200945949 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種無溫度感測器之發光二極體照明裝 置及其溫度控制方法,尤指一種適用於控制發光二極體照 5 明裝置照度與演色性之無溫度感測器之發光二極體照明裝 置及其溫度控制方法。 【先前技術】 近年來’由於發光二極體(led)因其有發光效率高、耗 10 電量少、使用壽命長、及元件體積小等優點,使得發光二 極體能應用於各種照明裝置中。目前發光二極體普遍應用 於紅綠燈、手電筒、或發光二極體投射燈等發光設備中, 且未來發光二極體更具有取代各式各樣發光設備的潛力, 如取代目前應用於平面顯示器之背光模組。 15 其中’發光二極體照明裝置已逐漸應用在日常生活之 各種照明裝置中,如發光二極體投射燈、展示照明或室外 Φ 照明等,並逐漸取代效率較低的白熾燈。除此之外,由於 白熾燈發光時會將90 %的電能轉換成熱能,造成能源的大量 浪費。因此,現今歐盟以及許多國家已陸續宣布將全面禁 20 用白熾燈。 雖然發光二極體具有發光效率高及低耗電量等優點, 然而將發光二極體應用於裝飾性照明上時,往往面臨因發 光二極體溫度升高而造成光譜改變的缺點,而此缺點對於 裝飾性照明而言是為一種嚴重的問題。如圖1所示,其為白 200945949 ' 光發光二極體發光單元在20與80°C下光譜變化圖,其中x 轴為白光發光二極體發光單元之發光波長,Y軸為白光發光 二極體發光單元之發光強度。如圖所示,分別在2〇。〇與80 °〇時,白光發光二極體發光單元之波長有偏移的現象產 5 生。因此’當發光二極艘溫度改變時,由於光譜波長的偏 移,導致色差的產生。 目前已知可應用散熱鰭片、流體導熱管、或風扇來幫 助發光二極體降低溫度。這些裝置皆可以降低發光二極體 〇 溫度。然而’應用在裝飾性照明上時,若無外加其他溫度 10 感測器偵測發光二極體之溫度,則無法達到發光二極趙溫 度管理。況且,一般為達到控制温度的效果,往往會在發 光一極體照明裝置上設置溫度感測器,以量測發光二極體 之溫度β然而,溫度感測器一般是測量發光二極體周圍環 境之溫度,並非直接測量發光二極體之溫度。由圖i可知, 15 發光二極體的溫度與其波長的變化有極大的影響,為了避 免色差的情形發生,如何精準的測量出發光二極體之溫度 是一個重要的問題。 因此,業界極需發展一種能有效偵測發光二極體溫 度,並達到溫度管理之發光二極體照明裝置,以控制發光 20二極體之光譜波長。同時,若能發展出具有最佳化溫度管 理之發光二極體照明裝置,則能克服發光二極體因溫度而 導致照度及演色性變化等問題。 【發明内容】 200945949 -本發明之主要目的係在提供一種無溫度感測器之發光 t體“、、明裝置,俾能在不需要另外設置溫度感測器之情 形下,控制發光二極體照明裝置之照度及演色性。 5 I發明之另-目的係在提供-種應用於無溫度感測器 之發光二極體照明裝置之溫度控制方法,俾能利用發光二 極體之前饋電流(Forwardcurrent)特性,進行發光二極體之 溫度偵測’而達到最佳化溫度管理效果。 為達成上述目的,本發明之無溫度感測器之發光二極 ι體照明裝置,包括:一控制模組、複數個發光二極體發光 °單元、以及一電流感應元件。其中,控制模組與線路電性 連接,而複數個發光二極體發光單元亦與線路電性連接❶ 另外’電流感應元件則是分別與至少一該等發光二極體發 光單元及線路電性連接。於本發明之無溫度感測器之發光 二極體照明裝置中’電流感應元件藉由線路將所感測到的 15 訊號傳送至控制模組,而控制模組則依據此訊號控制驅動 發光二極體發光單元之電流負載週期(Duty cycle)。 ^ 另一方面,本發明亦提供一種溫度控制方法,其可應 用於上述之無溫度感測器之發光二極體照明裝置。此溫度 控制方法包括下列步驟:(A)驅動發光二極體發光單元; 20 (B)電流感應元件感測一訊號,並將此訊號傳送至控制模 組,且此訊號可對應於與電流感應元件電性連接之發光二 極體發光單元之溫度;以及(C)控制模組則依據此訊號調 整驅動發光二極體發光單元之電流負載週期。 200945949 ❹ 10 15 ❹ 本發明之無溫度感測器之發光二極體照明裝置及其溫 度控制方法,藉由將與至少一該等發光二極體發光單元電 性連接之電流感應元件所感測到之訊號傳送至控制模組, 且透過控制模組依照電流感應元件所感測到之訊號進一步 控制驅動發光二極體發光單元之電流負載週期。由於電流 感應元件所感測到之訊號可對應於發光二極體發光單元之 /凰度,因此本發明之無溫度感測器之發光二極體照明裝置 及其溫度控制方法’能在不另外設置溫度感測器的狀態 下,透過降低電流負載週期,使得發光二極體發光單元的 溫度下降,進而達到維持發光二極體發光單元演色性的效 果。同時,由於本發明之無溫度感測器之發光二極體照明 裝置及其溫度控制方法’除了能使發光二極體發光單元溫 度下降外,更能依照電流感應元件所感測到之訊號,達到 ^制發光二極體發光單元溫度的效果,實現最佳化之溫度 S理,並保持發光二極體發光單元的溫度 _ 極體發光單元有良好之照度及演色性。 發光一 人本發明之無溫度感測器之發光二極體照明裝置更可包 含一與線路電性連接之電源供應裝置。而此電源供應裝置 可為一電池、或一市電。 此外,於本發明之無溫度感測器之發光二極體照明裝 置中,每一個發光二極體發光單元可為任何一種單色發光 :極體發光單元,如紅光發光二極體發光單元藍光發光 -極艘發光單元、綠紐光二極體發光單元、或 二極體發光單元。 & 20 200945949 再者’於本發明之無溫度感測器之發光二極體照明裝 中,與至少一發光二極體發光單元電性連接之電流感應 一牛為電 /爪感應繼電器(Current Sensing Relay,CSR) » 5 ❹ 10 15 ❹ π於本發明之無溫度感測器之發光二極體照明裝置及其 /皿度控制方法中,電流感應元件所感測之訊號為與此電流 感應/0件電性連接之至少—發光三極趙發光單元之前馈電 流。 此外’於本發明之無溫度感測器之發光二極體照明裝 置及其溫度控制方法中’與電流感應元件電性連接之至少 發光一極體單元之前饋電流可對應於發光二極體發光單 元之溫度》 而於本發明之用於無溫度感測器之發光二極體照明裝 置之溫度控制方法中’控制模組依據訊號調整驅動發光二 極體發光單元之電流負載週期(步驟C)之控制方法為:當與 電流感應元件電性連接之至少一發光二極體發光單元之前 饋電流超出一預設範圍,控制模組則調整驅動發光二極髏 發光單元之電流負載週期。 【實施方式】 本發明之無溫度感測器之發光二極體照明裝置能應用 在各式照明裝置中’如投射燈、展示照明或室外照明等。 此外’由於本發明之無溫度感測器之發光二極體照明裝置 能達到最佳化之溫度管理,故應用在裝飾性照明上,更能 維持發光二極體之照度及演色性之恆定。 20 200945949 實施例1 如圖2所示’此為本實施例之無溫度感測器之發光二 極艎照明裝置之示意圖。 在本實施例中,此無溫度感測器之發光二極體照明裝 5 置包括:一控制模組11、複數個發光二極體發光單元141, 142、以及一電流感應元件13。其中,控制模組^係與線路 15電性連接,而複數個發光二極逋發光單元141,142亦與線 路15電性連接。另外,電流感應元件13則可分別與至少一 〇 該等發光二極體發光單元141及線路15電性連接。於本實施 10 例中,電流感應元件13是與一個發光二極趙發光單元丨41電 性連接。 於本實施例之無溫度感測器之發光二極體照明裝置 中,電流感應元件13藉由線路15將所感測到的訊號傳送至 控制模組11,而控制模組則依據此訊號控制驅動發光二極 15體發光單元141,I42之電流負載週期。本實施例所使用之電 流感應元件13是為一電流感應繼電器。 φ 此外,本實施例之無溫度感測器之發光二極體照明裝 置更設置有一電源供應裝置12,而此電源供應裝置12可使 用電池或市電。於本實施例中,一可提供9伏特電壓的電池 20被用於供應此無溫度感測器之發光二極體照明裝置運作時 所需之電力。 而於本實施例之無溫度感測器之發光二極體照明裝置 中,每一個發光二極體發光單元141,142可選用任一種單色 發光二極體發光單元,如紅光發光二極體發光單元藍光 200945949 5 〇 10 15 ❹ 20 發光二極體發光單元、綠光發光二極體發光單元、或白光 發光二極體發光單元。除此之外,本實施例之無溫度感測 器之發光二極體照明裝置更可利用紅光發光二極體發光單 元、藍光發光二極體發光單元、與綠光發光二極體發光單 元’以經由紅藍綠三種色光混合的方式發出白光。於本實 施例中,共採用20個白光發光二極體發光單元141,142。 接下來,將以一驅動線路圖詳細說明本實施例之無溫 度感測器之發光二極體照明裝置之線路設計及其溫度控制 方法》 請參閱圖3,此為本實施例之無溫度感測器之發光二極 體照明裝置之驅動線路圖。此外’並請同時參閲圖4,此為 本實施例之無溫度感測器之發光二極體照明裝置之溫度控 制方法的流程圖。而本實施例之溫度控制方法包括下列步 驟: 步驟(Α):首先,電流供應裝置12供應電源至控制模組 11,以驅動發光二極體發光單元141,142。於本實施例中, 控制模組11是以10kHz、50%之電流負載週期驅動發光二極 體發光單元141,142。 步驟(B):接下來,電流感應元件13可感測一訊號,並 將此訊號傳送至控制模組11。在此,電流感應元件13所感 測到之訊號為與電流感應元件13電性連接之發光二極體發 光單元141之前饋電流。此外,圖5為發光二極體發光單元 之前饋電流-溫度關係曲線圖,當發光二極體發光單元溫度 升高時,發光二極體發光單元之前饋電流會隨之下降,利 11 200945949 用此前饋電流與溫度間之關係曲線,可將發光二極體發光 單元之前饋電流訊號轉換成發光二極體發光單元之溫度。 因此,請同時參閱圖4及圖5,透過電流感應元件13所 感測到之發光二極體發光單元141之前饋電流,控制模組11 5 可利用發光二極體發光單元之前饋電流-溫度關係曲線,將 此訊號(前饋電流)對應至與電流感應元件141電性連接之發 光二極體發光單元141之溫度。 步驟(C):最後,請同時參閱圖3及圖4,控制模組11則 依據此訊號(發光二極體發光單元之前饋電流)調整驅動發 10 光二極體發光單元141,142之電流負載週期。 而當發光二極體發光單元141之前饋電流高於一預設 範圍時,控制模組13則調整驅動發光二極體發光單元之電 流負載週期。在此,調整驅動發光二極體發光單元141,142 之電流負載週期,即是調整發光二極體發光單元141,142 15 發光頻率及發光時間長短等操作參數。於本實施例中,控 制模組11即根據發光二極體發光單元141之前饋電流及前 饋電流所對應之溫度,調整發光二極體發光單元141,142 之發光時間長短,以達到控制發光二極體發光單元141,142 之溫度的效果。 20 比較例1 如圖6所示,此為本發明比較例1之發光二極體發光 裝置。