S04 by the microcomputer 180, the color temperature reduction process (FIG. 7B) of step S07 is executed.
  • step S071 when the process is started, an operation sound generation process is performed (step S071), and then the microcomputer 180 determines whether or not the value of the setN + register is less than the upper limit value (step S072). ). If the register value of the setN + register is greater than or equal to the upper limit value (S072, NO), error processing is performed (step S075).
  • the microcomputer 180 adds a predetermined value (for example, binary number “001”) to the setN + register (step S073).
  • the microcomputer 180 subtracts a predetermined value (for example, binary number “001”) from the setN ⁇ register (step S074). Thereafter, the process returns to step S09.
  • Step S073 and step S074 increase the number of pulses output to the wiring 242 as shown in FIG. 7A (d), while the number of pulses output to the wiring 241 increases as shown in FIG. 7A (e). Decrease.
  • the average value of the positive current supplied to the LED group 22A of the light emitting device 20 through the wiring 222 increases, while the average of the negative current supplied to the LED group 22B.
  • the value decreases.
  • the luminance (light emission amount) from the LED group 22A having a low color temperature is increased and the luminance (light emission amount) from the LED group 22B having a high color temperature is decreased, so that the color temperature is lowered and reddish as a whole. It becomes white.
  • step S08 when raising the color temperature, the user (operator) presses the H button of the XY switch 185. Then, after the determination process of step S04 by the microcomputer 180, the color temperature increase process (FIG. 7C) of step S08 is executed.
  • step S081 when the process is started, an operation sound generation process is performed (step S081).
  • step S082 the microcomputer 180 determines whether or not the value of the setN-register is less than the upper limit value (step S082). If the register value of the setN-register is greater than or equal to the upper limit value (S082, NO), error processing is performed (step S085).
  • the microcomputer 180 subtracts a predetermined value (eg, binary number “001”) from the setN + register (step S083).
  • the microcomputer 180 adds a predetermined value (for example, binary number “001”) to the setN ⁇ register (step S084). Thereafter, the process returns to step S09.
  • Step S083 and step S084 reduce the number of pulses output to the wiring 242 while increasing the number of pulses output to the wiring 241.
  • the average value of the positive current supplied to the LED group 22A of the light emitting device 20 via the wiring 222 is decreased, the average value of the negative current supplied to the LED group 22B is increased.
  • the luminance (light emission amount) from the LED group 22A having a low color temperature decreases and the luminance (light emission amount) from the LED group 22B having a high color temperature increases, so that the color temperature rises and the color is bluish as a whole. It becomes white.
  • the luminance (light emission amount) and chromaticity (color temperature) of the light emitting device 20 can be changed using the microcomputer 180.
  • the timer 186 shown in FIG. 4 prevents a sudden increase in the number of push buttons against the intention of the operator when the operator continues to push the button, and also prevents mechanical errors such as chattering. It is a well-known thing which implement
  • FIG. 8 is a flowchart according to the third embodiment.
  • the flow process surrounded by the block 510 is the lighting control program shown in FIG. 5B
  • the flow process surrounded by the block 520 is the output polarity exchange program according to the third embodiment.
  • the microcomputer 180 executes the output polarity exchange program, the microcomputer 180 operates as follows.
  • the previous button type storage register is provided in the microcomputer 180 and stores a code indicating the type of the button last pressed by the user (operator).
  • the microcomputer 180 When the button type indicated in the previous button type storage register and the button pressed this time are not the same button, the microcomputer 180 indicates the type of the button pressed this time in the previous button type storage register. After storing the code, the process returns to step S02. On the other hand, if the button type indicated in the previous button type storage register is the same as the button type pressed down this time (S521, YES), 1 is added to the counter value N1 (not shown) (step S522). .
  • step S524 the microcomputer 180 replaces the output terminal (out +) of the “setN + register” and the output terminal (out ⁇ ) of the “setN ⁇ register” installed in the microcomputer 180.
  • a burst pulse based on the value of the setN ⁇ register is output to the wiring 242
  • a burst pulse based on the value of the setN + register is output to the wiring 241.
  • the wiring 222 is supplied with an alternating current whose polarity is reversed.
  • the light emitting device 20 is connected in the opposite direction, that is, if the wiring 222 and the terminal 23B are connected, and the wiring 221 and the terminal 23A are connected, a positive drive current is supplied to the wiring 222.
  • the LED group 22B is lit, and the LED group 22A is lit when a negative drive current is supplied.
  • the correspondence relationship between the register value and the LED group is the same as in the normal connection, and thus the light emitting device 20 performs the same lighting operation as in the normal connection even in the reverse connection. . Therefore, in the third embodiment, the polarity exchange switch 290 can be omitted.
  • the above-mentioned output polarity exchange function allows the installation person in charge to see the lighting result and the direction of toning (increase or decrease in chromaticity (color temperature)) is displayed on the dimming / toning device.
  • the XY switch 185 can be operated so that the wirings 222 and 221 and the terminals 23A and 23B are substantially connected normally.
  • the temperature coefficient of the equivalent resistance value of the light-emitting device 20 is negative, and when the temperature at the installation location rises, the equivalent resistance value falls, the current value rises, and the device temperature further increases. There is. It is known that it is effective to provide a feedback loop in the drive circuit in order to prevent this reliably.
  • a feedback loop is added to the configuration of the second embodiment.
  • FIG. 9 shows a circuit configuration example of the light control device according to the fourth embodiment
  • FIGS. 10A and 10B are flowcharts showing processing of the microcomputer in the fourth embodiment. 9, the illustration of the input terminal 10A, the main power switch 141, the power circuit 140, and the XY switch 185 shown in FIG. 4 is omitted.
  • the light control device (lighting control circuit) B1 has a drive current detection circuit 160 for realizing constant current drive, and the drive current detection circuit 160 is optically independent from each of the resistors 165.
  • Photocouplers 161 and 162, and integrating circuits 163 and 164 including resistors and capacitors (capacitors), respectively, are included.
  • the resistor 165 has a resistance value of about 5 ⁇ , for example, and generates a voltage of 0.5 to 5.0 V proportional to the current value of the light emitting device 20 of 0.1 to 1.0 A.
  • the photocouplers 161 and 162 are connected in parallel to the resistor 165. Since a diode is provided on the input side of each photocoupler 161, 162, the combination transistor is made conductive only in the forward direction.
  • Coupler 162 conducts.
  • the conduction of the photocouplers 161 and 162 charges the integrating circuit 163 and the integrating circuit 164 independently, and as a result, a voltage proportional to the average value of positive current is observed in the wiring 312 and a negative current is detected in the wiring 322. A voltage proportional to the average value of is observed.
  • the observed voltage is mainly proportional to the average value of the pulse current flowing through the wiring 222 as the control output line, but at the same time, it is sensitive to fluctuations in the DC component caused by temperature changes.
  • This analog value is guided to the microcomputer (MP) 186A via independent wirings 312 and 322.
  • the microcomputer 186A further includes the following configuration and functions.
  • an analog value is converted into a 16-value digital numerical expression of 4 bits by an internal analog / digital converter (not shown) and stored in an internal register (not shown).
  • Each voltage value (digital value) from the wiring 312 and the wiring 322 stored in the internal register has the same expression format as the setN + register and the setN ⁇ register, and the value indicated by each setN register passes through the wiring 222.
  • the voltage value according to the drive current supplied to each LED group 22A, 22B is shown.
  • the flow process surrounded by the block 530 is a constant current driving routine, and includes a positive current feedback routine S531 and a negative current feedback routine S532.
  • the constant current driving routine 530 is started when the button of the XY switch 185 is not pressed in the contact scanning operation (step S02) (S03, NO).
  • the microcomputer 186A reads the voltage value input from the wiring 312 (step S5311), and is obtained by A / D conversion.
  • the value n + is stored in a temporary register (internal register) (step S5312).
  • the microcomputer 186A reads the register value N + held in the setN + register (step S5313), compares the register value N + with the internal register value n + (step S5314), and if identical, skips step S5315. Proceeding to step S5321, if different, the value of the setN + register is overwritten with the internal register value n + (step S5315), and the positive current feedback routine S531 is terminated.
  • routine S532 processing similar to that in routine S531 is performed. That is, the microcomputer 186A reads the voltage value n ⁇ of the wiring 322 (step S5321), and stores the value n ⁇ obtained by A / D conversion in a temporary register (internal register) (step S5322). Next, the microcomputer 186A reads the register value N ⁇ held in the setN ⁇ register (step S5323) and compares it with the internal register value n ⁇ (step S5324). For example, the setN ⁇ register is overwritten with the internal register value n ⁇ (step S5325), and the negative current feedback routine S532 is completed. When the routines S531 and S532 are completed, the process returns to a standby state (step S02) in which the state of the XY switch 185 is scanned.
  • the luminance (light emission amount) of the light emitting device 20 can be adjusted by controlling the drive current supply to the LED groups 22A and 22B having different polarities that can be connected to the two terminals 23A and 23B of the light emitting device 20. Adjustment (toning) of (dimming) and chromaticity (hue, color temperature) can be performed.
  • the incandescent light bulb is replaced with the light emitting device 20 that emits light at two kinds of color temperatures as described in the present embodiment, and the dimming / color adjusting device as described in the present embodiment is used for the blinking switch. It is possible to realize the dimming and toning function without changing the wiring by simply replacing the cable.
  • an LED lighting system according to a fifth embodiment of the present invention will be described.
  • a pair of lead-in wires are drawn from the power source (commercial power supply) to the installation position of the dimmer, and further, the installation position of the dimmer and the installation arrangement of the LED lighting device
  • a pair of two feeders is laid in advance.
  • the drive current adjusted by the control circuit mounted on the light control device can be supplied to the LED lighting device.
  • a pair of power supply lines from a power source is connected to the light control device as described above, and the light control device and the LED lighting device are connected by a pair of power supply lines (drive current supply lines).
  • FIG. 11 is a diagram showing an outline of the circuit configuration of the LED illumination system in the fifth embodiment
  • FIG. 12 is a diagram showing a configuration example of the control circuit shown in FIG. FIG. 11 shows an outline of the circuit configuration of the LED lighting system.
  • FIG. 11 shows an electric wiring installation space (above the virtual line 403) with a virtual line 403 represented by a two-dot chain line as a boundary, a light control device (light control box) 410 to which the electric wiring is connected, and an LED lighting device.
  • the installation space (below the virtual line 403) of the LED illumination system in which the (light emitting device) 20 is disposed is illustrated.
  • the electrical wiring installation space is usually provided in the wall or behind the ceiling, and is isolated from the lighting system installation space by the wall or ceiling.
  • a pair of commercial power buses 400 to which a commercial power source (for example, AC 100 V, 50 Hz) is supplied and a pair of lighting device power supply lines 401 (401 a and 401 b) are provided in the electrical wiring installation space.
  • a pair of lighting device blinking wires 402 that are led out from the commercial power source bus 400 are provided.
  • the lead-in wire 402 is connected to a pair of terminals T1 and T2 on the input side of the light control device (light control box) 410.
  • the light control device 410 has a pair of terminals T3 and T4 on the output side, and the terminals T3 and T4 are connected to the lighting device power supply line 401 (401a and 410b).
  • the LED lighting device (light emitting device) 20 having a pair of terminals 23A and 23B is connected to the lighting device power supply line 401.
  • the LED lighting device 20 includes an LED group 22A and an LED group 22B connected in reverse parallel, similar to the LED lighting device described in the first embodiment.
  • the Kelvin temperature of white light emitted from the LED group 22A is higher than the Kelvin temperature emitted from the LED group 22B.
  • the light control device 410 can receive the AC voltage from the commercial power source supplied from the terminals T1 and T2. For this reason, the light control device 410 includes a full-wave rectification type DC power supply circuit (power circuit) 412 that functions as a DC generator.
  • the power supply circuit 412 can provide a stable DC power source regardless of the load conduction state.
  • the power circuit 412 is connected to the control circuit 413 through DC power supply lines 414 and 415.
  • the power supply circuit 412 becomes a DC power supply that supplies a DC voltage of approximately 140 V through the feeder lines 414 and 415 when there is no load.
  • the control circuit 413 includes an operation amount detection unit 417 connected to the operation unit 416, a control device 420 functioning as a first and second control unit, and a drive device 430.
  • the drive device 430 includes a drive logic circuit (control circuit) 431 and a drive circuit 432 that is an H-type bridge circuit.
  • the output terminal of the drive circuit 432 is connected to the terminals T3 and T4, and is connected to the LED lighting device 20 via the feeder line 410.
  • the LED lighting device 20 includes an LED module 22C, and the LED module 22C includes an LED group 22A and an LED group 22B that are connected in parallel with opposite polarities between the terminals 23A and 23B (see FIG. 11). .
  • the operation unit 416 is an operation device for performing adjustment (light control) of luminance (light emission amount) of light emitted from the LED lighting device 20 and adjustment (color control) of chromaticity (hue, color temperature).
  • the operation unit 416 includes an operation dial 416A for dimming and an operation dial 416B for toning. The user can adjust the brightness (light emission amount) and chromaticity (hue, color temperature) of the LED lighting device 20 by rotating the dials 416A and 416B.
  • the operation amount detection unit 417 is a signal generator that outputs a signal corresponding to the rotation amount (rotation angle) of the dial, which is the operation amount of each operation dial 416A, 416B.
  • the operation amount detector 417 includes a variable resistor 417A whose resistance value varies according to the rotation amount (rotation angle) of the operation dial 416A and a resistance according to the rotation amount (rotation angle) of the operation dial 416B. And a variable resistor 417B whose value varies.
  • a predetermined DC voltage for example, a maximum of 5 V at no load generated from the commercial AC power supply by the power supply circuit 412 is applied to the operation amount detector 417 to the wiring 405.
  • a voltage (maximum 5 V) corresponding to the resistance value of the variable resistor 417A is generated in the wiring (signal line) 418 connecting the operation amount detection unit 417 and the control device 420.
  • a voltage (maximum 5 V) corresponding to the resistance value of the variable resistor 417B is generated in the wiring (signal line) 419 connecting the operation amount detection unit 417 and the control device 420.
  • the operation amount detection unit 417 generates a signal voltage corresponding to each operation amount of the operation dials 416A and 416B.
  • a slide bar is applicable.
  • a voltage (signal) corresponding to the movement amount instead of the rotation amount is generated by the operation amount detection unit 417.
  • the operation amount detector 417 outputs a voltage corresponding to the variable resistance value as a control signal.
  • a rotary encoder that detects the rotation amount (rotation angle) of the operation dials 416A and 416B may be provided, and a pulse indicating the rotation amount of the rotary encoder may be input to the control device 420.
  • an analog / digital converter for converting a voltage into a digital value which will be described later, can be omitted.
  • the control device 420 is a control circuit that combines an analog / digital converter (A / D converter), a microcomputer (microcomputer: MP), a register, a timer, a counter, and the like.
  • a / D converter analog / digital converter
  • MP microcomputer
  • register a register
  • timer a timer
  • counter a counter
  • the microcomputer for example, a microprocessor with a built-in memory whose master clock operates at an operating frequency (for example, 4 MHz) from a crystal oscillator (not shown) can be applied.
  • the microcomputer loads an operation program recorded in a built-in ROM (Read Only Memory) (not shown) into a RAM (Random Access Memory) (not shown), and executes processing according to the program.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the A / D converter outputs a digital value of the voltage generated on the signal line 418, and the digital value is set in a register (not shown).
  • the A / D converter outputs a digital value of the voltage generated on the signal line 419, and the digital value is set in a register (not shown).
  • the timer and counter included in the control device 420 are driven by a ceramic oscillator 421 that oscillates at a desired self-excited oscillation frequency (for example, 1 MHz), and are complemented by wirings 424 and 425 that connect the control device 420 and the drive logic circuit 431.
  • the target pulse is self-excited and output at a preset timing.
  • the complementary pulse is set in advance so that the repetition frequency becomes a predetermined frequency.
  • the microcomputer performs control pulse generation processing according to the digital value (the operation amount of the operation dials 416A and 416B) set in each register.
  • the control device 420 supplies a control signal to the driving device 430 via the signal lines 424 and 425 in each cycle (period) T0 (20 msec) at the repetition frequency t0 (50 Hz in the present embodiment).
  • the control device 420 outputs a positive pulse and outputs a negative control signal in a period T1 in which a positive control signal is supplied in one cycle (period T0).
  • a negative pulse is output during the supply period T2.
  • the microcomputer increases or decreases the pulse on-time in each of the period T1 and the period T2 without changing the ratio of the on-time of the positive and negative pulses in one cycle according to the change in the operation amount of the operation dial 416A. Controls brightness (light emission).
  • the microcomputer substantially changes the ratio of the periods T1 and T2 according to the fluctuation of the operation amount of the operation dial 416B, and the ratio between the on time of the positive pulse and the on time of the negative pulse in one cycle. Is changed to control chromaticity (color temperature in the present embodiment).
  • the drive logic circuit 431 controls on / off operations (switching operations) of the transistors (switching elements) TR1 to TR4 included in the drive circuit 432 in accordance with pulses (control signals) supplied from the wirings 424 and 425. That is, the control circuit 431 turns off the transistors TR1 to TR4 when there is no pulse input from the wirings 424 and 425. On the other hand, while the positive pulse from the wiring 424 is input, the control circuit 431 turns on the transistors TR1 and TR4 while turning off the transistors TR2 and TR3. As a result, a direct current supplied from the power supply circuit 412 through the wiring 414 flows through the transistor TR1 to the power supply line 401a and is consumed for lighting the LED group 22A. Thereafter, the current flows through the power supply line 401b and the transistor TR4 to the wiring 415 (grounded).
  • the drive logic circuit 431 turns on the transistors TR1 and TR4 while turning on the transistors TR2 and TR3.
  • a direct current supplied from the power supply circuit 412 through the wiring 414 flows to the wiring 401b through the transistor TR2 and is consumed for lighting the LED group 22B. Thereafter, the current flows through the wiring 401a and the transistor TR3 to the wiring 415 (grounded).
  • a positive drive current and a negative drive current having the same waveform as the pulse (control signal) output from the control device 420 are alternately supplied to the LED lighting device 20.
  • alternating currents having different polarities are supplied as drive currents to the LED groups 22A and 22B.
  • the average current supplied to each LED group 22A, 22B depends on the on-time of the pulse. That is, the larger the on-time of the positive and negative pulses, the higher the average current value of the drive current supplied to each LED 22A, 22B in one cycle. On the contrary, the average current value decreases as the duty ratio decreases (the pulse ON time decreases).
  • FIG. 13A shows a pulse when the duty ratio is 1.
  • FIG. 13B shows a state in which the duty ratio in the periods T1 and T2 is lowered by PWM control of the microcomputer.
  • FIG. 13 (c) shows a state where the duty ratio is further lowered than in FIG. 13 (b). In this case, the pulse width of the positive and negative pulses is further reduced.
  • FIGS. 13A to 13C show a state in which the operation dial 416A for dimming is operated so as to reduce the luminance (light emission amount).
  • the microcomputer reduces the duty ratio by PWM control, so that the on-time of the pulse is reduced, thereby reducing the average current.
  • the luminance (light emission amount) decreases.
  • the ratio of the pulse ON time in one cycle does not change. Therefore, the luminance (light emission amount) can be increased or decreased without changing the chromaticity (in this embodiment, the color temperature) of the LED lighting device 20.
  • FIGS. 14A to 14C show pulse states when the operation dial 416B is operated.
  • the microcomputer changes the number of positive and negative pulses in one cycle (period T0) without changing the pulse width at that time.
  • the positive and negative pulse widths are the same, and the ratio of the pulse on-time is 4: 3.
  • the ratio of the pulse ON time is changed to 3: 4.
  • the ratio of the pulse ON time is changed to 2: 5.
  • the repetition frequency T0 (self-excited oscillation frequency) for outputting the positive and negative pulses described above can be determined between 30 Hz and 50 kHz, for example, from the viewpoint of human eye sensitivity, prevention of switching loss, and noise generation. Preferably, it is 50 Hz to 400 Hz. More preferably, it is 50 or 60 Hz to 120 Hz.
  • the self-excited oscillation frequency can be determined independently from the commercial power supply frequency, but does not prevent the selection of the same frequency as the commercial power supply frequency.
  • the transistors TR1 to TR4 are applied as the switching elements, but FETs may be used instead of the transistors.
  • integrating circuits 450 and 440 are provided.
  • the integration circuit 450 feeds back a voltage proportional to the average value of the positive current for driving the LED group 22A to the control device 420, and the integration circuit 440 sets the average value of the negative current for driving the LED group 22B.
  • a proportional voltage is fed back to the controller 420.
  • the control device 420 observes the feedback voltage of the integrating circuits 440 and 450 using an A / D converter and uses it for generating a control signal (pulse).
  • the microcomputer of the control device 420 starts an initialization operation by a known method, loads an operation program recorded in a built-in ROM (Read Only Memory) (not shown) into a RAM (Random Access Memory) (not shown), and follows the program. Process.
  • the following operations and operations of the light control device 410 are performed.
  • the user turns the operation dial (operation knob) 416A to the right, for example, and sets the luminance (light emission amount) of illumination to the maximum.
  • a maximum DC voltage of 5.0 volts is generated on the signal line 418.
  • the control device 420 reads the voltage generated on the signal line 418 by converting it into a digital signal with a built-in A / D converter, and controls the drive logic circuit 431 of the drive circuit 430 via the signal lines 424 and 425. give.
  • the drive logic circuit 431 drives the drive circuit (H-type bridge) 432 according to the control signal.
  • the drive circuit 432 is driven at 50 Hz which is a preset self-oscillation frequency.
  • the control signal waveform at this time is as shown in FIG. 13A.
  • t1 which is the ON time of the positive pulse (control signal)
  • a positive current flows through the feeder line 401a and the LED group 22A.
  • LED-H Turn on
  • t2 which is the ON time of the negative pulse (control signal)
  • a negative current flows through the power supply line 401a to light the LED group 22B (LED-L).
  • an alternating current of about 50 Hz is supplied to the power supply line 401, and the LED groups 22A and the LED groups 22B mounted on the LED lighting device 20 are lit alternately.
  • the ratio of the current flowing at time t1 (individual current) and the current flowing at time t2 (individual current) dominates the chromaticity (color temperature in this embodiment) of the combined light emitted by the LED groups 22A and 22B.
  • the emission color of the LED module 22C exhibits white that is slightly bluish.
  • the user turns the operation dial (dimming knob) 416A to the left to set the illumination brightness to the median value. Then, a DC voltage of about 2.5 volts is generated on the signal line 418.
  • the microcomputer of the control device 420 converts the voltage into a digital signal and reads it with a built-in A / D converter, controls the driving of the driving device 430, and supplies an alternating current to the LED lighting device 20.
  • the pulse waveform at this time is in the state shown in FIG. That is, the ratio of the on time of the positive pulse in the period T1 to the on time of the negative pulse in the period T2 is not changed, but is modulated by the pulse frequency (about 400 Hz) (the duty ratio is reduced). Therefore, at the maximum luminance, one pulse becomes a plurality of pulse groups having a pulse width corresponding to the duty ratio.
  • the pulse width of the positive pulse and the pulse width of the negative pulse are the same. Accordingly, since the average current is smaller than that at the maximum luminance, the luminance of the LED group 22A (LED-H) and the LED group 22B (LED-L) is lowered.
  • the user further turns the operation dial (dimming knob) 416A leftward to set the illumination brightness to the minimum value.
  • a DC voltage of about 0.5 volts is generated on the signal line 418.
  • the microcomputer of the control device 420 converts the voltage value with an A / D converter and reads it, and controls the driving device 430 according to the voltage value. That is, as shown in FIG. 13C, the control device 420 further reduces the duty ratio of positive and negative pulses in the periods T1 and T2. This does not change the ratio of the positive pulse on-time in period T1 to the negative pulse on-time in period T2, and does not change the modulation at about 400 Hz. However, since the pulse width (duty) of 400 Hz is further smaller, the average current is further smaller than that at the center luminance. Therefore, the LED group 22A (LED-H) and the LED group 22B (LED-L) both have the darkest luminance.
  • the current waveform shown in FIG. 13B has a slightly bluish white color because the average current for the LED group 22A (LED-H) is large for the LED group 22B (LED-L).
  • the microcomputer of the control device 420 reads the digital value of the DC voltage of the signal line 419 converted by the A / D converter, and changes the pulse waveform for controlling the driving device 430.
  • the microcomputer of the control device 420 changes the pulse waveform supplied to the drive logic circuit 431 of the drive device 430 from FIG. 13B to FIG. That is, the microcomputer sets the ratio of the positive current (pulse) and the negative current (pulse), which were 5: 2 in the state of FIG. 13B, to 4: 3 as shown in FIG. change.
  • the average current supplied to the LED 22A decreases and the average current supplied to the LED 22B increases.
  • the light emission color of the LED module 22C that is, the color temperature
  • the pulse ratio changes, but the total value of pulses (the total value of average current) does not change, so the luminance of the LED module 22C does not change.
  • the user further rotates the operation dial (chromaticity knob) 416B to the left (counterclockwise) to the limit, with the intention of changing to the reddish white color with the lowest Kelvin temperature. Then, the DC voltage of the signal line 419, which was about 3.0 volts, decreases to about 1.0 volts.
  • the microcomputer of the control device 420 changes the control signal (pulse) supplied to the drive logic circuit 431 when detecting the DC voltage of the digitally converted signal line 419. That is, the microcomputer changes the waveform of the current flowing through the power supply line 401a from FIG. 14 (a) to FIG. 14 (c) (the ratio of positive and negative current (pulse) becomes 2: 5).
  • a control signal is given to the driving device 430.
  • the average current of the LED 22 group A (LED-H) further decreases
  • the average current of the LED group 22B (LED-L) further increases.
  • the color temperature of the LED module 22 ⁇ / b> C is remarkably lowered to exhibit a white color with a strong redness.
  • the overall luminance of the LED module 22C does not change.
  • FIG. 15 is a diagram for explaining a modification of the embodiment, and shows a power change equivalent to FIG. As shown in FIG. 15A, in the initial state, the current waveform shows the same state as in FIG.
  • FIG. 15C and FIG. 13C are equivalent in terms of power.
  • the microcomputer of the control device 420 calculates the pulse ON time according to the rotation amount of the operation dial (light control knob) 416 ⁇ / b> A, and controls so that the pulse is ON during that time. According to such a modification, the switching loss of the drive circuit 432 can be reduced.
  • the microcomputer reduces the times (pulse widths) t1 and t2 in FIG. 15A by 50% in a state where these ratios are not changed.
  • the current (pulse) becomes time (pulse width) t1 ′ and t2 ′ corresponding to 50% of time (pulse width) t1 and t2, as shown in FIG. 15B.
  • the average current decreases, and the LED groups 22A and 22B both emit light that is slightly dark.
  • the microcomputer sets the time (pulse width) t1 ′ and t2 ′ in FIG. And reduce by 25% respectively.
  • the current (pulse) is changed to time (pulse width) t1 ′′ and t2 ′′ corresponding to 25% of time (pulse width) t1 ′ and t2 ′.
  • the average current decreases, and the LED groups 22A and 22B both emit extremely dark light.
  • the microcomputer performs time (pulse width) t1, By changing the ratio of t2, as shown in FIG. 16 (b), the state is changed to the state of time t1 ′ when time t1 is decreased, and is changed to the state of time t2 ′ when time t2 is increased.
  • the microcomputer changes one pulse width supplied to the drive logic circuit 431 in accordance with the operation amount of the operation dials 416A and 416B, and the luminance (light emission amount) and chromaticity of light emitted from the LED module 22C ( Hue, color temperature) can be adjusted.
  • the harmonic components included in the current waveform are reduced as compared with the examples shown in FIGS. 13 and 14, so that the advantage of reducing the radio interference on the periphery and the semiconductor substantially proportional to the switching frequency can be obtained. There is an advantage that power loss can be reduced.
  • the light control device converts alternating current from an alternating current power source such as a commercial power source into direct current by the power supply circuit, and the control device 420 controls the drive device 430 to convert the alternating current.
  • AC is generated from the direct current at a desired frequency by the self-excited oscillation frequency (positive and negative currents supplied every period T0) and supplied as drive current to a pair of LEDs connected in reverse parallel (LED groups 22A and 22B).
  • the self-excited oscillation frequency positive and negative currents supplied every period T0
  • LED groups 22A and 22B LED groups 22A and 22B
  • control device 420 can individually control the average currents to be supplied to the LED groups 22A and 22B. Further, the luminance can be adjusted by increasing or decreasing each average current without changing the ratio of the average currents. Furthermore, the color temperature of the light emitted from the LED module 22C can be changed without changing the luminance by changing the ratio of the average currents to be supplied to the LED groups 22A and 22B.
  • FIG. 17A is a perspective view of a schematic configuration of a package 701 in a semiconductor light emitting device (hereinafter referred to as “white LED”) 708 constituting a light emitting module (LED module).
  • FIG. 17B is a diagram showing a mounting state of wirings 720A and 720B for supplying power to semiconductor light emitting elements (LED elements: hereinafter referred to as “LED chips”) 703A and 703B provided in the package 701.
  • FIG. 18 is a diagram schematically showing the package 701 (white LED 708) shown in FIGS.
  • FIG. 19 is a diagram schematically showing a state in which the white LEDs 708 shown in FIG. 18 are connected in series.
  • FIG. 20 is a cross-sectional view of the white LED 708 shown in FIG. 17A when cut along a plane including the wirings 720A and 720B.
  • the white LED 708 includes a package 701, and the package 701 has an annular and truncated cone-shaped reflector 710 disposed on a substrate 702.
