WO2011125323A1 - 光学材料およびその成形物 - Google Patents

光学材料およびその成形物 Download PDF

Info

Publication number
WO2011125323A1
WO2011125323A1 PCT/JP2011/002011 JP2011002011W WO2011125323A1 WO 2011125323 A1 WO2011125323 A1 WO 2011125323A1 JP 2011002011 W JP2011002011 W JP 2011002011W WO 2011125323 A1 WO2011125323 A1 WO 2011125323A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
cyano
poly
fluorine
alkyl
Prior art date
Application number
PCT/JP2011/002011
Other languages
English (en)
French (fr)
Inventor
忠弘 須永
小田 隆志
博文 井尾
啓介 川島
小池 康博
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2012509314A priority Critical patent/JPWO2011125323A1/ja
Priority to CN201180017507.2A priority patent/CN102906150B/zh
Priority to US13/639,124 priority patent/US9128238B2/en
Priority to KR1020127028990A priority patent/KR101467653B1/ko
Publication of WO2011125323A1 publication Critical patent/WO2011125323A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3325Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from other polycyclic systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/72Derivatisation
    • C08G2261/724Hydrogenation

Definitions

  • the present invention relates to an optical material and a molded article having extremely small orientation birefringence and photoelastic constant.
  • optical materials such as microlenses, pickup lenses, imaging lenses, optical elements (microlens arrays, optical waveguides, optical switching, Fresnel zone plates, binary optical elements, blaze diffractive optical elements, etc.) for digital camera modules, reflection, etc.
  • optical elements microlens arrays, optical waveguides, optical switching, Fresnel zone plates, binary optical elements, blaze diffractive optical elements, etc.
  • prevention filters, recording media, display materials, and organic device materials such as organic EL and liquid crystal plastic members
  • organic device materials such as organic EL and liquid crystal plastic members
  • Polymer materials containing cyclic olefin polymers are aggregates of long molecular chains, and the polymer molecular chains themselves have anisotropy of their own physical properties. In many cases, however, the resin is hardened into the shape of a molded body on a mold or roll in a state where the flow of the resin is not sufficiently relaxed. At that time, it is well known that long chains of molecular chains exhibit molecular orientation under these molding conditions.
  • This molecular orientation is caused by anisotropy of the intrinsic physical properties of the molecular chain itself, and optically anisotropy of the refractive index. Birefringence occurs as an effect of the refractive index anisotropy on the molding material, and if the birefringent material is present in the optical path, it adversely affects, for example, the image quality of the product and signal reading. Thus, in the development of optical materials and electronic device materials composed of optical resins, reduction of birefringence is an important issue.
  • the birefringence exhibited by the optical polymer in this technical field includes orientation birefringence due to the polymer main chain and stress birefringence due to stress.
  • the respective signs of orientation birefringence and stress birefringence are derived from the chemical structure of the polymer, and are inherent to each polymer.
  • Non-Patent Document 1 the orientation birefringence of a stretched film made of a methyl methacrylate and benzyl methacrylate copolymer to which 0.3 wt% of strontium carbonate fine particles having a particle diameter of about 20 nm are added as inorganic fine particles is almost zero regardless of the draw ratio.
  • These are excellent methods, but they are practically used because the additives need to be added continuously and uniformly when optimizing film opacification and fine particle size control by aggregation of the additives. There is a problem.
  • both the orientation birefringence and the stress birefringence are reduced to a level that causes no practical problem.
  • a polymer is obtained by melt molding, when a polymer is heated to a temperature capable of melt molding and the resin is retained, a monomer or oligomer-derived gel component generated by depolymerization is mixed into the film. This creates problems that degrade performance.
  • the methacrylate polymer has a low glass transition temperature of about 100 ° C., and when used in a product, heat resistance becomes a problem depending on the application.
  • the cyclic olefin polymer is a polymer having a relatively high glass transition temperature that is amorphous and transparent due to the rigid cyclic structure of the main chain, and uses its excellent properties for applications such as optical films and optical lenses. Widely used.
  • a photoelastic constant as a measure of stress birefringence is exemplified by using a ring-opening polymerization hydrogenated product of norbornene or tetracyclododecene monomer as an example (non-patent document) 3).
  • the norbornene ring-opening polymerization hydrogenated product containing an alkyl group or phenyl group having a relatively low polarity as a substituent exhibits a relatively large photoelastic constant of about 10 to 30 ⁇ 10 ⁇ 12 Pa ⁇ 1 . .
  • a cyclic olefin having a norbornene basic structure particularly preferably a norbornene or tetracyclododecene or a cyclic olefin having a hydrocarbon structure derived therefrom, and an acyclic ring having a terminal double bond
  • It consists of olefins such as ⁇ -olefins, particularly preferably ethylene or propylene.
  • phase difference of the stretched film of the obtained amorphous cyclic olefin-type copolymer is illustrated (patent document 3).
  • a film having a film thickness of 40 to 60 ⁇ m stretched 1.5 to 4 times has a phase difference of 5 to 16 nm and an orientation birefringence conversion value of 1 to 3 ⁇ 10 ⁇ 4. A small birefringence is shown.
  • the copolymer of Patent Document 3 is not a molecular design that cancels out the molecular chain anisotropy between a plurality of cyclic olefin species, but is a copolymer of a molecular chain of an ⁇ -olefin chain and a cyclic olefin in the main chain.
  • the polymer chains are pulled in the stress direction by molding under stress such as shearing and tension such as melt injection molding and extrusion molding. This causes birefringence.
  • an optical resin when used for a device such as a liquid crystal display using polarized light or an optical lens, it is necessary to suppress the occurrence of birefringence due to orientation or stress as much as possible. Therefore, studies have been made to suppress the orientation of polymer chains by optimizing conditions such as temperature and pressure.
  • the polymer chain itself is oriented, if it is an optical material containing a polymer that does not generate birefringence, it is highly transparent and excellent in toughness without being restricted by molding temperature and pressure conditions. Widely applicable to liquid crystal display devices and optical lenses.
  • the present invention uses a predetermined cyclic olefin copolymer that suppresses birefringence even when the polymer chain itself is oriented, and thus is highly transparent and excellent in toughness without being restricted by the temperature and pressure conditions during molding. It aims at providing the optical material which can obtain a molded object.
  • the present invention is shown below.
  • the molar ratio [A] / [B Is an optical material comprising a cyclic olefin copolymer of 95/5 to 1/99,
  • the dichroic ratio D a function of I ⁇ / I ⁇ parallel light intensity I ⁇ and vertical light intensity I ⁇ of the alignment direction in the 1500 ⁇ 1400 cm -1 by Raman spectroscopy
  • the change amount ⁇ F in the absolute value of the orientation coefficient F (D ⁇ 1) / (D + 2)
  • the absolute value of ⁇ OB / ⁇ F represented by the change amount ⁇ OB of the absolute value of orientation birefringence calculated from the retardation (nm) / film thickness ( ⁇ m) at a wavelength of 633 nm
  • the absolute value of ⁇ OB / ⁇ F represented by the change amount ⁇ OB of the absolute value of orientation birefringence calculated from the retardation (nm) / film thickness ( ⁇ m) at a wavelength of 633 nm
  • R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 1 to R 4 are a group not containing fluorine or a group not containing cyano
  • R 1 to R 4 are hydrogen, alkyl having 1 to 10 carbons, 6-20 aryl, C1-10 alkoxy, C2-10 alkoxyalkyl, C2-10 alkoxycarbonyl, C7-20 aryloxycarbonyl, C3-10 alkoxycarbonyl alkyl, or chosen .
  • R 4 is optionally bonded to form a ring structure .
  • X 1 is -O -, - S -, - NR 5 -, - PR 5 -, and -CR 5 R 6 - from (R 5, R 6 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms).
  • R 7 to R 10 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 10 are connected to form a ring structure is -O -, - S -, - NR 11 -, - PR 11 -, and -CR 11 R 12 - (R 11 , R 12 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms, and may be the same or different, and n represents 1 to 3.)
  • R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 1 to R 4 are a group not containing fluorine or a group not containing cyano
  • R 1 to R 4 are hydrogen, alkyl having 1 to 10 carbons, 6-20 aryl, C1-10 alkoxy, C2-10 alkoxyalkyl, C2-10 alkoxycarbonyl, C7-20 aryloxycarbonyl, C3-10 alkoxycarbonyl alkyl, or chosen .
  • R 4 is optionally bonded to form a ring structure .
  • X 1 is -O -, - S -, - NR 5 -, - PR 5 -, and -CR 5 R 6 - from (R 5, R 6 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms).
  • R 7 to R 10 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 10 are connected to form a ring structure is -O -, - S -, - NR 11 -, - PR 11 -, and -CR 11 R 12 - (R 11 , R 12 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms, and may be the same or different, and n represents 1 to 3.)
  • R 13 to R 16 are hydrogen, alkyl having 1 to 10 carbon atoms, aryl having 6 to 20 carbon atoms, alkoxy having 1 to 10 carbon atoms, alkoxyalkyl having 2 to 10 carbon atoms, carbon Selected from alkoxycarbonyl having 2 to 10 carbon atoms, aryloxycarbonyl having 7 to 20 carbon atoms, alkoxycarbonylalkyl having 3 to 10 carbon atoms, or aryloxycarbonylalkyl having 8 to 20 carbon atoms, wherein R 13 to R 16 are X 3 is —O—, —S—, —NR 17 —, —PR 18 —, and —CR 17 R 18 — (R 17 and R 18 are Independently represents hydrogen or alkyl having 1 to 20 carbon atoms, which may be the same or different, and n represents 0 or 1.)
  • the absolute value of the orientation coefficient F (D ⁇ 1) / (D + 2) is 0.001 or more, In the stretched film obtained from the optical material, the absolute value of orientation birefringence calculated from a retardation (nm) / film thickness ( ⁇ m) at a wavelength of 633 nm is 5 ⁇ 10 ⁇ 4 or less. 1],
  • R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 1 to R 4 are a group not containing fluorine or a group not containing cyano
  • R 1 to R 4 are hydrogen, alkyl having 1 to 10 carbons, 6-20 aryl, C1-10 alkoxy, C2-10 alkoxyalkyl, C2-10 alkoxycarbonyl, C7-20 aryloxycarbonyl, C3-10 alkoxycarbonyl alkyl, or chosen .
  • R 4 is optionally bonded to form a ring structure .
  • X 1 is -O -, - S -, - NR 5 -, - PR 5 -, and -CR 5 R 6 - from (R 5, R 6 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms).
  • R 7 to R 10 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 10 are connected to form a ring structure is -O -, - S -, - NR 11 -, - PR 11 -, and -CR 11 R 12 - (R 11 , R 12 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms, and may be the same or different, and n represents 1 to 3.)
  • At least the repeating structural unit [A] represented by the general formula (1) and the repeating structural unit [B] represented by the general formula (2), and the molar ratio [A] / [B ] Includes a cyclic olefin copolymer of 95/5 to 1/99.
  • a tensile force of 2 N at the maximum is applied at a speed of 0.1 mm / min, and the phase difference at a wavelength of 633 nm is measured.
  • Photoelastic constant (Pa ⁇ 1 ) ⁇ Re (nm) / ⁇ P (N) ⁇ film width (mm) (12) ( ⁇ Re: amount of change in phase difference, ⁇ P: amount of change in tensile force in a range where the phase difference increases linearly with the application of stress)
  • R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 1 to R 4 are a group not containing fluorine or a group not containing cyano
  • R 1 to R 4 are hydrogen, alkyl having 1 to 10 carbons, 6-20 aryl, C1-10 alkoxy, C2-10 alkoxyalkyl, C2-10 alkoxycarbonyl, C7-20 aryloxycarbonyl, C3-10 alkoxycarbonyl alkyl, or chosen .
  • R 4 is optionally bonded to form a ring structure .
  • X 1 is -O -, - S -, - NR 5 -, - PR 5 -, and -CR 5 R 6 - from (R 5, R 6 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms).
  • R 7 to R 10 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 10 are connected to form a ring structure is -O -, - S -, - NR 11 -, - PR 11 -, and -CR 11 R 12 - (R 11 , R 12 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms, and may be the same or different, and n represents 1 to 3.)
  • R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 1 to R 4 are a group not containing fluorine or a group not containing cyano
  • R 1 to R 4 are hydrogen, alkyl having 1 to 10 carbons, 6-20 aryl, C1-10 alkoxy, C2-10 alkoxyalkyl, C2-10 alkoxycarbonyl, C7-20 aryloxycarbonyl, C3-10 alkoxycarbonyl alkyl, or chosen .
  • R 4 is optionally bonded to form a ring structure .
  • X 1 is -O -, - S -, - NR 5 -, - PR 5 -, and -CR 5 R 6 - from (R 5, R 6 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms).
  • R 7 to R 10 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 10 are connected to form a ring structure is -O -, - S -, - NR 11 -, - PR 11 -, and -CR 11 R 12 - (R 11 , R 12 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms, and may be the same or different, and n represents 1 to 3.)
  • R 13 to R 16 are hydrogen, alkyl having 1 to 10 carbon atoms, aryl having 6 to 20 carbon atoms, alkoxy having 1 to 10 carbon atoms, alkoxyalkyl having 2 to 10 carbon atoms, carbon Selected from alkoxycarbonyl having 2 to 10 carbon atoms, aryloxycarbonyl having 7 to 20 carbon atoms, alkoxycarbonylalkyl having 3 to 10 carbon atoms, or aryloxycarbonylalkyl having 8 to 20 carbon atoms, wherein R 13 to R 16 are X 3 is —O—, —S—, —NR 17 —, —PR 18 —, and —CR 17 R 18 — (R 17 and R 18 are Independently represents hydrogen or alkyl having 1 to 20 carbon atoms, which may be the same or different, and n represents 0 or 1.)
  • At least the repeating structural unit [A] represented by the general formula (1) and the repeating structural unit [B] represented by the general formula (2) are contained, and the molar ratio [A] / [B ] Is composed of 95/5 to 1/99, and contains the repeating structural unit [C] represented by the general formula (3), and its molar ratio [C] / ([A] + [B])
  • a phase difference at a wavelength of 633 nm was measured by applying a tensile force of 2 N at a maximum at a speed of 0.1 mm / min. ) Obtained by molding an optical material having an absolute value of the photoelastic constant of 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less.
  • Photoelastic constant (Pa ⁇ 1 ) ⁇ Re (nm) / ⁇ P (N) ⁇ film width (mm) (12) ( ⁇ Re: amount of change in phase difference, ⁇ P: amount of change in tensile force in a range where the phase difference increases linearly with the application of stress)
  • R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 1 to R 4 are a group not containing fluorine or a group not containing cyano
  • R 1 to R 4 are hydrogen, alkyl having 1 to 10 carbons, 6-20 aryl, C1-10 alkoxy, C2-10 alkoxyalkyl, C2-10 alkoxycarbonyl, C7-20 aryloxycarbonyl, C3-10 alkoxycarbonyl alkyl, or chosen .
  • R 4 is optionally bonded to form a ring structure .
  • X 1 is -O -, - S -, - NR 5 -, - PR 5 -, and -CR 5 R 6 - from (R 5, R 6 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms).
  • R 7 to R 10 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 10 are connected to form a ring structure is -O -, - S -, - NR 11 -, - PR 11 -, and -CR 11 R 12 - (R 11 , R 12 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms, and may be the same or different, and n represents 1 to 3.)
  • R 13 to R 16 are hydrogen, alkyl having 1 to 10 carbon atoms, aryl having 6 to 20 carbon atoms, alkoxy having 1 to 10 carbon atoms, alkoxyalkyl having 2 to 10 carbon atoms, carbon Selected from alkoxycarbonyl having 2 to 10 carbon atoms, aryloxycarbonyl having 7 to 20 carbon atoms, alkoxycarbonylalkyl having 3 to 10 carbon atoms, or aryloxycarbonylalkyl having 8 to 20 carbon atoms, wherein R 13 to R 16 are X 3 is —O—, —S—, —NR 17 —, —PR 18 —, and —CR 17 R 18 — (R 17 and R 18 are Independently represents hydrogen or alkyl having 1 to 20 carbon atoms, which may be the same or different, and n represents 0 or 1.)
  • the optical material means a cyclic olefin copolymer or a resin composition containing the optical material.
  • the optical material of the present invention includes a predetermined cyclic olefin copolymer in which birefringence is suppressed even when the polymer chain itself is oriented, and has high transparency without being restricted by temperature and pressure conditions during molding, A molded article having excellent toughness can be provided.
  • An optical film produced from such an optical material of the present invention by a method such as uniaxial stretching or biaxial stretching is industrially valuable as a low birefringent film.
  • an optical lens molded from the optical material of the present invention by injection molding or the like has a very small photoelastic constant of the polymer, and stress birefringence with respect to stress strain remaining in a molded product by injection molding or the like is also very small. Industrially valuable.
  • FIG. 1 shows a 13 C-NMR spectrum of a cyclic olefin copolymer in Example 1.
  • 19 shows a 19 F-NMR spectrum of a cyclic olefin copolymer in Example 8.
  • FIG. 13 shows a 13 C-NMR spectrum of the cyclic olefin copolymer in Example 8.
  • polarized-light of the 2.4 times stretched film in Example 12 is shown.
  • vertical and parallel polarized light of the 2.4 times stretched film in the comparative example 4 is shown.
  • FIG. 13 shows a 13 C-NMR spectrum of a cyclic olefin copolymer in Example 28.
  • the Raman spectrum of the perpendicular and parallel polarized light of the 2.4 times stretched film in Example 28 is shown.
  • the optical material of the present invention contains at least the repeating structural unit [A] represented by the general formula (1) and the repeating structural unit [B] represented by the general formula (2), and the molar ratio thereof.
  • An optical material characterized in that the absolute value of OB / ⁇ F is 0.00
  • the absolute value of the coefficient F (D ⁇ 1) / (D + 2) is 0.001 or more, and the birefringence of the orientation birefringence is 5 ⁇ 10 ⁇ 4 or less.
  • the optical material of the present invention includes a predetermined cyclic olefin copolymer that suppresses birefringence even when the polymer chain itself is oriented, and is transparent without being limited by the temperature and pressure conditions during molding.
  • a molded article having high properties and excellent toughness can be obtained.
  • a polymer material containing a cyclic olefin polymer is an assembly of long molecular chains, and a large number of repeating structural units forming the polymer molecular chain are in a state of being bound in a specific direction in volume.
  • the refractive index n ⁇ derived from the polarization component parallel to the orientation direction is different from the refractive index n ⁇ derived from the polarization component perpendicular to the orientation direction, and external stresses such as tension and compression are applied to the polymer molding material. When applied, the polymer molecular chain is oriented regardless of reversible or irreversible.
  • the repeating structural unit of the cyclic olefin polymer chain has a three-dimensional isotropic structure because it has a ring structure in the main chain, and is anisotropic in the density distribution of the electron cloud of the molecular chain and the mobility of the molecular chain.
  • Exists, and anisotropy of polarizability occurs in each repeating structural unit.
  • the length and direction in the major axis direction of the polarizability ellipsoid of the repeating structural unit [A] represented by the general formula (1) and the repeating structural unit [B] represented by the general formula (2) are
  • the repeating structural unit [B] has a longer polarizability ellipsoid in the direction perpendicular to the main chain than the repeating structural unit [A].
  • both are copolymerized at a certain ratio
  • the optical anisotropy of the repeating structural unit [A] is offset by the optical anisotropy of the repeating structural unit [B], and the polarizability ellipsoid becomes nearly spherical (isotropically). Become).
  • a polymer having polarizability ellipsoids of different lengths and directions is not physically mixed, but it is possible to obtain an optically transparent optical material without causing spinodal phase separation by copolymerization.
  • By making into a film it is possible to make an optical film having very small orientation birefringence. Further, when the orientation birefringence is very small, the photoelastic constant of the polymer is also very small, and the stress birefringence with respect to the stress strain remaining in the molded product by injection molding or the like is also very small.
  • optical anisotropy of the repeating structural unit [A] is offset by the optical anisotropy of the repeating structural unit [B] by the linkage between the repeating structural units [A] and [B] of the cyclic olefin copolymer.
  • the effects may vary. That is, in the copolymerization reaction, the chain length of at least two repeating structural units [A] and the chain length of [B], the random copolymerizability of repeating structural units [A] and [B], or the respective chains
  • the stereoregularity such as isotactic and syndiotactic may affect.
  • the molar ratio [A] / [B] is in the range of 95/5 to 1/99, preferably 80/20 to 1/99, and more preferably 75/25 to 5/95. More preferably, it is 70/30 to 10/90.
  • At least the repeating structural unit [A] represented by the general formula (1) and the repeating structural unit [B] represented by the general formula (2) are in a molar ratio [A] / [ B] is in the range of 95/5 to 1/99, preferably 80/20 to 1/99, more preferably 75/25 to 5/95, and more preferably 70/30 to 10/99.
  • the molar ratio [A] + [B]) is [C] / ([A] + [B]) in the range of 1/99 to 40/60, preferably 3/97 to 30/70. More preferably 5/95 to 20/80, particularly preferably 5/95. 5 to 15/85.
  • the repeating structural unit [A] represented by the general formula (1) is represented by the following formula.
  • R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 1 to R 4 are a group not containing fluorine or a group not containing cyano
  • R 1 to R 4 are hydrogen, alkyl having 1 to 10 carbons, 6-20 aryl, C1-10 alkoxy, C2-10 alkoxyalkyl, C2-10 alkoxycarbonyl, C7-20 aryloxycarbonyl, C3-10 alkoxycarbonyl alkyl, or chosen .
  • R 4 is optionally bonded to form a ring structure .
  • X 1 is -O -, - S -, - NR 5 -, - PR 5 -, and -CR 5 R 6 - from (R 5, R 6 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms).
  • R 1 to R 4 are fluorine or fluoromethyl, difluoromethyl, trifluoromethyl, trifluoroethyl, pentafluoroethyl, heptafluoropropyl, hexafluoroisopropyl, heptafluoroisopropyl.
  • aryl containing 6 to 20 carbon atoms such as aryl substituted with fluorine, fluoromethoxycarbonyl, difluoromethoxycarbonyl, trifluoromethoxycarbonyl, trifluoroethoxycarbonyl, pentafluoroethoxycarbonyl, heptafluoropropoxycarbonyl Hexafluoroisopropoxycarbonyl, heptafluoroisopropoxycarbonyl, hexafluoro-2-methylisopropoxycarbonyl, perfluoro-2-methyl Alkyl having 2 to 10 carbon atoms containing fluorine such as alkoxycarbonyl in which part or all of hydrogen is substituted with fluorine such asizisopropoxycarbonyl, n-perfluorobutoxycarbonyl, n-perfluoropentyloxycarbonyl, perfluorocyclopentyloxycarbonyl, etc.
  • fluorine such as alkoxycarbonyl in which part or all of hydrogen
  • Fluorine-containing aryloxycarbonyl having 7 to 20 carbon atoms such as carbonyl, perfluorophenyloxycarbonyl, trifluorophenyloxycarbonyl, etc., in which part or all of hydrogen is substituted with fluorine, etc., fluoromethoxycarbonylmethyl, difluoro Methoxycarbonylmethyl, trifluoromethoxycarbonylmethyl, trifluoroethoxycarbonylmethyl, pentafluoroethoxycarbonylmethyl, heptaph Oropropoxycarbonylmethyl, hexafluoroisopropoxycarbonylmethyl, heptafluoroisopropoxycarbonylmethyl, hexafluoro-2-methylisopropoxycarbonylmethyl, perfluoro-2-methylisopropoxycarbonylmethyl, n-perfluorobutoxycarbonylmethyl, n-perfluoro C3-C10 alkoxycarbonylalkyl, perfluorophenyloxycarbon
  • fluorine such as alkoxycarbonylalkyl in which part or all of hydrogen is substituted with fluorine, such as pentyloxycarbonylmethyl and perfluorocyclopentyloxymethyl Aryloxycarbonylmethyl etc. in which part or all of hydrogen such as oxycarbonylmethyl is substituted with fluorine
  • Aryloxycarbonyl alkyl having 7 to 20 carbon atoms containing Tsu element is illustrated
  • cyano or alkyl having 2 to 10 carbon atoms containing cyano such as cyanomethyl, cyanoethyl, 1-cyanopropyl, 1-cyanobutyl, 1-cyanohexyl, cyanoethoxy, 1-cyanopropoxy, 1-cyanobutoxy, 1 -C2-C10 alkoxy containing cyano such as alkoxy in which part of hydrogen is substituted with cyano, such as cyanopentyloxy, cyanoethoxymethyl, 1-cyanopropoxymethyl, 1-cyanobutoxymethyl, 1-
  • C7-20 aryl containing cyano such as aryl Alkyl having 3 to 10 carbon atoms containing cyano such as alkoxycarbonyl in which part of hydrogen is substituted with cyano, such as ruthenium, cyanoethoxycarbonyl, 1-cyanopropoxycarbonyl, 1-cyanobutoxycarbonyl, 1-cyanopentyloxycarbonyl
  • cyano such as ruthenium, cyanoethoxycarbonyl, 1-cyanopropoxycarbonyl, 1-cyanobutoxycarbonyl, 1-cyanopentyloxycarbonyl
  • Aryloxycarbonyl having 8 to 20 carbon atoms containing cyano such as carbonyl, 4-cyanophenyloxycarbonyl, aryloxycarbonyl etc.
  • cyano such as 3,5-dicyanophenyloxycarbonyl, cyanoethoxycarbonyl Number of carbons containing cyano such as alkoxycarbonylalkyl in which part of hydrogen is substituted with cyano, such as methyl, 1-cyanopropoxycarbonylmethyl, 1-cyanobutoxycarbonylmethyl, 1-cyanopentyloxycarbonylmethyl 8-10 carbon atoms containing cyano such as aryloxycarbonylalkyl such as 4-10 alkoxycarbonylalkyl or 4-cyanophenyloxycarbonylmethyl, 3,5-dicyanophenyloxycarbonylmethyl, etc., in which part of hydrogen is substituted with cyano.
  • Illustrative are ⁇ 20 aryloxycarbonylalkyls.
  • R 1 to R 4 may be bonded to each other to form a ring structure, and for example, a ring such as perfluorocycloalkyl or perfluorocycloether via oxygen may be formed.
  • R 1 to R 4 are hydrogen or carbon number 1 such as methyl, ethyl, propyl, isopropyl, 2-methylisopropyl, n-butyl, n-pentyl, cyclopentyl and the like.
  • Aryl having 6 to 20 carbon atoms such as alkyl, phenyl, naphthyl and the like, alkoxy having 1 to 10 carbon atoms such as methoxy, ethoxy and tert-butoxy, or carbon such as methoxymethyl, ethoxymethyl and tert-butoxymethyl
  • Alkoxyalkyl having 2 to 10 carbon atoms alkoxycarbonyl having 2 to 10 carbon atoms such as methoxycarbonyl, ethoxycarbonyl and tert-butoxycarbonyl, aryloxycarbonyl having 7 to 20 carbon atoms such as phenyloxycarbonyl and methylphenyloxycarbonyl, methoxy Carbonyl methyl, ethoxy carbon
  • alkoxycarbonylalkyl having 3 to 10 carbon atoms such as rumethyl and tert-butoxycarbonylmethyl
  • aryloxycarbonylalkyl having 8 to 20 carbon atoms such as phenyloxycarbonyl
  • the repeating structural unit represented by the general formula (1) constituting the cyclic olefin copolymer may be only one kind, and at least one of R 1 to R 4 in the general formula (1) is different from one another. It may consist of structural units.
  • cyclic olefin polymer structure containing the repeating structural unit represented by the general formula (1) in the present invention include, for example, poly (1-fluoro-2-trifluoromethyl-3,5-cyclopentyl Lenethylene), poly (1-fluoro-1-trifluoromethyl-3,5-cyclopentyleneethylene), poly (1-methyl-1-fluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene) ), Poly (1,1-difluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene), poly (1,2-difluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene), Poly (1-perfluoroethyl-3,5-cyclopentylene ethylene), poly (1,1-bis (trifluoromethyl) -3,5-cyclopentylene ether Thylene), poly (1,1,2-trifluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene), poly [1,
  • poly (1-cyano-3,5-cyclopentyleneethylene poly (1-cyano-1-methyl-3,5-cyclopentyleneethylene), poly (1-cyano-2-methyl-3, 5-cyclopentyleneethylene), poly (1-cyano-2-phenyl-3,5-cyclopentyleneethylene), poly (1-cyano-2-naphthyl-3,5-cyclopentyleneethylene), poly ( 1-cyano-2-methoxy-3,5-cyclopentyleneethylene), poly (1-cyano-2-methoxymethyl-3,5-cyclopentyleneethylene), poly (1-cyano-2-methoxycarbonyl-) 3,5-cyclopentyleneethylene), poly (1-cyano-2-phenyloxycarbonyl-3,5-cyclopentyleneethylene), poly (1-cyano-2-phenyloxycarbonyl) Til-3,5-cyclopentyleneethylene), poly (1-cyanomethyl-3,5-cyclopentyleneethylene), poly (1-cyanomethyl-2-methyl-3,5-cyclopentyleneethylene
  • X 1 in the general formula (1) is, -CH 2 of the above cyclopentylene - instead of -O -, - S -, - NR 5 -, - PR 5 -, and -CR 5 R 6 - (Wherein R 5 and R 6 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms).
  • the repeating structural unit [B] represented by the general formula (2) configured together with the repeating structural unit [A] represented by the general formula (1) is represented by the following formula.
  • R 7 to R 10 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 10 are connected to form a ring structure is -O -, - S -, - NR 11 -, - PR 11 -, and -CR 11 R 12 - (R 11 , R 12 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms, and may be the same or different, and n represents 1 to 3.)
  • R 7 to R 10 are fluorine, or fluoromethyl, difluoromethyl, trifluoromethyl, trifluoroethyl, pentafluoroethyl, heptafluoropropyl, hexafluoroisopropyl, heptafluoroisopropyl.
  • aryl containing 6 to 20 carbon atoms such as aryl substituted with fluorine, fluoromethoxycarbonyl, difluoromethoxycarbonyl, trifluoromethoxycarbonyl, trifluoroethoxycarbonyl, pentafluoroethoxycarbonyl, heptafluoropropoxycarbonyl Hexafluoroisopropoxycarbonyl, heptafluoroisopropoxycarbonyl, hexafluoro-2-methylisopropoxycarbonyl, perfluoro-2-me Alkyl having 2 to 10 carbon atoms containing fluorine, such as alkoxycarbonyl in which part or all of hydrogen is substituted with fluorine such as tilisopropoxycarbonyl, n-perfluorobutoxycarbonyl, n-perfluoropentyloxycarbonyl, perfluorocyclopentyloxycarbonyl Fluorine-containing aryloxycarbonyl having 7 to 20 carbon atoms
  • cyano or alkyl having 2 to 10 carbon atoms containing cyano such as cyanomethyl, cyanoethyl, 1-cyanopropyl, 1-cyanobutyl, 1-cyanohexyl, cyanoethoxy, 1-cyanopropoxy, 1-cyanobutoxy, 1 -C2-C10 alkoxy containing cyano such as alkoxy in which part of hydrogen is substituted with cyano, such as cyanopentyloxy, cyanoethoxymethyl, 1-cyanopropoxymethyl, 1-cyanobutoxymethyl, 1-cyanopentyl
  • a part of hydrogen such as oxymethyl such as alkoxyalkyl substituted with cyano such as alkoxyalkyl containing cyano such as alkoxyalkyl having 3 to 10 carbon atom
  • C7-20 aryl containing cyano such as aryl Alkyl having 3 to 10 carbon atoms containing cyano such as alkoxycarbonyl in which part of hydrogen is substituted with cyano, such as ruthenium, cyanoethoxycarbonyl, 1-cyanopropoxycarbonyl, 1-cyanobutoxycarbonyl, 1-cyanopentyloxycarbonyl
  • cyano such as ruthenium, cyanoethoxycarbonyl, 1-cyanopropoxycarbonyl, 1-cyanobutoxycarbonyl, 1-cyanopentyloxycarbonyl
  • Aryloxycarbonyl having 8 to 20 carbon atoms containing cyano such as carbonyl, 4-cyanophenyloxycarbonyl, aryloxycarbonyl etc.
  • cyano such as 3,5-dicyanophenyloxycarbonyl, cyanoethoxycarbonyl Number of carbons containing cyano such as alkoxycarbonylalkyl in which part of hydrogen is substituted with cyano, such as methyl, 1-cyanopropoxycarbonylmethyl, 1-cyanobutoxycarbonylmethyl, 1-cyanopentyloxycarbonylmethyl 8-10 carbon atoms containing cyano such as aryloxycarbonylalkyl such as 4-10 alkoxycarbonylalkyl or 4-cyanophenyloxycarbonylmethyl, 3,5-dicyanophenyloxycarbonylmethyl, etc., in which part of hydrogen is substituted with cyano.
  • Illustrative are ⁇ 20 aryloxycarbonylalkyls.
  • R 7 to R 10 may be bonded to each other to form a ring structure, and for example, a ring such as perfluorocycloalkyl or perfluorocycloether via oxygen may be formed.
  • R 7 to R 10 are hydrogen or 1 carbon atom such as methyl, ethyl, propyl, isopropyl, 2-methylisopropyl, n-butyl, n-pentyl, cyclopentyl and the like.
  • C-10 alkyl such as alkyl, phenyl, naphthyl, aryl having 6-20 carbon atoms, methoxy, ethoxy, tert-butoxy, etc. alkoxy having 1-10 carbon atoms, methoxymethyl, ethoxymethyl, tert-butoxymethyl, etc.
  • the repeating structural unit represented by the general formula (2) constituting the cyclic olefin copolymer may be only one type, and at least one of R 7 to R 10 in the general formula (2) is different from each other. It may consist of structural units.
  • Pentadecanylene ethylene poly (4-methyl-5-fluoro-5-trifluoromethyl, -10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13 .1 3,6 ] Pentadecanylene ethylene), poly (4,4-difluoro-5-trifluoromethyl-10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13 .1 3,6 ] Pentadecanylene ethylene), poly (4-perfluoroethyl-10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13 .1 3,6 ] Pentadecanylene ethylene), poly (4,4-bis (trifluoromethyl) -10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13 .1 3,6 ] Pentadecanylene ethylene), poly (4,4,5-trifluoro-5-trifluoromethyl-10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13
  • Pentadecanylene ethylene poly (4- (1 ′, 1 ′, 1′-trifluoro-iso-butoxy) -10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13 .1 3,6 ] Pentadecanylene ethylene), poly (4- (1 ′, 1 ′, 1′-trifluoro-iso-butoxy) -10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13 .1 3,6 ] Pentadecanylene ethylene), poly (4-methyl-5- (1 ′, 1 ′, 1′-trifluoro-iso-butoxy) -10,12-pentacyclo [6.5.1.0 2,7 0.0 9,13 .1 3,6 ] Pentadecanylene ethylene), poly (4-butyl-5- (1 ′, 1 ′, 1′-trifluoro-iso-butoxy) -10,12-pentacyclo [6.5.1.0 2,7 0.0 9,13 .1 3,
  • Pentadecanylene ethylene poly (4,4,5-trifluoro-5- (2 ', 2', 3 ', 3', 4 ', 4', 4'-heptafluorobutoxy) -10,12 -Pentacyclo [6.5.1.0 2,7 0.0 9,13 .1 3,6 ] Pentadecanylene ethylene), poly (4,5-difluoro-4-trifluoromethoxy-4- (2 ', 2', 3 ', 3', 4 ', 4', 4'-heptafluorobutoxy)- 10,12-Pentacyclo [6.5.1.0 2,7 0.0 9,13 .1 3,6 Pentadecanylene ethylene), poly (4-fluoro-4- (2 ′, 2 ′, 2 ′,-trifluoroethoxy) -5,5-bis (trifluoromethoxy) -10,12-pentacyclo [6.
  • Pentadecanylene ethylene poly (4,5-difluoro-4-trifluoromethoxy-5- (2 ', 2', 3 ', 3', 4 ', 4', 4'-heptafluorobutoxy)- 10,12-Pentacyclo [6.5.1.0 2,7 0.0 9,13 .1 3,6 ] Pentadecanylene ethylene), poly (4,5-bis (2 ′, 2 ′, 3 ′, 3 ′, 4 ′, 4 ′, 4′-heptafluorobutoxy) -10,12-pentacyclo [6.5 .1.0 2,7 0.0 9,13 .1 3,6 ] Pentadecanylene ethylene), poly (4,5-bis (perfluorohexyloxy) -10,12-pentacyclo [6.5.1.0] 2,7 0.0 9,13 .1 3,6 ] Pentadecanylene ethylene), poly (4-fluoro-5-trifluoromethoxy-5- (2 ', 2', 3
  • n 3 poly (5-fluoro-6-trifluoromethyl -13,15- heptacyclo [8.7.0.1 2,9 .1 4,7 .1 11,17 .0 3,8 .0 12,16] equalize Sani Ren ethylene), poly (5-methyl-6-fluoro-6-trifluoromethyl, -13,15- heptacyclo [8.7.0.1 2,9 .1 4,7 .1 11,17 .0 3,8 .0 12,16] equalize Sani Ren ethylene), poly (5,5-difluoro-6-trifluoromethyl -13,15- heptacyclo [8.7 .0.1 2,9 .1 4,7 .1 11,17 .0 3,8 .0 12,16] equalize Sani Ren ethylene), poly (5-perfluoroethyl -13,15- heptacyclo [8.7 .0.1 2,9 .1 4,7 .1 11,17 .0 3,8 .0 12,16] equalize Sani Ren ethylene
  • poly (3-cyano-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene) containing cyano and n is 1, poly (3-cyano-3-methyl- 7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3-cyano-4-methyl-7,9-tricyclo [4.3.0.1 2,5 ] deca Nyleneethylene), poly (3-cyano-4-phenyl-7,9-tricyclo [4.3.0.1 2,5 ] decanyleneethylene), poly (3-cyano-4-methoxy-7,9- Tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3-cyano-4-methoxymethyl-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene) , poly (3-cyano-4-methoxycarbonyl-7,9-tricyclo [4.3.0.1 2, 5] de crab Ren ethylene), poly (3-cyano -methoxycarbonyl-7,9-tricyclo [4.3.0.1 2, 5]
  • decanylene ethylene poly (3-cyanoethoxycarbonyl-4-phenyloxycarbonylmethyl-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3- (4′-cyanophenylcarbonyl) -7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3- (4′-cyanophenylcarbonyl) -3-methyl -7,9- Rishikuro [4.3.0.1 2, 5] de crab Ren ethylene), poly (3- (4'-cyanophenyl carbonyl) -4-methyl-7,9-tricyclo [4.3.0.1 2, 5 ] decanylene ethylene), poly (3- (4'-cyanophenylcarbonyl) -4-phenyl-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3- (4'-cyanophenylcarbonyl) -4-methoxy-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene
  • n 2 poly (4-cyano-10,12-pentacyclo [6.5.1.0 2,7 .0 9,13 .1 3,6] pentadecenyl crab Ren ethylene) , poly (4-cyano-4-methyl-10,12-pentacyclo [6.5.1.0 2,7 .0 9,13 .1 3,6] pentadecenyl crab Ren ethylene), poly (4-cyano - 5-methyl-10,12-pentacyclo [6.5.1.0 2,7 .0 9,13 .1 3,6] pentadecenyl crab Ren ethylene), poly (4-cyano-5-phenyl -10,12 - pentacyclo [6.5.1.0 2,7 .0 9,13 .1 3,6] pentadecenyl crab Ren ethylene), poly (4-cyano-5-methoxy-10,12-pentacyclo [6.5.
  • n is 3 poly (5-cyano -13,15- heptacyclo [8.7.0.1 2,9 .1 4,7 .1 11,17 .0 3,8. 0 12,16] equalize Sani Ren ethylene), poly (5-cyano-5-methyl -13,15- heptacyclo [8.7.0.1 2,9 .1 4,7 .1 11,17 .0 3 , 8.0 12, 16] equalize Sani Ren ethylene), poly (5-cyano-6-methyl -13,15- heptacyclo [8.7.0.1 2,9 .1 4,7 .1 11,17 .0 3,8 .0 12,16] equalize Sani Ren ethylene), poly (5-cyano-6-phenyl -13,15- heptacyclo [8.7.0.1 2,9 .1 4,7 .1 11,17 .0 3,8 .0 12,16] equalize Sani Ren ethylene), poly (5-cyano-6-methoxy -13,15- heptacyclo [8.7.0.1
  • poly (5- (4'-cyanophenyl carbonyl) -6- phenyl butyloxycarbonylmethyl -13,15- heptacyclo [8.7.0.1 2,9 .1 4,7 .1 11,17 .0 3,8 .0 12,16] equalize Sani Ren ethylene) include such , Furthermore, poly (5,5-dicyano -13,15- heptacyclo [8.7.0.1 2,9 .1 4,7 .1 11,17 .0 3,8 .0 12,16] Ikosaniren ethylene), poly (5-cyano-6-cyanomethyl -13,15- heptacyclo [8.7.0.1 2,9 .1 4,7 .1 11,17 .0 3,8 .0 12,16] equalize Sani Ren ethylene), poly (5-cyano-6-cyanoethyl -13,15- heptacyclo
  • X 2 represents —O—, —S—, —NR 11 —, —PR 11 —, and —CR 11 R in place of —CH 2 — in the above-mentioned decanylene, pentadecanylene, and icosanylene.
  • 12- R 11 and R 12 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms).
  • the repeating structural unit [A] represented by the general formula (1) and the repeating structural unit [B] represented by the general formula (2) are contained, and the molar ratio [A] / [ B] is composed of 95/5 to 1/99 and contains the repeating structural unit [C] represented by the general formula (3), and its molar ratio [C] / ([A] + [B] )
  • the repeating structural unit [C] represented by the general formula (3) is represented by the following formula.
  • R 13 to R 16 are hydrogen, alkyl having 1 to 10 carbon atoms, aryl having 6 to 20 carbon atoms, alkoxy having 1 to 10 carbon atoms, alkoxyalkyl having 2 to 10 carbon atoms, carbon Selected from alkoxycarbonyl having 2 to 10 carbon atoms, aryloxycarbonyl having 7 to 20 carbon atoms, alkoxycarbonylalkyl having 3 to 10 carbon atoms, or aryloxycarbonylalkyl having 8 to 20 carbon atoms, wherein R 13 to R 16 are X 3 is —O—, —S—, —NR 17 —, —PR 18 —, and —CR 17 R 18 — (R 17 and R 18 are Independently represents hydrogen or alkyl having 1 to 20 carbon atoms, which may be the same or different, and n represents 0 or 1.)