此發光二極體發光裝置包含:一控制模組11、以及 複數個發光二極體發光單元14,且透過一電源供應裝置12 以供應發光二極體發光裝置所需之驅動電力。 12 200945949 5 ❹ 10 15 Ο 20 於比較例1中,共使用20個白光發光二極體發光單元 14’並使用一可提供9伏特電壓的電池供應此比較例1之 發光二極體發光裝置運作時所需之電力,控制模組U並以 10kHz、50%之電流負載週期驅動此發光二極體發光裝置。 實驗結果 上述實施例1之無溫度感測器之發光二極體發光裝置 與比較例1之發光二極體發光裝置,皆利用一可提供9伏 特電壓的電池供應運作時所需之電力,且控制模組U均以 10kHz、50%之電流負載週期驅動發光二極體發光單元。接 者’在外在環境温度介於20及8(TC下,分別對此兩發光二 極體照明裝置進行照度及CIE色度之測試,其結果如圖7、 及圖8所示。 圖7為本發明實施例1之無溫度感測器之發光二極體 照明裝置與比較例1之發光二極體照明裝置之相對照度變 異曲線圖,其中X軸為發光二極體照明裝置之外在溫度, 而Y轴為發光二極體照明裝置之相對照度。如圖7所示, 比較例1之發光二極體照明裝置在外在環境溫度為2〇與8〇 °C下之兩相對照度之間存在有25%的差異。然而,實施例j 之無溫度感測器之發光二極體照明裝置,在外在環境溫度 為20與80艺下之兩相對照度之間的卻小於5%。由此可知, 實施例1之無溫度感測器之發光二極體照明裝置及其溫度 控制方法,確實能維持此無溫度感測器之發光二極體照明 裝置之照度的恆定。 圖8為本發明實施例1之無溫度感測器之發光二極體 13 200945949 照明裝置與比較例1之發光二極體照明裝置之CIE色度 圊;其中翼形輪廓線代表所有可見光波長的軌跡,即可見 光譜曲線《此外,翼形輪廓線所包圍之區域的右下角為紅 色區域’其頂端為綠色區域,而其左下角則為藍色區域。 5 如圓8所示,點A表示實施例1之無溫度感測器之發 光二極體照明裝置在外在環境溫度為20°C時之色度位於 CIE座標上之位置,點B表示實施例1之無溫度感測器之 發光二極體照明裝置在外在環境溫度為80°C時之色度位於 CIE座標上之位置。而點A’表示比較例1之發光二極體照 10 明裝置在外在環境溫度為20°C時之色度位於CIE座標上之 位置’點B’表示比較例1之發光二極體照明裝置在外在環 境溫度為80°C時之色度位於CIE座標上之位置。由此結果 得知’相較於比較例1之色度偏移(A,-B,),實施例1之色 度偏移(A-B)有明顯的下降。 15 另外,透過1960CIE UCS座標轉換,可計算出實施例 1與比較例1之色度差。計算的結果顯示,在外在環境溫度 為20及80°C下,比較例1之發光二極體照明裝置的色度差 為0.1334 ’而在外在環境溫度為20及80°C下,實施例1 之無溫度感測器之發光二極體照明裝置的色度差為 20 0·1048。由此可知’實施例1之無溫度感測器之發光二極體 照明裝置及其溫度控制方法,確實能維持此無溫度感測器 之發光二極體照明裝置之演色性的恆定。 如圖1所示’ 一般的白光發光二極體發光單元在20»C 與80°C下,其光譜會有所變化。即當瓖境溫度升高時,發 200945949 5 Ο 10 15 ❹ 20 光二極體發光單元之光譜會有藍光紅移的現象,導致色差 問題的產生。 然而,如圖9所示,此為實施例1之無溫度感測器之 發光二極體照明裝置中,白光發光二極體發光單元在20與 80°C下之光譜變化圖,其中X軸為白光發光二極體發光單 元之發光波長’ Y轴為白光發光二極體發光單元之發光強 度。由此結果發現,分別在20與80。(:下,透過控制實施例 1之白光發光二極體發光單元,白光發光二極體發光單元的 發光波長幾乎沒有變化。因此,即使外在環境溫度變化, 實施例1之無溫度感測器之發光二極體照明裝置,經溫度 控制後’發光二極體發光單元之光譜波長沒有偏移的現 象。故實施例1之無溫度感測器之發光二極體照明裝置及 其溫度控制方法’確實能消弭發光二極體發光單元因溫度 升高所導致的藍光紜移現象,而能避免色差問題的產生。 這亦同時說明實施例1之無溫度感測器之發光二極體照明 裝置’為何能維持良好演色性之原因。 實施例2 如圖10所示,此為本發明實施例2之無溫度感測器之 發光二極體照明裝置之媒動線路圖。 在本實施例中’此無溫度感測器之發光二極體照明裝 置包括’一控制模組n、複數個發光二極體發光單元141, 142’ 143, 144、以及一電流感應元件13。其中,控制模組u 係與線路15電性連接,而複數個發光二極體發光單元141, 142, 143’ 144亦與線路15電性連接。另外,電流感應元件13 15 200945949 則可分別與至少一該等發光二極體發光單元141及線路15 電性連接。於本實施例中,電流感應元件13是與一個發光 二極體發光單元141電性連接。 於本實施例之無溫度感測器之發光二極體照明裝置 5 中,電流感應元件13藉由線路15將所感測到的訊號傳送至 控制模組11,而控制模組11則依據此訊號控制驅動該等發 光二極體發光單元141, 142, 143, 144之電流負載週期。本實 施例之電流感應元件13所感測到的訊號為與電流感應元件 13電性連接之發光二極體發光單元141之前饋電流,而本實 10 施例之電流感應元件13是為一電流感應繼電器。 此外,本實施例之無溫度感測器之發光二極體照明裝 置更設置有一電源供應裝置12,而此電源供應裝置12可使 用電池或市電。於本實施例中使用市電以供應此無溫度感 測器之發光二極體照明裝置之電力。 15 而於本實施例之無溫度感測器之發光二極體照明裝置 中,每一個發光二極體發光單元141,142, 143, 144可選用 任一種單色發光二極體發光單元,如紅光發光二極體發光 單元、藍光發光二極體發光單元、綠光發光二極體發光單 元、或白光發光二極體發光單元。而本實施例之無溫度感 20 測器之發光二極體照明裝置是2個紅光發光二極體發光單 元144、2個藍光發光二極體發光單元141,142、與2個綠 光發光二極體發光單元143,經由紅藍綠三種色光混合而發 出白光。其中一個藍光發光二極體發光單元141是與電流 感應元件13電性連接。 16 200945949 此外本實施例之無溫度感測器之發光二極趙照明裝 置,更設置有一色彩感應器16,係與控制模組n電性連 接。藉由此色彩感應器16,可感應發光二極體發光單元141, 142’ 143’ 144混合而成的光是否有所變異,並透過控制模 5組11調整驅動發光二極體發光單元141, 142, 143, 144之電 流負載週期,維持本實施例之無溫度感測器之發光二極體 照明裝置之演色性恆定。 f於本實施例之無溫度感測器之發光二極體照明裝置 © 所使用之溫度控制方法,則與實施例1相同;即將電流感 1〇應70件13所感測到之訊號(與電流感應元件13電性連接之 發光二極體發光單元141之前饋電流),利用前饋電流-溫度 關係曲線,對應至發光二極體發光單元141之溫度,而控 制模組11則依據此訊號調整驅動發光二極體發光單元141, 142, 143, 144之電流負載週期。 15 上述實施例僅係為了方便說明而舉例而已,本發明所 主張之權利範圍自應以申請專利範圍所述為準,而非僅限 ❹ 於上述實施例。 【圖式簡單說明】 2〇圖1係無溫度控制之白光發光二極體發光單元在不同溫度 下光譜變化圖。 a 圖2係本發明實施例1之無溫度感測器之發光二極體照明裝 置之示意圖。 17 200945949 圖3係本發明實施例1之無溫度感測器之發光二極艎照明裝 置之驅動線路圖。 圖4係本發明實施例1之無溫度感測器之發光二極體照明裝 置之溫度控制方法流程圖。 5 圖5係本發明實施例1之發光二極體發光單元之前饋電流_ 溫度關係圖。 圖6係本發明比較例1之發光二極體照明裝置之示意圖。 圖7係本發明實施例1之無溫度感測器之發光二極鱧照明裝 〇 置與比較例1之發光二極體照明裝置之相對照度變異曲線 10 圖。 圖8係本發明實施例1之無溫度感測器之發光二極體照明襞 置與比較例1之發光二極體照明裝置之CIE色度圖。 圖9係本發明實施例丨之無溫度感測器之發光二極體照明裝 置之發光二極體發光單元之光譜·變化圖。 15 圖10係本發明實施例2之無溫度感測器之發光二極體照明 裝置之驅動線路圖。 【主要元件符號說明】 11 控制模組 12 電源供應裝置 13 電流感應元件 14, 141,142, 143, 144 發光二極體發光單元 15 線路 16 色彩感應裝置 18200945949 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode lighting device without temperature sensor and a temperature control method thereof, and more particularly to a device for controlling a light-emitting diode Light-emitting diode lighting device with illuminance and color rendering without temperature sensor and temperature control method thereof. [Prior Art] In recent years, due to the advantages of high luminous efficiency, low power consumption, long service life, and small component size, the light-emitting diode (LED) can be applied to various lighting devices. . At present, light-emitting diodes are commonly used in lighting devices such as traffic lights, flashlights, or light-emitting diode projection lamps, and future light-emitting diodes have the potential to replace various types of light-emitting devices, such as replacing the current use in flat-panel displays. Backlight module. 