  • the reflector 710 has a function of guiding part of output light from each divided region portion 712 to be described later to the emission direction of the white LED 708 and also functions as a main body of the package 701.
  • the upper surface side of the truncated cone shape of the reflector 710 is the light emitting direction of the white LED 708 and forms an opening 713.
  • a substrate 702 is arranged on the lower surface side of the truncated cone shape of the reflector 710, and a wiring for supplying power to the LED chip is laid out as will be described in detail later (the wiring is not shown in FIG. 17A).
  • the partition 711 which divides
  • the partition 711 defines two divided region portions 712A and 712B in the reflector 710, and the opening portion of the divided region portion 712A occupies the right half of the opening portion 713 of the reflector 710, and the opening of the divided region portion 712B. The portion occupies the left half of the opening 713 of the reflector 710.
  • the opening of the divided region 712A is referred to as a divided opening 713A
  • the opening of the divided region 712B is referred to as a divided opening 713B. That is, the opening 713 is divided into the divided openings 713A and 713B by the partition 711.
  • the shape of the divided region portions 712A and 712B in the package 701 is not limited to the structure in which the vertical wall body is provided as the partition 711.
  • Each of the divided region portions 712A and 712B may be a depression having a shape such as a truncated cone, a truncated pyramid, or a hemisphere.
  • the package 701 shown in FIG. 17A is a structure including divided region portions 712A and 712B in an integrated member, but it is not essential to use such a package 701.
  • Two structures (packages) each having a configuration as a divided region portion can be juxtaposed so that one functions as a divided region portion 712A and the other as a divided region portion 712B.
  • LED chips 703A and 703B are provided in the divided region portions 712A and 712B shown in FIG. 17A. These LED chips 703A and 703B (referred to as LED chips 703 when these LED chips are comprehensively referred to) are respectively connected to a pair of wirings 720A and 720B (also referred to as wiring 720 generically). It is connected and emits light by receiving power supply. As shown in FIG. 17B, four LED chips 703A are mounted on the wiring 720A, and four LEDs are mounted on the wiring 720B. Chip 703B is mounted. Then, the four LED chips 703 in each divided region are connected in parallel in the forward direction with respect to the corresponding wiring.
  • LED chips examples include ultraviolet LED chips that emit ultraviolet light (emission peak wavelength: 300 to 400 nm), purple LED chips that emit violet light (emission peak wavelength: 400 to 440 nm), and blue LED chips that emit blue light (emission peak wavelength: 440 nm to 440 nm). 480 nm) can be applied.
  • the number of LED chips 703 provided in each divided region portion 712A, 712B is, for example, 1 to 10. The number of LED chips 703 may be appropriately determined according to the chip size and required brightness.
  • the types of LED chips 703 provided in the divided region portions 712A and 712B may be the same type or different types. As a combination of different types, a combination of an ultraviolet or purple LED and a blue LED can be considered.
  • FIG. 18 schematically shows the mounting state of these LED chips 703A and 703B. That is, in FIG. 17B, the wirings 720A and 720B located on the upper side and the lower side are connected, respectively, and the four LED chips 703A connected in parallel and the four LED chips 703B connected in parallel have opposite polarities. Are connected in parallel. Further, a wiring 720C and a wiring 720D are drawn out from each of the connected wiring 720A and wiring 720B, and the white LED 708 (package 701) has a configuration having two terminals.
  • a backflow prevention diode D1 is inserted between the cathode of the LED chip 703A and the wiring 720D
  • a backflow prevention diode D2 is inserted between the cathode of the LED chip 703B and the wiring 720C.
  • the white LEDs 708 (package 701) shown in FIG. 18 are connected in series as shown in FIG. 19 in a predetermined number (in FIG. 19, 2 is exemplified). Accordingly, the LED chip 703A (corresponding to the LED group 22A (first LED (group))) and the LED chip 703B (corresponding to the LED group 22B (second LED (group))) schematically shown in FIG. 17A and the like are reversed. An LED module (light emitting module) connected in parallel can be obtained.
  • the substrate 702 is a base for holding the white LED 708 including the LED chip 703, and includes a metal base member 702A, an insulating layer 702D formed on the metal base member 702A, and a pair wiring 720c formed on the insulating layer 702D. , 720d.
  • the LED chip 703 has a pair of electrodes, a p-electrode and an n-electrode, on the opposite bottom surface and top surface.
  • the bottom surface side of the LED chip 703 is disposed on the top surface of the pair wiring 720c via AuSn eutectic solder 705. The electrodes are joined.
  • the electrode on the upper surface side of the LED chip 703 is connected to the other pair wiring 720d by a metal wire 706.
  • a pair of these wirings 720c and 720d forms a pair of wirings 720A or 720B shown in FIG. 17B, and power is supplied to the four LED chips 703 in each divided region.
  • the electrical connection between the LED chip 703 and the pair of paired wirings 720c and 720d on the substrate 702 is not limited to the form shown in FIG. 21, and can be appropriately performed according to the arrangement of the electrode pairs in the LED chip 703. it can.
  • the LED chip 703 is installed with the side on which the electrodes are provided facing upward, and each set of electrodes and each pair of wirings 720c, 720d.
  • a gold wire 706 whereby the paired wirings 720c and 720d and the LED chip 703 can be electrically connected.
  • the LED chip 703 is a flip chip (face-down)
  • the electrodes of the LED chip 703 and the pair wirings 720c and 720d can be electrically connected by bonding with gold bumps or solder.
  • the LED chip 703 excites fluorescent portions 714A and 714B (which may be collectively referred to as fluorescent portions 714) described later.
  • a GaN-based LED element using a GaN-based compound semiconductor is preferable. This is because, in order to emit ultraviolet to blue light, the light emission output and the external quantum efficiency are remarkably large, and when combined with a phosphor described later, very bright light emission can be obtained with very low power.
  • the GaN-based LED element preferably has a light emitting layer containing In, for example, an AlxGayInzN light emitting layer or an InxGayN light emitting layer.
  • the emission wavelength is from violet to blue
  • the light emitting layer has a multiple quantum well structure including an InxGayN well layer, and this well layer is sandwiched between clad layers. The luminous efficiency is particularly high.
  • a plurality of or single phosphors that absorb part of the light emitted from the LED chip 703 and emit light of different wavelengths, and a light-transmitting material that seals the phosphors A fluorescent portion 714 containing a conductive material is provided so as to cover the LED chip 703.
  • the description of the reflector 710 is omitted in FIG. 21, such a form can also be a form of a white LED configured from a package. Part or all of the light emitted from the LED chip 703 is absorbed as excitation light by the light emitting substance (phosphor) in the fluorescent part 714. More specifically, the fluorescent portion in the white LED 8 will be described with reference to FIG. 20.
  • the fluorescent portion 714A covers the LED chip 703A, and the fluorescent portion 714A is exposed at the divided opening portion 713A.
  • the fluorescent portion 714B covers the LED chip 703B, and the fluorescent portion 714B is exposed at the divided opening portion 713B. Accordingly, the output light from each of the fluorescent portions 714A and 714B is emitted to the outside from each divided opening.
  • the white LED 708 is intended to output white light, and in particular, the emission color of the white LED 708 is a deviation duv from the blackbody radiation locus in the uv chromaticity diagram of the UCS (u, v) color system (CIE 1960).
  • the combination of the LED chip 703 and the phosphor is selected so that preferably satisfies ⁇ 0.02 ⁇ duv ⁇ 0.02.
  • the deviation duv from the black body radiation locus in the present embodiment follows the definition of the remarks in Section 5.4 of JIS Z8725 (light source distribution temperature and color temperature / correlated color temperature measurement method).
  • the blackbody radiation locus is not an absolute reference. There is a case where an emission color (an emission color normalized by a deviation from an artificially determined reference light) according to an artificial standard is required.
  • the light emission wavelength of the LED chip 703 is ultraviolet or purple
  • white light is obtained by generating light of the three primary colors of RGB or wavelengths of complementary colors such as BY and RG by the fluorescent unit 714.
  • the emission wavelength of the LED chip 703 is blue
  • Y or RG light is generated by the fluorescent unit 714
  • white light is obtained by color mixing with the emission of the LED chip 703.
  • the sixth embodiment of the present invention will be described below.
  • an indoor wall-embedded light control device (light control device) is used, and existing two-wire wiring is used to perform light control (brightness control) without performing wiring replacement work.
  • An LED lighting system capable of realizing both (adjustment) and toning control (color temperature adjustment) will be described.
  • FIG. 22 is a diagram illustrating a configuration example of the LED illumination system according to the sixth embodiment.
  • FIG. 22 illustrates a pair of commercial power supply buses 1010 to which a commercial power supply (for example, AC 100 V, 50 Hz) is supplied, a pair of illuminator power supply lines 1020, and a pair of light control device lead-in wires 1030.
  • a commercial power supply for example, AC 100 V, 50 Hz
  • illuminator power supply lines 1020 for example, a pair of illuminator power supply lines 1020
  • a pair of light control device lead-in wires 1030 has been.
  • These wirings 1010, 1020, and 1030 are generally laid in an electrical wiring installation space such as a building wall or ceiling.
  • a dimmer 1040 having a pair of two terminals T101 and T102 is connected to the lead-in wire 1030.
  • an LED lighting device having a pair of two terminals also referred to as an LED lighting device or an LED light-emitting device. Also referred to as an LED bulb
  • an LED lighting apparatus 1050 instead of an incandescent lamp having a pair of terminals T103 and T104 is connected.
  • the light control device 1040 is installed on a wall of a building, for example.
  • the LED lighting device 1050 is installed by a fixture provided on a wall or a ceiling, and at that time, the LED lighting device 1050 is electrically connected to the power supply line 1020 via a socket or a connector.
  • the dimmer 1040 includes terminals T101 and T102, a main power switch 1041, a triac 1042, a trigger diode 1043, and a time constant circuit 1044. Terminals T101 and T102 are connected to a lead-in wire 1030 in order to supply power from the bus 10 into the dimmer 1040.
  • the main power switch 1041 is a main power switch for turning on and off the LED lighting apparatus 1050.
  • the triac 1042 functions as a conduction control unit that controls alternating current supplied to the LED lighting apparatus 50.
  • the triac 1042 is turned on (fired) in response to a trigger signal from the trigger diode 1043 in a positive and negative half cycle in one AC cycle of the commercial power supply, and is positive or negative with respect to the terminal T102 until the half cycle is completed. Continue to supply the voltage (current).
  • the trigger diode 1043 supplies a trigger signal for starting the triac 1042 to the triac 1042.
  • the time constant circuit 1044 controls the timing at which the trigger diode 1043 supplies a trigger signal to the triac 1042.
  • the time constant circuit 1044 includes a resistor 1044a, a variable resistor 1044b, and a capacitor (capacitor) 1044c, and is connected to the trigger diode 1043.
  • the resistance value of the variable resistor 1044b varies according to the operation amount of the operation unit (user interface) 1047.
  • the operation unit 1047 is used to operate the conduction time (ignition phase angle) of the triac 1042.
  • the resistor 1044a, the variable resistor 1044b, and the capacitor 1044c constitute a CR time constant circuit that charges the applied voltage to the trigger diode 1043 in the positive half cycle (the first half of the cycle).
  • the trigger diode 1043 is turned on according to the determined time constant.
  • a time constant circuit for starting the triac 1042 in the positive half cycle is illustrated, but the dimmer 1040 also includes a time constant circuit for starting the triac 1042 in the negative half cycle. Yes.
  • the dimming device 1040 can also include a hysteresis removal circuit that removes the residual charge of the capacitor 1044c in positive and negative half cycles to remove hysteresis.
  • FIG. 23 is a diagram showing a relationship between an AC waveform of a commercial power source applied to the light control device 1040 and an AC voltage supplied to the LED lighting apparatus 1050 by firing of the triac 1042.
  • the alternating current voltage of the sine curve from a commercial power source is applied to the light control apparatus 1040.
  • FIG. In the positive half cycle simultaneously with the start of voltage application, positive charging of the capacitor 1044c of the time constant circuit 1044 is started, and the trigger diode 1043 generates a trigger signal at a time when the charge charged in the capacitor 1044c reaches a predetermined amount.
  • the triac 1042 is supplied.
  • the triac 1042 is ignited at a predetermined angle ⁇ in the positive half cycle, and the positive current supply to the LED lighting apparatus 1050 is started. The current supply continues until the end of the half cycle. A similar operation is performed in the negative half cycle.
  • the triac 1042 is ignited at a timing according to the time constant of the time constant circuit 1044, and AC power is supplied to the LED lighting device 1050. That is, the triac 1042 conducts alternating current from the commercial power source during the ignition time.
  • the time constant varies depending on the resistance value of the variable resistor 1044b. That is, the smaller the resistance value of the variable resistor 1044b, the smaller the time constant and the earlier the timing at which the triac 1042 is fired (see FIGS. 23B and 23C). In this way, by changing the resistance value of the variable resistor 1044b by operating the operation unit 1047, the firing phase angle (conduction time) of the triac 1042 can be made variable.
  • the LED lighting apparatus 50 includes an ignition phase angle detection circuit 1090 and a microcomputer 1100 that function as an analysis unit, and a drive unit (drive circuit) 1080 for the LED module 1060.
  • the drive unit 1080 includes an LED module 1060 to be driven.
  • the LED module 1060 includes an LED group 1060a and an LED group 1060b arranged in parallel in the forward direction. Each of the LED group 1060a and the LED group 1060b includes a plurality of LED elements connected in series.
  • the ignition phase angle detection circuit 1090 includes a rectifier circuit 1091 that converts alternating current supplied by controlling the ignition phase angle of the triac 1042 of the light control device 1040 into direct current, and a microcomputer 1100 from the direct current voltage output from the rectifier circuit 1091.
  • the constant voltage source 1092 for generating the operating DC voltage and the angle detection circuit 1093 for detecting the firing phase angle of the triac 1042 are provided.
  • the microcomputer 1100 includes a memory (storage device) 1101, a mode determination unit 1102 as a selection unit, a luminance adjustment unit 1103 as a luminance control unit, and a color temperature adjustment unit 1104 as a color temperature control unit.
  • the memory 1101 stores a program executed by a processor (CPU (central processing unit)) included in the microcomputer 1100 and data used when executing the program.
  • the memory 1101 has a recording area for recording a history of conduction time obtained from the firing phase angle.
  • the mode determination unit 1102 refers to the history of conduction time, thereby controlling the control mode of the LED module 1060, the dimming mode for adjusting the luminance (light emission amount) of the LED module 1060, and the chromaticity (color temperature) of the LED module 1060. ) To switch between toning modes to adjust.
  • the mode determination unit 1102 selects the dimming mode as an initial setting when the main power switch 1041 is turned on.
  • the mode determination unit 1102 receives the ignition phase angle for each cycle from the angle detection circuit 1093, and calculates the conduction time in the half cycle of the triac 1042 from the ignition phase angle. For example, the conduction time is obtained as the difference C between the starting point A of the triac 1042 and the end point (voltage 0) B of the half cycle.
  • the mode determination unit 1102 gives the conduction time to the luminance adjustment unit 1103 and records it in the memory 1101 in the dimming mode. Thereby, the memory 1101 stores a history of conduction time for each cycle.
  • the mode determination unit 1102 takes a difference from the last recorded conduction time in the memory 1101 every time the calculation (measurement) of one cycle conduction time is performed. When the difference is 0, the mode determination unit 1102 starts timing by a timer. When the time when the difference is 0 (the time when there is no change in the conduction time) exceeds the predetermined time, the mode determination unit 1102 switches the control mode to the toning mode (selects the toning mode). On the other hand, when the difference is detected before the time when the difference is 0 does not exceed the predetermined time, the mode determination unit 1102 ends the time measurement by the timer and maintains the dimming mode selection.
  • the mode determination unit 1102 measures the conduction time for each cycle and records it in the memory 1101 as well as the dimming mode, and calculates the difference in conduction time. However, in the toning mode, the conduction time for each cycle is given to the color temperature adjusting unit 1104. Similarly to the dimming mode, the mode determination unit 1102 starts a timer and measures the time when the difference in conduction time is 0 when the difference in conduction time becomes zero. When the time when the difference in conduction time is 0 exceeds the predetermined time, the mode selection unit 1102 switches the control mode to the dimming mode again (selects the dimming mode). However, if the difference is detected before the time when the difference is 0 does not exceed the predetermined time, the mode determination unit 1102 ends the time measurement by the timer and maintains the selection of the toning mode.
  • the mode determination unit 1102 monitors the conduction time, and switches the control mode on condition that a time during which the conduction time does not change exceeds a predetermined time. Further, the mode determination unit 1102 gives the conduction time to one of the luminance adjustment unit 1103 and the color temperature adjustment unit 1104 according to the selected mode. In the above description, the mode determination unit 1102 supplies the conduction time for each cycle to the luminance adjustment unit 1103 or the color temperature adjustment unit 1104. On the other hand, the mode determination unit 1102 may supply the conduction time once in a plurality of cycles as necessary.
  • the luminance adjustment unit 1103 as the luminance control unit includes a dimming unit included in the drive circuit 1080 so that the LED module 1060 emits light with luminance corresponding to the conduction time (ignition phase angle) supplied from the mode determination unit 1102.
  • the constant current circuit 1081 is controlled.
  • the luminance adjustment unit 1103 has a map indicating the correlation between the conduction time and the drive current, and obtains the drive current according to the conduction time from the map so that such a drive current is supplied. To control.
  • the correlation between the conduction time and the drive current shown in the map can be arbitrarily set, and the length of the conduction time and the magnitude of the drive current may be in a proportional relationship.
  • the relationship between the length of the conduction time and the drive current may be nonlinear.
  • the drive current may be increased stepwise according to the length of the conduction time.
  • the drive current value increases when the user operates the operation unit 1047 for increasing the brightness
  • the drive current value decreases when the user operates the operation unit 1047 for decreasing the brightness. It only has to be.
  • Such increase / decrease of the drive current may not be proportional to the conduction time (ignition phase angle).
  • the constant current circuit 1081 is an LED group 1060a (first LED (group)) that constitutes the LED module 1060 with a drive current value determined in advance with respect to the conduction time (ignition phase angle) under the control of the brightness adjusting unit 1103. ), A drive current is supplied to each of the LED groups 1060b (second LEDs (group)). Drive current supplied to the LED module 1060 is the sum of the driving current I hik supplied to the drive current I low k and LED group 1060b supplied to the LED group 1060a.
  • the constant current circuit 1081 increases or decreases the average value of the drive current supplied to the LED groups 1060a and 1060b by increasing or decreasing the total value, and increases or decreases the luminance (light emission amount) of the LED module 1060.
  • the color temperature adjustment unit 1104 as the color temperature control unit includes a color adjustment unit included in the drive circuit 1080 so that the LED module 1060 emits light at a color temperature corresponding to the conduction period (ignition phase angle) in the color adjustment mode.
  • the balance circuit 1082 is controlled.
  • the balance circuit 1082 includes a pulse width modulation (PWM) circuit, and includes a drive current (average current) I lowk supplied to the LED group 1060a and a drive current (average current) I hik supplied to the LED group 1060b. Adjust the ratio.
  • the color temperature adjustment unit 1104 has, for example, a map or table showing a correlation between the conduction time and the drive current ratio, and the drive current I lowk is set at a drive current ratio determined in advance according to the conduction time.
  • the balance circuit 1082 is controlled so that the driving current I hik is supplied.
  • mode determination unit 1102, the brightness adjustment unit 1103, and the color temperature adjustment unit 1104 can be configured as functions realized by a processor included in the microcomputer 1100 executing a program.
  • the conduction time is obtained from the firing phase angle, but it is not essential to obtain the conduction time and record the conduction time history.
  • the history of the firing phase angle is recorded instead of the conduction time, and the drive control of the LED module 1060 (LED groups 1060a and 1060b) is performed with the total value or ratio of the drive current according to the firing phase angle. You may do it.
  • the LED module 1060 is, for example, a group of light emitting diodes manufactured on a sapphire substrate, and a set of LED groups 1060a in which a plurality of (for example, 20) LED elements are connected in series.
  • LED group 1060b is arranged in parallel in the same direction.
  • Each of the LED elements included in each of the LED groups 1060a and 1060b has an emission wavelength of 410 nm, a terminal voltage at the forward current of 3.5 V, and 70 V when 20 LED elements are connected in series. Generates maximum light intensity with direct current.
  • Each LED element constituting the LED group 1060a is embedded with a phosphor that emits white light of about 3000 ° K when stimulated (excited) with light having an emission wavelength of 410 nm.
  • each LED element constituting the LED group 1060b is embedded with a phosphor that emits white light of about 5000 ° K when stimulated (excited) with light having an emission wavelength of 410 nm. Accordingly, the white light irradiated by the light emission of the LED group 1060a and the white light irradiated by the light emission of the LED group 66b have different color temperatures.
  • the number of LED elements constituting the LED groups 1060a and 1060b can be changed as appropriate, and may be one LED element.
  • the LED groups 1060a and 1060b may emit light with mutually different chromaticities (hue and color temperature), and the chromaticity that each of the LED groups 1060a and 1060b can take can be selected as appropriate.
  • the LED module 1060 may be a combination of LED groups emitting different colors instead of a combination of LED groups emitting white light having different color temperatures. As a combination of different colors, a desired combination such as green and blue, yellow and red can be applied. Such an LED lighting apparatus can be used as a neon sign.
  • the operation unit 1047 of the light control device 1040 in the sixth embodiment has a dial type knob (dial).
  • the operation unit 1047 can have a slide bar instead of the dial type knob.
  • the knob of the operation unit 1047 when adjusting the luminance (light emission amount) of the LED module 1060, the knob of the operation unit 1047 is rotated to the left to make it brighter, and rotated to the right to make it darker.
  • a setting is a setting for the convenience of explanation. That is, in the dimming device generally used at present, the conduction time in the AC half cycle increases when the rotary dial is rotated clockwise in the clockwise direction (for example, FIG. 3 (a) ⁇ FIG. 3 (b)). At this time, when the illuminator connected to the light control device has a constant resistance load such as an incandescent lamp, the power consumption is increased and the brightness of the incandescent lamp is increased.
  • the rotation angle position information (operation amount) of the operation unit 1047 (dial) in the sixth embodiment does not control the increase / decrease of the drive current conduction time with respect to the LED module 1060 but inputs “user intention information”. Used to do. For this reason, the operation amount of the operation unit 1047 is not directly related to increase / decrease in power consumption or luminance in the load.
  • the power consumption of the LED module 1060 in the sixth embodiment is different from the incandescent bulb load that can be approximated by a pure resistor, and is independent of the firing phase angle ⁇ of the triac 1042 and is controlled by the load side control circuit (microcomputer 1100). Determined by judgment.
  • the drive control of the LED module 1060 in the sixth embodiment using the triac 1042 will be described with reference to FIG.
  • the brightness adjusting unit 1103 built in the LED lighting apparatus 1050 regardless of the length of the conduction time of the triac 1042 (ignition phase angle). Determines a constant current value to be supplied to the LED module 1060. Therefore, the LED module 1060 does not necessarily consume power proportional to the instantaneous value of the AC voltage waveform.
  • the LED module 1060 when the ignition timing (ignition phase angle) of the IGBT is relatively late (conduction time is short) and the instantaneous value of the voltage waveform is low, the LED module 1060 is turned on. Is stored in the capacitor 1084 (power storage unit), and the drive current is continuously supplied to the LED module 1060.
  • the instantaneous value of Japanese commercial sine wave alternating current (100 V) at an ignition phase angle of 150 degrees is 70.7 V, which is sufficient for lighting LED elements (operating voltage: for example, 24 to 30 V).
  • a phase angle (approximately 168) for supplying 35V, which is about 1/2 of 70.7V, from a phase angle of 150 ° for supplying 70.7V. Up to (degree)) is selected as a usage range for obtaining stable operation.
  • the charging current of the capacitor 1084 required in the above example charges the power consumed in the AC half cycle 180 degree period within the 18 degree period. For this reason, the charging current is about 10 times the steady consumption current.
  • the average time is 100 Vrms (rms is the effective value of alternating current) and 0.3 Arms, but the average current from the phase angle 150 degrees to the phase angle 168 degrees is It is estimated to be about 3 times [A], which is 10 times. This value is an allowable current value.
  • the charging current is about 0.3A.
  • the power supply of the LED module 1060 As described above, it is possible to determine the LED drive current independently of the firing phase angle of the triac 1042. As a result, the brightness of the LED module 1060 can be controlled based on the user's intention, independently of the conduction angle of the triac 1042.
  • an existing dimming device for a heating bulb having a dial as the operation unit 1047 and a triac 1042 can be applied to the dimming device 1040 shown in FIG.
  • the firing phase angle ⁇ (see FIG. 3) of the triac 1042 can be adjusted to an arbitrary value from 0 ° to 180 ° according to the rotation amount (operation amount) of the knob of the operation unit 1047.
  • the numerical value of the position angle of the operation unit (dial) 1047 of the light control device 1040 and the numerical value of the ignition phase angle in the AC cycle are matched as follows. Define.
  • the dial can be rotated 90 ° right and left around the 12 o'clock position.
  • “3 o'clock position”, which is the rotation end point of the dial in the clockwise direction, is referred to as “angular position 180 degrees” and is defined as the ignition phase angle 180 degrees and the normal power consumption minimum.
  • the “9 o'clock position” which is the rotation end point of the dial in the counterclockwise direction is referred to as “angular position 0 degree”
  • the ignition phase angle is 0 degree and is defined as the maximum normal power consumption.
  • the operation of adjusting the luminance (light emission amount) of the LED module 1060 is described as “light control”
  • the operation of adjusting the color temperature of the LED module 1060 is described as “color control”.
  • FIG. 24 is an explanatory diagram of waveforms such as an alternating voltage and a drive current during dimming.
  • FIG. 25 is an explanatory diagram of waveforms such as an alternating voltage and a drive current during color matching.
  • the LED module 1060 When the user closes (turns on) the main power switch 1041 (FIG. 22), the LED module 1060 is turned on.
  • the brightness and color temperature of the LED module 1060 when the main power is turned on are indefinite.
  • the LED module 1060 can be configured to be lit at a predetermined luminance and color temperature by the initial setting of the microcomputer 1100.
  • the user rotates the operation unit 1047 (dial) to the left and right with the intention of changing the luminance to a desired value as the first step.
  • the dial is rotated while checking the brightness by looking at the light from the LED module 1060. For example, when the user sets the dial at the 11 o'clock position, the ignition phase angle is fixed at 60 ° as shown in FIG. At this stage, the LED module 1060 lights with a brightness slightly brighter than the middle of the adjustable brightness range. When the user is satisfied with the brightness, the user releases his / her hand from the dial on the assumption that no further dial operation is required. This operation is interpreted by the microcomputer 1100, which will be described later, as an indication of the end of the first step.
  • the microcomputer 1100 executes the dimming operation program from the time the main power is turned on until the user releases the operation unit 1047, and performs the operation in the first step.
  • the microcomputer 1100 performs an operation according to the dimming operation program. That is, the microcomputer 1100 operates in the dimming mode.
  • the microcomputer 1100 By executing the dimming operation program, the microcomputer 1100 measures the rotational position of the dial, that is, the ignition phase angle (conduction time) of the triac 1042 every moment.
  • the microcomputer 1100 controls the constant current circuit 1091 according to the measured ignition phase angle (conduction time), the drive current I lowk supplied to the LED group 1060a forming the LED module 1060, and the drive current supplied to the LED group 1060b. Increase or decrease the total value of I hik (I lowk + I hik ).
  • the brightness of the LED module 1060 is updated to a desired value.
  • the user can adjust the rotation angle position of the dial of the operation unit 1047 every moment while observing the brightness of the LED module 1060, so that the brightness can be set to a desired brightness.
  • the microcomputer 1100 performs the dimming operation. Ends the execution of the program and starts executing the toning operation program. That is, the control mode is switched to the toning mode.
  • the user has further decided to change the color temperature to a desired value.
  • the user rotates the operation unit 1047 (dial) left and right again from the 11 o'clock position within the first stop time within 5 seconds to 10 seconds after releasing the hand from the operation unit 1047 in the first step.
  • the user performs a dial operation while viewing the color temperature of the LED module 1060.
  • the user indicates a desired color temperature
  • the user releases the operation unit 1047 (dial) again.
  • the AC ignition phase angle is fixed at 120 °.
  • the microcomputer 1100 When the toning operation program is executed, that is, in the toning mode, the microcomputer 1100 does not change the luminance of the LED module 1060, that is, while keeping the total value (I lowk + I hik ) of the LED driving current constant. the value of the drive current I low k to change the ratio of the values of the drive current I hik. As a result, the color temperature of the LED module 1060 changes.
  • the time when the dial is not operated that is, the time when the ignition phase angle (conduction time) is not changed, the microcomputer 1100 starts measuring the timer.
  • the ratio of the drive currents I lowk and I hik is assumed to be that the user's toning operation has ended.
  • the control mode is returned to the dimming mode while is fixed.
  • the microcomputer 1100 ends the timing by the timer and maintains the toning mode.
  • the microcomputer 1100 can continue to count the timer when the timer measures a predetermined time (5 seconds) in the dimming mode and switches the control mode from the dimming mode to the toning mode.
  • a predetermined time for example, when the timer has timed 10 seconds from the start of timing, it is determined that the user has no intention of toning.
  • the microcomputer 1100 switches the control mode to the dimming mode in a state where the ratio of the values of the drive currents I lowk and I hik at the time of switching the toning mode is fixed.
  • the LED lighting apparatus 1050 (LED module 1060), which is a load of the dimmer 1040 that is a triac dimmer, operates according to the above-described operation example.