  • R 13 to R 16 are hydrogen, methyl, ethyl, propyl, isopropyl, 2-methylisopropyl, n-butyl, n-pentyl, cyclopentyl, hexyl, cyclohexyl, C1-C10 alkyl such as heptyl, octyl, etc., phenyl, naphthyl, indenyl, biphenyl, anthracenyl, phenanthracenyl, triphenylenyl, etc.
  • aryl methoxy, ethoxy, propoxy, butoxy, tert-butoxy Alkoxy having 1 to 10 carbon atoms such as pentyloxy, cyclopentyloxy, hexyloxy, cyclohexyloxy, or methoxymethyl, ethoxymethyl, propoxymethyl, butoxymethyl, tert-butoxymethyl, pentyloxymethyl, cyclopentyl Oxymethyl, hexyloxymethyl, cyclohexyloxymethyl, methoxyethyl, ethoxyethyl, propoxyethyl, butoxyethyl, pentyloxyethyl, cyclopentyloxyethyl, hexyloxyethyl, cyclohexyloxyethyl, methoxypropyl, ethoxypropyl, propoxypropyl, butoxypropyl C2-C10 alkoxyalkyl such as pentyloxypropyl,
  • the repeating structural unit represented by the general formula (3) constituting the cyclic olefin copolymer may be only one kind, and at least one of R 13 to R 16 in the general formula (3) is different from one another. It may consist of structural units.
  • cyclic olefin polymer structure containing the repeating structural unit represented by the general formula (3) in the present invention include, for example, poly (1,3-cyclopentyleneethylene), in which n is 0, (1-methyl-3,5-cyclopentylene ethylene), poly (1,1-dimethyl-3,5-cyclopentylene ethylene), poly (1-ethyl-3,5-cyclopentylene ethylene), poly (1-propyl-3,5-cyclopentyleneethylene), poly (1-isopropyl-3,5-cyclopentyleneethylene), poly (1- (2′-methylisopropyl) -3,5-cyclopentylene Ethylene), poly (1-butyl-3,5-cyclopentyleneethylene), poly (1-pentyl-3,5-cyclopentyleneethylene), poly (1-cyclopentyl-3,5-silane) Chloropentyleneethylene), poly (1-hexyl-3,5-cyclopentyleneethylene), poly (1-
  • decanylene ethylene poly (3-propoxy-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3-isopropoxy-7,9 -Tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3- (2'-methylisopropoxy) -7,9-tricyclo [4 .3.0.1 2,5 ] decanylene ethylene), poly (3-butoxy-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3-tert-butoxy -7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3-pentyloxy-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene ), Poly (3-cyclopentyloxy-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3-hexyloxy-7,9-tricyclo [4.3.0.
  • decanylene ethylene poly (3-propoxypropyl-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3-butoxypropyl-7,9 -Tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3-pentyloxypropyl-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3-hexyloxypropyl-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene) and the like, Also, poly (3-methoxycarbonyl-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3-methyl-3-methoxycarbonyl-7,9-tricyclo [4.
  • decanylene ethylene poly (3-hexyloxycarbonyl) -7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3-methoxycarbonylmethyl-7,9-tricyclo [4.3.0.1 2,5 ] decanylene Ethylene), poly (3-methyl-3-methoxycarbonylmethyl-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3-methoxycarbonylethyl-7,9-tricyclo) [4.3.0.1 2,5 ] decanylene ethylene), poly (3-methoxycarbonylpropyl-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3 -Methoxycarbonylbutyl-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene), poly (3-methoxycarbonylpentyl-7,9-tricyclo [4.3.0.1 2, 5 ] decanylene ethylene),
  • X 3 represents —O—, —S—, —NR 17 —, —PR 18 —, and —CR in place of —CH 2 — in the above cyclopentylene or decanylene.
  • 17 R 18- (wherein R 17 and R 18 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms).
  • an optical material that exhibits very small birefringence with an orientation coefficient F (D-1) / (D + 2) having an absolute value of 0.001 or more and an orientation birefringence of 5 ⁇ 10 ⁇ 4 or less.
  • the amorphous polymer having a plurality of ring structures such as the cyclic olefin copolymer of the present invention has saturated CH 2 absorption strength of the polymer main chain subjected to orientation. In spite of being oriented by stretching, there was no difference between the parallel light intensity I ⁇ and the vertical light intensity I ⁇ , and the essential characteristics of the polymer could not be elucidated.
  • the essential characteristics related to the orientation information of the polymer can be clarified for the first time by Raman spectroscopy, in which a band showing molecular skeleton vibration appears stronger than a functional group that is more polar than infrared spectroscopy. It was.
  • Information molecular orientation from equation (1) is the sample with uniaxial stretching system, 'no preferred orientation for the coordinate O-x 1' samples fixed coordinate O-x 3 tensor same axis as the x 2 'x 3' In the case of the structural unit of No, if No is the total number of scattering units related to the Raman intensity,
  • is an angle between the axis of the molecular chain and the orientation direction. Furthermore, the expression (5) is obtained as orientation information as the fourth order.
  • the function of the secondary orientation information is related to the dichroic ratio D and is expressed by the following equation.
  • the orientation coefficient F (D ⁇ 1) / (D + 2), which is a function of the ratio D.
  • the absolute value of the orientation coefficient F (D-1) / (D + 2) is 0.001 or more, and the absolute value of orientation birefringence is 5 ⁇ 10 ⁇ 4 or less. It expresses refraction.
  • the absolute value of the orientation coefficient is less than 0.001
  • the characteristics of the cyclic olefin copolymer are not sufficiently exhibited, the orientation state is not sufficient, and the toughness, the tensile or bending strength or the elastic modulus by orienting the molecular chain. Cannot be improved.
  • the absolute value of the photoelastic constant measured while applying stress does not become 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and it depends on the stress strain of the molded product in the injection molding. Birefringence cannot be eliminated.
  • the orientation coefficient is determined by the repeating structural units [A] and [B] of the cyclic olefin copolymer, or the types, combinations, copolymerization ratios, random numbers of the repeating structural units [A], [B] and [C]. It can be treated as a physical property in the same way as other intrinsic properties such as tacticity such as isotactic and syndiotactic, and glass transition temperature, which are copolymerizable and stereoregular.
  • This coefficient is influenced by molecular space such as hydrogen bonds of polymer molecular chains, intermolecular interactions such as electronic repulsive force between molecules, repulsive force, molecular volume of repeating structural units, molecular chain density, It is a physical property value specific to a polymer that is physically determined by the degree of stress such as external stretching.
  • this coefficient obtained from the dichroic ratio by Raman spectroscopy is not a method of transmitting light completely and analyzing it like infrared spectroscopy, so that the Raman scattering intensity is not affected by the thickness of the sample. Therefore, not only the orientation of a thin object such as a film but also a molded article having a thickness such as injection molding can be measured as an orientation coefficient.
  • ⁇ n 0 is an orientation birefringence value in an ideal state in which the bond chain (main chain) is completely extended and completely oriented, and is called an intrinsic birefringence value. Since the intrinsic birefringence value is ⁇ n under ideal orientation conditions, if the value of ⁇ n of an actual polymer material is expressed by ⁇ n (real), 0 ⁇ absolute value
  • the intrinsic birefringence value ⁇ n 0 ⁇ 0.00043 for polymethylmethacrylate, ⁇ 0.100 for polystyrene, and +0.044 for polyethylene, which are specific physical properties of the polymer.
  • It contains at least the repeating structural unit [A] represented by the general formula (1) and the repeating structural unit [B] represented by the general formula (2), and the molar ratio [A] / [B ] Is an optical material containing a cyclic olefin copolymer of 95/5 to 1/99, the change in the absolute value of the orientation coefficient obtained from the Raman scattering intensity when the orientation birefringence ⁇ n is 0 in a completely unoriented state 0.
  • the change amount ⁇ OB of the absolute value of orientation birefringence with respect to the amount ⁇ F that is, the absolute value of ⁇ OB / ⁇ F represents the intrinsic property value of the polymer that determines the intrinsic birefringence ⁇ n 0 from the equation (8).
  • Is the absolute value of intrinsic birefringence from equation (7) if the ideal state is the molecular chain axis of the carbon-carbon bond of the main chain axis of the polymer and the angle ⁇ 90 ° of the polarization moment vector. .
  • equation (8) is as follows for each orientation coefficient (F1, F2, F3%) And orientation birefringence ( ⁇ n1, ⁇ n2, ⁇ n3).
  • equation (8) is expressed by the following equation (9).
  • the ⁇ OB / ⁇ F absolute value of the optical material of the present invention represents the intrinsic property value of the polymer itself, and the value is usually 0.001 to 0.250, preferably 0.003 to 0.220. More preferably, it is 0.005 to 0.200, and particularly preferably 0.008 to 0.200. If this value exceeds 0.250, an optical material having an absolute value of orientation birefringence of 5 ⁇ 10 ⁇ 4 or less may not be obtained in a stretched film having an orientation coefficient absolute value of 0.001 or more.
  • the optical film in the present invention can improve the strength of the film by stretching a film made of an optical material, and the absolute value of orientation birefringence of the film is usually 5 ⁇ 10 ⁇ 4 or less, preferably 3 ⁇ 10 ⁇ 4 or less, more preferably 1 ⁇ 10 ⁇ 4 or less.
  • the orientation birefringence is calculated from the phase difference (nm) / film thickness ( ⁇ m) at a wavelength of 633 nm.
  • the absolute value of the orientation coefficient and the absolute value of the orientation birefringence are both in the above ranges, so that even if the polymer chain itself is oriented, birefringence is suppressed, and the temperature and pressure conditions during molding are limited. Therefore, it is possible to obtain an optical film that is highly transparent and excellent in toughness, tensile strength, bending strength, and elastic modulus.
  • the optical film having such characteristics can be used as a display member for use in an electronic device material such as an antireflection filter, a recording medium, a display material, an organic EL or a liquid crystal plastic member.
  • an electronic device material such as an antireflection filter, a recording medium, a display material, an organic EL or a liquid crystal plastic member.
  • a very small birefringence characteristic can prevent “light blur (unevenness)” caused by orientation birefringence
  • a polarizer protective film made of the optical film And a polarizing plate comprising the polarizer protective film can be used.
  • the polarizing plate using this film is excellent in the angle dependency (viewing angle characteristic) of the retardation, it can be used for a liquid crystal display and the like that are enlarged.
  • the film thickness of the stretched film can be selected according to the use, and is usually in the range of 10 to 500 ⁇ m, preferably 20 to 300 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the film thickness of the original film before stretching can be set to a film thickness that takes into account the effects of stretching.
  • it when using as a polarizer protective film, it can affix on the polarizing film obtained by impregnating the stretched polyvinyl alcohol with an iodine or an organic dye, and can be set as a polarizing plate.
  • an optical lens made of an optical material having an absolute value of a photoelastic constant of 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less is subjected to stress strain of a molded product received by mold melt molding such as injection molding or extrusion molding.
  • the birefringence due to the above can be eliminated, and the absolute value of the photoelastic constant is usually 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, preferably 5 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 1 ⁇ 10 ⁇ 12 Pa. -1 or less.
  • the photoelastic constant is a constant for measuring and calculating the phase difference while continuously applying a force such as pulling or compressing the elastic deformation region to a molded body such as a film or a lens, and the amount of change in the phase difference per unit force.
  • a photoelastic constant can be obtained from the following formula (12) by applying a tensile force of 2 N at a maximum at a speed of 0.1 mm / min and measuring a phase difference at a wavelength of 633 nm.
  • Photoelastic constant (Pa ⁇ 1 ) ⁇ Re (nm) / ⁇ P (N) ⁇ film width (mm) (12) ( ⁇ Re: amount of change in phase difference, ⁇ P: amount of change in tensile force in a range where the phase difference increases linearly with the application of stress)
  • the microlens for digital camera module, pickup lens, imaging lens, optical element microwavelens array, optical waveguide, optical switching, Fresnel zone plate, binary optical element, blaze It can be used for an optical lens made of an optical material such as a diffractive optical element.
  • a conventional acrylic resin as an optical lens a high heat resistant resin has a large birefringence and poor humidity characteristics, and a moisture resistant resin has poor heat resistance.
  • a non-acrylic resin high heat resistance and low water absorption are achieved, but there is a problem of high cost due to extremely large birefringence and poor productivity.
  • birefringence includes orientation birefringence and stress birefringence.
  • a thermoplastic polymer material is molded to obtain an optical material
  • the thermoplastic resin is heated and melted to a glass transition temperature or higher before injection molding or extrusion molding.
  • the glass is cooled to a glass transition temperature or lower in a desired shape.
  • Orientation birefringence is caused by orientation of the polymer chain when heated and melted and flows, and stress birefringence is caused by strain during cooling.
  • the photoelastic constant is a constant representing the latter stress birefringence.
  • the cyclic olefin copolymer of the present invention By using the cyclic olefin copolymer of the present invention, high heat resistance and low water absorption are achieved, the photoelastic constant is small, the birefringence is very small, and the productivity is high. And low cost can be achieved. It is possible to suppress stress or orientation birefringence that occurs when molding a thick molded article such as an optical lens having a thickness of 0.5 mm or more, particularly those having a maximum length of 10 mm or more.
  • the cyclic olefin copolymer of the present invention usually has a weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) at a sample concentration of 3.0 to 9.0 mg / ml, and is usually 5,000 to 1. 1,000,000, preferably 10,000 to 300,000.
  • Mw weight average molecular weight
  • orientation physical properties due to stretching can be expressed.
  • the molecular weight distribution (Mw / Mn), which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), is usually in the range of 1.0 to 5.0.
  • the molecular weight distribution is preferably wide, and is preferably 1.9 to 5.0, and more preferably 1.9 to 4.0.
  • the glass transition temperature is usually in the range of 50 to 300 ° C., preferably 80 to 280 ° C., more preferably 100 to 250 ° C. When the glass transition temperature is 50 ° C. or lower, the molded product of the optical material or the optical film has low heat resistance, and it is difficult to maintain the shape in the intended use environment. Processing temperature is high, and yellowing or deterioration is likely to occur.
  • the polar cyclic olefin copolymer containing fluorine or cyano having a 5-membered aliphatic ring structure and a polycyclic aliphatic ring structure in the main chain at a specific copolymerization ratio in the present invention is an amorphous transparent polymer. is there.
  • the characteristic is that at least one of the hydrocarbon structure in the main chain and the R 1 to R 4 and R 7 to R 10 in the main chain in the repeating structural unit is fluorine and the number of carbons containing fluorine.
  • R 13 to R 16 of the repeating structural unit [C] represented by the general formula (3) are substituted with R 1 to R 4 of the repeating structural unit [A] represented by the general formula (1) and the general formula (
  • the hydrogen bond forming force between the molecules or in the molecule of the cyclic olefin copolymer of the present invention is controlled to be low. be able to.
  • the cyclic olefin copolymer containing the repeating structural unit [C] it is possible to effectively improve the melt fluidity while imparting heat resistance of 100 ° C. or higher at the glass transition temperature. That is, this can lower the melt molding temperature and prevent yellowing or deterioration during film or injection molding.
  • the elastic modulus in the case of amorphous thermoplastic polymers, in the absence of such hydrogen bonding or chemical crosslinking, the elastic modulus rapidly decreases in the temperature range above the glass transition temperature, and the storage elastic modulus or the The change in the loss elastic modulus is at least ⁇ 10 MPa / ° C. or less.
  • the polar cyclic olefin copolymer containing fluorine or cyano of the present invention is derived from a reversible physical hydrogen bond interaction with respect to a temperature change, and the change above the glass transition temperature is small. The shape deformation due to the heat of the film can be kept small.
  • the fluorine-containing cyclic olefin copolymer is excellent in water repellency, low water absorption, water vapor permeability, or oxygen permeability as the characteristics of fluorine atoms, and in a wide range of light wavelengths from ultraviolet to near infrared. It has a light transmittance of more than 90% and has excellent transparency.
  • a cyano-containing cyclic olefin copolymer exhibits strong adhesion to a substrate such as glass, plastic, and stainless steel, and has the heat resistance of a group containing cyano.
  • these substituents exhibits a light transmittance exceeding 85% at a wide range of light wavelengths from visible rays to near infrared rays, and has excellent transparency.
  • these substituents are polarized by increasing the dipole moment due to the electron withdrawing effect, and in the case of cyano, the substituent is polarized by increasing the dipole moment due to a triple bond by ⁇ electrons between carbon and nitrogen.
  • the repeating structural unit [A] represented by General formula (1) and the repeating structural unit [B] represented by General formula (2) are contained, and the repeating represented by General formula (3)
  • the cyclic olefin copolymer containing the structural unit [C] maintains a large polarizability difference due to the substituent effect of the repeating structural units [A] and [B], and is orthogonal to the main chain of the polarizability ellipsoid. It is necessary to contain in the range which does not inhibit the expression of the optical anisotropy canceling effect due to different lengths.
  • the cyclic ratio of [B] to the repeating structural unit [A] is 95/5 to 1/99
  • the cyclic olefin copolymer containing the repeating structural unit [C] is used to reduce the photoelastic constant.
  • the molar ratio of ([A] + [B]) to [C] is in the range of 1/99 to 40/60, preferably 1/99 to 30/70, and more preferably 1/99 to 20/80. Outside these ranges, the effect of canceling out the optical anisotropy is very small, and an optical material having very small orientation or stress birefringence may not be obtained.
  • the cyclic olefin copolymer containing the repeating structural unit [A] represented by the general formula (1) and the repeating structural unit [B] represented by the general formula (2) in the present invention is represented by the general formula (4).
  • the cyclic olefin monomer and the cyclic olefin monomer represented by the general formula (5) can be synthesized by copolymerization using a ring-opening metathesis polymerization catalyst, and the olefin portion of the main chain of the resulting polymer is hydrogenated.
  • the cyclic olefin monomer represented by the general formula (4) is represented by the following formula.
  • R 1 to R 4 are a group not containing fluorine or a group not containing cyano
  • R 1 to R 4 are hydrogen, alkyl having 1 to 10 carbons, 6-20 aryl, C1-10 alkoxy, C2-10 alkoxyalkyl, C2-10 alkoxycarbonyl, C7-20 aryloxycarbonyl, C3-10 alkoxycarbonyl alkyl, or chosen .
  • R 4 is optionally bonded to form a ring structure .
  • X 1 is -O -, - S -, - NR 5 -, - PR 5 -, and -CR 5 R 6 - from (R 5, R 6 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms).
  • R 1 to R 4 are fluorine or fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethyl, trifluoroethyl, pentafluoroethyl, heptafluoropropyl, hexafluoroisopropyl, heptafluoroisopropyl.
  • Carbon containing fluorine such as alkyl in which part or all of hydrogen is substituted with fluorine, such as hexafluoro-2-methylisopropyl, perfluoro-2-methylisopropyl, n-perfluorobutyl, n-perfluoropentyl, perfluorocyclopentyl, etc.
  • aryl containing 6 to 20 carbon atoms such as aryl substituted with fluorine, fluoromethoxycarbonyl, difluoromethoxycarbonyl, trifluoromethoxycarbonyl, trifluoroethoxycarbonyl, pentafluoroethoxycarbonyl, heptafluoropropoxycarbonyl Hexafluoroisopropoxycarbonyl, heptafluoroisopropoxycarbonyl, hexafluoro-2-methylisopropoxycarbonyl, perfluoro-2-methyl Alkyl having 2 to 10 carbon atoms containing fluorine such as alkoxycarbonyl in which part or all of hydrogen is substituted with fluorine such asizisopropoxycarbonyl, n-perfluorobutoxycarbonyl, n-perfluoropentyloxycarbonyl, perfluorocyclopentyloxycarbonyl, etc.
  • fluorine such as alkoxycarbonyl in which part or all of hydrogen
  • Fluorine-containing aryloxycarbonyl having 7 to 20 carbon atoms such as carbonyl, perfluorophenyloxycarbonyl, trifluorophenyloxycarbonyl, etc., in which part or all of hydrogen is substituted with fluorine, etc., fluoromethoxycarbonylmethyl, difluoro Methoxycarbonylmethyl, trifluoromethoxycarbonylmethyl, trifluoroethoxycarbonylmethyl, pentafluoroethoxycarbonylmethyl, heptaph Oropropoxycarbonylmethyl, hexafluoroisopropoxycarbonylmethyl, heptafluoroisopropoxycarbonylmethyl, hexafluoro-2-methylisopropoxycarbonylmethyl, perfluoro-2-methylisopropoxycarbonylmethyl, n-perfluorobutoxycarbonylmethyl, n-perfluoro C3-C10 alkoxycarbonylalkyl, perfluorophenyloxycarbon
  • fluorine such as alkoxycarbonylalkyl in which part or all of hydrogen is substituted with fluorine, such as pentyloxycarbonylmethyl and perfluorocyclopentyloxymethyl Aryloxycarbonylmethyl etc. in which part or all of hydrogen such as oxycarbonylmethyl is substituted with fluorine
  • fluorine such as alkoxycarbonylalkyl in which part or all of hydrogen is substituted with fluorine
  • cyano or alkyl having 2 to 10 carbon atoms containing cyano such as cyanomethyl, cyanoethyl, 1-cyanopropyl, 1-cyanobutyl, 1-cyanohexyl, cyanoethoxy, 1-cyanopropoxy, 1-cyanobutoxy, 1 -C2-C10 alkoxy containing cyano such as alkoxy in which part of hydrogen is substituted with cyano, such as cyanopentyloxy, cyanoethoxymethyl, 1-cyanopropoxymethyl, 1-cyanobutoxymethyl, 1-cyanopentyl
  • a part of hydrogen such as oxymethyl such as alkoxyalkyl substituted with cyano such as alkoxyalkyl containing cyano such as alkoxyalkyl having 3 to 10 carbon atoms, 4-cyanophenyl, 3,5-dicyanophenyl, etc.
  • carbon atoms containing cyano such as aryl 3 to 10 carbon atoms containing cyano such as alkoxycarbonyl in which a part of hydrogen is substituted with cyano, such as hydrogen, cyanoethoxycarbonyl, 1-cyanopropoxycarbonyl, 1-cyanobutoxycarbonyl, 1-cyanopentyloxycarbonyl, etc.
  • C8-20 aryloxycarbonyl containing cyano such as alkoxycarbonyl, 4-cyanophenyloxycarbonyl, 3,5-dicyanophenyloxycarbonyl, etc., wherein aryl is partially substituted with cyano, cyanoethoxy Carbon containing cyano such as carbonylmethyl, 1-cyanopropoxycarbonylmethyl, 1-cyanobutoxycarbonylmethyl, 1-cyanopentyloxycarbonylmethyl and the like, wherein alkoxy is partially substituted with cyano Number of carbons containing cyano such as aryloxycarbonylalkyl having 4 to 10 alkoxycarbonylalkyl or 4-cyanophenyloxycarbonylmethyl, 3,5-dicyanophenyloxycarbonylmethyl, etc., wherein hydrogen is partially substituted with cyano Examples are 8-20 aryloxycarbonylalkyl.
  • R 1 to R 4 may be bonded to each other to form a ring structure, and for example, a ring such as perfluorocycloalkyl or perfluorocycloether via oxygen may be formed.
  • R 1 to R 4 not containing fluorine or cyano are hydrogen or 1 to 10 carbon atoms such as methyl, ethyl, propyl, isopropyl, 2-methylisopropyl, n-butyl, n-pentyl, cyclopentyl and the like.
  • Aryl having 6 to 20 carbon atoms such as alkyl, phenyl and naphthyl, alkoxy having 1 to 10 carbon atoms such as methoxy, ethoxy and tert-butoxy, or 2 carbon atoms such as methoxymethyl, ethoxymethyl and tert-butoxymethyl C-10 alkoxyalkyl, methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl, etc. C2-C10 alkoxycarbonyl, phenyloxycarbonyl, methylphenyloxycarbonyl, etc.
  • R 1 to R 4 in the general formula (5) may be composed of two or more kinds of structural units different from each other.
  • a cyclic olefin monomer represented by General formula (5) it represents with following Formula.
  • R 7 to R 10 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, and fluorine.
  • R 10 are connected to form a ring structure is -O -, - S -, - NR 11 -, - PR 11 -, and -CR 11 R 12 - (R 11 , R 12 each independently represents hydrogen or alkyl having 1 to 20 carbon atoms, and may be the same or different, and n represents 1 to 3.)
  • R 7 to R 10 are fluorine or fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethyl, trifluoroethyl, pentafluoroethyl, heptafluoropropyl, hexafluoroisopropyl, heptafluoroisopropyl.
  • Carbon containing fluorine such as alkyl in which part or all of hydrogen is substituted with fluorine, such as hexafluoro-2-methylisopropyl, perfluoro-2-methylisopropyl, n-perfluorobutyl, n-perfluoropentyl, perfluorocyclopentyl, etc.
  • aryl containing 6 to 20 carbon atoms such as aryl substituted with fluorine, fluoromethoxycarbonyl, difluoromethoxycarbonyl, trifluoromethoxycarbonyl, trifluoroethoxycarbonyl, pentafluoroethoxycarbonyl, heptafluoropropoxycarbonyl Hexafluoroisopropoxycarbonyl, heptafluoroisopropoxycarbonyl, hexafluoro-2-methylisopropoxycarbonyl, perfluoro-2-me Alkyl having 2 to 10 carbon atoms containing fluorine, such as alkoxycarbonyl in which part or all of hydrogen is substituted with fluorine such as tilisopropoxycarbonyl, n-perfluorobutoxycarbonyl, n-perfluoropentyloxycarbonyl, perfluorocyclopentyloxycarbonyl Fluorine-containing aryloxycarbonyl having 7 to 20 carbon atoms
  • cyano or alkyl having 2 to 10 carbon atoms containing cyano such as cyanomethyl, cyanoethyl, 1-cyanopropyl, 1-cyanobutyl, 1-cyanohexyl, cyanoethoxy, 1-cyanopropoxy, 1-cyanobutoxy, 1 -C2-C10 alkoxy containing cyano such as alkoxy in which part of hydrogen is substituted with cyano, such as cyanopentyloxy, cyanoethoxymethyl, 1-cyanopropoxymethyl, 1-cyanobutoxymethyl, 1-cyanopentyl
  • a part of hydrogen such as oxymethyl such as alkoxyalkyl substituted with cyano such as alkoxyalkyl containing cyano such as alkoxyalkyl having 3 to 10 carbon atoms, 4-cyanophenyl, 3,5-dicyanophenyl, etc.
  • carbon atoms containing cyano such as aryl 3 to 10 carbon atoms containing cyano such as alkoxycarbonyl in which a part of hydrogen is substituted with cyano, such as hydrogen, cyanoethoxycarbonyl, 1-cyanopropoxycarbonyl, 1-cyanobutoxycarbonyl, 1-cyanopentyloxycarbonyl, etc.
  • C8-20 aryloxycarbonyl containing cyano such as alkoxycarbonyl, 4-cyanophenyloxycarbonyl, 3,5-dicyanophenyloxycarbonyl, etc., wherein aryl is partially substituted with cyano, cyanoethoxy Carbon containing cyano such as carbonylmethyl, 1-cyanopropoxycarbonylmethyl, 1-cyanobutoxycarbonylmethyl, 1-cyanopentyloxycarbonylmethyl and the like, wherein alkoxy is partially substituted with cyano Number of carbons containing cyano such as aryloxycarbonylalkyl having 4 to 10 alkoxycarbonylalkyl or 4-cyanophenyloxycarbonylmethyl, 3,5-dicyanophenyloxycarbonylmethyl, etc., wherein hydrogen is partially substituted with cyano Examples are 8-20 aryloxycarbonylalkyl.
  • R 7 to R 10 may be bonded to each other to form a ring structure, and for example, a ring such as perfluorocycloalkyl or perfluorocycloether via oxygen may be formed.
  • R 7 to R 10 not containing fluorine or cyano are hydrogen or 1 to 10 carbon atoms such as methyl, ethyl, propyl, isopropyl, 2-methylisopropyl, n-butyl, n-pentyl, cyclopentyl and the like.
  • Aryl having 6 to 20 carbon atoms such as alkyl, phenyl and naphthyl, alkoxy having 1 to 10 carbon atoms such as methoxy, ethoxy and tert-butoxy, 2 to 10 carbon atoms such as methoxymethyl, ethoxymethyl and tert-butoxymethyl
  • Alkoxyalkoxy having 2 to 10 carbon atoms such as alkoxyalkyl, methoxycarbonyl, ethoxycarbonyl and tert-butoxycarbonyl, aryloxycarbonyl having 7 to 20 carbon atoms such as phenyloxycarbonyl and methylphenyloxycarbonyl, methoxycarbonylmethyl and ethoxy Carbonylme Le
  • tert- butoxy alkoxycarbonylalkyl having 3 to 10 carbon atoms carbonyl, such as methyl or phenyl butyloxycarbonylmethyl
  • aryloxycarbonyl alkyl having 8 to 20 carbon atoms such as
  • the cyclic olefin copolymer containing [C] is obtained by copolymerizing the cyclic olefin monomer represented by the general formula (6) with the cyclic olefin monomer represented by the general formula (4) and the general formula (5). It can be synthesized by hydrogenating the olefin part of the main chain of the coalescence.
  • the cyclic olefin monomer represented by the general formula (6) is represented by the following formula.
  • R 13 to R 16 are hydrogen, alkyl having 1 to 10 carbon atoms, aryl having 6 to 20 carbon atoms, alkoxy having 1 to 10 carbon atoms, alkoxyalkyl having 2 to 10 carbon atoms, carbon alkoxycarbonyl having 2 to 10, an aryloxycarbonyl having 7 to 20 carbon atoms, alkoxycarbonylalkyl or .
  • R 13 ⁇ R 16 is selected from aryloxycarbonyl alkyl having 8 to 20 carbon atoms, 3 to 10 carbon atoms with each other X 3 represents —O—, —S—, —NR 17 —, —PR 18 —, and —CR 17 R 18 — (R 17 and R 18 are Independently represents hydrogen or alkyl having 1 to 20 carbon atoms, which may be the same or different, and n represents 0 or 1.)
  • R 13 to R 16 are hydrogen or methyl, ethyl, propyl, isopropyl, 2-methylisopropyl, n-butyl, n-pentyl, cyclopentyl, hexyl, cyclohexyl, C1-C10 alkyl such as heptyl, octyl, etc., phenyl, naphthyl, indenyl, biphenyl, anthracenyl, phenanthracenyl, triphenylenyl, etc.
  • aryl methoxy, ethoxy, propoxy, butoxy, tert-butoxy Alkoxy having 1 to 10 carbon atoms such as pentyloxy, cyclopentyloxy, hexyloxy, cyclohexyloxy, or methoxymethyl, ethoxymethyl, propoxymethyl, butoxymethyl, tert-butoxymethyl, pentyloxymethyl, cyclopentyl Oxymethyl, hexyloxymethyl, cyclohexyloxymethyl, methoxyethyl, ethoxyethyl, propoxyethyl, butoxyethyl, pentyloxyethyl, cyclopentyloxyethyl, hexyloxyethyl, cyclohexyloxyethyl, methoxypropyl, ethoxypropyl, propoxypropyl, butoxypropyl C2-C10 alkoxyalkyl such as pentyloxypropyl,
  • a monomer other than the cyclic olefin monomer represented by the general formula (4), the general formula (5), or the general formula (6) may be included as long as the effects of the present invention are not impaired.
  • the ring-opening metathesis polymerization catalyst used for the polymerization of cyclic olefin monomers include, but are not as long as the catalyst can be performed ring-opening metathesis polymerization, for example, W (N-2,6-Pr i 2 C 6 H 3) (CHBu t) (OBu t) 2, W (N-2,6-Pr i 2 C 6 H 3) (CHBu t) (OCMe 2 CF 3) 2, W (N-2,6-Pr i 2 C 6 H 3) (CHBu t) (OCMe (CF 3) 2) 2, W (N-2,6-Pr i 2 C 6 H 3) (CHBu t) (OC (CF 3) 3) 2, W (N-2,6-Me 2 C 6 H 3) (CHBu t) (OC (CF 3) 3) 2, W (N-2,6-Me 2 C 6 H 3) (CHBu t) (OC (CF 3) 3) 2, W (N-2,6-Me 2
  • Pr i in the above formula represents an iso- propyl radical
  • R represents a methyl group, an alkyl group or a methoxy group such as an ethyl group, an alkoxy group such as ethoxy group
  • Bu t represents a tert- butyl group
  • Me represents a methyl group
  • Ph represents a phenyl group
  • Py represents a pyridine group.
  • Molybdenum alkylidene catalysts such as Ru (CHCHCPh 2 ) (PPh 3 ) 2 Cl 2 (Ph in the formula) Represents a phenyl group, and the like, and can be preferably used. These ring-opening metathesis polymerization catalysts may be used alone or in combination of two or more.
  • a ring-opening metathesis polymerization catalyst comprising a combination of an organic transition metal complex, a transition metal halide or a transition metal oxide and a Lewis acid as a promoter can be used.
  • the polymerization catalyst activity is low with respect to polar monomers, which is not preferred industrially.
  • the molar ratio of the cyclic olefin monomer to the ring-opening metathesis polymerization catalyst is 1 mole of the transition metal alkylidene catalyst in the case of a transition metal alkylidene catalyst such as tungsten, molybdenum, or ruthenium.
  • the monomer is usually 100 to 30,000 mol, preferably 1,000 to 20,000 mol.
  • olefins can be used as chain transfer agents to control the molecular weight and its distribution.
  • the olefin include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and fluorine-containing olefins thereof.
  • vinyltrimethylsilane, allyltrimethylsilane examples include silicon-containing olefins such as allyltriethylsilane and allyltriisopropylsilane, and fluorine and silicon-containing olefins.
  • dienes include 1,4-pentadiene, 1,5-hexadiene, and 1,6-heptadiene.
  • Non-conjugated dienes or these fluorine-containing non-conjugated dienes can be mentioned. Furthermore, these olefins, fluorine-containing olefins, dienes or fluorine-containing dienes may be used alone or in combination of two or more.
  • the amount of the olefin, fluorine-containing olefin, diene or fluorine-containing diene used is usually in the range of 0.001 to 1,000 mol, preferably 0.01 to 100 mol, relative to 1 mol of the cyclic olefin monomer. It is.
  • the olefin or diene is usually in the range of 0.1 to 1,000 mol, preferably 1 to 500 mol, relative to 1 mol of the transition metal alkylidene catalyst.
  • the ring-opening metathesis polymerization of the cyclic olefin monomer may be solventless or may use a solvent, but particularly used solvents include ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, dimethoxyethane or dioxane, ethyl acetate , Esters such as propyl acetate or butyl acetate, aromatic hydrocarbons such as benzene, toluene, xylene or ethylbenzene, aliphatic hydrocarbons such as pentane, hexane or heptane, cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane or decalin Aliphatic hydrocarbons such as methylene dichloride, dichloroethane, dichloroethylene, tetrachloroethane, chlorobenzene or trichloro
  • the concentration of the cyclic olefin monomer in the monomer solution is usually 5 to 100% by mass, preferably 10 to 60% by mass, although it depends on the reactivity of the monomer and the solubility in the polymerization solvent.
  • the reaction temperature is usually ⁇ 30 to 150 ° C., preferably 30 to 100 ° C.
  • the reaction time is usually 10 minutes to 120 hours, preferably 30 minutes to 48 hours. It can be implemented in the range of.
  • the reaction can be stopped with an aldehyde such as butyraldehyde, a ketone such as acetone, an alcohol such as methanol, or a quenching agent such as water, to obtain a polymer solution.
  • the cyclic olefin copolymer of the present invention can be obtained by hydrogenating a olefin portion of the main chain of a polymer obtained by ring-opening metathesis polymerization of a cyclic olefin monomer using a catalyst.
  • the hydrogenation catalyst can be a homogeneous metal complex catalyst or a heterogeneous metal supported catalyst as long as it can hydrogenate the olefin part of the main chain of the polymer without causing a hydrogenation reaction of the solvent used.
  • Any homogeneous metal complex catalyst may be used, for example, chlorotris (triphenylphosphine) rhodium, dichlorotris (triphenylphosphine) osmium, dichlorohydridobis (triphenylphosphine) iridium, dichlorotris (triphenylphosphine).
  • Examples include ruthenium, dichlorotetrakis (triphenylphosphine) ruthenium, chlorohydridocarbonyltris (triphenylphosphine) ruthenium, dichlorotris (trimethylphosphine) ruthenium, and the heterogeneous metal-supported catalyst includes, for example, active Palladium on carbon, alumina-supported palladium, activated carbon-supported rhodium, alumina-supported rhodium, active carbon supported ruthenium, alumina-supported ruthenium and the like. These hydrogenation catalysts can be used alone or in combination of two or more.
  • the amount of the hydrogenation catalyst used is that the metal component in the hydrogenation catalyst is hydrogenated.
  • the amount is usually 5 ⁇ 10 ⁇ 4 to 100 parts by mass, and preferably 1 ⁇ 10 ⁇ 2 to 30 parts by mass with respect to 100 parts by mass of the polymer before treatment.
  • the solvent used for hydrogenation is not particularly limited as long as it dissolves the cyclic olefin copolymer and the solvent itself is not hydrogenated.
  • ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, dimethoxyethane, Esters such as ethyl acetate, propyl acetate or butyl acetate, aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene, aliphatic hydrocarbons such as pentane, hexane and heptane, cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, Aliphatic cyclic hydrocarbons such as decalin, methylene dichloride, halogenated hydrocarbons such as chloroform, dichloroethane, dichloroethylene, tetrachloroethane, chlorobenz
  • the hydrogenation reaction of the olefin portion of the main chain is carried out at a hydrogen pressure in the range of normal pressure to 30 MPa, preferably 0.5 to 20 MPa, particularly preferably 2 to 15 MPa, and the reaction temperature is usually 0 to 300 MPa.
  • the temperature is preferably from room temperature to 250 ° C., particularly preferably from 50 to 200 ° C.
  • the mode of carrying out the hydrogenation reaction is not particularly limited. For example, there are a method in which the catalyst is dispersed or dissolved in a solvent, a method in which the catalyst is packed in a column and the polymer solution is circulated as a stationary phase, and the like. Can be mentioned.
  • the hydrogenation treatment of the olefin portion of the main chain may be carried out by precipitating the polymer solution of the cyclic olefin copolymer before the hydrogenation treatment in a poor solvent and isolating the polymer, and then dissolving in the solvent again and performing the hydrogenation treatment.
  • the hydrogenation treatment may be performed with the above hydrogenation catalyst without isolating the polymer from the polymerization solution, and there is no particular limitation.
  • the hydrogenation rate of the olefin part of the cyclic olefin copolymer is 50% or more, preferably 70 to 100%, more preferably 90 to 100%. If the hydrogenation rate is less than 50%, the olefin part may deteriorate heat resistance or weather resistance due to oxidation or light absorption deterioration.
  • the method for recovering the cyclic olefin copolymer from the polymer solution after hydrogenation is not particularly limited.