15 Among them, the 'light-emitting diode lighting device has been gradually applied to various lighting devices in daily life, such as LED projection lamps, display illumination or outdoor Φ illumination, and gradually replaced the less efficient incandescent lamps. In addition, since incandescent lamps emit 90% of the electrical energy into heat, a lot of energy is wasted. Therefore, the European Union and many countries have announced that they will completely ban 20 incandescent lamps. Although the light-emitting diode has the advantages of high luminous efficiency and low power consumption, when the light-emitting diode is applied to decorative lighting, it often faces the disadvantage of spectral change due to the temperature rise of the light-emitting diode. Disadvantages are a serious problem for decorative lighting. As shown in Fig. 1, it is a white light of the 200945949 ' light-emitting diode light-emitting unit at 20 and 80 ° C, where the x-axis is the light-emitting wavelength of the white light-emitting diode light-emitting unit, and the Y-axis is the white light-emitting light. The luminous intensity of the polar body light-emitting unit. As shown in the figure, they are at 2〇. When 〇 and 80 °〇, the wavelength of the white light-emitting diode light-emitting unit is shifted. Therefore, when the temperature of the light-emitting diode is changed, the chromatic aberration is caused due to the shift of the spectral wavelength. Heat sink fins, fluid heat pipes, or fans are known to help reduce the temperature of the light emitting diode. These devices can reduce the temperature of the LEDs. However, when applied to decorative lighting, if no other temperature sensor is used to detect the temperature of the light-emitting diode, the temperature management of the light-emitting diode cannot be achieved. Moreover, generally, in order to achieve the effect of controlling the temperature, a temperature sensor is often disposed on the light-emitting one-pole illumination device to measure the temperature of the light-emitting diode. However, the temperature sensor generally measures the circumference of the light-emitting diode. The temperature of the environment is not directly measured by the temperature of the light-emitting diode. It can be seen from Fig. i that the temperature of the light-emitting diode has a great influence on the change of its wavelength. In order to avoid the occurrence of chromatic aberration, how to accurately measure the temperature of the light-emitting diode is an important problem. Therefore, it is highly desirable for the industry to develop a light-emitting diode illumination device that can effectively detect the temperature of a light-emitting diode and achieve temperature management to control the spectral wavelength of the light-emitting diode. At the same time, if a light-emitting diode lighting device with optimized temperature management can be developed, problems such as illuminance and color change of the light-emitting diode due to temperature can be overcome. SUMMARY OF THE INVENTION 200945949 - The main object of the present invention is to provide a light-emitting sensor without a temperature sensor, and a device capable of controlling a light-emitting diode without requiring a separate temperature sensor. Illumination and color rendering of the illuminating device. 5 I. Another object of the invention is to provide a temperature control method for a illuminating diode illuminating device for a temperature sensor without using a illuminating diode. The function of the forward current) is to perform the temperature detection of the light-emitting diode to achieve an optimized temperature management effect. To achieve the above object, the light-emitting diode-free lighting device of the temperature sensor of the present invention comprises: a control mode The group, the plurality of light emitting diodes, and a current sensing element, wherein the control module is electrically connected to the line, and the plurality of light emitting diodes are electrically connected to the line, and the other current sensing element And electrically connected to at least one of the light emitting diodes and the circuit. In the light-emitting diode lighting device of the invention without temperature sensor, The sensing component transmits the sensed 15 signal to the control module through the line, and the control module controls the current duty cycle (Dyty cycle) of the LED driving unit according to the signal. ^ On the other hand, the invention A temperature control method is also provided, which can be applied to the above-mentioned light-emitting diode illumination device without temperature sensor. The temperature control method includes the following steps: (A) driving the light-emitting diode light-emitting unit; 20 (B) current The sensing component senses a signal and transmits the signal to the control module, and the signal corresponds to the temperature of the LED light emitting unit electrically connected to the current sensing component; and (C) the control module according to the The signal is adjusted to drive the current load period of the light emitting diode unit. 200945949 ❹ 10 15 ❹ The temperature sensorless light emitting diode lighting device of the present invention and the temperature control method thereof, by being combined with at least one of the light emitting diodes The signal sensed by the current sensing component electrically connected to the polar body light emitting unit is transmitted to the control module, and is sensed by the current sensing component through the control module The signal to further control the current load period of the LED light-emitting unit. Since the signal sensed by the current sensing element can correspond to the radiance of the LED unit, the temperature sensorless sensor of the present invention The light-emitting diode lighting device and the temperature control method thereof can reduce the temperature of the light-emitting diode light-emitting unit by lowering the current load period without separately providing a temperature sensor, thereby maintaining the light-emitting diode light emission. The effect of the color rendering of the unit. At the same time, the light-emitting diode illumination device without temperature sensor of the present invention and the temperature control method thereof can not only change the temperature of the light-emitting diode light-emitting unit, but also the sense of the current-sensing element. The measured signal achieves the effect of the temperature of the light-emitting diode unit, realizes the optimized temperature, and maintains the temperature of the light-emitting diode unit. The polar body unit has good illumination and color rendering. Illuminating a light-emitting diode lighting device of the present invention without a temperature sensor may further comprise a power supply device electrically connected to the line. The power supply device can be a battery or a mains supply. In addition, in the light-emitting diode lighting device of the temperature sensorless sensor of the present invention, each of the light-emitting diode light-emitting units can be any single-color light-emitting device: a polar light-emitting unit, such as a red light-emitting diode light-emitting unit. Blue light illumination - polar light emitting unit, green neon light emitting unit, or diode light emitting unit. & 20 200945949 Furthermore, in the light-emitting diode lighting device of the temperature sensorless sensor of the present invention, the current sensing of the at least one light-emitting diode light-emitting unit is an electric/claw induction relay (Current) Sensing Relay, CSR) » 5 ❹ 10 15 ❹ π In the light-emitting diode lighting device and the method for controlling the temperature of the sensorless sensor of the present invention, the signal sensed by the current sensing element is the current sensing/ At least one of the zero electrical connections - the light-emitting three-pole Zhao light-emitting unit is fed current. In addition, in the light-emitting diode lighting device of the temperature sensorless sensor of the present invention and the temperature control method thereof, the at least one light-emitting unit unit electrically connected to the current sensing element can correspond to the light-emitting diode. In the temperature control method of the light-emitting diode lighting device for the temperature sensorless sensor of the present invention, the control module adjusts the current load period of the light-emitting diode light-emitting unit according to the signal adjustment (step C). The control method is: when the feed current exceeds a predetermined range before the at least one light-emitting diode light-emitting unit electrically connected to the current-sensing element, the control module adjusts the current load period of driving the light-emitting diode light-emitting unit. [Embodiment] The light-emitting diode-free lighting device of the present invention can be applied to various types of lighting devices such as a projection lamp, display illumination, or outdoor illumination. In addition, since the temperature-sensing diode-free lighting device of the present invention can achieve optimal temperature management, it can be applied to decorative lighting to maintain the illumination and color rendering of the light-emitting diode. 