  • the rule which a user should learn beforehand when using the LED lighting system using the light control apparatus 1040 and the LED lighting fixture 1050 is the following simple rules. That is, as long as the operation of the operation unit 1047 is continued at an interval of 5 seconds or less, the current control mode (one of light control or toning mode) is continued, and the control mode is switched when the dial operation is paused for 5 seconds or more.
  • the numerical value of 5 seconds is a value that can be changed according to the user's social wisdom, age group, social hierarchy, and the like. That is, it is a numerical value that can be set according to the market preference. In an experiment conducted by the applicant of the present application, it was found that 4 seconds ⁇ 2 seconds (2 to 6 seconds) is a range in which the user feels convenient.
  • the predetermined time during which the ignition phase angle (conduction time) does not change can be set as appropriate, and a user interface for changing the predetermined time set in the microcomputer 1100 may be provided. In the above operation example, the case has been described in which the predetermined time that triggers the mode switching is the same 5 seconds in both the light control and the color adjustment modes. However, the length of the predetermined time may be different between the dimming mode and the toning mode.
  • FIGS. 24A and 24B show the relationship between the conduction voltage of the triac 1042 (the light control device 1040) and the drive current of the LED module 1060.
  • FIG. The waveform shown in FIG. 24B is a current waveform when the illuminator is a simple resistance load (for example, an incandescent lamp). As can be seen from FIGS. 24A and 24B, it is well known that the voltage waveform and the current waveform are similar.
  • FIG. 24C shows a current waveform in the case of a constant current drive load as in this embodiment. It can be seen that the current waveform in FIG. 24C is completely different from the AC voltage waveform shown in FIG. That is, in the LED lighting apparatus 1050 incorporating the constant current drive circuit (constant current circuit 1081), a substantially constant drive current is generated from immediately after firing to immediately before the AC phase angle of 180 ° regardless of the time change of the voltage waveform. It is supplied to a load (LED module 1060).
  • a large charging current charges the capacitor 1084 immediately after ignition to maintain the DC voltage, thereby driving the driving current waveform shown in FIG. 24 (e).
  • the rectifier circuit 1083 it is possible to design the rectifier circuit 1083 so that the drive current is continuously supplied to the LED module 1060 as the load even after the AC phase of 180 ° is finished (after the half cycle is finished). Note that (c), (d), and (e) in FIG. 24 show current waveforms after full-wave rectification by the rectifier circuit 1083.
  • a relatively large current for charging the capacitor 1084 is supplied from the rectifier circuit 1083 immediately after the triac 1042 is fired, regardless of the dial position (operation amount) of the dimmer 1040.
  • the DC voltage as shown in FIG. 24E can be maintained. Therefore, the LED module 1060 can be driven with a desired current value.
  • the ignition phase angle from 60 degrees shown in FIG. 24A to the ignition phase angle 120 degrees shown in FIG. And the conduction time decreases.
  • the lighting fixture is a simple resistance load such as an incandescent lamp
  • the current does not become as shown in FIG. 25 (b)
  • the current for charging the capacitor 1084 flows as shown in FIG. 25 (d)
  • the capacitor 1084 is charged with a current of a magnitude of. This is because the AC non-conduction time is long, and the voltage of the capacitor 1084 gradually decreases due to the LED consumption current, and the potential difference between the AC power supply side and the capacitor 1084 side is increased.
  • the DC power to be supplied to the LED module 1060 can be secured regardless of the dial position of the operation unit 1047 of the light control device 1040. Therefore, the LED driving current I low k for low Kelvin, LED drive current I hik for high Kelvin may be adjusted as shown in FIG. 26 (a) and (b).
  • the drive current I lowk and the drive current I hik at the end of the first step can be supplied with the same amount of drive current as shown in FIG. .
  • the dial when the dial is moved to, for example, the 13:00 position in the toning mode, the drive current I hik increases while the drive current I lowk decreases as shown in FIG. Becomes bluish white.
  • Such an operation is realized by changing the ratio of the drive current I hik and the drive current I lowk by the PWM circuit built in the balance circuit 1082.
  • the LED groups 60a and 60b have a pulse current at time t1 at a ratio of time determined by the balance circuit 1082 in one cycle period of alternating current. Is supplied.
  • the same number (three) of pulse currents are supplied to the LED groups 1060a and 1060b.
  • four pulse currents are supplied to the LED group 1060b, while two pulse currents are supplied to the LED group 1060a. In this way, the current ratio is changed, but the total number of pulses is not changed. That is, the total value of the drive current is constant. Therefore, the color temperature can be changed in a state where the luminance is maintained.
  • the LED lighting fixture 1050 can be dimmed and toned using the existing wiring provided for the incandescent light bulb and the existing triac dimmer (dimming device 1040). That is, the operation history of the operation unit 1047 (dial) of the light control device 1040, that is, the triac firing phase angle (conduction time) is stored on the LED lighting device 1050 side, so that the two modes of the light control mode and the color adjustment mode are stored. Realize control mode. Thereby, the two functions of light control and color control can be realized by using the existing light control device 1040 without performing wiring work.
  • two controls, dimming and toning can be realized by a single dimming device 1040.
  • a single dimming device 1040 it is very easy to introduce LED lighting equipment that can perform light control and color adjustment by changing the light bulb or light source on the load side to the LED lighting equipment 1050 without replacing the light control device. can do.
  • the LED lighting fixture 1050 makes it possible to improve the performance of a lighting system that uses a conventional incandescent bulb or fluorescent lamp by using the LED lighting fixture 1050. Furthermore, in white illumination, color rendering properties closer to the spectrum of sunlight can be realized. Moreover, according to the LED lighting fixture 1050, the color temperature in a wide range from daylight color to light bulb color can be continuously changed with one LED lighting fixture.
  • the configuration example in which the conduction time is measured based on the ignition phase angle and the history of the conduction time is recorded in the memory 1101 has been described.
  • the conduction time is not measured, the ignition phase angle is simply detected every predetermined cycle (for example, one cycle), and the history of the ignition phase angle may be recorded in the memory 1101. .
  • the history of the ignition phase angle is recorded in the memory 1101, at least the last detected ignition phase angle (conduction time) is recorded in the memory 1101. It should be.
  • the existing triac dimmer (the dimmer 1040) is replaced with a new dimmer, thereby reducing the two functions of dimming and toning. High convenience is realized by realizing it only by exchanging large-scale wiring equipment.
  • FIG. 27 is a diagram illustrating a circuit configuration example of the LED illumination system according to the seventh embodiment.
  • the LED lighting system includes a light control device 1040A and an LED lighting device 1050A. Also in the seventh embodiment, existing wiring (bus 1010, feeder 1020, lead wire 1030) similar to the sixth embodiment is utilized.
  • a dimming device 1040A having two or more operation units including a dimming operation unit and a toning operation unit is applied.
  • an LED illumination system that is more convenient than the sixth embodiment can be provided.
  • the light control device 1040A includes a pair of IGBTs (insulated gate bipolar transistors) as first and second molding parts.
  • the IGBT can open and close a high voltage output with a small voltage input signal. Since the IGBT is a single bipolar transistor, as shown in FIG. 27, two IGBTs 1048 and 1049 are connected in series with opposite polarities. Each of the IGBTs 1048 and 1049 includes diodes 1032 and 1033.
  • the light control device 1040A includes a light control operation unit 1047a (first user interface) and a color control operation unit 1047b (second user interface). Each of the operation unit 1047a and the operation unit 1047b has a dial (knob) for adjusting each of luminance and color temperature. Signals indicating the operation amounts of the operation units 1047a and 1047b are given to the logic circuit 1400.
  • the logic circuit 1400 includes two rotary encoders (not shown) that respectively detect the operation amounts (the rotation angle of the dial) of the operation units 1047a and 1047b.
  • the logic circuit 400 supplies signals 1408 and 1409 to the gates of the IGBTs 1048 and 1049 at a timing corresponding to the dial position (detection position of the rotary encoder) of the operation unit 1047a.
  • a signal 1408 is a reverse current that stops the current between the collector and the emitter for a predetermined period, and the output timing of the signals 1408 and 1409 depends on the dial position of the operation unit 1047a.
  • the conduction of the current flowing between the collector and the emitter of the IGBTs 1048 and 1049 is performed for a predetermined period (for example, 1 ms) can be stopped.
  • FIG. 28 is a diagram showing the relationship between the operation amount of the operation unit 1047a and the AC waveform.
  • pulse signals (signals 1408 and 1409) corresponding to the operation amount of the operation unit 1047a as shown in FIG. 28B are generated. This is applied to the gates of the IGBTs 1048 and 1049. Thereby, alternating current is interrupted
  • the positive and negative half cycles of the AC voltage from the commercial power supply have a waveform that is cut off for a predetermined period t4 at the cut-off timing according to the output timing of the signals 1408 and 1409 corresponding to the operation amount of the operation unit 1047a. .
  • An AC voltage having such a waveform is supplied to the LED lighting apparatus 1050A. Since the predetermined period t4 is shorter than a half cycle period such as 1 ms (in the case of 10 ms: 50 Hz), the AC voltage can be considered as a substantially sine wave.
  • the timing of interruption by the pulse signal (signal 1408) in the positive and negative half cycles of the AC depends on the dial rotation amount (operation amount) of the operation unit 1047a, that is, the luminance control amount. As shown in FIGS. 28 (c) and 28 (e), as the dial operation amount increases in the direction of increasing the brightness, the output timing of the signals 1408 and 1409 is advanced, and the AC positive / negative half cycle is interrupted. The timing is early. Thereby, the waveform of the positive and negative half cycles of the AC voltage supplied to the LED lighting apparatus 1050A can be in a state in which a control signal for brightness adjustment is embedded (added).
  • the logic circuit 1400 supplies a signal 1409 corresponding to the dial position of the operation unit 1047b to the gate of the IGBT 1049.
  • the signal 1409 By supplying the signal 1409, the current flowing between the collector and the emitter of the IGBT 1049 can be stopped (cut off) for a predetermined time (for example, 1 ms) in the negative half cycle of the alternating current from the commercial power supply.
  • FIG. 29 is a diagram illustrating the relationship between the operation amount of the operation unit 1047b and the AC waveform.
  • a pulse signal (signal 1409) as shown in FIG. 29B is generated and applied to the gate of the IGBT 1049.
  • alternating current is interrupted by a predetermined cycle t4 (for example, 1 ms) in a negative cycle.
  • the negative half cycle of the AC voltage from the commercial power supply has a waveform that is cut off for a predetermined period t4 at the cut-off timing corresponding to the output timing of the signal 1409.
  • An AC voltage having such a waveform is supplied to the LED lighting apparatus 1050A. Since the predetermined period t4 is shorter than a half cycle period such as 1 ms (in the case of 10 ms: 50 Hz), the AC voltage can be considered as a substantially sine wave.
  • the timing of interruption by the pulse signal (signal 1409) in the negative negative half cycle depends on the amount of rotation of the knob of the operation unit 1047b, that is, the control amount of the color temperature. As shown in FIG. 29 (c) and FIG. 29 (d), the output timing of the signal 1409 is advanced as the operation amount of the knob increases in the direction of decreasing the color temperature, and the interruption timing in the negative negative half cycle. Becomes faster. As a result, the negative half-cycle waveform of the AC voltage supplied to the LED lighting apparatus 1050A can be made into a state in which a control signal for color temperature adjustment is embedded (added).
  • the interruption position (interruption phase angle) in the positive and negative half cycles varies due to the generation of the signals 1408 and 1409.
  • the operation unit 1047b when the operation unit 1047b is operated, only the signal 1409 is generated, and only the interruption position (interruption angle) in the negative half cycle changes.
  • the operation unit 1047a may be an operation unit for toning
  • the operation unit 1047b may be an operation unit for dimming.
  • only the signal 1408 may be generated by operating the operation unit 1047b, and only the cutoff position in the positive half cycle may be changed.
  • the LED lighting apparatus 1050A includes a cut-off angle detection circuit 1090A.
  • the detection circuit 1090A includes a rectifier circuit 1091 that converts alternating current supplied from the dimmer 1040A side into direct current, and a constant voltage source 1092 that generates a direct current voltage for operating the microcomputer 1100 from the direct current voltage output from the rectifier circuit 1091.
  • an angle detection circuit 1093A for detecting a cut-off timing in the positive and negative half cycles of the alternating current.
  • the angle detection unit 1093A detects the cutoff phase angle ⁇ in each of the positive and negative half cycles and passes it to the distribution unit 1102A (determination unit) of the microcomputer 1100.
  • the allocating unit 1102A records the cutoff phase angle ⁇ in each of the positive and negative half cycles in the memory 1101 as history information. At this time, when the allocating unit 1102A detects the positive / negative cutoff phase angle ⁇ in one cycle, it compares each cutoff phase angle ⁇ with the positive / negative cutoff phase angle ⁇ last recorded in the memory 1101.
  • the allocating unit 1102A determines the detected cutoff phase angle ⁇ based on the determination that the dimming operation has been performed. Is sent to the luminance adjustment unit 1103.
  • the allocating unit 1102A determines that the detected cutoff is based on the determination that the toning operation has been performed.
  • the phase angle ⁇ is sent to the color temperature adjustment unit 1104.
  • the configurations of the luminance adjustment unit 1103, the color temperature adjustment unit 1104, and the LED module 1060 are substantially the same as those in the sixth embodiment.
  • the luminance adjustment unit 1103 controls the supply of the drive current by the constant current circuit 1081 so that the LED module 1060 emits light with the luminance corresponding to the cutoff phase angle ⁇ .
  • the luminance adjustment unit 1103 controls the constant current circuit 1081 so that a drive current determined in advance according to the cutoff phase angle ⁇ is supplied to the LED module 1060.
  • the luminance adjustment unit 1103 is located in the second half of the half cycle in which the cutoff phase angle ⁇ is positive (negative). It is interpreted that the user desires light emission of the LED module 1060 with low luminance. On the premise of such an interpretation, the luminance adjustment unit 1103 controls the constant current circuit 1081 so that the drive current is supplied with a relatively small drive current value that is determined in advance with respect to the cutoff phase angle ⁇ .
  • the luminance adjustment unit 1103 When the AC voltage waveform is as shown in FIG. 28C, the luminance adjustment unit 1103 is positioned at the middle of the half cycle in which the cutoff phase angle ⁇ is positive (negative). It is interpreted that the light emission of the module 1060 is desired. On the premise of such an interpretation, the luminance adjustment unit 1103 controls the constant current circuit 1081 so that the drive current is supplied at a relatively medium drive current value that is determined in advance with respect to the cutoff phase angle ⁇ . To do.
  • the luminance adjustment unit 1103 When the AC voltage waveform is as shown in FIG. 28 (e), the luminance adjustment unit 1103 is positioned in the first half of the half cycle in which the cutoff phase angle ⁇ is positive (negative), and thus the user can use the LED with high luminance. It is interpreted that the light emission of the module 1060 is desired. Based on such an interpretation, the luminance adjustment unit 1103 controls the constant current circuit 1081 so that the drive current is supplied at a relatively high drive current value that is determined in advance with respect to the cutoff phase angle ⁇ .
  • the above example does not indicate that the luminance is controlled in three steps, and the luminance control in two or more steps according to the value of the cutoff phase angle ⁇ is possible.
  • the color temperature adjustment unit 1104 controls the operation of the balance circuit 1082 so that the LED module 1060 emits light at a color temperature corresponding to the negative cutoff phase angle ⁇ .
  • the color temperature adjustment unit 1104 has an LED group 1060a (low color temperature LED (low Kelvin temperature LED)) and LED group 1060b constituting the LED module 1060 at a drive current ratio corresponding to the negative cutoff phase angle ⁇ .
  • a drive current is supplied to each of the (high color temperature LED: LED for high Kelvin temperature).
  • the cutoff phase angle ⁇ is located in the second half of the negative half cycle.
  • the color temperature adjustment unit 1104 has a balance (ratio) determined in advance with respect to the cutoff phase angle ⁇ .
  • the balance circuit 1082 is controlled so that the drive current is supplied to the LED groups 1060a and 1060b.
  • the cutoff phase angle ⁇ is located in the middle of the negative half cycle.
  • the color temperature adjustment unit 1104 has a balance (ratio) determined in advance with respect to the cutoff phase angle ⁇ .
  • the balance circuit 82 is controlled so that the drive current is supplied to the LED groups 60a and 60b.
  • the cutoff phase angle ⁇ is located in the first half of the negative half cycle.
  • the color temperature adjustment unit 1104 has a balance (ratio) determined in advance with respect to the cutoff phase angle ⁇ .
  • the balance circuit 1082 is controlled so that the drive current is supplied to the LED groups 1060a and 1060b.
  • the above example does not indicate that the color temperature is controlled in three stages, and the color temperature can be controlled in two or more stages according to the value of the cutoff phase angle ⁇ .
  • the cutoff phase angle ⁇ in the positive and negative cycles based on the signals 1408 and 1409 is recorded in the memory 1101. Therefore, when the angle detection circuit 1093 does not detect the cutoff angle ⁇ , the allocating unit 1102A sends the positive / negative cutoff phase angle ⁇ last recorded in the memory 1101 to the luminance adjusting unit 1103 and the color temperature adjusting unit 1104. Supply. Thereby, even when the time t4 is 0, that is, the cutoff time at t4 disappears, the luminance and the color temperature are maintained.
  • the light control device 1040A includes the operation unit 1047a for adjusting luminance and the operation unit 1047b for adjusting color temperature.
  • the user can perform the light control operation and the color adjustment operation independently of each other. For this reason, compared with 6th Embodiment, the LED lighting system with improved operativity can be provided.
  • the seventh embodiment since existing wiring equipment is used, it is possible to avoid significant wiring work by introducing the LED lighting fixture 1050A, and it is possible to reduce the initial cost when the LED lighting fixture 50A is introduced.
  • FIG. 30 is a diagram illustrating a configuration example of an LED illumination system according to the eighth embodiment.
  • the LED lighting system generally includes a light control device (light control / color control controller) C and an LED light fixture (LED light emitting device) 800.
  • the light control device C has a pair of terminals T201 and T202 and another pair of terminals T203 and T204.
  • Terminals T201 and T202 are connected to a pair of commercial power buses 1010 that supply commercial power (for example, AC 100V, 50 or 60 Hz).
  • Terminal T203 is also connected to commercial power bus 1010.
  • the terminal T204 is connected to the terminal T205 of the pair of terminals T205 and T206 provided in the LED lighting apparatus 800 through the feeder line 1020a.
  • Terminal T206 is connected to the other of commercial power bus 1010.
  • the light control device C includes the main power switch 141 described in the second embodiment (FIG. 4), the power supply circuit 140 as a direct current generation unit, the microcomputer 180A as first and second control units, the first and first control units. And an XY switch 185 as an operation unit. Since these details have been described in the second embodiment, a description thereof will be omitted. However, the power supply circuit 140 does not have to have a DC24V generation function as described in the second embodiment.
  • the light control device C includes a control signal generation circuit 191 as a control signal generation unit.
  • the microcomputer 180 uses light control / color control operation amounts (control values) (bit values indicated by bits b0 to b5) input from the XY switch 185 as control information for light control / color control. It functions as an encoder that generates a digital value (luminance value) representing luminance and a digital value (color temperature value) representing chromaticity (color temperature in this embodiment).
  • the microcomputer 180A has a recording medium (memory) that holds a digital value indicating a luminance value and a digital value indicating a color temperature.
  • the luminance value (digital value) held in the memory is increased / decreased (updated) in response to depression of the “U” button and “D” button of the XY switch 185.
  • the microcomputer 180A outputs the held luminance value to the signal line 180a.
  • the microcomputer 180A increases or decreases the color temperature value (digital value) held in the memory in response to the depression of the “H” button and the “L” button.
  • the microcomputer 180A outputs the held color temperature value to the signal line 180b.
  • Each digital value is expressed by a predetermined number of bits.
  • the control signal generation circuit 191 generates a control signal including control information using an AC waveform supplied from a commercial power source.
  • the control signal generation circuit 191 is connected to the microcomputer 180A via the signal lines 180a and 180b, and the luminance value and the color temperature value output from the microcomputer 180A are input.
  • the control signal generation circuit 191 generates a control signal for light adjustment / color adjustment corresponding to the luminance value and the color temperature value by processing the waveform of the sine wave from the commercial power source input from the terminal T203, Output from T204. Thereby, a control signal for light adjustment / color adjustment is sent to the LED lighting apparatus 800.
  • control signal generation circuit 191 can include a triac 192 and a triac firing control circuit 193 (first form).
  • the ignition control circuit 193 determines the ignition timing of the TRIAC 192 according to control information (luminance value and color temperature value) related to light adjustment / color adjustment from the microcomputer 180A for positive and negative half cycles with respect to a commercial alternating current sine wave. Control.
  • the ignition control circuit 193 supplies the triac 192 with a trigger signal for igniting at an ignition phase angle corresponding to one of the luminance value and the color temperature value (for example, the luminance value) for the positive half cycle. To do.
  • the ignition control circuit 193 supplies the triac 192 with a trigger signal for igniting at an ignition phase angle corresponding to the other of the luminance value and the color temperature value (for example, the color temperature value) with respect to the negative half cycle.
  • the triac 192 conducts alternating current from a commercial power source supplied from the terminal T203 during an ignition period from when the trigger signal is obtained until the voltage becomes zero.
  • AC from the commercial power supply is output as a control signal in a conduction period corresponding to each of the luminance value and the color temperature value.
  • the ignition phase angle in each positive and negative half cycle of the triac 192 is recognized from the AC waveform (control signal waveform) input from the terminal T205, and the luminance value and the color temperature value are converted from the ignition phase angle. Corresponding control information regarding toning and dimming can be obtained.
  • the control signal generation circuit 191 can have a second form as shown in FIG.
  • the second form can include a logic circuit 1400A and a pair of IGBTs 1048 and 1049 (including diodes 1032 and 1033) as described in the seventh embodiment.
  • the logic circuit 1400A gives a signal to the gate of the IGBT 1048 at a timing according to one of luminance values and color temperature values (for example, luminance values) supplied from the microcomputer 180A.
  • the logic circuit 1400A gives a signal to the gate of the IGBT 1049 at a timing according to the other of the luminance value and the color temperature value (for example, the color temperature value).
  • the sine wave from the commercial power source becomes a waveform (control signal) including a cutoff portion corresponding to the luminance value and the color temperature value in each positive and negative half cycle of the sine wave as shown in FIG.
  • a waveform control signal
  • Such an AC waveform is output from the terminal T204 and supplied to the LED lighting apparatus 800.
  • control information corresponding to the luminance value and the color temperature value can be obtained from the position (cutoff phase angle) of the cut-off portion of the AC waveform input from the terminal T205.
  • the LED lighting apparatus 800 includes a terminal T205, a power supply circuit 801 connected to the terminal T206, a power supply circuit 802, a control circuit 803 including a microcomputer, and a digital / analog converter (D / A converter) 804. Yes. Furthermore, the LED lighting apparatus 800 includes a total current regulating circuit 839, an individual current value adjusting circuit 840, and an LED module 1060 similar to that of the sixth embodiment.
  • the power supply circuit 801 has a rectifier circuit that converts commercial power AC from the bus 1010 to DC, and generates a voltage for driving the LED (for example, 24 V) and outputs it to the wiring 806.
  • a power supply circuit (constant voltage source) 802 obtains a voltage (eg, 3.3 V) for operation of the control circuit 803 from the voltage from the wiring 806 and inputs the voltage to the control circuit 803.
  • the configuration of the control circuit 803 shown in FIG. 33 is applied to the first embodiment shown in FIG. 33, the control circuit 803 includes an ignition phase angle detection circuit 1093 that detects an ignition phase angle, and a microcomputer 803A.
  • the microcomputer 803A operates according to the operation clock supplied from the crystal oscillator 805 (FIG. 30).
  • the microcomputer 803A includes a memory 1101, and includes a distribution unit 1102, a luminance adjustment unit 1103A, and a color temperature adjustment unit 1104A as functions realized by executing a program by a processor (not shown) included in the microcomputer 803A. Yes.
  • the ignition angle detection circuit 1093 obtains the ignition phase angle in the positive and negative half cycles in the control signal supplied from the dimmer C.
  • the allocating unit 1102A passes the positive firing phase angle to the luminance adjusting unit 1103A, and passes the negative firing phase angle to the color temperature adjusting unit 1104A.
  • the luminance adjustment unit 1103A refers to a correspondence table (not shown) stored in the memory 1101 in association with the ignition phase angle and the luminance value, and corresponds to the ignition phase angle obtained from the distribution unit 1102A.
  • the luminance value is obtained from the correspondence table. Thereby, the luminance value output from the microcomputer 180 can be obtained (restored). The luminance value is output to the wiring 811.
  • the color temperature adjustment unit 1104A refers to a correspondence table (not shown) stored in the memory 1101 in association with the ignition phase angle and the color temperature value, and sets the ignition phase angle obtained from the distribution unit 1102A.
  • the corresponding color temperature value is obtained from the correspondence table.
  • the color temperature value includes a color temperature value for the LED group 1060a to be output to the wiring 812 and a color temperature value for the LED group 1060b to be output to the wiring 813. Each color temperature value is output to the wirings 812 and 813.
  • control circuit 803 shown in FIG. 34 is applied to the second mode shown in FIG. 34, the control circuit 803 has the same configuration as that shown in FIG. 33 except that it includes a (cut-off phase) angle detection circuit 1093A instead of the ignition phase angle detection circuit 1093.
  • the angle detection circuit 1093A detects the cutoff phase angle in positive and negative half cycles in the control signal.
  • the allocating unit 1102A sends the cutoff phase angle in the positive half cycle to the luminance adjusting unit 1103A, and sends the cutoff phase angle in the negative half cycle to the color temperature adjusting unit 1104A.
  • the control device 803 functions as a decoder that receives the light control / color control signal from the light control device C and obtains the luminance value and the color temperature value from the control signal.
  • the total current regulating circuit 839 includes an operational amplifier 831, a resistor 832, and a transistor 833.
  • the individual current value adjustment circuit 840 includes operational amplifiers 841 and 842, resistors 846 and 843, and transistors 844 and 845.
  • the microcomputer 803A of the control circuit 803 is connected to the D / A converter 804 via wirings 811, 812, 813.
  • the D / A converter 804 is connected to the wiring 806 through a wiring 821, a Zener diode 834, and a resistor 835, and the terminal of the operational amplifier 831 is connected between the Zener diode 834 and the resistor 835.
  • the D / A converter 804 is connected to one terminal of the operational amplifier 841 through the wiring 822 and is connected to one terminal of the operational amplifier 842 through the wiring 823.
  • the luminance value output from the microcomputer 803A to the wiring 811 decreases.
  • the D / A converter 804 generates an analog potential corresponding to the luminance value in the wiring 821.
  • the analog potential of the wiring 821 decreases, the base potential of the transistor 833 that is the output of the operational amplifier 831 also decreases, and the emitter current of the pnp transistor 833 increases. Therefore, the total current supplied to the LED groups 1060a and 1060b of the LED module 1060 increases, and the light emitted from the LED module 1060 becomes brighter (the luminance increases). On the other hand, when the D button of the XY switch 185 is pressed down, the reverse action occurs and the light emitted from the LED module 1060 becomes dark.
  • the color temperature value output from the microcomputer 803A to the wiring 812 increases, while the color output from the microcomputer 803A to the wiring 813 The temperature value decreases.
  • the D / A converter 804 generates an analog potential corresponding to the color temperature value from the wiring 812 in the wiring 822, while generating an analog potential corresponding to the color temperature value from the wiring 813 in the wiring 823.
  • the analog potential of the wiring 452 increases, the base potential of the npn transistor 844 that is the output of the operational amplifier 841 also increases, and the collector current of the npn transistor 844 increases.
  • the base potential of the npn transistor 845 which is the output of the operational amplifier 842, decreases, and the collector current of the npn transistor 845 decreases.
  • the amount of light emitted from the LED group 1060a having a high color temperature is larger than the amount of light emitted from the LED group 1060b having a low color temperature, and the LED module 1060 as a whole exhibits a bluish bluish white with an increased color temperature.
  • the L button of the XY switch 185 is pressed with the intention of lowering the color temperature, the reverse action occurs, the light emission amount of the LED group 1060a decreases, and the light emission amount of the LED group 1060b increases.
  • the color temperature of the LED module 1060 decreases. With such an operation, it is possible to adjust the luminance and color temperature of the LED module 1060 to desired values.
  • a total current regulating circuit 839 independent from the individual current value adjusting circuit 840 is provided.
  • the LED groups 1060a and 1060b are supplied to the individual current value adjustment circuit 840 in a state where the ratio of the average currents supplied to the LED groups 1060a and 1060b is not changed based on the luminance value obtained by the microcomputer 803A.
  • a modification in which a control value that increases or decreases the supplied average current is output from the wirings 812 and 813 is possible. According to such a modification, the luminance adjustment can also be performed by the individual current value adjustment circuit 840, so that the configuration related to the total current defining circuit 839 can be omitted.
  • 10A AC power input terminal 20: LED lighting device (LED light emitting device) 22A ... LED group (first LED group) 22B ... LED group (second LED group) 23A, 23B ... terminal 90 ... half-wave voltage doubler rectifier circuit 100 ... clock generation circuit 101, 102 ... comparator (comparator: operational amplifier) 110: Duty ratio adjustment circuit 120 ... Push-pull type drive circuit 130 ... Drive pulse generation / variable circuit 183 ... DC power supply circuit 141 ... Main power switch 150 ... H-type full bridge control Circuit 151 ... Control circuit 160 ... Drive current detection circuit 165 ... Resistors 161 and 162 ... Photocouplers 163 and 164 ...
  • Operation amount detection unit (signal generator) 417A, 417B ... Variable resistors 418, 419 ... Signal line 420 ... Control device 421 ... Oscillator 430 ... Drive device 431 ... Drive logic circuit 432 ... Drive circuit