  • the method of discharging the reaction solution into a poor solvent under stirring, the steam stripping in which steam is blown into the reaction solution examples thereof include a method in which a polymer is precipitated by a method such as filtration, and the polymer is recovered by a method such as filtration, centrifugation, and decantation, or a method in which a solvent is removed from a reaction solution by heating or the like.
  • the polymer recovered within the range not impairing the object of the present invention includes a resin component and a rubber component other than the resin of the present invention, an adhesion aid, an ultraviolet absorber, an antioxidant, a flame retardant, a leveling agent, and an antistatic agent.
  • Various known additives such as these can be blended and used as an optical material.
  • the method of blending various additives is not particularly limited.
  • the cyclic olefin copolymer and the additive are mixed while kneading in a kneader such as a roll, a kneader, an extrusion kneader, a Banbury mixer, or a feeder ruder. Examples thereof include a method and a method in which a cyclic olefin copolymer is dissolved in an appropriate solvent, an additive is added thereto and mixed, and then the solvent is removed.
  • the optical film of the present invention can be produced by a melt molding method or a solution casting method.
  • a melt molding method it can manufacture by the method of forming into a film through a T die using a melt kneader, and the inflation method.
  • a melt-extruded film using a T-die for example, a cyclic olefin copolymer blended with additives as necessary is introduced into an extruder and is usually 50 ° C. to 200 ° C. higher than the glass transition temperature, preferably 80 ° C.
  • the organic solvent used in the solution casting method is not particularly limited.
  • Fluorine-containing aromatic hydrocarbons such as benzene, fluorine-containing aliphatic hydrocarbons such as perfluorohexane and perfluorooctane, fluorine-containing aliphatic cyclic hydrocarbons such as perfluorocyclodecalin, and fluorine-containing ethers such as perfluoro-2-butyltetrahydrofuran
  • Halogenated hydrocarbons such as chloroform, chlorobenzene, trichlorobenzene, ethers such as tetrahydrofuran, dibutyl ether, 1,2-dimethoxyethane, dioxane, ethyl
  • a solvent having a boiling point of 70 ° C. or higher under atmospheric pressure is preferable from the viewpoint of film forming property, and when the boiling point of the solvent is low, the evaporation rate is high, and the film thickness partially increases when the solvent starts to dry. It causes deterioration of accuracy and fish eyes on the film surface.
  • the method and conditions for stretching the film are not particularly limited, but for example, a method of uniaxially stretching in the machine direction due to the difference in peripheral speed between rolls, a method of uniaxially stretching in the transverse axis direction using a tenter, Simultaneous biaxial stretching method that opens the clip holding both sides and stretches in the longitudinal direction and stretches in the transverse direction according to the spread angle of the guide rail, stretches in the longitudinal direction due to the difference in the peripheral speed between the rolls, and both ends by the clip Biaxial stretching method such as sequential biaxial stretching method in which it is gripped and stretched in the transverse direction with a tenter.
  • the stretching temperature as the stretching condition is usually a temperature obtained by adding a range of ⁇ 20 ° C. to 150 ° C., preferably a range of ⁇ 5 ° C. to 110 ° C., more preferably a glass transition temperature. Is a temperature to which the range of 0 ° C. to 80 ° C. is added, and the stretching ratio is usually 1.05 to 10 times, preferably 1.10 to 6.0 times, more preferably 1.10.
  • the range is double to 5.0 times, more preferably 1.10 times to 2.4 times, and particularly preferably 1.20 to 2.4 times.
  • These stretching conditions and orientation states do not mean that the orientation state is high simply by increasing the draw ratio, and the orientation state can be determined by the orientation coefficient as the intrinsic property value of the polymer of the present invention.
  • the optical material of the present invention can be molded by a known injection molding method.
  • the injection molding method pellets or powder of a cyclic olefin copolymer, which is mixed with additives as necessary, is usually put into a hopper of an injection molding machine, and the rotation speed is set so that the molding material is uniformly mixed.
  • a screw is sent to a cylinder and then injected into a mold.
  • the temperature of the cylinder is usually set in the range of 150 to 400 ° C, preferably 150 to 350 ° C, more preferably 180 to 300 ° C.
  • the injection speed from the cylinder to the mold is usually 1 to 50 mm / sec.
  • the injection pressure from the cylinder to the mold is usually in the range of 50 to 150 MPa.
  • the injection pressure at this time may be appropriately selected and set in consideration of conditions such as mold design and fluidity of the molding material used.
  • the holding pressure that is applied for a certain period of time until the molten resin at the gate part of the mold is completely cooled and solidified is generally set within the mold clamping pressure range.
  • the pressure is set in the range of 10 to 200 MPa, preferably 12 to 170 MPa, more preferably 15 to 150 MPa.
  • the mold temperature at this time is usually set at a temperature lower than the glass transition temperature (Tg) of the cyclic olefin copolymer, preferably in the range of 5 to 50 ° C. lower than the Tg, more preferably 8 than TgT. It is set at a temperature in the range of -30 ° C lower.
  • Tg glass transition temperature
  • Detector RI-2031 and 875-UV manufactured by JASCO, or Model 270 manufactured by Viscotec, serial connection column: Shodex K-806M, 804, 803, 802.5, column temperature: 40 ° C., flow rate: 1.0 ml / min, sample Concentration: 3.0 mg / ml
  • composition (molar) ratio of cyclic olefin copolymer A cyclic olefin copolymer obtained by hydrogenating a ring-opening metathesis polymer was dissolved in deuterated chloroform or deuterated tetrahydrofuran and measured by the following method. Alternatively, [A] / [B] / [C] was calculated.
  • the olefin part of the obtained polymer was subjected to a hydrogenation reaction at 125 ° C. under hydrogen pressure using a hydrogenation catalyst (Ph 3 P) 3 CORuHCl (18.4 mg) and triethylamine (5.9 mg) to obtain a poly (1
  • a tetrahydrofuran solution of -cyano-3,5-cyclopentyleneethylene) / (3-cyano-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene) copolymer was obtained.
  • the solution was added to methanol, and the white polymer was filtered off and dried to obtain 46 g of polymer 1.
  • FIG. 1 shows the 13 C-NMR spectrum of polymer 1.
  • the olefin part of the obtained polymer was subjected to a hydrogenation reaction at 160 ° C. under hydrogen pressure using a 5% ruthenium / alumina supported hydrogenation catalyst (2.5 g) to obtain a tetrahydrofuran solution of a copolymer.
  • the solution was added to methanol, and the white polymer was filtered off and dried to obtain 46 g of polymer 4.
  • Mw molecular weight
  • Mn molecular weight distribution
  • glass transition temperature was 194 ° C.
  • Example 6 Synthesis of polymer 6
  • the three monomers in Example 5 were substituted with 5-cyano-bicyclo [2.2.1] hept-2-ene (25.1 g) and 10-cyano-hexacyclo [8.4].
  • poly (1-cyano-) by the same method as in Example 5, except that the monomer was changed to 1-hexene (6.0 g).
  • Example 7 Synthesis of polymer 7 The two monomers in Example 4 were substituted with 5-cyano-5-methyl-bicyclo [2.2.1] hept-2-ene (8.0 g) and 10-cyano-10. -Methyl-hexacyclo [8.4.0 1,6 . 0 8,13 . 1 2,5 . 1 7,14 . 1 ( 9,12 ) -3-heptadecene (35.8 g), except that poly (1-cyano-1-methyl-3,5-cyclopentyleneethylene) / (3 Polymer 7 of 43 g of a copolymer of -cyano-3-methyl-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene) was obtained.
  • Example 8 Synthesis of Polymer 8 5,5,6-Trifluoro-6-trifluoromethyl-bicyclo [2.2.1] hept-2-ene (6.6 g) and 8, 8, 9-tri Fluoro-9-trifluoromethyl-tetracyclo [4.4.0.1 2,5 . 1 7,10] -3-two monomers of dodecene (34.5 g), and tetrahydrofuran 1,5-hexadiene (0.27g), Mo (N- 2,6-Pr i 2 C 6 H 3) (CHCMe 2 Ph) (tetrahydrofuran was added a solution of OBu t) 2 (17mg), was carried out ring-opening metathesis polymerization completely reacted consumed monomers at 70 ° C..
  • the olefin part of the obtained polymer was subjected to a hydrogenation reaction at 160 ° C. under hydrogen pressure using a 5% palladium / alumina supported hydrogenation catalyst (2.3 g) to obtain poly (1,1,2-trifluoro- 2-trifluoromethyl-3,5-cyclopentyleneethylene) / (3,3,4-trifluoro-4-trifluoromethyl-7,9-tricyclo [4.3.0.1 2,5 ] deca
  • a tetrahydrofuran solution of a copolymer of (nyleneethylene) was obtained. The solution was added to methanol, and the white polymer was filtered off and dried to obtain 41 g of polymer 8.
  • Example 10 Synthesis of polymer 10
  • the hydrogenation rate was 100%
  • the composition ratio [A] / [B] 50/50
  • the weight average molecular weight (Mw) was 54000
  • the molecular weight distribution (Mw / Mn) was 3.81
  • the glass transition temperature was 136 ° C. It was.
  • Example 11 Synthesis of polymer 11
  • the monomer of structural unit [A] in Example 10 was replaced with 5,6-difluoro-5,6-bistrifluoromethyl-7-oxa-bicyclo [2.2.1] hept-2.
  • the hydrogenation rate was 100%
  • the composition ratio [A] / [B] 50/50
  • the weight average molecular weight (Mw) was 69000
  • the molecular weight distribution (Mw / Mn) was 2.99
  • the glass transition temperature was 124 ° C. It was.
  • Example 12 A cyclohexanone solution in which the polymer 1 synthesized in Example 1 was dissolved at a concentration of 20% by mass was applied to a glass substrate, coated uniformly using an applicator, dried at 180 ° C. for 30 minutes, and then peeled off to obtain a thickness of 41.0 ⁇ m. A surface smooth film was obtained. The absolute value of the photoelastic constant of the film was 4.3 ⁇ 10 ⁇ 12 Pa ⁇ 1 . The dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1451 cm ⁇ 1 of the smooth film stretched 1.2 times and 1.4 times at 198 ° C.
  • FIG. 4 shows the perpendicular and parallel polarized Raman spectra of the 2.4 times stretched film.
  • Example 13 The polymer 2 synthesized in Example 2 was obtained in the same manner as in Example 12 to obtain a film having a smooth surface with a thickness of 40.5 ⁇ m.
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1451 cm ⁇ 1 of a smooth film stretched 1.3 times and 1.5 times at 212 ° C. is 1.009 and 1.012 respectively, and the absolute value of the orientation coefficient Are 0.0003 and 0.0040, respectively, the absolute values of orientation birefringence are 0.7 ⁇ 10 ⁇ 4 and 1.0 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.026. Met.
  • Example 14 The polymer 3 synthesized in Example 3 was obtained in the same manner as in Example 12 to obtain a 37.3 ⁇ m-thick surface smooth film.
  • the dichroic ratios calculated from the intensity ratio of the peak of Raman shift 1452 cm ⁇ 1 of the smooth surface film stretched 1.2 times and 1.5 times at 165 ° C. were 1.011 and 1.030, respectively, and the absolute value of the orientation coefficient.
  • the absolute values of orientation birefringence are 1.2 ⁇ 10 ⁇ 4 and 3.4 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.034. Met.
  • Example 15 The polymer 4 synthesized in Example 4 was obtained in the same manner as in Example 12 to obtain a film with a smooth surface of 42.0 ⁇ m in thickness.
  • the absolute value of the photoelastic constant of the film was 4.5 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1452 cm ⁇ 1 of the smooth film stretched 1.2 times and 1.4 times at 206 ° C.
  • the absolute value of the orientation coefficient is 1.008 and 1.015, respectively, and the absolute value of the orientation coefficient Are 0.0001 and 0.0050, respectively, the absolute values of orientation birefringence are 0.3 ⁇ 10 ⁇ 4 and 0.6 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.012 Met. Also, the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1453 cm ⁇ 1 of the smooth surface film stretched 2.4 times at the same temperature is 1.065, the absolute value of the orientation coefficient is 0.0212, The absolute value of birefringence was 0.7 ⁇ 10 ⁇ 4 .
  • Example 16 The polymer 5 synthesized in Example 5 was obtained in the same manner as in Example 12 to obtain a film having a smooth surface with a thickness of 40.8 ⁇ m.
  • the absolute value of the photoelastic constant of the film was 0.8 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1452 cm ⁇ 1 of a smooth film stretched 1.4 times and 1.6 times at 214 ° C.
  • the absolute value of orientation birefringence is 1.007 and 1.013, respectively, and the absolute value of the orientation coefficient Are 0.0023 and 0.0043, respectively, the absolute values of orientation birefringence are 0.2 ⁇ 10 ⁇ 4 and 0.4 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.009. Met.
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1451 cm ⁇ 1 of a smooth film stretched 2.4 times at the same temperature was 1.061, and the absolute value of the orientation coefficient was 0.0199.
  • the absolute value of birefringence was 0.4 ⁇ 10 ⁇ 4 .
  • Example 17 A smooth film having a thickness of 43.0 ⁇ m was obtained from the polymer 6 synthesized in Example 6 by the same method as in Example 12.
  • the absolute value of the photoelastic constant of the film was 0.9 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1454 cm ⁇ 1 of the smooth film stretched 1.2 times and 1.5 times at 187 ° C. is 1.010 and 1.020, respectively, and the absolute value of the orientation coefficient Are 0.0003 and 0.0063, respectively, and the absolute values of orientation birefringence are 0.3 ⁇ 10 ⁇ 4 and 0.5 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.008.
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1451 cm ⁇ 1 of a smooth surface film stretched 2.4 times at the same temperature was 1.070, and the absolute value of the orientation coefficient was 0.0228.
  • the absolute value of refraction was 0.5 ⁇ 10 ⁇ 4 .
  • Example 18 The polymer 7 synthesized in Example 7 was obtained in the same manner as in Example 12 to obtain a film having a smooth surface with a thickness of 42.5 ⁇ m.
  • the absolute value of the photoelastic constant of the film was 3.3 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the absolute values of orientation birefringence are 1.008 and 1.015, respectively, and the absolute value of the orientation coefficient Are 0.0001 and 0.0050, respectively, the absolute values of orientation birefringence are 0.3 ⁇ 10 ⁇ 4 and 0.5 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.010. Met.
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1451 cm ⁇ 1 of a smooth film stretched 2.4 times at the same temperature was 1.063, and the absolute value of the orientation coefficient was 0.0206.
  • the absolute value of birefringence was 0.6 ⁇ 10 ⁇ 4 .
  • Example 19 The polymer 8 synthesized in Example 8 was obtained in the same manner as in Example 12 to obtain a 34.9 ⁇ m thick smooth surface film.
  • the absolute value of the photoelastic constant of the film was 6.5 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the dichroic ratios calculated from the intensity ratio of the peak of Raman shift 1452 cm ⁇ 1 of the smooth film stretched 1.1 times and 1.3 times at 199 ° C. were 1.003 and 1.004, respectively, and the absolute value of the orientation coefficient Are 0.0010 and 0.0001, respectively, the absolute values of orientation birefringence are 1.5 ⁇ 10 ⁇ 4 and 2.1 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.155. Met.
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1453 cm ⁇ 1 of a smooth surface film stretched 1.8 times at the same temperature was 1.010, and the absolute value of the orientation coefficient was 0.0033.
  • the absolute value of birefringence was 3.5 ⁇ 10 ⁇ 4 .
  • Example 20 A smooth film having a thickness of 35.0 ⁇ m was obtained from the polymer 9 synthesized in Example 9 in the same manner as in Example 12.
  • the dichroic ratios calculated from the intensity ratio of the peak of Raman shift 1454 cm ⁇ 1 of the smooth film stretched 1.3 times and 1.6 times at 179 ° C. are 1.005 and 1.006, respectively, and the absolute value of the orientation coefficient Are 0.0019 and 0.0019, respectively, the absolute values of orientation birefringence are 2.8 ⁇ 10 ⁇ 4 and 3.5 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.173. Met.
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1452 cm ⁇ 1 of the smooth surface film stretched 2.2 times at the same temperature is 1.007, and the absolute value of the orientation coefficient is 0.0022.
  • the absolute value of birefringence was 4.7 ⁇ 10 ⁇ 4 .
  • Example 21 The polymer 10 synthesized in Example 10 was obtained in the same manner as in Example 12 to obtain a 36.0 ⁇ m-thick surface smooth film.
  • the dichroic ratios calculated from the intensity ratio of the peak of Raman shift 1452 cm ⁇ 1 of the smooth film stretched 1.1 times and 1.3 times at 166 ° C. were 1.013 and 1.030, respectively, and the absolute value of the orientation coefficient Are 0.00043 and 0.0100 respectively, the absolute values of orientation birefringence are 1.3 ⁇ 10 ⁇ 4 and 3.2 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.032 Met.
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1453 cm ⁇ 1 of a smooth surface film stretched 1.8 times at the same temperature was 1.074, and the absolute value of the orientation coefficient was 0.0240.
  • the absolute value of birefringence was 4.8 ⁇ 10 ⁇ 4 .
  • Example 22 The polymer 11 synthesized in Example 11 was obtained in the same manner as in Example 12 to obtain a 34.7 ⁇ m-thick surface smooth film.
  • the absolute value of the photoelastic constant of the film was 6.8 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1449 cm ⁇ 1 of the smooth film stretched by 1.4 times and 1.6 times at 154 ° C. is 1.005 and 1.009, respectively, and the absolute value of the orientation coefficient Are 0.0019 and 0.0003, respectively, the absolute values of orientation birefringence are 2.3 ⁇ 10 ⁇ 4 and 4.0 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.135. Met.
  • the films obtained in Examples 12 to 22 had an absolute value of the orientation coefficient of 0.001 or more and an absolute value of orientation birefringence of 5 ⁇ 10 ⁇ 4 or less. It was inferred that an optical film having high transparency and excellent strength or elasticity due to toughness, tension, bending, or the like can be obtained without being restricted by the above.
  • Example 23 Stress birefringence inspection of injection-molded article
  • the polymer 1 synthesized in Example 1 was injection-molded while adjusting molding conditions to produce 38 molded articles.
  • stress birefringence in the surface direction of the molded product was observed with a strain tester, stress birefringence was not observed in 12 molded products with good surface transfer and no sink marks. From this result, according to the optical material of the present invention, it is possible to obtain a molded body having high transparency and excellent toughness without being limited by the molding temperature and pressure conditions, and can be widely applied to optical lenses. confirmed. It was also speculated that similar results were obtained with molded articles obtained from the polymers synthesized in Examples 2 to 11.
  • the olefin part of the obtained polymer was hydrogenated in the same manner as in Example 1 to obtain a tetrahydrofuran solution of poly (1-cyano-3,5-cyclopentyleneethylene).
  • the solution was added to methanol, and the white polymer was filtered off and dried to obtain 43 g of polymer 12.
  • the hydrogenation rate was 100%, the weight average molecular weight (Mw) was 48000, the molecular weight distribution (Mw / Mn) was 2.65, and the glass transition temperature was 88 ° C.
  • a smooth film having a thickness of 40.6 ⁇ m was obtained in the same manner as in Example 12.
  • the absolute value of the photoelastic constant of the film was 14.9 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1452 cm ⁇ 1 of the smooth film stretched by 1.2 times and 1.5 times at 108 ° C. is 1.007 and 1.014, respectively, and the absolute value of the orientation coefficient Are 0.0025 and 0.0044, respectively, the absolute values of orientation birefringence are 6.5 ⁇ 10 ⁇ 4 and 13.0 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.280. Met.
  • the olefin part of the obtained polymer was hydrogenated in the same manner as in Example 8 to obtain a tetrahydrofuran solution of poly (1,1,2-trifluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene). .
  • the solution was added to methanol, and the white polymer was filtered and dried to obtain 41 g of polymer 13.
  • the hydrogenation rate was 100%, the weight average molecular weight (Mw) was 68000, the molecular weight distribution (Mw / Mn) was 2.45, and the glass transition temperature was 110 ° C.
  • a smooth surface film having a thickness of 35.8 ⁇ m was obtained in the same manner as in Example 12.
  • the absolute value of the photoelastic constant of the film was 16.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the dichroic ratios calculated from the intensity ratio of the peak of Raman shift 1454 cm ⁇ 1 of the smooth film stretched 1.1 times and 1.3 times at 130 ° C. are 1.006 and 1.010, respectively, and the absolute value of the orientation coefficient Are 0.000020 and 0.0033, respectively, the absolute values of orientation birefringence are 8.0 ⁇ 10 ⁇ 4 and 13.5 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.405. Met.
  • the olefin part of the obtained polymer was hydrogenated in the same manner as in Example 8, and poly (1-trifluoromethyl-3,5-cyclopentyleneethylene) / (1,2-difluoro-1,2-bistrifluoromethyl).
  • a copolymer tetrahydrofuran solution having a composition ratio of -4-oxa-3,5-cyclopentyleneethylene) of 50/50 was obtained.
  • the solution was added to methanol, and the white polymer was filtered and dried to obtain 39 g of polymer 13.
  • the hydrogenation rate was 100%, the weight average molecular weight (Mw) was 59000, the molecular weight distribution (Mw / Mn) was 2.68, and the glass transition temperature was 84 ° C.
  • Example 12 a film having a smooth surface of 37.4 ⁇ m was obtained in the same manner as in Example 12.
  • the absolute value of the photoelastic constant of the film was 10.7 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1449 cm ⁇ 1 of the smooth film stretched 1.3 times and 1.6 times at 104 ° C. is 1.006 and 1.011 respectively, and the absolute value of the orientation coefficient Are 0.0002 and 0.0030, respectively, the absolute values of orientation birefringence are 9.0 ⁇ 10 ⁇ 4 and 16.5 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.452. Met.
  • Comparative Example 5 Stress Birefringence Inspection of Injection Molded Product
  • the polymer 12 synthesized in Comparative Example 1 was injection molded while adjusting molding conditions to produce 50 molded products.
  • stress birefringence in the surface direction of the molded body was observed with a strain tester, stress birefringence was observed at the end of any molded product, although the degree was different.
  • the olefin part of the obtained polymer was subjected to a hydrogenation reaction at 125 ° C. under hydrogen pressure using a hydrogenation catalyst (Ph 3 P) 3 CORuHCl (18.4 mg) and triethylamine (5.9 mg) to obtain a poly (1
  • a tetrahydrofuran solution of -cyano-3,5-cyclopentyleneethylene) / (3-cyano-7,9-tricyclo [4.3.0.1 2,5 ] decanylene ethylene) copolymer was obtained.
  • the solution was added to methanol, and the white polymer was filtered and dried to obtain 41 g of polymer 15.
  • the olefin portion of the obtained polymer was subjected to a hydrogenation reaction at 160 ° C. under hydrogen pressure using a 5% palladium / alumina supported hydrogenation catalyst (2.0 g) to obtain poly (1,1,2-trifluoro- 2-trifluoromethyl-3,5-cyclopentyleneethylene) / (3,3,4-trifluoro-4-trifluoromethyl-7,9-tricyclo [4.3.0.1 2,5 ] deca
  • a tetrahydrofuran solution of a copolymer of (nyleneethylene) was obtained. The solution was added to methanol, and the white polymer was filtered and dried to obtain 39 g of polymer 17.
  • Example 27 Synthesis of polymer 18
  • the monomers were completely reacted and consumed to perform ring-opening metathesis polymerization.
  • the olefin part of the obtained polymer was subjected to a hydrogenation reaction at 125 ° C. under hydrogen pressure using a hydrogenation catalyst (Ph 3 P) 3 CORuHCl (18.4 mg) and triethylamine (5.9 mg) to obtain a poly (1 -Cyano-3,5-cyclopentyleneethylene) / (3-cyano-7,9-tricyclo [4.3.0.1 2,5 ] decanyleneethylene) / (1-methoxycarbonyl-3,5- A tetrahydrofuran solution of a copolymer of cyclopentyleneethylene) was obtained.
  • Example 30 Synthesis of polymer 21
  • the monomer of the structural unit [C] in Example 28 was changed to 5-methyl-bicyclo [2.2.1] hept-2-ene (2.6 g).
  • Example 31 Synthesis of polymer 22
  • the monomer of the structural unit [C] in Example 28 was changed to bicyclo [2.2.1] hept-2-ene (1.1 g), and the molar ratio of the three types of monomers was changed.
  • was changed to [A] / [B] / [C] 19/76/5, and 38 g of polymer 22 was obtained in the same manner as in Example 28.
  • Example 33 Synthesis of polymer 24
  • Example 34 Synthesis of polymer 25
  • Example 35 A cyclohexanone solution in which the polymer 15 synthesized in Example 24 was dissolved at a concentration of 20% by mass was applied to a glass substrate, coated uniformly using an applicator, dried at 180 ° C. for 30 minutes, and then peeled off to obtain a thickness of 40.6 ⁇ m. A surface smooth film was obtained. The absolute value of the photoelastic constant of the film was 6.7 ⁇ 10 ⁇ 12 Pa ⁇ 1 . The dichroic ratios calculated from the intensity ratio of the peak of Raman shift 1451 cm ⁇ 1 of the smooth film stretched 1.2 times and 1.7 times at 137 ° C.
  • orientation coefficient were 1.015 and 1.019, respectively, and the absolute value of the orientation coefficient Are 0.0051 and 0.0063, respectively, the absolute values of orientation birefringence are 3.3 ⁇ 10 ⁇ 4 and 4.3 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.067. Met.
  • Example 36 The polymer 16 synthesized in Example 25 was obtained in the same manner as in Example 35 to obtain a film having a smooth surface with a thickness of 40.8 ⁇ m.
  • the dichroic ratios calculated from the intensity ratio of the peak of Raman shift 1451 cm ⁇ 1 of the smooth film stretched 1.3 times and 1.8 times at 226 ° C. were 1.005 and 1.007, respectively, and the absolute value of the orientation coefficient Are 0.0019 and 0.0023, respectively, the absolute values of orientation birefringence are 0.3 ⁇ 10 ⁇ 4 and 0.4 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.017. Met.
  • Example 37 The polymer 17 synthesized in Example 26 was obtained in the same manner as in Example 35 to obtain a film having a smooth surface with a thickness of 40.5 ⁇ m.
  • the dichroic ratios calculated from the intensity ratio of the peak of Raman shift 1452 cm ⁇ 1 of the smooth film stretched 1.2 times and 1.6 times at 158 ° C. were 1.005 and 1.007, respectively, and the absolute value of the orientation coefficient Are 0.0061 and 0.0022, respectively, the absolute values of orientation birefringence are 3.1 ⁇ 10 ⁇ 4 and 4.2 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.183. Met.
  • Example 38 A smooth film having a thickness of 40.2 ⁇ m was obtained from the polymer 18 synthesized in Example 27 in the same manner as in Example 35.
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1452 cm ⁇ 1 of the smooth film stretched 1.2 times and 1.4 times at 149 ° C. is 1.014 and 1.272, respectively, and the absolute value of the orientation coefficient Are 0.00045 and 0.0090, respectively, the absolute values of orientation birefringence are 1.8 ⁇ 10 ⁇ 4 and 3.6 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.040. Met.
  • Example 39 The polymer 19 synthesized in Example 28 was obtained in the same manner as in Example 35 to obtain a film having a smooth surface of 40.9 ⁇ m in thickness.
  • the absolute value of the photoelastic constant of the film was 5.1 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the dichroic ratios calculated from the intensity ratio of the peak of Raman shift 1451 cm ⁇ 1 of the smooth film stretched 1.2 times and 1.4 times at 165 ° C.
  • FIG. 7 shows the perpendicular and parallel polarized Raman spectra of the 2.4-fold stretched film.
  • Example 40 The polymer 20 synthesized in Example 29 was obtained in the same manner as in Example 35 to obtain a film having a smooth surface with a thickness of 40.1 ⁇ m.
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1452 cm ⁇ 1 of the smooth film stretched 1.2 times and 1.5 times at 178 ° C. is 1.015 and 1.021, respectively, and the absolute value of the orientation coefficient Are 0.0051 and 0.0005, respectively, and the absolute values of orientation birefringence are 2.9 ⁇ 10 ⁇ 4 and 4.2 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.065. Met.
  • Example 41 The polymer 21 synthesized in Example 30 was obtained in the same manner as in Example 35 to obtain a 39.1 ⁇ m-thick surface smooth film.
  • the absolute value of the photoelastic constant of the film was 3.7 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the absolute value of the orientation coefficient are 0.000020 and 0.000029, respectively, and the absolute values of orientation birefringence are 2.1 ⁇ 10 ⁇ 4 and 2.9 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.089. Met.
  • Example 42 The polymer 22 synthesized in Example 31 was obtained in the same manner as in Example 35 to obtain a 39.6 ⁇ m thick smooth surface film.
  • the absolute value of the photoelastic constant of the film was 4.1 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the dichroic ratios calculated from the intensity ratio of the peak of Raman shift 1452 cm ⁇ 1 of the smooth film stretched 1.2 times and 1.6 times at 200 ° C. are 1.012 and 1.015, respectively, and the absolute value of the orientation coefficient Are 0.0037 and 0.0051, respectively, the absolute values of orientation birefringence are 1.9 ⁇ 10 ⁇ 4 and 2.5 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.050. Met.
  • Example 43 The polymer 23 synthesized in Example 32 was obtained in the same manner as in Example 35 to obtain a film having a smooth surface of 41.1 ⁇ m in thickness.
  • the absolute value of the photoelastic constant of the film was 6.9 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1452 cm ⁇ 1 of the smooth film stretched 1.1 times and 1.3 times at 164 ° C.
  • Example 44 The polymer 24 synthesized in Example 33 was obtained in the same manner as in Example 35 to obtain a 39.9 ⁇ m-thick surface smooth film.
  • the absolute value of the photoelastic constant of the film was 5.9 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • orientation coefficient are 1.007 and 1.011, respectively, and the absolute value of the orientation coefficient Are 0.0024 and 0.0043, respectively, the absolute values of orientation birefringence are 1.2 ⁇ 10 ⁇ 4 and 1.9 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.050. Met.
  • Example 45 The polymer 25 synthesized in Example 34 was obtained in the same manner as in Example 35 to obtain a film with a smooth surface of 40.5 ⁇ m in thickness.
  • the absolute value of the photoelastic constant of the film was 6.5 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the films obtained in Examples 35 to 45 have an absolute value of the orientation coefficient of 0.001 or more and an absolute value of orientation birefringence of 5 ⁇ 10 ⁇ 4 or less. It was inferred that an optical film having high transparency and excellent strength or elasticity due to toughness, tension, bending, or the like can be obtained without being restricted by the above.
  • Example 46 Stress birefringence inspection of injection-molded article
  • the polymer 19 synthesized in Example 28 was set to a temperature 30 ° C. lower than that of Example 23 in the setting temperature of the polymer-melting heating and kneading part Except for the above, injection molding was performed in the same manner as in Example 23 to produce 38 molded products.
  • stress birefringence in the surface direction of the molded product was observed with a strain tester, stress birefringence was not observed in 20 molded products molded with good surface transfer and no sink marks.
  • Example 35 a film having a smooth surface of 39.4 ⁇ m was obtained in the same manner as in Example 35.
  • the absolute value of the photoelastic constant of the film was 1.3 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the dichroic ratio calculated from the intensity ratio of the peak of Raman shift 1450 cm ⁇ 1 of the smooth film stretched 1.2 times and 1.4 times at 149 ° C. is 1.004 and 1.009, respectively, and the absolute value of the orientation coefficient Are 0.0013 and 0.000029, respectively, the absolute values of orientation birefringence are 5.3 ⁇ 10 ⁇ 4 and 10.9 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.373. Met.
  • Example 35 a film having a smooth surface of 40.1 ⁇ m was obtained in the same manner as in Example 35.
  • the absolute value of the photoelastic constant of the film was 12.8 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the dichroic ratios calculated from the intensity ratio of the peak of Raman shift 1450 cm ⁇ 1 of the smooth film stretched 1.1 times and 1.4 times at 133 ° C. are 1.006 and 1.014, respectively, and the absolute value of the orientation coefficient Are 0.000020 and 0.0045 respectively, the absolute values of orientation birefringence are 8.1 ⁇ 10 ⁇ 4 and 18.4 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.412. Met.
  • the olefin part of the obtained polymer was hydrogenated in the same manner as in Example 24 to obtain a tetrahydrofuran solution of poly (1-methoxycarbonyl-3,5-cyclopentyleneethylene).
  • the solution was added to methanol, and the white polymer was filtered and dried to obtain 43 g of polymer 28.
  • the hydrogenation rate was 100%, the weight average molecular weight (Mw) was 49000, the molecular weight distribution (Mw / Mn) was 2.69, and the glass transition temperature was 41 ° C.
  • a film having a smooth surface of 39.9 ⁇ m was obtained by using the polymer 28 in the same manner as in Example 35.
  • the dichroic ratios calculated from the intensity ratio of the peak of Raman shift 1450 cm ⁇ 1 of the smooth surface film stretched 1.2 times and 1.4 times at 61 ° C. are 1.004 and 1.008, respectively, and the absolute value of the orientation coefficient Are 0.0012 and 0.0026, respectively, the absolute values of orientation birefringence are 10.1 ⁇ 10 ⁇ 4 and 22.4 ⁇ 10 ⁇ 4 , respectively, and the absolute value of ⁇ OB / ⁇ F is 0.879. Met.
  • the present invention can also take the following aspects.
  • At least the repeating structural unit [A] represented by the general formula (1) and the repeating structural unit [B] represented by the general formula (2) are contained, and the molar ratio [A] / [B Is an optical material comprising a cyclic olefin copolymer of 95/5 to 1/99,
  • the dichroic ratio D a function of I ⁇ / I ⁇ parallel light intensity I ⁇ and vertical light intensity I ⁇ of the alignment direction in the 1500 ⁇ 1400 cm -1 by Raman spectroscopy
  • the change amount ⁇ F in the absolute value of the orientation coefficient F (D ⁇ 1) / (D + 2)
  • R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
  • R 1 to R 4 are hydrogen, alkyl having 1 to 10 carbons, aryl having 6 to 20 carbons, alkoxy having 1 to 10 carbons, or 2 to 10 alkoxyalkyl, alkoxycarbonyl of 2 to 10 carbon atoms, .
  • R 1 ⁇ R 4 is selected from alkoxycarbonyl alkyl having 3 to 10 carbon atoms is bonded to form a ring system with one another Good .
  • X 1 can have -O -,
  • R 7 to R 10 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
  • R 7 to R 10 are hydrogen, alkyl having 1 to 10 carbons, aryl having 6 to 20 carbons, alkoxy having 1 to 10 carbons, or 2 to 10 alkoxyalkyl, alkoxycarbonyl of 2 to 10 carbon atoms, selected from alkoxycarbonyl alkyl having 3 to 10 carbon atoms, a ring structure R 7 ⁇ R 10 each other Good .
  • X 2 also form -O -, - S -, - NR 11 -, - PR 11 -, and -CR 11 R 12 - (R 11 , R 12 number of hydrogen or carbon are each independently 1 And may be the same or different.
  • N represents 1 to 3.
  • Photoelastic constant (Pa ⁇ 1 ) ⁇ Re (nm) / ⁇ P (N) ⁇ film width (mm) (12) ( ⁇ Re: amount of change in phase difference, ⁇ P: amount of change in tensile force in a range where the phase difference increases linearly with the application of stress)
  • R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
  • R 1 to R 4 are hydrogen, alkyl having 1 to 10 carbons, aryl having 6 to 20 carbons, alkoxy having 1 to 10 carbons, or 2 to 10 alkoxyalkyl, alkoxycarbonyl of 2 to 10 carbon atoms, .
  • R 1 ⁇ R 4 is selected from alkoxycarbonyl alkyl having 3 to 10 carbon atoms is bonded to form a ring system with one another Good .
  • X 1 can have -O -,
  • R 7 to R 10 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
  • R 7 to R 10 are hydrogen, alkyl having 1 to 10 carbons, aryl having 6 to 20 carbons, alkoxy having 1 to 10 carbons, or 2 to 10 alkoxyalkyl, alkoxycarbonyl of 2 to 10 carbon atoms, selected from alkoxycarbonyl alkyl having 3 to 10 carbon atoms, a ring structure R 7 ⁇ R 10 each other Good .
  • X 2 also form -O -, - S -, - NR 11 -, - PR 11 -, and -CR 11 R 12 - (R 11 , R 12 number of hydrogen or carbon are each independently 1 And may be the same or different.
  • N represents 1 to 3.
  • At least the repeating structural unit [A] represented by the general formula (1) and the repeating structural unit [B] represented by the general formula (2) are contained, and the molar ratio [A] / [B ] Includes a cyclic olefin copolymer of 95/5 to 1/99, and in the resulting film, a tensile force of 2 N at the maximum is applied at a speed of 0.1 mm / min to measure a phase difference at a wavelength of 633 nm.
  • Photoelastic constant (Pa ⁇ 1 ) ⁇ Re (nm) / ⁇ P (N) ⁇ film width (mm) (12) ( ⁇ Re: amount of change in phase difference, ⁇ P: amount of change in tensile force in a range where the phase difference increases linearly with the application of stress)
  • R 1 to R 4 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
  • R 1 to R 4 are hydrogen, alkyl having 1 to 10 carbons, aryl having 6 to 20 carbons, alkoxy having 1 to 10 carbons, or 2 to 10 alkoxyalkyl, alkoxycarbonyl of 2 to 10 carbon atoms, .
  • R 1 ⁇ R 4 is selected from alkoxycarbonyl alkyl having 3 to 10 carbon atoms is bonded to form a ring system with one another Good .
  • X 1 can have -O -,
  • R 7 to R 10 contains fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, or fluorine.
  • R 7 to R 10 are hydrogen, alkyl having 1 to 10 carbons, aryl having 6 to 20 carbons, alkoxy having 1 to 10 carbons, or 2 to 10 alkoxyalkyl, alkoxycarbonyl of 2 to 10 carbon atoms, selected from alkoxycarbonyl alkyl having 3 to 10 carbon atoms, a ring structure R 7 ⁇ R 10 each other Good .
  • X 2 also form -O -, - S -, - NR 11 -, - PR 11 -, and -CR 11 R 12 - (R 11 , R 12 number of hydrogen or carbon are each independently 1 And may be the same or different.
  • N represents 1 to 3.
  • the optical material having very small orientation birefringence and photoelastic constant of the present invention and its molded product are an antireflection filter, a recording medium, a display material, an optical film for use in electronic device materials such as organic EL and liquid crystal plastic members, a micro It is useful as an optical lens such as a lens, a pickup lens, an imaging lens, and an optical element (microlens array, optical waveguide, optical switching, Fresnel zone plate, binary optical element, blaze diffractive optical element, etc.) and has extremely high industrial value.