20 200945949 Embodiment 1 As shown in FIG. 2, this is a schematic diagram of a light-emitting diode illuminating device without a temperature sensor of the present embodiment. In this embodiment, the light-emitting diode illumination device of the temperatureless sensor comprises: a control module 11, a plurality of LED light-emitting units 141, 142, and a current sensing element 13. The control module is electrically connected to the line 15, and the plurality of LEDs 141, 142 are also electrically connected to the line 15. In addition, the current sensing element 13 can be electrically connected to at least one of the light emitting diodes 141 and the line 15 respectively. In the present embodiment 10, the current sensing element 13 is electrically connected to one of the light emitting diodes 41. In the light-emitting diode lighting device of the temperature sensorless device of the present embodiment, the current sensing component 13 transmits the sensed signal to the control module 11 via the line 15, and the control module controls the driving according to the signal. The current duty cycle of the light-emitting diode 15 body light-emitting unit 141, I42. The current sensing element 13 used in this embodiment is a current sensing relay. In addition, the light-emitting diode lighting device of the temperature sensorless device of the present embodiment is further provided with a power supply device 12, and the power supply device 12 can use a battery or a commercial power. In the present embodiment, a battery 20 which can supply a voltage of 9 volts is used to supply the power required for the operation of the light-emitting diode lighting device without the temperature sensor. In the light-emitting diode lighting device of the temperature sensorless device of the present embodiment, each of the light-emitting diode light-emitting units 141, 142 can be selected from any single-color light-emitting diode light-emitting unit, such as a red light-emitting diode. Body light-emitting unit blue light 200945949 5 〇10 15 ❹ 20 Light-emitting diode light-emitting unit, green light-emitting diode light-emitting unit, or white light-emitting diode light-emitting unit. In addition, the light-emitting diode illumination device of the temperature sensor of the present embodiment can further utilize a red light-emitting diode light-emitting unit, a blue light-emitting diode light-emitting unit, and a green light-emitting diode light-emitting unit. 'White light is emitted by mixing three colors of red, blue and green. In the present embodiment, a total of 20 white light-emitting diode light-emitting units 141, 142 are used. Next, the circuit design and temperature control method of the light-emitting diode lighting device without temperature sensor of the present embodiment will be described in detail with a driving circuit diagram. Referring to FIG. 3, this embodiment has no temperature sense. The driving circuit diagram of the light-emitting diode lighting device of the measuring device. In addition, please refer to FIG. 4 at the same time, which is a flowchart of the temperature control method of the light-emitting diode lighting device without temperature sensor of the embodiment. The temperature control method of the present embodiment includes the following steps: Step (Α): First, the current supply device 12 supplies power to the control module 11 to drive the light-emitting diode light-emitting units 141, 142. In the present embodiment, the control module 11 drives the light-emitting diode light-emitting units 141, 142 with a current duty cycle of 10 kHz and 50%. Step (B): Next, the current sensing element 13 senses a signal and transmits the signal to the control module 11. Here, the signal sensed by the current sensing element 13 is a feed current before the light emitting diode light emitting unit 141 electrically connected to the current sensing element 13. In addition, FIG. 5 is a graph of the feed current-temperature relationship of the light-emitting diode light-emitting unit. When the temperature of the light-emitting diode light-emitting unit increases, the feed current of the light-emitting diode light-emitting unit decreases accordingly, and the benefit is used for 2009-05949. The relationship between the current fed current and the temperature can convert the feed current signal of the light emitting diode to the temperature of the light emitting diode. Therefore, please refer to FIG. 4 and FIG. 5 simultaneously, and the control module 11 5 can utilize the current-temperature relationship of the light-emitting diode light-emitting unit before the current is fed through the current-sensing element 13 . In