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

 極性を逆にして並列接続された、発光波長域が相互に異なる第1及び第2LEDを含むLED照明装置と、調光装置とを含むLED照明システムであって、調光装置は、交流電源から受電される交流から直流電源を生成する直流生成部、第1及び第2LEDの点灯による照明光の輝度を操作するための第1操作部、第1及び第2LEDの点灯による照明光の色又は色温度を操作するための第2操作部、第1操作部の操作量に応じて、所定の周期毎に第1及び第2LEDに供給すべき平均電流の総量を決定する第1制御部、第2操作部の操作量に応じて、所定の周期毎に第1及び第2LEDの夫々に供給すべき平均電流の比を決定する第2制御部、直流生成部によって得られた直流電源を用いて、所定の周期毎に、第1及び第2制御部によって決定された平均電流の総量及び平均電流の比を有する、第1LEDに供給すべき正の電流と第2LEDに供給すべき負の電流とを含む交流電流を生成してLED照明装置に供給する供給部とを含む。

Description

調光装置、及びLED照明システム
 本発明は、LED(Light Emitting Diode)発光デバイス(LED照明装置)の調光装置、及び調光装置及びLED照明装置(LED照明器具)を含むLED照明システムに関する。
 白熱電球や蛍光灯のような従来の照明機器で、室内の照明光の色温度を調整可能にする場合には、ハロゲンランプのような色温度が高い電球光源と、白熱電球のようなハロゲンランプより色温度が低い電球光源との双方が室内に設置され、各電球光源に設けた個々のスイッチで、各電球光源の点灯/消灯が制御されることによって、室内の照明光の色温度が切り替えられていた。
 或いは、白色電球を光源とし、様々な光学フィルタを用いて色相や色温度を調整する大掛かりな照明装置が、舞台照明のような照明光の色や白色の色温度が重要な演出要素となる舞台照明のような特殊用途下で使用されていた。
 近年、従来の照明機器に代わる照明機器として、光源にLED(発光ダイオード)を用いたLED電球のようなLED照明装置が普及し始めている。LED照明装置の特徴として、白熱電球や蛍光灯と比べて消費電力が低く、且つ耐久性が高いことが挙げられる。上述のような白色光源の色相や色温度の調整を、白色LEDを用いて実現することが望まれている。
 本発明に関連する先行技術としては、一対のLED又は一対のLEDブランチ(複数のLEDが直列接続されたもの)の両端に交流電圧を印加する回路がある(例えば、特許文献1、2、3等)。
 また、ドライバ回路からの制御信号により、逆並列接続された第1及び第2LED群に対する交流電源の半波毎の導通・非導通のタイミング制御を行い、第1及び第2LED群の夫々の発光時間を別々に制御するLED駆動回路がある(例えば、特許文献4)。
米国特許公報第6412971号公報(FIG. 23, FIG. 25, FIG. 26) 特開2002-281764号公報(図1) 特表2005-513819号公報(図2,図3) 特開2008-218043号公報 実開昭61-138259号公報 特開2008-171984号公報
 例えば、白色照明の調光をLEDを用いて実現しようとする場合、色温度の異なる複数の白色LEDを用意し、これらの白色LEDに対する個別の点灯/消灯制御によって照明光の色温度が調整されるようにすることが可能である。
 しかしながら、単一のLED照明器具に供給する駆動電流の調整でLED照明の輝度(発光量)及び色度(色相、色温度)を可変とすることができれば、幅広いユーザに当該LED照明器具を訴求することが可能になる。
 本発明の一態様は、交流を直流に変換し、直流をさらに交流に変換して逆並列接続された第1LED及び第2LEDに供給する一方で、第1及び第2のLEDの輝度及び色又は色温度を調整可能とする技術を提供することを目的とする。
 また、本発明の他の態様は、交流から変換された直流から、第1LED及び第2LEDが所望の輝度及び色度で点灯するための平均電流の総量及び比を有する電流を生成し、第1LED及び第2LEDに供給可能な技術を提供することを目的とする。
 本発明の第1の態様は、極性を逆にして並列接続された、色度が相互に異なる第1LED及び第2LEDを含むLED照明装置と、調光装置とを含むLED照明システムであって、
 前記調光装置は、
 交流電源から受電される交流から直流電源を生成する直流生成部と、
 前記第1LED及び前記第2LEDの点灯による照明光の輝度を操作するための第1操作部と、
 前記第1LED及び前記第2LEDの点灯による照明光の色度を操作するための第2操作部と、
 前記第1操作部の操作量に応じて、所定の周期毎に前記第1LED及び前記第2LEDに供給すべき平均電流の総量を決定する第1制御部と、
 前記第2操作部の操作量に応じて、前記所定の周期毎に前記第1LED及び前記第2LEDの夫々に供給すべき平均電流の比を決定する第2制御部と、
 前記直流生成部によって得られた直流電源を用いて、前記所定の周期毎に、前記第1及び第2制御部によって決定された平均電流の総量及び平均電流の比を有する、前記第1LEDに供給すべき正又は負の電流の一方と前記第2LEDに供給すべき正又は負の電流の他方とを含む交流電流を生成して前記LED照明装置に供給する供給部と
を含む、LED照明システムである。
 第1及び第2LEDの夫々は、単一のLED素子が極性を逆にして並列接続(逆並列接続)されたものと、複数のLED素子が直列接続されたものが逆並列接続されたものとの双方を含む。また、複数のLED素子が極性を同一にして並列されたものが複数個直列接続されることによって、第1LED或いは第2LEDを構成しても良い。LEDの「発光波長域」は、色度を含む概念であり、色度は、色相及び色温度を含む概念である。従って、色相の異なる第1及び第2LEDを適用する場合や、色温度の異なるLEDを第1及び第2LEDとして適用する場合がある。「LED」は、発光ダイオードの他、有機EL(OLED:Organic light-emitting diode)を含む。
 本発明の第1の態様において、第1制御部は、前記交流電源の交流電圧と周期が等しい三角波電圧と、前記三角波電圧のスライスレベルを規定する、前記第2操作部の操作量に応じた参照電圧とを比較して、正負の矩形波電圧を出力する比較器を含み、
 前記第2制御部は、前記第1操作部の操作量に応じて、前記正負の矩形波電圧の1周期における、正負の期間の夫々において前記LED照明装置に供給すべき電流のデューティ比を決定するパルス幅調整回路を含み、
 前記供給部は、前記正負の矩形波電圧の正の期間において、前記第1及び第2LEDの一方に対し、前記パルス幅調整回路で決定されたデューティ比で正の電流を供給し、前記正負の矩形波電圧の負の期間において、前記第1及び第2LEDの他方に対し、前記パルス幅調整回路で決定されたデューティ比で負の電流を供給するように構成されていても良い。
 また、本発明の第1の態様において、前記供給部は、前記所定の周期毎に、正のパルス及び負のパルスが入力され、正のパルスがオンの時間、正の電流を前記LED照明装置に供給する一方で、負のパルスがオンの時間、負の電流を前記LED照明装置に供給する駆動回路を含み、
 前記第1制御部は、前記第1操作部の操作量に応じて、前記所定の周期における正のパルスのオン時間及び負のパルスのオン時間を決定し、
 前記第2制御部は、前記第2操作部の操作量に応じて、前記所定の周期における正のパルスのオン時間と負のパルスのオン時間との比を決定する、ように構成されていても良い。
 また、本発明の第1の態様において、第1制御部は、前記第1操作部の操作量に応じて、前記所定の周期における、所定のパルス幅を夫々有する正負のパルスの数を決定し、
 前記第2制御部は、前記正負のパルスのパルス幅を決定する、ように構成されていても良い。
 また、本発明の第1の態様において、前記調光装置が二本一対の配線のみを介して前記LED照明装置と接続されているように構成することができる。
 また、本発明の第2の態様は、極性を逆にして並列接続された、発光波長域が相互に異なる第1LED及び第2LEDを含むLED照明装置と接続される調光装置であって、
 交流電源から受電される交流から直流電源を生成する直流生成部と、
 前記第1LED及び前記第2LEDの点灯による照明光の輝度を操作するための第1操作部と、
 前記第1LED及び前記第2LEDの点灯による照明光の色又は色温度を操作するための第2操作部と、
 前記第1操作部の操作量に応じて、所定の周期毎に前記第1LED及び前記第2LEDに供給すべき平均電流の総量を決定する第1制御部と、
 前記第2操作部の操作量に応じて、前記所定の周期毎に前記第1LED及び前記第2LEDの夫々に供給すべき平均電流の比を決定する第2制御部と、
 前記直流生成部によって得られた直流電源を用いて、前記所定の周期毎に、前記第1及び第2制御部によって決定された平均電流の総量及び平均電流の比を有する、前記第1LEDに供給すべき正又は負の電流の一方と前記第2LEDに供給すべき正又は負の電流の他方とを含む交流電流を生成して前記LED照明装置に供給する供給部とを含む、調光装置である。
 本発明の第3の態様は、色度が相互に異なる第1LED及び第2LEDを含むLED照明器具と、調光装置とを含むLED照明システムであって、
 前記調光装置は、
 交流電源から受電される交流から直流電源を生成する直流生成部と、
 前記第1LED及び前記第2LEDの点灯による照明光の輝度を操作するための第1操作部と、
 前記第1LED及び前記第2LEDの点灯による照明光の色度を操作するための第2操作部と、
 前記第1操作部の操作量に応じて、所定の周期毎に前記第1LED及び前記第2LEDに供給すべき平均電流の総量を決定する第1制御部と、
 前記第2操作部の操作量に応じて、前記所定の周期毎に前記第1LED及び前記第2LEDの夫々に供給すべき平均電流の比を決定する第2制御部と、
 前記直流生成部によって得られた直流電源を用いて、前記所定の周期毎に、前記第1及び第2制御部によって決定された平均電流の総量及び平均電流の比を有する、前記第1LEDに供給すべき電流と前記第2LEDに供給すべき電流とを生成して前記LED照明器具に供給する供給部と
を含む、LED照明システムである。
 本発明の第4の態様は、色度が相互に異なる第1LED及び第2LEDと、
 交流から直流を生成する直流生成部と、
 前記第1LED及び前記第2LEDに供給すべき平均電流の総量情報と、前記第1LED及び前記第2LEDの夫々に供給すべき平均電流の比情報を、調光装置から受信する受信手段と、
 前記平均電流の総量情報と前記平均電流の比情報から平均電流の総量及び比を求める受信手段からの情報を用いて、前記平均電流の総量及び前記平均電流の比を算出する算出手段と、
 前記直流生成部で生成された電流から、前記平均電流の総量及び前記平均電流の比に応じた電流を生成して前記第1LED及び前記第2LEDに供給する供給手段と
を含むLED照明器具である。
 本発明の一態様によれば、交流を直流に変換し、直流をさらに交流に変換して逆並列接続された第1LED及び第2LEDに供給する一方で、第1及び第2のLEDの輝度(発光量)及び色度(色相、色温度)を調整可能とする技術を提供することができる。
 また、本発明の他の態様によれば、交流から変換された直流から、第1LED及び第2LEDが所望の輝度及び色度で点灯するための平均電流の総量及び比を有する電流を生成して第1LED及び第2LEDに供給可能な技術を提供することができる。
第1実施形態における照明システム(LED発光デバイス及び調光装置)の回路構成例を示す図である。 第1実施形態における調光装置内の波形説明図である。 第1実施形態における調光装置内の波形説明図である。 第2実施形態における照明システム(LED発光デバイス及び調光装置)の回路構成例を示す図である。 第2実施形態における調光装置内の波形説明図である。 第2実施形態におけるマイクロプロセッサのプログラム処理を示すフローチャートである。 第2実施形態における調光装置内の波形説明図である。 第2実施形態におけるマイクロプロセッサのプログラム処理(輝度上昇処理)を示すフローチャートである。 第2実施形態におけるマイクロプロセッサのプログラム処理(輝度低下処理)を示すフローチャートである。 第2実施形態における調光装置内の波形説明図である。 第2実施形態におけるマイクロプロセッサのプログラム処理(色温度低下処理)を示すフローチャートである。 第2実施形態におけるマイクロプロセッサのプログラム処理(色温度上昇処理)を示すフローチャートである。 第3実施形態におけるマイクロプロセッサのプログラム処理(極性変換処理)を示すフローチャートである。 第4実施形態におけるLED発光デバイスの調光装置の一部の回路構成例を示す図である。 第4実施形態におけるマイクロプロセッサのプログラム処理(フィードバック制御)を示すフローチャートである。 第4実施形態におけるマイクロプロセッサのプログラム処理(フィードバック制御)を示すフローチャートである。 第5実施形態における照明システム(LED発光デバイス及び調光装置)の構成例を示す図である。 第5実施形態における調光装置の構成例を示す図である。 第5実施形態における、輝度調整時にLED発光デバイスに供給される電流波形の例を示す図である。 第5実施形態における、色温度調整時にLED発光デバイスに供給される電流波形の例を示す図である。 第5実施形態の変形例における、輝度調整時にLED発光デバイスに供給される電流波形の例を示す図である。 第5実施形態の変形例における、色温度調整時にLED発光デバイスに供給される電流波形の例を示す図である。 発光モジュール(LEDモジュール)を構成する半導体発光装置(以下、「白色LED」という)内の、パッケージの概略構成の斜視図である。 パッケージに設けられた半導体発光素子(以下、「LEDチップ」という)に電力を供給する配線の実装状態を示す図である。 図17A及び図17Bに示すパッケージ(白色LED)を電気的記号を用いて模式化した図である。 図18に示した白色LEDを直列接続した状態を模式的に示す図である。 図17Aに示す白色LEDにおいて、配線を含む面で切断した場合の断面図である。 LEDチップの基板への実装を説明する図である。 図22は、第6実施形態に係るLEDシステムの構成例を示す図である。 図23は、調光器に印加される商用電源の交流波形と、トライアックの点弧によってLED照明器に供給される交流電圧との関係を示す図である。 図24は、調光時における交流電圧、駆動電流等の波形説明図である。 図25は、調色時における交流電圧、駆動電流等の波形説明図である。 図26は、バランス調整による駆動電流比の変更を示す波形図である。 図27は、第7実施形態に係る照明システムの回路構成例を示す図である。 図28は、操作部の操作量と、交流波形との関係を示す図である。 図29は、操作部の操作量と、交流波形との関係を示す図である。 図30は、本願の第8実施形態に係るLED照明システムの構成例を示す。 図31は、図30に示した制御信号生成回路の第1の形態を示す。 図32は、図30に示した制御信号生成回路の第2の形態を示す。 図33は、図30に示したLED照明器具中の制御回路の第1の形態を示す。 図34は、図30に示したLED照明器具中の制御回路の第2の形態を示す。
 以下、図面を参照して本発明の実施形態について説明する。実施形態の構成は例示であり、本発明は実施形態の構成に限定されない。
 〔第1実施形態〕
 図1は、本発明の第1実施形態におけるLED照明システムの回路構成例を示す図である。LEDシステムは、LEDの調光装置Aと、調光装置Aに接続されたLED照明装置20(「LED発光デバイス20」又は「発光デバイス20」とも表記)とを含む。調光装置Aは、LED照明装置20に含まれるLEDの発光により得られる照明光の輝度(発光量)及び色度(色相、色温度)を調整する。
 ここに、LED照明装置20(発光デバイス20)は、互いに逆方向(逆極性)で並列接続されたLED群22A(第1LED群)とLED群22B(第2LED群)とを含む一組のLED群22A,22Bを含んでいる。LED群22A,22Bの夫々は、直列接続された所定数(例えば20個)のLED素子からなる。LED群22A,22Bを夫々構成するLED素子の数は、1以上の数で適宜設定可能である。LED群22A,22Bは、例えば、サファイヤ基板上に製作される。
 LED照明装置20は、LED群22AとLED群22Bとを並列接続する配線の夫々から引き出された二つの端子23A,23Bをさらに含む。二つの端子23A,23B間には、正負の駆動電流が通電される。正の電流の通電時には、LED群22AとLED群22Bとの一方が点灯し、他方は消灯する。これに対し、負の電流の通電時には、一方が消灯し、他方が点灯する。
 図1に示す例では、端子23Aから見て正の駆動電流が供給される場合には、LED群22Aが点灯し、端子23Aから見て負の駆動電流が供給される場合にはLED群22Bが点灯するように、調光装置AとLED照明装置20とが回路接続されている。
 本実施形態において、LED群22A,22Bの夫々に含まれるLED素子の夫々は、発光波長が410nmで、順方向電流のときの端子電圧は3.5Vである。LED素子が20個直列に接続された場合には、70Vの直流で最大光量を発生する。
 発光デバイス20を構成するLED群22Aを構成する各LED素子には、発光波長410nmの光で刺激(励起)すると約3000°Kの白色を発光する蛍光体が埋め込まれており、端子23A,23B間に供給される交流の正負の一方(本実施形態では正)の供給により点灯する。
 これに対し、LED群22Bを構成する各LED素子には、発光波長410nmの光で刺激(励起)すると約5000°Kの白色を発光する蛍光体が埋め込まれており、端子23A,23B間に供給される交流の正負の他方(本実施形態では負)の供給により点灯する。
 但し、LED群22A,22Bを構成する複数のLED素子の数は適宜変更可能であり、一つのLED素子であっても良い。本実施形態では、LED群22A,22Bが異なる色温度の白色光を発する構成としている。もっとも、本明細書において、「発光波長領域」の語は、色度(色相及び色温度)を含む概念であり、LED群22A,22Bが相互に異なる色度を有する構成となっていても良い。LED群22A,22Bの色度が相互に異なる限り、LED群22A,22Bがそれぞれ有する色度は、適宜設定可能である。
 また、図1に示す調光装置Aは、入力端子10Aと、直流生成部としての半波倍電圧整流回路90(以下、整流回路90と表記)と、クロック生成回路100と、デューティ比調整回路110と、相補トランジスタ31,32を有するプッシュプル形駆動回路120(以下、駆動回路120と表記)と、自励発振周波数を発生する駆動パルス発生・可変回路130(以下、パルス幅調整回路130と表記)とを備える。LED照明装置(発光デバイス)20は、駆動回路120によって駆動される。すなわち、調光装置Aは、商用交流周波数から独立な自励発振周波数を用いて、発光デバイス20に駆動電流を供給する。
 図1に示す調光装置Aは、入力端子10Aから入力される商用電源(例えば、100V,50Hz)からの入力交流電圧が整流回路90で整流される。すなわち、正の電圧はダイオード11で整流され、配線201には約120Vの正の直流電圧が供給され、負の電圧はダイオード12で整流され、配線301には約120Vの負の直流電圧が供給される。配線200は、配線201及び配線301に対する共通アース電位となっている。
 また、クロック生成回路100及びデューティ比調整回路110が夫々有するコンパレータ(オペアンプ)101,102、及びパルス幅調整回路130には、回路動作用の図示しない電源回路から、配線200を共通アース電位とする±15Vが供給されている。
 以下に調光装置A(調光回路)の各部の動作を説明する。図2、図3は、調光回路内の波形説明図である。図2(a)は、入力端子10Aに入力される交流電圧を示す。図2(b)は、コンパレータ101からの出力波形を示す。図2(c)は、デューティ比調整回路110に含まれる積分器(抵抗器R0及びキャパシタC0)によって形成される三角波を示す。図2(d)は、コンパレータ102からの出力波形を示す。図3(a)は、コンパレータ102からの出力波形を示し、図3(b)は、LED群22A及び22Bに供給される電流波形を模式的に示し、図3(c)はLED群22A及び22Bに供給される電流波形を模式的に示す。
 クロック生成回路100では、入力端子10Aの入力交流電圧(50Hz、100V)が配線210から供給され、抵抗器R1及びR2の比(R1/R2)で定まる分圧がコンパレータ101に入力される。コンパレータ101の駆動により、コンパレータ101の出力側の配線203に、図2(b)で示すような矩形波電圧が出力される。矩形波電圧は、入力交流電圧(図2(a))の半サイクル期間t0毎にオン/オフするクロックとして利用される。
 デューティ比調整回路110では、抵抗器R0とキャパシタC0とで構成される積分回路により、三角波が生成されて、コンパレータ102の非反転入力端子(+V)に入力される。一方、コンパレータ102の反転入力端子(-V)は、一端が抵抗R3を介して配線201に接続され、他端が配線200に接続された可変抵抗器61Aの可動点に接続されている。これにより、コンパレータ102の反転入力端子には、可変抵抗器61Aの可動点の位置に応じた電圧が参照電圧として入力される。可変抵抗器61Aの抵抗値は、調色(色度調整)用の操作部56(第2の操作部)によって操作可能である。
 コンパレータ102において、参照電圧は、非反転入力端子から入力される三角波のスライスレベルとして作用する。すなわち、コンパレータ102は、三角波がスライスレベルより高いときには正の出力を行い、三角波がスライスレベルより低い場合には、負の出力を行う。よって、コンパレータ102からは、電圧が参照電圧より高い正の期間t1と、参照電圧より低い負の期間t2とが交互に繰り返される矩形波が出力される(図2(d)参照)。期間t1は、非反転入力端子から入力される三角波が一定であるときに、スライスレベル(参照電圧)が高くなる程、短くなる。このように、コンパレータ102は、1周期における正負の平均電流の比を決定する第2制御部として機能する。
 駆動回路120は、トランジスタ31,32,33,34を有しており、トランジスタ33及び31は、コンパレータ102の出力が正の期間である期間t1において、発光デバイス20のLED群22Aに配線220を介して正の駆動電流を供給するスイッチとして機能し、トランジスタ34及び32は、コンパレータ102の出力が負の期間である期間t2において、LED群22Bに配線220を通じて負の駆動電流を供給するスイッチとして機能する。
 自励発振周波数形のパルス幅調整回路130は、LED群22A,22Bに供給される、期間t1,t2における駆動電流量の調整回路であり、パルス幅変調(PWM)回路で構成される。すなわち、パルス幅変調回路130は、主たる構成として、自励発信回路95と、パルス・デューティ比調整回路96と、可変抵抗器51Bを備えている。
 パルス幅調整回路130は、自励発振回路95で生成される500Hzの基本パルスのデューティ比を、パルス・デューティ比調整回路96でのパルス幅変調(PWM)制御により可変抵抗器51Bの抵抗値に応じたデューティ比に調整して出力する。ここに、可変抵抗器51Bの抵抗値が高くなるほど、デューティ比が大きくなるように構成されている。可変抵抗器51Bの抵抗値は、輝度調整用の操作部55(第1操作部)によって操作される。パルス幅調整回路130は、1周期に発光デバイス20に供給される正負の電流の総量を決定する第2制御部として機能する。
 パルス幅調整回路130の出力(パルス)は、コンパレータ102の出力が入力されるAND(論理積)回路35及びOR(論理和)回路36に入力される。AND回路35の出力端子はトランジスタ33のベースに入力されており、トランジスタ31のベースは、トランジスタ31のコレクタに接続されている。よって、コンパレータ102の出力が正であり、且つパルス幅調整回路130からの出力がオンである場合にAND回路35がオンとなって、トランジスタ33がオンになり、続いてトランジスタ31がオンになって、LED群22Aに対して正の電圧による駆動電流が供給され、LED群22Aが点灯する。
 一方、コンパレータ102の出力が負である期間t2においては、パルス幅調整回路130の出力がオフである区間において、OR回路36がオンとなり、トランジスタ34及びトランジスタ32がオンとなって、LED群22Bに対して負の電圧による駆動電流が供給され、LED群22Bが点灯する。
 よって、図3(b)に示すように、期間t1及び期間t2(図3(a))において、パルス幅調整回路130から出力されるパルス数及びパルス幅に応じたパルス状の駆動電流がLED群22A、LED群22Bに供給される。このようにして、第3実施形態においても、1サイクルにおける各LED群22A,22Bにおける駆動電流の供給期間(デューティ比)を可変抵抗器61Aの操作部56(つまみなど)で変更することで、LED群22AとLED群22Bに対する電力供給量(駆動電流量:平均電流)を異ならせることができる。すなわち、発光デバイス20の色温度を可変にすることができる。
 そして、可変抵抗器51Bの抵抗値を図示しない操作部55(つまみなど)によって調整し、パルス幅調整回路130から出力されるパルスのデューティ比を上げれば、図3(c)に示すように、LED群22A,22Bに供給されるパルス幅が広くなる。すなわち、各LED群22A,22Bに対する駆動電流の平均電流量を上げることができる。逆の操作を行えば、各LED群22A,22Bに対する駆動電流の平均電流量を下げることができる。このようにして、発光デバイス20の総発光量(輝度)を可変にすることができる。
 図2、図3に示したような期間t1が期間t2より長い動作状態では、入力交流電圧の正の半サイクルでLED群22Aが点滅する時間は、入力交流電圧の負の半サイクルでLED群22Bが点滅する時間よりも長い。このようなLED群22A,22Bの点滅は人間の目には感じられず、LED群22Aの色温度(3000°K)より高い色温度(5000°K)を有するLED群22Bの点灯時間が支配的であるので、人間の目には青っぽい白色として感知される。
 これに対し、可変抵抗器61Aの操作により、可変抵抗器61Aの可動点を中点よりも正の電位(配線201側)に近づけると、正の半サイクルにおけるLED群22Aの点滅時間が短くなる一方で、負の半サイクルにおけるLED群22Bの点滅時間が長くなるので、色温度の低いLED群22Aの点灯時間が支配的となり、人間の目には赤っぽい白色として感知される。可変抵抗器61Aは、上記のような色調の調整機能を提供するから、発光デバイス20により照射される白色の色温度を3000°Kから5000°Kの間で連続的に可変とすることができる。
 また、上述したように、第1実施形態では、可変抵抗器51Bの抵抗値の調整で、発光デバイス20の総発光量、すなわち輝度を調整することができる。可変抵抗器51Bの操作によって、回路130から出力されるパルス幅を大きくする(デューティ比を大きくする)と、トランジスタ31,32間と発光デバイス20の一方の端子間を結ぶ配線220(発光デバイス20の他方の端子は配線200に接続(接地)されている)に流れるパルス状の電流のパルス幅が、図3(c)に示したように、正負の双方において増大するので、正負の両極性における平均電流値が増大し、発光デバイス20の総発光量が増大する。よって、発光デバイス20による輝度(発光量)を調整できる。
 第1実施形態の構成によれば、自励発振周波数で交流の駆動電流をLED発光デバイス20に供給できるので、LEDの点滅を人が認識できない程度に周波数を設定することでフリッカー(LEDの発光のちらつき)の発生を抑えることができる利点がある。なお、LED発光デバイス20の駆動回路(第1実施形態では駆動回路120)は、少なくとも1つのプッシュプル駆動回路で構成可能である。例えば、図1に示した第3実施形態の構成において、駆動回路120及びパルス幅調整回路130に代えて、H型フルブリッジと呼ばれる4つの半導体スイッチ(トランジスタ)及び制御回路を有する公知の回路チップ(H型フルブリッジ駆動回路:例えば、東芝社製のTA8428K(S))を用いて、コンパレータ102からの出力に基づく発光デバイス20の駆動制御が行われるようにすることができる。
 なお、第1実施形態の入力端子10Aは、図示しないプラグによって商用電源から電力を受電しても良く、入力端子10Aが屋内の商用電源の固定配線と結線されて受電されるようにしても良い。
 〔第2実施形態〕
 次に、第2実施形態について説明する。第2実施形態では、発光デバイス20の駆動制御をマイクロコンピュータ(マイコン)を用いて実施する例について説明する。図4は、第2実施形態のLED照明システムの構成例を示す図である。図4において、LED照明システムは、調光装置Bと、第1実施形態で説明したLED照明装置(発光デバイス)20とを備える。調光装置Bは、商用交流電源(例えば、50Hz、100V)と接続される交流電源の入力端子10Aと、直流生成部としての、2電圧直流電源回路140(以下、電源回路140と表記)と、主電源スイッチ141と、H型フルブリッジ駆動回路150(以下、駆動回路150と表記)と、第1及び第2制御部としてのメモリ内蔵形マイクロプロセッサ180(以下、マイコン180と表記)と、第1及び第2操作部としてのX-Yマトリクス形押しボタンスイッチ185(以下、XYスイッチ185と表記)とを備える。駆動回路150は、4つのスイッチング素子(半導体スイッチ)と制御回路151を含む。駆動回路150としては、例えば、東芝社製のTA8428K(S)を適用することができる。本実施形態では、スイッチング素子として、トランジスタTR1~TR4が適用されているが、トランジスタの代わりにFETが用いられていても良い。
 上記した調光回路Bの構成要素は、図示していない縦横10cm程度の絶縁型ケースに収められ、発光デバイス20の調光装置B(点灯制御装置)を構成する。絶縁型ケースの一面には、XYスイッチ185が外部から操作可能に設けられる。絶縁型ケースは、例えば、上記一面の裏面を建築物の壁面に設置、或いは、上記一面が外部に露出する状態で一部が建築物の壁中に埋め込まれる状態で設置される。入力端子10Aは、絶縁型ケースに設けられた雌形コネクタであっても良く、入力端子10Aとして、電源ケーブル及びプラグを含むものであっても良い。また、設置場所は建築物の壁面に限られない。
 発光デバイス20は、第1実施形態で説明したものと同じものである。発光デバイス20は、多くの場合室内の天井に固定される。発光デバイス20が有する二つの端子23A及び23Bは、配線221及び222を介して調光装置Bに接続されるが、この限りではない。
 電源回路140と制御回路151の電源端子とを結ぶ配線201Aには、約24Vの正の直流電圧が供給され、電源回路140とマイコン180の電源端子とを結ぶ配線202Aには、3.3Vの正の直流電圧が供給される。そして、電源回路140,マイコン180,制御回路151は、配線200Aを共通アース電位として接続されている。配線201Aは、発光デバイス20を点灯するための電力を供給し、配線202Aはマイコン180の駆動電力を供給する。
 XYスイッチ185は、複数のX線及びY線の交差点9箇所のうちどれか一箇所が押し下げられると、X線及びY線の双方が接地端子Gに短絡する回路構造を有しており、いずれの交差点も押し下げられて無いときには、マイコン180の入力端子と結ばれる配線b0~b5が約3.3Vに保たれる回路構造を有する。
 マイコン180は、マスター・クロックが発振子181からの4MHzで動作する程度のメモリ内蔵型の廉価なマイクロプロセッサ(MP)を適用することができる。入力端子として、電源リセット端子resのほかに6本の入力端子b0~b5を有している。また、マイコン180は、各々4ビット幅の「setN+レジスタ」と、「setN-レジスタ」とを備えており、出力端子からsetN+レジスタの値とsetN-レジスタの値を次段のタイマ186にセット可能となっている。
 タイマ186は、タイマ及びカウンタであって、所定の自励発振周波数(本実施形態では、1MHz)のセラミック発振子187で駆動され、出力端子と制御回路151の入力端子とを結ぶ配線241及び242からは、図5A(b)及び(c)に図示した相補的バースト・パルスを、予め設定されたタイミングで、自励出力する。この相補的バースト・パルスはパルス周波数が10kHz、バースト繰り返し周波数(図5A(a))が約500Hzとなるように、予め周波数設定がタイマ186に対して行われている。但し、パルス周波数及びバースト繰り返し周波数は例示であり、適宜の値を設定可能である。
 タイマ186にセットされるsetN+レジスタのレジスタ値は、正の半サイクルで供給されるバースト・パルスの数を制御するために使用される。すなわち、setN+レジスタのレジスタ値が大きい程、正の半サイクルで供給されるバースト・パルスの数は増加する。一方、タイマ186にセットされるsetN-レジスタのレジスタ値は、負の半サイクルで供給されるバースト・パルスの数を制御するために使用される。すなわち、setN-レジスタのレジスタ値が大きい程、負の半サイクルで供給されるバースト・パルスの数は増加する。なお、タイマ186にセットされたカウンタを調整することで、正負の各半サイクルにおけるバースト・パルスの発生期間(T1,T2)を変更することができる。
 また、図4において、制御回路150と発光デバイス20とを結ぶ配線221と配線222との間には、極性変換スイッチ290が設けられている。第2実施形態の構成では、配線222と端子23Aを接続し、配線221と端子23Bとを接続するのが好ましい接続である。極性変換スイッチ290は、配線222及び221と、発光デバイス20の端子23A,23Bとが逆に接続された場合に、手動で切替操作を行うことにより、実質的に配線222と端子23Aが接続され、且つ配線221と端子23Bとが接続された状態とするものである。極性交換スイッチ290の操作によって極性が交換されると、発光デバイス20に対して配線222から駆動電流が供給される状態から配線221から駆動電流が供給される状態に切り替わる。
 以下、調光装置Bの各部の動作を説明する。最初に、入力端子10Aが商用電源100Vに接続された後、主電源スイッチ141が閉じられる。主電源スイッチ141が閉じられると、電源回路140による整流及び電圧変換動作が行われ、マイコン180に駆動電力(DC3.3V)が供給される。さらに、リセット端子resが抵抗器R及びキャパシタCの時定数により約50msec遅れて高電位(以下「H」と表記)になり、マイコン180としての動作を開始する。
 なお、図4に示すように、主電源スイッチ141はXYスイッチ185の中央部に設置することができる。但し、主電源スイッチ141は、XYスイッチ185のボタン操作には応答しない通常の主電源スイッチである。
 マイコン180は、公知の方法で初期化動作を開始し、図示しない内蔵ROM(Read Only Memory)に記録された動作プログラムを図示しないRAM(Random Access Memory)にロードし、プログラムに従った動作をプログラムの先頭から順次開始する。
 図5Bのフローチャートに示すように、初期化動作後のマイコン180のプログラム動作においては、最初に、発光デバイス20を予め定めた標準点灯状態にするための点灯初期化動作を行う(ステップS01)。この結果、配線242及び241から、図5Aの(b),(c)に示す波形の電圧(パルス)が駆動回路150に夫々供給される。
 すなわち、バースト繰り返し周波数T0(500Hz)における前半の半サイクル中の期間T1において、配線242からバースト・パルスが制御回路151に供給されるとともに、後半の半サイクル中の期間T2において、配線241からバースト・パルスが制御回路151に供給される。
 制御回路151は、配線242,241からのバースト・パルス供給を受けて、当該バースト・パルスに応じたトランジスタTR1~TR4のオン/オフ動作(スイッチング動作)を制御する。すなわち、制御回路151は、配線241及び242からのパルス入力がない場合には、トランジスタTR1~TR4をオフにする。一方、制御回路151は、配線242からのパルスの入力時には、トランジスタTR1及びTR4をオンにする一方で、トランジスタTR2及びTR3をオフにする。これによって、電源回路140からの直流電流がトランジスタTR1を通って配線222に流れ、LED群22Aの点灯に消費される。その後、電流は配線221、トランジスタTR4を通って接地される。
 これに対し、制御回路151は、配線241からの負のパルスの入力時には、トランジスタT3及びT2をオンにする一方で、トランジスタTR1及びTR4をオフにする。これによって、電源回路140からの直流電流がトランジスタTR3を通って配線221に流れ、LED群22Bの点灯に消費される。その後、電流は配線222,トランジスタTR2を通って接地される。
 従って、配線222(端子23A)から見て、正のパルス群(正の駆動電流)と負のパルス群(負の駆動電流)とが交互に供給される。言い換えれば、LED群22A,22Bに対し、極性の異なる交流電流が駆動電流として供給される。具体的には、期間T1(図5A(a))において、配線242から制御回路151へバースト・パルス群(図5A(b))が供給されることによって、配線222に対し、正のバースト・パルス状の電流が供給される。一方、期間T2(図5A(a))に配線241から制御回路151へバースト・パルス群(図5A(c))が供給されることによって、配線222に対し、負のバースト・パルス状の電流が供給される(図5A(d)参照)。したがって、配線222に供給される正負のバースト・パルス状の電流(すなわち、発光デバイス20に対する駆動電流)の波形は、配線242,241を介して供給される正負のバースト・パルス(すなわち、駆動回路150の制御信号)の波形と同形となる。「同形の波形」は、パルスの相対的なオン及びオフのタイミングがほぼ同一である波形を意味し、パルスの高さが同一である場合と異なる場合との双方を含む。