Abstract

 本発明に係る光学材料は、少なくとも一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕を含有し、そのモル比〔A〕/〔B〕が=95/5~1/99の環状オレフィンコポリマーを含み、ラマン分光法による配向方向に対しての平行光強度Iと垂直光強度Iの二色比から求めた配向係数の絶対値の変化量△Fに対して、前記光学材料から得られる延伸フィルムにおいて、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値の変化量△OBで表わされる△OB/△Fの絶対値が0.001~0.250であることを特徴とする。

Description

光学材料およびその成形物
 本発明は、配向複屈折および光弾性定数が非常に小さい光学材料および成形物に関する。
 近年、デジタルカメラモジュール用のマイクロレンズ、ピックアップレンズ、撮像レンズ、光学素子(マイクロレンズアレイ、光導波路、光スイッチング、フレネルゾーンプレート、バイナリー光学素子、ブレーズ回折光学素子など)等の光学材料用途、反射防止フィルター、記録メディア、ディスプレイ材料、有機ELや液晶プラスチック部材等の電子デバイス材料用途等において、光学特性の優れる環状オレフィンポリマーはこれらの分野で広く用途展開が検討されている。
 環状オレフィンポリマーを含む高分子材料は、分子鎖の長い集合体であり、ポリマー分子鎖自身が固有の物理的な性質の異方性を持っているために、溶融成形時に圧力や温度によって溶融流動し、多くの場合樹脂の流動が十分に緩和されない状態で金型やロール上で成形体の形状に硬化する。その時、分子鎖の長い鎖が、それらの成形条件において分子の配向を示すことがよく知られている。
 この分子の配向は、分子鎖自身の固有の物理的な性質の異方性に起因し、光学的には屈折率の異方性を生じる。屈折率の異方性が成形材料に及ぼす影響として複屈折を生じ、複屈折性材料が光路中に存在すると、例えば、製品の像質や信号の読み取りなどへ悪影響を及ぼす。このように、光学樹脂で構成された光学材料、電子デバイス材料の開発では、複屈折の低減は重要な課題である。
 ここで、当技術分野における光学ポリマーが示す複屈折にはその主因がポリマー主鎖に由来する配向複屈折と、応力に起因する応力複屈折がある。また、配向複屈折、応力複屈折それぞれの符号はポリマーの化学構造に由来し、それぞれのポリマーに固有の性質である。
 この配向、または応力複屈折を低減する試みとして、ポリマーに対して逆の符号の複屈折性を有する有機化合物、無機微粒子を添加する事で複屈折を相殺する方法が試みられている。有機化合物を添加する例では、負の複屈折性を示すポリメチルメタクリレートに6.5wt%の正の複屈折性を示す2-オクタデシルナフタレンを添加したフィルムの配向複屈折は延伸倍率に因らずほぼゼロとなる事が例示されている(例えば、特許文献1)。また、無機微粒子として粒径20nm程度の炭酸ストロンチウム微粒子を0.3wt%添加したメチルメタクリレートとベンジルメタクリレート共重合体からなる延伸フィルムの配向複屈折も延伸倍率に因らずほぼゼロとなる事が例示されている(例えば、非特許文献1)。これらは優れた方法であるが、添加物の凝集によるフィルムの不透明化や微粒子のサイズコントロール、プロセスに適応する際に添加物を連続的に、かつ、均一に添加する必要がある事で実用上の問題がある。
 また、ポリマーに有機化合物、無機微粒子などを添加しない非添加系材料では、複屈折の符号が異なる複屈折性を有する二種類以上のメタクリレート、或いは、アクリレートモノマーを共重合し、それらの種類、共重合組成比を変化させる事で配向複屈折、応力複屈折の何れか、或いは、その両方を低減する方法が例示されている(例えば、特許文献2、非特許文献2)。この方法は、添加物を用いないため凝集によるフィルムの不透明化を起こさず、プロセスで連続的に添加物を混入させる必要も無く優れた方法である。
 この例では、例えば、ある組成のメチルメタクリレートとペンタフルオロベンジルメタクリレート共重合体の例で配向複屈折、応力複屈折の両方を実用上問題の無いレベルまで低減している。しかし、一般的にメタクリレートポリマーは溶融成形によりフィルムを得る際、溶融成形可能な温度まで加熱し樹脂を滞留させると、解重合により生じるモノマー、或いは、オリゴマー由来のゲル成分がフィルムに混入し、フィルム性能を悪化させる問題を生じる。また、メタクリレートポリマーはガラス転移温度が100℃程度と低く、製品に利用した場合、用途により耐熱性が問題になる。一部のポリマーでガラス転移温度を向上させ耐熱性を付与したポリマーの例もあるが、この場合、高めたガラス転移温度のために成形時の溶融温度を高く設定する必要があり、上記の解重合によるフィルムへのゲル状物の混入がより顕著になる可能性がある。
 一方で、環状オレフィンポリマーは主鎖の剛直な環状構造により非晶性で透明な比較的高いガラス転移温度を有するポリマーであり、その優れた特性を利用して光学フィルム、光学レンズなどの用途で広く利用されている。複屈折低減の試みについても、例えば、ノルボルネン、或いは、テトラシクロドデセンモノマーの開環重合水素添加物を例に、応力複屈折を示す尺度としての光弾性定数が例示されている(非特許文献3)。この場合、置換基が比較的極性が低いアルキル基、フェニル基などを含有するノルボルネン開環重合水素添加物で10~30×10-12Pa-1程度の比較的大きな光弾性定数を示している。
 環状オレフィンポリマーの配向複屈折については、ノルボルネン基礎構造を有する環状オレフィン、特に好ましくはノルボルネンまたはテトラシクロドデセン又はこれらから誘導される炭化水素構造を有する環状オレフィンと、末端二重結合を有する非環状オレフィン、例えばα-オレフィン、特に好ましくはエチレンまたはプロピレンとからなり、これらの中でも、特に好ましくはノルボルネンとエチレン、ノルボルネンとプロピレン、テトラシクロドデセンとエチレン、およびテトラシクロドデセンとプロピレンの付加重合で得られる非晶性環状オレフィン系共重合体の延伸フィルムの位相差が例示されている(特許文献3)。この評価では、1.5~4倍延伸した膜厚40~60μmのフィルムの位相差が5~16nm、配向複屈折換算値で1~3×10-4であり複屈折低減の試みとしては比較的小さな複屈折を示している。しかしながら、特許文献3の共重合体は、複数の環状オレフィン種間の分子鎖の異方性で相殺する分子設計ではなく、主鎖にα-オレフィン連鎖の分子鎖と環状オレフィンの共重合体であることから靭性に乏しく、例えば、キャストフィルムを作製する際にガラスなどの剛性が高い基板を下地とすると、フィルムの乾燥過程において、加熱後、冷却する際、樹脂の収縮応力によりフィルムが割れ、また、樹脂材などを基板として自立フィルムを作成しても、外部応力により容易に割れてしまうことで大面積のフィルムを得ることは容易ではない。
特開2005-68374公報 特開2009-204860公報 特開2001-221915公報
Macromolecules 2004, 37, 8342. Macromolecules 2006, 39, 3019. Polymer Jounal 1995, 27, 943.
 透明性が高く、靭性に優れる光学樹脂であっても、溶融射出成形や押出成形などのせん断や引張りなどの応力下で成形することにより、ポリマー鎖がそれらの応力方向に対して引っ張られ、配向することによって複屈折が生じる。従来の技術では、偏光を利用する液晶表示などのデバイスや光学レンズに光学樹脂を利用する場合、配向または応力による複屈折の発生を極力抑制する必要がある。そのために、温度、圧力などの条件を最適化する事でポリマー鎖の配向を抑制する検討がなされている。
 しかし、ポリマー鎖自身が配向した場合であっても、複屈折を生じないポリマーを含む光学材料であれば、成形時の温度、圧力条件などの制限を受けずに透明性が高く、靭性に優れる液晶表示デバイスや光学レンズに広く適用できるようになる。
 本発明は、ポリマー鎖自身が配向しても複屈折が抑制される所定の環状オレフィンコポリマーを用いることにより、成形時の温度、圧力条件などの制限を受けずに透明性が高く、靭性に優れる成形体を得ることができる光学材料を提供することを目的とする。
 本発明は、以下に示される。
[1]少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99の環状オレフィンコポリマーを含む光学材料であって、
 前記光学材料から得られる成形体において、ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値の変化量△Fに対して、
 前記光学材料から得られる延伸フィルムにおいて、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値の変化量△OBで表わされる△OB/△Fの絶対値が0.001~0.250であることを特徴とする光学材料であり、
Figure JPOXMLDOC01-appb-C000001
(式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
Figure JPOXMLDOC01-appb-C000002
(式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
[2]少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99で構成し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有し、そのモル比〔C〕/(〔A〕+〔B〕)が1/99~40/60の環状オレフィンコポリマーを含む光学材料であって、
 前記光学材料から得られる成形体において、ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値の変化量△Fに対して、
 前記光学材料から得られる延伸フィルムにおいて、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値の変化量△OBで表わされる△OB/△Fの絶対値が0.001~0.250であることを特徴とする光学材料であり、
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
Figure JPOXMLDOC01-appb-C000004
(式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
Figure JPOXMLDOC01-appb-C000005
(式(3)中、R13~R16は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R13~R16が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR17-、-PR18-、および-CR1718-から(R17、R18はそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれ、同一でも異なってもよい。nは0または1を表す。)
[3]少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99の環状オレフィンコポリマーを含む光学材料であって、
 前記光学材料から得られる成形体において、ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値が0.001以上であり、
 前記光学材料から得られる延伸フィルムにおいて、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値が5×10-4以下であることを特徴とする前記[1]に記載の光学材料であり、
[4]少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99で構成し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有し、そのモル比〔C〕/(〔A〕+〔B〕)が1/99~40/60の環状オレフィンコポリマーを含む光学材料であって、
 前記光学材料から得られる成形体において、ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値が0.001以上であり、
 前記光学材料から得られる延伸フィルムにおいて、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値が5×10-4以下であることを特徴とする前記[2]に記載の光学材料であり、
[5]少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99の環状オレフィンコポリマーを含む光学材料であって、
 前記光学材料から得られるフィルムにおいて、0.1mm/minの速度で最大2Nの引張り力を印加して波長633nmにおける位相差を測定し、下記式(12)から得られた光弾性定数の絶対値が7×10-12Pa-1以下であることを特徴とする前記[1]に記載の光学材料であり、
式:光弾性定数(Pa-1)=△Re(nm)/△P(N)×フィルム幅(mm) (12)
(△Re:位相差の変化量、△P:応力の印加に伴って位相差が直線的に増加する範囲の引張り力の変化量)
[6]少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99で構成し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有し、そのモル比〔C〕/(〔A〕+〔B〕)が1/99~40/60の環状オレフィンコポリマーを含む光学材料であって、
 前記光学材料から得られるフィルムにおいて、0.1mm/minの速度で最大2Nの引張り力を印加して波長633nmにおける位相差を測定し、下記式(12)から得られた光弾性定数の絶対値が7×10-12Pa-1以下であることを特徴とする前記[2]に記載の光学材料であり、
式:光弾性定数(Pa-1)=△Re(nm)/△P(N)×フィルム幅(mm) (12)
(△Re:位相差の変化量、△P:応力の印加に伴って位相差が直線的に増加する範囲の引張り力の変化量)
[7]少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が=95/5~1/99の環状オレフィンコポリマーを含む光学材料からなるフィルムを延伸して得られる光学フィルムであって、
 ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値が0.001以上であり、前記光学材料から得られる延伸フィルムにおいて、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値が5×10-4以下であることを特徴とする光学フィルムであり、
Figure JPOXMLDOC01-appb-C000006
(式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
Figure JPOXMLDOC01-appb-C000007
(式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
[8]少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99の環状オレフィンコポリマーを含み、得られるフィルムにおいて、0.1mm/minの速度で最大2Nの引張り力を印加して波長633nmにおける位相差を測定し、下記式(12)から得られた光弾性定数の絶対値が7×10-12Pa-1以下である光学材料を成形して得られることを特徴とする光学レンズであり、
式:光弾性定数(Pa-1)=△Re(nm)/△P(N)×フィルム幅(mm) (12)
(△Re:位相差の変化量、△P:応力の印加に伴って位相差が直線的に増加する範囲の引張り力の変化量)
Figure JPOXMLDOC01-appb-C000008
(式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
Figure JPOXMLDOC01-appb-C000009
(式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
[9]少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99で構成し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有し、そのモル比〔C〕/(〔A〕+〔B〕)が1/99~40/60の環状オレフィンコポリマーを含む光学材料からなるフィルムを延伸して得られる光学フィルムであって、
 ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値が0.001以上であり、配向複屈折の絶対値が5×10-4以下であることを特徴とする光学フィルムであり、
Figure JPOXMLDOC01-appb-C000010
(式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
Figure JPOXMLDOC01-appb-C000011
(式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
Figure JPOXMLDOC01-appb-C000012
(式(3)中、R13~R16は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R13~R16が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR17-、-PR18-、および-CR1718-から(R17、R18はそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれ、同一でも異なってもよい。nは0または1を表す。)
[10]少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99で構成し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有し、そのモル比〔C〕/(〔A〕+〔B〕)が1/99~40/60の環状オレフィンコポリマーを含み、得られるフィルムにおいて、0.1mm/minの速度で最大2Nの引張り力を印加して波長633nmにおける位相差を測定し、下記式(12)から得られた光弾性定数の絶対値が7×10-12Pa-1以下である光学材料を成形して得られることを特徴とする光学レンズである。
式:光弾性定数(Pa-1)=△Re(nm)/△P(N)×フィルム幅(mm) (12)
(△Re:位相差の変化量、△P:応力の印加に伴って位相差が直線的に増加する範囲の引張り力の変化量)
Figure JPOXMLDOC01-appb-C000013
(式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
Figure JPOXMLDOC01-appb-C000014
(式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
Figure JPOXMLDOC01-appb-C000015
(式(3)中、R13~R16は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R13~R16が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR17-、-PR18-、および-CR1718-から(R17、R18はそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれ、同一でも異なってもよい。nは0または1を表す。)
 なお、本発明において、光学材料とは、環状オレフィンコポリマーまたは当該ポリマーを含む樹脂組成物を意味する。
 本発明の光学材料は、ポリマー鎖自身が配向しても複屈折が抑制される所定の環状オレフィンコポリマーを含んでおり、成形時の温度、圧力条件などの制限を受けずに透明性が高く、靭性に優れる成形体を提供することができる。このような本発明の光学材料から一軸延伸または二軸延伸などの方法で作成される光学フィルムは、低複屈折なフィルムとして工業的に価値がある。また、本発明の光学材料から射出成形などで成形される光学レンズは、ポリマーの光弾性定数が非常に小さく、射出成形等による成形物に残留する応力歪に対する応力複屈折も非常に小さくなるので工業的に価値がある。
実施例1における環状オレフィンコポリマーの13C-NMRスペクトルを示す。 実施例8における環状オレフィンコポリマーの19F-NMRスペクトルを示す。 実施例8における環状オレフィンコポリマーの13C-NMRスペクトルを示す。 実施例12における2.4倍延伸フィルムの垂直および平行偏光のラマンスペクトルを示す。 比較例4における2.4倍延伸フィルムの垂直および平行偏光の赤外スペクトルを示す。 実施例28における環状オレフィンコポリマーの13C-NMRスペクトルを示す。 実施例28における2.4倍延伸フィルムの垂直および平行偏光のラマンスペクトルを示す。
 本発明の光学材料は、少なくとも一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕を含有し、そのモル比〔A〕/〔B〕が=95/5~1/99の環状オレフィンコポリマーを含み、ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値の変化量△Fに対する配向複屈折の絶対値の変化量△OBで表わされる△OB/△Fの絶対値が0.001~0.250であることを特徴とする光学材料である。
 さらに、本発明の光学材料は、少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99で構成し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有し、そのモル比〔C〕/(〔A〕+〔B〕)が1/99~40/60の環状オレフィンコポリマーを含み、ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値の変化量△Fに対する配向複屈折の絶対値の変化量△OBで表わされる△OB/△Fの絶対値が0.001~0.250であることを特徴とする光学材料である。
 このような光学材料は、ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値が0.001以上で配向複屈折の絶対値が5×10-4以下の非常に小さい複屈折を発現する。
 このように、本発明の光学材料は、ポリマー鎖自身が配向しても複屈折が抑制される所定の環状オレフィンコポリマーを含んでおり、成形時の温度、圧力条件などの制限を受けずに透明性が高く、靭性に優れる成形体を得ることができる。
 環状オレフィンポリマーを含む高分子材料は、分子鎖の長い集合体であり、ポリマー分子鎖を形成する数多くの繰り返し構造単位が体積的に特定の方向を持って結合した状態にある。配向方向に平行な偏光成分に由来する屈折率nと、配向方向に垂直な偏光成分に由来する屈折率nとは異なっており、ポリマー成形材料に対して引っ張り、圧縮などの外部応力を印加すると、可逆、非可逆に関わらずポリマー分子鎖が配向する。これにより、屈折率nと屈折率nとの間に異方性を生じ、材料を透過する光の電界ベクトルの向きに応じた位相差が生じる。この現象を複屈折(△n)といい、ポリマーの場合、主鎖軸(配向軸)に平行な偏光成分に由来する屈折率nと垂直な偏光成分に由来する屈折率nの差(△n=n-n)として表わす。また、このようなポリマーを配向させることによって生じる複屈折が配向または応力複屈折である。
 さらに、環状オレフィンポリマー鎖の繰り返し構造単位は、主鎖に環構造を有することから3次元的に等方性がない構造であり、分子鎖の電子雲の密度分布や分子鎖のモビリティーに異方性が存在し、それぞれの繰り返し構造単位での分極率の異方性が生じる。この分極率の異方性を分極率が大きくなる方向の半径が大きくなるような分子モデルで考えたとき、繰り返し構造単位を分極率の楕円体として扱うと、この分極率楕円体の長軸が、ポリマー鎖に配向を掛けることによってその方向が揃い、光学異方性によって複屈折が生じることになる。また、その楕円体の長軸が、主鎖に対して直交方向に揃うか、平行方向になるかによって配向または応力複屈折の大小または正負が決まると考えられる。
 本発明において、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕の分極率楕円体の長軸方向の長さ、方向が、異なり、繰り返し構造単位〔B〕は、繰り返し構造単位〔A〕より分極率楕円体は主鎖に対して直交方向に長い。この両者をある割合で共重合すると、繰り返し構造単位〔A〕の光学異方性が繰り返し構造単位〔B〕の光学異方性によって相殺され分極率楕円体は球形に近くなる(等方的になる)。また、異なる長さ、方向の分極率楕円体をもつポリマーを物理混合するのでなく、共重合することでスピノーダル相分離が生じることも無く、光学的に透明な光学材料とすることができ、それをフィルムにすることで、配向複屈折が非常に小さい光学フィルムにすることができる。さらに、配向複屈折が非常に小さい場合、そのポリマーの光弾性定数も非常に小さくなり、射出成形等による成形物に残留する応力歪に対する応力複屈折も非常に小さくなる。
 また、環状オレフィンコポリマーの繰り返し構造単位〔A〕と〔B〕との結合連鎖によっても、これら繰り返し構造単位〔A〕の光学異方性が繰り返し構造単位〔B〕の光学異方性によって相殺される効果は、異なることがある。すなわち、共重合反応において、少なくとも2つの繰り返し構造単位〔A〕の連鎖長と〔B〕の連鎖長のそれぞれの長さや繰り返し構造単位〔A〕と〔B〕のランダム共重合性またはそれぞれの連鎖のアイソタクチック、シンジオタクチックなどの立体規則性などが影響を及ぼすことがある。これらは、それぞれのモノマーにおける開環メタセシス重合の反応部位である二重結合の電子密度や置換基の嵩だかさの影響、または開環メタセシス重合触媒の反応特異性に依存する。水素添加後も、ランダム共重合性またはそれぞれの連鎖のアイソタクチック、シンジオタクチックなどの立体規則性が保持される。また、繰り返し構造単位〔C〕を含有する環状オレフィンコポリマーにおいても同様に考えられる。
 本発明において、少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕を含有する環状オレフィンコポリマーの〔A〕と〔B〕のモル比は、〔A〕/〔B〕で95/5~1/99の範囲であり、好ましくは、80/20~1/99であり、さらに好ましくは、75/25~5/95であり、より好ましくは70/30~10/90である。
  さらに、本発明において、少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを、そのモル比〔A〕/〔B〕が95/5~1/99の範囲であり、好ましくは、80/20~1/99であり、さらに好ましくは、75/25~5/95であり、より好ましくは70/30~10/90であり、特に好ましくは30/70~10/90の範囲で含有し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有する環状オレフィンコポリマーの〔C〕と(〔A〕+〔B〕)のモル比は、〔C〕/(〔A〕+〔B〕)で1/99~40/60の範囲であり、好ましくは、3/97~30/70であり、さらに好ましくは、5/95~20/80であり、特に好ましくは5/95~15/85である。
 これらの範囲の外では、光学異方性を相殺する効果が非常に小さく、配向または応力複屈折が非常に小さい光学材料として得られない。
 本発明において、一般式(1)で表される繰り返し構造単位〔A〕は次式で表される。
Figure JPOXMLDOC01-appb-C000016
(式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
 さらに詳しくは、一般式(1)においてR~Rは、フッ素、または、フルオロメチル、ジフルオロメチル、トリフルオロメチル、トリフルオロエチル、ペンタフルオロエチル、ヘプタフルオロプロピル、ヘキサフルオロイソプロピル、ヘプタフルオロイソプロピル、ヘキサフルオロ-2-メチルイソプロピル、ペルフルオロ-2-メチルイソプロピル、n-ペルフルオロブチル、n-ペルフルオロペンチル、ペルフルオロシクロペンチル等の水素の一部または全てがフッ素で置換されたアルキル等のフッ素を含有する炭素数1~10のアルキル、フルオロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、トリフルオロエトキシ、ペンタフルオロエトキシ、ヘプタフルオロプロポキシ、ヘキサフルオロイソプロポキシ、ヘプタフルオロイソプロポキシ、ヘキサフルオロ-2-メチルイソプロポキシ、ペルフルオロ-2-メチルイソプロポキシ、n-ペルフルオロブトキシ、n-ペルフルオロペンチルオキシ、ペルフルオロシクロペンチルオキシなど水素の一部または全てがフッ素で置換されたアルコキシ等のフッ素を含有する炭素数1~10のアルコキシ、フルオロメトキシメチル、ジフルオロメトキシメチル、トリフルオロメトキシメチル、トリフルオロエトキシメチル、ペンタフルオロエトキシメチル、ヘプタフルオロプロポキシメチル、ヘキサフルオロイソプロポキシメチル、ヘプタフルオロイソプロポキシメチル、ヘキサフルオロ-2-メチルイソプロポキシメチル、ペルフルオロ-2-メチルイソプロポキシメチル、n-ペルフルオロブトキシメチル、n-ペルフルオロペンチルオキシメチル、ペルフルオロシクロペンチルオキシメチルなど水素の一部または全てがフッ素で置換されたアルコキシアルキル等のフッ素を含有する炭素数2~10のアルコキシアルキル、ペルフルオロフェニル、トリフルオロフェニルなど水素の一部または全てがフッ素で置換されたアリール等のフッ素を含有する炭素数6~20のアリール、フルオロメトキシカルボニル、ジフルオロメトキシカルボニル、トリフルオロメトキシカルボニル、トリフルオロエトキシカルボニル、ペンタフルオロエトキシカルボニル、ヘプタフルオロプロポキシカルボニル、ヘキサフルオロイソプロポキシカルボニル、ヘプタフルオロイソプロポキシカルボニル、ヘキサフルオロ-2-メチルイソプロポキシカルボニル、ペルフルオロ-2-メチルイソプロポキシカルボニル、n-ペルフルオロブトキシカルボニル、n-ペルフルオロペンチルオキシカルボニル、ペルフルオロシクロペンチルオキシカルボニルなど水素の一部または全てがフッ素で置換されたアルコキシカルボニル等のフッ素を含有する炭素数2~10のアルコキシカルボニル、ペルフルオロフェニルオキシカルボニル、トリフルオロフェニルオキシカルボニルなど水素の一部または全てがフッ素で置換されたアリールオキシカルボニル等のフッ素を含有する炭素数7~20のアリールオキシカルボニル、フルオロメトキシカルボニルメチル、ジフルオロメトキシカルボニルメチル、トリフルオロメトキシカルボニルメチル、トリフルオロエトキシカルボニルメチル、ペンタフルオロエトキシカルボニルメチル、ヘプタフルオロプロポキシカルボニルメチル、ヘキサフルオロイソプロポキシカルボニルメチル、ヘプタフルオロイソプロポキシカルボニルメチル、ヘキサフルオロ-2-メチルイソプロポキシカルボニルメチル、ペルフルオロ-2-メチルイソプロポキシカルボニルメチル、n-ペルフルオロブトキシカルボニルメチル、n-ペルフルオロペンチルオキシカルボニルメチル、ペルフルオロシクロペンチルオキシメチルなど水素の一部または全てがフッ素で置換されたアルコキシカルボニルアルキル等のフッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、ペルフルオロフェニルオキシカルボニルメチル、トリフルオロフェニルオキシカルボニルメチルなど水素の一部または全てがフッ素で置換されたアリールオキシカルボニルメチル等のフッ素を含有する炭素数7~20のアリールオキシカルボニルアルキルが例示され、
 さらに、シアノ、またはシアノメチル、シアノエチル、1-シアノプロピル、1-シアノブチル、1-シアノヘキシル等のシアノを含有する炭素数2~10のアルキル、シアノエトキシ、1-シアノプロポキシ、1-シアノブトキシ、1-シアノペンチルオキシなど水素の一部がシアノで置換されたアルコキシ等のシアノを含有する炭素数2~10のアルコキシ、シアノエトキシメチル、1-シアノプロポキシメチル、1-シアノブトキシメチル、1-シアノペンチルオキシメチルなど水素の一部がシアノで置換されたアルコキシアルキル等のシアノを含有する炭素数3~10のアルコキシアルキル、4-シアノフェニル、3,5-ジシアノフェニルなど水素の一部がシアノで置換されたアリール等のシアノを含有する炭素数7~20のアリール、シアノエトキシカルボニル、1-シアノプロポキシカルボニル、1-シアノブトキシカルボニル、1-シアノペンチルオキシカルボニルなど水素の一部がシアノで置換されたアルコキシカルボニル等のシアノを含有する炭素数3~10のアルコキシカルボニル、4-シアノフェニルオキシカルボニル、3,5-ジシアノフェニルオキシカルボニルなど水素の一部がシアノで置換されたアリールオキシカルボニル等のシアノを含有する炭素数8~20のアリールオキシカルボニル、シアノエトキシカルボニルメチル、1-シアノプロポキシカルボニルメチル、1-シアノブトキシカルボニルメチル、1-シアノペンチルオキシカルボニルメチルなど水素の一部がシアノで置換されたアルコキシカルボニルアルキル等のシアノを含有する炭素数4~10のアルコキシカルボニルアルキル、または4-シアノフェニルオキシカルボニルメチル、3,5-ジシアノフェニルオキシカルボニルメチルなど水素の一部がシアノで置換されたアリールオキシカルボニルアルキル等のシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルが例示される。
 また、R~Rが互いに結合して環構造を形成していてもよく、例えば、ペルフルオロシクロアルキル、酸素を介したペルフルオロシクロエーテル等の環を形成してもよい。
 さらに、フッ素またはシアノを含有しない基の場合、R1~R4は、水素、または、メチル、エチル、プロピル、イソプロピル、2-メチルイソプロピル、n-ブチル、n-ペンチル、シクロペンチル等の炭素数1~10のアルキル、フェニル、ナフチル等の炭素数6~20のアリール、メトキシ、エトキシ、tert-ブトキシ等の炭素数1~10のアルコキシ、または、メトキシメチル、エトキシメチル、tert-ブトキシメチル等の炭素数2~10のアルコキシアルキル、メトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニル等の炭素数2~10のアルコキシカルボニル、フェニルオキシカルボニル、メチルフェニルオキシカルボニル等の炭素数7~20のアリールオキシカルボニル、メトキシカルボニルメチル、エトキシカルボニルメチル、tert-ブトキシカルボニルメチル等の炭素数3~10のアルコキシカルボニルアルキル、またはフェニルオキシカルボニルメチル、メチルフェニルオキシカルボニルメチル等の炭素数8~20のアリールオキシカルボニルアルキルが例示される。
 本発明において環状オレフィンコポリマーを構成する一般式(1)で表される繰り返し構造単位は、1種類のみでもよく、一般式(1)のR~Rの少なくとも1つが互いに異なる2種類以上の構造単位からなるものであってもよい。
 さらに、本発明において一般式(1)で表される繰り返し構造単位を含有する環状オレフィンポリマー構造の具体例としては、例えば、ポリ(1-フルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-フルオロ-1-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-フルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1,1-ジフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロエチル-3,5-シクロペンチレンエチレン)、ポリ(1,1-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ[1,2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン]、ポリ(1-ペルフルオロプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-ペルフルオロプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロイソプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロイソプロピル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1,2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2,2,3,3,3a,6a-オクタフルオロシクロペンチル-4,6-シクロペンチレンエチレン)、ポリ(1,1,2,2,3,3,4,4,3a,7a-デカフルオロシクロヘキシル-5,7-シクロペンチレンエチレン)、ポリ(1-ペルフルオロブチル-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロ-iso-ブチル-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロ-tert-ブチル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロ-iso-ブチル-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-ペルフルオロ-iso-ブチル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメチル-2-ペルフルオロエチル-3,5-シクロペンチレンエチレン)、ポリ[1-(1-トリフルオロメチル-2,2,3,3,4,4,5,5-オクタフルオロ-シクロペンチル)-3,5-シクロペンチレンエチレン)]、ポリ[(1,1,2-トリフルオロ-2-ペルフルオロブチル)-3,5-シクロペンチレンエチレン]、ポリ(1,2-ジフルオロ-1-トリフルオロメチル-2-ペルフルオロブチル-3,5-シクロペンチレンエチレン)、ポリ[1-フルオロ-1-ペルフルオロエチル-2,2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン]、ポリ[1,2-ジフルオロ-1-ペルフルオロプロパニル-2-トリフルオロメチル)-3,5-シクロペンチレンエチレン]、ポリ(1-ペルフルオロヘキシル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロヘキシル-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-ペルフルオロヘキシル-3,5-シクロペンチレンエチレン)、ポリ(1-ヘキシル-2-ペルフルオロヘキシル-3,5-シクロペンチレンエチレン)、ポリ(1-オクチル-2-ペルフルオロヘキシル-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロヘプチル-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロオクチル-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロデカニル-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-ペルフルオロペンチル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメチル-2-ペルフルオロブチル-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-ペルフルオロヘキシル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメチル-2-ペルフルオロペンチル-3,5-シクロペンチレンエチレン)、ポリ[1,2-ビス(ペルフルオロブチル)-3,5-シクロペンチレンエチレン]、ポリ[1,2-ビス(ペルフルオロヘキシル)-3,5-シクロペンチレンエチレン]、ポリ(1-メトキシ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニルメチル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1,1,3,3,3a,6a-ヘキサフルオロフラニル-3,5-シクロペンチレンエチレン)などが挙げられ、
 また、ポリ(1-フルオロ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-フルオロ-1-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-フルオロ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,1-ジフルオロ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロエトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,1-ビス(トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロプロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロプロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-ペルフルオロプロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロ-iso-プロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロ-iso-プロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1,2-ビス(トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロ-iso-ブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロ-tert-ブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロ-iso-ブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-ペルフルオロ-iso-ブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-ペルフルオロエトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-ペルフルオロブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-ペルフルオロブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-フルオロ-1-ペルフルオロエトキシ-2,2-ビス(トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-ペルフルオロプロポキシ-2-トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-ペルフルオロペンチルオキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-ペルフルオロブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-ペルフルオロペンチル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(ペルフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチル-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニル-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニルメチル-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-(2´,2´,2´,-トリフルオロエトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´,2´,3´,3´,3´-ペンタフルオロプロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-(2´,2´,3´,3´,3´-ペンタフルオロプロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-(2´,2´,3´,3´,3´-ペンタフルオロプロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´,2´,3´,3´,4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(1´,1´,1´-トリフルオロ-iso-ブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(1´,1´,1´-トリフルオロ-iso-ブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-(1´,1´,1´-トリフルオロ-iso-ブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-(1´,1´,1´-トリフルオロ-iso-ブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-(2´,2´,2´-トリフルオロエトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-(2´,2´,3´,3´,4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-(2´,2´,3´,3´,4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-フルオロ-1-(2´,2´,2´,-トリフルオロエトキシ)-2,2-ビス(トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-(2´,2´,3´,3´,3´-ペンタフルオロプロポキシ)-2-トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-ペルフルオロペンチル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(ペルフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-(2´,2´,3´,3´,4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、
 ポリ(1,2-ビス(2´,2´,3´,3´,4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(ペルフルオロヘキシルオキシ)-3,5-シクロペンチレンエチレン)などが挙げられ、
 また、ポリ(1-トリフルオロメトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-トリフルオロメトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシ-2-トリフルオロメトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチル-2-トリフルオロメトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニル-2-トリフルオロメトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニルメチル-2-トリフルオロメトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-(ヘキサフルオロ-2´-メチルイソプロポキシカルボニル)-3,5-シクロペンチレンエチレン)、ポリ(1-(ペルフルオロ-2´-メチルイソプロポキシカルボニル)-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロフェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-ペルフルオロフェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシ-2-ペルフルオロフェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチル-2-ペルフルオロフェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニル-2-ペルフルオロフェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニルメチル-2-ペルフルオロフェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-トリフルオロメトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-トリフルオロメトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシ-2-トリフルオロメトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチル-2-トリフルオロメトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニル-2-トリフルオロメトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニルメチル-2-トリフルオロメトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-(ヘキサフルオロ-2´-メチルイソプロポキシカルボニルメチル)-3,5-シクロペンチレンエチレン)、ポリ(1-(ペルフルオロ-2´-メチルイソプロポキシカルボニルメチル)-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロフェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-ペルフルオロフェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシ-2-ペルフルオロフェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチル-2-ペルフルオロフェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニル-2-ペルフルオロフェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニルメチル-2-ペルフルオロフェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)などが挙げられる。
 また、ポリ(1-シアノ-3,5-シクロペンチレンエチレン)、ポリ(1-シアノ-1-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノ-2-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノ-2-フェニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノ-2-ナフチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノ-2-メトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-シアノ-2-メトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノ-2-メトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノ-2-フェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノ-2-フェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノメチル-2-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノメチル-2-フェニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノメチル-2-メトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-シアノメチル-2-メトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノメチル-2-メトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノメチル-2-フェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノメチル-2-フェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエチル-2-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエチル-2-フェニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエチル-2-メトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエチル-2-メトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエチル-2-メトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエチル-2-フェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエチル-2-フェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノブチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノヘキシル-3,5-シクロペンチレンエチレン)などが挙げられ、
 また、ポリ(1-シアノエトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシ-1-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシ-2-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシ-2-フェニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシ-2-ナフチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシ-2-メトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシ-2-メトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシ-2-メトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシ-2-フェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシ-2-フェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシメチル-1-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシメチル-2-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシメチル-2-フェニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシメチル-2-メトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシメチル-2-メトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシメチル-2-メトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシメチル-2-フェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシメチル-2-フェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニル)-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニル)-1-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニル)-2-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニル)-2-フェニル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニル)-2-ナフチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニル)-2-メトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニル)-2-メトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニル)-2-メトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニル)-2-フェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニル)-2-フェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニル-1-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニル-2-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニル-2-フェニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニル-2-ナフチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニル-2-メトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニル-2-メトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニル-2-メトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニル-2-フェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニル-2-フェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニル)-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニル)-1-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニル)-2-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニル)-2-フェニル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニル)-2-ナフチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニル)-2-メトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニル)-2-メトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニル)-2-メトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニル)-2-フェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニル)-2-フェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニルメチル-1-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニルメチル-2-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニルメチル-2-フェニル-3,5-シクロペンチレンエチレン)、ポリ(1-(シアノエトキシカルボニル-2-メトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニル-2-メトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニルメチル-2-メトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニルメチル-2-フェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエトキシカルボニルメチル-2-フェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニルメチル)-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニルメチル)-1-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニルメチル)-2-メチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニルメチル)-2-フェニル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニルメチル)-2-ナフチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニルメチル)-2-メトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニルメチル)-2-メトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニルメチル)-2-メトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニルメチル)-2-フェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-シアノフェニルカルボニルメチル)-2-フェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)などが挙げられ、
 さらに、ポリ(1、2-ジシアノ-3,5-シクロペンチレンエチレン)、ポリ(1-シアノ-2-シアノメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノ-2-シアノエチル-3,5-シクロペンチレンエチレン)、ポリ(1、2-ジシアノメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノメチル-2-シアノエチル-3,5-シクロペンチレンエチレン)、ポリ(1、2-ジシアノエチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエチル-2-シアノメチル-3,5-シクロペンチレンエチレン)、ポリ(1、2-ジシアノプロピル-3,5-シクロペンチレンエチレン)、
 ポリ(1-シアノ-2-フルオロ-3,5-シクロペンチレンエチレン)、ポリ(1-シアノ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノ-2、2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン)、ポリ(1-シアノメチル-2-フルオロ-3,5-シクロペンチレンエチレン)、ポリ(1-シアノメチル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノメチル-2、2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエチル-2-フルオロ-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエチル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シアノエチル-2、2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン)などが挙げられる。
 さらに、一般式(1)においてXが、上記のシクロペンチレンの-CH-に代えて-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)が挙げられる。
 本発明において、一般式(1)で表される繰り返し構造単位〔A〕と共に構成する一般式(2)で表される繰り返し構造単位〔B〕は、次式で表される。
Figure JPOXMLDOC01-appb-C000017
(式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
 さらに詳しくは、一般式(2)においてR~R10は、フッ素、または、フルオロメチル、ジフルオロメチル、トリフルオロメチル、トリフルオロエチル、ペンタフルオロエチル、ヘプタフルオロプロピル、ヘキサフルオロイソプロピル、ヘプタフルオロイソプロピル、ヘキサフルオロ-2-メチルイソプロピル、ペルフルオロ-2-メチルイソプロピル、n-ペルフルオロブチル、n-ペルフルオロペンチル、ペルフルオロシクロペンチル等の水素の一部または全てがフッ素で置換されたアルキル等のフッ素を含有する炭素数1~10のアルキル、フルオロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、トリフルオロエトキシ、ペンタフルオロエトキシ、ヘプタフルオロプロポキシ、ヘキサフルオロイソプロポキシ、ヘプタフルオロイソプロポキシ、ヘキサフルオロ-2-メチルイソプロポキシ、ペルフルオロ-2-メチルイソプロポキシ、n-ペルフルオロブトキシ、n-ペルフルオロペンチルオキシ、ペルフルオロシクロペンチルオキシなど水素の一部または全てがフッ素で置換されたアルコキシ等のフッ素を含有する炭素数1~10のアルコキシ、フルオロメトキシメチル、ジフルオロメトキシメチル、トリフルオロメトキシメチル、トリフルオロエトキシメチル、ペンタフルオロエトキシメチル、ヘプタフルオロプロポキシメチル、ヘキサフルオロイソプロポキシメチル、ヘプタフルオロイソプロポキシメチル、ヘキサフルオロ-2-メチルイソプロポキシメチル、ペルフルオロ-2-メチルイソプロポキシメチル、n-ペルフルオロブトキシメチル、n-ペルフルオロペンチルオキシメチル、ペルフルオロシクロペンチルオキシメチルなど水素の一部または全てがフッ素で置換されたアルコキシアルキル等のフッ素を含有する炭素数2~10のアルコキシアルキル、ペルフルオロフェニル、トリフルオロフェニルなど水素の一部または全てがフッ素で置換されたアリール等のフッ素を含有する炭素数6~20のアリール、フルオロメトキシカルボニル、ジフルオロメトキシカルボニル、トリフルオロメトキシカルボニル、トリフルオロエトキシカルボニル、ペンタフルオロエトキシカルボニル、ヘプタフルオロプロポキシカルボニル、ヘキサフルオロイソプロポキシカルボニル、ヘプタフルオロイソプロポキシカルボニル、ヘキサフルオロ-2-メチルイソプロポキシカルボニル、ペルフルオロ-2-メチルイソプロポキシカルボニル、n-ペルフルオロブトキシカルボニル、n-ペルフルオロペンチルオキシカルボニル、ペルフルオロシクロペンチルオキシカルボニルなど水素の一部または全てがフッ素で置換されたアルコキシカルボニル等のフッ素を含有する炭素数2~10のアルコキシカルボニル、ペルフルオロフェニルオキシカルボニル、トリフルオロフェニルオキシカルボニルなど水素の一部または全てがフッ素で置換されたアリールオキシカルボニル等のフッ素を含有する炭素数7~20のアリールオキシカルボニル、フルオロメトキシカルボニルメチル、ジフルオロメトキシカルボニルメチル、トリフルオロメトキシカルボニルメチル、トリフルオロエトキシカルボニルメチル、ペンタフルオロエトキシカルボニルメチル、ヘプタフルオロプロポキシカルボニルメチル、ヘキサフルオロイソプロポキシカルボニルメチル、ヘプタフルオロイソプロポキシカルボニルメチル、ヘキサフルオロ-2-メチルイソプロポキシカルボニルメチル、ペルフルオロ-2-メチルイソプロポキシカルボニルメチル、n-ペルフルオロブトキシカルボニルメチル、n-ペルフルオロペンチルオキシカルボニルメチル、ペルフルオロシクロペンチルオキシメチルなど水素の一部または全てがフッ素で置換されたアルコキシカルボニルアルキル等のフッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、ペルフルオロフェニルオキシカルボニルメチル、トリフルオロフェニルオキシカルボニルメチルなど水素の一部または全てがフッ素で置換されたアリールオキシカルボニルメチル等のフッ素を含有する炭素数7~20のアリールオキシカルボニルアルキルが例示され、
 さらに、シアノ、またはシアノメチル、シアノエチル、1-シアノプロピル、1-シアノブチル、1-シアノヘキシル等のシアノを含有する炭素数2~10のアルキル、シアノエトキシ、1-シアノプロポキシ、1-シアノブトキシ、1-シアノペンチルオキシなど水素の一部がシアノで置換されたアルコキシ等のシアノを含有する炭素数2~10のアルコキシ、シアノエトキシメチル、1-シアノプロポキシメチル、1-シアノブトキシメチル、1-シアノペンチルオキシメチルなど水素の一部がシアノで置換されたアルコキシアルキル等のシアノを含有する炭素数3~10のアルコキシアルキル、4-シアノフェニル、3,5-ジシアノフェニルなど水素の一部がシアノで置換されたアリール等のシアノを含有する炭素数7~20のアリール、シアノエトキシカルボニル、1-シアノプロポキシカルボニル、1-シアノブトキシカルボニル、1-シアノペンチルオキシカルボニルなど水素の一部がシアノで置換されたアルコキシカルボニル等のシアノを含有する炭素数3~10のアルコキシカルボニル、4-シアノフェニルオキシカルボニル、3,5-ジシアノフェニルオキシカルボニルなど水素の一部がシアノで置換されたアリールオキシカルボニル等のシアノを含有する炭素数8~20のアリールオキシカルボニル、シアノエトキシカルボニルメチル、1-シアノプロポキシカルボニルメチル、1-シアノブトキシカルボニルメチル、1-シアノペンチルオキシカルボニルメチルなど水素の一部がシアノで置換されたアルコキシカルボニルアルキル等のシアノを含有する炭素数4~10のアルコキシカルボニルアルキル、または4-シアノフェニルオキシカルボニルメチル、3,5-ジシアノフェニルオキシカルボニルメチルなど水素の一部がシアノで置換されたアリールオキシカルボニルアルキル等のシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルが例示される。
 また、R~R10が互いに結合して環構造を形成していてもよく、例えば、ペルフルオロシクロアルキル、酸素を介したペルフルオロシクロエーテル等の環を形成してもよい。
 さらに、フッ素またはシアノを含有しない基の場合、R~R10は、水素、または、メチル、エチル、プロピル、イソプロピル、2-メチルイソプロピル、n-ブチル、n-ペンチル、シクロペンチル等の炭素数1~10のアルキル、フェニル、ナフチル等の炭素数6~20のアリール、メトキシ、エトキシ、tert-ブトキシ等の炭素数1~10のアルコキシ、メトキシメチル、エトキシメチル、tert-ブトキシメチル等の炭素数2~10のアルコキシアルキル、メトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニル等の炭素数2~10のアルコキシカルボニル、フェニルオキシカルボニル、メチルフェニルオキシカルボニル等の炭素数7~20のアリールオキシカルボニル、メトキシカルボニルメチル、エトキシカルボニルメチル、tert-ブトキシカルボニルメチル等の炭素数3~10のアルコキシカルボニルアルキル、またはフェニルオキシカルボニルメチル、メチルフェニルオキシカルボニルメチル等の炭素数8~20のアリールオキシカルボニルアルキルが例示される。
 本発明において環状オレフィンコポリマーを構成する一般式(2)で表される繰り返し構造単位は、1種類のみでもよく、一般式(2)のR~R10の少なくとも1つが互いに異なる二種類以上の構造単位からなるものであってもよい。
 さらに、本発明において環状オレフィンコポリマーを構成する一般式(2)で表される繰り返し構造単位を含有する環状オレフィンポリマー構造の具体例としては、例えば、フッ素を含有し、nが1であるポリ(3-フルオロ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フルオロ-3-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-3-フルオロ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3-ジフルオロ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロエチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3-ビス(トリフルオロメチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ビストリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-ペルフルオロプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブチル-4-ペルフルオロプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロイソプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-ペルフルオロイソプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3,4-ビス(トリフルオロメチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(2,3,3,4,4,5,5,6-オクタフルオロ-9,11-テトラシクロ[5.5.1.02,6.08,12]トリデカニレンエチレン)、ポリ(2,3,3,4,4,5,5,6,6,7-デカフルオロ-10,12-テトラシクロ[6.5.1.02,7.09,13]テトラデカニレンエチレン)、ポリ(3-ペルフルオロブチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロ-iso-ブチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロ-tert-ブチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-ペルフルオロ-tert-ブチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブチル-4-ペルフルオロ-tert-ブチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジメチル-3-ペルフルオロ-tert-ブチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-4-ペルフルオロブチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメチル-4-ペルフルオロブチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フルオロ-3-ペルフルオロエチル-4,4-ビス(トリフルオロメチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-ペルフルオロプロパニル-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロヘキシル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-ペルフルオロヘキシル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブチル-4-ペルフルオロヘキシル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ヘキシル-4-ペルフルオロヘキシル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-オクチル-4-ペルフルオロヘキシル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロヘプチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロデカニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-4-ペルフルオロペンチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメチル-4-ペルフルオロブチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-4-ペルフルオロヘキシル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメチル-4-ペルフルオロペンチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ビス(ペルフルオロブチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ビス(ペルフルオロヘキシル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-tert-ブトキシメチル-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フェニルオキシカルボニル-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フェニルオキシカルボニルメチル-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)などが挙げられ、