the curve, this signal (feedforward current) corresponds to the temperature of the LED light-emitting unit 141 electrically connected to the current sensing element 141. Step (C): Finally, please refer to FIG. 3 and FIG. 4 at the same time, the control module 11 adjusts the current load of the driving light emitting diodes 141, 142 according to the signal (the current fed by the LED light emitting unit). cycle. When the feed current of the light-emitting diode light-emitting unit 141 is higher than a predetermined range, the control module 13 adjusts the current load period of the light-emitting diode light-emitting unit. Here, the current duty cycle of driving the LED light-emitting units 141, 142 is adjusted, that is, the operation parameters such as the light-emitting frequency of the light-emitting diodes 141, 142 15 and the length of the light-emitting time are adjusted. In the embodiment, the control module 11 adjusts the length of the illumination period of the LEDs 141, 142 according to the temperature corresponding to the feed current and the feedforward current of the LED unit 141 to control the illumination. The effect of the temperature of the diode light-emitting units 141, 142. 20 Comparative Example 1 As shown in Fig. 6, this is a light-emitting diode light-emitting device of Comparative Example 1 of the present invention. The LED device includes a control module 11 and a plurality of LED emitters 14 and is supplied through a power supply device 12 to supply driving power required for the LED device. 12 200945949 5 ❹ 10 15 Ο 20 In Comparative Example 1, a total of 20 white light-emitting diode light-emitting units 14' were used and a light-emitting diode illuminating device of Comparative Example 1 was supplied using a battery capable of supplying a voltage of 9 volts. At the time of the required power, the control module U drives the light-emitting diode light-emitting device with a current duty cycle of 10 kHz and 50%. Experimental Results The light-emitting diodeless light-emitting device of the temperature sensorless device of the first embodiment and the light-emitting diode light-emitting device of the first comparative example each utilize a battery capable of supplying a voltage of 9 volts to supply power required for operation, and The control module U drives the light-emitting diode light-emitting unit with a current duty cycle of 10 kHz and 50%. The receivers tested the illuminance and CIE chromaticity of the two-light-emitting diode illumination devices at an external ambient temperature of 20 and 8 (TC). The results are shown in Fig. 7 and Fig. 8. Fig. 7 is A comparison curve of the contrast of the light-emitting diode illumination device of the temperature sensorless device of the first embodiment of the present invention and the light-emitting diode lighting device of the first embodiment, wherein the X-axis is outside the temperature of the light-emitting diode illumination device The Y-axis is the contrast of the LED illumination device. As shown in FIG. 7, the LED illumination device of Comparative Example 1 has an external ambient temperature between 2 〇 and 8 〇 ° C. There is a difference of 25%. However, the light-emitting diode lighting device of the temperature sensor of the embodiment j has less than 5% between the two-phase contrast of the external ambient temperature of 20 and 80 art. It can be seen that the light-emitting diode lighting device without temperature sensor of the first embodiment and the temperature control method thereof can surely maintain the constant illumination of the light-emitting diode lighting device without the temperature sensor. Light-emitting diode 13 without temperature sensor of Embodiment 1 200945949 CIE chromaticity 照明 of the illuminating device and the illuminating diode illuminating device of Comparative Example 1; wherein the wing-shaped contour represents the trajectory of all visible wavelengths, that is, the spectral curve can be seen. In addition, the lower right corner of the region surrounded by the wing-shaped contour line The red area is 'the top part is the green area, and the lower left corner is the blue area. 5 As indicated by the circle 8, the point A indicates the temperature sensorless illumination device of the embodiment 1 at the external ambient temperature. The chromaticity at 20 ° C is located on the CIE coordinate, and the point B indicates that the illuminating diode illumination device of the temperature sensor of the first embodiment has a chromaticity at a CIE coordinate at an external ambient temperature of 80 ° C. The position A' indicates that the light-emitting diode of