 この結果、LED群22Aは、配線222からの正の駆動電流で点灯する一方で、LED群22Bは、配線222からの負の駆動電流で点灯する。この時点で、配線222及び配線221に供給されるバースト・パルスの数(平均電流)は等しいため、LED群22A及びLED群22Bは、同程度(略均等)に夫々点灯して、中庸の色温度の白色状態を維持する。
 上述したように、タイマ186に対する事前の周波数設定により、1サイクルT0は、2msec(500Hz)で、1サイクルの前半及び後半におけるバースト・パルスの出力期間T1及びT2の夫々は500μsecに設定されている。従って、図5A(a)に示す1サイクルの包絡波形は500Hzの矩形交流である。したがって、配線222を介して発光デバイス20に流れる実電流波形は、パルス幅50μsec(t1)の正バーストと同幅の負バーストの交互の繰り返しとなる(図5A(d)参照)。この時点までの動作は、主電源スイッチ141を閉じるだけで進行する。
 なお、図5A(d)においてはパルス幅50μsecのパルスの表現が困難なため、実際より太いパルス幅で模式的に図示してある。以上で、図5BのステップS01の動作が終了する。
 この後、マイコン180は、XYスイッチ185の接点スキャン動作を開始し、押下が検知されるまで待機状態を継続する(図5B,ステップS02、S03のループ)。
 なお、図5Bには示していないが、待機状態において、図示しない待ちタイマのカウントを開始し、待ちタイマがタイムアウトになるまでの間、押し下げが検知されない場合(ユーザによる調光操作が無い場合)には、主電源スイッチ141が切断(開放)される。これによって、発光デバイス20が消灯状態にもどる。
 ユーザによる調光操作、すなわちXYスイッチ185に対する押しボタン操作が行われると、マイコン180は、XYスイッチ185が備える“U(UP)”ボタン,“D(DOWN)”ボタン、“L(LOW)ボタン,“H(HIGH)”ボタンのいずれが押されたかを、配線b0~b5のオン/オフ(1/0)パターンに基づき判定し(ステップS04)、各ボタンが押された場合の動作に移行する。
 すなわち、Uボタンが押された場合には、輝度(発光量)上昇処理(ステップS05)が実行され、Dボタンが押された場合には、輝度(発光量)低下処理(ステップS06)が実行される。Lボタンが押された場合には、色度(本実施形態では色温度)上昇処理(ステップS07)が実行され、Hボタンが押された場合には、色度(本実施形態では色温度)低下処理(ステップS08)が実行される。ステップS05~S08の処理の詳細は後述する。ステップS05~S08のいずれかの処理が実行されると、マイコン180が有する「setN+レジスタ」及び「setN-レジスタ」の値が変化する。マイコン180は、ステップS05~S08のいずれかが終了すると、「setN+レジスタ」及び「setN-レジスタ」の値をタイマ186にセットし(ステップS09)、処理をステップS02へ戻して、接点スキャン処理を再開する。
 以下、ステップS05~S08の処理の詳細を個別に説明する。最初に、発光デバイス20の輝度(発光量)の増減を意図したユーザ(操作者)の操作に対する動作を説明する。例えば、操作者がUボタンを押下すると、マイコン180は、Uボタンの押し下げを検知し、ステップS05の処理、すなわち、図6Bに示す輝度上昇処理のフローに従った処理を行う。
 図6Bにおいて、最初に、マイコン180は、操作者にボタン押下の検知を報知するため、図示しない電子音発生器を駆動して、検知音(例えば「ピッ」音)を発生させる(ステップS051)。また、調光装置Bが押し下げ検知報知用のLED灯を備え、検知音の出力とともに、又は検知音に代えて、LED灯が所定時間点灯するようにしても良い。
 次に、マイコン180は、自身に内蔵されているsetN+レジスタ(図示せず)及びsetN-レジスタ(図示せず)の値Nを参照し、値Nが所定の上限値以上か否かを判定する(ステップS052)。このとき、値Nが上限値以上である場合(S052,NO)には、ユーザが繰り返し輝度を上昇させてLED素子の性能で定まる最高輝度を超えてボタンを押し続けたものとして、エラー処理ルーチン(ステップS055)に飛び、操作エラーであることが報知される。
 これに対し、値Nが上限値より小さい(S052,YES)場合には、マイコン180は、配線183に対する出力ポートを駆動し、タイマ186に内蔵されているsetN+レジスタに対し、例えば、値“100(10進数の4)”を書き込む(ステップS053)。この書込前に、setN+レジスタは、初期化動作(ステップS01)で当該レジスタに書き込まれた初期値“011(10進数の3)”を保持しており、ステップS053の処理によってsetN+レジスタの値が増加する。
 次に、マイコン180は、配線184に対する出力ポートを駆動し、タイマ186に内蔵されているsetN-レジスタにも、setN+レジスタの増加値と同一の値“100”を書き込む(ステップS054)。この書込前に、setN-レジスタは、初期化動作で初期値“011”を保持しており、当該ステップS054の書込によって、setN-レジスタの値が増加する。その後、処理がステップS09に戻る。
 ステップS053,S054の処理により、タイマ(カウンタ)186のout+線(配線242)には、図6A(d)に示すように、例えば、1サイクルの前半の所定期間T1に4個のパルスが出力され、タイマ(カウンタ)186のout-線(配線241)には、図6A(e)に示すように、例えば1サイクルの後半の所定期間T2に4個のパルスが出力される。この結果、制御回路150で駆動される発光デバイス20には、配線222を介して図6A(f)に示すような、初期値に比べて3分の4倍、すなわち33%多いパルス電流が供給され、発光デバイス20からの輝度(発光量)が略33%増加する。
 このあと、もう一度輝度の上昇をユーザが意図してUボタンを押下すると、上述した処理及び動作が繰り返し行われ、発光デバイス20の輝度(発光量)は初期値に比べて3分の5倍、すなわち66%の輝度向上を得る。このようにして、輝度を増加させる処理が行われる。
 輝度(発光量)の低減も、輝度増加とほぼ同様の手順で行われる。すなわち、輝度低減ボタンであるDボタンが押されると、ステップS04(図5B)からステップS06の処理として、図6Cに示されるS061~S064の輝度低下処理が行われる。ステップS061~S064の処理は、ステップS062で、レジスタの値Nが所定の下限値以下である場合に、エラー処理(ステップS065)が行われること、ステップS063,S064でレジスタ値の低減が行われることを除き、図6Bに示した処理と同様である。レジスタ値は、Dボタンが1回押されるごとに、二進数で“001”だけ低減される。
 従って、初期化動作(ステップS01)の直後にDボタンが1回押し下げられた場合には初期値の3分の2、すなわち33%の総光量(輝度)低下がなされ、2回押し下げられた場合には、初期値の3分の1、すなわち66%の総光量低減を得る。但し、一回のUボタン又はDボタンの押し下げによって輝度(発光量)が増減する割合は適宜設定可能である。
 以上は輝度(発光量)増減の説明であった。次に色度変更の手順を説明する。第2実施形態では、発光デバイス20は、色温度が2500°K(Kはケルビン温度)の低いLED群22Aと色温度が6000°Kの高いLED群22Bとからなる。従って、LED22Aに流れる駆動電流を増加し、LED22Bに流れる駆動電流を減少すれば、発光デバイス20全体の色温度を低下させることができる。
 色温度を下げる場合には、ユーザ(操作者)は、XYスイッチ185のLボタンを押す。すると、マイコン180によるステップS04の判定処理を経て、ステップS07の色温度低下処理(図7B)が実行される。
 図7Bに示すように、処理が開始されると、操作音発生処理が行われ(ステップS071)、次に、マイコン180は、setN+レジスタの値が上限値未満か否かを判定する(ステップS072)。setN+レジスタのレジスタ値が上限値以上であれば(S072,NO)、エラー処理が行われる(ステップS075)。
 これに対し、レジスタ値が上限値未満であれば(S072,YES)、マイコン180は、setN+レジスタに所定値(例えば、2進数“001”)を加算する(ステップS073)。一方、マイコン180は、setN-レジスタから所定値(例えば、2進数“001”)を減算する(ステップS074)。その後、処理がステップS09へ戻る。
 ステップS073及びステップS074によって、図7A(d)に示すように、配線242へ出力されるパルス数が増加する一方で、図7A(e)に示すように、配線241へ出力されるパルス数が減少する。
 そして、図7A(f)に示すように、配線222を介して発光デバイス20のLED群22Aへ供給される正電流の平均値が増加する一方で、LED群22Bへ供給される負電流の平均値が減少する。この結果、色温度の低いLED群22Aからの輝度(発光量)が増加し、色温度の高いLED群22Bからの輝度(発光量)が減少するので、全体としては色温度が低下して赤みがかった白色となる。
 これに対し、色温度を上げる場合には、ユーザ(操作者)は、XYスイッチ185のHボタンを押す。すると、マイコン180によるステップS04の判定処理を経て、ステップS08の色温度上昇処理(図7C)が実行される。
 図7Cに示すように、処理が開始されると、操作音発生処理が行われる(ステップS081)。次に、マイコン180は、setN-レジスタの値が上限値未満か否かを判定する(ステップS082)。setN-レジスタのレジスタ値が上限値以上であれば(S082,NO)、エラー処理が行われる(ステップS085)。
 これに対し、レジスタ値が上限値未満である場合には(S082,YES)、マイコン180は、setN+レジスタから所定値(例えば、2進数“001”)を減算する(ステップS083)。一方、マイコン180は、setN-レジスタに所定値(例えば、2進数“001”)を加算する(ステップS084)。その後、処理がステップS09へ戻る。
 ステップS083及びステップS084によって、配線242へ出力されるパルス数が減少する一方で、配線241へ出力されるパルス数が増加する。これによって、配線222を介して発光デバイス20のLED群22Aへ供給される正電流の平均値が減少する一方で、LED群22Bへ供給される負電流の平均値が増加する。この結果、色温度の低いLED群22Aからの輝度(発光量)が減少し、色温度の高いLED群22Bからの輝度(発光量)が増加するので、全体としては色温度が上昇して青みがかった白色となる。
 第2実施形態によれば、マイコン180を用いて発光デバイス20の輝度(発光量)及び色度(色温度)を変更することができる。
 〔第3実施形態〕
 次に、第3実施形態について説明する。第3実施形態は第2実施形態の変形例に相当するので、第2実施形態との相違点について説明し、共通点については説明を省略する。
 図4に示したタイマ186は、操作者がボタンを押し続けたときに操作者の意図に反して押しボタン回数が急激に増加するのを防止するとともに、チャタリングなどのメカニカルなエラ-も防止する機能を実現する、公知のものである。
 図4に示した回路構成では、配線222と221とのどちらに発光デバイス20の正極端子(端子23A)及び負極端子(端子23B)が接続されるかが不確定なので、制御装置出力線である配線222及び221の極性を交換する極性交換スイッチ290が付加されている。
 第3実施形態は、極性交換スイッチ290をコンピュータ(例えばマイコン)によるプログラム実行により実現する例を示す。図8は、第3実施形態に係るフローチャートである。
 図8において、ブロック510で囲まれたフロー処理は、図5Bで示した点灯制御プログラムであり、ブロック520で囲まれたフロー処理は、第3実施形態に係る出力極性交換プログラムである。出力極性交換プログラムの実行に当たり、マイコン180は、以下のように動作する。
 ステップS521における、「=前回ボタン?」ルーチンにおいて、マイコン180は、図示しない「前回ボタン種別記憶レジスタ」との比較を行う。ここに、前回ボタン種別記憶レジスタは、マイコン180に備えられており、ユーザ(操作者)が最後に押したボタンの種別を示すコードが格納されている。
 マイコン180は、前回ボタン種別記憶レジスタで示されるボタン種別と、今回押し下げられたボタンとが同一ボタンが同一でなかった場合には、前回ボタン種別記憶レジスタに、今回押し下げられたボタンの種別を示すコードを格納した後、処理をステップS02に戻す。これに対し、前回ボタン種別記憶レジスタで示されるボタン種別と今回押し下げられたボタン種別とが同一である場合には(S521,YES)、図示しないカウンタの値N1に1を加算する(ステップS522)。
 同一のボタンが押し続けられるたびに、カウンタの値は上昇し、最終的に所定の値に達する。第5実施形態の例では、操作者が同一のボタンを約5秒以上押し続けると、カウンタの値N1が所定値“50”を越えると、処理がステップS524に進む。
 ステップS524では、マイコン180は、マイコン180内部に設置されている「setN+レジスタ」の出力端子(out+)と「setN-レジスタ」の出力端子(out-)とを入れ替える。これによって、配線242へsetN-レジスタの値に基づくバースト・パルスが出力され、配線241へsetN+レジスタの値に基づくバースト・パルスが出力される。これによって、配線222には、正負が逆になった交流電流が供給される状態になる。ここで、発光デバイス20が逆方向に接続、すなわち、配線222と端子23Bとが接続され、配線221と端子23Aとが接続されているならば、配線222に正の駆動電流が供給されているときにLED群22Bが点灯し、負の駆動電流が供給されているときにLED群22Aが点灯することになる。但し、上述したように、レジスタ値とLED群との対応関係は、正常接続と同じであるため、発光デバイス20は、逆接続であっても、正常接続と同様の点灯動作を行うことになる。従って、第3実施形態では、極性交換スイッチ290を省略することができる。
 第3実施形態によれば、上記した出力極性交換機能によって、設置工事担当者は、点灯の結果をみて調色の方向(色度(色温度)の増減)が調光・調色装置の表示に一致するように、XYスイッチ185を操作して、実質的に配線222及び221と端子23A及び23Bとが正常に接続された状態に切り替えることができる。
 〔第4実施形態〕
 次に、第4実施形態について説明する。第4実施形態は、第2及び第3実施形態と共通点を有するので、第2実施形態との相違点について説明し、共通点については説明を省略する。
 発光デバイス20は多くの場合、等価抵抗値の温度係数が負であり、設置場所の温度が上昇すると等価抵抗値が下がり電流値が上昇し更にデバイス温度が増加するという、自己破壊ループに陥る虞がある。これを確実に防止するには駆動回路に帰還ループを設けることが効果的であることが知られている。第4実施形態は、第2実施形態の構成に帰還ループを付加したものである。
 図9は、第4実施形態に係る調光装置の回路構成例を示し、図10A及び図10Bは、第4実施形態におけるマイコンの処理を示すフローチャートである。図9において、図4に示した入力端子10A,主電源スイッチ141,電源回路140,及びXYスイッチ185の図示は省略されている。
 図9において、調光装置(点灯制御回路)B1は、定電流ドライブを実現するためのドライブ電流検出回路160を有し、ドライブ電流検出回路160は、抵抗器165と、各々光学的に独立したフォトカプラ161,162と、抵抗器とコンデンサ(キャパシタ)を夫々含む積分回路163,164を含んでいる。
 抵抗器165は、例えば5Ω程度の抵抗値を有し、発光デバイス20の電流値0.1~1.0Aに比例した電圧0.5~5.0Vを発生させる。フォトカプラ161,162は、抵抗器165に並列接続されている。各フォトカプラ161,162の入力側にはダイオードが設けられているので、各々の順方向時のみ組み合わせトランジスタを導通させる。
 したがって、LED群22Aを駆動するための正の電流が配線222を流れる場合にフォトカプラ161が導通し、逆接続であるLED群22Bを駆動するための負の電流が配線222を流れるときのみフォトカプラ162が導通する。フォトカプラ161,162の導通は、積分回路163と積分回路164を独立に充電し、その結果として配線312には正の電流の平均値に比例した電圧が観測され、配線322には負の電流の平均値に比例した電圧が観測される。
 観測される電圧は、主として制御出力線としての配線222に流れるパルス電流の平均値に比例するが、同時に温度変化などで生じる直流成分の変動にも感応する。このアナログ値は、独立な配線312及び322を介してマイコン(MP)186Aに導かれる。マイコン186Aは、第2実施形態で説明したタイマ186の機能に加え、さらに以下の構成及び機能を備えている。
 マイコン186Aでは、図示しない内部のアナログ/ディジタル変換器により、アナログ値が4ビットで16値のディジタル数値表現に変換され、図示しない内部レジスタに記憶される。内部レジスタに格納される配線312,配線322からの各電圧値(ディジタル値)は、setN+レジスタ,setN-レジスタと同一の表現形式を有し、各setNレジスタで示される値は、配線222を介して各LED群22A,22Bに供給される駆動電流に応じた電圧値を示す。
 その後、図10A及び図10Bに示すような、マイコン186Aによるプログラム実行に応じた動作が行われる。図10Aにおいて、ブロック530で囲まれたフロー処理は、定電流駆動ルーチンであって、正電流フィードバック・ルーチンS531と負電流フィードバック・ルーチンS532とからなる。定電流駆動ルーチン530は、接点スキャン動作(ステップS02)において、XYスイッチ185のボタンが押されていない場合(S03,NO)に開始される。
 定電流駆動ルーチン530の正電流フィートバック・ルーチンS531では、図10Bに示すように、マイコン186Aは、配線312から入力される電圧値を読み取り(ステップS5311)、A/D変換して得られた値n+を一時レジスタ(内部レジスタ)に保存する(ステップS5312)。次に、マイコン186Aは、setN+レジスタに保持されているレジスタ値N+を読みだし(ステップS5313)、レジスタ値N+と内部レジスタ値n+と比較し(ステップS5314)、同一ならばステップS5315をスキップしてステップS5321へ進み、異なればsetN+レジスタの値を内部レジスタ値n+で上書きして(ステップS5315)、正電流フィードバック・ルーチンS531を終了する。
 負電流フィードバック・ルーチンS532でも同様の処理が行われる。図10Bに示すように、ルーチンS532では、ルーチンS531と同様の処理が行われる。すなわち、マイコン186Aは、配線322の電圧値n-を読み取り(ステップS5321)、A/D変換して得られた値n-を一時レジスタ(内部レジスタ)に保存する(ステップS5322)。次に、マイコン186Aは、setN-レジスタに保持されているレジスタ値N-を読み出し(ステップS5323)、これを内部レジスタ値n-と比較し(ステップS5324)、同一ならばステップS5325をスキップ、異なればsetN-レジスタを内部レジスタ値n-で上書きして(ステップS5325)、負電流フィードバック・ルーチンS532を完了する。各ルーチンS531及びS532が完了すると、XYスイッチ185の状態をスキャンする待機状態(ステップS02)に帰着する。
 以上の第1~第4実施形態によれば、発光デバイス20がLED電球であるかLED発光モジュールであるかに拘わらず、発光デバイス器具として組み立てられているか電球として構成されているかにかかわらず、発光デバイス20が有する二つの端子23A,23Bと接続することができ、発光デバイス20が有する極性の異なるLED群22A,22Bに対する駆動電流供給の制御を以て、発光デバイス20の輝度(発光量)の調整(調光)及び色度(色相、色温度)の調整(調色)を実施することができる。
 このことは、建築物に既設の配線を利用して、発光デバイス20の調光及び調色を実現できる利点を有する。また、新築の建築物に発光デバイス20を設置して調光及び調色機能を実現するに当たっても、3線、4線のような特殊配線が不要である利点も有する。
 また、卓上用照明機器のように、発光デバイス20の調光・調色制御手段を電源コードの途中に挿入する「中間スイッチ」のような形態で実現することを可能とする利点がある。
 もっとも有用な利用形態における利点は、既存の建築物において複数の電球ソケットが並列接続で天井に設置され、点滅スイッチが壁埋め込み形で設置され、かつ点滅スイッチボックスまで商用交流電源が供給されている場合において発揮される。
 この場合には、白熱電球を、本実施形態で説明したような2種類の色温度でそれぞれ発光する発光デバイス20に交換し、点滅スイッチを本実施形態で説明したような調光・調色装置に交換するだけで、配線の変更を要することなく、調光・調色機能を実現できる。
 〔第5実施形態〕
 次に、本発明の第5実施形態に係るLED照明システムについて説明する。建築物に施された配線状態によっては、調光装置の設置位置に電源(商用電源)から一対の引き込み線が引き込まれており、さらに、調光装置の設置位置とLED照明装置の設置配置との間に、二本一対の給電線が予め敷設されている場合がある。このような場合には、調光装置に搭載した制御回路で調整した駆動電流をLED照明装置に供給することができる。
 第5実施形態は、上記のような調光装置に電源からの二本一対の給電線が接続され、調光装置とLED照明装置とが二本一対の給電線(駆動電流供給線)で接続される配線構造を適用可能な場合における調光装置及びLED照明装置を含むLED照明システムについて説明する。
 図11は、第5実施形態におけるLED照明システムの回路構成の概略を示す図であり、図12は、図11に示した制御回路の構成例を示す図である。図11は、LED照明システムの回路構成の概略を示している。
 図11には、二点鎖線で表された仮想線403を境界として電気配線設置空間(仮想線403の上側)と、電気配線が接続される調光装置(調光ボックス)410及びLED照明装置(発光デバイス)20が配置される、LED照明システムの設置空間(仮想線403の下側)とが図示されている。
 電気配線設置空間は、通常、壁内や天井裏に設けられ、壁や天井によって照明システム設置空間と隔絶される。図11に示す例では、電気配線設置空間には、商用電源(例えば、交流100V,50Hz)が供給される一対の商用電源母線400と、一対の照明装置用給電線401(401a,401b)と、商用電源母線400から引き出された一対の照明装置点滅用の引き込み線402とが配線されている。
 引き込み線402には、調光装置(調光ボックス)410が有する入力側の一対の端子T1,T2と接続される。調光装置410は、出力側の一対の端子T3,T4を有しており、端子T3,T4は、照明装置用給電線401(401a,410b)と接続される。一方、照明装置用給電線401には、一対の端子23A,23Bを有するLED照明装置(発光デバイス)20が接続される。LED照明装置20は、第1実施形態で説明したLED照明装置と同様の、逆並列接続されたLED群22A及びLED群22Bを備えている。但し、第5実施形態では、LED群22Aが発する白色光のケルビン温度がLED群22Bが発するケルビン温度より高い。
 調光装置410は、端子T1,T2から供給される、商用電源からの交流電圧を受電することができる。このため、調光装置410は、直流生成部として機能する、全波整流形の直流電源供給回路(電源回路)412を含んでいる。電源回路412により、負荷の導通状態に関わらず、安定した直流電源を提供することができる。
 電源回路412は、直流電源供給線414,415を介して制御回路413に接続されている。商用交流電源が実行値100Vである場合には、電源回路412は、給電線414,415を介し、無負荷時に略140Vの直流電圧を供給する直流電源となる。
 図12において、制御回路413は、操作部416に接続された操作量検出部417と、第1及び第2制御部として機能する制御装置420と、駆動装置430とを備えている。駆動装置430は、駆動論理回路(制御回路)431と、H型ブリッジ回路である駆動回路432とを含む。駆動回路432の出力端子は、端子T3,T4に接続され、給電線410を介してLED照明装置20に接続されている。LED照明装置20は、LEDモジュール22Cを含んでおり、LEDモジュール22Cは、端子23A,23B間において極性を逆にして並列接続されたLED群22A及びLED群22Bを含んでいる(図11参照)。
 操作部416は、LED照明装置20が発する光の輝度(発光量)の調整(調光)と色度(色相、色温度)の調整(調色)を実施するための操作デバイスである。操作部416は、調光用の操作ダイヤル416Aと、調色用の操作ダイヤル416Bとを含んでいる。ユーザが各ダイヤル416A,416Bを回転させることにより、LED照明装置20の輝度(発光量)及び色度(色相、色温度)を調整することができる。
 操作量検出部417は、各操作ダイヤル416A,416Bの操作量であるダイヤルの回転量(回転角度)に応じた信号を出力する信号生成器である。本実施形態では、操作量検出部417は、操作ダイヤル416Aの回転量(回転角度)に応じて抵抗値が変動する可変抵抗器417Aと、操作ダイヤル416Bの回転量(回転角度)に応じて抵抗値が変動する可変抵抗器417Bとを含んでいる。操作量検出部417には、電源回路412で商用交流電源から生成された所定の直流電圧(例えば、無負荷時で最大5V)が配線405に印加される。操作量検出部417と制御装置420とを結ぶ配線(信号線)418には、可変抵抗器417Aの抵抗値に応じた電圧(最大5V)が発生する。一方、操作量検出部417と制御装置420とを結ぶ配線(信号線)419には、可変抵抗器417Bの抵抗値に応じた電圧(最大5V)が発生する。このように操作量検出部417は、操作ダイヤル416A,416Bの各操作量に応じた信号電圧を発生する。
 なお、操作ダイヤル416A,416Bに代えて、スライドバーが適用可能である。スライドバーが適用される場合、回転量の代わりの移動量に応じた電圧(信号)が操作量検出部417で生成される。また、操作量検出部417は、可変抵抗値に応じた電圧を制御信号として出力するようにしている。これに代えて、操作ダイヤル416A,416Bの回転量(回転角度)を検出するロータリーエンコーダが設けられ、ロータリーエンコーダの回転量を示すパルスが制御装置420に入力されるようにしても良い。この場合、後述する、電圧をディジタル値に変換するアナログ/ディジタル変換器は省略可能である。
 制御装置420は、アナログ/ディジタル変換器(A/D変換器),マイクロコンピュータ(マイコン:MP),レジスタ,タイマ,カウンタ等を組み合わせた制御回路である。マイコンは、例えば、マスター・クロックが図示しない水晶発振子からの動作周波数(例えば4MHz)で動作するメモリ内蔵型マイクロプロセッサを適用することができる。
 マイコンは、図示しない内蔵ROM(Read Only Memory)に記録された動作プログラムを図示しないRAM(Random Access Memory)にロードし、プログラムに従った処理を実行する。
 A/D変換器は、信号線418に生じた電圧のディジタル値を出力し、ディジタル値は図示しないレジスタにセットされる。また、A/D変換器は、信号線419に生じた電圧のディジタル値を出力し、ディジタル値は図示しないレジスタにセットされる。
 制御装置420が備えるタイマ及びカウンタは、所望の自励発振周波数(例えば、1MHz)で発振するセラミック発振子421で駆動され、制御装置420と駆動論理回路431とを結ぶ配線424及び425から、相補的パルスを、予め設定されたタイミングで、自励出力する。この相補的パルスは、例えば、繰り返し周波数が所定の周波数となるように、予め設定されている。
 マイコンは、各レジスタにセットされたディジタル値(操作ダイヤル416A,416Bの操作量)に応じた制御パルス生成処理を行う。制御装置420は、繰り返し周波数t0(本実施形態では50Hz)における各1サイクル(周期)T0(20msec)において、駆動装置430に対して信号線424、425を介して制御信号を供給する。本実施形態では、図13(a)に示すように、制御装置420は、1サイクル(周期T0)において、正の制御信号を供給する期間T1に正のパルスを出力し、負の制御信号を供給する期間T2に負のパルスを出力する。
 マイコンは、操作ダイヤル416Aの操作量の変動に応じて、1サイクルにおける正負のパルスのオン時間の比を変えることなく、期間T1と期間T2とのそれぞれにおけるパルスのオン時間を増減することによって、輝度(発光量)を制御する。一方、マイコンは、操作ダイヤル416Bの操作量の変動に応じて、各期間T1,T2の比を実質的に変更し、1サイクルにおける正のパルスのオン時間と負のパルスのオン時間との比を変更することによって、色度(本実施形態では色温度)を制御する。
 駆動論理回路431は、配線424,425から供給されるパルス(制御信号)に応じて、駆動回路432が備えるトランジスタ(スイッチング素子)TR1~TR4のオン/オフ動作(スイッチング動作)を制御する。すなわち、制御回路431は、配線424及び425からのパルス入力がない場合には、トランジスタTR1~TR4をオフにする。一方、制御回路431は、配線424からの正のパルスが入力されている間、トランジスタTR1及びTR4をオンにする一方で、トランジスタTR2及びTR3をオフにする。これによって、電源回路412から配線414を通じて供給される直流電流がトランジスタTR1を通って給電線401aに流れ、LED群22Aの点灯に消費される。その後、電流は給電線401b、トランジスタTR4を通って配線415へ流れる(接地される)。
 これに対し、駆動論理回路431は、配線425からの負のパルスが入力されている間、トランジスタTR2及びTR3をオンにする一方で、トランジスタTR1及びTR4をオフにする。これによって、電源回路412から配線414を通じて供給される直流電流がトランジスタTR2を通って配線401bに流れ、LED群22Bの点灯に消費される。その後、電流は配線401a,トランジスタTR3を通って配線415に流れる(接地される)。
 従って、LED照明装置20には、制御装置420から出力されるパルス(制御信号)と同形の波形を有する、正の駆動電流と負の駆動電流とが交互に供給される。言い換えれば、LED群22A,22Bに対し、極性の異なる交流電流が駆動電流として供給される。各LED群22A,22Bに対して供給される平均電流は、パルスのオン時間に依存する。すなわち、正負のパルスのオン時間が大きい程、1サイクルにおいて各LED22A,22Bに供給される駆動電流の平均電流値が上昇する。逆に、デューティ比が小さくなる(パルスのオン時間が小さくなる)程、平均電流値は、小さくなる。
 図13(a)は、デューティ比1のときのパルスを示す。従って、正負のパルス供給期間T1,T2のそれぞれにおいて、一つのパルスが出力される。図13(b)は、マイコンのPWM制御により期間T1,T2におけるデューティ比を下げた状態を示す。デューティ比の変更によって、所定パルス幅を有する複数の正負のパルスが供給される状態となる。さらに、図13(c)は、図13(b)よりさらにデューティ比を下げた場合の状態を示す。この場合、正負のパルスのパルス幅はさらに小さくなる。
 図13(a)~(c)に示す例は、調光用の操作ダイヤル416Aを、輝度(発光量)が小さくなるように操作した場合の様子を示す。このように、操作ダイヤル416Aが操作される場合には、マイコンがPWM制御によりデューティ比を小さくすることで、パルスのオン時間が小さくなることによって、平均電流が低下する。これによって、輝度(発光量)が低下する。但し、1サイクル(期間T1と期間T2)における、パルスのオン時間の比は変わらない。よって、LED照明装置20の色度(本実施形態では色温度)を変えることなく輝度(発光量)を増減することができる。
 これに対し、操作ダイヤル416Bが操作された場合における、パルスの状態を図14(a)~(c)に示す。操作ダイヤル416Bが操作された場合には、マイコンは、そのときのパルス幅を変更することなく、1サイクル(周期T0)における正負のパルス数を変更する。図14(a)において、正負のパルス幅は同じであり、パルスのオン時間の比は4:3である。
 これに対し、図14(b)では、パルスのオン時間の比が3:4に変更されている。さらに、図14(c)では、パルスのオン時間の比が2:5に変更されている。このような比の変更によって、1サイクルにおけるLED群22A,22Bの点灯時間の比が変動する。これによって、LED群22A,22Bのそれぞれ点灯により発せられる合成光の色度(本実施形態では色温度)が変更される。
 上述した正負のパルスを出力するための繰り返し周波数T0(自励発振周波数)は、人の目の感度や、スイッチング損失の防止、ノイズ発生の観点から、例えば、30Hz~50kHzの間で定め得る。好ましくは、50Hz~400Hzである。さらに好ましくは、50または60Hz~120Hzである。自励発振周波数は、商用電源周波数から独立して定めうるが、商用電源周波数と同じ周波数を選択することを妨げない。なお、本実施形態では、スイッチング素子として、トランジスタTR1~TR4が適用されているが、トランジスタの代わりにFETが用いられていても良い。
 図12に示す制御回路413には、積分回路450及び440が設けられている。積分回路450は、LED群22Aを駆動するための正の電流の平均値に比例した電圧を制御装置420にフィードバックし、積分回路440はLED群22Bを駆動するための負の電流の平均値に比例した電圧を制御装置420にフィードバックする。制御装置420は、積分回路440,450のフィードバック電圧をA/D変換器を用いて観測し、制御信号(パルス)の生成に利用する。
 以下、調光装置410の動作例について説明する。主電源スイッチ411(図11)が閉じられると、電源回路412による整流及び電圧変換動作が行われ、制御回路413に直流電源が供給される。
 制御装置420のマイコンは、公知の方法で初期化動作を開始し、図示しない内蔵ROM(Read Only Memory)に記録された動作プログラムを図示しないRAM(Random Access Memory)にロードし、プログラムに従った処理を行う。
 LED照明装置20の輝度を調整する場合には、例えば以下のような操作及び調光装置410の動作が行われる。例えば、利用者(ユーザ)が操作ダイヤル(操作ツマミ)416Aを例えば右一杯にまわし、照明の輝度(発光量)を最大に設定する。すると、信号線418には最大5.0ボルトの直流電圧が発生する。制御装置420は、信号線418に生じた電圧を内蔵のA/D変換器でディジタル信号に変換して読み取り、駆動回路430の駆動論理回路431に対し、信号線424,425を介して制御信号を与える。駆動論理回路431は、制御信号に従って駆動回路(H型ブリッジ)432を駆動させる。このとき、駆動回路432は、予め設定された自励発振周波数である50Hzで駆動される。このときの、制御信号波形は、図13(a)に示す通りであり、正のパルス(制御信号)のオン時間である時間t1の間、正の電流が給電線401aを流れてLED群22A(LED-H)を点灯させる。一方、負のパルス(制御信号)のオン時間である時間t2の間、負の電流が給電線401aを流れてLED群22B(LED-L)を点灯させる。
 その結果、給電線401には、略50Hzの交流電流が通電して、LED照明装置20に搭載されているLED群22AとLED群22Bとが交互に点灯する。時間t1に流れる電流(個別電流)と、時間t2に流れる電流(個別電流)との比がLED群22A及び22Bにより発せられる合成光の色度(本実施形態では色温度)を支配する。図13(a)に示す状態では、ケルビン温度の高いLED群22Aの点灯時間がLED群22Bの点灯時間より長いため、LEDモジュール22Cの発光色は、やや青みが買った白色を呈する。
 利用者が操作ダイヤル(調光ツマミ)416Aを左方向にまわし、照明の輝度が中央値となるように設定する。すると、信号線418には約2.5ボルトの直流電圧が発生する。
 制御装置420のマイコンは、内蔵のA/D変換器で電圧をディジタル信号に変換して読み取り、駆動装置430の駆動を制御して、LED照明装置20に対する交流電流を供給する。このときのパルス波形は、図13(b)に示す状態となる。すなわち、期間T1における正のパルスのオン時間と期間T2における負のパルスのオン時間との比は変わらないが、パルス周波数(約400Hz)の変調を受けている(デューティ比が低下している)ため、最大輝度時には一つのパルスがデューティ比に応じたパルス幅を有する複数のパルス群となる。なお、正のパルスのパルス幅と負のパルスのパルス幅は同じである。これによって、最大輝度時よりも平均電流が小さなるので、LED群22A(LED-H)、LED群22B(LED-L)の輝度は低下する。
 その後、利用者が操作ダイヤル(調光ツマミ)416Aをさらに左方向にまわし、照明の輝度を最小値に設定する。すると、信号線418には約0.5ボルトの直流電圧が発生する。
 制御装置420のマイコンは、電圧値をA/D変換器で変換して読み取り、電圧値に応じた駆動装置430の制御を行う。すなわち、制御装置420は、図13(c)に示すように、期間T1及びT2における、正負のパルスのデューティ比をさらに下げる。これによって、期間T1における正のパルスのオン時間と期間T2における負のパルスのオン時間との比は変わらず、かつ約400Hzの変調も変わらない。但し、400Hzのパルス幅(デューティ)がさらに小さいので、中央輝度時よりはさらに平均電流が小さくなる。よって、LED群22A(LED-H)、LED群22B(LED-L)はともに最も暗い輝度となる。
 次に、LED調光装置20の色度(本実施形態では色温度)を調整する場合における利用者(ユーザ)の操作及び調光装置410の動作例について説明する。図13(b)に示す電流波形は、LED群22A(LED-H)に対する平均電流がLED群22B(LED-L)の平均電流が大きいため、やや青みがかった白色を呈する。