 また、ポリ(3-フルオロ-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-3-フルオロ-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3-ジフルオロ-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロエトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ビス(トリフルオロメトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロプロポキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-ペルフルオロプロポキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブチル-4-ペルフルオロプロポキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロ-iso-プロポキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-ペルフルオロ-iso-プロポキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3,4-ビス(トリフルオロメトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロ-iso-ブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロ-tert-ブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-ペルフルオロ-iso-ブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブチル-4-ペルフルオロ-iso-ブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメトキシ-4-ペルフルオロエトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-4-ペルフルオロブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメトキシ-4-ペルフルオロブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フルオロ-3-ペルフルオロエトキシ-4,4-ビス(トリフルオロメトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-ペルフルオロプロポキシ-4-トリフルオロメトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-4-ペルフルオロペンチルオキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメトキシ-4-ペルフルオロブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメトキシ-4-ペルフルオロペンチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ビス(ペルフルオロブトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシ-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-tert-ブトキシメチル-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フェニルオキシカルボニル-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フェニルオキシカルボニルメチル-4-トリフルオロメトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´,2´,2´,-トリフルオロエトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´,2´,3´,3´ ,3´-ペンタフルオロプロポキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-(2´,2´,3´,3´ ,3´-ペンタフルオロプロポキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブチル-4-(2´,2´,3´,3´ ,3´-ペンタフルオロプロポキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´,2´,3´,3´ ,4´,4´,4´-ヘプタフルオロブトキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブチル-4-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメトキシ-4-(2´,2´,2´-トリフルオロエトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-4-(2´,2´,3´,3´ ,4´,4´,4´-ヘプタフルオロブトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメトキシ-4-(2´,2´,3´,3´ ,4´,4´,4´-ヘプタフルオロブトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フルオロ-3-(2´,2´,2´,-トリフルオロエトキシ)-4,4-ビス(トリフルオロメトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-(2´,2´,3´,3´ ,3´-ペンタフルオロプロポキシ)-4-トリフルオロメトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,3,4-トリフルオロ-4-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジフルオロ-3-トリフルオロメトキシ-4-(2´,2´,3´,3´ ,4´,4´,4´-ヘプタフルオロブトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ビス(2´,2´,3´,3´ ,4´,4´,4´-ヘプタフルオロブトキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ビス(ペルフルオロヘキシルオキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)などが挙げられ
 また、ポリ(3-トリフルオロメトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-トリフルオロメトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシ-4-トリフルオロメトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-tert-ブトキシメチル-4-トリフルオロメトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フェニルオキシカルボニル-4-トリフルオロメトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フェニルオキシカルボニルメチル-4-トリフルオロメトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(ヘキサフルオロ-2´-メチルイソプロポキシカルボニル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(ペルフルオロ-2´-メチルイソプロポキシカルボニル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロフェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-3-ペルフルオロフェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシ-4-ペルフルオロフェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-tert-ブトキシメチル-4-ペルフルオロフェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フェニルオキシカルボニル-4-ペルフルオロフェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フェニルオキシカルボニルメチル-4-ペルフルオロフェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-トリフルオロメトキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-4-トリフルオロメトキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシ-4-トリフルオロメトキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-tert-ブトキシメチル-4-トリフルオロメトキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フェニルオキシカルボニル-4-トリフルオロメトキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フェニルオキシカルボニルメチル-4-トリフルオロメトキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(ヘキサフルオロ-2´-メチルイソプロポキシカルボニルメチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(ペルフルオロ-2´-メチルイソプロポキシカルボニルメチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペルフルオロフェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-3-ペルフルオロフェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシ-4-ペルフルオロフェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-tert-ブトキシメチル-4-ペルフルオロフェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フェニルオキシカルボニル-4-ペルフルオロフェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フェニルオキシカルボニルメチル-4-ペルフルオロフェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)などが挙げられ、
 さらに、フッ素を含有し、nが2であるポリ(4-フルオロ-5-トリフルオロメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-フルオロ-5-トリフルオロメチル,-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4-ジフルオロ-5-トリフルオロメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロエチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4-ビス(トリフルオロメチル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-5-トリフルオロメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ビス(トリフルオロメチル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロプロピル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-ペルフルオロプロピル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-ペルフルオロプロピル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ブチル-5-ペルフルオロプロピル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロイソプロピル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-ペルフルオロイソプロピル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4,5-ビス(トリフルオロメチル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(3,4,4,5,5,6,6,7-オクタフルオロ-12,14-ヘキサシクロ[7.7.0.12,8.110,16.03,7.011,15]オクタデカニレンエチレン)、ポリ(3,4,4,5,5,6,6,7,7,8-デカフルオロ-13,15-ヘキサシクロ[8.7.0. 12,9.111,17.03,8.012,16]ノナデカニレンエチレン)、ポリ(4-ペルフルオロブチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロ-iso-ブチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-ペルフルオロ-tert-ブチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ブチル-5-ペルフルオロ-tert-ブチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジメチル-4-ペルフルオロ-tert-ブチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-5-ペルフルオロブチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメチル-5-ペルフルオロブチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フルオロ-4-ペルフルオロエチル-5,5-ビス(トリフルオロメチル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-ペルフルオロプロパニル-5-トリフルオロメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロへキシル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-ペルフルオロヘキシル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ブチル-5-ペルフルオロヘキシル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ヘキシル-5-ペルフルオロヘキシル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-オクチル-5-ペルフルオロヘキシル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロヘプチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロオクチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロデカニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-5-ペルフルオロペンチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメチル-5-ペルフルオロブチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-5-ペルフルオロヘキシル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメチル-5-ペルフルオロペンチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリス(トリフルオロメチル)-5-ペルフルオロ-tert-ブチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ビス(ペルフルオロヘキシル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メトキシ-5-トリフルオロメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フェニルオキシカルボニル-5-トリフルオロメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フェニルオキシカルボニルメチル-5-トリフルオロメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)などが挙げられ、
 また、ポリ(4,4,5-トリフルオロ-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ビス(トリフルオロメトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロプロポキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-ペルフルオロプロポキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ブチル-5-ペルフルオロプロポキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロ-iso-プロポキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-ペルフルオロ-iso-プロポキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4,5-ビス(トリフルオロメトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロブトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロ-iso-ブトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロ-tert-ブトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-ペルフルオロ-iso-ブトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ブチル-5-ペルフルオロ-iso-ブトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメトキシ-5-ペルフルオロエトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-5-ペルフルオロブトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメトキシ-5-ペルフルオロブトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フルオロ-4-ペルフルオロエトキシ-5,5-ビス(トリフルオロメトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-ペルフルオロプロポキシ-5-トリフルオロメトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-5-ペルフルオロペンチルオキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメトキシ-5-ペルフルオロブトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ビス(ペルフルオロブトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メトキシ-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-tert-ブトキシメチル-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フェニルオキシカルボニル-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フェニルオキシカルボニルメチル-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(2´,2´,2´,-トリフルオロエトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(2´,2´,3´,3´ ,3´-ペンタフルオロプロポキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-(2´,2´,3´,3´ ,3´-ペンタフルオロプロポキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ブチル-5-(2´,2´,3´,3´ ,3´-ペンタフルオロプロポキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(2´,2´,3´,3´,4´,4´,4´-ヘプタフルオロブトキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ブチル-5-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメトキシ-5-(2´,2´,2´-トリフルオロエトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-5-(2´,2´,3´,3´ ,4´,4´,4´-ヘプタフルオロブトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメトキシ-4-(2´,2´,3´,3´ ,4´,4´,4´-ヘプタフルオロブトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フルオロ-4-(2´,2´,2´,-トリフルオロエトキシ)-5,5-ビス(トリフルオロメトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-(2´,2´,3´,3´ ,3´-ペンタフルオロプロポキシ)-5-トリフルオロメトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4,5-トリフルオロ-5-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-4-トリフルオロメトキシ-5-(2´,2´,3´,3´ ,4´,4´,4´-ヘプタフルオロブトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ビス(2´,2´,3´,3´ ,4´,4´,4´-ヘプタフルオロブトキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ビス(ペルフルオロヘキシルオキシ)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フルオロ-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-4-フルオロ-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,4-ジフルオロ-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4,5-ジフルオロ-5-トリフルオロメトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)などが挙げられ、
 また、ポリ(4-トリフルオロメトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-4-トリフルオロメトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メトキシ-5-トリフルオロメトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-tert-ブトキシメチル-5-トリフルオロメトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フェニルオキシカルボニル-5-トリフルオロメトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フェニルオキシカルボニルメチル-5-トリフルオロメトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(ヘキサフルオロ-2´-メチルイソプロポキシカルボニル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(ペルフルオロ-2´-メチルイソプロポキシカルボニル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロフェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-ペルフルオロフェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メトキシ-5-ペルフルオロフェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-tert-ブトキシメチル-5-ペルフルオロフェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フェニルオキシカルボニル-5-ペルフルオロフェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フェニルオキシカルボニルメチル-5-ペルフルオロフェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-トリフルオロメトキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-トリフルオロメトキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メトキシ-5-トリフルオロメトキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-tert-ブトキシメチル-5-トリフルオロメトキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フェニルオキシカルボニル-5-トリフルオロメトキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フェニルオキシカルボニルメチル-5-トリフルオロメトキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(ヘキサフルオロ-2´-メチルイソプロポキシカルボニルメチル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-(ペルフルオロ-2´-メチルイソプロポキシカルボニルメチル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-ペルフルオロフェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メチル-5-ペルフルオロフェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-メトキシ-5-ペルフルオロフェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-tert-ブトキシメチル-5-ペルフルオロフェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フェニルオキシカルボニル-5-ペルフルオロフェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)、ポリ(4-フェニルオキシカルボニルメチル-5-ペルフルオロフェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6]ペンタデカニレンエチレン)などが挙げられる。
 さらに、フッ素を含有し、nが3であるポリ(5-フルオロ-6-トリフルオロメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-フルオロ-6-トリフルオロメチル,-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5-ジフルオロ-6-トリフルオロメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロエチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5-ビス(トリフルオロメチル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5,6-トリフルオロ-6-トリフルオロメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ビス(トリフルオロメチル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロプロピル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-ペルフルオロプロピル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-ペルフルオロプロピル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ブチル-6-ペルフルオロプロピル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロイソプロピル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-ペルフルオロイソプロピル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5,6-ビス(トリフルオロメチル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(4,5,5,6,6,7,7,8-オクタフルオロ-15,17-オクタシクロ[9.9.1.13,9.114,18.02,10.04,8.012,20.014,18]トリイコサニレンエチレン)、ポリ(4,5,5,6,6,7,7,8,8,9-デカフルオロ-16,18-オクタシクロ[10.9.1. 13,10.114,20.02,11.04,9.013,21.015,19]テトライコサニレンエチレン)、ポリ(5-ペルフルオロブチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロ-iso-ブチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-ペルフルオロ-tert-ブチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ブチル-6-ペルフルオロ-tert-ブチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジメチル-5-ペルフルオロ-tert-ブチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5,6-トリフルオロ-6-ペルフルオロブチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5-トリフルオロメチル-6-ペルフルオロブチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フルオロ-5-ペルフルオロエチル-6,6-ビス(トリフルオロメチル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5-ペルフルオロプロパニル-6-トリフルオロメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロへキシル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-ペルフルオロヘキシル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ブチル-6-ペルフルオロヘキシル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ヘキシル-6-ペルフルオロヘキシル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-オクチル-6-ペルフルオロヘキシル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロヘプチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロオクチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロデカニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5,6-トリフルオロ-6-ペルフルオロペンチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5-トリフルオロメチル-6-ペルフルオロブチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5,6-トリフルオロ-12-ペルフルオロヘキシル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5-トリフルオロメチル-6-ペルフルオロペンチル-113,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5,6-トリス(トリフルオロメチル)-6-ペルフルオロ-tert-ブチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ビス(ペルフルオロヘキシル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メトキシ-6-トリフルオロメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フェニルオキシカルボニル-6-トリフルオロメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フェニルオキシカルボニルメチル-6-トリフルオロメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5,6-トリフルオロ-6-トリフルオロメトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ビス(トリフルオロメトキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロプロポキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-ペルフルオロプロポキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ブチル-6-ペルフルオロプロポキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロ-iso-プロポキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-ペルフルオロ-iso-プロポキシ-13,15-ヘプタシクロ[8.7.0.12,
.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5,6-ビス(トリフルオロメトキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロブトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロ-iso-ブトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロ-tert-ブトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-ペルフルオロ-iso-ブトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ブチル-6-ペルフルオロ-iso-ブトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5-トリフルオロメトキシ-6-ペルフルオロエトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5,6-トリフルオロ-6-ペルフルオロブトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5-トリフルオロメトキシ-6-ペルフルオロブトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フルオロ-5-ペルフルオロエトキシ-6,6-ビス(トリフルオロメトキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5-ペルフルオロプロポキシ-6-トリフルオロメトキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5,6-トリフルオロ-6-ペルフルオロペンチルオキシ13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5-トリフルオロメトキシ-6-ペルフルオロブトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5-トリフルオロメトキシ-6-ペルフルオロペンチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ビス(ペルフルオロブトキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メトキシ-6-トリフルオロメトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-tert-ブトキシメチル-6-トリフルオロメトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フェニルオキシカルボニル-6-トリフルオロメトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フェニルオキシカルボニルメチル-6-トリフルオロメトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(2´,2´,2´,-トリフルオロエトキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(2´,2´,3´,3´ ,3´-ペンタフルオロプロポキシ) -13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-(2´,2´,3´,3´ ,3´-ペンタフルオロプロポキシ) -13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ブチル-6-(2´,2´,3´,3´ ,3´-ペンタフルオロプロポキシ) -13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(2´,2´,3´,3´ ,4´,4´,4´-ヘプタフルオロブトキシ) -13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ブチル-6-(1´,1´,1´-トリフルオロ-iso-ブトキシ) -13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5-トリフルオロメトキシ-6-(2´,2´,2´-トリフルオロエトキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5,6-トリフルオロ-6-(2´,2´,3´,3´ ,4´,4´,4´-ヘプタフルオロブトキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5-トリフルオロメトキシ-6-(2´,2´,3´,3´ ,4´,4´,4´-ヘプタフルオロブトキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フルオロ-5-(2´,2´,2´,-トリフルオロエトキシ)-6,6-ビス(トリフルオロメトキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5-(2´,2´,3´,3´ ,3´-ペンタフルオロプロポキシ)-6-トリフルオロメトキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5,6-トリフルオロ-6-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ジフルオロ-5-トリフルオロメトキシ-6-(2´,2´,3´,3´ ,4´,4´,4´-ヘプタフルオロブトキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ビス(2´,2´,3´,3´ ,4´,4´,4´-ヘプタフルオロブトキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,6-ビス(ペルフルオロヘキシルオキシ)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フルオロ-6-トリフルオロメトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-5-フルオロ-6-トリフルオロメトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5-ジフルオロ-6-トリフルオロメトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5-ジフルオロ-6-トリフルオロメトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)などが挙げられ、
 また、ポリ(5-トリフルオロメトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-5-トリフルオロメトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メトキシ-6-トリフルオロメトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-tert-ブトキシメチル-6-トリフルオロメトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フェニルオキシカルボニル-6-トリフルオロメトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フェニルオキシカルボニルメチル-6-トリフルオロメトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(ヘキサフルオロ-2´-メチルイソプロポキシカルボニル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(ペルフルオロ-2´-メチルイソプロポキシカルボニル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロフェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-ペルフルオロフェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メトキシ-6-ペルフルオロフェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-tert-ブトキシメチル-6-ペルフルオロフェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フェニルオキシカルボニル-6-ペルフルオロフェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フェニルオキシカルボニルメチル-6-ペルフルオロフェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-トリフルオロメトキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-トリフルオロメトキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メトキシ-6-トリフルオロメトキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-tert-ブトキシメチル-6-トリフルオロメトキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フェニルオキシカルボニル-6-トリフルオロメトキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フェニルオキシカルボニルメチル-6-トリフルオロメトキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(ヘキサフルオロ-2´-メチルイソプロポキシカルボニルメチル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(ペルフルオロ-2´-メチルイソプロポキシカルボニルメチル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-ペルフルオロフェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メチル-6-ペルフルオロフェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-メトキシ-6-ペルフルオロフェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-tert-ブトキシメチル-6-ペルフルオロフェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フェニルオキシカルボニル-6-ペルフルオロフェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-フェニルオキシカルボニルメチル-6-ペルフルオロフェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)などが挙げられる。
 また、シアノを含有し、nが1であるポリ(3-シアノ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノ-3-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノ-4-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノ-4-フェニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノ-4-メトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノ-4-メトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノ-4-メトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノ-4-フェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノ-4-フェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノメチル-4-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノメチル-4-フェニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノメチル-4-メトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノメチル-4-メトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノメチル-4-メトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノメチル-4-フェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノメチル-4-フェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエチル-4-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエチル-4-フェニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエチル-4-メトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエチル-4-メトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエチル-4-メトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエチル-4-フェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエチル-4-フェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノブチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノヘキシル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)などが挙げられ、
 また、ポリ(3-シアノエトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシ-3-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシ-4-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシ-4-フェニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシ-4-メトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシ-4-メトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシ-4-メトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシ-4-フェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシ-4-フェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシメチル-3-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシメチル-4-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシメチル-4-フェニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシメチル-4-メトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシメチル-4-メトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシメチル-4-メトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシメチル-4-フェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシメチル-4-フェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニル)-3-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニル)-4-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニル)-4-フェニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニル)-4-メトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニル)-4-メトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニル)-4-メトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニル)-4-フェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニル)-4-フェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニル-3-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニル-4-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニル-4-フェニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(4-シアノエトキシカルボニル-4-メトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニル-4-メトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニル-4-メトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニル-4-フェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニル-4-フェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニル)-3-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニル)-4-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニル)-4-フェニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニル)-4-メトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニル)-4-メトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニル)-4-メトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニル)-4-フェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニル)-4-フェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニルメチル-3-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニルメチル-4-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニルメチル-4-フェニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニル-4-メトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニル-4-メトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニルメチル-4-メトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニルメチル-4-フェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエトキシカルボニルメチル-4-フェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニルメチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニルメチル)-3-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニルメチル)-4-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニルメチル)-4-フェニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニルメチル)-4-メトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニルメチル)-4-メトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニルメチル)-4-メトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニルメチル)-4-フェニルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-シアノフェニルカルボニルメチル)-4-フェニルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)などが挙げられ、
 さらに、ポリ(3、4-ジシアノ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノ-4-シアノメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノ-4-シアノエチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3、4-ジシアノメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノメチル-4-シアノエチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジシアノエチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエチル-4-シアノメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3,4-ジシアノプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノ-4-フルオロ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノ-4,4-ビス(トリフルオロメチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノメチル-4-フルオロ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノメチル-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノメチル-4,4-ビス(トリフルオロメチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエチル-4-フルオロ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエチル-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シアノエチル-4,4-ビス(トリフルオロメチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)などが挙げられる。
 さらに、シアノを含有し、nが2であるポリ(4-シアノ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノ-4-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノ-5-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノ-5-フェニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノ-5-メトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノ-5-メトキシメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノ-5-メトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノ-5-フェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノ-5-フェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノメチル-5-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノメチル-5-フェニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノメチル-5-メトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノメチル-5-メトキシメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノメチル-5-メトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノメチル-5-フェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノメチル-5-フェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエチル-5-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエチル-5-フェニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエチル-5-メトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエチル-5-メトキシメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエチル-5-メトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエチル-5-フェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエチル-5-フェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノプロピル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノブチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノヘキシル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)が挙げられ、
 また、ポリ(4-シアノエトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシ-4-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシ-5-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシ-5-フェニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシ-5-メトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシ-5-メトキシメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシ-5-メトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシ-5-フェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシ-5-フェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシメチル-4-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシメチル-5-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシメチル-5-フェニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシメチル-5-メトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシメチル-5-メトキシメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシメチル-5-メトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシメチル-5-フェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシメチル-5-フェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニル)-4-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニル)-5-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニル)-5-フェニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニル)-5-メトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニル)-5-メトキシメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニル)-5-メトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニル)-5-フェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニル)-5-フェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニル-4-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニル-5-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニル-5-フェニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニル-5-メトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニル-5-メトキシメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニル-5-メトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニル-5-フェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニル-5-フェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニル)-4-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニル)-5-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニル)-5-フェニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニル)-5-メトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニル)-5-メトキシメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニル)-5-メトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニル)-5-フェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニル)-5-フェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニルメチル-4-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニルメチル-5-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニルメチル-5-フェニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニル-5-メトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニル-5-メトキシメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニルメチル-5-メトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニルメチル-5-フェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエトキシカルボニルメチル-5-フェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニルメチル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニルメチル)-4-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニルメチル)-5-メチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニルメチル)-5-フェニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニルメチル
)-5-メトキシ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニルメチル)-5-メトキシメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニルメチル)-5-メトキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニルメチル)-5-フェニルオキシカルボニル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-(4´-シアノフェニルカルボニルメチル)-5-フェニルオキシカルボニルメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)などが挙げられ、
 さらに、ポリ(4,5-ジシアノ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノ-5-シアノメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノ-5-シアノエチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4,5-ジシアノメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノメチル-5-シアノエチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4,5-ジシアノエチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエチル-5-シアノメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4,5-ジシアノプロピル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノ-5-フルオロ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノ-5-トリフルオロメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノ-5,5-ビス(トリフルオロメチル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノメチル-5-フルオロ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノメチル-5-トリフルオロメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノメチル-5,5-ビス(トリフルオロメチル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエチル-5-フルオロ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエチル-5-トリフルオロメチル-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)、ポリ(4-シアノエチル-5,5-ビス(トリフルオロメチル)-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)などが挙げられる。
  さらに、シアノを含有し、nが3であるポリ(5-シアノ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノ-5-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノ-6-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノ-6-フェニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノ-6-メトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノ-6-メトキシメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノ-6-メトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノ-6-フェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノ-6-フェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノメチル-6-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノメチル-6-フェニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノメチル-6-メトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノメチル-6-メトキシメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノメチル-6-メトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノメチル-6-フェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノメチル-6-フェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエチル-6-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエチル-6-フェニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエチル-6-メトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエチル-6-メトキシメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエチル-6-メトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエチル-6-フェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエチル-6-フェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノプロピル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノブチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノヘキシル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)などが挙げられ、