Comparative Example 1 has a chromaticity at a position where the external ambient temperature is 20 ° C and the chromaticity is located on the CIE coordinate. The point B' indicates the light-emitting diode of Comparative Example 1. The illuminance of the body illuminating device at the external ambient temperature of 80 ° C is at the position on the CIE coordinate. From this result, it is found that 'the chromaticity shift (A, -B,) compared with Comparative Example 1, Example 1 The chromaticity shift (AB) has a significant drop. In addition, the chromaticity difference between Example 1 and Comparative Example 1 can be calculated by 1960 CIE UCS coordinate conversion. The calculated result shows that the light-emitting diode illuminating device of Comparative Example 1 is at an external ambient temperature of 20 and 80 ° C. The chromaticity difference is 0.1334', and at the external ambient temperature of 20 and 80 ° C, the chromaticity difference of the light-emitting diode illumination device of the temperature sensor of the first embodiment is 20 0·1048. The light-emitting diode lighting device without temperature sensor of Embodiment 1 and the temperature control method thereof can surely maintain the color rendering property of the light-emitting diode lighting device of the temperature-free sensor. As shown in FIG. The spectrum of a typical white light-emitting diode unit varies at 20»C and 80 °C. That is, when the temperature of the environment rises, the spectrum of the light-emitting unit of 200945949 5 Ο 10 15 ❹ 20 will have a blue-red shift, resulting in a problem of chromatic aberration. However, as shown in FIG. 9, this is the spectral change diagram of the white light emitting diode light-emitting unit at 20 and 80 ° C in the light-emitting diode lighting device of the temperature sensorless device of Embodiment 1, wherein the X-axis The light-emitting wavelength 'Y-axis of the white light-emitting diode light-emitting unit is the light-emitting intensity of the white light-emitting diode light-emitting unit. The results were found to be between 20 and 80, respectively. (: Next, by controlling the white light emitting diode light emitting unit of Embodiment 1, the light emitting wavelength of the white light emitting diode light emitting unit hardly changes. Therefore, even if the external environmental temperature changes, the temperatureless sensor of Embodiment 1 The light-emitting diode lighting device has a phenomenon that the spectral wavelength of the light-emitting diode light-emitting unit does not shift after temperature control. Therefore, the light-emitting diode lighting device without temperature sensor of the first embodiment and the temperature control method thereof 'It can eliminate the phenomenon of blue light shift caused by the temperature rise of the light-emitting diode light-emitting unit, and can avoid the generation of chromatic aberration problem. This also explains the light-emitting diode lighting device without temperature sensor of the first embodiment. The reason why the color rendering property can be maintained. Embodiment 2 As shown in FIG. 10, this is a media circuit diagram of a light-emitting diode lighting device without a temperature sensor according to Embodiment 2 of the present invention. 'The light-emitting diode illumination device without temperature sensor includes 'a control module n, a plurality of light-emitting diode light-emitting units 141, 142' 143, 144, and a current sensing element 13. The control module u is electrically connected to the line 15, and the plurality of light emitting diodes 141, 142, 143' 144 are also electrically connected to the line 15. In addition, the current sensing element 13 15 200945949 can The current sensing element 13 is electrically connected to one of the light emitting diodes 141. In this embodiment, the current sensing element 13 is electrically connected to the light emitting diode 141. In the illuminating diode illuminating device 5 of the temperature sensor, the current sensing component 13 transmits the sensed signal to the control module 11 via the line 15, and the control module 11 controls the illuminating according to the signal control. The current-carrying period of the illuminating unit 141, 142, 143, 144. The signal sensed by the current sensing element 13 of the present embodiment is a feed current of the illuminating diode 141 of the illuminating diode 141 electrically connected to the current sensing element 13, The current sensing element 13 of the present embodiment is a current sensing relay. In addition, the light-emitting diode lighting device of the temperature sensor of the present embodiment is further provided with a power supply device 12, and The power supply device 12 can use a battery or a commercial power. In the present embodiment, the commercial power is used to supply the power of the light-emitting diode illumination device without the temperature sensor. 