 図13(b)に示す電流波形がLED照明装置20に供給されている状態で、利用者がケルビン温度の低いやや赤みがかった白色への変更を意図した場合について説明する。利用者が操作ダイヤル(調色ツマミ)416Bを左に(半時計方向に)回転させる。すると、信号線419に生じている直流電圧(例えば約4ボルト)が、例えば3.0ボルト程度に低下する。
 制御装置420のマイコンは、A/D変換器で変換された信号線419の直流電圧のディジタル値を読み取り、駆動装置430を制御するパルス波形を変更する。例えば、制御装置420のマイコンは、駆動装置430の駆動論理回路431に供給されるパルス波形を、図13(b)から図14(a)に変化させる。すなわち、マイコンは、図13(b)の状態において、5:2であった正の電流(パルス)と負の電流(パルス)の比を、図14(a)に示すように4:3に変更する。これによって、LED22Aに供給される平均電流が減少し、LED22Bに供給される平均電流が増加する。この結果、LEDモジュール22Cの発光色、すなわち色温度はやや低下して赤みが買った白色を呈する。このとき、図14(a)に示すように、パルスの比は変化するが、パルスの合計値(平均電流の合計値)は変化しないので、LEDモジュール22Cの輝度は変化しない。
 その後、さらに利用者がケルビン温度のもっとも低い赤みがかった白色への変更を意図して、操作ダイヤル(色度ツマミ)416Bを左に(半時計方向に)限界まで回転させる。すると、約3.0ボルトだった信号線419の直流電圧は1.0ボルト程度に低下する。
 制御装置420のマイコンは、ディジタル変換された信号線419の直流電圧を検出すると、駆動論理回路431に供給される制御信号(パルス)を変更する。すなわち、マイコンは、給電線401aを流れる電流波形が図14(a)から図14(b)を経て図14(c)に変化する(正負の電流(パルス)の比が2:5になる)ように、駆動装置430に制御信号を与える。これによって、LED22群A(LED-H)の平均電流がさらに減少する一方で、LED群22B(LED-L)の平均電流がさらに増加する。この結果、LEDモジュール22Cの色温度は著しく低下して強い赤みが買った白色を呈する。このときもLEDモジュール22Cの全体輝度は変化しない。
 図15は、実施形態の変形例を説明する図であり、図13と等価な電力変化を示す。図15(a)に示すように、初期状態において、電流波形は図13(a)と同一の状態を示している。
 調光を意図して電流の平均値(実効値)を下げる場合には、図13(b)の代わりに、図15(b)に示すような電流波形を印加しても、単位時間当たりの電力は両者とも等価である。同様に、図15(c)と図13(c)とは電力的には等価である。図15に示すような制御にあたり、制御装置420のマイコンは、操作ダイヤル(調光ツマミ)416Aの回転量に応じたパルスのオン時間を算出し、その間にパルスがオンとなるように制御する。このような変形例によれば、駆動回路432のスイッチング損失を低減することができる。
 以下に詳細動作を説明する。この変形例では、回路構成は図12に示した回路構成と同じものを適用できるが、マイコンに内蔵された図示しないプログラムの動作が異なる。
 図15(a)の状態を、最大輝度時と仮定し、利用者が照明の輝度が中央値になるように操作ダイヤル(調光ツマミ)416Aを操作したと仮定する。すると、マイコンは、図15(a)における時間(パルス幅)t1,t2を、これらの比が変更されない状態で、夫々50%減少させる。これによって、電流(パルス)は、図15(b)に示すように、時間(パルス幅)t1,t2の夫々の50%に相当する時間(パルス幅)t1´,t2´となる。これによって、平均電流が低下し、LED群22A,22Bはともにやや暗い発光となる。
 さらに、利用者が照明の輝度が最小値になるように操作ダイヤル416Aを操作すると、マイコンは、図15(b)における時間(パルス幅)t1´とt2´を、これらの比が変更されない状態で、夫々25%減少させる。これによって、電流(パルス)は、図15(c)に示すように、時間(パルス幅)t1´,t2´の夫々の25%に相当する時間(パルス幅)t1´´,t2´´となる。これによって、平均電流が低下し、LED群22A,22Bはともに著しく暗い発光となる。
 図15(a)の状態で、利用者が色度(本実施形態では色温度)の低下を意図して操作ダイヤル(調色ツマミ)416Bを操作すると、マイコンは、時間(パルス幅)t1,t2の比を変更して、図16(b)に示すように、時間t1が減少した時間t1´の状態となり、時間t2が増加した時間t2´の状態に変更する。
 さらに、色温度が最も減少するように利用者が操作ダイヤル416Bを操作すると、時間t1´がさらに減少し、時間t2´がさらに増加して、図16(c)に示す状態となる。
 このように、マイコンは、駆動論理回路431に供給する1つのパルス幅を操作ダイヤル416A,416Bの操作量に応じて変更し、LEDモジュール22Cから発せられる光の輝度(発光量)及び色度(色相、色温度)を調整することができる。
 上記した変形例では、図13、図14に示す例に比べて、電流波形に含まれる高調波成分が減少するので、周辺に及ぼす電波障害を低減できる利点と、スイッチング周波数にほぼ比例する半導体の電力損失を低減できる利点と、がある。
 第1~第5実施形態によれば、調光装置が商用電源のような交流電源からの交流を電源回路で直流に変換し、制御装置420が駆動装置430を制御して、交流が変換された直流から自励発振周波数による所望の周波数の交流(周期T0毎に供給される正負の電流)を生成し、逆並列接続された一対のLED群(LED群22A,22B)に駆動電流として供給する。これによって、調光装置の設計の自由度を高めることができる。また、自励発振周波数を人間の目の感度より高い周波数に設定することで、照明のフリッカー(ちらつき)の発生を防止することができる。また、力率改善に寄与することもできる。
 さらに、制御装置420は、LED群22A,22Bに夫々供給すべき平均電流を個別に制御することができる。また、平均電流の比を代えることなく、各平均電流を増減することで、輝度を調整することができる。さらに、LED群22A,22Bに夫々供給すべき平均電流の比を変更することによって、LEDモジュール22Cから発せられる光の色温度を輝度を変えることなく変更することができる。
 <発光モジュール,及びパッケージ>
 以下、上述した各実施形態におけるLED照明装置に適用可能な、発光モジュール(LEDモジュール),及びパッケージについて説明する。図17Aは、発光モジュール(LEDモジュール)を構成する半導体発光装置(以下、「白色LED」という)708内の、パッケージ701の概略構成の斜視図である。図17Bは、パッケージ701に設けられた半導体発光素子(LED素子:以下、「LEDチップ」という)703A、703Bに電力を供給する配線720A、720Bの実装状態を示す図である。また、図18は、図17A及び図17Bに示すパッケージ701(白色LED708)を電気的記号を用いて模式化した図である。図19は、図18に示した白色LED708を直列接続した状態を模式的に示す図である。更に、図20は、図17Aに示す白色LED708において、上記配線720A、720Bを含む面で切断した場合の断面図である。
 図17Aに示すように、白色LED708はパッケージ701を含んで構成され、該パッケージ701は、基板702上に配置された環状且つ円錐台形状のリフレクタ710を有する。このリフレクタ710は、後述する各分割領域部712からの出力光の一部を、白色LED708の出射方向に導く機能を有するとともに、パッケージ701の本体としての機能も果たす。なお、リフレクタ710の円錐台形状の上面側は、白色LED708による光の出射方向となり、開口部713を形成している。一方で、リフレクタ710の円錐台形状の下面側は基板702が配置され、詳細は後述するがLEDチップへの電力供給のための配線が敷設等されている(当該配線は図17Aには図示せず)。
 そして、この環状のリフレクタ710の内部の空間を図17A、図20に示すように均等に二つの領域に分割する間仕切り711が、基板702に対して垂直に設けられている。この間仕切り711によって、リフレクタ710内に2つの分割領域部712A、712Bが画定されるとともに、分割領域部712Aの開口部は、リフレクタ710の開口部713の右半分を占め、分割領域部712Bの開口部は、リフレクタ710の開口部713の左半分を占めることになる。本明細書においては、分割領域部712Aの開口部を、分割開口部713Aと称し、分割領域部712Bの開口部を、分割開口部713Bと称する。即ち、開口部713は、間仕切り711によって分割開口部713Aと713Bに分割されたことになる。
 但し、パッケージ701における分割領域部712Aと712Bの形状は、垂直な壁体を間仕切り711として設けた構造に限定されるものではない。分割領域部712Aと712Bは、それぞれが円錐台、角錐台、半球などの形状を有する窪みであってもよい。また、両分割領域部712A,712Bの形状や内容積が同じであることも必須ではない。
 また、図17Aに示すパッケージ701は、一体となった部材中に分割領域部712Aと712Bを含む構造体であるが、このようなパッケージ701を用いることは必須ではない。分割領域部としての構成を備える二つの構造体(パッケージ)を並置して、一方を分割領域部712A、他方を分割領域部712Bとして機能させることが可能である。
 図17Aに示す分割領域部712A、712Bには、LEDチップ703A、703Bがそれぞれ4個ずつ設けられている。このLEDチップ703A、703B(これらのLEDチップを包括的に参照する場合はLEDチップ703と称する。)は、対となる配線720A、720B(包括的に配線720と称する場合もある。)にそれぞれ接続され、電力供給を受けることで発光を行う。なお、各分割領域部での配線720へのLEDチップ703の接続は、図17Bに示すように、配線720Aの上に4個のLEDチップ703Aが実装され、配線720Bの上に4個のLEDチップ703Bが実装される。そして、各分割領域における4個のLEDチップ703は、対応する配線に対して順方向に並列接続されている。
 LEDチップとしては、紫外線波長を発する紫外LEDチップ(発光ピーク波長300~400nm),紫色光を発する紫色LEDチップ(発光ピーク波長400~440nm),青色光を発する青色LEDチップ(発光ピーク波長440nm~480nm)を適用することができる。各分割領域部712A,712Bに設けるLEDチップ703の数は、例えば、1~10個である。LEDチップ703の数は、チップサイズと必要な明るさに応じて適宜決定すればよい。また、各分割領域部712A,712Bに設けられるLEDチップ703の種類は、同種類であっても異種類であっても良い。異種類の組み合わせとしては、紫外又は紫色LEDと青色LEDとの組み合わせが考えられる。
 これらのLEDチップ703A、703Bの実装状態を模式化して示すと図18のようになる。即ち、図17Bにおいて、夫々上側、下側に位置する配線720A,720Bは結線され、4つの並列接続されたLEDチップ703Aと、4つの並列接続されたLEDチップ703Bとが極性を逆にした状態で並列接続された状態となっている。また、結線された配線720A及び配線720Bの夫々からは、配線720Cと配線720Dとが引き出されており、白色LED708(パッケージ701)は、二つの端子を有する構成を持つ。
 さらに、LEDチップ703Aのカソードと配線720Dとの間には、逆流防止用のダイオードD1が挿入され、LEDチップ703Bのカソードと配線720Cとの間には、逆流防止用のダイオードD2が挿入されている。これによって、配線720Cから配線720Dに向かう電流が流れる場合には、各LEDチップ703Aのみが点灯する。これに対し、配線720Dから配線720Cに向かう電流が流れる場合には、各LEDチップ703Bのみ点灯する。よって、白色LED708は、時間で向きが変わる電流、すなわち交流電流で駆動することができる。
 図18に示した白色LED708(パッケージ701)は、図19に示されるように所定個数(図19では2を例示)直列接続される。これによって、図17A等で模式的に示したLEDチップ703A(LED群22A(第1LED(群))に相当)とLEDチップ703B(LED群22B(第2LED(群))に相当)とが逆並列接続されたLEDモジュール(発光モジュール)を得ることができる。
 ここで、LEDチップ703の基板702への実装について、図21に基づいて説明する。基板702は、LEDチップ703を含む白色LED708を保持するための基部であり、メタルベース部材702A、メタルベース部材702A上に形成された絶縁層702D、および絶縁層702D上に形成された対配線720c、720dを有している。LEDチップ703は、相対する底面および上面に一対の電極であるp電極及びn電極を有しており、対配線720cの上面に、AuSnの共晶半田705を介してLEDチップ703の底面側の電極が接合されている。LEDチップ703の上面側の電極は、金属製のワイヤ706によって、もう一方の対配線720dに接続されている。これらの対配線720c、720dの対で、図17Bに示される一対の配線720Aあるいは720Bをなし、各分割領域部の4個のLEDチップ703への電力供給が行われる。
 なお、LEDチップ703と基板702の一対の対配線720c、720dとの電気的接続は、図21に示す形態に限られず、LEDチップ703における電極の組の配置に応じて適宜方法で行なうことができる。例えば、LEDチップ703の片面のみに電極の組が設けられている場合は、電極が設けられている面を上に向けてLEDチップ703を設置し、各組の電極と各対配線720c、720dとを例えば金製のワイヤ706でそれぞれ接続することによって、対配線720c、720dとLEDチップ703とを電気的に接続することができる。また、LEDチップ703がフリップチップ(フェースダウン)の場合は、LEDチップ703の電極と対配線720c、720dとを金バンプや半田で接合することによって電気的に接続することができる。
 ここで、LEDチップ703は、後述する蛍光部714A、714B(包括的に蛍光部714と称する場合もある。)を励起するものである。中でも、GaN系化合物半導体を使用したGaN系LED素子であることが好ましい。なぜなら、紫外~青の光を発するのに、発光出力や外部量子効率が格段に大きく、後述の蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。GaN系LED素子においては、Inを含む発光層、例えば、AlxGayInzN発光層、またはInxGayN発光層を有しているものが好ましい。よく知られていることであるが、発光波長が紫~青の場合は、発光層をInxGayN井戸層を備えた多重量子井戸構造とし、この井戸層をクラッド層で挟んだダブルヘテロ構造とすると、発光効率が特に高くなる。
 図21に示すように、基板707上には、このLEDチップ703から発せられる光の一部を吸収して異なる波長の光を発する複数あるいは単独の蛍光体及び前記蛍光体を封止する透光性材料を含有する蛍光部714が、LEDチップ703を覆って設けられている。尚、図21ではリフレクタ710の記載は省略されているが、このような形態もパッケージから構成される白色LEDの一形態となり得る。LEDチップ703から発せられた光の一部は、蛍光部714内の発光物質(蛍光体)に励起光として一部又は全部が吸収される。より具体的に白色LED8における蛍光部について図20に基づいて説明すると、分割領域部712Aにおいては、蛍光部714AがLEDチップ703Aを覆い、且つその蛍光部714Aは分割開口部713Aにて露出される。また、分割領域部712Bにおいては、蛍光部714BがLEDチップ703Bを覆い、且つその蛍光部714Bは分割開口部713Bにて露出される。従って、各蛍光部714A,714Bからの出力光は、各分割開口部から外部に出射される。
 白色LED708は、白色光を出力することを目的とし、特に、白色LED708の発光色が、UCS(u、v)表色系(CIE1960)のuv色度図において、黒体輻射軌跡からの偏差duvができるだけ小さくなるように、好ましくは-0.02≦duv≦0.02を満たすように、LEDチップ703と蛍光体の組み合わせを選択する。尚、本実施形態における黒体輻射軌跡からの偏差duvは、JIS Z8725(光源の分布温度及び色温度・相関色温度の測定方法)の5.4項の備考の定義に従う。但し、黒体輻射軌跡は絶対的な基準ではない。人工的な規格に応じた発光色(人為的に定められた基準光からの偏差で規格化された発光色)が要求される場合がある。
 LEDチップ703の発光波長が紫外または紫の場合は、蛍光部714によりRGBの3原色または、BY、RGなどの補色関係にある波長の光を発生させることにより、白色光を得る。LEDチップ703の発光波長が青の場合には、蛍光部714によりYまたは、RGの光を発生させ、LEDチップ703の発光との混色により白色光を得る。
 〔第6実施形態〕
 以下、本発明の第6実施形態について説明する。第6実施形態では、例えば、室内の壁埋め込み形の調光装置(調光器)を活用し、既存の2線配線を活用して、配線の入れ替え工事を行うことなく、調光制御(輝度調整)と調色制御(色温度調整)の両方を実現することが可能なLED照明システムについて説明する。
 図22は、第6実施形態に係るLED照明システムの構成例を示す図である。図22には、商用電源(例えば、交流100V、50Hz)が供給される一対の商用電源母線1010と、一対の照明器用の給電線1020と、一対の調光装置用の引き込み線1030とが図示されている。これらの配線1010,1020,及び1030は、一般に、建築物の壁や天井のような電気配線設置空間に敷設される。
 引き込み線1030には、一対の2端子T101,T102を有する調光装置1040が接続される。一方、給電線1020には、一対の2端子を有するLED照明器具(LED照明装置、LED発光デバイスともいう。また、LED電球と呼ばれることもある)が接続される。図22では、一対の端子T103,T104を有する白熱電球の代わりのLED照明器具1050が接続されている。調光装置1040は、例えば建築物の壁に設置される。LED照明器具1050は、壁や天井に設けられた固定具により設置され、その際、ソケットやコネクタを介して給電線1020と電気的に接続される。
 調光装置1040は、端子T101及びT102と、主電源スイッチ1041と、トライアック1042と、トリガダイオード1043と、時定数回路1044とを有している。端子T101及びT102は、母線10からの電力を調光装置1040内に供給するために、引き込み線1030と接続されている。主電源スイッチ1041は、LED照明器具1050の点灯及び消灯用の主電源スイッチである。
 トライアック1042は、LED照明器具50に供給される交流を制御する導通制御部として機能する。トライアック1042は、商用電源の交流1サイクルにおける正負の半サイクルにおいて、トリガダイオード1043からのトリガ信号を受けてオンとなり(点弧し)、当該半サイクルが終了するまで端子T102に対して正又は負の電圧(電流)を供給し続ける。トリガダイオード1043は、トライアック1042が点弧するためのトリガ信号をトライアック1042に供給する。
 時定数回路1044は、トリガダイオード1043がトライアック1042にトリガ信号を供給するタイミングを制御する。時定数回路1044は、抵抗器1044aと、可変抵抗器1044bと、キャパシタ(コンデンサ)1044cとを有し、トリガダイオード1043に接続されている。可変抵抗器1044bの抵抗値は、操作部(ユーザインタフェース)1047の操作量に応じて可変する。操作部1047は、トライアック1042の導通時間(点弧位相角度)を操作するために使用される。
 抵抗器1044a,可変抵抗器1044b及びキャパシタ1044cは、交流の正の半サイクル(サイクル前半)においてトリガダイオード1043への印加電圧をチャージするCR時定数回路を構成し、これらの抵抗値及び容量値で決まる時定数に従ってトリガダイオード1043をオンにする。
 なお、図22では、正の半サイクルにおいてトライアック1042を点弧させる時定数回路が図示されているが、調光装置1040は、負の半サイクルにおいてトライアック1042を点弧させる時定数回路も含んでいる。さらに、調光装置1040は、正負の半サイクルにおいてキャパシタ1044cの残留電荷を除去して、ヒステリシスを除去するヒステリシス除去回路を含むこともできる。
 図23は、調光装置1040に印加される商用電源の交流波形と、トライアック1042の点弧によってLED照明器具1050に供給される交流電圧との関係を示す図である。図23の(a)に示すように、調光装置1040には、商用電源からのサインカーブの交流電圧が印加される。正の半サイクルにおいて、電圧印加の開始と同時に、時定数回路1044のキャパシタ1044cに対する正のチャージが開始され、キャパシタ1044cにチャージされた電荷が所定量になる時間で、トリガダイオード1043がトリガ信号をトライアック1042に供給する。すると、トライアック1042が正の半サイクルにおける所定角度θで点弧し、LED照明器具1050に対する正の電流供給を開始する。電流供給は半サイクルの終了まで継続される。同様の動作が、負の半サイクルにおいても行われる。
 このように、正負の各半サイクルで、時定数回路1044の時定数に従ったタイミングでトライアック1042が点弧し、LED照明器具1050に交流電力を供給する。すなわち、トライアック1042は、点弧時間において、商用電源からの交流を導通させる。
 時定数は、可変抵抗器1044bの抵抗値によって変化する。すなわち、可変抵抗器1044bの抵抗値が小さくなる程、時定数は小さくなり、トライアック1042が点弧するタイミングが早まる(図23の(b)及び(c)参照)。このように、可変抵抗器1044bの抵抗値を操作部1047の操作で変化させることで、トライアック1042の点弧位相角度(導通時間)を可変にすることができる。
 図22において、LED照明器具50は、解析部として機能する点弧位相角度検出回路1090及びマイクロコンピュータ(マイコン)1100と、LEDモジュール1060に対する駆動部(駆動回路)1080とを備える。駆動部1080は、駆動対象であるLEDモジュール1060を含む。LEDモジュール1060は、順方向に並列配置されたLED群1060aとLED群1060bを含む。LED群1060a及びLED群1060bのそれぞれは、直列接続された複数のLED素子からなる。
 点弧位相角度検出回路1090は、調光装置1040のトライアック1042の点弧位相角度の制御により供給される交流を直流に変換する整流回路1091と、整流回路1091から出力される直流電圧からマイコン1100の動作用直流電圧を生成する定電圧源1092と、トライアック1042の点弧位相角度を検出する角度検出回路1093とを備えている。
 マイコン1100は、メモリ(記憶装置)1101と、選択手段としてのモード判定部1102と、輝度制御部としての輝度調整部1103と、色温度制御部としての色温度調整部1104とを備えている。メモリ1101は、マイコン1100に含まれるプロセッサ(CPU(中央処理装置))によって実行されるプログラムやプログラム実行時に使用されるデータを記憶する。また、メモリ1101は、点弧位相角度から求まる導通時間の履歴を記録する記録領域を有する。
 モード判定部1102は、導通時間の履歴を参照することによって、LEDモジュール1060の制御モードを、LEDモジュール1060の輝度(発光量)を調整する調光モードと、LEDモジュール1060の色度(色温度)を調整する調色モードとの間で切り替える。
 すなわち、モード判定部1102は、主電源スイッチ1041の投入時には、初期設定として、調光モードを選択する。モード判定部1102は、1サイクル毎の点弧位相角度を角度検出回路1093から受け取り、点弧位相角度からトライアック1042の半サイクルにおける導通時間を算出する。例えば、導通時間は、トライアック1042の点弧開始時点Aと半サイクルの終了(電圧0)時点Bとの差分Cとして求められる。
 半サイクルにおける単位角度(例えば1度)あたりの時間は交流の周波数(実施形態では50Hz:1サイクル20ms)から求めることができる。すなわち、(180[°]-点弧角度[°])×(1度当たりの時間=約0.056[ms])で導通時間を算出することができる。
 モード判定部1102は、調光モードにおいて、導通時間を輝度調整部1103に与えるとともに、メモリ1101に記録する。これによって、メモリ1101には、1サイクル毎の導通時間の履歴が格納される。
 また、モード判定部1102は、1サイクルの導通時間を算出(計測)する毎に、メモリ1101に最後に記録された導通時間との差分をとる。差分が0の場合には、モード判定部1102は、タイマによる計時を開始する。差分が0の時間(導通時間の変化がない時間)が所定時間を超えると、モード判定部1102は、制御モードを調色モードに切り替える(調色モードを選択する)。これに対し、差分が0の時間が所定時間を超えないうちに差分が検出された場合には、モード判定部1102は、タイマによる計時を終了し、調光モードの選択を維持する。
 モード判定部1102は、調色モードにおいて、調光モードと同様に、1サイクル毎の導通時間を計測し、メモリ1101に記録するとともに、導通時間の差分を算出する。但し、調色モードでは、1サイクル毎の導通時間は、色温度調整部1104に与えられる。モード判定部1102は、調光モードと同様に、導通時間の差分が0になると、タイマを起動して導通時間の差分が0の時間を計測する。導通時間の差分が0の時間が所定時間を超えると、モード選択部1102は、制御モードを再び調光モードに切り替える(調光モードを選択する)。もっとも、差分が0の時間が所定時間を超えないうちに差分が検出された場合には、モード判定部1102は、タイマによる計時を終了し、調色モードの選択を維持する。
 このように、モード判定部1102は、導通時間を監視して、導通時間に変化のない時間が所定時間を超えることを条件として、制御モードを切り替える。また、モード判定部1102は、選択中のモードに応じて、導通時間を輝度調整部1103と色温度調整部1104との一方に与える。なお、上記説明では、モード判定部1102は、1サイクル毎の導通時間を輝度調整部1103又は色温度調整部1104に供給するようにしている。これに対し、モード判定部1102が、必要に応じて複数のサイクルに1回、導通時間を供給するようにしても良い。
 輝度制御部としての輝度調整部1103は、モード判定部1102から供給される導通時間(点弧位相角度)に応じた輝度でLEDモジュール1060が発光するように、駆動回路1080に含まれる調光手段としての定電流回路1081を制御する。例えば、輝度調整部1103は、導通時間と駆動電流との相関を示すマップを有し、導通時間に応じた駆動電流をマップから求めてそのような駆動電流が供給されるように定電流回路1081を制御する。
 マップに示される導通時間と駆動電流との相関関係は、任意に設定可能であり、導通時間の長さと駆動電流の大きさとが比例関係にあっても良い。或いは、導通時間の長さと駆動電流との関係は非線形であっても良い。例えば、導通時間の長さに応じて駆動電流が段階的に大きくなるようにしても良い。要は、利用者が輝度を上げる操作部1047の操作を行った場合に、駆動電流値が増大し、利用者が輝度を下げる操作部1047の操作を行った場合に駆動電流値が低下するようにされていれば良い。このような駆動電流の増減が導通時間(点弧位相角度)と比例関係に無くても良い。
 定電流回路1081は、輝度調整部1103による制御下で、導電時間(点弧位相角度)に対して予め決定された駆動電流値で、LEDモジュール1060を構成するLED群1060a(第1LED(群)),LED群1060b(第2LED(群))の夫々に駆動電流を供給する。LEDモジュール1060に供給される駆動電流は、LED群1060aに供給される駆動電流IlowkとLED群1060bに供給される駆動電流Ihikとの合計値である。定電流回路1081は、合計値を増減させることで、LED群1060a,1060bに供給される駆動電流の平均電流値を増減し、LEDモジュール1060の輝度(発光量)を上昇又は下降させる。
 色温度制御部としての色温度調整部1104は、調色モードにおいて、導通期間(点弧位相角度)に応じた色温度でLEDモジュール1060が発光するように、駆動回路1080に含まれる調色手段としてのバランス回路1082を制御する。バランス回路1082は、パルス幅変調(PWM)回路を含んでおり、LED群1060aに供給される駆動電流(平均電流)IlowkとLED群1060bに供給される駆動電流(平均電流)Ihikとの比を調整する。ここに、色温度調整部1104は、例えば、導通時間と駆動電流比との相関を示すマップ又はテーブルを有しており、導通時間に応じて予め決められた駆動電流比で駆動電流Ilowkと及び駆動電流Ihikが供給されるように、バランス回路1082を制御する。
 なお、モード判定部1102,輝度調整部1103,色温度調整部1104は、マイコン1100に含まれるプロセッサがプログラムを実行することによって実現される機能として構成することが可能である。
 なお、上記説明では、点弧位相角度から導通時間を求めているが、導通時間を求め、導通時間の履歴を記録することは必須要件ではない。すなわち、導通時間の代わりに点弧位相角度の履歴が記録され、点弧位相角度に応じた駆動電流の合計値、或いは比で、LEDモジュール1060(LED群1060a及び1060b)の駆動制御が行われるようにしても良い。
 第6実施形態において、LEDモジュール1060は、例えば、サファイヤ基板上に製作された発光ダイオード群であって、複数個(例えば20個)のLED素子が夫々直列に接続された一組のLED群1060a,LED群1060bが同方向に並列配置されてなる。
 LED群1060a,1060bの夫々に含まれるLED素子の夫々は、発光波長が410nmで、順方向電流のときの端子電圧は3.5V、LED素子を20個直列に接続した場合には、70Vの直流で最大光量を発生する。
 LED群1060aを構成する各LED素子には、発光波長410nmの光で刺激(励起)すると約3000°Kの白色を発光する蛍光体が埋め込まれている。これに対し、LED群1060bを構成する各LED素子には、発光波長410nmの光で刺激(励起)すると約5000°Kの白色を発光する蛍光体が埋め込まれている。従って、LED群1060aの発光により照射される白色光と、LED群66bの発光により照射される白色光とは色温度が異なっている。
 なお、LED群1060a,1060bを構成するLED素子の数は適宜変更可能であり、一つのLED素子であっても良い。また、LED群1060a,1060bは、相互に異なる色度(色相、色温度)で発光すれば良く、各LED群1060a,1060bが採り得る色度は適宜選択可能である。また、LEDモジュール1060は、異なる色温度の白色光を発するLED群の組み合わせでなく、異なる色を発するLED群の組み合わせでも良い。異なる色の組み合わせは、例えば緑色と青色、黄色と赤色など、所望の組み合わせを適用することができる。このようなLED照明器具は、ネオンサインとしての利用が考えられる。
 以下、操作部1047の操作と、LEDモジュール1060の輝度調整(調光)及び色温度調整(調色)について詳細に説明する。第6実施形態における調光装置1040の操作部1047は、ダイヤル式のツマミ(ダイヤル)を有している。もっとも、操作部1047は、ダイヤル式のツマミの代わりにスライドバーを有することができる。
 第6実施形態では、LEDモジュール1060の輝度(発光量)を調整する場合には、操作部1047のツマミを左回転させて明るくし、右回転させて暗くする。但し、このような設定は、説明上の便宜の目的の設定である。すなわち、現在において一般的に用いられる調光装置は、回転型のダイヤルを時計方向に右回転すると、交流半サイクルにおける導通時間が増大する(例えば、図3(a)→図3(b))、このとき、調光装置に接続される照明器が白熱電球のような抵抗一定負荷である場合には、消費電力が増大し、白熱電球の輝度が上がる設定になっている。
 また、第6実施形態における操作部1047(ダイヤル)の回転角位置情報(操作量)は、LEDモジュール1060に対する駆動電流の導通時間の増減を制御するものではなく「利用者の意図情報」を入力するために使用される。このため、操作部1047の操作量は、負荷の消費電力増減や輝度増減に直接関与しない。
 第6実施形態におけるLEDモジュール1060の消費電力は、純粋な抵抗器で近似できる白熱電球負荷とは異なり、トライアック1042の点弧位相角度θとは独立に、負荷側の制御回路(マイコン1100)の判断で決定される。
 図23を用いて、トライアック1042を用いた第6実施形態におけるLEDモジュール1060の駆動制御を説明する。第6実施形態では、図23の(a)~(c)に示すような、トライアック1042の導通時間の長短(点弧位相角度)に拘わらず、LED照明器具1050に内蔵される輝度調整部1103が、LEDモジュール1060に供給する定電流値を決定する。したがって、LEDモジュール1060は、必ずしも交流電圧波形の瞬時値に比例した電力を消費しない。
 但し、図23の(a)のように、IGBTの点弧タイミング(点弧位相角度)が比較的遅く(導通時間が短く)、電圧波形の瞬時値が低い場合には、LEDモジュール1060の点灯に必要な電力をキャパシタ1084(蓄電部)に蓄えてからLEDモジュール1060に対する駆動電流の供給が継続的に行われる。
 例えば、図23(a)に示す例では、IGBTの導通期間は、正の半サイクル後半の点弧位相角度θ=150°から位相角度θ=180°までの30度期間である。点弧位相角度150度における日本の商用正弦波交流(100V)の瞬時値は70.7Vであって、LED素子(動作電圧:例えば24~30V)の点灯には十分である。
 しかし、点弧位相角度150度から180度に向かって正弦波交流の瞬時電圧は急激に減少する。したがって、LEDモジュール1060を構成するLED素子の駆動回路電源としては、70.7Vを供給する位相角度150度から、70.7Vの約1/2の電圧である35Vを供給する位相角度(略168度)までを、安定な動作を得る利用範囲として選択する。このような18度の期間に大容量キャパシタ(キャパシタ1084)を充電することによって、安定で継続的なLED用の電源を駆動回路1080で生成することができる。
 上記例において要求されるキャパシタ1084の充電電流は、交流半サイクル180度期間に消費する電力を18度期間内に充電する。このため、定常消費電流の約10倍の充電電流となる。例えば30ワットを消費するLED照明器の場合では、時間平均的には100Vrms(rmsは交流の実効値)で0.3Armsであるが、位相角度150度から位相角度168度までの平均電流はその10倍の3[A]程度と概算される。この値は、許容可能な電流値である。但し、瞬時電圧が100ボルト以上である位相90度±45度においては、充電電流は略0.3A程度とする。
 LEDモジュール1060の電源を上記のように構成することによって、トライアック1042の点弧位相角度とは独立にLED駆動電流を決定することが可能である。結果として、LEDモジュール1060の輝度をトライアック1042の導通角度から独立に、利用者の意図に基づいて制御することができる。
 図22に示す調光装置1040には、操作部1047としてのダイヤル及びトライアック1042を有する既存の発熱電球用の調光装置を適用できる。操作部1047のツマミの回転量(操作量)に応じて、トライアック1042の点弧位相角度θ(図3参照)を0°から180°の任意の値に調整することができる。
 第6実施形態では、説明の混乱を避ける目的で、調光装置1040の操作部(ダイヤル)1047の位置角度の数値と、交流周期中の点弧位相角度の数値が一致するように、以下の定義とする。
 すなわち、ダイヤルを12時の位置を中心として左右に90°回転可能とする。そして、時計回り方向におけるダイヤルの回転終点である「3時の位置」を「角位置180度」と呼称し、かつ、点弧位相角度180度であり通常消費電力最小、と定義する。また、反時計回り方向におけるダイヤルの回転終点である「9時の位置」を「角位置0度」と呼称し、かつ、点弧位相角度0度であり通常消費電力最大、と定義する。さらに、以下の説明において、LEDモジュール1060の輝度(発光量)を調整する動作を「調光」、LEDモジュール1060の色温度を調整する動作を「調色」と記述する。
 以下、LEDモジュール1060の調光時及び調色時における動作例について説明する。図24は、調光時における交流電圧、駆動電流等の波形説明図である。図25は、調色時における交流電圧、駆動電流等の波形説明図である。
 利用者が主電源スイッチ1041(図22)を閉じる(オンにする)ことによって、LEDモジュール1060が点灯する。この主電源投入時におけるLEDモジュール1060の輝度及び色温度は不定である。もっとも、例えば、マイコン1100の初期設定で所定の輝度及び色温度でLEDモジュール1060が点灯するように構成することもできる。
 利用者は、第1ステップとして、輝度を希望の値に変更することを意図して、操作部1047(ダイヤル)を左右に回転させる。LEDモジュール1060からの光を眺めて明るさを確認しながらダイヤルを回転させる。例えば、利用者がダイヤルを11時の位置にセットすると、図24の(a)に示すように、点弧位相角度が60°で固定された状態となる。この段階では、LEDモジュール1060は、調整可能な輝度の範囲の中間よりやや明るい輝度で点灯する。この輝度に利用者が満足する場合には、利用者は、さらなるダイヤル操作が必要ないものとして、ダイヤルから手を離す。この動作は、第1ステップ終了の意思表示として後述のマイコン1100により解釈される。