 また、ポリ(5-シアノエトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシ-5-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシ-6-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシ-6-フェニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシ-6-メトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシ-6-メトキシメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシ-6-メトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシ-6-フェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシ-6-フェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシメチル-5-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシメチル-6-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシメチル-6-フェニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシメチル-6-メトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシメチル-6-メトキシメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシメチル-6-メトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシメチル-6-フェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシメチル-6-フェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニル)-5-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニル)-6-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニル)-6-フェニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニル)-6-メトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニル)-6-メトキシメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニル)-6-メトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニル)-6-フェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニル)-6-フェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニル-5-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニル-6-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニル-6-フェニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニル-6-メトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニル-6-メトキシメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニル-6-メトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニル-6-フェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニル-6-フェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニル)-5-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニル)-6-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニル)-6-フェニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニル)-6-メトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニル)-6-メトキシメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニル)-6-メトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニル)-6-フェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニル)-6-フェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニルメチル-5-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニルメチル-6-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-
シアノエトキシカルボニルメチル-6-フェニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニル-6-メトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニル-6-メトキシメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニルメチル-6-メトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニルメチル-6-フェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエトキシカルボニルメチル-6-フェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニルメチル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニルメチル)-5-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニルメチル)-6-メチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニルメチル)-6-フェニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニルメチル)-6-メトキシ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニルメチル)-6-メトキシメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニルメチル)-6-メトキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニルメチル)-6-フェニルオキシカルボニル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-(4´-シアノフェニルカルボニルメチル)-6-フェニルオキシカルボニルメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)などが挙げられ、
 さらに、ポリ(5,5-ジシアノ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノ-6-シアノメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノ-6-シアノエチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5-ジシアノメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノメチル-6-シアノエチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5-ジシアノエチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエチル-6-シアノメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5,5-ジシアノプロピル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノ-6-フルオロ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノ-6-トリフルオロメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノ-6,6-ビス(トリフルオロメチル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノメチル-6-フルオロ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノメチル-6-トリフルオロメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノメチル-6,6-ビス(トリフルオロメチル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエチル-6-フルオロ-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエチル-6-トリフルオロメチル-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)、ポリ(5-シアノエチル-6,6-ビス(トリフルオロメチル)-13,15-ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]イコサニレンエチレン)などが挙げられる。
 さらに、一般式(2)においてXが、上記のデカニレン、ペンタデカニレン、イコサニレンの-CH-に代えて-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)が挙げられる。
 本発明において、少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99で構成し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有し、そのモル比〔C〕/(〔A〕+〔B〕)が1/99~40/60の環状オレフィンコポリマーにおける一般式(3)で表される繰り返し構造単位〔C〕は、次式で表される。
Figure JPOXMLDOC01-appb-C000018
(式(3)中、R13~R16は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R13~R16が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR17-、-PR18-、および-CR1718-から(R17、R18はそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれ、同一でも異なってもよい。nは0または1を表す。)
 さらに詳しくは、一般式(3)においてR13~R16は、水素、または、メチル、エチル、プロピル、イソプロピル、2-メチルイソプロピル、n-ブチル、n-ペンチル、シクロペンチル、ヘキシル、シクロへキシル、ヘプチル、オクチル等の炭素数1~10のアルキル、フェニル、ナフチル、インデニル、ビフェニル、アントラセニル、フェナントラセニル、トリフェニレニル等の炭素数6~20のアリール、メトキシ、エトキシ、プロポキシ、ブトキシ、tert-ブトキシ、ペンチルオキシ、シクロペンチルオキシ、ヘキシルオキシ、シクロヘキシルオキシ等の炭素数1~10のアルコキシ、または、メトキシメチル、エトキシメチル、プロポキシメチル、ブトキシメチル、tert-ブトキシメチル、ペンチルオキシメチル、シクロペンチルオキシメチル、ヘキシルオキシメチル、シクロヘキシルオキシメチル、メトキシエチル、エトキシエチル、プロポキシエチル、ブトキシエチル、ペンチルオキシエチル、シクロペンチルオキシエチル、ヘキシルオキシエチル、シクロヘキシルオキシエチル、メトキシプロピル、エトキシプロピル、プロポキシプロピル、ブトキシプロピル、ペンチルオキシプロピル、シクロペンチルオキシプロピル、ヘキシルオキシプロピル、シクロヘキシルオキシプロピル等の炭素数2~10のアルコキシアルキル、メトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニル、ペンチルオキシカルボニル、シクロペンチルオキシカルボニル、ヘキシルオキシカルボニル、シクロヘキシルオキシカルボニル等の炭素数2~10のアルコキシカルボニル、メトキシカルボニルメチル、エトキシカルボニルメチル、tert-ブトキシカルボニルメチル、ペンチルオキシカルボニルメチル、シクロペンチルオキシカルボニルメチル、ヘキシルオキシカルボニルメチル、シクロヘキシルオキシカルボニルメチル等の炭素数3~10のアルコキシカルボニルアルキル、または、メトキシメチルオキシカルボニル、エトキシメチルオキシカルボニル、プロポキシメチルオキシカルボニル、ブトキシメチルオキシカルボニル、tert-ブトキシメチルオキシカルボニル、ペンチルオキシメチルオキシカルボニル、シクロペンチルオキシメチルオキシカルボニル、ヘキシルオキシメチルオキシカルボニル、シクロヘキシルオキシメチルオキシカルボニル等の炭素数3~10のアルコキシアルキルオキシカルボニルが例示される。
 本発明において環状オレフィンコポリマーを構成する一般式(3)で表される繰り返し構造単位は、1種類のみでもよく、一般式(3)のR13~R16の少なくとも1つが互いに異なる2種類以上の構造単位からなるものであってもよい。
 さらに、本発明において一般式(3)で表される繰り返し構造単位を含有する環状オレフィンポリマー構造の具体例としては、例えば、nが0であるポリ(1,3-シクロペンチレンエチレン)、ポリ(1-メチル-3,5-シクロペンチレンエチレン)、ポリ(1,1-ジメチル-3,5-シクロペンチレンエチレン)、ポリ(1-エチル-3,5-シクロペンチレンエチレン)、ポリ(1-プロピル-3,5-シクロペンチレンエチレン)、ポリ(1-イソプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-(2´-メチルイソプロピル)-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-3,5-シクロペンチレンエチレン)、ポリ(1-ペンチル-3,5-シクロペンチレンエチレン)、ポリ(1-シクロペンチル-3,5-シクロペンチレンエチレン)、ポリ(1-ヘキシル-3,5-シクロペンチレンエチレン)、ポリ(1-シクロへキシル-3,5-シクロペンチレンエチレン)、ポリ(1-ヘプチル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-フェニル-3,5-シクロペンチレンエチレン)、ポリ(1-(2´-インデニル)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´-ナフチル)-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-ビフェニル)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´-アントラセニル)-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-メトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-エトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-プロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1-イソプロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1-(2´-メチルイソプロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペンチルオキシ-3,5-シクロペンチレンエチレン)、ポリ(1-シクロペンチルオキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ヘキシルオキシ-3,5-シクロペンチレンエチレン)、ポリ(1-シクロヘキシルオキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-メトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-エトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-プロポキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-ブトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-ペンチルオキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シクロペンチルオキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-ヘキシルオキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シクロヘキシルオキシメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシエチル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-メトキシエチル-3,5-シクロペンチレンエチレン)、ポリ(1-エトキシエチル-3,5-シクロペンチレンエチレン)、ポリ(1-プロポキシエチル-3,5-シクロペンチレンエチレン)、ポリ(1-ブトキシエチル-3,5-シクロペンチレンエチレン)、ポリ(1-ペンチルオキシエチル-3,5-シクロペンチレンエチレン)、ポリ(1-ヘキシルオキシエチル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-エトキシプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-プロポキシプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-ブトキシプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-ペンチルオキシプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-ヘキシルオキシプロピル-3,5-シクロペンチレンエチレン)などが挙げられ、
 また、ポリ(1-メトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-メトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-エトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-プロポキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-ブトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-ペンチルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-ヘキシルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-メトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシカルボニルエチル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシカルボニルプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシカルボニルブチル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシカルボニルペンチル-3,5-シクロペンチレンエチレン)、ポリ(1-エトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-エトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-エトキシカルボニルエチル-3,5-シクロペンチレンエチレン)、ポリ(1-エトキシカルボニルプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-エトキシカルボニルブチル-3,5-シクロペンチレンエチレン)、ポリ(1-エトキシカルボニルペンチル-3,5-シクロペンチレンエチレン)、ポリ(1-フェノキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-フェノキシ-3,5-シクロペンチレンエチレン)、ポリ(1-(2´-インデニルオキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´-ナフチルオキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-ビフェニルオキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´-アントラセニルオキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシメチルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-メトキシメチルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-エトキシメチルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-プロポキシメチルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-ブトキシメチルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-ペンチルオキシメチルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シクロペンチルオキシメチルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-ヘキシルオキシメチルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-シクロヘキシルオキシメチルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)ポリ(1-フェノキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-フェノキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-(2´-インデニルオキシカルボニルメチル)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´-ナフチルオキシカルボニルメチル)-3,5-シクロペンチレンエチレン)、ポリ(1-(4´-ビフェニルオキシカルボニルメチル)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´-アントラセニルオキシカルボニルメチル)-3,5-シクロペンチレンエチレン)などが挙げられる。
 また、nが1であるポリ(7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(1,1-ジメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-エチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-プロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-イソプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´-メチルイソプロピル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペンチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シクロペンチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ヘキシル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シクロへキシル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ヘプチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-フェニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-3-フェニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´-インデニル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´-ナフチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(4´-ビフェニル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´-アントラセニル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-3-メトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-エトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-プロポキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-イソプロポキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-(2´-メチルイソプロポキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-tert-ブトキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペンチルオキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シクロペンチルオキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ヘキシルオキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シクロヘキシルオキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-3-メトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-エトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-プロポキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-tert-ブトキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペンチルオキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シクロペンチルオキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ヘキシルオキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シクロヘキシルオキシメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシエチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-3-メトキシエチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-エトキシエチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-プロポキシエチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブトキシエチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペンチルオキシエチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ヘキシルオキシエチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-エトキシプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-プロポキシプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブトキシプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペンチルオキシプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ヘキシルオキシプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)などが挙げられ、
 また、ポリ(3-メトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-3-メトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-エトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-プロポキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-tert-ブトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペンチルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ヘキシルオキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-3-メトキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシカルボニルエチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシカルボニルプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシカルボニルブチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシカルボニルペンチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-エトキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-3-エトキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-エトキシカルボニルエチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-エトキシカルボニルプロピル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-エトキシカルボニルブチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-エトキシカルボニルペンチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(1-フェノキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(1-メチル-1-フェノキシ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(1-(2´-インデニルオキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(1-(2´-ナフチルオキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(1-(4´-ビフェニルオキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(1-(2´-アントラセニルオキシ)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メトキシメチルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-メチル-3-メトキシメチルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-エトキシメチルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-プロポキシメチルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ブトキシメチルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-tert-ブトキシメチルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ペンチルオキシメチルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シクロペンチルオキシメチルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-ヘキシルオキシメチルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(3-シクロヘキシルオキシメチルオキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)ポリ(1-フェノキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(1-メチル-1-フェノキシカルボニルメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(1-(2´-インデニルオキシカルボニルメチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(1-(2´-ナフチルオキシカルボニルメチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(1-(4´-ビフェニルオキシカルボニルメチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)、ポリ(1-(2´-アントラセニルオキシカルボニルメチル)-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)などが挙げられる。
 さらに、一般式(3)においてXが、上記のシクロペンチレン、または、デカニレンの-CH-に代えて-O-、-S-、-NR17-、-PR18-、および-CR1718-から(R17、R18はそれぞれ独立に水素または炭素数1~20のアルキルを表す)が挙げられる。
 本発明において、少なくとも一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕を含有する環状オレフィンコポリマー、または、少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有する環状オレフィンコポリマーは、ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iを示す特性を持っており、その関数である配向係数F=(D-1)/(D+2)の絶対値の変化量△Fに対する配向複屈折の絶対値の変化量△OBで表わされる△OB/△Fの絶対値が0.001~0.250であることを特徴とする光学材料である。さらに、その配向係数F=(D-1)/(D+2)の絶対値が0.001以上で配向複屈折の絶対値が5×10-4以下の非常に小さい複屈折を発現する光学材料であり、また、光弾性定数の絶対値が7×10-12Pa-1以下の非常に小さい複屈折を発現する光学材料ある。
 結晶性ポリマーの配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iを示す異方性からの配向情報は、一般的には赤外分光法によって得ることができるとされているが、本発明の環状オレフィンコポリマーのような環構造を複数持つ非晶性ポリマーでは、配向を受けるポリマー主鎖のCHの吸収強度が飽和しているために、延伸によって配向を受けているにもかかわらず、その平行光強度Iと垂直光強度Iとの差異は全く見られず、ポリマーの本質的な特質を解明することができなかった。
 本発明においては、赤外分光法と比べて極性の強い官能基よりも、分子骨格振動を示すバンドが強く現れるラマン分光法でポリマーの配向情報に関する本質的な特性をはじめて明らかにすることができた。特に、ラマン活性な結合に由来するポリマー鎖のCHのはさみ振動に帰属するラマンシフト1500~1400cm-1におけるラマン散乱光の配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの異方性の配向情報から本発明の環状オレフィンコポリマーの固有特性を求められることを見出した。
 この二色比Dを用いた配向係数F=(D-1)/(D+2)と配向情報との関係は以下のように考えることができる。Bowerによって報告されている分子の配向情報とラマン分光法の関係(J.Polym.Sci.,Polym.Phys.Ed., 10,2135(1972))を考えると、ラマン散乱の強度Iは式(1)に表される。
式1
Figure JPOXMLDOC01-appb-I000001
 ここでαijは、ラマンテンソル(i,j=1~3)、試料固定座標O-xに対して、それぞれの入射光と散乱光の偏光方向の余弦値をli'、lj とし、Ioは、入射光強度と機器のファクターに依存する定数である。
 式(1)から分子配向の情報は、試料を1軸延伸系で、試料固定座標O-x 'について優先配向がなく、座標O-x ' ' 'と同じ軸のテンソルの構造単位の場合、Noをラマン強度に関する散乱単位全数とすると
式2
Figure JPOXMLDOC01-appb-I000002
と表わされる。
 ここで、
Figure JPOXMLDOC01-appb-I000003
はBowerによって与えられたラマン分極率αi(i=1~3)の二次加算式である。M100はLegendreの多項式であり、式(3)で与えられる。
式3
Figure JPOXMLDOC01-appb-I000004
 これら式(1)~式(3)から、二次の配向情報として配向関数が次式で与えられる。
式4
Figure JPOXMLDOC01-appb-I000005
 ここでθは、分子鎖の軸と配向方向との角度である。
さらに、4次として式(5)が配向情報として得られる。
式5
Figure JPOXMLDOC01-appb-I000006
 さらに、二次の配向情報の関数は、二色比Dと関係し次式で表される。
式6
Figure JPOXMLDOC01-appb-I000007
 ここでαは、振動の分極モーメントベクトルと分子鎖の軸との角度である。
したがって、配向関数〈P2(cosθ)〉から炭素-炭素結合の場合の分子鎖軸と分極モーメントベクトルの角度α=90°とを理想状態とするならば、式(7)となり本発明の二色比Dの関数である配向係数F=(D-1)/(D+2)の関数となる。
式7
Figure JPOXMLDOC01-appb-I000008
 本発明の光学材料は、この配向係数F=(D-1)/(D+2)の絶対値が0.001以上であり、配向複屈折の絶対値が5×10-4以下の非常に小さい複屈折を発現するものである。
 配向係数の絶対値が、0.001未満であると、環状オレフィンコポリマーの特性が十分発現せず、配向状態が十分でなく、分子鎖を配向させることによる靭性、引張り、曲げによる強度または弾性率の向上が図れない。
 なお、分極率楕円体の主鎖に対して直交方向の異なる長さによる光学異方性の相殺効果に因らず、配向が掛かっていない状態では配向複屈折とは言わない。したがって無配向の状態で複屈折を測定し、配向複屈折の絶対値が5×10-4以下としても、本質的に環状オレフィンコポリマーの分子設計上の仕掛けを反映することは期待できない。また、このような状態での環状オレフィンコポリマーは、応力をかけながら測定する光弾性定数の絶対値が、7×10-12Pa-1以下とはならず、射出成形における成形物の応力歪による複屈折を解消することはできない。
 さらに、この配向係数は、環状オレフィンコポリマーの繰り返し構造単位〔A〕と〔B〕、または、繰り返し構造単位〔A〕、〔B〕と〔C〕のそれぞれの種類、組合せ、共重合割合、ランダム共重合性、立体規則性である重合連鎖のアイソタクチック、シンジオタクチックなどのタクティシティやガラス転移温度などの他の固有物性と同様に物理特性として取り扱うことができる。この係数は、ポリマー分子鎖の水素結合、分子間の電子的な反発力、斥力などの分子間相互作用や繰り返し構造単位の分子体積の大小、分子鎖の密度などの分子空間の影響を受け、外部の延伸などの応力の程度によって物理的に決まるポリマー固有の物性値である。
 また、ラマン分光法による二色比から求めるこの係数は、赤外分光法のように光線を全透過し分析する方法ではないため、サンプルの厚みによってラマン散乱強度が影響を受けない。したがって、フィルムのような薄物の配向のみならず、射出成形などの厚みのある成形物でも配向係数として測定することができる。
 ポリマーの主鎖軸(配向軸)に平行な偏光成分に由来する屈折率nと垂直な偏光成分に由来する屈折率nの差(△n=n-n)である配向複屈折の絶対値と式(6)の配向関数との関係は、次式で表される。
式8
Figure JPOXMLDOC01-appb-I000009
 ここで△nは結合鎖(主鎖)が延びきって完全に配向した理想状態での配向複屈折値であり、固有複屈折値と呼ばれる。固有複屈折値はあくまで理想配向条件下での△nの値なので、実際のポリマー材料の△nの値を△n(real)で表わせば、0<絶対値|△n(real)|<絶対値|固有複屈折値△n|の関係が成立する。例えば、ポリメチルメタクリレートでは固有複屈折値△n=-0.0043、ポリスチレンでは、-0.100、ポリエチレンでは+0.044とポリマー固有の物性値である。一方、理想的な配向状態での△n(real)の絶対値すなわち△n、または△n(real)=0の完全な無配向状態での値も実際の測定での実現は困難である。しかしながら、式(8)の関係からポリマーの固有物性値として求めることができる。
 本発明の少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99の環状オレフィンコポリマーを含む光学材料においては、配向複屈折△nが完全な無配向状態での値=0としてラマン散乱強度から求めた配向係数の絶対値の変化量△Fに対する配向複屈折の絶対値の変化量△OB、すなわち△OB/△Fの絶対値は、式(8)から固有複屈折△nを決めるポリマーの固有物性値を表わし、この値は、ポリマーの主鎖軸の炭素-炭素結合の分子鎖軸と分極モーメントベクトルの角度α=90°とを理想状態とするならば式(7)から固有複屈折の絶対値とすることができる。
 さらに、本発明の少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99で構成し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有し、そのモル比〔C〕/(〔A〕+〔B〕)が1/99~40/60の環状オレフィンコポリマーを含む光学材料おいても、配向複屈折△nが完全な無配向状態での値=0としてラマン散乱強度から求めた配向係数△OB/△Fの絶対値は、式(8)から固有複屈折△nを決めるポリマーの固有物性値を表わし、この値は、ポリマーの主鎖軸の炭素-炭素結合の分子鎖軸と分極モーメントベクトルの角度α=90°とを理想状態とするならば式(7)から固有複屈折の絶対値とすることができる。
 すなわち、さらに詳しくは、式(8)は、それぞれの配向係数(F1、F2、F3・・・)と配向複屈折(△n1、△n2、△n3・・・)に対して次の通りになり、
式9
Figure JPOXMLDOC01-appb-I000010
 さらに、配向係数の絶対値の変化量△Fと配向複屈折の絶対値の変化量△OBは、次のように微分値で表わされ、
式10
Figure JPOXMLDOC01-appb-I000011
 したがって、式(8)は、次式(9)で表わされる。
式11
Figure JPOXMLDOC01-appb-I000012
 よって、△OB/△Fの絶対値は、ポリマーの固有物性値を表わすことを理解できる。
 また、ポリマーの主鎖軸の炭素-炭素結合の分子鎖軸と分極モーメントベクトルの角度α=90°とすると、f(α)=-2を式(9)に代入して、
式12
Figure JPOXMLDOC01-appb-I000013
 となり、式(10)として固有複屈折の絶対値を求めることができる。
 したがって、本発明の光学材料の△OB/△F絶対値は、ポリマー自身の固有物性値を表わし、その値は、通常0.001~0.250であり、好ましくは0.003~0.220、さらに好ましくは、0.005~0.200、特に好ましくは0.008~0.200である。この値が0.250を超えると配向係数の絶対値が0.001以上の延伸フィルムにおいて配向複屈折の絶対値が5×10-4以下である光学材料が得られない場合がある。
 本発明における光学フィルムは、光学材料からなるフィルムを延伸することによって、フィルムの強度を向上させることができ、そのフィルムの配向複屈折の絶対値が通常は5×10-4以下、好ましくは3×10-4以下、さらに好ましくは、1×10-4以下である。配向複屈折は、波長633nmにおける位相差(nm)/膜厚(μm)から算出される。
 このように、配向係数の絶対値および配向複屈折の絶対値がいずれも上記範囲であることにより、ポリマー鎖自身が配向しても複屈折が抑制され、成形時の温度、圧力条件などの制限を受けずに透明性が高く、靭性、引張り、曲げによる強度または弾性率に優れる光学フィルムを得ることができる。
 このような特性を有する光学フィルムは、反射防止フィルター、記録メディア、ディスプレイ材料、有機ELや液晶プラスチック部材等の電子デバイス材料用途等の表示部材として用いることができる。例えば、液晶ディスプレイ部材として用いる場合、非常に小さい複屈折の特性が、配向複屈折が原因で起こる"光のにじみ(ムラ)"を防止することができ、その光学フィルムからなる偏光子保護フィルム、および該偏光子保護フィルムからなる偏光板が使用用途として挙げられる。さらに、このフィルムを用いる偏光板は位相差の角度依存性(視野角特性)に優れるために、大型化する液晶ディスプレイなどに使用することができる。
 また、延伸後のフィルムの膜厚は用途に応じて選択することができ、通常は10~500μm、好ましくは、20~300μm、より好ましくは30~100μmの範囲が用いられる。また、延伸前の原反のフィルムの膜厚は延伸による影響を考慮した膜厚に設定することができる。また、偏光子保護フィルムとして使用する場合は、延伸されたポリビニルアルコールにヨウ素や有機染料を含浸することにより得られる偏光フィルムに張り付け、偏光板とすることができる。
 本発明において、光弾性定数の絶対値が7×10-12Pa-1以下である光学材料からなる光学レンズは、射出成形または押出し成形などの金型溶融成形することによって受ける成形物の応力歪による複屈折を解消することができ、光弾性定数の絶対値が、通常7×10-12Pa-1以下、好ましくは5×10-12Pa-1以下、さらに好ましくは1×10-12Pa-1以下である。
 光弾性定数は、フィルム、レンズなどの成形体に弾性変形領域の引っ張り、圧縮などの力を連続的に掛けながら位相差を測定し算出する定数であり、単位力あたりの位相差の変化量として現す。例えば、フィルムの場合、0.1mm/minの速度で最大2Nの引張り力を印加して波長633nmにおける位相差を測定し、下記式(12)から光弾性定数を得ることができる。
式:光弾性定数(Pa-1)=△Re(nm)/△P(N)×フィルム幅(mm) (12)
(△Re:位相差の変化量、△P:応力の印加に伴って位相差が直線的に増加する範囲の引張り力の変化量)
 この非常に小さい複屈折の光弾性定数を有することでデジタルカメラモジュール用のマイクロレンズ、ピックアップレンズ、撮像レンズ、光学素子(マイクロレンズアレイ、光導波路、光スイッチング、フレネルゾーンプレート、バイナリー光学素子、ブレーズ回折光学素子など)等の光学材料からなる光学レンズなどに用いることができる。例えば、光学レンズとして従来のアクリル系樹脂の場合、高耐熱性樹脂では、複屈折が大きく、かつ湿度特性が悪く、耐湿樹脂では耐熱性が悪い。非アクリル系樹脂の場合、高耐熱、低吸水性は達成されるが、複屈折が非常に大きく、生産性が悪いために、高コストという問題がある。光学材料または光学レンズに求められる要求品質として、透明性に優れ、複屈折が小さく、使用環境下で光学特性が変化しないことや成形性に優れていることなどが挙げられる。複屈折には前述の通り配向複屈折と応力複屈折とがある。熱可塑性高分子材料を成形して光学材料を得る際、熱可塑性樹脂をガラス転移温度以上に加熱溶融してから射出成形や押出成形をする。これらの方法では、所望の形状でガラス転移温度以下まで冷却する。加熱溶融し流動する時に高分子鎖が配向することによって生じるのが配向複屈折で、冷却時の歪などによって生じるのが応力複屈折である。光弾性定数は後者の応力複屈折を表す定数であり、本発明の環状オレフィンコポリマーを用いることで高耐熱、低吸水性が達成され、光弾性定数が小さく、複屈折が非常に小さく、生産性が良く、低コストを達成することができる。厚みが0.5mm以上の光学レンズなどの肉厚の成形体、特にその最大長さが10mm以上のものを成形する時に生じる応力または配向複屈折を抑制することができる。
 本発明の環状オレフィンコポリマーは、試料濃度が3.0~9.0mg/mlでゲルパーミュエーションクロマトグラフィー(GPC)によって測定したポリスチレン換算の重量平均分子量(Mw)は、通常5,000~1,000,000、好ましくは10,000~300,000である。この重量平均分子量(Mw)が5,000以上であると、延伸による配向物性が発現可能である。また、1,000,000以下であると、溶融成形、溶融延伸が可能な流動性を持つことができる。また、重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)は、通常1.0~5.0の範囲である。
例えば、加熱成形性を得るためには、分子量分布は広い方が好ましく、1.9~5.0、さらに1.9~4.0であることが好ましい。
 本発明において環状オレフィンコポリマーのガラス転移温度は、試料の温度を一定に上昇または降下させながら力学的変化を測定した損失弾性率/貯蔵弾性率(=tanδ)の最大値であり、または、示差走査熱量分析による吸熱や発熱を測定した変化点などが挙げられる。ガラス転移温度は、通常50~300℃の範囲であり、好ましくは、80~280℃、さらに好ましくは100~250℃である。ガラス転移温度が、50℃以下であると光学材料の成形物または光学フィルムの耐熱性が低く、使用目的環境で形状を維持すること難しく、また、300℃以上であると溶融流動させるために加熱処理温度が高く、黄変あるいは劣化が生じやすい。
 本発明における特定の共重合割合で主鎖に5員環脂肪族の環構造と多環脂肪族の環構造を有するフッ素またはシアノを含有する極性環状オレフィンコポリマーは、非晶性の透明なポリマーである。その特性は、繰り返し構造単位内の主鎖に炭化水素構造と側鎖に前記のR~RおよびR~R10のうち、それぞれ、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルから選ばれる置換基を有することでポリマーの分子間または分子内で水素結合を形成することができ、結晶性または化学結合による架橋によらず、ガラス転移温度で100℃以上の耐熱性を付与することができる。
 また、一般式(3)で表される繰り返し構造単位〔C〕のR13~R16が、一般式(1)で表される繰り返し構造単位〔A〕のR~Rおよび一般式(2)で表される繰り返し構造単位〔B〕のR~R10とは異なる置換基にすることで、本発明の環状オレフィンコポリマーの分子間または分子内での水素結合形成力を低く制御することができる。この繰り返し構造単位〔C〕を含有する環状オレフィンコポリマーとすることによって、ガラス転移温度で100℃以上の耐熱性を付与しながら、かつ、溶融流動性を効果的に良くすることができる。すなわち、これによって溶融成形温度を低くし、フィルムまたは射出成形加工時の黄変あるいは劣化を防止することができる。
 一般的に非晶性の熱可塑性ポリマーは、このような水素結合や化学的な架橋が存在しない場合、ガラス転移温度以上の温度領域では弾性率は急激に低下し、温度変化に対する貯蔵弾性率または損失弾性率の変化は、少なくとも-10MPa/℃以下を示す。一方、本発明のフッ素またはシアノを含有する極性環状オレフィンコポリマーは、温度変化に対して可逆的な物理的な水素結合の相互作用に由来し、ガラス転移温度以上でのその変化は小さく、成形物、フィルムの熱による形状変形は、小さく抑えることができる。
 本発明において、フッ素含有の環状オレフィンコポリマーは、フッ素原子の特性として撥水性、低吸水性、水蒸気透過性、または、酸素透過性に優れ、さらに、紫外線から近赤外線までの広範囲の光波長での90%を超える光透過性を示し、透明性に優れる特性を有している。一方、シアノ含有の環状オレフィンコポリマーは、ガラス、プラスチック、ステンレス等の基板との強い接着性を示し、シアノを含有する基の耐熱性を有する。さらに、可視線から近赤外線までの広範囲の光波長での85%を超える光透過性を示し、透明性に優れる特性を有している。また、これらの置換基は、フッ素の場合、電子吸引効果によって双極子モーメントが大きくなって分極し、シアノの場合、炭素と窒素間のπ電子による三重結合によって双極子モーメントが大きくなり分極する。これら置換基を、主鎖と垂直軸をなす側鎖の環状構造の端部に配置する事で分子内の分極率差を大きくする効果がある。つまり、環状オレフィンコポリマーの環構造のみならず、置換基効果によっても分極率差が大きくなり、繰り返し構造単位の分極率楕円体の長軸が、長くなり、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕の分極率楕円体の主鎖に対して直交方向の異なる長さによる光学異方性の相殺効果を効果的に発現することができる。これによって、配向複屈折または光弾性定数が小さな光学材料である極性環状オレフィンコポリマーが得られる。この特性が発現する繰り返し構造単位〔A〕と〔B〕のモル比は、95/5~1/99の範囲であり、好ましくは、80/20~1/99であり、さらに好ましくは、60/40~1/99である。
 また、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有する環状オレフィンコポリマーは、繰り返し構造単位〔A〕と〔B〕の置換基効果による大きな分極率差を維持し、それらの分極率楕円体の主鎖に対して直交方向の異なる長さによる光学異方性の相殺効果の発現を阻害しない範囲で含有する必要がある。特に、繰り返し構造単位〔A〕に対する〔B〕のモル比が、95/5~1/99であり、かつ、繰り返し構造単位〔C〕を含有する環状オレフィンコポリマーでは、光弾性定数を小さくするためには、〔C〕に対する(〔A〕+〔B〕)のモル比は、1/99~40/60の範囲であり、好ましくは、1/99~30/70であり、さらに好ましくは、1/99~20/80である。これらの範囲の外では、光学異方性を相殺する効果が非常に小さく、配向または応力複屈折が非常に小さい光学材料として得られないこともある。
 本発明における一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕を含有する環状オレフィンコポリマーは、一般式(4)で表わされる環状オレフィンモノマーと一般式(5)で表される環状オレフィンモノマーを、開環メタセシス重合触媒によって共重合し、得られる重合体の主鎖のオレフィン部を水素添加することによって合成することができる。
 一般式(4)で表わされる環状オレフィンモノマーとしては、次式で表わされる。
Figure JPOXMLDOC01-appb-C000019
(式(4)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
 さらに詳しくは、一般式(4)においてR~Rは、フッ素、または、フルオロメチル、ジフルオロメチル、トリフルオロメチル、トリフルオロエチル、ペンタフルオロエチル、ヘプタフルオロプロピル、ヘキサフルオロイソプロピル、ヘプタフルオロイソプロピル、ヘキサフルオロ-2-メチルイソプロピル、ペルフルオロ-2-メチルイソプロピル、n-ペルフルオロブチル、n-ペルフルオロペンチル、ペルフルオロシクロペンチル等の水素の一部または全てがフッ素で置換されたアルキル等のフッ素を含有する炭素数1~10のアルキル、フルオロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、トリフルオロエトキシ、ペンタフルオロエトキシ、ヘプタフルオロプロポキシ、ヘキサフルオロイソプロポキシ、ヘプタフルオロイソプロポキシ、ヘキサフルオロ-2-メチルイソプロポキシ、ペルフルオロ-2-メチルイソプロポキシ、n-ペルフルオロブトキシ、n-ペルフルオロペンチルオキシ、ペルフルオロシクロペンチルオキシなど水素の一部または全てがフッ素で置換されたアルコキシ等のフッ素を含有する炭素数1~10のアルコキシ、フルオロメトキシメチル、ジフルオロメトキシメチル、トリフルオロメトキシメチル、トリフルオロエトキシメチル、ペンタフルオロエトキシメチル、ヘプタフルオロプロポキシメチル、ヘキサフルオロイソプロポキシメチル、ヘプタフルオロイソプロポキシメチル、ヘキサフルオロ-2-メチルイソプロポキシメチル、ペルフルオロ-2-メチルイソプロポキシメチル、n-ペルフルオロブトキシメチル、n-ペルフルオロペンチルオキシメチル、ペルフルオロシクロペンチルオキシメチルなど水素の一部または全てがフッ素で置換されたアルコキシアルキル等のフッ素を含有する炭素数2~10のアルコキシアルキル、ペルフルオロフェニル、トリフルオロフェニルなど水素の一部または全てがフッ素で置換されたアリール等のフッ素を含有する炭素数6~20のアリール、フルオロメトキシカルボニル、ジフルオロメトキシカルボニル、トリフルオロメトキシカルボニル、トリフルオロエトキシカルボニル、ペンタフルオロエトキシカルボニル、ヘプタフルオロプロポキシカルボニル、ヘキサフルオロイソプロポキシカルボニル、ヘプタフルオロイソプロポキシカルボニル、ヘキサフルオロ-2-メチルイソプロポキシカルボニル、ペルフルオロ-2-メチルイソプロポキシカルボニル、n-ペルフルオロブトキシカルボニル、n-ペルフルオロペンチルオキシカルボニル、ペルフルオロシクロペンチルオキシカルボニルなど水素の一部または全てがフッ素で置換されたアルコキシカルボニル等のフッ素を含有する炭素数2~10のアルコキシカルボニル、ペルフルオロフェニルオキシカルボニル、トリフルオロフェニルオキシカルボニルなど水素の一部または全てがフッ素で置換されたアリールオキシカルボニル等のフッ素を含有する炭素数7~20のアリールオキシカルボニル、フルオロメトキシカルボニルメチル、ジフルオロメトキシカルボニルメチル、トリフルオロメトキシカルボニルメチル、トリフルオロエトキシカルボニルメチル、ペンタフルオロエトキシカルボニルメチル、ヘプタフルオロプロポキシカルボニルメチル、ヘキサフルオロイソプロポキシカルボニルメチル、ヘプタフルオロイソプロポキシカルボニルメチル、ヘキサフルオロ-2-メチルイソプロポキシカルボニルメチル、ペルフルオロ-2-メチルイソプロポキシカルボニルメチル、n-ペルフルオロブトキシカルボニルメチル、n-ペルフルオロペンチルオキシカルボニルメチル、ペルフルオロシクロペンチルオキシメチルなど水素の一部または全てがフッ素で置換されたアルコキシカルボニルアルキル等のフッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、ペルフルオロフェニルオキシカルボニルメチル、トリフルオロフェニルオキシカルボニルメチルなど水素の一部または全てがフッ素で置換されたアリールオキシカルボニルメチル等のフッ素を含有する炭素数7~20のアリールオキシカルボニルアルキルが例示され、
 さらに、シアノ、またはシアノメチル、シアノエチル、1-シアノプロピル、1-シアノブチル、1-シアノヘキシル等のシアノを含有する炭素数2~10のアルキル、シアノエトキシ、1-シアノプロポキシ、1-シアノブトキシ、1-シアノペンチルオキシなど水素の一部がシアノで置換されたアルコキシ等のシアノを含有する炭素数2~10のアルコキシ、シアノエトキシメチル、1-シアノプロポキシメチル、1-シアノブトキシメチル、1-シアノペンチルオキシメチルなど水素の一部がシアノで置換されたアルコキシアルキル等のシアノを含有する炭素数3~10のアルコキシアルキル、4-シアノフェニル、3,5-ジシアノフェニルなど水素の一部がシアノで置換されたアリール等のシアノを含有する炭素数7~20のアリール、シアノエトキシカルボニル、1-シアノプロポキシカルボニル、1-シアノブトキシカルボニル、1-シアノペンチルオキシカルボニルなど水素の一部がシアノで置換されたアルコキシカルボニル等のシアノを含有する炭素数3~10のアルコキシカルボニル、4-シアノフェニルオキシカルボニル、3,5-ジシアノフェニルオキシカルボニルなど水素の一部がシアノで置換されたアリールオキシカルボニル等のシアノを含有する炭素数8~20のアリールオキシカルボニル、シアノエトキシカルボニルメチル、1-シアノプロポキシカルボニルメチル、1-シアノブトキシカルボニルメチル、1-シアノペンチルオキシカルボニルメチルなど水素の一部がシアノで置換されたアルコキシカルボニルアルキル等のシアノを含有する炭素数4~10のアルコキシカルボニルアルキル、または4-シアノフェニルオキシカルボニルメチル、3,5-ジシアノフェニルオキシカルボニルメチルなど水素の一部がシアノで置換されたアリールオキシカルボニルアルキル等のシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルが例示される。
 また、R~Rが互いに結合して環構造を形成していてもよく、例えば、ペルフルオロシクロアルキル、酸素を介したペルフルオロシクロエーテル等の環を形成してもよい。
 さらに、フッ素またはシアノを含有しないその他のR1~R4は、水素、または、メチル、エチル、プロピル、イソプロピル、2-メチルイソプロピル、n-ブチル、n-ペンチル、シクロペンチル等の炭素数1~10のアルキル、フェニル、ナフチル等の炭素数6~20のアリール、メトキシ、エトキシ、tert-ブトキシ等の炭素数1~10のアルコキシ、または、メトキシメチル、エトキシメチル、tert-ブトキシメチル等の炭素数2~10のアルコキシアルキル、メトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニル等の炭素数2~10のアルコキシカルボニル、フェニルオキシカルボニル、メチルフェニルオキシカルボニル等の炭素数7~20のアリールオキシカルボニル、メトキシカルボニルメチル、エトキシカルボニルメチル、tert-ブトキシカルボニルメチル等の炭素数3~10のアルコキシカルボニルアルキル、またはフェニルオキシカルボニルメチル、メチルフェニルオキシカルボニルメチル等の炭素数8~20のアリールオキシカルボニルアルキルが例示される。
 さらに、一般式(5)のR~Rの少なくとも1つが互いに異なる二種類以上の構造単位からなるものであってもよい。
 また、一般式(5)で表わされる環状オレフィンモノマーとしては、次式で表される。
Figure JPOXMLDOC01-appb-C000020
(式(5)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
 さらに詳しくは、一般式(5)においてR~R10は、フッ素、または、フルオロメチル、ジフルオロメチル、トリフルオロメチル、トリフルオロエチル、ペンタフルオロエチル、ヘプタフルオロプロピル、ヘキサフルオロイソプロピル、ヘプタフルオロイソプロピル、ヘキサフルオロ-2-メチルイソプロピル、ペルフルオロ-2-メチルイソプロピル、n-ペルフルオロブチル、n-ペルフルオロペンチル、ペルフルオロシクロペンチル等の水素の一部または全てがフッ素で置換されたアルキル等のフッ素を含有する炭素数1~10のアルキル、フルオロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、トリフルオロエトキシ、ペンタフルオロエトキシ、ヘプタフルオロプロポキシ、ヘキサフルオロイソプロポキシ、ヘプタフルオロイソプロポキシ、ヘキサフルオロ-2-メチルイソプロポキシ、ペルフルオロ-2-メチルイソプロポキシ、n-ペルフルオロブトキシ、n-ペルフルオロペンチルオキシ、ペルフルオロシクロペンチルオキシなど水素の一部または全てがフッ素で置換されたアルコキシ等のフッ素を含有する炭素数1~10のアルコキシ、フルオロメトキシメチル、ジフルオロメトキシメチル、トリフルオロメトキシメチル、トリフルオロエトキシメチル、ペンタフルオロエトキシメチル、ヘプタフルオロプロポキシメチル、ヘキサフルオロイソプロポキシメチル、ヘプタフルオロイソプロポキシメチル、ヘキサフルオロ-2-メチルイソプロポキシメチル、ペルフルオロ-2-メチルイソプロポキシメチル、n-ペルフルオロブトキシメチル、n-ペルフルオロペンチルオキシメチル、ペルフルオロシクロペンチルオキシメチルなど水素の一部または全てがフッ素で置換されたアルコキシアルキル等のフッ素を含有する炭素数2~10のアルコキシアルキル、ペルフルオロフェニル、トリフルオロフェニルなど水素の一部または全てがフッ素で置換されたアリール等のフッ素を含有する炭素数6~20のアリール、フルオロメトキシカルボニル、ジフルオロメトキシカルボニル、トリフルオロメトキシカルボニル、トリフルオロエトキシカルボニル、ペンタフルオロエトキシカルボニル、ヘプタフルオロプロポキシカルボニル、ヘキサフルオロイソプロポキシカルボニル、ヘプタフルオロイソプロポキシカルボニル、ヘキサフルオロ-2-メチルイソプロポキシカルボニル、ペルフルオロ-2-メチルイソプロポキシカルボニル、n-ペルフルオロブトキシカルボニル、n-ペルフルオロペンチルオキシカルボニル、ペルフルオロシクロペンチルオキシカルボニルなど水素の一部または全てがフッ素で置換されたアルコキシカルボニル等のフッ素を含有する炭素数2~10のアルコキシカルボニル、ペルフルオロフェニルオキシカルボニル、トリフルオロフェニルオキシカルボニルなど水素の一部または全てがフッ素で置換されたアリールオキシカルボニル等のフッ素を含有する炭素数7~20のアリールオキシカルボニル、フルオロメトキシカルボニルメチル、ジフルオロメトキシカルボニルメチル、トリフルオロメトキシカルボニルメチル、トリフルオロエトキシカルボニルメチル、ペンタフルオロエトキシカルボニルメチル、ヘプタフルオロプロポキシカルボニルメチル、ヘキサフルオロイソプロポキシカルボニルメチル、ヘプタフルオロイソプロポキシカルボニルメチル、ヘキサフルオロ-2-メチルイソプロポキシカルボニルメチル、ペルフルオロ-2-メチルイソプロポキシカルボニルメチル、n-ペルフルオロブトキシカルボニルメチル、n-ペルフルオロペンチルオキシカルボニルメチル、ペルフルオロシクロペンチルオキシメチルなど水素の一部または全てがフッ素で置換されたアルコキシカルボニルアルキル等のフッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、ペルフルオロフェニルオキシカルボニルメチル、トリフルオロフェニルオキシカルボニルメチルなど水素の一部または全てがフッ素で置換されたアリールオキシカルボニルメチル等のフッ素を含有する炭素数7~20のアリールオキシカルボニルアルキルが例示され、
 さらに、シアノ、またはシアノメチル、シアノエチル、1-シアノプロピル、1-シアノブチル、1-シアノヘキシル等のシアノを含有する炭素数2~10のアルキル、シアノエトキシ、1-シアノプロポキシ、1-シアノブトキシ、1-シアノペンチルオキシなど水素の一部がシアノで置換されたアルコキシ等のシアノを含有する炭素数2~10のアルコキシ、シアノエトキシメチル、1-シアノプロポキシメチル、1-シアノブトキシメチル、1-シアノペンチルオキシメチルなど水素の一部がシアノで置換されたアルコキシアルキル等のシアノを含有する炭素数3~10のアルコキシアルキル、4-シアノフェニル、3,5-ジシアノフェニルなど水素の一部がシアノで置換されたアリール等のシアノを含有する炭素数7~20のアリール、シアノエトキシカルボニル、1-シアノプロポキシカルボニル、1-シアノブトキシカルボニル、1-シアノペンチルオキシカルボニルなど水素の一部がシアノで置換されたアルコキシカルボニル等のシアノを含有する炭素数3~10のアルコキシカルボニル、4-シアノフェニルオキシカルボニル、3,5-ジシアノフェニルオキシカルボニルなど水素の一部がシアノで置換されたアリールオキシカルボニル等のシアノを含有する炭素数8~20のアリールオキシカルボニル、シアノエトキシカルボニルメチル、1-シアノプロポキシカルボニルメチル、1-シアノブトキシカルボニルメチル、1-シアノペンチルオキシカルボニルメチルなど水素の一部がシアノで置換されたアルコキシカルボニルアルキル等のシアノを含有する炭素数4~10のアルコキシカルボニルアルキル、または4-シアノフェニルオキシカルボニルメチル、3,5-ジシアノフェニルオキシカルボニルメチルなど水素の一部がシアノで置換されたアリールオキシカルボニルアルキル等のシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルが例示される。
 また、R~R10が互いに結合して環構造を形成していてもよく、例えば、ペルフルオロシクロアルキル、酸素を介したペルフルオロシクロエーテル等の環を形成してもよい。
 さらに、フッ素またはシアノを含有しないその他のR~R10は、水素、または、メチル、エチル、プロピル、イソプロピル、2-メチルイソプロピル、n-ブチル、n-ペンチル、シクロペンチル等の炭素数1~10のアルキル、フェニル、ナフチル等の炭素数6~20のアリール、メトキシ、エトキシ、tert-ブトキシ等の炭素数1~10のアルコキシ、メトキシメチル、エトキシメチル、tert-ブトキシメチル等の炭素数2~10のアルコキシアルキル、メトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニル等の炭素数2~10のアルコキシカルボニル、フェニルオキシカルボニル、メチルフェニルオキシカルボニル等の炭素数7~20のアリールオキシカルボニル、メトキシカルボニルメチル、エトキシカルボニルメチル、tert-ブトキシカルボニルメチル等の炭素数3~10のアルコキシカルボニルアルキル、またはフェニルオキシカルボニルメチル、メチルフェニルオキシカルボニルメチル等の炭素数8~20のアリールオキシカルボニルアルキルが例示される。
 さらに、一般式(5)のR~R10の少なくとも1つが互いに異なる二種類以上の構造単位からなるものであってもよい。
 また、本発明における一般式(1)で表される繰り返し構造単位〔A〕、一般式(2)で表される繰り返し構造単位〔B〕、および一般式(3)で表される繰り返し構造単位〔C〕を含有する環状オレフィンコポリマーは、一般式(6)で表される環状オレフィンモノマーを一般式(4)および一般式(5)で表される環状オレフィンモノマーと共重合し、得られる重合体の主鎖のオレフィン部を水素添加することによって合成することができる。
 一般式(6)で表わされる環状オレフィンモノマーとしては、次式で表わされる。
Figure JPOXMLDOC01-appb-C000021
(式(6)中、R13~R16は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R13~R16が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR17-、-PR18-、および-CR1718-から(R17、R18はそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれ、同一でも異なってもよい。nは0または1を表す。)
 さらに詳しくは、一般式(6)においてR13~R16は、水素、または、メチル、エチル、プロピル、イソプロピル、2-メチルイソプロピル、n-ブチル、n-ペンチル、シクロペンチル、ヘキシル、シクロへキシル、ヘプチル、オクチル等の炭素数1~10のアルキル、フェニル、ナフチル、インデニル、ビフェニル、アントラセニル、フェナントラセニル、トリフェニレニル等の炭素数6~20のアリール、メトキシ、エトキシ、プロポキシ、ブトキシ、tert-ブトキシ、ペンチルオキシ、シクロペンチルオキシ、ヘキシルオキシ、シクロヘキシルオキシ等の炭素数1~10のアルコキシ、または、メトキシメチル、エトキシメチル、プロポキシメチル、ブトキシメチル、tert-ブトキシメチル、ペンチルオキシメチル、シクロペンチルオキシメチル、ヘキシルオキシメチル、シクロヘキシルオキシメチル、メトキシエチル、エトキシエチル、プロポキシエチル、ブトキシエチル、ペンチルオキシエチル、シクロペンチルオキシエチル、ヘキシルオキシエチル、シクロヘキシルオキシエチル、メトキシプロピル、エトキシプロピル、プロポキシプロピル、ブトキシプロピル、ペンチルオキシプロピル、シクロペンチルオキシプロピル、ヘキシルオキシプロピル、シクロヘキシルオキシプロピル等の炭素数2~10のアルコキシアルキル、メトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニル、ペンチルオキシカルボニル、シクロペンチルオキシカルボニル、ヘキシルオキシカルボニル、シクロヘキシルオキシカルボニル等の炭素数2~10のアルコキシカルボニル、メトキシカルボニルメチル、エトキシカルボニルメチル、tert-ブトキシカルボニルメチル、ペンチルオキシカルボニルメチル、シクロペンチルオキシカルボニルメチル、ヘキシルオキシカルボニルメチル、シクロヘキシルオキシカルボニルメチル等の炭素数3~10のアルコキシカルボニルアルキル、または、メトキシメチルオキシカルボニル、エトキシメチルオキシカルボニル、プロポキシメチルオキシカルボニル、ブトキシメチルオキシカルボニル、tert-ブトキシメチルオキシカルボニル、ペンチルオキシメチルオキシカルボニル、シクロペンチルオキシメチルオキシカルボニル、ヘキシルオキシメチルオキシカルボニル、シクロヘキシルオキシメチルオキシカルボニル等の炭素数3~10のアルコキシアルキルオキシカルボニルが例示される。
 さらに、一般式(6)のR13~R16の少なくとも1つが互いに異なる二種類以上の構造単位からなるものであってもよい。
 また、本発明の効果を損なわない範囲であれば一般式(4)、一般式(5)または一般式(6)で表される環状オレフィンモノマー以外のモノマーを含んでいてもよい。