15 The light-emitting sensor of the present embodiment emits light. In the polar lighting device, each of the light emitting diodes 141, 142, 143, 144 can be selected from any of the monochromatic light emitting diodes, such as a red light emitting diode and a blue light emitting diode. The unit, the green light emitting diode light emitting unit, or the white light emitting diode light emitting unit. The light emitting diode lighting device of the temperature sensorless measuring device of the embodiment is two red light emitting diode light emitting units 144. The two blue light emitting diodes 141, 142 and the two green light emitting diodes 143 are mixed with red, blue and green light to emit white light. One of the blue light emitting diode units 141 is electrically connected to the current sensing element 13. 16 200945949 In addition, the illumination diodeless illumination device of the temperature sensor of the present embodiment is further provided with a color sensor 16 electrically connected to the control module n. With the color sensor 16, the light mixed by the light-emitting diodes 141, 142' 143' 144 can be mutated, and the light-emitting diodes 141 can be driven and controlled by the control mode 5 group 11, The current duty cycle of 142, 143, and 144 maintains the color rendering of the light-emitting diode illumination device of the temperature sensor of the present embodiment constant. f The temperature control method used in the light-emitting diode illumination device of the temperature sensor of the present embodiment is the same as that of the first embodiment; that is, the current sense 1 〇 should be the signal sensed by 70 pieces 13 (with current) The light-emitting diode-light-emitting unit 141 is electrically connected to the light-emitting diode-light-emitting unit 141, and the feed-forward current-temperature relationship curve is used to correspond to the temperature of the light-emitting diode light-emitting unit 141, and the control module 11 adjusts according to the signal. The current duty cycle of the light emitting diode units 141, 142, 143, 144 is driven. The above-described embodiments are merely examples for the convenience of the description, and the scope of the claims is intended to be limited to the above embodiments. [Simple description of the diagram] 2〇 Figure 1 is a graph showing the spectral changes of white light-emitting diodes without temperature control at different temperatures. 2 is a schematic view of a light-emitting diode lighting device without a temperature sensor according to Embodiment 1 of the present invention. 17 200945949 FIG. 3 is a driving circuit diagram of a light-emitting diode illuminating device without a temperature sensor according to Embodiment 1 of the present invention. Fig. 4 is a flow chart showing the temperature control method of the light-emitting diode lighting device without temperature sensor according to the first embodiment of the present invention. 5 is a diagram showing a feed current_temperature relationship of the light-emitting diode light-emitting unit of Embodiment 1 of the present invention. Fig. 6 is a schematic view showing a light-emitting diode lighting device of Comparative Example 1 of the present invention. Fig. 7 is a graph showing the variability curve 10 of the light-emitting diode illuminating device of the temperature sensorless sensor of the first embodiment of the present invention and the illuminating diode illuminating device of Comparative Example 1. Fig. 8 is a CIE chromaticity diagram of the light-emitting diode illumination device of the temperature sensorless sensor of the first embodiment of the present invention and the light-emitting diode lighting device of Comparative Example 1. Fig. 9 is a graph showing the spectrum and variation of the light-emitting diode light-emitting unit of the light-emitting diode lighting device of the temperature sensorless sensor of the embodiment of the invention. Figure 10 is a drive circuit diagram of a light-emitting diode lighting device without a temperature sensor according to Embodiment 2 of the present invention. [Main component symbol description] 11 Control module 12 Power supply device 13 Current sensing element 14, 141, 142, 143, 144 Light-emitting diode lighting unit 15 Line 16 Color sensing device 18