 第1ステップにおいて、マイコン1100は、主電源投入から利用者が操作部1047から手を離すまでの間、調光動作プログラムを実行し、第1ステップにおける動作を行う。本実施形態では、主電源投入によるマイコン1100の初期状態として、マイコン1100は、調光動作プログラムに従った動作を行う。すなわち、マイコン1100は調光モードで動作する。
 調光動作プログラムの実行により、マイコン1100は、ダイヤルの回転位置、すなわちトライアック1042の点弧位相角度(導通時間)を刻々と計測する。マイコン1100は、計測される点弧位相角度(導通時間)に従って定電流回路1091を制御し、LEDモジュール1060をなすLED群1060aに供給される駆動電流Ilowk,LED群1060bに供給される駆動電流Ihikの合計値(Ilowk+Ihik)を増減する。結果としてLEDモジュール1060の輝度が所望の値に更新される。利用者はLEDモジュール1060の明るさを観測しながら操作部1047のダイヤルの回転角度位置を刻々と調整することで、輝度を所望の明るさにすることができる。
 その後、上記したように、利用者が操作部1047から手を離すことによって、点弧位相角度(導通時間)が変化しない状態が所定時間(例えば5秒)継続すると、マイコン1100は、調光動作プログラムの実行を終了し、調色動作プログラムの実行を開始する。すなわち、制御モードが調色モードへ切り替わる。
 第2ステップとして、利用者がさらに色温度を希望の値に変更することを決定したと仮定する。例えば、第1ステップで手を操作部1047から離してから5秒以降10秒以内の第1停止時間内に、利用者は、操作部1047(ダイヤル)を11時の位置から、ふたたび左右に回転させる。利用者は、LEDモジュール1060の色温度を眺めながらダイヤル操作を行い、所望の色温度を示す場合に、操作部1047(ダイヤル)から再び手を離す。例えば、利用者が13時の位置で手を離したと仮定する。この場合、図23の(b)に示すように、交流の点弧位相角度が120°で固定される。
 調色動作プログラムの実行時、すなわち、調色モードにおいて、マイコン1100は、LEDモジュール1060の輝度を変化させること無く、すなわちLED駆動電流の合計値(Ilowk+Ihik)を一定に保ったまま、駆動電流Ilowkの値と駆動電流Ihikの値の比を変更する。これによってLEDモジュール1060の色温度が変化する。ダイヤルが操作されない時間、すなわち点弧位相角度(導通時間)が変更されない時間が発生すると、マイコン1100はタイマの計時を開始する。所定時間(例えば5秒)が経過する前に操作(導通時間)の変化が検知さなかった場合には、利用者の調色操作が終了したものとして、駆動電流IlowkとIhikとの比を固定した状態で制御モードを調光モードに戻す。これに対し、タイマが所定時間を計時する前に、操作の再開、すなわち導通時間の変化が検知された場合には、マイコン1100は、タイマによる計時を終了して、調色モードを維持する。
 なお、マイコン1100は、調光モードにおいて、タイマが所定時間(5秒)を計時し、調光モードから調色モードへ制御モードを切り換えた場合において、タイマの計時を継続することができる。そして、モードの切り替えから所定時間が経過した場合、例えば、タイマが計時開始から10秒を計時した場合には、利用者に調色の意図がないと判定する。この場合、マイコン1100は、調色モード切替時における駆動電流IlowkとIhikの値の比を固定した状態で、制御モードを調光モードに切り換える。
 トライアック調光器である調光装置1040の負荷であるLED照明器具1050(LEDモジュール1060)は、上記した動作例に従って動作する。このため、利用者が、調光装置1040及びLED照明器具1050を用いたLED照明システムの利用に際して予め学習すべき規則は、以下の単純な規則である。すなわち、操作部1047の操作を5秒以内の間隔で継続する限り、現在の制御モード(調光または調色モードの一方)が継続され、ダイヤル操作を5秒以上休止すると制御モードが切り替わる。
 上記した5秒という数値は、利用者の社会通念、年齢層、社会階層など応じて変更可能な値である。すなわち、市場の嗜好にあわせて設定可能な数値である。本願の出願人が実施した実験では、4秒±2秒(2~6秒)が利用者が利便を感じる範囲であるという知見を得た。点弧位相角度(導通時間)の変化がない所定時間は、適宜設定可能であり、マイコン1100に設定された所定時間を変更するためのユーザインタフェースが設けられていても良い。また、上記動作例では、調光及び調色モードの双方において、モード切替の契機となる所定時間は、同一の5秒である場合について説明した。但し、調光モードと調色モードとで、所定時間の長さが異なっていても良い。
 上記した調色モードの動作例において、マイコン1100が輝度を一定に維持しつつ色温度を変える旨の説明を行った。この調色モード時の動作について以下に詳述する。
 図24の(a)及び(b)は、トライアック1042(調光装置1040)の導通電圧と、LEDモジュール1060の駆動電流との関係を示す。図24(b)に示す波形は、照明器が単純抵抗負荷(例えば、白熱電球)である場合の電流波形である。図24(a)及び(b)を見れば分かるように、電圧波形と電流波形は相似形であることは良く知られている。
 これに対し、図24(c)は、本実施形態のような定電流駆動負荷の場合の電流波形を示す。図24(c)の電流波形は、図24(a)に示す交流電圧波形と全く異なることが分かる。すなわち、定電流駆動回路(定電流回路1081)を内蔵するLED照明器具1050においては、点弧直後から交流位相角度180°の直前まで、電圧波形の時間変化とは無関係に略一定の駆動電流が負荷(LEDモジュール1060)に供給される。
 また、図24(d)に示す充電波形(三角波)のように、点弧直後に大きな充電電流がキャパシタ1084を充電し、直流電圧を維持することによって、図24(e)に示す駆動電流波形のように、交流位相180°度の終了後(半サイクル終了後)も、負荷であるLEDモジュール1060への駆動電流の供給が継続されるように整流回路1083を設計することが可能である。なお、図24の(c),(d),(e)は、整流回路1083による全波整流後の電流波形を示す。
 上記したように、トライアック1042の点弧直後にキャパシタ1084を充電する比較的大きな電流が整流回路1083から供給されるようにすることによって、調光装置1040のダイヤル位置(操作量)に関わらず、図24(e)に示したような直流電圧の維持を図ることができる。従って、所望の電流値でLEDモジュール1060を駆動することができる。
 図25を用いて、先に述べた利用者が行う11時位置から13時位置までの操作手順に加えて、調光装置1040の動作とLEDモジュール1060が消費する負荷電流の関係を説明する。
 利用者が調光装置1040の操作部1047(ダイヤル)を時計方向にまわすと、図24(a)に示す点弧位相角度60度から図25(a)に示す点弧位相角度120度の状態に遷移し、導通時間が減少する。このとき、照明器具が白熱電球のような単純抵抗負荷ならば、図25(b)のような電圧比例波形の電流が流れる。しかし、本実施形態では図25(b)のようにならず、キャパシタ1084を充電する電流が図25(d)のように流れ、点弧直後から図24(d)に示す電流の略2倍の大きさの電流でキャパシタ1084が充電される。これは、交流の非導通時間が長いのでキャパシタ1084はLED消費電流により電圧が徐々に下がり、交流電源側とキャパシタ1084側の電位差が拡大していることに起因する。
 キャパシタ1084の容量が十分に大きい場合には、点弧位相角度が120度になって導通時間が減少しても、図25(e)のように略直流の負荷電流をLEDモジュール1060に対して連続的に供給することができる。なお、図25(c),(d)及び(e)は、整流回路1083による全波整流後の直流電流波形を示す。
 さらに、大容量のキャパシタ1084の利用が困難な白熱電球互換形のLED照明器具の場合には、図25(c)のように間欠的な直流電流がLEDモジュール1060に供給される。もっとも、人間の目に対し、図25(e)のような連続的な直流電流供給による点灯と区別はつかない場合には、図25(c)のような直流電流の供給も適用可能である。
 上述したように、調光装置1040の操作部1047のダイヤル位置に寄らず、LEDモジュール1060に供給すべき直流電源を確保することができる。このため、低ケルビン用のLED駆動電流Ilowkと、高ケルビン用のLED駆動電流Ihikは、図26(a)及び(b)のようにして調整できる。
 すなわち、第1ステップ(調光モード)終了時における駆動電流Ilowkと、駆動電流Ihikとは、図26(a)のように、同量の駆動電流が供給されるようにすることができる。これに対し、調色モードにおいて、ダイヤルを例えば13時の位置に移動すると、図26(b)に示すように、駆動電流I hikが増大する一方で、駆動電流Ilowkが減少し、全体としては青みがかった白色になる。このような動作は、バランス回路1082に内蔵されたPWM回路によって、駆動電流I hikと駆動電流Ilowkとの比が変更されることによって実現される。
 なお、図26(a)及び(b)に示すように、LED群60a,60bには、交流の正負の1サイクル期間に、バランス回路1082で決定される時間の比で、時間t1のパルス電流が供給される。図26(a)に示す例では、同数(3つ)のパルス電流がLED群1060a,1060bに供給されている。これに対し、図6(b)では、LED群1060bに対して4つのパルス電流が供給される一方で、LED群1060aに対して2つのパルス電流が供給されている。このように、電流の比が変更されるが、パルスの総数は変更されない。すなわち、駆動電流の合計値は一定である。従って、輝度が維持された状態で色温度を変更することができる。
 第6実施形態では、白熱電球用に設けられた既設の配線と既設のトライアック調光器(調光装置1040)を利用して、LED照明器具1050の調光及び調色を図ることができる。すなわち、調光装置1040の操作部1047(ダイヤル)の操作履歴、すなわちトライアックの点弧位相角度(導通時間)をLED照明器具1050側で記憶することにより、調光モードと調色モードの二つの制御モードを実現する。これにより、調光と調色の二つの機能を、配線工事を実施することなく既設の調光装置1040を用いて実現することができる。
 第6実施形態によれば、調光と調色の二つの制御を、一個の調光装置1040で実現することができる。このため、調光装置の交換工事を実施することなく、負荷側の電球または光源をLED照明器具1050に変更することで、調光及び調色を実施可能なLED照明器具を、きわめて容易に導入することができる。
 これによって、従来の白熱電球や蛍光灯を用いていた照明システムを、LED照明器具1050を用いて高性能化することが可能となる。さらに、白色照明にあってはより太陽光線のスペクトラムに近い演色性を実現することができる。また、LED照明器具1050によれば、一個のLED照明器具で昼光色から電球色まで広い範囲の色温度を連続的に可変にすることができる。
 なお、第1実施形態では、点弧位相角度に基づき導通時間が計測され、導通時間の履歴がメモリ1101に記録される構成例について示した。この構成に代えて、導通時間の計測が行われず、単に点弧位相角度が所定サイクル(例えば1サイクル)毎に検出され、点弧位相角度の履歴がメモリ1101に記録されるようにしても良い。また、点弧位相角度(導通時間)の履歴がメモリ1101に記録されると説明したが、メモリ1101には、最後に検出された点弧位相角度(導通時間)が少なくとも記録されるようになっていれば良い。
 〔第7実施形態〕
 次に、本発明の第7実施形態について説明する。第7実施形態は第6実施形態と同様の構成を有するので、主として相違点について説明し、第1実施形態と同様の構成については説明を省略する。
 第7実施形態では、第6実施形態と異なり、既設のトライアック調光器(調光装置1040)を新規な調光装置に交換することによって、調光と調色との二つの機能を、小規模な配線器具交換工事のみで実現することにより、高い利便性を実現する。
 図27は、第7実施形態に係るLED照明システムの回路構成例を示す図である。LED照明システムは、調光装置1040Aと、LED照明器具1050Aとを含む。第7実施形態でも第6実施形態と同様の既設配線(母線1010,給電線1020,引き出し線1030)を活用する。
 第7実施形態では、調光用の操作部と、調色用の操作部との2以上の操作部を有する調光装置1040Aを適用する。これによって、第6実施形態よりも利便性の向上したLED照明システムを提供することができる。
 調光装置1040Aは、第1及び第2成形部としての、一対のIGBT(絶縁ゲート型バイポーラ・トランジスタ)を備える。IGBTは、小電圧の入力信号で高電圧の出力を開閉できる。IGBTは単一のバイポーラ・トランジスタであるので、図27に示すように、二つのIGBT1048,1049が逆極性で直列接続される。IGBT1048,1049夫々は、ダイオード1032,1033を備えている。
 調光装置1040Aは、調光用の操作部1047a(第1ユーザインタフェース)と調色用の操作部1047b(第2ユーザインタフェース)とを備えている。操作部1047a,操作部1047bの夫々は、輝度及び色温度の夫々を調整するためのダイヤル(ツマミ)を有している。操作部1047a,1047bの夫々の操作量を示す信号は、論理回路1400に与えられる。
 論理回路1400は、操作部1047a,1047bの各操作量(ダイヤルの回転角度)を夫々検出する二つのロータリーエンコーダ(図示せず)を含んでいる。論理回路400は、操作部1047aのダイヤル位置(ロータリーエンコーダの検出位置)に応じたタイミングで信号1408,1409をIGBT1048,1049のゲートに供給する。信号1408は、コレクタ-エミッタ間の電流を所定期間停止させる逆方向の電流であり、信号1408,1409の出力タイミングは、操作部1047aのダイヤル位置に依存する。信号1408,1409がIGBT1048,1049のゲートに供給されることで、IGBT1048,1049のコレクタ-エミッタ間を流れる電流(商用電源からの交流の正の半サイクルで流れる電流)の導通を所定期間(例えば1ms)停止させることができる。
 図28は、操作部1047aの操作量と、交流波形との関係を示す図である。図28(a)に示すように、交流の正負の各半サイクルにおいて、図28(b)に示すような、操作部1047aの操作量に応じたパルス信号(信号1408,1409)を生成し、IGBT1048,1049のゲートに与える。これにより、正負の各サイクルにおいて、交流が所定期間t4(例えば1ms)遮断される。
 これによって、商用電源からの交流電圧の正負の半サイクルは、操作部1047aの操作量に応じた信号1408,1409の出力タイミングに従った遮断タイミングで所定期間t4だけ遮断された状態の波形となる。このような波形を有する交流電圧がLED照明器具1050Aに供給される。所定期間t4は、1msのような半サイクル期間(10ms:50Hzの場合)に比べて短い時間であるので、交流電圧は略正弦波と考えることができる。
 交流の正負の半サイクルにおけるパルス信号(信号1408)による遮断のタイミングは、操作部1047aのダイヤルの回転量(操作量)、すなわち輝度の制御量に依存する。図28(c),図28(e)に示すように、ダイヤルの操作量が輝度を増大する方向に大きくなるにしたがって、信号1408,1409の出力タイミングが早まり、交流の正負の半サイクルにおける遮断タイミングが早くなる。これによって、LED照明器具1050Aに供給される交流電圧の正負の半サイクルの波形を、輝度調整用の制御信号が埋め込まれた(付加された)状態にすることができる。
 また、論理回路1400は、操作部1047bのダイヤル位置に応じた信号1409をIGBT1049のゲートに供給する。信号1409の供給によって、商用電源からの交流の負の半サイクルにおいてIGBT1049のコレクタ-エミッタ間を流れる電流を所定時間(例えば1ms)導通停止(遮断)させることができる。
 図29は、操作部1047bの操作量と、交流波形との関係を示す図である。図29(a)に示すように、交流の負の半サイクルにおいて、図29(b)に示すような、パルス信号(信号1409)を生成し、IGBT1049のゲートに与える。これにより、交流が負のサイクルで所定期間t4(例えば1ms)遮断される。
 これによって、商用電源からの交流電圧の負の半サイクルは、信号1409の出力タイミングに応じた遮断タイミングで所定期間t4だけ遮断された状態の波形となる。このような波形を有する交流電圧がLED照明器具1050Aに供給される。所定期間t4は、1msのような半サイクル期間(10ms:50Hzの場合)に比べて短い時間であるので、交流電圧は略正弦波と考えることができる。
 交流の負の半サイクルにおけるパルス信号(信号1409)による遮断のタイミングは、操作部1047bのツマミの回転量、すなわち色温度の制御量に依存する。図29(c),図29(d)に示すように、ツマミの操作量が色温度を低下させる方向に大きくなるにしたがって、信号1409の出力タイミングが早まり、交流の負の半サイクルにおける遮断タイミングが早くなる。これによって、LED照明器具1050Aに供給される交流電圧の負の半サイクルの波形を、色温度調整用の制御信号が埋め込まれた(付加された)状態にすることができる。
 上述したように、操作部1047aを操作した場合には、信号1408,1409の発生により、正負の半サイクルにおける遮断位置(遮断位相角度)が変動する。これに対し、操作部1047bを操作した場合には、信号1409のみが発生し、負の半サイクルにおける遮断位置(遮断角度)のみが変動する。これは、制御装置側で、正負の遮断位置が同時に変動する場合を調光用の制御信号と判定し、負の遮断位置のみが変動する場合を調色用の制御信号と判定するためである。もっとも、操作部1047aを調色用の操作部とし、操作部1047bを調光用の操作部としても良い。また、操作部1047bの操作によって、信号1408のみが生じ、正の半サイクルにおける遮断位置のみが変動するようにしても良い。
 LED照明器具1050Aは、遮断角度検出回路1090Aを含んでいる。検出回路1090Aは、調光装置1040A側から供給される交流を直流に変換する整流回路1091と、整流回路1091から出力される直流電圧からマイコン1100の動作用直流電圧を生成する定電圧源1092と、交流の正負の半サイクルにおける遮断タイミングを検出する角度検出回路1093Aとを備えている。
 角度検出部1093Aは、正負の半サイクルの夫々における遮断位相角度θを検出して、マイコン1100の振分部1102A(判定部)に渡す。振分部1102Aは、正負の半サイクルの夫々における遮断位相角度θをメモリ1101に履歴情報として記録する。このとき、振分部1102Aは、1サイクル中の正負の遮断位相角度θを検出した場合に、各遮断位相角度θを、メモリ1101に最後に記録した正負の遮断位相角度θと比較する。このとき、正負の遮断位相角度θの双方が変動している(差分を有する)場合には、振分部1102Aは、調光操作が実施されたとの判断に基づき、検出された遮断位相角度θを輝度調整部1103へ送る。
 これに対し、遮断位相角度θの比較において、負の遮断位相角度θのみが変動している場合には、振分部1102Aは、調色操作が実施されたとの判断に基づき、検出された遮断位相角度θを色温度調整部1104へ送る。
 輝度調整部1103,色温度調整部1104,及びLEDモジュール1060の構成は、第6実施形態とほぼ同様である。すなわち、輝度調整部1103は、遮断位相角度θに応じた輝度でLEDモジュール1060が発光するように定電流回路1081による駆動電流の供給を制御する。すなわち、輝度調整部1103は、遮断位相角度θに応じて予め決定された駆動電流がLEDモジュール1060に供給されるように定電流回路1081を制御する。
 例えば、LED照明器具1050Aに供給される交流電圧波形が図28(a)の場合には、輝度調整部1103は、遮断位相角度θが正(負)の半サイクルの後半に位置することから、利用者が低輝度でのLEDモジュール1060の発光を所望していると解釈する。このような解釈を前提として、輝度調整部1103は、遮断位相角度θに対して予め決定されている、比較的小さい駆動電流値で駆動電流供給が行われるように定電流回路1081を制御する。
 また、交流電圧波形が図28(c)の場合には、輝度調整部1103は、遮断位相角度θが正(負)の半サイクルの半ばに位置することから、利用者が中輝度でのLEDモジュール1060の発光を所望していると解釈する。このような解釈を前提として、輝度調整部1103は、遮断位相角度θに対して予め決定されている、比較的中程度の駆動電流値で駆動電流供給が行われるように定電流回路1081を制御する。
 また、交流電圧波形が図28(e)の場合には、輝度調整部1103は、遮断位相角度θが正(負)の半サイクルの前半に位置することから、利用者が高輝度でのLEDモジュール1060の発光を所望していると解釈する。このような解釈を前提として、輝度調整部1103は、遮断位相角度θに対して予め決定されている、比較的高い駆動電流値で駆動電流供給が行われるように定電流回路1081を制御する。もっとも、上記例は、輝度が三段階で制御されることを示すものではなく、遮断位相角度θの値に応じた2以上の段階での輝度制御が可能である。
 色温度調整部1104は、負の遮断位相角度θに応じた色温度でLEDモジュール1060が発光するように、バランス回路1082の動作を制御する。すなわち、色温度調整部1104は、負の遮断位相角度θに応じた駆動電流の比で、LEDモジュール1060を構成するLED群1060a(低色温度LED(低ケルビン温度用LED)),LED群1060b(高色温度LED:高ケルビン温度用LED)の夫々に駆動電流を供給する。
 例えば、LED照明器具1050Aに供給される交流電圧波形が図29(a)の場合には、遮断位相角度θが負の半サイクルの後半に位置する。この場合、利用者が高色温度でのLEDモジュール1060の発光を所望しているとの前提において、色温度調整部1104は、遮断位相角度θに対して予め決定されているバランス(比)で、LED群1060a及び1060bに駆動電流が供給されるように、バランス回路1082を制御する。
 また、LED照明器具1050Aに供給される交流電圧波形が図29(c)の場合には、遮断位相角度θが負の半サイクルの半ばに位置する。この場合、利用者が中色温度でのLEDモジュール1060の発光を所望しているとの前提において、色温度調整部1104は、遮断位相角度θに対して予め決定されているバランス(比)で、LED群60a及び60bに駆動電流が供給されるように、バランス回路82を制御する。
 また、交流電圧波形が図29(c)の場合には、遮断位相角度θが負の半サイクルの前半に位置する。この場合、利用者が低色温度でのLEDモジュール1060の発光を所望しているとの前提において、色温度調整部1104は、遮断位相角度θに対して予め決定されているバランス(比)で、LED群1060a及び1060bに駆動電流が供給されるように、バランス回路1082を制御する。もっとも、上記例は、色温度が三段階で制御されることを示すものではなく、遮断位相角度θの値に応じた2以上の段階での色温度制御が可能である。
 なお、信号1408及び1409に基づく正負のサイクルにおける遮断位相角度θは、メモリ1101に記録される。このため、角度検出回路1093で遮断角度θが検出されない場合には、振分部1102Aは、メモリ1101に最後に記録された正負の遮断位相角度θを輝度調整部1103及び色温度調整部1104に供給する。これによって、時間t4が0、すなわちt4の遮断時間が消滅しても、輝度及び色温度が維持される。
 第7実施形態によれば、調光装置1040Aが輝度調整用の操作部1047aと、色温度調整用の操作部1047bとを有している。これによって、利用者は、調光操作と調色操作とを相互に独立して実施することができる。このため、第6実施形態に比べて、操作性の向上したLED照明システムを提供することができる。
 第7実施形態においても、既存の配線設備を用いるため、LED照明器具1050Aの導入による大幅な配線工事を回避することができ、LED照明器具50A導入時の初期コストの低減を図ることができる。
 〔第8実施形態〕
 次に、本発明の第8実施形態に係るLED照明システムについて説明する。図30は、第8実施形態に係るLED照明システムの構成例を示す図である。LED照明システムは、大略して、調光装置(調光・調色コントローラ)Cと、LED照明器具(LED発光デバイス)800とを含む。
 調光装置Cは、一対の端子T201,T202と、もう一対の端子T203,T204を有している。端子T201,T202は、商用電源(例えば、交流100V,50又は60Hz)を供給する一対の商用電源母線1010に接続される。端子T203も、商用電源母線1010に接続される。端子T204は、給電線1020aを介してLED照明器具800が備える一対の端子T205,T206のうちの端子T205と接続される。端子T206は、商用電源母線1010の他方に接続される。
 調光装置Cは、第2実施形態(図4)で説明した主電源スイッチ141と、直流生成部としての電源回路140と、第1及び第2制御部としてのマイコン180Aと、第1及び第2操作部としてのXYスイッチ185とを備えている。これらの詳細は、第2実施形態で説明したので説明を省略する。但し、電源回路140は、第2実施形態で説明したようなDC24Vの生成機能を有していなくても良い。
 これに対し、調光装置Cは、制御信号生成部としての制御信号生成回路191を備えている。本実施形態におけるマイコン180は、XYスイッチ185から入力される調光・調色の操作量(制御量)(ビットb0~b5で示されるビット値)から調光・調色用の制御情報として、輝度を表すディジタル値(輝度値)、及び色度(本実施形態では色温度)を表すディジタル値(色温度値)を生成するエンコーダとして機能する。
 例えば、マイコン180Aは、輝度値を示すディジタル値と、色温度を示すディジタル値を保持する記録媒体(メモリ)を有している。XYスイッチ185の「U」ボタン、「D」ボタンの押し下げに応じて、メモリに保持された輝度値(ディジタル値)を増減(更新)する。マイコン180Aは、保持された輝度値を信号線180aに出力する。一方、マイコン180Aは、「H」ボタン、「L」ボタンの押し下げに応じて、メモリに保持された色温度値(ディジタル値)を増減する。マイコン180Aは、保持された色温度値を信号線180bに出力する。なお、各ディジタル値は、所定のビット数で表現される。
 制御信号生成回路191は、商用電源から供給される交流波形を用いて制御情報を含む制御信号を生成する。制御信号生成回路191は、マイコン180Aと信号線180a,180bを介して接続されており、マイコン180Aから出力される輝度値及び色温度値が入力される。制御信号生成回路191は、端子T203から入力される商用電源からの正弦波の波形を加工することによって、輝度値及び色温度値に応じた調光・調色用の制御信号を生成し、端子T204から出力する。これによって、調光・調色のための制御信号がLED照明器具800に送られる。
 制御信号生成回路191の詳細構成としては、以下を例示できる。例えば、制御信号生成回路191は、図31に示すように、トライアック192と、トライアックの点弧制御回路193とを含むことができる(第1形態)。点弧制御回路193は、商用交流の正弦波に対する正負の半サイクルに関して、マイコン180Aからの調光・調色に係る制御情報(輝度値及び色温度値)に応じてトライアック192の点弧タイミングを制御する。
 すなわち、点弧制御回路193は、正の半サイクルに関して、輝度値と色温度値との一方(例えば、輝度値)に応じた点弧位相角度で点弧するためのトリガ信号をトライアック192に供給する。一方、点弧制御回路193は、負の半サイクルに関して、輝度値と色温度値との他方(例えば、色温度値)に応じた点弧位相角度で点弧するトリガ信号をトライアック192に供給する。トライアック192は、トリガ信号を得てから電圧が0になるまでの点弧期間において、端子T203から供給される商用電源からの交流を導通させる。
 したがって、調光装置Cの端子T204からは、輝度値及び色温度値のそれぞれに応じた導通期間で、商用電源からの交流が制御信号として出力される。LED照明器具800では、端子T205から入力される交流波形(制御信号波形)から、トライアック192の正負の各半サイクルにおける点弧位相角度を認識し、点弧位相角度から輝度値及び色温度値に相当する、調色及び調光に係る制御情報を得ることができる。
 或いは、制御信号生成回路191は、図32に示すような第2の形態を有することができる。第2の形態は、第7実施形態で説明したような、論理回路1400A及び一対のIGBT1048,1049(ダイオード1032,1033を含む)を備えることができる。第2形態の制御信号生成回路191では、論理回路1400Aは、マイコン180Aから供給される輝度値と色温度値との一方(例えば、輝度値)に応じたタイミングでIGBT1048のゲートに信号を与える。一方、論理回路1400Aは、輝度値と色温度値との他方(例えば、色温度値)に応じたタイミングでIGBT1049のゲートに信号を与える。
 これによって、商用電源からの正弦波が、図28に示したような、正弦波の正負の各半サイクルにおいて、輝度値及び色温度値に応じた遮断部分を含む波形(制御信号)となる。このような交流波形(制御信号)が端子T204から出力され、LED照明器具800に供給される。LED照明器具800では、端子T205から入力される交流波形の遮断部分の位置(遮断位相角度)から、輝度値及び色温度値に相当する制御情報を得ることができる。
 LED照明器具800は、端子T205,端子T206に接続された電源回路801と、電源回路802と、マイコンを含む制御回路803と、ディジタル/アナログ変換器(D/A変換器)804とを備えている。さらに、LED照明器具800は、総電流規定回路839と、個別電流値調整回路840と、第6実施形態と同様のLEDモジュール1060とを備えている。
 電源回路801は、母線1010からの商用電源交流を直流に変換する整流回路を有する一方で、LED駆動用の電圧(例えば24V)を生成して配線806に出力する。電源回路(定電圧源)802は、配線806からの電圧から制御回路803の動作用の電圧(例えば3.3V)を得て制御回路803に入力する。
 図31に示した第1の形態に対しては、図33に示す制御回路803の構成が適用される。図33において、制御回路803は、点弧位相角度を検出する点弧位相角度検出回路1093と、マイコン803Aとを備える。マイコン803Aは、水晶発振子805(図30)から供給される動作クロックに従って動作する。マイコン803Aは、メモリ1101を備えるとともに、マイコン803Aが備える図示しないプロセッサがプログラムを実行することによって実現される機能としての、振分部1102,輝度調整部1103A,及び色温度調整部1104Aを備えている。
 点弧角度検出回路1093は、調光装置Cから供給される制御信号における正負の半サイクルにおける点弧位相角度を求める。振分部1102Aは、正の点弧位相角度を輝度調整部1103Aに渡し、負の点弧位相角度を色温度調整部1104Aに渡す。
 輝度調整部1103Aは、メモリ1101に保持された、点弧位相角度と輝度値と関連づけて格納した対応テーブル(図示せず)を参照し、振分部1102Aから得た点弧位相角度に対応する輝度値を対応テーブルから得る。これによって、マイコン180が出力した輝度値を得る(復元する)ことができる。輝度値は配線811へ出力される。
 色温度調整部1104Aは、メモリ1101に保持された、点弧位相角度と色温度値と関連づけて格納した対応テーブル(図示せず)を参照し、振分部1102Aから得た点弧位相角度に対応する色温度値を対応テーブルから得る。色温度値は、配線812へ出力すべきLED群1060a用の色温度値と、配線813へ出力すべきLED群1060b用の色温度値とからなる。各色温度値は、配線812,813へ出力される。
 図32に示した第2の形態に対しては、図34に示す制御回路803の構成が適用される。図34において、制御回路803は、点弧位相角度検出回路1093の代わりの(遮断位相)角度検出回路1093Aを備える点を除き、図33に示した構成と同じである。
 角度検出回路1093Aは、制御信号中の正負の半サイクルにおける遮断位相角度を検出する。振分部1102Aは、正の半サイクルにおける遮断位相角度を輝度調整部1103Aに送り、負の半サイクルにおける遮断位相角度を色温度調整部1104Aに送る。以上のように、制御装置803は、調光装置Cからの調光・調色用の制御信号を受け取り、制御信号から輝度値及び色温度値を得るデコーダとして機能する。
 総電流規定回路839は、オペアンプ831,抵抗832,トランジスタ833を含んでいる。個別電流値調整回路840は、オペアンプ841,842と、抵抗846,843と、トランジスタ844,845とを含んでいる。
 制御回路803のマイコン803Aは、配線811,812,813を介してD/A変換器804に接続されている。D/A変換器804は、配線821,ツェナーダイオード834及び抵抗835を介して配線806に接続されており、ツェナーダイオード834と抵抗835との間にオペアンプ831の端子が接続されている。また、D/A変換器804は、配線822を介してオペアンプ841の一方の端子に接続されるとともに、配線823を介してオペアンプ842の一方の端子に接続されている。
 このようなLED照明器具800において、操作者が輝度の上昇を意図してXYスイッチ185のUボタンを押下すると、マイコン803Aから配線811へ出力される輝度値が減少する。D/A変換器804は、輝度値に応じたアナログ電位を配線821に生じさせる。
 この結果、配線821のアナログ電位は下降して、オペアンプ831の出力であるトランジスタ833のベース電位も下降し、pnpトランジスタ833のエミッタ電流は増大する。従って、LEDモジュール1060の各LED群1060a,1060bに供給される総電流は増加してLEDモジュール1060から発する光が以前より明るくなる(輝度が上昇する)。これに対し、XYスイッチ185のDボタンを押下げた場合には、上記と逆の作用が起こり、LEDモジュール1060から発する光が暗くなる。
 操作者が色温度の上昇を意図してXYスイッチ185のHボタンを押下げると、マイコン803Aから配線812へ出力される色温度値が増加する一方で、マイコン803Aから配線813へ出力される色温度値が低下する。D/A変換器804は、配線812からの色温度値に応じたアナログ電位を配線822に生じさせる一方で、配線813からの色温度値に応じたアナログ電位を配線823に生じさせる。
 この結果、配線452のアナログ電位は上昇して、オペアンプ841の出力であるnpnトランジスタ844のベース電位も上昇し、npnトランジスタ844のコレクタ電流は増加する。一方、オペアンプ842の出力であるnpnトランジスタ845のベース電位は下降し、npnトランジスタ845のコレクタ電流は減少する。
 したがって、色温度の高いLED群1060aの発光量は、色温度の低いLED群1060bの発光量よりも大きくなり、LEDモジュール1060全体としては色温度が上昇して青みがかった青白色を呈する。色温度の低下を意図してXYスイッチ185のLボタンが押された場合には、上記と逆の作用が生じ、LED群1060aの発光量が減少し、LED群1060bの発光量が増加することで、LEDモジュール1060の色温度が低下する。このような動作により、LEDモジュール1060の輝度及び色温度を所望の値に調整することが可能である。
 なお、図30に示した例では、個別電流値調整回路840から独立した総電流規定回路839を設けている。これに対し、個別電流値調整回路840に対し、マイコン803Aで得られた輝度値に基づき、LED群1060a,1060bにそれぞれ供給される平均電流の比が変わらない状態で、LED群1060a,1060bに供給される平均電流が増減するような制御値を配線812及び813から出力する変形が可能である。このような変形によれば、輝度調整も個別電流値調整回路840で実施できるので、総電流規定回路839に係る構成は省略することができる。
 以上説明した実施形態における構成は、本発明の目的を逸脱しない範囲で適宜組み合わせることができる。
10A・・・交流電源入力端子
20・・・LED照明装置(LED発光デバイス)
22A・・・LED群(第1LED群)
22B・・・LED群(第2LED群)
23A,23B・・・端子
90・・・半波倍電圧整流回路
100・・・クロック生成回路
101,102・・・コンパレータ(比較器:オペアンプ)
110・・・デューティ比調整回路
120・・・プッシュプル形駆動回路
130・・・駆動パルス発生・可変回路
183・・・直流電源回路
141・・・主電源スイッチ
150・・・H型フルブリッジ制御回路
151・・・制御回路
160・・・ドライブ電流検出回路
165・・・抵抗器
161,162・・・フォトカプラ
163,164・・・積分回路
200,200A,201,201A,202A,221,222,301,312,322・・・配線
170・・・極性変換スイッチ
180・・・マイクロプロセッサ
185・・・XYスイッチ
186・・・タイマ・カウンタ
186A・・・マイクロプロセッサ
A・・・調光装置
B,B1・・・調光装置(点灯制御装置)
400・・・商用電源母線
401・・・照明装置用給電線
402・・・照明装置点滅用の引き込み線
403・・・仮想線
410・・・調光装置(調光ボックス)
412・・・直流電源供給回路(電源回路)
413・・・制御回路
414,415・・・直流電源供給線
416・・・操作部
416A,416B・・・操作ダイヤル
417・・・操作量検出部(信号生成器)
417A,417B・・・可変抵抗器
418,419・・・信号線
420・・・制御装置
421・・・発振子
430・・・駆動装置
431・・・駆動論理回路
432・・・駆動回路
 