 環状オレフィンモノマーの重合に使用する開環メタセシス重合触媒としては、開環メタセシス重合を行うことができる触媒であれば限定はされないが、例えば、W(N-2,6-Pr )(CHBu)(OBu、W(N-2,6-Pr )(CHBu)(OCMeCF、W(N-2,6-Pr )(CHBu)(OCMe(CF、W(N-2,6-Pr )(CHBu)(OC(CF、W(N-2,6-Me)(CHBu)(OC(CF、W(N-2,6-Pr )(CHCMePh)(OBu、W(N-2,6-Pr )(CHCMePh)(OCMeCF、W(N-2,6-Pr )(CHCMePh)(OCMe(CF、W(N-2,6-Pr )(CHCMePh)(OC(CF、W(N-2,6-Me)(CHCMePh)(OC(CF、またはW(N-2,6-Me)(CHCHCMePh)(OBu(PR)、W(N-2,6-Me)(CHCHCMe)(OBu(PR)、W(N-2,6-Me)(CHCHCPh)(OBu(PR)、W(N-2,6-Me)(CHCHCMePh)(OCMeCF(PR)、W(N-2,6-Me)(CHCHCMe)(OCMeCF(PR)、W(N-2,6-Me)(CHCHCPh)(OCMeCF(PR)、W(N-2,6-Me)(CHCHCMePh)(OCMe(CF(PR)、W(N-2,6-Me)(CHCHCMe)(OCMe(CF(PR)、W(N-2,6-Me)(CHCHCPh)(OCMe(CF(PR)、W(N-2,6-Me)(CHCHCMePh)(OC(CF(PR)、W(N-2,6-Me)(CHCHCMe)(OC(CF(PR)、W(N-2,6-Me)(CHCHCPh)(OC(CF(PR)、W(N-2,6-Pr )(CHCHCMePh)(OCMeCF(PR)、W(N-2,6-Pr )(CHCHCMePh)(OCMe(CF(PR)、W(N-2,6-Pr )(CHCHCMePh)(OC(CF(PR)、W(N-2,6-Pr )(CHCHCMePh)(OPh)(PR)、またはW(N-2,6-Me)(CHCHCMePh)(OBu(Py)、W(N-2,6-Me)(CHCHCMe)(OBu(Py)、W(N-2,6-Me)(CHCHCPh)(OBu(Py)、W(N-2,6-Me)(CHCHCMePh)(OCMeCF(Py)、W(N-2,6-Me)(CHCHCMe)(OCMeCF(Py)、W(N-2,6-Me)(CHCHCPh)(OCMeCF(Py)、W(N-2,6-Me)(CHCHCMePh)(OCMe(CF(Py)、W(N-2,6-Me)(CHCHCMe)(OCMe(CF(Py)、W(N-2,6-Me)(CHCHCPh)(OCMe(CF(Py)、W(N-2,6-Me)(CHCHCMePh)(OC(CF(Py)、W(N-2,6-Me)(CHCHCMe)(OC(CF(Py)、W(N-2,6-Me)(CHCHCPh)(OC(CF(Py)、W(N-2,6-Pr )(CHCHCMePh)(OCMeCF(Py)、W(N-2,6-Pr )(CHCHCMePh)(OCMe(CF(Py)、W(N-2,6-Pr )(CHCHCMePh)(OC(CF(Py)、W(N-2,6-Pr )(CHCHCMePh)(OPh)(Py)等のタングステン系アルキリデン触媒や、Mo(N-2,6-Pr )(CHBu)(OBu、Mo(N-2,6-Pr )(CHBu)(OCMeCF、Mo(N-2,6-Pr )(CHBu)(OCMe(CF、Mo(N-2,6-Pr )(CHBu)(OC(CF、Mo(N-2,6-Me)(CHBu)(OC(CF、Mo(N-2,6-Pr )(CHCMePh)(OCMe、Mo(N-2,6-Pr )(CHCMePh)(OCMeCF、Mo(N-2,6-Pr )(CHCMePh)(OCMe(CF、Mo(N-2,6-Pr )(CHCMePh)(OC(CF、Mo(N-2,6-Me)(CHCMePh)(OC(CF、Mo(N-2,6-Pr )(CHCMePh)(OBu(PR)、Mo(N-2,6-Pr )(CHCMePh)(OCMeCF(PR)、Mo(N-2,6-Pr )(CHCMePh)(OCMe(CF(PR)、Mo(N-2,6-Pr )(CHCMePh)(OC(CF(PR)、Mo(N-2,6-Me)(CHCMePh)(OC(CF(PR)、Mo(N-2,6-Pr )(CHCMePh)(OBu(Py)、Mo(N-2,6-Pr )(CHCMePh)(OCMeCF(Py)、Mo(N-2,6-Pr )(CHCMePh)(OCMe(CF(Py)、Mo(N-2,6-Pr )(CHCMePh)(OC(CF(Py)、Mo(N-2,6-Me)(CHCMePh)(OC(CF(Py
(但し、上記式中のPrはiso-プロピル基を示し、Rはメチル基、エチル基等のアルキル基またはメトキシ基、エトキシ基等のアルコキシ基を示し、Buはtert-ブチル基を示し、Meはメチル基を示し、Phはフェニル基を示し、Pyはピリジン基を示す。)等のモリブデン系アルキリデン触媒や、Ru(CHCHCPh)(PPhCl(但し、式中のPhはフェニル基を示す。)等のルテニウム系アルキリデン触媒を挙げることができ、好ましく使用できる。また、これらの開環メタセシス重合触媒は、単独または二種以上を組み合わせて用いてもよい。
 一方、上記開環メタセシス重合触媒の他に、有機遷移金属錯体、遷移金属ハロゲン化物または遷移金属酸化物と、助触媒としてのルイス酸との組み合せからなる開環メタセシス重合触媒を用いることができるが、極性モノマーに対して重合触媒活性が低く、工業的には好ましくない。
 環状オレフィンモノマーの開環メタセシス重合において、環状オレフィンモノマーと開環メタセシス重合触媒とのモル比は、タングステン、モリブデン、またはルテニウム等の遷移金属アルキリデン触媒の場合は、遷移金属アルキリデン触媒1モルに対して、該モノマーが通常100~30,000モルであり、好ましくは1,000~20,000モルである。
 さらに、分子量、およびその分布を制御するために、連鎖移動剤としてオレフィンを使用することができる。オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等のα-オレフィンまたはこれらのフッ素含有オレフィンがあげられ、さらに、ビニルトリメチルシラン、アリルトリメチルシラン、アリルトリエチルシラン、アリルトリイソプロピルシラン等のケイ素含有オレフィンまたはこれらのフッ素およびケイ素含有オレフィンがあげられ、また、ジエンとしては、1、4-ペンタジエン、1、5-ヘキサジエン、1、6-ヘプタジエン等の非共役系ジエンまたはこれらのフッ素含有非共役系ジエンがあげられる。さらに、これらオレフィン、フッ素含有オレフィン、ジエンまたはフッ素含有ジエンはそれぞれ単独または2種類以上を併用しても良い。
 上記のオレフィン、フッ素含有オレフィン、ジエンまたはフッ素含有ジエンの使用量は、オレフィンまたはジエンが環状オレフィンモノマー1モルに対して通常0.001~1,000モル、好ましくは0.01~100モルの範囲である。また、オレフィンまたはジエンが遷移金属アルキリデン触媒1モルに対して通常0.1~1,000モル、好ましくは1~500モルの範囲である。
 また、環状オレフィンモノマーの開環メタセシス重合は、無溶媒でも溶媒を使用しても良いが、特に使用する溶媒としては、テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、ジメトキシエタンまたはジオキサン等のエーテル類、酢酸エチル、酢酸プロピルまたは酢酸ブチル等のエステル類、ベンゼン、トルエン、キシレンまたはエチルベンゼン等の芳香族炭化水素、ペンタン、ヘキサンまたはヘプタン等の脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサンまたはデカリン等の脂肪族環状炭化水素、またはメチレンジクロライド、ジクロロエタン、ジクロロエチレン、テトラクロロエタン、クロロベンゼンまたはトリクロロベンゼン等のハロゲン化炭化水素、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、トリフルオロメチルベンゼン、メタキシレンヘキサフルオライド等のフッ素含有芳香族炭化水素、ペルフルオロヘキサン等のフッ素含有脂肪族炭化水素、ペルフルオロシクロデカリン等のフッ素含有脂肪族環状炭化水素、ペルフルオロ-2-ブチルテトラヒドロフラン等のフッ素含有エーテル類が挙げられ、これらの2種類以上を組み合わせて使用しても良い。
 環状オレフィンモノマーの開環メタセシス重合では、該モノマーの反応性および重合溶媒ヘの溶解性によっても異なるが、モノマー溶液に対する環状オレフィンモノマーの濃度は通常5~100質量%、好ましくは10~60質量%の範囲が好ましく、反応温度は、通常-30~150℃であり、好ましくは30~100℃の範囲であり、さらに、反応時間は通常10分~120時間であり、好ましくは30分~48時間の範囲で実施することができる。さらに、ブチルアルデヒド等のアルデヒド類、アセトン等のケトン類、メタノール等のアルコール類、水等の失活剤で反応を停止し、重合体の溶液を得ることができる。
 本発明の環状オレフィンコポリマーは、環状オレフィンモノマーを開環メタセシス重合して得られたポリマーの主鎖のオレフィン部を、触媒により水素添加反応することによって得られる。また、その水素添加触媒は使用する溶媒の水素添加反応を起こさずに、該ポリマーの主鎖のオレフィン部を水素添加できる触媒であれば、均一系金属錯体触媒でも不均一系の金属担持触媒のいずれであってもよく、均一系金属錯体触媒として、例えば、クロロトリス(トリフェニルホスフィン)ロジウム、ジクロロトリス(トリフェニルホスフィン)オスミウム、ジクロロヒドリドビス(トリフェニルホスフィン)イリジウム、ジクロロトリス(トリフェニルホスフィン)ルテニウム、ジクロロテトラキス(トリフェニルホスフィン)ルテニウム、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム、ジクロロトリス(トリメチルホスフィン)ルテニウム等が挙げられ、また、不均一系金属担持触媒として、例えば、活性炭担持パラジウム、アルミナ担持パラジウム、活性炭担持ロジウム、アルミナ担持ロジウム、活性炭担持ルテニウム、アルミナ担持ルテニウム等が挙げられる。これら水添触媒は、単独または二種類以上を組合せて使用することができる。
 上記の主鎖のオレフィン部の水素添加処理をするに際して、公知の不均一系または均一系水素添加触媒を使用する場合、水素添加触媒の使用量は、水素添加触媒中の金属成分が、水素添加処理前のポリマー100質量部に対して通常5×10-4質量部~100質量部であり、好ましくは1×10-2質量部~30質量部である。
 水素添加に用いられる溶媒としては、環状オレフィンコポリマーを溶解し、かつ、溶媒自身が水素添加されないものであれば特に制限はなく、例えば、テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、ジメトキシエタンなどのエーテル類、酢酸エチル、酢酸プロピルまたは酢酸ブチル等のエステル類、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、デカリンなどの脂肪族環状炭化水素、メチレンジクロリド、クロロホルム、ジクロロエタン、ジクロロエチレン、テトラクロロエタン、クロロベンゼン、トリクロロベンゼンなどのハロゲン化炭化水素、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、トリフルオロメチルベンゼン、メタキシレンヘキサフルオライド等のフッ素含有芳香族炭化水素、ペルフルオロヘキサン等のフッ素含有脂肪族炭化水素、ペルフルオロシクロデカリン等のフッ素含有脂肪族環状炭化水素、ペルフルオロ-2-ブチルテトラヒドロフラン等のフッ素含有エーテル類等が挙げられ、2種以上の溶媒を組合せて使用してもよい。
 上記の主鎖のオレフィン部の水素添加反応は、水素圧力が常圧~30MPa、好ましくは0.5~20MPa、特に好ましくは2~15MPaの範囲で行われ、その反応温度は、通常0~300℃の温度であり、好ましくは室温~250℃、特に好ましくは50~200℃の温度範囲である。水素添加反応の実施様式は、特に制限はないが、例えば、触媒を溶媒中に分散または溶解して行う方法、触媒をカラムなどに充填し、固定相としてポリマー溶液を流通させて行う方法などが挙げられる。
 さらに、主鎖のオレフィン部の水素添加処理は、水素添加処理前の環状オレフィンコポリマーの重合溶液を貧溶媒に析出させポリマーを単離した後に、再度溶媒に溶解して水素添加処理を行なっても、重合溶液からポリマーを単離することなく、上記の水添触媒で水素添加処理を行なってもよく、特に制限はない。
 また、環状オレフィンコポリマーのオレフィン部の水素添加率は50%以上であり、好ましくは70~100%、さらに好ましくは90~100%である。この水素添加率が50%未満であるとオレフィン部が酸化や光の吸収劣化によって、耐熱性または耐候性を悪化させることがある。
 本発明において水添後のポリマー溶液から環状オレフィンコポリマーを回収する方法は、特に制限はないが、例えば、撹拌下の貧溶媒に反応溶液を排出する方法、反応溶液中にスチームを吹き込むスチームストリッピング等の方法によりポリマーを析出させ、濾過、遠心分離、デカンテーション等の方法でポリマーを回収する方法、または、反応溶液から溶媒を加熱等により蒸発除去する方法等が挙げられる。
 また、本発明の目的を損なわない範囲で回収したポリマーに本発明の樹脂以外の樹脂成分やゴム成分、接着補助剤、紫外線吸収剤、酸化防止剤、難燃剤、レべリング剤、帯電防止剤等の公知の各種添加剤を配合し、光学材料として用いることができる。また、各種の添加剤を配合する方法に特に制限はないが、例えば、ロール、ニーダー、押出混練機、バンバリーミキサー、フィーダールーダー等の混練器で練りながら、環状オレフィンコポリマーと添加剤とを混合する方法や環状オレフィンコポリマーを適当な溶剤に溶解し、これに添加剤を配合して混合し、次いで溶媒を除去する方法等が挙げられる。
 本発明の光学フィルムは、溶融成形法や溶液キャスト法で製造できる。溶融成形法で製造する場合は、溶融混練機を用いてTダイを経てフィルム化する方法やインフレーション法によって製造できる。Tダイによる溶融押出しフィルム製造においては、例えば、必要に応じて添加剤を配合した環状オレフィンコポリマーを押出機に投入し、ガラス転移温度よりも通常50℃~200℃高い温度、好ましくは80℃~150℃高い温度にて溶融混練し、Tダイから押出し、冷却ロールなどで溶融ポリマーを冷却することでフィルムに加工する。一方、溶液キャスト法で製造する場合は、例えば、ステンレス鋼、シリコン等の金属材料、ガラス、石英等の無機材料、ポリイミド、ポリアミド、ポリエステル、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアクリレート、ポリメタクリレート、ポリアリレート、エポキシ樹脂、シリコーン樹脂等の樹脂材料等の基材の上にテーブルコート、スピンコート、ディップコート、ダイコート、スプレーコート、バーコート、ロールコート、カーテンフローコートなどの方法でポリマー溶液を塗布し、乾燥、剥離することでフィルムに加工する。
 溶液キャスト法で使用する有機溶媒としては、特に制限はないが、例えば、メタキシレンヘキサフロライド、ベンゾトリフロライド、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、トリフルオロメチルベンゼン、ビス(トリフルオロメチル)ベンゼン等のフッ素含有芳香族炭化水素、ペルフルオロヘキサン、ペルフルオロオクタン等のフッ素含有脂肪族炭化水素、ペルフルオロシクロデカリン等のフッ素含有脂肪族環状炭化水素、ペルフルオロ-2-ブチルテトラヒドロフラン等のフッ素含有エーテル類、クロロホルム、クロルベンゼン、トリクロルベンゼンなどのハロゲン化炭化水素、テトラヒドロフラン、ジブチルエーテル、1,2-ジメトキシエタン、ジオキサン等のエーテル類、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類、または、メチルイソブチルケトン、シクロヘキサノン等のケトン類等から溶解性、製膜性を考慮して選択できる。特に、製膜性の観点から大気圧下で70℃以上の沸点をもつ溶媒が好ましく、溶媒の沸点が低いと蒸発速度が速く、塗布する際に部分的に溶媒が乾き始めるなどして膜厚精度の悪化や膜表面にフィッシュアイを発生させる原因となる。
 フィルムの延伸においてその方法、条件には、特に制限はないが、例えば、ロール間の周速度の差異で縦方向に一軸延伸する方法、テンターを用いて横軸方向に一軸延伸する方法、フィルムの両側を把持したクリップを開いて縦方向に延伸し、ガイドレールの広がり角度によって横方向に延伸する同時二軸延伸法、ロール間の周速度の差異で縦方向に延伸し、両端部をクリップにより把持してテンターで横方向に延伸する逐次二軸延伸法などの二軸延伸法。 縦横方向に左右異なる速度で引張るテンター延伸機や、横又は縦方向に左右等速度で引張り移動する距離が同じで延伸角度を固定または移動する距離が異なるテンター延伸機で斜め延伸する方法などが挙げられる。また、延伸条件としての延伸時の温度は、ガラス転移温度に対して通常は-20℃~150℃の範囲を加えた温度、好ましくは-5℃~110℃の範囲を加えた温度、さらに好ましくは0℃~80℃の範囲を加えた温度であり、延伸の倍率は、通常は1.05倍~10倍、好ましくは1.10倍~6.0倍の範囲、さらに好ましくは1.10倍~5.0倍の範囲、より好ましくは1.10倍~2.4倍、特に好ましくは1.20~2.4倍の範囲である。これらの延伸条件と配向の状態は、単に延伸倍率を高くすれば、配向状態が高いと言うものではなく、配向状態は本発明のポリマーの固有物性値としての配向係数で決めることができる。
 本発明の光学材料は、公知の射出成形法で成形することができる。その射出成形法は、通常、必要に応じて添加剤が配合された環状オレフィンコポリマーのペレットまたはパウダーを射出成形機のホッパーに投入し、成形材料が均一に混合されるように回転数を設定したスクリューで、シリンダーに送られ、次いで、金型へと射出する方法が挙げられる。そのシリンダーの温度は、通常150~400℃、好ましくは150~350℃、より好ましくは180~300℃の範囲で設定される。シリンダーから金型への射出速度は、通常1~50mm/秒である。シリンダーから金型への射出圧は、通常50~150MPaの範囲で行われる。このときの射出圧は、金型の設計や使用される成形材料の流動性等の条件を考慮して適宜選択し、設定すればよい。射出によって金型に充填された後、金型のゲート部分の溶融樹脂が完全に冷却固化するまでの一定時間かけられる保持圧力は、一般に金型の締め圧の範囲内で設定されるが、通常10~200MPa、好ましくは12~170MPa、より好ましくは15~150MPaの範囲において設定される。このときの金型温度は、環状オレフィンコポリマーのガラス転移温度(Tg)よりも、通常低い温度で設定され、好ましくはそのTgよりも5~50℃低い範囲であり、より好ましくはTg よりも8~30℃低い範囲の温度において設定される。
 以下、実施例において、本発明を説明するが、本発明はこれらの例によって何ら限定されるものではない。
 なお、実施例において合成したポリマーの分析値測定方法、光弾性定数測定法、フィルムの延伸方法およびその配向複屈折測定法、配向係数算出法を以下に記述した。
 [重量平均分子量(Mw)、分子量分布(Mw/Mn)]
 下記の条件下でゲルパーミュエーションクロマトグラフィー(GPC)を使用して、テトラヒドロフラン(THF)に溶解したポリマーの重量平均分子量(Mw)および数平均分子量(Mn)を以下の条件で、ポリスチレンスタンダードによって分子量を較正して測定した。
 検出器:日本分光製RI-2031および875-UVまたはViscotec製Model270、直列連結カラム:Shodex K-806M,804,803,802.5、カラム温度:40℃、流量:1.0ml/分、試料濃度:3.0mg/ml
 [環状オレフィンコポリマーの水素添加率]
 水素添加反応を行った開環メタセシス重合体の粉末を重水素化クロロホルム、または重水素化テトラヒドロフランに溶解し、日本電子製核磁気共鳴装置を用いて270MHz-H-NMRスペクトルを測定し、δ=4.5~7.0ppmの主鎖の二重結合炭素に結合する水素に由来するシグナルの積分値より水素添加率を算出した。
 [環状オレフィンコポリマーの組成(モル)比]
 開環メタセシス重合体を水素添加した環状オレフィンコポリマーを重水素化クロロホルム、または重水素化テトラヒドロフランに溶解し以下の方法により測定し、環状オレフィンコポリマーの組成(モル)比〔A〕/〔B〕、または〔A〕/〔B〕/〔C〕を算出した。
 フッ素を含有するコポリマーの場合:基準物質としてオルトジフルオロベンゼンを加え、日本電子製ECX400型核磁気共鳴装置を用いて、373MHz-19F-NMRスペクトルを測定し、δ=-139ppmのオルトジフルオロベンゼンを基準シグナルで一般式(1)の単位構造〔A〕および一般式(2)の単位構造〔B〕のそれぞれのδ=-150~-200ppmの-CF、δ=-100~-150ppmの-CF、または、δ=-60~-100ppmの-CFに由来するフッ素の積分値より組成(モル)比〔A〕/〔B〕を算出した。
 また、日本電子製ECA500型核磁気共鳴装置を用いて125MHz-13C-NMRスペクトルを測定し、δ=67ppmの重水素化テトラヒドロフランを基準シグナルで、δ=85~105ppmの-CF、δ=110~135ppmの-CF、または、δ=115~135ppmの-CFに由来する炭素の積分値とδ=45~55ppmのメチンに由来する炭素の積分値とモル組成-モル積分値検量線より組成(モル)比〔A〕/〔B〕/〔C〕を算出した。また、組成(モル)比〔A〕/〔B〕を算出した。
 シアノを含有するポリマーの場合:日本電子製ECA500型核磁気共鳴装置を用いて125MHz-13C-NMRスペクトルを測定し、δ=77ppmの重水素化クロロホルムを基準シグナルで一般式(1)および一般式(2)の単位構造それぞれのδ=115~135ppmのシアノに由来する炭素の積分値より組成(モル)比〔A〕/〔B〕を算出した。
 また、δ=115~135ppmのシアノに由来する炭素の積分値とδ=40~60ppmのメチンに由来する炭素の積分値とモル組成-モル積分値検量線より組成(モル)比〔A〕/〔B〕/〔C〕を算出した。
 [ガラス転移温度]
 島津製作所製DSC-50を用い、測定試料を窒素雰囲下で10℃/分の昇温速度で加熱し測定した。
 [フィルムの延伸方法]
 柴山科学器械製作所製延伸装置SS-70を用い、チャック間30mm×幅30mm×厚み35~43μmのフィルムを所定の温度へ加熱した後、30mm/minの速度で所定の倍率へ一軸延伸した。
 [配向複屈折の測定]
 セナルモン法により、MELLES GRITO製HeNeレーザーを光源にAnritsu製パワーメーターを検出器として、波長=632.8nmの位相差を測定し、下記式(11)により、延伸フィルムの配向複屈折を算出した。
  配向複屈折(△n)=Re(nm)/ T(μm)  (11)
 ここで、Reは延伸フィルムの位相差(nm)を示し、Tは延伸フィルムの膜厚(μm)を示す。
 [光弾性定数の測定]
 ユニオプト製光弾性定数測定装置PHEL-20A-Sを用い、チャック間60mm×幅10mmのフィルムに0.1mm/minの速度で最大2Nの引張り力を印加して波長633nmにおける位相差を測定し、応力の印加に伴って位相差が直線的に増加する範囲の引張り力の変化量△P(N)と位相差の変化量△Re(nm)から下記式(12)により光弾性定数を算出した。
光弾性定数(Pa-1)=△Re(nm)/△P(N)×フィルム幅(mm)  
(12)
 [延伸フィルムのラマン分光法による二色比測定]
 RENISHAW製JRS-SYSTEM2000を用い延伸フィルムの延伸軸を平行方向、90°傾けた方向を垂直方向として平行方向、垂直方向それぞれのラマンスペクトルを測定し、ベースラインを基準とするラマンシフト1450cm-1付近に観察されるポリマー鎖のCHのはさみ振動に帰属する平行光強度(I)と垂直光強度(I)から式(13)により二色比Dを算出した。
  二色比D=I/I     (13)
 [配向係数の絶対値の算出]
 ラマン散乱強度の二色比Dから下記式(14)により延伸フィルムの配向係数の絶対値を算出した。
  配向係数Fの絶対値 =|(D-1)/(D+2)|   (14)
 [△OB/△Fの絶対値の算出]
 式(13)および式(14)から求めた配向係数の絶対値の変化量△Fに対する配向複屈折の絶対値の変化量△OB、すなわち△OB/△Fの絶対値は、無延伸(配向係数の絶対値が0)の配向複屈折△n値=0として、延伸フィルムの配向係数に対する配向複屈折が直線的に変化している領域での配向係数の絶対値に対する配向複屈折の絶対値の直線勾配から算出した。
 [射出成形品の応力複屈折検査]
 メイホー製小型射出成形機Micro-1を用いて直径11mm×厚み3mmの射出成形品を作製した。成形条件は、加熱混練部の温度がポリマーのガラス転移温度+130~170℃、金型の温度がガラス転移温度-5~-30℃、射出速度10~40mm/sec、射出圧力20~70MPaの範囲でポリマーの種類毎に各条件を調整しながら、30~50個の射出成形品を作製した。成形品の評価は、ルケオ製歪検査機LSM-2001(クロスニコル計)を用いて成形品の応力複屈折を観察した。
[実施例1]ポリマー1の合成
 5-シアノ-ビシクロ[2.2.1]ヘプト-2-エン(10g)と8-シアノ-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(36g)の2種類のモノマー、および1-へキセン(8.0g)のテトラヒドロフラン溶液に、重合触媒Mo(N-2,6-Pr )(CHCMePh)(OBut(18mg)のテトラヒドロフラン溶液を添加し、60℃にてモノマーを完全に反応消費して開環メタセシス重合を行った。得られたポリマーのオレフィン部を水素添加触媒(PhP)CORuHCl(18.4mg)とトリエチルアミン(5.9mg)を用いて、水素加圧下、125℃で水素添加反応を行い、ポリ(1-シアノ-3,5-シクロペンチレンエチレン)/(3-シアノ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)共重合体のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し46gのポリマー1を得た。水素添加率は100%、組成比〔A〕/〔B〕=30/70、重量平均分子量(Mw)は65000、分子量分布(Mw/Mn)は2.75、ガラス転移温度は178℃であった。また、図1にポリマー1の13C-NMRスペクトルを示す。
[実施例2]ポリマー2の合成
 実施例1における2種類のモノマーのモル比を〔A〕/〔B〕=20/80に変えた以外は、実施例1と同様な方法により43gのポリマー2を得た。水素添加率は100%、組成比〔A〕/〔B〕=20/80、重量平均分子量(Mw)は59000、分子量分布(Mw/Mn)は2.72、ガラス転移温度は192℃であった。
[実施例3]ポリマー3の合成
 実施例1における2種類のモノマーのモル比を〔A〕/〔B〕=50/50に変えた以外は、実施例1と同様な方法により43gのポリマー3を得た。水素添加率は100%、組成比〔A〕/〔B〕=50/50、重量平均分子量(Mw)は60000、分子量分布(Mw/Mn)は2.65、ガラス転移温度は145℃であった。
[実施例4]ポリマー4の合成
 5-シアノ-ビシクロ[2.2.1]ヘプト-2-エン(10g)と8-シアノ-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(36g)の2種類のモノマー、および1-へキセン(0.7g)のテトラヒドロフラン溶液に、重合触媒Mo(N-2,6-Pr )(CHCMePh)(OCMe(CF(25mg)のテトラヒドロフラン溶液を添加し、60℃にてモノマーを完全に反応消費して開環メタセシス重合を行った。得られたポリマーのオレフィン部を5%ルテニウム/アルミナ担持水素添加触媒(2.5g)を用いて、水素加圧下、160℃で水素添加反応を行い、共重合体のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し46gのポリマー4を得た。水素添加率は100%、組成比〔A〕/〔B〕=30/70、重量平均分子量(Mw)は56000、分子量分布(Mw/Mn)は2.15、ガラス転移温度は186℃であった。
[実施例5]ポリマー5の合成
 5-シアノ-ビシクロ[2.2.1]ヘプト-2-エン(11.4g)と8-シアノ-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(25.2g、〔B1〕)および10-シアノ-ヘキサシクロ[8.4.01,6.08,13.12,5.17,14.19,12]-3-ヘプタデセン(10.2g、〔B2〕)の3種類のモノマー、および1-へキセン(6.6g)のテトラヒドロフラン溶液に、重合触媒Mo(N-2,6-Pr )(CHCMePh)(OBut(15mg)のテトラヒドロフラン溶液を添加し、60℃にてモノマーを完全に反応消費して開環メタセシス重合を行った。得られたポリマーのオレフィン部を5%ルテニウム/アルミナ担持水素添加触媒(2.5g)を用いて、水素加圧下、160℃で水素添加反応を行い、ポリ(1-シアノ-3,5-シクロペンチレンエチレン)/(3-シアノ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)/(4-シアノ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)の3元共重合体のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し46gのポリマー5を得た。水素添加率は100%、組成比〔A〕/〔B〕=35/65(ただし〔B〕=〔B1〕+〔B2〕、かつ〔B1〕/〔B2〕=50/15)、重量平均分子量(Mw)は68000、分子量分布(Mw/Mn)は2.81、ガラス転移温度は194℃であった。
[実施例6]ポリマー6の合成
 実施例5における3種類のモノマーを5-シアノ-ビシクロ[2.2.1]ヘプト-2-エン(25.1g)と10-シアノ-ヘキサシクロ[8.4.01,6.08,13.12,5.17,14.19,12]-3-ヘプタデセン(22.5g)の2種類のモノマー、および1-へキセン(6.0g)に変えた以外は、実施例5と同様な方法によりポリ(1-シアノ-3,5-シクロペンチレンエチレン)/(4-シアノ-10,12-ペンタシクロ[6.5.1.02,7.09,13.13,6] ペンタデカニレンエチレン)の共重合体47gのポリマー6を得た。水素添加率は100%、組成比〔A〕/〔B〕=70/30、重量平均分子量(Mw)は63000、分子量分布(Mw/Mn)は2.79、ガラス転移温度は167℃であった。
[実施例7]ポリマー7の合成
 実施例4における2種類のモノマーを5-シアノ-5-メチル-ビシクロ[2.2.1]ヘプト-2-エン(8.0g)と10-シアノ-10-メチル-ヘキサシクロ[8.4.01,6.08,13.12,5.17,14.19,12]-3-ヘプタデセン(35.8g)に変更した以外は、実施例4と同様な方法によりポリ(1-シアノ-1-メチル-3,5-シクロペンチレンエチレン)/(3-シアノ-3-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)の共重合体43gのポリマー7を得た。水素添加率は100%、組成比〔A〕/〔B〕=25/75、重量平均分子量(Mw)は55000、分子量分布(Mw/Mn)は2.75、ガラス転移温度は196℃であった。
[実施例8]ポリマー8の合成
 5,5,6-トリフルオロ-6-トリフルオロメチル-ビシクロ[2.2.1]ヘプト-2-エン(6.6g)と8, 8, 9-トリフルオロ-9-トリフルオロメチル-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(34.5g)の2種類のモノマー、および1,5-ヘキサジエン(0.27g)のテトラヒドロフラン溶液に、Mo(N-2,6-Pr )(CHCMePh)(OBut(17mg)のテトラヒドロフラン溶液を添加し、70℃にてモノマーを完全に反応消費して開環メタセシス重合を行った。得られたポリマーのオレフィン部を5%パラジウム/アルミナ担持水素添加触媒(2.3g)を用いて、水素加圧下、160℃で水素添加反応を行い、ポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)/(3, 3, 4-トリフルオロ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)の共重合体のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し41gのポリマー8を得た。水素添加率は100%、組成比〔A〕/〔B〕=20/80、重量平均分子量(Mw)は75000、分子量分布(Mw/Mn)は3.06、ガラス転移温度は169℃であった。また、ポリマー8の19F-NMRスペクトルと13C-NMRスペクトルをそれぞれ図2と図3に示す。
[実施例9]ポリマー9の合成
 実施例8における2種類のモノマーのモル比を〔A〕/〔B〕=50/50に変えた以外は実施例8と同様な方法により41gのポリマー9を得た。水素添加率は100%、組成比〔A〕/〔B〕=50/50、重量平均分子量(Mw)は76000、分子量分布(Mw/Mn)は3.27、ガラス転移温度は149℃であった。
[実施例10]ポリマー10の合成
 実施例3の構造単位〔B〕のモノマーを8, 8, 9-トリフルオロ-9-トリフルオロメチル-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセンに変更し、仕込みモル比を〔A〕/〔B〕=50/50に変更した以外は実施例3と同様な方法により40gのポリマーを得た。水素添加率は100%、組成比〔A〕/〔B〕=50/50、重量平均分子量(Mw)は54000、分子量分布(Mw/Mn)は3.81、ガラス転移温度は136℃であった。
[実施例11]ポリマー11の合成
 実施例10の構造単位〔A〕のモノマーを5, 6-ジフルオロ-5, 6-ビストリフルオロメチル-7-オキサ-ビシクロ[2.2.1]ヘプト-2-エンに変更し、モノマーの仕込みモル比を〔A〕/〔B〕=50/50に変更した以外は実施例10と同様な方法により41gのポリマーを得た。水素添加率は100%、組成比〔A〕/〔B〕=50/50、重量平均分子量(Mw)は69000、分子量分布(Mw/Mn)は2.99、ガラス転移温度は124℃であった。
[実施例12]
 実施例1で合成したポリマー1を20質量%濃度で溶解したシクロヘキサノン溶液をガラス基板に塗布し、アプリケーターを用いて均一にコートした後、180℃で30分乾燥し剥離する事で厚み41.0μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は、4.3×10-12Pa-1であった。198℃で1.2倍および1.4倍延伸した表面平滑なフィルムのラマンシフト1451cm-1のピークの強度比から算出した二色比はそれぞれ1.005および1.010、配向係数の絶対値はそれぞれ0.0017および0.0033であり、配向複屈折の絶対値はそれぞれ0.2×10-4および0.4×10-4であり、△OB/△Fの絶対値は0.012であった。
 また、同温度で2.4倍延伸した表面平滑なフィルムのラマンシフト1451cm-1のピークの強度比から算出した二色比は1.055、配向係数の絶対値は0.0180であり、配向複屈折の絶対値は0.6×10-4であった。2.4倍延伸フィルムの垂直および平行偏光のラマンスペクトルを図4に示す。
[実施例13]
 実施例2で合成したポリマー2を実施例12と同様な方法により厚み40.5μmの表面平滑なフィルムを得た。212℃で1.3倍および1.5倍延伸した表面平滑なフィルムのラマンシフト1451cm-1のピークの強度比から算出した二色比はそれぞれ1.009および1.012、配向係数の絶対値はそれぞれ0.0030および0.0040であり、配向複屈折の絶対値はそれぞれ0.7×10-4および1.0×10-4であり、△OB/△Fの絶対値は0.026であった。
[実施例14]
 実施例3で合成したポリマー3を実施例12と同様な方法により厚み37.3μmの表面平滑なフィルムを得た。165℃で1.2倍および1.5倍延伸した表面平滑なフィルムのラマンシフト1452cm-1のピークの強度比から算出した二色比はそれぞれ1.011および1.030、配向係数の絶対値はそれぞれ0.0037および0.0099であり、配向複屈折の絶対値はそれぞれ1.2×10-4および3.4×10-4であり、△OB/△Fの絶対値は0.034であった。
[実施例15]
 実施例4で合成したポリマー4を実施例12と同様な方法により厚み42.0μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は4.5×10-12Pa-1であった。206℃で1.2倍および1.4倍延伸した表面平滑なフィルムのラマンシフト1452cm-1のピークの強度比から算出した二色比はそれぞれ1.008および1.015、配向係数の絶対値はそれぞれ0.0027および0.0050であり、配向複屈折の絶対値はそれぞれ0.3×10-4および0.6×10-4であり、△OB/△Fの絶対値は0.012であった。
 また、同温度で2.4倍延伸した表面平滑なフィルムのラマンシフト1453cm-1のピークの強度比から算出した二色比は1.065、配向係数の絶対値は0.0212であり、配向複屈折の絶対値は0.7×10-4であった。
[実施例16]
 実施例5で合成したポリマー5を実施例12と同様な方法により厚み40.8μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は0.8×10-12Pa-1であった。214℃で1.4倍および1.6倍延伸した表面平滑なフィルムのラマンシフト1452cm-1のピークの強度比から算出した二色比はそれぞれ1.007および1.013、配向係数の絶対値はそれぞれ0.0023および0.0043であり、配向複屈折の絶対値はそれぞれ0.2×10-4および0.4×10-4であり、△OB/△Fの絶対値は0.009であった。
 また、同温度で2.4倍延伸した表面平滑なフィルムのラマンシフト1451cm-1のピークの強度比から算出した二色比は1.061、配向係数の絶対値は0.0199であり、配向複屈折の絶対値は0.4×10-4であった。
[実施例17]
 実施例6で合成したポリマー6を実施例12と同様な方法により厚み43.0μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は0.9×10-12Pa-1であった。187℃で1.2倍および1.5倍延伸した表面平滑なフィルムのラマンシフト1454cm-1のピークの強度比から算出した二色比はそれぞれ1.010および1.020、配向係数の絶対値はそれぞれ0.0033、0.0066であり、配向複屈折の絶対値はそれぞれ0.3×10-4および0.5×10-4であり、△OB/△Fの絶対値は0.008であった。
 また、同温度で2.4倍延伸した表面平滑なフィルムのラマンシフト1451cm-1のピークの強度比から算出した二色比は1.070、配向係数の絶対値は0.0228であり配向複屈折の絶対値は0.5×10-4であった。
[実施例18]
 実施例7で合成したポリマー7を実施例12と同様な方法により厚み42.5μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は3.3×10-12Pa-1であった。216℃で1.3倍および1.5倍延伸した表面平滑なフィルムのラマンシフト1450cm-1のピークの強度比から算出した二色比はそれぞれ1.008および1.015、配向係数の絶対値はそれぞれ0.0027および0.0050であり、配向複屈折の絶対値はそれぞれ0.3×10-4および0.5×10-4であり、△OB/△Fの絶対値は0.010であった。
 また、同温度で2.4倍延伸した表面平滑なフィルムのラマンシフト1451cm-1のピークの強度比から算出した二色比は1.063、配向係数の絶対値は0.0206であり、配向複屈折の絶対値は0.6×10-4であった。
[実施例19]
 実施例8で合成したポリマー8を実施例12と同様な方法により厚み34.9μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は6.5×10-12Pa-1であった。199℃で1.1倍および1.3倍延伸した表面平滑なフィルムのラマンシフト1452cm-1のピークの強度比から算出した二色比はそれぞれ1.003および1.004、配向係数の絶対値はそれぞれ0.0010および0.0013であり、配向複屈折の絶対値はそれぞれ1.5×10-4および2.1×10-4であり、△OB/△Fの絶対値は0.155であった。
 また、同温度で1.8倍延伸した表面平滑なフィルムのラマンシフト1453cm-1のピークの強度比から算出した二色比は1.010、配向係数の絶対値は0.0033であり、配向複屈折の絶対値は3.5×10-4であった。
[実施例20]
 実施例9で合成したポリマー9を実施例12と同様な方法により厚み35.0μmの表面平滑なフィルムを得た。179℃で1.3倍および1.6倍延伸した表面平滑なフィルムのラマンシフト1454cm-1のピークの強度比から算出した二色比はそれぞれ1.005および1.006、配向係数の絶対値はそれぞれ0.0017および0.0020であり、配向複屈折の絶対値はそれぞれ2.8×10-4および3.5×10-4であり、△OB/△Fの絶対値は0.173であった。
 また、同温度で2.2倍延伸した表面平滑なフィルムのラマンシフト1452cm-1のピークの強度比から算出した二色比は1.007、配向係数の絶対値は0.0022であり、配向複屈折の絶対値は4.7×10-4であった。
[実施例21]
 実施例10で合成したポリマー10を実施例12と同様な方法により厚み36.0μmの表面平滑なフィルムを得た。166℃で1.1倍および1.3倍延伸した表面平滑なフィルムのラマンシフト1452cm-1のピークの強度比から算出した二色比はそれぞれ1.013および1.030、配向係数の絶対値はそれぞれ0.0043および0.0100であり、配向複屈折の絶対値はそれぞれ1.3×10-4および3.2×10-4であり、△OB/△Fの絶対値は0.032であった。
 また、同温度で1.8倍延伸した表面平滑なフィルムのラマンシフト1453cm-1のピークの強度比から算出した二色比は1.074、配向係数の絶対値は0.0240であり、配向複屈折の絶対値は4.8×10-4であった。
[実施例22]
 実施例11で合成したポリマー11を実施例12と同様な方法により厚み34.7μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は6.8×10-12Pa-1であった。154℃で1.4倍および1.6倍延伸した表面平滑なフィルムのラマンシフト1449cm-1のピークの強度比から算出した二色比はそれぞれ1.005および1.009、配向係数の絶対値はそれぞれ0.0017および0.0030であり、配向複屈折の絶対値はそれぞれ2.3×10-4および4.0×10-4であり、△OB/△Fの絶対値は0.135であった。
 実施例12~22で得られたフィルムは、配向係数の絶対値が0.001以上であり、配向複屈折の絶対値が5×10-4以下であることで、成形時の温度、圧力条件などの制限を受けずに透明性が高く、靭性、引張り、曲げによる強度または弾性率に優れる光学フィルムを得ることができることが推察された。
[実施例23]射出成形品の応力複屈折検査
 実施例1で合成したポリマー1を、成形条件を調整しながら射出成形し、38個の成形品を作製した。歪検査計で成形品の面方向の応力複屈折を観察すると、面転写性良く、ヒケも無く成形した12個の成形品に応力複屈折は観察されなかった。
 この結果から、本発明の光学材料によれば、成形時の温度、圧力条件などの制限を受けずに透明性が高く、靭性に優れる成形体を得ることができ、光学レンズに広く適用できることが確認された。また、実施例2~11で合成したポリマーから得られた成形品においても同様の結果が得られることが推察された。
[比較例1]ポリマー12の合成と複屈折測定
 5-シアノ-ビシクロ[2.2.1]ヘプト-2-エン(43.0g)の1種類のモノマーおよび1-ヘキセン(6.9g)のテトラヒドロフラン溶液に、重合触媒Mo(N-2,6-Me)(CHCMePh)(OBut(17mg)のテトラヒドロフラン溶液を添加し、60℃にてモノマーを完全に反応消費して開環メタセシス重合を行った。得られたポリマーのオレフィン部を実施例1と同様に水素添加し、ポリ(1-シアノ-3,5-シクロペンチレンエチレン)のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し43gのポリマー12を得た。水素添加率は100%、重量平均分子量(Mw)は48000、分子量分布(Mw/Mn)は2.65、ガラス転移温度は88℃であった。
 次いで、実施例12と同様な方法により厚み40.6μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は14.9×10-12Pa-1であった。108℃で1.2倍および1.5倍延伸した表面平滑なフィルムのラマンシフト1452cm-1のピークの強度比から算出した二色比はそれぞれ1.007および1.014、配向係数の絶対値はそれぞれ0.0023および0.0046であり、配向複屈折の絶対値はそれぞれ6.5×10-4および13.0×10-4であり、△OB/△Fの絶対値は0.280であった。
[比較例2]ポリマー13の合成と複屈折測定
 5,5,6-トリフルオロ-6-トリフルオロメチル-ビシクロ[2.2.1]ヘプト-2-エン(41.0g)1種類のモノマーおよび1,5-ヘキサジエン(0.54g)のテトラヒドロフラン溶液に、重合触媒Mo(N-2,6-Pr )(CHCMePh)(OBut(17mg)のテトラヒドロフラン溶液を添加し、70℃にてモノマーを完全に反応消費して開環メタセシス重合を行った。得られたポリマーのオレフィン部を実施例8と同様に水素添加し、ポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し41gのポリマー13を得た。水素添加率は100%、重量平均分子量(Mw)は68000、分子量分布(Mw/Mn)は2.45、ガラス転移温度は110℃であった。
 次いで、実施例12と同様な方法により厚み35.8μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は16.0×10-12Pa-1であった。130℃で1.1倍および1.3倍延伸した表面平滑なフィルムのラマンシフト1454cm-1のピークの強度比から算出した二色比はそれぞれ1.006および1.010、配向係数の絶対値はそれぞれ0.0020および0.0033であり、配向複屈折の絶対値はそれぞれ8.0×10-4および13.5×10-4であり、△OB/△Fの絶対値は0.405であった。
[比較例3]ポリマー13の合成と複屈折測定
 5,5,6-トリフルオロ-6-トリフルオロメチル-ビシクロ[2.2.1]ヘプト-2-エン(9.4g)と5,6-ジフルオロ-5,6-ビストリフルオロメチル-7-オキサ-ビシクロ[2.2.1]ヘプト-2-エン(30.0g)の構造単位〔A〕の2種類のモノマーおよび1,5-ヘキサジエン(0.63g)のテトラヒドロフラン溶液に、重合触媒Mo(N-2,6-Pr )(CHCMePh)(OCMe(CF(25mg)のテトラヒドロフラン溶液を添加し、70℃にてモノマーを完全に反応消費して開環メタセシス重合を行った。得られたポリマーのオレフィン部を実施例8と同様に水素添加し、ポリ(1-トリフルオロメチル-3,5-シクロペンチレンエチレン)/(1, 2-ジフルオロ-1, 2-ビストリフルオロメチル-4-オキサ-3,5-シクロペンチレンエチレン)の組成比が50/50の共重合体のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し39gのポリマー13を得た。水素添加率は100%、重量平均分子量(Mw)は59000、分子量分布(Mw/Mn)は2.68、ガラス転移温度は84℃であった。
 次いで、実施例12と同様な方法により厚み37.4μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は10.7×10-12Pa-1であった。104℃で1.3倍および1.6倍延伸した表面平滑なフィルムのラマンシフト1449cm-1のピークの強度比から算出した二色比はそれぞれ1.006および1.011、配向係数の絶対値はそれぞれ0.0020および0.0037であり、配向複屈折の絶対値はそれぞれ9.0×10-4および16.5×10-4であり、△OB/△Fの絶対値は0.452であった。
[比較例4]赤外スペクトル測定
 実施例12の1.4倍延伸した表面平滑なフィルムの赤外スペクトルの波数1456cm-1のピークのベースラインを基準とする吸光度比から算出した二色比は1.000であり二色比は測定できず、(14)式に代入して計算した値は0あり、また、同2.4倍延伸した表面平滑なフィルムの赤外スペクトルの波数1455cm-1のピークの吸光度比から算出した二色比は0.999、(12)式に代入して計算した値は0.0003であり、配向状態を測定できなかった。2.4倍延伸フィルムの垂直および平行偏光の赤外スペクトルを図5に示す。
[比較例5]射出成形品の応力複屈折検査
 比較例1で合成したポリマー12を成形条件を調整しながら射出成形し50個の成形品を作製した。歪検査計で成形体の面方向の応力複屈折を観察すると、程度は異なるものの何れの成形品にも端部に応力複屈折が観察された。
[実施例24]ポリマー15の合成
 5-シアノ-ビシクロ[2.2.1]ヘプト-2-エン(24.9g)と8-シアノ-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(16.5g)の2種類のモノマー、および1-へキセン(8.5g)のテトラヒドロフラン溶液に、重合触媒Mo(N-2,6-Pr )(CHCMePh)(OBut(18mg)のテトラヒドロフラン溶液を添加し、60℃にてモノマーを完全に反応消費して開環メタセシス重合を行った。得られたポリマーのオレフィン部を水素添加触媒(PhP)CORuHCl(18.4mg)とトリエチルアミン(5.9mg)を用いて、水素加圧下、125℃で水素添加反応を行い、ポリ(1-シアノ-3,5-シクロペンチレンエチレン)/(3-シアノ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)共重合体のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し41gのポリマー15を得た。水素添加率は100%、組成比〔A〕/〔B〕=70/30、重量平均分子量(Mw)は63000、分子量分布(Mw/Mn)は2.71、ガラス転移温度は117℃であった。
[実施例25]ポリマー16の合成
 実施例24におけるの2種類のモノマーのモル比を〔A〕/〔B〕=10/90に変えた以外は、実施例1と同様な方法により40gのポリマー16を得た。水素添加率は100%、組成比〔A〕/〔B〕=10/90、重量平均分子量(Mw)は65000、分子量分布(Mw/Mn)は2.83、ガラス転移温度は206℃であった。
[実施例26]ポリマー17の合成
 5,5,6-トリフルオロ-6-トリフルオロメチル-ビシクロ[2.2.1]ヘプト-2-エン(21.3g)と8, 8, 9-トリフルオロ-9-トリフルオロメチル-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(18.5g)の2種類のモノマー、および1,5-ヘキサジエン(0.36g)のテトラヒドロフラン溶液に、Mo(N-2,6-Pr )(CHCMePh)(OBut(17mg)のテトラヒドロフラン溶液を添加し、70℃にてモノマーを完全に反応消費して開環メタセシス重合を行った。得られたポリマーのオレフィン部を5%パラジウム/アルミナ担持水素添加触媒(2.0g)を用いて、水素加圧下、160℃で水素添加反応を行い、ポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)/(3, 3, 4-トリフルオロ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)の共重合体のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し39gのポリマー17を得た。水素添加率は100%、組成比〔A〕/〔B〕=60/40、重量平均分子量(Mw)は74000、分子量分布(Mw/Mn)は3.12、ガラス転移温度は138℃であった。
[実施例27]ポリマー18の合成
 実施例24の構造単位〔B〕のモノマーを8, 8, 9-トリフルオロ-9-トリフルオロメチル-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(25.5g)に変更し、仕込みモル比を〔A〕/〔B〕=60/40に変更した以外は実施例24と同様な方法により41gのポリマー18を得た。水素添加率は100%、組成比〔A〕/〔B〕=60/40、重量平均分子量(Mw)は56000、分子量分布(Mw/Mn)は3.61、ガラス転移温度は129℃であった。
[実施例28]ポリマー19の合成
 5-シアノ-ビシクロ[2.2.1]ヘプト-2-エン(7.7g)、8-シアノ-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(28.5g)と5-メトキシカルボニル-ビシクロ[2.2.1]ヘプト-2-エン(5.8g)の3種類のモノマー、および1-へキセン(7.4g)のテトラヒドロフラン溶液に、重合触媒Mo(N-2,6-Pr )(CHCMePh)(OBut(18mg)のテトラヒドロフラン溶液を添加し、60℃にてモノマーを完全に反応消費して開環メタセシス重合を行った。得られたポリマーのオレフィン部を水素添加触媒(PhP)CORuHCl(18.4mg)とトリエチルアミン(5.9mg)を用いて、水素加圧下、125℃で水素添加反応を行い、ポリ(1-シアノ-3,5-シクロペンチレンエチレン)/(3-シアノ-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)/(1-メトキシカルボニル-3,5-シクロペンチレンエチレン)の共重合体のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し41gのポリマー19を得た。水素添加率は100%、組成比〔A〕/〔B〕/〔C〕=25/60/15(〔A〕/〔B〕=30/70、〔C〕/(〔A〕+〔B〕)=15/85)、重量平均分子量(Mw)は62000、分子量分布(Mw/Mn)は2.99、ガラス転移温度は145℃であった。また、図6にポリマー19の13C-NMRスペクトルを示す。
[実施例29]ポリマー20の合成
 実施例28における3種類のモノマーのモル比を〔A〕/〔B〕/〔C〕=17/68/15に変えた以外は実施例28と同様な方法により39gのポリマー20を得た。水素添加率は100%、組成比〔A〕/〔B〕/〔C〕=17/68/15、(〔A〕/〔B〕=20/80、〔C〕/(〔A〕+〔B〕)=15/85)、重量平均分子量(Mw)は63000、分子量分布(Mw/Mn)は2.98、ガラス転移温度は158℃であった。
[実施例30]ポリマー21の合成
 実施例28における構造単位〔C〕のモノマーを5-メチル-ビシクロ[2.2.1]ヘプト-2-エン(2.6g)に変更し、3種類のモノマーのモル比を〔A〕/〔B〕/〔C〕=18/72/10に変えた以外は実施例28と同様な方法により40gのポリマー21を得た。水素添加率は100%、組成比〔A〕/〔B〕/〔C〕=18/72/10(〔A〕/〔B〕=20/80、〔C〕/(〔A〕+〔B〕)=10/90)、重量平均分子量(Mw)は67000、分子量分布(Mw/Mn)は2.95、ガラス転移温度は172℃であった。
[実施例31]ポリマー22の合成
 実施例28における構造単位〔C〕のモノマーをビシクロ[2.2.1]ヘプト-2-エン(1.1g)に変更し、3種類のモノマーのモル比を〔A〕/〔B〕/〔C〕=19/76/5に変えた以外は実施例28と同様な方法により38gのポリマー22を得た。水素添加率は100%、組成比〔A〕/〔B〕/〔C〕=19/76/5、(〔A〕/〔B〕=20/80、〔C〕/(〔A〕+〔B〕)=5/95)、重量平均分子量(Mw)は64000、分子量分布(Mw/Mn)は2.92、ガラス転移温度は180℃であった。
[実施例32]ポリマー23の合成
 5,5,6-トリフルオロ-6-トリフルオロメチル-ビシクロ[2.2.1]ヘプト-2-エン(6.2g)、8, 8, 9-トリフルオロ-9-トリフルオロメチル-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(32.6g)と5-メトキシカルボニル-ビシクロ[2.2.1]ヘプト-2-エン(2.4g)の3種類のモノマー、および1,5-ヘキサジエン(0.26g)のテトラヒドロフラン溶液に、Mo(N-2,6-Pr )(CHCMePh)(OBut(17mg)のテトラヒドロフラン溶液を添加し、70℃にてモノマーを完全に反応消費して開環メタセシス重合を行った。得られたポリマーのオレフィン部を5%パラジウム/アルミナ担持水素添加触媒(2.1g)を用いて、水素加圧下、160℃で水素添加反応を行い、ポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)/(3, 3, 4-トリフルオロ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)/(1-メトキシカルボニル-3,5-シクロペンチレンエチレン)の共重合体のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し40gのポリマー23を得た。水素添加率は100%、組成比〔A〕/〔B〕/〔C〕=18/72/10(〔A〕/〔B〕=20/80、〔C〕/(〔A〕+〔B〕)=10/90)、重量平均分子量(Mw)は72000、分子量分布(Mw/Mn)は3.24、ガラス転移温度は144℃であった。
[実施例33]ポリマー24の合成
 実施例28における構造単位〔C〕のモノマーを8-メトキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(8.3g)に変更し、3種類のモノマーのモル比を〔A〕/〔B〕/〔C〕=17/68/15に変えた以外は実施例28と同様な方法により45gのポリマー24を得た。水素添加率は100%、組成比〔A〕/〔B〕/〔C〕=17/68/15(〔A〕/〔B〕=20/80、〔C〕/(〔A〕+〔B〕)=15/85)、重量平均分子量(Mw)は64000、分子量分布(Mw/Mn)は2.91、ガラス転移温度は184℃であった。
[実施例34]ポリマー25の合成
 実施例32における構造単位〔C〕のモノマーを8-メトキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(5.5g)に変更し、モノマーのモル比を〔A〕/〔B〕/〔C〕=17/68/15に変えた以外は実施例32と同様な方法により43gのポリマー25を得た。水素添加率は100%、組成比〔A〕/〔B〕/〔C〕=17/68/15(〔A〕/〔B〕=20/80、〔C〕/(〔A〕+〔B〕)=15/85)、重量平均分子量(Mw)は71000、分子量分布(Mw/Mn)は3.11、ガラス転移温度は165℃であった。
[実施例35]
 実施例24で合成したポリマー15を20質量%濃度で溶解したシクロヘキサノン溶液をガラス基板に塗布し、アプリケーターを用いて均一にコートした後、180℃で30分乾燥し剥離する事で厚み40.6μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は、6.7×10-12Pa-1であった。137℃で1.2倍および1.7倍延伸した表面平滑なフィルムのラマンシフト1451cm-1のピークの強度比から算出した二色比はそれぞれ1.015および1.019、配向係数の絶対値はそれぞれ0.0049および0.0064であり、配向複屈折の絶対値はそれぞれ3.3×10-4および4.3×10-4であり、△OB/△Fの絶対値は0.067であった。
[実施例36]
 実施例25で合成したポリマー16を実施例35と同様な方法により厚み40.8μmの表面平滑なフィルムを得た。226℃で1.3倍および1.8倍延伸した表面平滑なフィルムのラマンシフト1451cm-1のピークの強度比から算出した二色比はそれぞれ1.005および1.007、配向係数の絶対値はそれぞれ0.0017および0.0023であり、配向複屈折の絶対値はそれぞれ0.3×10-4および0.4×10-4であり、△OB/△Fの絶対値は0.017であった。
[実施例37]
 実施例26で合成したポリマー17を実施例35と同様な方法により厚み40.5μmの表面平滑なフィルムを得た。158℃で1.2倍および1.6倍延伸した表面平滑なフィルムのラマンシフト1452cm-1のピークの強度比から算出した二色比はそれぞれ1.005および1.007、配向係数の絶対値はそれぞれ0.0016および0.0022であり、配向複屈折の絶対値はそれぞれ3.1×10-4および4.2×10-4であり、△OB/△Fの絶対値は0.183であった。
[実施例38]
 実施例27で合成したポリマー18を実施例35と同様な方法により厚み40.2μmの表面平滑なフィルムを得た。149℃で1.2倍および1.4倍延伸した表面平滑なフィルムのラマンシフト1452cm-1のピークの強度比から算出した二色比はそれぞれ1.014および1.272、配向係数の絶対値はそれぞれ0.0045および0.0090であり、配向複屈折の絶対値はそれぞれ1.8×10-4および3.6×10-4であり、△OB/△Fの絶対値は0.040であった。
[実施例39]
 実施例28で合成したポリマー19を実施例35と同様な方法により厚み40.9μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は、5.1×10-12Pa-1であった。165℃で1.2倍および1.4倍延伸した表面平滑なフィルムのラマンシフト1451cm-1のピークの強度比から算出した二色比はそれぞれ1.010および1.011、配向係数の絶対値はそれぞれ0.0027および0.0037であり、配向複屈折の絶対値はそれぞれ2.7×10-4および3.7×10-4であり、△OB/△Fの絶対値は0.100であった。
 また、同温度で2.4倍延伸した表面平滑なフィルムのラマンシフト1451cm-1のピークの強度比から算出した二色比は1.014、配向係数の絶対値は0.0048であり、配向複屈折の絶対値は4.8×10-4であった。2.4倍延伸フィルムの垂直および平行偏光のラマンスペクトルを図7に示す。
[実施例40]
 実施例29で合成したポリマー20を実施例35と同様な方法により厚み40.1μmの表面平滑なフィルムを得た。178℃で1.2倍および1.5倍延伸した表面平滑なフィルムのラマンシフト1452cm-1のピークの強度比から算出した二色比はそれぞれ1.015および1.021、配向係数の絶対値はそれぞれ0.0049および0.0069であり、配向複屈折の絶対値はそれぞれ2.9×10-4および4.2×10-4であり、△OB/△Fの絶対値は0.065であった。
[実施例41]
 実施例30で合成したポリマー21を実施例35と同様な方法により厚み39.1μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は、3.7×10-12Pa-1であった。192℃で1.2倍および1.5倍延伸した表面平滑なフィルムのラマンシフト1452cm-1のピークの強度比から算出した二色比はそれぞれ1.006および1.015、配向係数の絶対値はそれぞれ0.0020および0.0029であり、配向複屈折の絶対値はそれぞれ2.1×10-4および2.9×10-4であり、△OB/△Fの絶対値は0.089であった。
[実施例42]
 実施例31で合成したポリマー22を実施例35と同様な方法により厚み39.6μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は、4.1×10-12Pa-1であった。200℃で1.2倍および1.6倍延伸した表面平滑なフィルムのラマンシフト1452cm-1のピークの強度比から算出した二色比はそれぞれ1.012および1.015、配向係数の絶対値はそれぞれ0.0039および0.0051であり、配向複屈折の絶対値はそれぞれ1.9×10-4および2.5×10-4であり、△OB/△Fの絶対値は0.050であった。
[実施例43]
 実施例32で合成したポリマー23を実施例35と同様な方法により厚み41.1μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は、6.9×10-12Pa-1であった。164℃で1.1倍および1.3倍延伸した表面平滑なフィルムのラマンシフト1452cm-1のピークの強度比から算出した二色比はそれぞれ1.005および1.006、配向係数の絶対値はそれぞれ0.0017および0.0020であり、配向複屈折の絶対値はそれぞれ3.5×10-4および4.1×10-4であり、△OB/△Fの絶対値は0.200であった。
[実施例44]
 実施例33で合成したポリマー24を実施例35と同様な方法により厚み39.9μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は、5.9×10-12Pa-1であった。204℃で1.2倍および1.5倍延伸した表面平滑なフィルムのラマンシフト1452cm-1のピークの強度比から算出した二色比はそれぞれ1.007および1.011、配向係数の絶対値はそれぞれ0.0024および0.0038であり、配向複屈折の絶対値はそれぞれ1.2×10-4および1.9×10-4であり、△OB/△Fの絶対値は0.050であった。
[実施例45]
 実施例34で合成したポリマー25を実施例35と同様な方法により厚み40.5μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は、6.5×10-12Pa-1であった。185℃で1.3倍および1.6倍延伸した表面平滑なフィルムのラマンシフト1451cm-1のピークの強度比から算出した二色比はそれぞれ1.003および1.005、配向係数の絶対値はそれぞれ0.0011および0.0017であり、配向複屈折の絶対値はそれぞれ1.9×10-4および3.1×10-4であり、△OB/△Fの絶対値は0.200であった。
 実施例35~45で得られたフィルムは、配向係数の絶対値が0.001以上であり、配向複屈折の絶対値が5×10-4以下であることで、成形時の温度、圧力条件などの制限を受けずに透明性が高く、靭性、引張り、曲げによる強度または弾性率に優れる光学フィルムを得ることができることが推察された。
[実施例46]射出成形品の応力複屈折検査
 実施例28で合成したポリマー19をポリマー溶融の加熱混練部の設定温度、および金型の設定温度を実施例23より30℃低い温度に設定した以外は実施例23と同様な方法で射出成形し、38個の成形品を作製した。歪検査計で成形品の面方向の応力複屈折を観察すると、面転写性良く、ヒケも無く成形した20個の成形品に応力複屈折は観察されなかった。
 この結果から、実施例23のポリマー1と同じ、組成比〔A〕/〔B〕=30/70であり、かつ、組成比〔C〕/(〔A〕+〔B〕)=15/85である光学材料によれば、ガラス転移温度が33℃低くなり、溶融流動性を良くしたことでそれぞれの設定温度が低くしても、成形時の温度、圧力条件などの制限を受けずに透明性が高く、靭性に優れる成形体が得ることができ、光学レンズに広く適用できることが確認された。また、実施例28~34で合成したポリマーから得られた成形品においても同様の結果が得られることが推察された。
[比較例6]ポリマー26の合成と複屈折測定
 5-メチル-ビシクロ[2.2.1]ヘプト-2-エン(5.4g)と8-メチル-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(35.1g)の2種類のモノマー、および1-へキセン(7.3g)のテトラヒドロフラン溶液に、重合触媒Mo(N-2,6-Pr )(CHCMePh)(OBut(18mg)のテトラヒドロフラン溶液を添加し、60℃にてモノマーを完全に反応消費して開環メタセシス重合を行った。得られたポリマーのオレフィン部を水素添加触媒(PhP)CORuHCl(18.4mg)とトリエチルアミン(5.9mg)を用いて、水素加圧下、125℃で水素添加反応を行い、ポリ(1-メチル-3,5-シクロペンチレンエチレン)/(3-メチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)の共重合体のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し40gのポリマー26を得た。水素添加率は100%、組成比〔A〕/〔B〕=20/80、重量平均分子量(Mw)は52000、分子量分布(Mw/Mn)は2.37、ガラス転移温度は129℃であった。
 次いで、実施例35と同様な方法により39.4μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は、1.3×10-12Pa-1であった。149℃で1.2倍および1.4倍延伸した表面平滑なフィルムのラマンシフト1450cm-1のピークの強度比から算出した二色比はそれぞれ1.004および1.009、配向係数の絶対値はそれぞれ0.0014および0.0029であり、配向複屈折の絶対値はそれぞれ5.3×10-4および10.9×10-4であり、△OB/△Fの絶対値は0.373であった。
[比較例7]ポリマー27の合成と複屈折測定
 5-メトキシカルボニル-ビシクロ[2.2.1]ヘプト-2-エン(9.0g)と8-メトキシカルボニル-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(30.1g)の2種類のモノマー、および1-へキセン(5.7g)のテトラヒドロフラン溶液に、重合触媒Mo(N-2,6-Pr )(CHCMePh)(OBut(18mg)のテトラヒドロフラン溶液を添加し、60℃にてモノマーを完全に反応消費して開環メタセシス重合を行った。得られたポリマーのオレフィン部を水素添加触媒(PhP)CORuHCl(18.4mg)とトリエチルアミン(5.9mg)を用いて、水素加圧下、125℃で水素添加反応を行い、ポリ(1-メトキシカルボニル-3,5-シクロペンチレンエチレン)/(3-メトキシカルボニル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)の共重合体のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し39gのポリマー27を得た。水素添加率は100%、組成比〔A〕/〔B〕=30/70、重量平均分子量(Mw)は51000、分子量分布(Mw/Mn)は2.66、ガラス転移温度は113℃であった。
 次いで、実施例35と同様な方法により40.1μmの表面平滑なフィルムを得た。同フィルムの光弾性定数の絶対値は、12.8×10-12Pa-1であった。133℃で1.1倍および1.4倍延伸した表面平滑なフィルムのラマンシフト1450cm-1のピークの強度比から算出した二色比はそれぞれ1.006および1.014、配向係数の絶対値はそれぞれ0.0020および0.0045であり、配向複屈折の絶対値はそれぞれ8.1×10-4および18.4×10-4であり、△OB/△Fの絶対値は0.412であった。
[比較例8]ポリマー28の合成と複屈折測定
 5-メトキシカルボニル-ビシクロ[2.2.1]ヘプト-2-エン(45.0g)の1種類のモノマーおよび1-ヘキセン(8.8g)のテトラヒドロフラン溶液に、重合触媒Mo(N-2,6-Me)(CHCMePh)(OBut(18mg)のテトラヒドロフラン溶液を添加し、60℃にてモノマーを完全に反応消費して開環メタセシス重合を行った。得られたポリマーのオレフィン部を実施例24と同様に水素添加し、ポリ(1-メトキシカルボニル-3,5-シクロペンチレンエチレン)のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し43gのポリマー28を得た。水素添加率は100%、重量平均分子量(Mw)は49000、分子量分布(Mw/Mn)は2.69、ガラス転移温度は41℃であった。
 次いで、ポリマー28を用いて実施例35と同様な方法により39.9μmの表面平滑なフィルムを得た。61℃で1.2倍および1.4倍延伸した表面平滑なフィルムのラマンシフト1450cm-1のピークの強度比から算出した二色比はそれぞれ1.004および1.008、配向係数の絶対値はそれぞれ0.0012および0.0026であり、配向複屈折の絶対値はそれぞれ10.1×10-4および22.4×10-4であり、△OB/△Fの絶対値は0.879であった。
 本発明は以下の態様も取り得る。
(a) 少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99の環状オレフィンコポリマーを含む光学材料であって、
 前記光学材料から得られる成形体において、ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値の変化量△Fに対して、
 前記光学材料から得られる延伸フィルムにおいて、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値の変化量△OBで表わされる△OB/△Fの絶対値が0.001~0.250であることを特徴とする光学材料。
Figure JPOXMLDOC01-appb-C000022
(式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、またはフッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、シアノ、またはシアノを含有する炭素数2~10のアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、または、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数3~10のアルコキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
Figure JPOXMLDOC01-appb-C000023
(式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、またはフッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、シアノ、またはシアノを含有する炭素数2~10のアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、または、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数3~10のアルコキシカルボニルアルキルから選ばれ、R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
(b) 少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99の環状オレフィンコポリマーを含む光学材料であって、
 前記光学材料から得られる成形体において、ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値が0.001以上であり、
 前記光学材料から得られる延伸フィルムにおいて、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値が5×10-4以下である前記(a)に記載の光学材料。
(c) 少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99の環状オレフィンコポリマーを含む光学材料であって、
 前記光学材料から得られるフィルムにおいて、0.1mm/minの速度で最大2Nの引張り力を印加して波長633nmにおける位相差を測定し、下記式(12)から得られた光弾性定数の絶対値が7×10-12Pa-1以下であることを特徴とする前記(a)または(b)に記載の光学材料。
式:光弾性定数(Pa-1)=△Re(nm)/△P(N)×フィルム幅(mm) (12)
(△Re:位相差の変化量、△P:応力の印加に伴って位相差が直線的に増加する範囲の引張り力の変化量)
(d) 少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が=95/5~1/99の環状オレフィンコポリマーを含む光学材料からなるフィルムを延伸して得られる光学フィルムであって、
 ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値が0.001以上であり、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値が5×10-4以下であることを特徴とする光学フィルム。
Figure JPOXMLDOC01-appb-C000024
(式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、またはフッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、シアノ、またはシアノを含有する炭素数2~10のアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、または、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数3~10のアルコキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
Figure JPOXMLDOC01-appb-C000025
(式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、またはフッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、シアノ、またはシアノを含有する炭素数2~10のアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、または、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数3~10のアルコキシカルボニルアルキルから選ばれ、R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
(e) 少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99の環状オレフィンコポリマーを含み、得られるフィルムにおいて、0.1mm/minの速度で最大2Nの引張り力を印加して波長633nmにおける位相差を測定し、下記式(12)から得られた光弾性定数の絶対値が7×10-12Pa-1以下である光学材料を成形して得られることを特徴とする光学レンズ。
式:光弾性定数(Pa-1)=△Re(nm)/△P(N)×フィルム幅(mm) (12)
(△Re:位相差の変化量、△P:応力の印加に伴って位相差が直線的に増加する範囲の引張り力の変化量)
Figure JPOXMLDOC01-appb-C000026
(式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、またはフッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、シアノ、またはシアノを含有する炭素数2~10のアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、または、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数3~10のアルコキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
Figure JPOXMLDOC01-appb-C000027
(式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、またはフッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、シアノ、またはシアノを含有する炭素数2~10のアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、または、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数3~10のアルコキシカルボニルアルキルから選ばれ、R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
 本発明の配向複屈折および光弾性定数が非常に小さい光学材料およびその成形物は、反射防止フィルター、記録メディア、ディスプレイ材料、有機ELや液晶プラスチック部材等の電子デバイス材料用途等の光学フィルム、マイクロレンズ、ピックアップレンズ、撮像レンズ、光学素子(マイクロレンズアレイ、光導波路、光スイッチング、フレネルゾーンプレート、バイナリー光学素子、ブレーズ回折光学素子など)等の光学レンズとして有用であり工業的価値が極めて高い。

Claims (10)

  1.  少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99の環状オレフィンコポリマーを含む光学材料であって、
     前記光学材料から得られる成形体において、ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値の変化量△Fに対して、
     前記光学材料から得られる延伸フィルムにおいて、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値の変化量△OBで表わされる△OB/△Fの絶対値が0.001~0.250であることを特徴とする光学材料。
    Figure JPOXMLDOC01-appb-C000028
    (式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
    Figure JPOXMLDOC01-appb-C000029
    (式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
  2.  少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99で構成し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有し、そのモル比〔C〕/(〔A〕+〔B〕)が1/99~40/60の環状オレフィンコポリマーを含む光学材料であって、
     前記光学材料から得られる成形体において、ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値の変化量△Fに対して、
     前記光学材料から得られる延伸フィルムにおいて、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値の変化量△OBで表わされる△OB/△Fの絶対値が0.001~0.250であることを特徴とする光学材料。
    Figure JPOXMLDOC01-appb-C000030
    (式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
    Figure JPOXMLDOC01-appb-C000031
    (式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
    Figure JPOXMLDOC01-appb-C000032
    (式(3)中、R13~R16は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R13~R16が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR17-、-PR18-、および-CR1718-から(R17、R18はそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれ、同一でも異なってもよい。nは0または1を表す。)
  3.  少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99の環状オレフィンコポリマーを含む光学材料であって、
     前記光学材料から得られる成形体において、ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値が0.001以上であり、
     前記光学材料から得られる延伸フィルムにおいて、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値が5×10-4以下であることを特徴とする請求項1に記載の光学材料。
  4.  少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99で構成し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有し、そのモル比〔C〕/(〔A〕+〔B〕)が1/99~40/60の環状オレフィンコポリマーを含む光学材料であって、
     前記光学材料から得られる成形体において、ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値が0.001以上であり、
     前記光学材料から得られる延伸フィルムにおいて、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値が5×10-4以下であることを特徴とする請求項2に記載の光学材料。
  5.  少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99の環状オレフィンコポリマーを含む光学材料であって、
     前記光学材料から得られるフィルムにおいて、0.1mm/minの速度で最大2Nの引張り力を印加して波長633nmにおける位相差を測定し、下記式(12)から得られた光弾性定数の絶対値が7×10-12Pa-1以下であることを特徴とする請求項1に記載の光学材料。
    式:光弾性定数(Pa-1)=△Re(nm)/△P(N)×フィルム幅(mm) (12)
    (△Re:位相差の変化量、△P:応力の印加に伴って位相差が直線的に増加する範囲の引張り力の変化量)
  6.  少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99で構成し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有し、そのモル比〔C〕/(〔A〕+〔B〕)が1/99~40/60の環状オレフィンコポリマーを含む光学材料であって、
     前記光学材料から得られるフィルムにおいて、0.1mm/minの速度で最大2Nの引張り力を印加して波長633nmにおける位相差を測定し、下記式(12)から得られた光弾性定数の絶対値が7×10-12Pa-1以下であることを特徴とする請求項2に記載の光学材料。
    式:光弾性定数(Pa-1)=△Re(nm)/△P(N)×フィルム幅(mm) (12)
    (△Re:位相差の変化量、△P:応力の印加に伴って位相差が直線的に増加する範囲の引張り力の変化量)
  7.  少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が=95/5~1/99の環状オレフィンコポリマーを含む光学材料からなるフィルムを延伸して得られる光学フィルムであって、
     ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値が0.001以上であり、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値が5×10-4以下であることを特徴とする光学フィルム。
    Figure JPOXMLDOC01-appb-C000033
    (式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
    Figure JPOXMLDOC01-appb-C000034
    (式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
  8.  少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99の環状オレフィンコポリマーを含み、得られるフィルムにおいて、0.1mm/minの速度で最大2Nの引張り力を印加して波長633nmにおける位相差を測定し、下記式(12)から得られた光弾性定数の絶対値が7×10-12Pa-1以下である光学材料を成形して得られることを特徴とする光学レンズ。
    式:光弾性定数(Pa-1)=△Re(nm)/△P(N)×フィルム幅(mm) (12)
    (△Re:位相差の変化量、△P:応力の印加に伴って位相差が直線的に増加する範囲の引張り力の変化量)
    Figure JPOXMLDOC01-appb-C000035
    (式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
    Figure JPOXMLDOC01-appb-C000036
    (式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
  9.  少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99で構成し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有し、そのモル比〔C〕/(〔A〕+〔B〕)が1/99~40/60の環状オレフィンコポリマーを含む光学材料からなるフィルムを延伸して得られる光学フィルムであって、
     ラマン分光法による1500~1400cm-1における配向方向に対しての平行光強度Iと垂直光強度Iの二色比D=I/Iの関数である配向係数F=(D-1)/(D+2)の絶対値が0.001以上であり、波長633nmの位相差(nm)/膜厚(μm)から算出される配向複屈折の絶対値が5×10-4以下であることを特徴とする光学フィルム。
    Figure JPOXMLDOC01-appb-C000037
    (式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
    Figure JPOXMLDOC01-appb-C000038
    (式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
    Figure JPOXMLDOC01-appb-C000039
    (式(3)中、R13~R16は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R13~R16が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR17-、-PR18-、および-CR1718-から(R17、R18はそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれ、同一でも異なってもよい。nは0または1を表す。)
  10.  少なくとも、一般式(1)で表される繰り返し構造単位〔A〕と一般式(2)で表される繰り返し構造単位〔B〕とを含有し、そのモル比〔A〕/〔B〕が95/5~1/99で構成し、かつ、一般式(3)で表される繰り返し構造単位〔C〕を含有し、そのモル比〔C〕/(〔A〕+〔B〕)が1/99~40/60の環状オレフィンコポリマーを含み、得られるフィルムにおいて、0.1mm/minの速度で最大2Nの引張り力を印加して波長633nmにおける位相差を測定し、下記式(12)から得られた光弾性定数の絶対値が7×10-12Pa-1以下である光学材料を成形して得られることを特徴とする光学レンズ。
    式:光弾性定数(Pa-1)=△Re(nm)/△P(N)×フィルム幅(mm) (12)
    (△Re:位相差の変化量、△P:応力の印加に伴って位相差が直線的に増加する範囲の引張り力の変化量)
    Figure JPOXMLDOC01-appb-C000040
    (式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~Rがフッ素を含有しない基、またはシアノを含有しない基である場合、R~Rは、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~Rが互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。)
    Figure JPOXMLDOC01-appb-C000041
    (式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数7~20のアリールオキシカルボニルアルキル、シアノ、シアノを含有する炭素数2~10のアルキル、シアノを含有する炭素数2~10のアルコキシ、シアノを含有する炭素数3~10のアルコキシアルキル、シアノを含有する炭素数7~20のアリール、シアノを含有する炭素数3~10のアルコキシカルボニル、シアノを含有する炭素数8~20のアリールオキシカルボニル、シアノを含有する炭素数4~10のアルコキシカルボニルアルキル、またはシアノを含有する炭素数8~20のアリールオキシカルボニルアルキルである。R~R10がフッ素を含有しない基、またはシアノを含有しない基である場合、R~R10は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R~R10が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選ばれ、同一でも異なってもよい。nは1~3を表す。)
    Figure JPOXMLDOC01-appb-C000042
    (式(3)中、R13~R16は、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。R13~R16が互いに結合して環構造を形成していてもよい。Xは-O-、-S-、-NR17-、-PR18-、および-CR1718-から(R17、R18はそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれ、同一でも異なってもよい。nは0または1を表す。) 
PCT/JP2011/002011 2010-04-06 2011-04-04 光学材料およびその成形物 WO2011125323A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012509314A JPWO2011125323A1 (ja) 2010-04-06 2011-04-04 光学材料およびその成形物
CN201180017507.2A CN102906150B (zh) 2010-04-06 2011-04-04 光学材料及其成型物
US13/639,124 US9128238B2 (en) 2010-04-06 2011-04-04 Optical material and molded product thereof
KR1020127028990A KR101467653B1 (ko) 2010-04-06 2011-04-04 광학 재료 및 그의 성형물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-088086 2010-04-06
JP2010088086 2010-04-06

Publications (1)

Publication Number Publication Date
WO2011125323A1 true WO2011125323A1 (ja) 2011-10-13

Family

ID=44762294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002011 WO2011125323A1 (ja) 2010-04-06 2011-04-04 光学材料およびその成形物

Country Status (6)

Country Link
US (1) US9128238B2 (ja)
JP (1) JPWO2011125323A1 (ja)
KR (1) KR101467653B1 (ja)
CN (1) CN102906150B (ja)
TW (1) TWI515218B (ja)
WO (1) WO2011125323A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162928A1 (ja) * 2013-04-03 2014-10-09 三井化学株式会社 光学フィルム
US9643130B2 (en) 2015-03-31 2017-05-09 Pall Corporation Hydrophilically modified fluorinated membrane (IV)
US9849428B2 (en) 2015-04-30 2017-12-26 Pall Corporation Hydrophilically modified fluorinated membrane (VI)
US10213750B2 (en) 2015-03-31 2019-02-26 Pall Corporation Hydrophilically modified fluorinated membrane (I)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160047029A (ko) 2014-10-21 2016-05-02 삼성디스플레이 주식회사 배향막 및 이를 포함하는 액정 표시 장치
US9643131B2 (en) 2015-07-31 2017-05-09 Pall Corporation Hydrophilic porous polytetrafluoroethylene membrane (I)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206985A (ja) * 1993-01-08 1994-07-26 Japan Synthetic Rubber Co Ltd (水添)ノルボルネン系重合体
JPH1112348A (ja) * 1997-06-24 1999-01-19 Mitsui Chem Inc 環状オレフィンの開環メタセシス重合方法
JP2003014901A (ja) * 2001-04-27 2003-01-15 Jsr Corp 熱可塑性ノルボルネン系樹脂系光学用フィルム
JP2006511628A (ja) * 2002-05-07 2006-04-06 ハネウェル・インターナショナル・インコーポレーテッド フッ素化ポリマー
JP2007177046A (ja) * 2005-12-27 2007-07-12 Mitsui Chemicals Inc フッ素含有環状オレフィンポリマーを用いた光学部品
WO2008010317A1 (fr) * 2006-07-21 2008-01-24 Mitsui Chemicals, Inc. Polymères de métathèse d'ouverture de cycle, ses produits d'hydrogénation, leur procédé de fabrication et leurs utilisations
JP2009169086A (ja) * 2008-01-16 2009-07-30 Jsr Corp 積層光学フィルムの製造方法、積層光学フィルムならびにその用途
JP2009203461A (ja) * 2008-01-31 2009-09-10 Jsr Corp 成形体の製造方法および光学射出成形体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221915A (ja) 2000-02-07 2001-08-17 Kanegafuchi Chem Ind Co Ltd 光学フィルム並びにそれよりなる偏光子保護フィルムおよび偏光板
JP3899511B2 (ja) 2001-04-27 2007-03-28 Jsr株式会社 熱可塑性ノルボルネン系樹脂系光学用フィルム
WO2004033525A1 (ja) * 2002-10-08 2004-04-22 Jsr Corporation 環状オレフィン系開環共重合体およびその製造方法並びに光学材料
JP4536344B2 (ja) 2003-08-27 2010-09-01 康博 小池 非複屈折性光学樹脂材料、同材料の製造方法並びに同材料を用いた光学素子
US7288296B2 (en) * 2004-06-03 2007-10-30 Nitto Denko Corporation Multilayer optical compensator, liquid crystal display, and process
JP2009178941A (ja) * 2008-01-31 2009-08-13 Jsr Corp 成形体の製造方法および光学射出成形体
JP5074956B2 (ja) 2008-02-27 2012-11-14 康博 小池 低複屈折性光学樹脂材料及び光学部材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206985A (ja) * 1993-01-08 1994-07-26 Japan Synthetic Rubber Co Ltd (水添)ノルボルネン系重合体
JPH1112348A (ja) * 1997-06-24 1999-01-19 Mitsui Chem Inc 環状オレフィンの開環メタセシス重合方法
JP2003014901A (ja) * 2001-04-27 2003-01-15 Jsr Corp 熱可塑性ノルボルネン系樹脂系光学用フィルム
JP2006511628A (ja) * 2002-05-07 2006-04-06 ハネウェル・インターナショナル・インコーポレーテッド フッ素化ポリマー
JP2007177046A (ja) * 2005-12-27 2007-07-12 Mitsui Chemicals Inc フッ素含有環状オレフィンポリマーを用いた光学部品
WO2008010317A1 (fr) * 2006-07-21 2008-01-24 Mitsui Chemicals, Inc. Polymères de métathèse d'ouverture de cycle, ses produits d'hydrogénation, leur procédé de fabrication et leurs utilisations
JP2009169086A (ja) * 2008-01-16 2009-07-30 Jsr Corp 積層光学フィルムの製造方法、積層光学フィルムならびにその用途
JP2009203461A (ja) * 2008-01-31 2009-09-10 Jsr Corp 成形体の製造方法および光学射出成形体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162928A1 (ja) * 2013-04-03 2014-10-09 三井化学株式会社 光学フィルム
JPWO2014162928A1 (ja) * 2013-04-03 2017-02-16 三井化学株式会社 光学フィルムおよびその製造方法
KR101805280B1 (ko) 2013-04-03 2017-12-05 미쓰이 가가쿠 가부시키가이샤 광학 필름
US10035889B2 (en) 2013-04-03 2018-07-31 Mitsui Chemicals, Inc. Optical film
US9643130B2 (en) 2015-03-31 2017-05-09 Pall Corporation Hydrophilically modified fluorinated membrane (IV)
US10213750B2 (en) 2015-03-31 2019-02-26 Pall Corporation Hydrophilically modified fluorinated membrane (I)
US9849428B2 (en) 2015-04-30 2017-12-26 Pall Corporation Hydrophilically modified fluorinated membrane (VI)

Also Published As

Publication number Publication date
US9128238B2 (en) 2015-09-08
US20130030136A1 (en) 2013-01-31
TWI515218B (zh) 2016-01-01
CN102906150B (zh) 2014-11-19
KR20130029385A (ko) 2013-03-22
JPWO2011125323A1 (ja) 2013-07-08
CN102906150A (zh) 2013-01-30
TW201202294A (en) 2012-01-16
KR101467653B1 (ko) 2014-12-01

Similar Documents

Publication Publication Date Title
WO2011125323A1 (ja) 光学材料およびその成形物
JP5135799B2 (ja) 熱可塑性樹脂組成物、光学フィルムおよび延伸フィルム
KR20160030189A (ko) 광학용 필름 및 그의 제조 방법
CN101395502B (zh) 层叠偏光膜、相位差膜和液晶显示装置
JP4739636B2 (ja) 位相差フィルムの製造方法
JP2004309979A (ja) 位相差フィルムおよび偏光板
KR20160118383A (ko) 위상차 필름 및 그 제조 방법, 편광판, 및 표시장치
JP5374820B2 (ja) 熱可塑性樹脂組成物およびそれからなる光学フィルム
TW200815494A (en) Cyclic olefin resin composition, optical film and retardation plate using the composition, and their production methods
US20100060827A1 (en) Optical films, retardation films, and liquid crystal display comprising the same
JP2008163287A (ja) 樹脂組成物、光学フィルムおよびその製造方法ならびにその用途
EP3318387B1 (en) Long film and method for producing same
JP5391514B2 (ja) 環状オレフィン系共重合体およびその製造方法ならびに用途
JP2017134305A (ja) 延伸フィルム、製造方法、偏光板及び表示装置
JP6777176B2 (ja) 光学積層体及びその製造方法、偏光板及び表示装置
KR101805280B1 (ko) 광학 필름
JP5304244B2 (ja) 環状オレフィン系開環共重合体およびその用途
JPWO2017115776A1 (ja) 光学積層体、偏光板及び液晶表示装置
KR20090095638A (ko) 수지 조성물 및 그 용도
JP2010052273A (ja) 積層フィルムおよび積層フィルムの製造方法、ならびにそれを備える偏光板および液晶表示素子
JP6743651B2 (ja) 光学フィルム、偏光板及び画像表示装置
JP2005239740A (ja) 熱可塑性樹脂組成物
KR101137118B1 (ko) 위상차 필름, 이를 포함하는 편광판 및 액정 표시 장치
TW200918969A (en) Liquid crystal panel and optical film set for liquid crystal panel
TW200838917A (en) Resin composition and use thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017507.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509314

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13639124

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127028990

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11765225

Country of ref document: EP

Kind code of ref document: A1