Claims (8)

  1.  極性を逆にして並列接続された、色度が相互に異なる第1LED及び第2LEDを含むLED照明装置と、調光装置とを含むLED照明システムであって、
     前記調光装置は、
     交流電源から受電される交流から直流電源を生成する直流生成部と、
     前記第1LED及び前記第2LEDの点灯による照明光の輝度を操作するための第1操作部と、
     前記第1LED及び前記第2LEDの点灯による照明光の色度を操作するための第2操作部と、
     前記第1操作部の操作量に応じて、所定の周期毎に前記第1LED及び前記第2LEDに供給すべき平均電流の総量を決定する第1制御部と、
     前記第2操作部の操作量に応じて、前記所定の周期毎に前記第1LED及び前記第2LEDの夫々に供給すべき平均電流の比を決定する第2制御部と、
     前記直流生成部によって得られた直流電源を用いて、前記所定の周期毎に、前記第1及び第2制御部によって決定された平均電流の総量及び平均電流の比を有する、前記第1LEDに供給すべき正又は負の電流の一方と前記第2LEDに供給すべき正又は負の電流の他方とを含む交流電流を生成して前記LED照明装置に供給する供給部と
    を含む、LED照明システム。
  2.  前記第1制御部は、前記交流電源の交流電圧と周期が等しい三角波電圧と、前記三角波電圧のスライスレベルを規定する、前記第2操作部の操作量に応じた参照電圧とを比較して、正負の矩形波電圧を出力する比較器を含み、
     前記第2制御部は、前記第1操作部の操作量に応じて、前記正負の矩形波電圧の1周期における、正負の期間の夫々において前記LED照明装置に供給すべき電流のデューティ比を決定するパルス幅調整回路を含み、
     前記供給部は、前記正負の矩形波電圧の正の期間において、前記第1及び第2LEDの一方に対し、前記パルス幅調整回路で決定されたデューティ比で正の電流を供給し、前記正負の矩形波電圧の負の期間において、前記第1及び第2LEDの他方に対し、前記パルス幅調整回路で決定されたデューティ比で負の電流を供給する
    請求項1に記載のLED照明システム。
  3.  前記供給部は、前記所定の周期毎に、正のパルス及び負のパルスが入力され、正のパルスがオンの時間、正の電流を前記LED照明装置に供給する一方で、負のパルスがオンの時間、負の電流を前記LED照明装置に供給する駆動回路を含み、
     前記第1制御部は、前記第1操作部の操作量に応じて、前記所定の周期における正のパルスのオン時間及び負のパルスのオン時間を決定し、
     前記第2制御部は、前記第2操作部の操作量に応じて、前記所定の周期における正のパルスのオン時間と負のパルスのオン時間との比を決定する
    請求項1に記載のLED照明システム。
  4.  前記第1制御部は、前記第1操作部の操作量に応じて、前記所定の周期における、所定のパルス幅を夫々有する正負のパルスの数を決定し、
     前記第2制御部は、前記正負のパルスのパルス幅を決定する
    請求項3に記載のLED照明システム。
  5.  前記調光装置が二本一対の配線のみを介して前記LED照明装置と接続されている
    請求項1から4のいずれか1項に記載のLED照明システム。
  6.  極性を逆にして並列接続された、発光波長域が相互に異なる第1LED及び第2LEDを含むLED照明装置と接続される調光装置であって、
     交流電源から受電される交流から直流電源を生成する直流生成部と、
     前記第1LED及び前記第2LEDの点灯による照明光の輝度を操作するための第1操作部と、
     前記第1LED及び前記第2LEDの点灯による照明光の色又は色温度を操作するための第2操作部と、
     前記第1操作部の操作量に応じて、所定の周期毎に前記第1LED及び前記第2LEDに供給すべき平均電流の総量を決定する第1制御部と、
     前記第2操作部の操作量に応じて、前記所定の周期毎に前記第1LED及び前記第2LEDの夫々に供給すべき平均電流の比を決定する第2制御部と、
     前記直流生成部によって得られた直流電源を用いて、前記所定の周期毎に、前記第1及び第2制御部によって決定された平均電流の総量及び平均電流の比を有する、前記第1LEDに供給すべき正又は負の電流の一方と前記第2LEDに供給すべき正又は負の電流の他方とを含む交流電流を生成して前記LED照明装置に供給する供給部と
    を含む、調光装置。
  7.  色度が相互に異なる第1LED及び第2LEDを含むLED照明器具と、調光装置とを含むLED照明システムであって、
     前記調光装置は、
     交流電源から受電される交流から直流電源を生成する直流生成部と、
     前記第1LED及び前記第2LEDの点灯による照明光の輝度を操作するための第1操作部と、
     前記第1LED及び前記第2LEDの点灯による照明光の色度を操作するための第2操作部と、
     前記第1操作部の操作量に応じて、所定の周期毎に前記第1LED及び前記第2LEDに供給すべき平均電流の総量を決定する第1制御部と、
     前記第2操作部の操作量に応じて、前記所定の周期毎に前記第1LED及び前記第2LEDの夫々に供給すべき平均電流の比を決定する第2制御部と、
     前記直流生成部によって得られた直流電源を用いて、前記所定の周期毎に、前記第1及び第2制御部によって決定された平均電流の総量及び平均電流の比を有する、前記第1LEDに供給すべき電流と前記第2LEDに供給すべき電流とを生成して前記LED照明器具に供給する供給部と
    を含む、LED照明システム。
  8.  色度が相互に異なる第1LED及び第2LEDと、
     交流から直流を生成する直流生成部と、
     前記第1LED及び前記第2LEDに供給すべき平均電流の総量情報と、前記第1LED及び前記第2LEDの夫々に供給すべき平均電流の比情報を、調光装置から受信する受信手段と、
     前記平均電流の総量情報と前記平均電流の比情報から平均電流の総量及び比を求める受信手段からの情報を用いて、前記平均電流の総量及び前記平均電流の比を算出する算出手段と、
     前記直流生成部で生成された電流から、前記平均電流の総量及び前記平均電流の比に応じた電流を生成して前記第1LED及び前記第2LEDに供給する供給手段と
    を含むLED照明器具。
PCT/JP2011/058879 2010-04-09 2011-04-08 調光装置、及びled照明システム WO2011126106A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117012365A KR20120135003A (ko) 2010-04-09 2011-04-08 조광 장치, 및 led 조명 시스템
EP11766006A EP2557900A1 (en) 2010-04-09 2011-04-08 Light dimming apparatus and led illumination system
CN201180011139.0A CN102783253B (zh) 2010-04-09 2011-04-08 调光装置和led照明系统
US13/619,829 US8810141B2 (en) 2010-04-09 2012-09-14 Illumination light control apparatus and LED illumination system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010090905 2010-04-09
JP2010-090905 2010-04-09
JP2010288971 2010-12-24
JP2010-288971 2010-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/619,829 Continuation US8810141B2 (en) 2010-04-09 2012-09-14 Illumination light control apparatus and LED illumination system

Publications (1)

Publication Number Publication Date
WO2011126106A1 true WO2011126106A1 (ja) 2011-10-13

Family

ID=44763040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058879 WO2011126106A1 (ja) 2010-04-09 2011-04-08 調光装置、及びled照明システム

Country Status (7)

Country Link
US (1) US8810141B2 (ja)
EP (1) EP2557900A1 (ja)
JP (2) JP2012146623A (ja)
KR (1) KR20120135003A (ja)
CN (1) CN102783253B (ja)
TW (1) TW201206250A (ja)
WO (1) WO2011126106A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063815A1 (ja) * 2010-11-12 2012-05-18 東芝ライテック株式会社 Led点灯装置およびled照明装置
CN102612231A (zh) * 2012-03-23 2012-07-25 四川新力光源有限公司 Led照明调光装置
CN104137650A (zh) * 2012-01-13 2014-11-05 皇家飞利浦有限公司 具有颜色和调光控制的led照明单元
CN104540284A (zh) * 2012-03-23 2015-04-22 四川新力光源股份有限公司 Led照明调光装置
US9232577B2 (en) 2013-12-31 2016-01-05 Samsung Electro-Mechanics Co., Ltd. Power driver for light emitting diode illumination and control method thereof
DE202015100733U1 (de) * 2015-02-16 2016-05-18 Tridonic Jennersdorf Gmbh Farbabstimmbares LED-Modul mit antiparallelen LED-Ketten
US10201055B2 (en) 2013-06-28 2019-02-05 Seoul Semiconductor Co., Ltd. LED module
CN111972048A (zh) * 2018-02-13 2020-11-20 豪倍公司 照明系统的电压互感器

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042978A1 (ja) * 2010-09-27 2012-04-05 三菱化学株式会社 Led照明器、及びled照明システム
US9153732B2 (en) * 2012-02-23 2015-10-06 Nthdegree Technologies Worldwide Inc. Active LED module
TWI473533B (zh) * 2012-08-07 2015-02-11 Delta Electronics Inc 可調色溫之發光二極體燈具
ITPD20120376A1 (it) * 2012-12-12 2014-06-13 Automotive Lighting Italia Spa Circuito di illuminazione, in particolare con sorgenti luminose a led
CN103152941A (zh) * 2013-02-27 2013-06-12 深圳市华高芯源科技有限公司 一种可调色温的led灯
EP2974543A1 (en) * 2013-03-11 2016-01-20 Carmen Rapisarda Multi-sequenced leds on two or more wires
US9615412B2 (en) 2013-03-11 2017-04-04 Carmen Rapisarda Multi-sequenced LEDs on two or more wires
JP6094806B2 (ja) * 2013-04-19 2017-03-15 パナソニックIpマネジメント株式会社 照明器具
WO2014209059A1 (ko) * 2013-06-28 2014-12-31 서울반도체 주식회사 엘이디 모듈
TWI510135B (zh) * 2013-08-16 2015-11-21 Anteya Technology Corp Online digital dimmer, LED lighting device, dimming device and dimming method for adjusting brightness or color temperature and color
USRE48956E1 (en) 2013-08-20 2022-03-01 Lutron Technology Company Llc Interference-resistant compensation for illumination devices using multiple series of measurement intervals
USRE48955E1 (en) 2013-08-20 2022-03-01 Lutron Technology Company Llc Interference-resistant compensation for illumination devices having multiple emitter modules
CN103415118B (zh) 2013-08-21 2016-06-22 深圳市华星光电技术有限公司 背光驱动电路、电子装置及背光驱动方法
JP6471883B2 (ja) * 2013-10-02 2019-02-20 パナソニックIpマネジメント株式会社 照明装置
US8841856B1 (en) * 2013-10-03 2014-09-23 Robertson Transformer Co. Capacitive ladder feed for AC LED
TWI547199B (zh) * 2013-12-04 2016-08-21 國立虎尾科技大學 燈具色溫/亮度調整裝置與方法
CN103781248A (zh) * 2014-01-20 2014-05-07 南京云泰电气制造有限公司 一种双向驱动led电路
US20150223302A1 (en) * 2014-02-05 2015-08-06 Dror Manor Lighting color control method and system
CN103824547A (zh) * 2014-02-27 2014-05-28 深圳市华星光电技术有限公司 一种液晶显示装置的背光源及其驱动电路
DE102014205746A1 (de) * 2014-03-27 2015-10-01 Tridonic Gmbh & Co Kg Betriebsgerät für Leuchtmittel zur Übertragung von Informationen
US9544956B2 (en) * 2014-04-04 2017-01-10 Virginia Tech Intellectual Properties, Inc. Two-stage multichannel LED driver with CLL resonant circuit
US9557214B2 (en) * 2014-06-25 2017-01-31 Ketra, Inc. Illumination device and method for calibrating an illumination device over changes in temperature, drive current, and time
JP6390839B2 (ja) 2014-09-09 2018-09-19 パナソニックIpマネジメント株式会社 点灯装置、照明器具及び照明システム
JP6256302B2 (ja) * 2014-10-31 2018-01-10 京セラドキュメントソリューションズ株式会社 点灯制御回路
JP2016143649A (ja) * 2015-02-05 2016-08-08 コイズミ照明株式会社 照明システム、照明制御装置、及び照明器具
JP2016170975A (ja) * 2015-03-12 2016-09-23 パナソニックIpマネジメント株式会社 点灯回路及び照明システム
TWI563876B (en) * 2015-04-21 2016-12-21 Univ Tamkang High power diode component driving apparatus and method by addresses indexed automatic compensation output power
KR102443035B1 (ko) 2015-09-02 2022-09-16 삼성전자주식회사 Led 구동 장치 및 그를 포함하는 조명 장치
US20170171932A1 (en) 2015-12-15 2017-06-15 Wangs Alliance Corporation Led lighting methods and apparatus
US11686459B2 (en) 2015-12-15 2023-06-27 Wangs Alliance Corporation LED lighting methods and apparatus
US10941924B2 (en) 2015-12-15 2021-03-09 Wangs Alliance Corporation LED lighting methods and apparatus
WO2018200685A2 (en) 2017-04-27 2018-11-01 Ecosense Lighting Inc. Methods and systems for an automated design, fulfillment, deployment and operation platform for lighting installations
JP6161751B2 (ja) * 2016-03-02 2017-07-12 コイズミ照明株式会社 照明システム、及び照明器具
US10667362B1 (en) 2016-03-30 2020-05-26 Cooledge Lighting Inc. Methods of operating lighting systems with controllable illumination
US10136485B1 (en) * 2016-03-30 2018-11-20 Cooledge Lighting Inc. Methods for adjusting the light output of illumination systems
AT15390U1 (de) * 2016-04-29 2017-07-15 Tridonic Gmbh & Co Kg Verfahren zur Regelung eines LED-Moduls
CN105828489B (zh) * 2016-06-01 2017-11-03 东莞市擎洲光电科技有限公司 一种基于h桥电路的led调光装置
CN106714391B (zh) * 2017-03-07 2018-05-18 苏州佳世达电通有限公司 调光装置及其调光方法
US10579168B2 (en) * 2017-03-30 2020-03-03 Microsoft Technology Licensing, Llc Dual LED drive circuit
GB2562214A (en) * 2017-05-03 2018-11-14 Shen Zhengxian Two-way two-line light control circuit
US11812525B2 (en) 2017-06-27 2023-11-07 Wangs Alliance Corporation Methods and apparatus for controlling the current supplied to light emitting diodes
TWI646862B (zh) * 2017-12-25 2019-01-01 技嘉科技股份有限公司 具有可調整發光頻率功能的電子裝置、電腦系統以及方法
CN110269505B (zh) * 2018-03-15 2021-09-24 浙江绍兴苏泊尔生活电器有限公司 Led控制方法和系统、烹饪器具
CA2999307C (en) 2018-03-26 2019-08-13 Adam Chaimberg Dimmable led light fixture maintaining brightness during color temperature change
US10757866B2 (en) * 2018-03-30 2020-09-01 Ledvance Llc Multi channel electronic driver for plant growth
US11272599B1 (en) 2018-06-22 2022-03-08 Lutron Technology Company Llc Calibration procedure for a light-emitting diode light source
CN112135387A (zh) * 2019-06-05 2020-12-25 香港晟瑞科技有限公司 一种用于调节led光源色温和亮度的系统
CN112640288B (zh) * 2019-08-08 2024-01-23 深圳市汇顶科技股份有限公司 一种正负压打码电路、芯片、主动笔以及打码方法
TWI735090B (zh) * 2019-11-28 2021-08-01 芯巧科技股份有限公司 單線訊號傳輸架構
US11395389B2 (en) 2019-12-13 2022-07-19 B/E Aerospace, Inc. Method and apparatus for flashing zero harmonic power supply
US11598517B2 (en) 2019-12-31 2023-03-07 Lumien Enterprise, Inc. Electronic module group
CN110985903B (zh) 2019-12-31 2020-08-14 江苏舒适照明有限公司 一种灯模组
CN111503556B (zh) 2020-04-23 2020-11-27 江苏舒适照明有限公司 一种射灯结构
US11743986B2 (en) * 2020-05-18 2023-08-29 Electronic Theatre Controls, Inc. Luminaire and system that uses the same
US11974370B2 (en) * 2020-07-27 2024-04-30 Savant Technologies Llc Lighting device and method for adjusting light attribute of the same
CN114845436B (zh) * 2022-07-04 2022-10-28 深圳贝特莱电子科技股份有限公司 一种复用于触摸mcu通用io口的led驱动电路
US11802682B1 (en) 2022-08-29 2023-10-31 Wangs Alliance Corporation Modular articulating lighting
US12108503B2 (en) 2022-12-20 2024-10-01 Electronic Theatre Controls, Inc. Independent lighting control

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138259U (ja) 1985-02-18 1986-08-27
US6412971B1 (en) 1998-01-02 2002-07-02 General Electric Company Light source including an array of light emitting semiconductor devices and control method
JP2002281764A (ja) 2000-12-14 2002-09-27 General Electric Co <Ge> 発光ダイオード用電源
JP2004111104A (ja) * 2002-09-13 2004-04-08 Mitsubishi Electric Corp Led点灯装置及び照明器具
JP2004519826A (ja) * 2001-03-16 2004-07-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光源を制御するための装置
JP2005513819A (ja) 2001-12-28 2005-05-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 発光ダイオードドライバ
WO2008084771A1 (ja) * 2007-01-11 2008-07-17 Showa Denko K.K. 発光装置および発光装置の駆動方法
JP2008218043A (ja) 2007-02-28 2008-09-18 Sharp Corp Led駆動回路、及びled発光装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673023B2 (ja) 1984-12-10 1994-09-14 三井石油化学工業株式会社 熱定着型電子写真用現像材
JP2793806B2 (ja) * 1987-11-26 1998-09-03 松下電工株式会社 電力変換制御装置
JPH0549265A (ja) * 1989-11-30 1993-02-26 Daichi:Kk 負荷電源回路、負荷駆動用電源回路および負荷交流駆動方法
JPH11220501A (ja) * 1998-02-02 1999-08-10 Meiji Natl Ind Co Ltd 信号処理回路
JP2000150174A (ja) * 1998-11-16 2000-05-30 Hitachi Ltd 空港灯火制御装置
DE10013207B4 (de) * 2000-03-17 2014-03-13 Tridonic Gmbh & Co Kg Ansteuerung von Leuchtdioden (LED's)
JP2001351789A (ja) 2000-06-02 2001-12-21 Toshiba Lighting & Technology Corp 発光ダイオード駆動装置
JP2004235097A (ja) * 2003-01-31 2004-08-19 Seiwa Electric Mfg Co Ltd 発光ダイオード素子を用いた照明器具
JP2005063803A (ja) * 2003-08-12 2005-03-10 Matsushita Electric Works Ltd 照明システム
EP1685745B1 (en) 2003-11-13 2013-05-01 Philips Intellectual Property & Standards GmbH Resonant power led control circuit with brightness and colour control
JP4770116B2 (ja) 2003-12-25 2011-09-14 富士電機株式会社 ランプおよびledの駆動回路
JP4218545B2 (ja) * 2004-02-19 2009-02-04 三菱電機株式会社 高圧放電ランプ点灯装置及び一体型照明器具
CN100464111C (zh) * 2005-03-04 2009-02-25 吕大明 交流led照明灯
JP2006253215A (ja) 2005-03-08 2006-09-21 Sharp Corp 発光装置
JP2007005743A (ja) 2005-06-24 2007-01-11 Core Technology:Kk Led照明用電源装置
WO2008056321A1 (en) * 2006-11-10 2008-05-15 Koninklijke Philips Electronics N.V. Method and driver for determining drive values for driving a lighting device
JP5303121B2 (ja) * 2007-06-11 2013-10-02 ローム株式会社 Led照明装置およびその駆動方法
JP5009651B2 (ja) * 2007-03-08 2012-08-22 ローム株式会社 照明装置
WO2008110978A1 (en) * 2007-03-13 2008-09-18 Philips Intellectual Property & Standards Gmbh Supply circuit
US8410725B2 (en) * 2007-06-05 2013-04-02 Koninklijke Philips Electronics N.V. Lighting system for horticultural applications
JP2009026544A (ja) 2007-07-18 2009-02-05 Showa Denko Kk Led用調光装置及びled照明装置
JP2009110918A (ja) * 2007-10-11 2009-05-21 Iwasaki Electric Co Ltd 高圧放電灯点灯装置及び光源装置
JP5199658B2 (ja) * 2007-12-25 2013-05-15 パナソニック株式会社 光源点灯装置、照明器具、照明システム
JP2009170240A (ja) 2008-01-16 2009-07-30 Sharp Corp Ledの調光装置
JP2010086943A (ja) 2008-09-04 2010-04-15 Toshiba Lighting & Technology Corp Led点灯装置および照明器具
WO2012042978A1 (ja) * 2010-09-27 2012-04-05 三菱化学株式会社 Led照明器、及びled照明システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138259U (ja) 1985-02-18 1986-08-27
US6412971B1 (en) 1998-01-02 2002-07-02 General Electric Company Light source including an array of light emitting semiconductor devices and control method
JP2002281764A (ja) 2000-12-14 2002-09-27 General Electric Co <Ge> 発光ダイオード用電源
JP2004519826A (ja) * 2001-03-16 2004-07-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光源を制御するための装置
JP2005513819A (ja) 2001-12-28 2005-05-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 発光ダイオードドライバ
JP2004111104A (ja) * 2002-09-13 2004-04-08 Mitsubishi Electric Corp Led点灯装置及び照明器具
WO2008084771A1 (ja) * 2007-01-11 2008-07-17 Showa Denko K.K. 発光装置および発光装置の駆動方法
JP2008171984A (ja) 2007-01-11 2008-07-24 Showa Denko Kk 発光装置および発光装置の駆動方法
JP2008218043A (ja) 2007-02-28 2008-09-18 Sharp Corp Led駆動回路、及びled発光装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063815A1 (ja) * 2010-11-12 2012-05-18 東芝ライテック株式会社 Led点灯装置およびled照明装置
CN104137650A (zh) * 2012-01-13 2014-11-05 皇家飞利浦有限公司 具有颜色和调光控制的led照明单元
JP2015506084A (ja) * 2012-01-13 2015-02-26 コーニンクレッカ フィリップス エヌ ヴェ 色及び調光制御を備えたled照明ユニット
US9072142B2 (en) 2012-01-13 2015-06-30 Koninklijke Philips N.V. LED lighting unit with color and dimming control
CN102612231A (zh) * 2012-03-23 2012-07-25 四川新力光源有限公司 Led照明调光装置
CN104540284A (zh) * 2012-03-23 2015-04-22 四川新力光源股份有限公司 Led照明调光装置
US10201055B2 (en) 2013-06-28 2019-02-05 Seoul Semiconductor Co., Ltd. LED module
US9232577B2 (en) 2013-12-31 2016-01-05 Samsung Electro-Mechanics Co., Ltd. Power driver for light emitting diode illumination and control method thereof
DE202015100733U1 (de) * 2015-02-16 2016-05-18 Tridonic Jennersdorf Gmbh Farbabstimmbares LED-Modul mit antiparallelen LED-Ketten
CN111972048A (zh) * 2018-02-13 2020-11-20 豪倍公司 照明系统的电压互感器
CN111972048B (zh) * 2018-02-13 2023-09-29 豪倍公司 照明系统的电压互感器

Also Published As

Publication number Publication date
CN102783253B (zh) 2014-08-20
CN102783253A (zh) 2012-11-14
JP2012146633A (ja) 2012-08-02
KR20120135003A (ko) 2012-12-12
EP2557900A1 (en) 2013-02-13
US8810141B2 (en) 2014-08-19
TW201206250A (en) 2012-02-01
JP2012146623A (ja) 2012-08-02
US20130009560A1 (en) 2013-01-10
JP5131377B2 (ja) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5131377B2 (ja) 調光装置、及びled照明システム
JP5003850B1 (ja) Led照明器、及びled照明システム
JP5673141B2 (ja) 白色led発光デバイスの調光装置,及び照明システム
US10925130B2 (en) Ambient light regulation methods
EP2984392B1 (en) Ambient light monitoring in a lighting fixture
US9723680B2 (en) Digitally controlled driver for lighting fixture
JP4337731B2 (ja) 照明装置、及び画像表示装置
US8988005B2 (en) Illumination control through selective activation and de-activation of lighting elements
US20100176744A1 (en) Illumination Apparatus and Driving Method Thereof
JP2006253215A (ja) 発光装置
WO2012086792A1 (ja) Led発光デバイス、端子数変換器、及び照明装置
JP2012138220A (ja) Led照明システム
JP2014212083A (ja) 照明器具
JP2014212082A (ja) 照明器具
KR20150026349A (ko) 발광 다이오드 조명 장치
US20240155747A1 (en) Method of multi-mode color control by an led driver
WO2011004021A1 (en) Driver for light-emitting diodes
TW200945949A (en) A LED lighting device without a temperature sensor and a temperature control method for the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011139.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117012365

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11766006

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011766006

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011766006

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE