WO2014162928A1 - 光学フィルム - Google Patents

光学フィルム Download PDF

Info

Publication number
WO2014162928A1
WO2014162928A1 PCT/JP2014/058339 JP2014058339W WO2014162928A1 WO 2014162928 A1 WO2014162928 A1 WO 2014162928A1 JP 2014058339 W JP2014058339 W JP 2014058339W WO 2014162928 A1 WO2014162928 A1 WO 2014162928A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
film
optical film
fluorine
wavelength plate
Prior art date
Application number
PCT/JP2014/058339
Other languages
English (en)
French (fr)
Inventor
忠弘 須永
小田 隆志
小池 康博
Original Assignee
三井化学株式会社
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社, 学校法人慶應義塾 filed Critical 三井化学株式会社
Priority to KR1020157027759A priority Critical patent/KR101805280B1/ko
Priority to US14/782,049 priority patent/US10035889B2/en
Priority to JP2015510017A priority patent/JP6144756B2/ja
Priority to CN201480020071.6A priority patent/CN105164559B/zh
Publication of WO2014162928A1 publication Critical patent/WO2014162928A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/414Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • C08G2261/3342Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms derived from cycloolefins containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms

Definitions

  • the present invention relates to a low wavelength dispersible optical film obtained by stretching a film made of a fluorine-containing cyclic olefin polymer having a specific fluorine-containing aliphatic 5-membered ring structure. Further, the present invention relates to an optical film with reverse wavelength dispersion in which two or more films are bonded together at an angle at which the slow axis of the optical film is not coaxial.
  • a transparent film made of a polymer such as polycarbonate (PC) or a cyclic olefin polymer is used as the resin material to be used.
  • the photoelastic constant is as large as around 100 ⁇ 10 ⁇ 12 / Pa, so that birefringence becomes too large, non-uniformity, bonding Problems such as birefringence change due to slight stress caused by assembly or environmental changes.
  • the wavelength dependence of the phase difference is large with a positive sign (the phase difference of the short wavelength is large and the phase difference of the long wavelength is small relative to the center wavelength), which causes light leakage. This causes a problem of deteriorating display uniformity and contrast.
  • a retardation film in which a film made of a cyclic olefin polymer, which is a material having a relatively small photoelastic constant, is stretched and oriented (for example, patent documents).
  • Patent Document 2 a retardation film produced by stretching and orienting a film made of a cyclic olefin polymer having a photoelastic constant in the range of 0 to 20 ⁇ 10 ⁇ 12 / Pa is excellent in initial characteristics and has a use environment and manufacturing conditions. It is disclosed that it is not easily affected and has excellent reliability (Patent Document 1).
  • the wavelength dependence of the retardation is relatively small, and this is also the reason why a retardation film made of a cyclic olefin polymer is suitably used as a display material member.
  • the conventional retardation film made of a cyclic olefin polymer is a material having excellent optical functions such as transparency and retardation, and adhesion when laminating films or incorporating them into an image display device.
  • there are issues such as further improvement of the phase difference function such as wavelength dependency and high transparency of the film that contributes to energy saving, as further high definition of image display and energy saving are required. .
  • each characteristic is used and arranged at an appropriate position in an appropriate position.
  • the chromatic dispersion having a negative sign is generally called reverse chromatic dispersion.
  • Most of the conventional materials are materials having a positive sign, and in the early liquid crystal display materials using a material having a relatively large positive sign, it has been a main cause of lowering the display performance. Since then, it has become possible to make the positive wavelength dependence relatively small by making studies such as making the polymer material of the film into a composition and multilayering, but depending on the application, it will bring out sufficient performance. It has not yet reached.
  • polyvinyl alcohol is known as a polymer material that does not exhibit wavelength dependency.
  • polyvinyl alcohol is poor in dimensional stability under the use environment and requires a protective film as seen in a polarizing plate, so that it is practical to use a film made of the material as a retardation film. Can not.
  • a retardation film obtained by stretching a film made of a special polycarbonate is used in some applications (Patent Document 3).
  • Patent Document 3 there is a possibility of causing problems in use due to the above-mentioned photoelastic constant specific to the polycarbonate resin.
  • Patent Document 4 a system using a composition of a polymer material as a material showing a negative sign
  • Patent Document 5 a system for laminating a retardation film
  • Patent Document 6 a special cyclic olefin polymer
  • Patent Document 6 a system using a composition of a polymer material as a material showing a negative sign
  • Patent Document 5 a system for laminating a retardation film
  • Patent Document 6 a special cyclic olefin polymer
  • a copolymer having a 5-membered ring structure (A) and a plurality of cyclic structures (B) in the main chain has a molar ratio (A) / (B) of 95/5. It is known that an optical material of ⁇ 1 / 99 has low birefringence even when the polymer chain itself is oriented (Patent Document 8). Even if this copolymer is stretched, a retardation film cannot be produced.
  • the present invention has been made in view of the above problems, and provides an optical film having excellent transparency, toughness, and moldability of a fluorine-containing cyclic olefin polymer, and extremely low retardation wavelength dispersion. Objective. Furthermore, providing an optical film having transparency and toughness by laminating two or more layers at an angle at which the slow axis of the optical film is not coaxial, and having a wavelength dispersion of phase difference and an inverse wavelength dispersion. With the goal.
  • a phase difference at a wavelength of 550 nm is 50 nm or more, and a wavelength dispersion represented by a ratio Re (400 nm) / Re (550 nm) of a phase difference Re (400 nm) at a wavelength of 400 nm to a phase difference Re (550 nm) at a wavelength of 550 nm is 1.
  • the wavelength dispersion represented by the ratio Re (400 nm) / Re (800 nm) of the phase difference Re (400 nm) of the wavelength 400 nm to the phase difference Re (800 nm) of the wavelength 800 nm is 1.00 to 1.05.
  • R 1 to R 4 are other than fluorine or the above-mentioned substituents when a group other than groups each R 1 ⁇ R 4 are independently hydrogen, alkyl of 1 to 10 carbon atoms, an aryl having 6 to 20 carbon atoms C1-C10 alkoxy, C2-C10 alkoxyalkyl, C2-C10 alkoxycarbonyl, C7-C20 aryloxycarbonyl, C3-C10 alkoxycarbonylalkyl, or C8 .
  • a fluorine-containing cyclic olefin polymer consisting essentially of at least one repeating structural unit represented by the following general formula (1) does not include a structural unit having a plurality of ring structures. In the range which does not impair the effect of this invention, it means that the structural unit other than the structural unit represented by General formula (1) may be included.
  • the present invention is a film obtained by stretching a film made of a specific fluorine-containing 5-membered cyclic olefin polymer, and has a low wavelength dispersion in which the change in retardation is extremely low and the transparency is very high in a light wavelength range of 400 nm to 800 nm.
  • the optical film which has property can be provided.
  • the optical film of the present invention is industrially valuable because it can provide an optical film having a reverse wavelength dispersion property with very high transparency by laminating a stretched film at an angle at which the slow axis of the optical film is not coaxial. .
  • the optical film of the present embodiment is a low wavelength dispersion obtained by stretching a film made of a fluorine-containing cyclic olefin polymer consisting of at least one selected from repeating structural units represented by the following general formula (1).
  • Optical film having the following characteristics.
  • a phase difference at a wavelength of 550 nm is 50 nm or more, and a wavelength dispersion represented by a ratio Re (400 nm) / Re (550 nm) of a phase difference Re (400 nm) at a wavelength of 400 nm to a phase difference Re (550 nm) at a wavelength of 550 nm is 1.
  • the wavelength dispersion represented by the ratio Re (400 nm) / Re (800 nm) of the phase difference Re (400 nm) of the wavelength 400 nm to the phase difference Re (800 nm) of the wavelength 800 nm is 1.00 to 1.05. 0.000 to 1.05 and the total light transmittance is 92% or more.
  • the fluorine-containing cyclic olefin polymer constituting the optical film will be described.
  • the fluorine-containing cyclic olefin polymer is substantially composed of at least one repeating structural unit represented by the following general formula (1).
  • R 1 to R 4 is fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, carbon containing fluorine Alkoxyalkyl having 2 to 10 carbon atoms, aryl having 6 to 20 carbon atoms containing fluorine, alkoxycarbonyl having 2 to 10 carbon atoms containing fluorine, aryloxycarbonyl having 7 to 20 carbon atoms containing fluorine, containing fluorine Are selected from alkoxycarbonylalkyl having 3 to 10 carbon atoms and aryloxycarbonylalkyl having 8 to 20 carbon atoms containing fluorine, which may be the same or different.
  • R 1 to R 4 are specifically fluorine, or fluoromethyl, difluoromethyl, trifluoromethyl, trifluoroethyl, pentafluoroethyl, heptafluoropropyl, hexa Alkyl in which part or all of hydrogen is substituted with fluorine, such as fluoroisopropyl, heptafluoroisopropyl, hexafluoro-2-methylisopropyl, perfluoro-2-methylisopropyl, n-perfluorobutyl, n-perfluoropentyl, perfluorocyclopentyl, etc.
  • An alkoxy having 1 to 10 carbon atoms containing fluorine such as alkoxy in which part or all of hydrogen is substituted with fluorine, such as perfluorobutoxy, n-perfluoropentyloxy, perfluorocyclopentyloxy, Fluoromethoxymethyl, difluoromethoxymethyl, trifluoromethoxymethyl, trifluoroethoxymethyl, pentafluoroethoxymethyl, heptafluoropropoxymethyl, hexafluoroisopropoxymethyl,
  • Aryloxycarbonyl having 7 to 20 carbon atoms containing fluorine such as aryloxycarbonyl in which part or all of hydrogen is substituted with fluorine, such as perfluorophenyloxycarbonyl and trifluorophenyloxycarbonyl, Fluoromethoxycarbonylmethyl, difluoromethoxycarbonylmethyl, trifluoromethoxycarbonylmethyl, trifluoroethoxycarbonylmethyl, pentafluoroethoxycarbonylmethyl, heptafluoropropoxycarbonylmethyl, hexafluoroisopropoxycarbonylmethyl, heptafluoroisopropoxycarbonylmethyl, hexafluoro Some or all of the hydrogen such as -2-methylisopropoxycarbonylmethyl, perfluoro-2-methylisopropoxycarbonylmethyl, n-perfluorobutoxycarbonylmethyl, n-perfluoropentyloxycarbonylmethyl
  • R 1 to R 4 are each independently hydrogen, alkyl having 1 to 10 carbons, aryl having 6 to 20 carbons, or 1 to 10 alkoxy, C2-C10 alkoxyalkyl, C2-C10 alkoxycarbonyl, C7-20 aryloxycarbonyl, C3-10 alkoxycarbonylalkyl, or C8-20 aryl Examples thereof include oxycarbonylalkyl and the like.
  • R 1 to R 4 are specifically hydrogen, methyl, ethyl, propyl, isopropyl, 2-methylisopropyl, n-butyl, an alkyl having 1 to 10 carbon atoms such as n-pentyl and cyclopentyl; Aryls having 6 to 20 carbon atoms such as phenyl and naphthyl, Alkoxy having 1 to 10 carbon atoms such as methoxy, ethoxy, tert-butoxy, C2-C10 alkoxyalkyl such as methoxymethyl, ethoxymethyl, tert-butoxymethyl, C2-C10 alkoxycarbonyl such as methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl, etc.
  • Aryloxycarbonyl having 7 to 20 carbon atoms such as phenyloxycarbonyl, methylphenyloxycarbonyl, etc.
  • Alkoxycarbonylalkyl having 3 to 10 carbon atoms such as methoxycarbonylmethyl, ethoxycarbonylmethyl, tert-butoxycarbonylmethyl, or aryloxycarbonylalkyl having 8 to 20 carbon atoms such as phenyloxycarbonylmethyl and methylphenyloxycarbonylmethyl, etc.
  • R 1 to R 4 may be bonded to each other to form a ring structure, and for example, a ring such as perfluorocycloalkyl or perfluorocycloether via oxygen may be formed.
  • the general formula (1) does not include an embodiment in which R 1 to R 4 are bonded to each other to form a ring structure and become a structural unit having a plurality of ring structures.
  • An optical film obtained by stretching a film composed of a fluorine-containing cyclic olefin polymer containing a structural unit having a plurality of ring structures is known to have low birefringence even when oriented, and is not preferable from the viewpoint of a retardation film.
  • the structural unit of following General formula (2) can be mentioned.
  • R 7 to R 10 is fluorine, alkyl having 1 to 10 carbons containing fluorine, alkoxy having 1 to 10 carbons containing fluorine, carbon containing fluorine Alkoxyalkyl having 2 to 10 carbon atoms, aryl having 6 to 20 carbon atoms containing fluorine, alkoxycarbonyl having 2 to 10 carbon atoms containing fluorine, aryloxycarbonyl having 7 to 20 carbon atoms containing fluorine, containing fluorine Selected from the group consisting of alkoxycarbonylalkyl having 3 to 10 carbon atoms and aryloxycarbonylalkyl having 8 to 20 carbon atoms containing fluorine.
  • X 2 is -O -, - S -, - NR 11 -, - PR 11 -, and -CR 11 R 12 - alkyl from (R 11, R 12 hydrogen each independently having 1 to 20 carbon atoms ) May be the same or different.
  • n represents 1 to 3.
  • X 1 in the general formula (1) is, -O -, - S -, - NR 5 -, - PR 5 -, and -CR 5 R 6 - from (R 5, R 6 are each independently Represents hydrogen or alkyl having 1 to 20 carbon atoms).
  • the fluorine-containing cyclic olefin polymer may be composed of only one type selected from the repeating structural unit represented by the general formula (1), and R 1 to R 4 in the general formula (1). May be composed of two or more types of structural units different from each other.
  • fluorine-containing cyclic olefin polymer examples include poly (1-fluoro-2-trifluoromethyl-3,5-cyclopentylene ethylene), poly (1-fluoro-1-trifluoromethyl-3,5-cyclopentyl).
  • Lenethylene poly (1-methyl-1-fluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene), poly (1,1-difluoro-2-trifluoromethyl-3,5-cyclopentyl) Lenethylene), poly (1,2-difluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene), poly (1-perfluoroethyl-3,5-cyclopentyleneethylene), poly (1,1 -Bis (trifluoromethyl) -3,5-cyclopentyleneethylene), poly (1,1,2-trifluoro-2-trifluoromethyl-3,5-silane Clopentyleneethylene), poly [1,2-bis (trifluoromethyl) -3,5-cyclopentyleneethylene], poly (1-perfluoropropyl-3,5-cyclopentyleneethylene), poly (1- Methyl-2-perfluoropropyl-3,5-cyclopentyleneethylene), poly (1-butyl-2-perfluoropropyl
  • cyclopentylene (corresponding to the repeating structural unit of the general formula (1)) contained in the cyclic olefin polymer exemplified above is —CH 2 — (X 1 of the general formula (1)). equivalent) is, -O a -, - S -, - NR 5 -, - PR 5 -, and -CR 5 R 6 - (the alkyl R 5, R 6 are each independently hydrogen or a C 1-20 Mention may also be made of cyclic olefin polymers substituted with at least one selected from
  • the molecular weight of the fluorine-containing cyclic olefin polymer is usually from 5,000 to 1 in terms of polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) at a sample concentration of 3.0 to 9.0 mg / ml. 1,000,000, preferably 10,000 to 300,000.
  • Mw polystyrene-equivalent weight average molecular weight
  • GPC gel permeation chromatography
  • Mw / Mn molecular weight distribution
  • Mw / Mn molecular weight distribution
  • Mw / Mn molecular weight distribution
  • Mw / Mn exceeds 5.0, when a film is heated, a film may sag between stretched chucks and an optical film having a desired retardation may not be obtained. Therefore, when the molecular weight distribution (Mw / Mn) is within this range, a retardation film can be suitably obtained.
  • the glass transition temperature of the fluorine-containing cyclic olefin polymer by differential scanning calorimetry is usually in the range of 50 to 300 ° C, preferably 80 to 280 ° C, more preferably 100 to 250 ° C.
  • the shape can be maintained in the intended environment of use, and further, it has excellent fluidity and excellent production stability and also excellent in hue of the obtained optical film.
  • the partially fluorinated polymer of the general formula (1) of the present invention is different from a fully fluorinated polymer whose main chain also has a fluorinated carbon structure, and further compared to hydrocarbon-based and ester-based cyclic olefin resins, Adhesive material for bonding the film and strong adhesiveness can be expressed, and a bonded optical film having excellent adhesion can be obtained.
  • the main chain is a hydrocarbon and the side chain has a fluorine atom because it dissolves well in polar solvents such as ethers and ketones which are usually commercially available despite being a fluorinated polymer.
  • the fluorine-containing cyclic olefin polymer of the general formula (1) which is a partially fluorinated polymer, is an amorphous and transparent polymer having a large polarity, that is, a structure having a relatively large dipole moment. It is estimated that This is a structural feature of the fluorine-containing cyclic olefin polymer represented by the general formula (1) of the present invention. As is clear from the experimental results as shown in the examples, the above-described feature is based on the feature. Can be effective.
  • an optical film having the optical characteristics of the present embodiment or an optical film obtained by bonding them can be suitably obtained by the method for producing a fluorine-containing cyclic olefin polymer and the method for producing an optical film described below. it can.
  • the fluorine-containing cyclic olefin polymer consisting essentially of at least one repeating structural unit represented by the general formula (1) can be produced by chain transfer polymerization described later.
  • the fluorine-containing cyclic olefin polymer used as the raw material of the optical film and optical laminated film which have the optical characteristic of this embodiment can be obtained suitably.
  • the molecular weight distribution (Mw / Mn) is usually in the range of 1.3 to 5.0, preferably 1.5 to 4.5, more preferably 1.7 to 4.0.
  • the fluorine-containing cyclic olefin polymer can be obtained, and the optical film obtained from the polymer can be stretched and oriented with appropriate melt molding and melt stretchability to express a phase difference.
  • a fluorine-containing cyclic olefin polymer having a narrow molecular weight distribution obtained by living polymerization without causing a chain transfer reaction is difficult to cause molecular orientation due to entanglement of polymer chains, and an optical film obtained from the polymer has a retardation. The expression of is poor.
  • a cyclic olefin monomer represented by the following general formula (3) is subjected to chain transfer polymerization using a ring-opening metathesis polymerization catalyst, and the olefin portion of the main chain of the resulting polymer is hydrogenated to obtain a fluorine-containing cyclic olefin.
  • Polymers can be synthesized.
  • R 1 to R 4 and X 1 have the same meaning as the above formula (1).
  • the cyclic olefin monomer represented by the general formula (3) does not include an embodiment in which R 1 to R 4 in an embodiment giving the structural unit exemplified in the general formula (2) are bonded to each other to have a plurality of ring structures. .
  • the ring-opening metathesis polymerization catalyst used for the polymerization of cyclic olefin monomers include, but are not as long as the catalyst can be performed ring-opening metathesis polymerization, for example, W (N-2,6-Pr i 2 C 6 H 3) (CHBu t) (OBu t) 2, W (N-2,6-Pr i 2 C 6 H 3) (CHBu t) (OCMe 2 CF 3) 2, W (N-2,6-Pr i 2 C 6 H 3) (CHBu t) (OCMe (CF 3) 2) 2, W (N-2,6-Pr i 2 C 6 H 3) (CHBu t) (OC (CF 3) 3) 2, W (N-2,6-Me 2 C 6 H 3) (CHBu t) (OC (CF 3) 3) 2, W (N-2,6-Me 2 C 6 H 3) (CHBu t) (OC (CF 3) 3) 2, W (N-2,6-Me 2
  • a ring-opening metathesis polymerization catalyst comprising a combination of an organic transition metal complex, a transition metal halide or a transition metal oxide and a Lewis acid as a promoter can be used.
  • the polymerization catalyst activity is low with respect to polar monomers, which is not preferred industrially.
  • the molar ratio of the cyclic olefin monomer and the ring-opening metathesis polymerization catalyst is 1 mole of the transition metal alkylidene catalyst in the case of a transition metal alkylidene catalyst such as tungsten, molybdenum, or ruthenium.
  • the monomer is usually 100 to 30,000 mol, preferably 1,000 to 20,000 mol.
  • an olefin can be used as a chain transfer agent in order to control the molecular weight and its distribution within the above-mentioned range.
  • the olefin include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, and fluorine-containing olefins thereof.
  • vinyltrimethylsilane, allyltrimethylsilane examples include silicon-containing olefins such as allyltriethylsilane and allyltriisopropylsilane, and fluorine and silicon-containing olefins.
  • dienes examples include 1,4-pentadiene, 1,5-hexadiene, and 1,6-heptadiene.
  • Non-conjugated dienes or these fluorine-containing non-conjugated dienes can be mentioned.
  • these olefins, fluorine-containing olefins or dienes may be used alone or in combination of two or more.
  • the amount of the olefin, fluorine-containing olefin or diene used is usually in the range of 0.001 to 1,000 mol, preferably 0.01 to 100 mol, relative to 1 mol of the cyclic olefin monomer.
  • the amount of olefin or diene is usually in the range of 0.1 to 1,000 mol, preferably 1 to 500 mol, relative to 1 mol of the transition metal alkylidene catalyst.
  • the ring-opening metathesis polymerization of the cyclic olefin monomer may be solventless or may use a solvent, but particularly used solvents include ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, dimethoxyethane or dioxane, ethyl acetate , Esters such as propyl acetate or butyl acetate, aromatic hydrocarbons such as benzene, toluene, xylene or ethylbenzene, aliphatic hydrocarbons such as pentane, hexane or heptane, cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane or decalin Aliphatic hydrocarbons such as methylene dichloride, dichloroethane, dichloroethylene, tetrachloroethane, chlorobenzene or trichloro
  • the concentration of the cyclic olefin monomer in the monomer solution is usually 5 to 100% by mass, preferably 10 to 60% by mass, although it depends on the reactivity of the monomer and the solubility in the polymerization solvent.
  • the reaction temperature is usually ⁇ 30 to 150 ° C., preferably 30 to 100 ° C.
  • the reaction time is usually 10 minutes to 120 hours, preferably 30 minutes to 48 hours. It can be implemented in the range of.
  • the reaction can be stopped with an aldehyde such as butyraldehyde, a ketone such as acetone, an alcohol such as methanol, or a quenching agent such as water, to obtain a polymer solution.
  • the cyclic olefin polymer of this embodiment can be obtained by hydrogenating a olefin portion of the main chain of a polymer obtained by ring-opening metathesis polymerization of a cyclic olefin monomer using a catalyst.
  • the hydrogenation catalyst can be a homogeneous metal complex catalyst or a heterogeneous metal supported catalyst as long as it can hydrogenate the olefin part of the main chain of the polymer without causing a hydrogenation reaction of the solvent used.
  • Any homogeneous metal complex catalyst may be used, for example, chlorotris (triphenylphosphine) rhodium, dichlorotris (triphenylphosphine) osmium, dichlorohydridobis (triphenylphosphine) iridium, dichlorotris (triphenylphosphine).
  • Examples include ruthenium, dichlorotetrakis (triphenylphosphine) ruthenium, chlorohydridocarbonyltris (triphenylphosphine) ruthenium, dichlorotris (trimethylphosphine) ruthenium, and the heterogeneous metal-supported catalyst includes, for example, active Palladium on carbon, alumina-supported palladium, activated carbon-supported rhodium, alumina-supported rhodium, active carbon supported ruthenium, alumina-supported ruthenium and the like. These hydrogenation catalysts can be used alone or in combination of two or more.
  • the amount of the hydrogenation catalyst used is that the metal component in the hydrogenation catalyst is hydrogenated.
  • the amount is usually 5 ⁇ 10 ⁇ 4 to 100 parts by mass, and preferably 1 ⁇ 10 ⁇ 2 to 30 parts by mass with respect to 100 parts by mass of the polymer before treatment.
  • the solvent used for hydrogenation is not particularly limited as long as it dissolves the cyclic olefin polymer and the solvent itself is not hydrogenated.
  • ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, dimethoxyethane, Esters such as ethyl acetate, propyl acetate or butyl acetate, aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene, aliphatic hydrocarbons such as pentane, hexane and heptane, cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, Aliphatic cyclic hydrocarbons such as decalin, methylene dichloride, halogenated hydrocarbons such as chloroform, dichloroethane, dichloroethylene, tetrachloroethane, chlorobenzene
  • the hydrogenation reaction of the olefin portion of the main chain is carried out at a hydrogen pressure of normal pressure to 30 MPa, preferably 0.5 to 20 MPa, particularly preferably 2 to 15 MPa, and the reaction temperature is usually 0 to 300 MPa.
  • the temperature is preferably from room temperature to 250 ° C., particularly preferably from 50 to 200 ° C.
  • the mode of carrying out the hydrogenation reaction is not particularly limited. For example, there are a method in which the catalyst is dispersed or dissolved in a solvent, a method in which the catalyst is packed in a column and the polymer solution is circulated as a stationary phase, and the like. Can be mentioned.
  • the hydrogenation treatment of the olefin portion of the main chain may be performed by precipitating the polymer solution of the cyclic olefin polymer before the hydrogenation treatment in a poor solvent and isolating the polymer, and then dissolving the solution again in the solvent and performing the hydrogenation treatment.
  • the hydrogenation treatment may be performed with the above hydrogenation catalyst without isolating the polymer from the polymerization solution, and there is no particular limitation.
  • the hydrogenation rate of the olefin part of the cyclic olefin polymer is 50% or more, preferably 70 to 100%, more preferably 90 to 100%. If the hydrogenation rate is less than 50%, the olefin part may deteriorate heat resistance or weather resistance due to oxidation or light absorption deterioration.
  • the method for recovering the cyclic olefin polymer from the polymer solution after hydrogenation in this embodiment is not particularly limited, but for example, a method of discharging the reaction solution into a poor solvent under stirring, a steam stroking steam into the reaction solution, Examples thereof include a method in which a polymer is precipitated by a method such as ripping and the polymer is recovered by a method such as filtration, centrifugation, and decantation, or a method in which a solvent is removed from the reaction solution by heating or the like.
  • the cyclic olefin polymer can be recovered by the above-described method after the synthesis solution is filtered to separate the metal-supported catalyst.
  • a catalyst component having a large particle size is precipitated in a polymer solution in advance by a method such as decantation or stretch separation, a supernatant is collected, a solution obtained by roughly removing the catalyst component is filtered, and a cyclic olefin polymer is obtained by the method described above. It may be collected.
  • the obtained polymer solution can also be subjected to microfiltration as described later. In this case, in the following optical film manufacturing method, step b can be omitted.
  • the manufacturing method of the optical film in this embodiment can have the following process, for example.
  • Step a A varnish containing the fluorine-containing cyclic olefin polymer is prepared.
  • Step b The varnish is passed through a filter having pores having a pore diameter of 0.5 ⁇ m or less and subjected to microfiltration.
  • Step c A film is formed from the varnish after filtration.
  • Step d Stretching the film.
  • a varnish is prepared by dissolving a fluorine-containing cyclic olefin polymer in an organic solvent.
  • the organic solvent is not particularly limited.
  • fluorine such as metaxylene hexafluoride, benzotrifluoride, fluorobenzene, difluorobenzene, hexafluorobenzene, trifluoromethylbenzene, and bis (trifluoromethyl) benzene.
  • aromatic hydrocarbons fluorine-containing aliphatic hydrocarbons such as perfluorohexane and perfluorooctane, fluorine-containing aliphatic cyclic hydrocarbons such as perfluorocyclodecalin, fluorine-containing ethers such as perfluoro-2-butyltetrahydrofuran, chloroform, chlorobenzene , Halogenated hydrocarbons such as trichlorobenzene, ethers such as tetrahydrofuran, dibutyl ether, 1,2-dimethoxyethane, dioxane, esters such as ethyl acetate, propyl acetate, butyl acetate Or ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • fluorine-containing aliphatic hydrocarbons such as perfluorohexane and perfluorooctane
  • solubility and film forming property it can select in consideration of solubility and film forming property, and may be used alone or in combination of two or more.
  • a solvent having a boiling point of 70 ° C. or higher under atmospheric pressure is preferable from the viewpoint of film forming properties.
  • the concentration at which the fluorine-containing cyclic olefin polymer is dissolved is generally 1.0 to 99.0% by mass, preferably 5.0 to 90.0% by mass, more preferably 10.0 to 80.0% by mass. is there.
  • the concentration may be selected in consideration of the solubility of the polymer, adaptability to the filtration process, film forming property, and film thickness.
  • other known components may be added as necessary.
  • Other components include anti-aging agents, leveling agents, wettability improvers, surfactants, modifiers such as plasticizers, stabilizers such as UV absorbers, preservatives, and antibacterial agents, photosensitizers, and silanes.
  • a coupling agent etc. are mentioned.
  • the varnish prepared in step a is passed through a filter having pores having a pore size of usually 0.5 ⁇ m or less, preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and even more preferably 0.02 ⁇ m or less.
  • Microfiltration may be performed.
  • the microfiltration process may be a multi-stage process in which the polymer solution is sent from a filter with a large pore size to a small filter, or a single process in which the varnish is sent directly to a filter with a small pore size.
  • the material of the filter may be made of an organic material such as Teflon, PP, PES, or cellulose, or may be made of an inorganic material such as glass fiber or metal, and is preferably selected from varnish characteristics and process adaptability.
  • a method using a pressure difference or a method of sending the varnish to the filter by a mechanical drive via a screw or the like may be used.
  • the pressure difference when using the pressure difference can be selected according to the process within the range satisfying the filtration performance of the filter.
  • the difference ( ⁇ P) between the pressure applied to the varnish liquid surface and the pressure at the bottom of the filter is 3.0 MPa or less, Preferably, it is 1.0 MPa or less, more preferably 0.8 MPa or less.
  • the difference between the pressure applied to the varnish liquid level and the pressure at the bottom of the filter ( ⁇ P ) Is preferably further reduced, and is usually 0.5 MPa or less, more preferably 0.3 MPa or less, and still more preferably 0.1 MPa or less.
  • conditions such as the shape, torque, and rotational speed of the pump when the varnish is fed by mechanical drive through the pump are adjusted by adjusting the pressure difference applied to the filter to the above-described range.
  • the temperature of microfiltration is selected in the range considering filter performance, solution viscosity, and polymer solubility, and is usually in the range of ⁇ 10 to 200 ° C., preferably 0 ° C. to 150 ° C., more preferably room temperature to 100 ° C. Done.
  • insoluble matter, gel, foreign matter, and the like can be greatly reduced from the polymer, and almost no foreign matter of 0.5 ⁇ m or more is seen.
  • a raw film before stretching in step c from the varnish, it is possible to produce a film in which the occurrence of defects such as fish eyes is suppressed with high film thickness accuracy.
  • a finely filtered varnish with a finer filter than the visible light wavelength region light scattering caused by minute foreign matter in the film surface, or aggregates of foreign matter, The deterioration of transparency due to absorption can also be suppressed.
  • a uniform stretching orientation can be applied over the entire surface of the film in the step d of the step d, and an optical film or a wave plate having a desired phase difference can be obtained without suppressing surface roughness and without retardation unevenness.
  • a filtration step using a filter filtration accuracy of 0.5 ⁇ m
  • the temperature and pressure are very high, and the material of the filter used is sintered metal or the like. Therefore, in a high-temperature and high-pressure state, insoluble components, gels, foreign substances, and the like contained in the high-viscosity molten resin may pass through the filter while being deformed.
  • a filter for filtering a high-viscosity molten resin in a high-temperature and high-pressure state during pelletization and a filter for filtering a solution (varnish) having a relatively low viscosity are different from each other in actual use and effects.
  • a film is formed from the varnish.
  • An example of the film forming method is a solution casting method.
  • the varnish can be used as the solution.
  • a polymer solution (varnish) is applied on the substrate by a method such as table coating, spin coating, dip coating, die coating, spray coating, bar coating, roll coating, curtain flow coating, etc. Apply and form a film.
  • Base materials include stainless steel, metal materials such as silicon, inorganic materials such as glass and quartz, polyimide, polyamide, polyester, polycarbonate, polyphenylene ether, polyphenylene sulfide, polyacrylate, polymethacrylate, polyacrylate, epoxy resin, silicone resin The thing which consists of resin materials, etc. can be mentioned.
  • the coating film may be dried by placing a substrate on which a solution has been cast on a heating plate and drying by heating, or by placing the substrate on which the solution has been cast in a heated drying furnace, Hot air heated with a gas such as air or nitrogen may be applied to the coating film and dried, or may be dried using a process combining these.
  • the drying temperature is usually in the range of 10 to 250 ° C., preferably 20 to 220 ° C., more preferably 30 to 200 ° C., and is selected in consideration of the characteristics of the varnish and the film thickness.
  • the coating film may be dried by setting two or more types of temperature settings and setting a multistage drying temperature.
  • the time for drying the coating film can be selected from the conditions considering the boiling point of the varnish solvent, the film thickness of the film, and the process requirements. As a result, a film is formed on the substrate. Peeling of the film from the substrate may be done by applying a commercially available tape to the edge of the film and applying stress to it to bring it into contact with the liquid / water solvent contact interface. The film may be peeled using the difference in surface tension between the substrate surface and the contact surface of the film.
  • the film thickness thus obtained is usually used in the range of 10 to 1000 ⁇ m, preferably 20 to 500 ⁇ m, more preferably 30 to 200 ⁇ m.
  • the film thickness can be set in consideration of the influence when the films are bonded.
  • the polymer solution when the polymer solution is microfiltered, the polymer is obtained by the above-mentioned method, or the granulation step is provided to obtain the polymer in the form of a pellet, thereby obtaining a melt molding method.
  • Films can be prepared. In this case, step c can be performed without performing step a and step b.
  • a method of forming a film through a T die using a melt kneader, an inflation method or the like can be mentioned.
  • a melt-extruded film using a T-die for example, a cyclic olefin polymer blended with additives as necessary is introduced into an extruder and is usually 50 ° C to 200 ° C higher than the glass transition temperature, preferably 80 ° C to It is melt-kneaded at a high temperature of 150 ° C., extruded from a T-die, and processed into a film by cooling the molten polymer with a cooling roll or the like.
  • the film thickness thus obtained is usually in the range of 10 to 1000 ⁇ m, preferably 20 to 500 ⁇ m, more preferably 30 to 200 ⁇ m.
  • the effect of the film stretching process in step d, or stretching can be set in consideration of the influence when the films are bonded.
  • the film obtained in step c was added to a temperature obtained by adding a range of ⁇ 20 ° C. to 150 ° C., preferably a range of ⁇ 5 ° C. to 110 ° C., to the glass transition temperature of the fluorine-containing cyclic olefin polymer.
  • the preheating step is performed by exposing to a temperature, more preferably in a range of 0 ° C. to 80 ° C., usually for 0.01 to 30 minutes, preferably 0.05 to 20 minutes, more preferably 0.1 to 10 minutes. It can be carried out. This makes it possible to eliminate the heating unevenness on the entire surface of the film and uniformly stretch the film.
  • the temperature during stretching is usually a temperature obtained by adding a range of ⁇ 20 ° C. to 150 ° C. to the glass transition temperature of the fluorine-containing cyclic olefin polymer, preferably a temperature obtained by adding a range of ⁇ 5 ° C. to 110 ° C.
  • the temperature can be set to a range of 0 ° C. to 80 ° C.
  • the stretching ratio is usually 1.05 to 10 times, preferably 1.10 to 6.0 times, more preferably 1.10 to 3.0 times.
  • the ratio of MD axis ratio / TD axis ratio as the draw ratio is usually 1.05 times, with the axis extending at a high magnification as the MD axis and the axis extending at the low magnification as the TD axis. It is ⁇ 10 times, preferably 1.10 times to 6.0 times, and more preferably 1.10 times to 3.0 times.
  • the relationship between the temperature and the magnification at the time of stretching can be adjusted by a relationship suitable for a ⁇ / 4 wavelength plate or a ⁇ / 2 wavelength plate, and further the resin flow, the heat stretching method of the apparatus, the productivity, etc. It is preferably selected in consideration of the above.
  • the film that is stretched in the stretching step is typically an unstretched film, but a film that has been previously stretched may be stretched again in the stretching step.
  • a method of uniaxially stretching in the longitudinal direction due to the difference in peripheral speed between rolls a method of uniaxially stretching in the transverse direction using a tenter, and gripping both sides of the film Open the clip, stretch it in the longitudinal direction, stretch in the transverse direction depending on the spread angle of the guide rail, stretch in the longitudinal direction due to the difference in peripheral speed between the rolls, grip the both ends with the clip
  • a biaxial stretching method such as a sequential biaxial stretching method that stretches in the transverse direction with a tenter, a tenter stretching machine that pulls at different speeds in the left and right directions in the longitudinal and transverse directions, and the stretching distance at the same horizontal and longitudinal pulling distance at the left and right uniform speeds.
  • the low-wavelength dispersive optical film of the present embodiment obtained by the manufacturing method as described above has a phase difference at a wavelength of 550 nm of 50 nm or more, and a phase difference Re at a wavelength of 400 nm with respect to a phase difference Re (550 nm) at a wavelength of 550 nm.
  • the wavelength dispersibility represented by the ratio Re (400 nm) / Re (550 nm) of (400 nm) is usually 1.00 to 1.05, and preferably 1.00 to 1.03. Further, it is preferably 1.00 to 1.02, more preferably 1.00 to 1.01, particularly preferably 1.00, and this optical film has a retardation of wavelength 800 nm.
  • the wavelength dispersion represented by the ratio Re (400 nm) / Re (800 nm) of the phase difference Re (400 nm) at a wavelength of 400 nm to Re (800 nm) is usually 1.00 to 1.05, preferably 1. 00 to 1.03. Further, it is preferably 1.00 to 1.02, more preferably 1.00 to 1.01, and particularly preferably 1.00.
  • an optical film of visible light It is necessary for an optical film of visible light that a phase difference function with respect to visible light is expressed when the phase difference at a wavelength of 550 nm is 50 nm or more, and that these two wavelength dispersion properties are satisfied.
  • the present inventors have determined that an optical film comprising a fluorine-containing cyclic olefin polymer containing a fluorine atom in the repeating structural unit represented by the general formula (1) and further having one 5-membered ring structure in the main chain. Discovered a high phase difference due to stretch orientation, and further exhibited a low wavelength dispersion, and completed the present invention.
  • the repeating structural unit having a plurality of cyclic structures such as the general formula (2) hinders the development of retardation, and an optical film having a desired retardation cannot be obtained. Therefore, it is not preferable as a retardation film material to copolymerize a repeating structural unit having a plurality of cyclic structures such as the general formula (2) with the general formula (1).
  • the optical film of the present embodiment is represented by the ratio Re (400 nm) / Re (550 nm) of the phase difference Re (400 nm) of the wavelength 400 nm to the phase difference Re (550 nm) of the wavelength 550 nm in the light wavelength range of 400 nm to 800 nm.
  • the wavelength dispersion is usually 1.00 to 1.05, preferably 1.00 to 1.03. Further, it is preferably 1.00 to 1.02, more preferably 1.00 to 1.01, particularly preferably 1.00, and with respect to a phase difference Re (800 nm) having a wavelength of 800 nm.
  • the wavelength dispersion represented by the ratio Re (400 nm) / Re (800 nm) of the phase difference Re (400 nm) at a wavelength of 400 nm is usually 1.00 to 1.05, preferably 1.00 to 1.03. It is. Further, it is preferably 1.00 to 1.02, more preferably 1.00 to 1.01, and particularly preferably 1.00.
  • the optical film needs to have low wavelength dispersion in a wide wavelength range.
  • the low wavelength dispersive optical film of the present embodiment has a transparency of 92% or more in total light transmittance. Preferably, it is 93% or more, more preferably 94% or more, and particularly preferably 95% or more.
  • the fluorine-containing cyclic olefin polymer represented by the general formula (1) has a fluorine atom content of 30 to 80% by mass, preferably 40 to 75% by mass having a repeating structural unit. %.
  • Such a low wavelength dispersive optical film of this embodiment can be used as a ⁇ / 4 wavelength plate or a ⁇ / 2 wavelength plate.
  • a film made of a fluorine-containing cyclic olefin polymer consisting essentially of at least one repeating structural unit represented by the general formula (1) is uniaxially (MD direction) or biaxially drawn by various stretching techniques. (MD direction and TD direction) can be prepared by stretching in the thickness direction and aligning the polymer chain.
  • the ⁇ / 4 wavelength plate or the ⁇ / 2 wavelength plate may be used for the purpose of improving the display performance in display material applications, such as display uniformity, contrast improvement, and display viewing angle expansion. it can.
  • the retardation is a wavelength of 550 nm with high visibility, usually 140 nm ⁇ 10 nm, preferably 140 nm ⁇ 7 nm, more preferably 140 nm. ⁇ 5 nm.
  • the phase difference is similarly 280 nm ⁇ 20 nm at a wavelength of 550 nm, preferably 280 nm ⁇ 10 nm, more preferably 280 nm ⁇ 5 nm.
  • the prepared varnish is passed through a filter having pores with a pore size of usually 0.5 ⁇ m or less, preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and even more preferably 0.02 ⁇ m or less.
  • unevenness in retardation is obtained by scanning a sample stage for fixing a film in a retardation measuring apparatus in a vertical and horizontal direction within a specific range to obtain multipoint phase difference data, and performing an average value by numerical analysis, A standard deviation ( ⁇ ) can be calculated, and an average value as a phase difference and a standard deviation value with a sign ( ⁇ ) can be evaluated as a phase difference unevenness.
  • the ⁇ / 4 wavelength plate generally has a phase difference unevenness at a wavelength of 550 nm of ⁇ 0.50 nm / cm 2 or less, preferably ⁇ 0.10 nm / cm 2 or less, and more preferably ⁇ 0.05 nm / cm 2 or less, particularly preferably an optical film or less ⁇ 0.00nm / cm 2.
  • the retardation unevenness at a wavelength of 550 nm is usually ⁇ 0.50 nm / cm 2 or less, preferably ⁇ 0.10 nm / cm 2 or less, more preferably ⁇ 0.05 nm. / cm 2 or less, particularly preferably an optical film of ⁇ 0.00 nm / cm 2 or less.
  • the surface roughness of the film surface can be suppressed by providing the above-described microfiltration step, producing a raw film, and optimizing the conditions for producing a stretched film. Thereby, irregular reflection of incident light on the film surface can be suppressed, and reflection of light can be reduced.
  • the ⁇ / 4 wavelength plate generally has a reflectance at a wavelength of 550 nm of 7.0% or less, preferably 6.0% or less, more preferably 5.0% or less, particularly The optical film is preferably 3.0% or less.
  • the reflectance at a wavelength of 550 nm is usually 7.0% or less, preferably 6.0% or less, more preferably 5.0% or less, and particularly preferably 3.0%. % Or less optical film.
  • the partially fluorine-containing cyclic olefin polymer that is a raw material of the optical film of the present embodiment is 1/5 or less compared to the photoelastic constant of an optical film made of polycarbonate (PC) that has been conventionally used as a retardation film. It is small, and it is difficult for an unnecessary phase difference to occur due to a residual stress strain at the time of laminating a film and a minute stress generated by shrinkage of a material accompanying a temperature change and a humidity change. Therefore, the optical film made of the fluorine-containing cyclic olefin polymer of the present embodiment can be suitably used as the retardation film from the viewpoint of the degree of occurrence of the retardation due to stress strain.
  • PC polycarbonate
  • the film thickness of the low wavelength dispersive optical film of the present embodiment can be selected according to the use and is not particularly limited, but is usually 10 to 500 ⁇ m, preferably 20 to 300 ⁇ m, more preferably 30 to 200 ⁇ m. The range is used.
  • the optical film of the present embodiment increases the light transmittance and reduces the turbidity (haze) while maintaining the low wavelength dispersion as the ⁇ / 4 wavelength plate and the ⁇ / 2 wavelength plate, and the retardation film. It is also possible to provide an antireflection function. Thereby, a device such as a liquid crystal display or an organic EL display may be reduced in size, weight, and bendability.
  • the film thickness of the optical film may be 0.1 to 10 ⁇ m, preferably 0.5 to 10 ⁇ m, more preferably 1.0 to 10 ⁇ m. Furthermore, the film thickness of the original film before stretching can be set to a film thickness that takes into account the effect of stretching or the effect of laminating stretched films.
  • the optical film of this embodiment can be used as an optical film (optical laminated film) in which two or more stretched films are bonded together at an angle at which the slow axis is not coaxial.
  • the reverse wavelength dispersion Re (400 nm) / Re (550 nm) is less than 1.00, preferably less than 0.98, and particularly preferably less than 0.96.
  • the slow axis is a reference indicating the orientation direction in a stretched and oriented film, for example, when the phase difference is measured with a retardation measuring device Rets-100 manufactured by Otsuka Electronics Co., Ltd. Is the axis.
  • the phase difference is expressed in accordance with the direction of the slow axis and does not necessarily coincide with the direction of the stretching axis (stress applied) during stretching. That is, when laminating films, the angle is an angle at which the slow axes of the respective films intersect, and the stretching axis may not always be a reference. Therefore, in this embodiment, when bonding a stretched film, it is necessary to confirm the slow axis with respect to a stretching axis and to adjust the angle of the film to be bonded according to the result.
  • the phase difference is changed to the first period according to the angle.
  • a periodic change with ⁇ is shown.
  • the phase difference shows the maximum value that takes the sum of the respective retardation values of the two stretched films, while the slow axis of the two stretched films.
  • the angle was 90 °, the minimum value for the difference in phase difference between the two stretched films was shown.
  • the wavelength dependency of the laminated retardation film is that, when two stretched films having positive wavelength dispersion are laminated, the retardation has reverse wavelength dispersion at a specific angle. I found out.
  • the optical film obtained by laminating two or more stretched films at an angle at which the slow axis of the optical film of the present embodiment is not coaxial has a phase difference ratio Re (400 nm) / Re (550 nm) of 1.00 to 1.05.
  • the angle range where the slow axes intersect each other is usually 40 ° to 160 °, preferably 50 ° to 150 °, particularly preferably. Is obtained by bonding at 55 ° to 145 °.
  • a retardation film exhibiting reverse wavelength dispersion having a retardation ratio Re (400 nm) / Re (550 nm) of less than 1.00 can be obtained.
  • the reverse wavelength dispersive optical film of the present embodiment has a transparency of 91% or more in total light transmittance. Preferably, it is 92% or more, more preferably 93% or more, and particularly preferably 94% or more.
  • the fluorine-containing cyclic olefin polymer represented by the general formula (1) has a fluorine atom content of 30 to 80% by mass, preferably 40 to 75% by mass having a repeating structural unit. %.
  • the reverse wavelength dispersive optical film of the present embodiment can be used as a ⁇ / 4 wavelength plate or a ⁇ / 2 wavelength plate.
  • a ⁇ / 4 wavelength plate or a ⁇ / 2 wavelength plate can be obtained as follows.
  • the low-wavelength dispersive optical film is stretched uniaxially (MD direction), biaxially (MD direction and TD direction), and the thickness direction by various stretching techniques to align the polymer chain to produce a stretched film.
  • the wavelength dispersion of the phase difference is controlled while adjusting the phase difference to a phase difference that exhibits a predetermined function. This makes it possible to produce a ⁇ / 4 wavelength plate or a ⁇ / 2 wavelength plate that exhibits a predetermined phase difference over a wide wavelength band such as the entire visible region.
  • the ⁇ / 4 wavelength plate made of an optical film has a phase difference of usually 140 nm ⁇ 10 nm, preferably 140 nm ⁇ 7 nm, more preferably 140 nm ⁇ 5 nm at a wavelength of 550 nm with high visibility.
  • the ⁇ / 2 wavelength plate has a phase difference of 280 nm ⁇ 20 nm, preferably 280 nm ⁇ 10 nm, more preferably 280 nm ⁇ 5 nm at a wavelength of 550 nm.
  • the prepared varnish is passed through a filter having pores with a pore size of usually 0.5 ⁇ m or less, preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and even more preferably 0.02 ⁇ m or less.
  • a filter having pores with a pore size of usually 0.5 ⁇ m or less, preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and even more preferably 0.02 ⁇ m or less.
  • the retardation unevenness at a wavelength of 550 nm is usually ⁇ 0.50 nm / cm 2 or less, preferably ⁇ 0.10 nm / cm 2 or less, more preferably ⁇ 0.05 nm / cm 2 or less, particularly preferably an optical film or less ⁇ 0.00nm / cm 2.
  • the ⁇ / 2 wavelength plate generally has a retardation unevenness at a wavelength of 550 nm of ⁇ 0.50 nm / cm 2 or less, preferably ⁇ 0.10 nm / cm 2 or less, and more preferably ⁇ 0.
  • the ⁇ / 4 wavelength plate in the present embodiment has a reflectivity at a wavelength of 550 nm of usually 7.0% or less, preferably 6.0% or less, and more preferably Is an optical film of 5.0% or less, particularly preferably 3.0% or less.
  • the reflectance at a wavelength of 550 nm is usually 7.0% or less, preferably 6.0% or less, more preferably 5.0% or less, and particularly preferably 3.0%. % Or less optical film.
  • a film member having a two-layer structure of a ⁇ / 4 wavelength plate and a ⁇ / 2 wavelength plate must be used as an antireflection function for preventing external light reflection.
  • the use of the reverse wavelength dispersive and highly transparent ⁇ / 4 wavelength plate of the present embodiment provides visibility as a broadband ⁇ / 4 wavelength plate. It can be improved and the number of film members can be reduced to one, which is effective for cost reduction and module thinning.
  • the retardation of each of the stretched films bonded to produce the above-mentioned reverse wavelength dispersive ⁇ / 4 wavelength plate and ⁇ / 2 wavelength plate is usually 50 to 1000 nm, preferably 55 to 800 nm, more preferably 60 to The range is 600 nm, and a plurality of these films can be laminated. Thereby, film strength can also be improved.
  • the haze of the film is usually 0.6% or less, preferably 0.5% or less, and particularly preferably 0.3% or less.
  • the film thickness of the reverse wavelength dispersive optical film of the present embodiment can be selected according to the use and is not particularly limited, but is usually 10 to 500 ⁇ m, preferably 20 to 300 ⁇ m, more preferably 30 to 200 ⁇ m. The range is used.
  • the reverse wavelength dispersion is increased, the turbidity (haze) is reduced, and the retardation film is formed.
  • An antireflection function can also be imparted. Thereby, a device such as a liquid crystal display or an organic EL display may be reduced in size, weight, and bendability.
  • the film thickness of the optical film may be 0.1 to 10 ⁇ m, preferably 0.5 to 10 ⁇ m, more preferably 1.0 to 10 ⁇ m. Furthermore, the film thickness of the original film before stretching and the film thickness of the stretched film used for bonding can be set to a film thickness that takes into account the effects of stretching or the effects of laminating stretched films. .
  • two or more optical films can be bonded with an adhesive material having a refractive index difference ( ⁇ n) of 0.1 or less with respect to the optical film.
  • the difference in refractive index between the adhesive material and the optical film to be bonded at a wavelength of 400 to 800 nm is usually 0.1 or less, preferably 0.08 or less, and more preferably 0.07 or less.
  • the material for adhering the stretched film is not particularly limited, but a photo-curable resin is preferably used.
  • This photocurable resin is a composition containing at least one type of photocurable monomer and one or more types of photocuring initiator. More preferably, this composition is a composition in which a fluorine-containing cyclic olefin polymer consisting essentially of at least one repeating structural unit represented by the general formula (1) is mixed. They can be mixed in any proportion.
  • the mass ratio of the photocurable monomer to the fluorine-containing cyclic olefin polymer is 100/0 to 5/95, and more preferably 95/5 to 30/70.
  • Examples of the photocurable monomer include a compound having a reactive double bond group, a resin containing a cationically polymerizable ring-opening polymerizable compound, and the like. These compounds may have one or more reactive groups in one molecule.
  • Examples of the photopolymerization initiator include a photo radical initiator that generates radicals by light irradiation, and a photo cation initiator that generates cations by light irradiation.
  • the amount of the photocuring initiator used is preferably 0.05 parts by mass or more with respect to 100 parts by mass of the photocurable monomer, 10 parts by mass is more preferable.
  • Examples of the compound having a reactive double bond group that is a photocurable monomer include cyclic olefins such as norbornene and norbornadiene, alkyl vinyl ethers such as cyclohexyl methyl vinyl ether, isobutyl vinyl ether, cyclohexyl vinyl ether, and ethyl vinyl ether, and vinyl acetate.
  • Vinyl esters (meth) acrylic acid, phenoxyethyl acrylate, benzyl acrylate, stearyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate, allyl acrylate, 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, Pentaerythritol hexaacrylate, ethoxyethyl acrylate, methoxyethyl acrylate, glycidyl acrylate, tetrahydrofurfryl acrylate, diethylene glycol diacrylate, neopentyl glycol diacrylate, polyoxyethylene glycol diacrylate, tripropylene glycol diacrylate, 2-hydroxyethyl acrylate (Meth) acrylic acid and its derivatives such as
  • Examples of the photocurable monomer of the cationically polymerizable ring-opening polymerizable compound include, for example, cyclohexene epoxide, dicyclopentadiene oxide, limonene dioxide, 4-vinylcyclohexene dioxide, and 3,4-epoxycyclohexylmethyl-3 ′.
  • Compounds having two or more oxetanyl groups include bis (3-ethyl-3-oxetanylmethyl) ether, 1,2-bis (3-ethyl-3-oxetanylmethoxy) ethane, 1,3-bis (3-ethyl-3 -Oxetanylmethoxy) propane, 1,3-bis (3-ethyl-3-oxetanylmethoxy) -2,2-dimethyl-propane, 1,4-bis (3-ethyl-3-oxetanylmethoxy) butane, 1,6 -Bis (3-ethyl-3-oxetanylmethoxy) hexane, 1,4-bis [(3-methyl-3-oxetanyl) methoxy] benzene, 1,3-bis [(3-methyl-3-oxetanyl) methoxy] Benzene, 1,4-bis ⁇ [(3-methyl-3-oxetanyl) methoxy
  • Acetophenones such as' -phenylacetophenone, 2-aminoacetophenone, dialkylaminoacetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin-iso-propyl ether, benzoin-iso-butyl ether, 1-hydroxycyclohexyl phenyl ketone, 2- Hydroxy-2-methyl-1-phenyl-2-methylpropan-1-one, 1- (4-iso-propylphenyl) -2-hydroxy-2-methylpropane- Benzoins such as -one, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, methyl-o-benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, hydroxypropylbenzophenone, acrylic benzophenone, 4,4'-bis (dimethylamino) Benzophenones such as benzophenone, thio
  • the photocation initiator that generates a cation upon irradiation with light is not particularly limited as long as it is a compound that initiates cationic polymerization of the ring-opening polymerizable compounds capable of cationic polymerization upon irradiation with light. Is preferably a compound that undergoes a photoreaction and releases a Lewis acid, such as an onium salt with an anion paired with an onium cation.
  • onium cations include diphenyliodonium, 4-methoxydiphenyliodonium, bis (4-methylphenyl) iodonium, bis (4-tert-butylphenyl) iodonium, bis (dodecylphenyl) iodonium, triphenylsulfonium, diphenyl -4-thiophenoxyphenylsulfonium, bis [4- (diphenylsulfonio) -phenyl] sulfide, bis [4- (di (4- (2-hydroxyethyl) phenyl) sulfonio) -phenyl] sulfide, ⁇ 5-2 , 4- (cyclopentagenyl) [1,2,3,4,5,6- ⁇ - (methylethyl) benzene] -iron (1+) and the like.
  • perchlorate ion trifluoromethanesulfonate ion, toluenesulfonate ion, trinitrotoluenesulfonate ion, and the like can be given.
  • anions include tetrafluoroborate, hexafluorophosphate, hexafluoroantimonate, hexafluoroarsenate, hexachloroantimonate, tetra (fluorophenyl) borate, tetra (difluorophenyl) borate, tetra (trifluoro).
  • Phenyl) borate tetra (tetrafluorophenyl) borate, tetra (pentafluorophenyl) borate, tetra (perfluorophenyl) borate, tetra (trifluoromethylphenyl) borate, tetra (di (trifluoromethyl) phenyl) borate and the like It is done.
  • these photocationic initiators may be used alone or in combination of two or more.
  • one type is used to prepare an adhesive material having a refractive index difference ( ⁇ n) of 0.1 or less with respect to the optical film.
  • ⁇ n refractive index difference
  • anti-aging agents leveling agents, wettability improvers, surfactants, modifiers such as plasticizers, stabilizers such as ultraviolet absorbers, preservatives, and antibacterial agents, photosensitizers ,
  • a silane coupling agent, a solvent, and the like can also be mixed.
  • the reverse wavelength dispersive optical film of the present embodiment can be produced by bonding two or more optical films through an adhesive that is a photocurable resin.
  • the adhesive made of a photo-curing resin is a film that has been finely filtered by the method described in Step b of the optical film production of the present embodiment, thereby preventing foreign matter from being mixed into the adhesive layer at the time of bonding. It is possible to obtain an optical film having reverse wavelength dispersion with high thickness accuracy, suppressing retardation unevenness, and suppressing generation of defects such as fish eyes.
  • the pore size of the filter used at this time is usually 0.5 ⁇ m or less, preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and even more preferably 0.02 ⁇ m or less.
  • a filter having a pore size equal to or smaller than the final filter pore size used in (1) is selected.
  • the method for applying the photocurable resin to the film as an adhesive is not particularly limited, but for example, a method such as table coating, spin coating, die coating, spray coating, bar coating, roll coating, curtain flow coating, etc.
  • coating photocurable resin to a film is mentioned.
  • another optical film can be placed and bonded by irradiating light such as ultraviolet rays.
  • the film and the photocurable resin may be pressure-bonded by a known method such as an extrusion lamination method or a dry lamination method.
  • the film thickness of the laminated film can be controlled by optimizing the pressure stress, temperature, and distance between rollers in consideration of the viscosity of the photocurable resin, the film surface tension, and the elasticity of the film.
  • the UV irradiation method at this time may be either UV irradiation while pressure bonding, or UV irradiation after pressure bonding.
  • the irradiation light is not particularly limited as long as energy that causes radical reaction or ion reaction can be given by irradiating light to the photocuring initiator.
  • this light source light having a wavelength of 400 nm or less, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp and a metal halide lamp, i-line, G-line, KrF excimer Laser light or ArF excimer laser light can be used.
  • the irradiation intensity to the photocurable resin is controlled for each target product and is not particularly limited.
  • the light irradiation intensity in the light wavelength region effective for activation of the photopolymerization initiator described later (which varies depending on the photopolymerization initiator, but usually 300 to 420 nm light) is 0.1 to 100 mW / cm 2 .
  • the irradiation intensity to the composition is less than 0.1 mW / cm 2 , the reaction time becomes too long, and when it exceeds 100 mW / cm 2 , it is obtained due to heat radiated from the lamp and heat generated during polymerization of the composition. There is a risk that the cohesive strength of the cured product may be reduced, yellowing or deterioration of the support may occur.
  • the light irradiation time is controlled for each target product and is not particularly limited.
  • the integrated light amount expressed as the product of the light irradiation intensity and the light irradiation time in the light wavelength region is 3. It can be set to ⁇ 1000 mJ / cm 2 . More preferably, it is 5 to 500 mJ / cm 2 , and particularly preferably 10 to 300 mJ / cm 2 .
  • the integration quantity of the composition is less than 3 mJ / cm 2, not sufficient active species generated from the photopolymerization initiator, there is a fear that reduction of the characteristic of the cured product obtained results, a 1000 mJ / cm 2 Exceeding this is disadvantageous for improving productivity.
  • the temperature when curing the curable resin by irradiating light is preferably 0 to 100 ° C., more preferably 0 to 60 ° C., and a temperature lower than the softening temperature of the retardation film made of a fluorine-containing cyclic olefin polymer. It is preferably selected.
  • the thickness of the adhesive layer obtained by curing the curable material by irradiation with light is not particularly limited, but is preferably 0.5 ⁇ m to 100 ⁇ m, more preferably 0.5 ⁇ m to 50 ⁇ m, and most preferably 0.8 ⁇ m. 5 ⁇ m to 10 ⁇ m. If the thickness exceeds 100 ⁇ m, the film may be wrinkled due to curing shrinkage during UV irradiation, or the phase difference characteristics may change. If the thickness is less than 0.5 ⁇ m, it is light due to problems such as film thickness uniformity. Contact unevenness may occur at the interface between the curable resin and the film surface, and the adhesive strength after curing may not be obtained.
  • the retardation film having high transparency and low retardation wavelength dispersion or having reverse wavelength dispersion is a display material such as a liquid crystal display, a reflective liquid crystal display, an organic EL display, an inner touch panel, and a liquid crystal projector.
  • a display material such as a liquid crystal display, a reflective liquid crystal display, an organic EL display, an inner touch panel, and a liquid crystal projector.
  • the contrast of image display can be improved by correcting the black display.
  • specific retardation specifically 140 nm and 280 nm films, are various kinds of polarizing elements that convert linearly polarized light into circularly polarized light and circularly polarized light into linearly polarized light as ⁇ / 4 wavelength plate and ⁇ / 2 wavelength plate, respectively.
  • the number of retardation films to be laminated can be reduced, and It is also possible to display an image with excellent viewing angle characteristics.
  • the analytical value measuring method, the film stretching method and the retardation measuring method of the polymer synthesized in the examples are shown below.
  • the physical properties of the low wavelength dispersible film are shown in Table 1, and the low wavelength dispersible film is shown in Table 1.
  • Table 2 shows the physical property values of the optical films bonded together.
  • composition (molar) ratio of cyclic olefin copolymer A cyclic olefin copolymer obtained by hydrogenating a ring-opening metathesis polymer was dissolved in deuterated tetrahydrofuran and measured by the following method to calculate the composition. Orthodifluorobenzene was added as a reference substance, and a 373 MHz- 19 F-NMR spectrum was measured using an ECX400 type nuclear magnetic resonance apparatus manufactured by JEOL.
  • Glass-transition temperature Using a DSC-50 manufactured by Shimadzu Corporation, the measurement sample was heated and measured at a heating rate of 10 ° C./min in a nitrogen atmosphere.
  • Film stretching method Using a stretching apparatus IMC-19FC manufactured by Imoto Seisakusho Co., Ltd., the chuck was heated to a predetermined temperature of 70 mm between chucks ⁇ 70 mm in width, and then uniaxially stretched to a predetermined magnification at a speed of 30 mm / min.
  • the film is fixed with a 70 mm width chuck as a first stretching axis, and the film is fixed with a 30 mm width chuck as a second stretching axis, heated to a predetermined temperature, and then 30 mm / min. Simultaneously biaxially stretched to a predetermined magnification for each of the first and second stretching axes at a speed.
  • phase difference Using a retardation measuring device RETS-100 manufactured by Otsuka Electronics Co., Ltd., measurement was performed by a rotating analyzer method using a halogen lamp as a light source and a multichannel spectrophotometer as a detector. From the data obtained by measuring 16 points (4 rows, 4 columns) of the phase difference from the wavelength of 400 nm to 800 nm within the range of 50 mm x 50 mm while moving the sample stage, the average value of the wavelengths of 400 nm, 550 nm and 800 nm is calculated by numerical analysis. The phase difference was calculated, the standard deviation was calculated by numerical analysis thereof, and a sign ( ⁇ ) was assigned to make the phase difference uneven.
  • the obtained polymer solution was solvent-substituted with THF, and the olefin part was hydrogenated with palladium alumina (2.5 g) at 160 ° C. to obtain poly (1,2-difluoro-1-heptafluoro-iso-propyl-2).
  • a solution of -trifluoromethyl-3,5-cyclopentyleneethylene) in THF was obtained.
  • the solution was subjected to pressure filtration with a filter having a pore size of 5 ⁇ m, and the solution from which palladium alumina had been removed was added to methanol, and the white polymer was filtered off and dried to obtain 49 g of polymer 3.
  • the hydrogenation rate was 100%, the weight average molecular weight (Mw) was 142000, the molecular weight distribution (Mw / Mn) was 1.40, and the glass transition temperature was 137 ° C.
  • the solution was pressure filtered through a filter having a pore size of 5 ⁇ m, the solution was added to methanol, the white polymer was filtered off and dried to obtain 51 g of polymer 6.
  • Example 1 Polymer 1 synthesized in Production Example 1 is dissolved in methyl ethyl ketone at a concentration of 30% by mass, and the solution is pressure filtered with a filter having a pore size of 1 ⁇ m, and then subjected to multistage pressurization with a 0.1 ⁇ m filter, and further with a 0.05 ⁇ m filter.
  • the filtered methyl ethyl ketone solution was applied to a glass substrate, uniformly coated using an applicator, dried at 100 ° C. for 30 minutes and peeled to obtain a 65 ⁇ m thick surface smooth film.
  • the film was fixed with a chuck interval of 70 mm and a width of 70 mm, and the film was stretched at a stretching temperature of 120 ° C. and a stretching ratio of 1.7 times to obtain a film having a thickness of 36 ⁇ m.
  • the total light transmittance is 94.5%
  • the D-line refractive index is 1.408
  • the haze is 0.3%
  • the reflectance is 5.5%
  • the angle of the slow axis with respect to the stretching axis is 0.2 °. Yes, it is a ⁇ / 4 wavelength plate.
  • Table 1 The results are shown in Table 1.
  • Example 2 A surface smooth film having a thickness of 65 ⁇ m was obtained in the same manner as in Example 1. Thereafter, the film was fixed with a chuck distance of 70 mm and a width of 70 mm, and the film was stretched by changing the stretching temperature to 115 ° C. and the stretching ratio to 2.3 times to obtain a film having a thickness of 24 ⁇ m.
  • the total light transmittance is 94.5%
  • the D-ray refractive index is 1.408
  • the haze 0.3%
  • the reflectance is 5.5%
  • the angle of the slow axis with respect to the stretching axis is 0.1 °. Yes, it is a ⁇ / 2 wave plate.
  • Table 1 The results are shown in Table 1.
  • Example 3 The polymer 2 synthesized in Production Example 2 was dissolved in methyl ethyl ketone at a concentration of 30% by mass, and the solution was pressure filtered through a filter having a pore size of 1 ⁇ m, then passed through a 0.1 ⁇ m filter twice, and further a 0.05 ⁇ m filter. The solution was subjected to multistage pressure filtration, and the solution was obtained in the same manner as in Example 1 to obtain a 67 ⁇ m thick surface smooth film. Thereafter, the film was fixed with a chuck spacing of 70 mm and a width of 70 mm, and a stretching temperature of 135 ° C. and a stretching ratio of 1.7 times were stretched to obtain a film having a thickness of 36 ⁇ m.
  • the total light transmittance is 94.9%
  • the D-line refractive index is 1.391
  • haze 0.3%
  • the reflectance is 5.1%
  • the angle of the slow axis with respect to the stretching axis is 0.3 °. Yes, it is a ⁇ / 4 wavelength plate.
  • Table 1 The results are shown in Table 1.
  • Example 4 The polymer 3 synthesized in Production Example 3 was dissolved in trifluoromethylbenzene at a concentration of 30% by mass, and the solution was subjected to pressure filtration with a filter having a pore size of 1 ⁇ m, then passed through a 0.1 ⁇ m filter twice.
  • the surface is 71.0 ⁇ m thick by multi-stage pressure filtration with a 05 ⁇ m filter, applying the trichloromethylbenzene solution to a glass substrate, coating uniformly with an applicator, drying at 120 ° C for 30 minutes and peeling. A smooth film was obtained. Thereafter, the film was fixed with a chuck distance of 70 mm and a width of 70 mm, and the stretching temperature was 155 ° C.
  • the total light transmittance is 95.2%
  • the D-ray refractive index is 1.38
  • the haze 0.3%
  • the reflectance is 4.8%
  • the slow axis angle with respect to the stretching axis is 0.2 °. , ⁇ / 4 wavelength plate.
  • Table 1 The results are shown in Table 1.
  • Example 5 Polymer 4 synthesized in Production Example 4 is dissolved in methyl isobutyl ketone at a concentration of 30% by mass, and the solution is pressure filtered with a filter having a pore size of 1 ⁇ m, and then subjected to multistage pressure filtration with a 0.1 ⁇ m filter. After apply
  • the total light transmittance is 95.1%
  • the D-line refractive index is 1.39
  • the haze 0.3%
  • the reflectance is 6.5%
  • the slow axis angle with respect to the stretching axis is 0.1 °. , ⁇ / 4 wavelength plate.
  • Table 1 The results are shown in Table 1.
  • Example 6 After applying the methyl isobutyl ketone solution of polymer 5 prepared in Production Example 5 to a glass substrate and coating it uniformly using an applicator, the film is dried at 120 ° C. for 30 minutes and then peeled off. Got. Thereafter, the film was fixed with a chuck distance of 70 mm and a width of 70 mm, and the film was stretched at a stretching temperature of 120 ° C. and a stretching ratio of 1.7 times to obtain a film having a thickness of 35 ⁇ m.
  • Example 8 3-ethyl-3 [ ⁇ (3-ethyloxetane-3-yl) methoxy ⁇ methyl] oxetane dissolved in polymer 1 in adhesive 1 of Example 7, 1,7-octadiene-di-epoxide and poly (1, 1,2-trifluoro-2-trifluoromethyl-3,5-cyclopentyleneethylene) in a composition with a mass ratio of 70/15/15 (D-ray refractive index 1.44).
  • a solution prepared by adding 1.0 wt% of SP-172 (manufactured by Asahi Denka Kogyo Co., Ltd.) as an adhesive 2 (refractive index difference 0.032) has a phase difference of 144.11 ⁇ 1.
  • a 36 ⁇ m ⁇ / 4 wavelength plate that is 1 ° is 60 ° at which the stretching axis of each film intersects. It was UV irradiation, to produce a bonding film of the two retardation films.
  • the total light transmittance was 93.7%, the haze was 0.6%, the reflectance was 6.3%, and the film was a film ⁇ / 4 wavelength plate of 75 ⁇ m. Furthermore, in the peeling test by the cross-cut method, it did not peel at all at 100/100 and showed good adhesion. The results are shown in Table 2.
  • the total light transmittance of 1.03 is 94.5%, the haze is 0.3%, the reflectance is 5.5%, the D-line refractive index is 1.408, and the slow axis angle with respect to the stretching axis is 0.1 °.
  • the ⁇ / 2 wave plates having a thickness of 24 ⁇ m are stacked at an angle of 40 ° at which the stretching axes of the respective films intersect, and are bonded using the adhesive 1 in the same manner as in Example 7. A laminated film was produced.
  • the total light transmittance was 93.5%, the haze was 0.6%, the reflectance was 6.5%, and the ⁇ / 2 wavelength plate had a thickness of 50 ⁇ m. Furthermore, in the peeling test by the cross-cut method, it did not peel at all at 100/100 and showed good adhesion. The results are shown in Table 2.
  • Example 10 Three stretched films having a total light transmittance of 94.5%, a D-line refractive index of 1.408, a haze of 0.3%, and a reflectance of 5.5% from the polymer 1 in the same manner as in Example 1. was made.
  • Example 7 the adhesive of Example 7 was stacked with the angle at which the stretching axes of film (I) and film (II) intersect each other being 80 ° and the angle at which the stretching axes of film (II) and film (III) intersecting was 10 °. 1 to produce a film in which three films were bonded together.
  • Table 1 The results are shown in Table 1.
  • the total light transmittance is 89.4%
  • haze 0.9%
  • reflectance 8.1%
  • the thickness error due to surface roughness of the film is as extremely large as ⁇ 5 ⁇ m. It was inappropriate.
  • the D-ray refractive index is 1.408, the angle of the slow axis with respect to the stretching axis is 0.2 °, and it is a ⁇ / 4 wavelength plate. The results are shown in Table 1.
  • the film is made of adhesive material 1-phenyl-1,2-epoxyethane and 3-ethyl-3 [ ⁇ (3-ethyloxetane-3-yl) methoxy ⁇ methyl] oxetane in a mass ratio of 90/10 (D-line refractive index).
  • Example 11 The polymer 1 synthesized in Production Example 1 was dissolved in methyl ethyl ketone at a concentration of 30% by mass, and the solution was pressure filtered through a filter having a pore size of 1 ⁇ m, then a 0.1 ⁇ m filter, and further a 0.05 ⁇ m filter, finally Apply a methyl ethyl ketone solution that has been filtered in multiple stages with a 0.02 ⁇ m filter onto a glass substrate, coat it uniformly using an applicator, dry it at 100 ° C. for 30 minutes, and peel it off to obtain a 65 ⁇ m thick surface smooth film. Obtained.
  • the film was fixed with a chuck interval of 70 mm and a width of 70 mm, and the film was stretched at a stretching temperature of 120 ° C. and a stretching ratio of 1.7 times to obtain a film having a thickness of 36 ⁇ m.
  • the total light transmittance is 94.5%
  • the D-line refractive index is 1.408
  • the haze is 0.2%
  • the reflectance is 5.5%
  • the angle of the slow axis with respect to the stretching axis is 0.2. This is a ⁇ / 4 wavelength plate.
  • Table 1 The results are shown in Table 1.
  • Example 12 The polymer 3 synthesized in Production Example 3 was subjected to multi-stage filtration by the method described in Example 4, and further three times while maintaining the pressure difference ( ⁇ P) between the upper liquid level and the lower filter part at 0.05 MPa with a 0.02 ⁇ m filter.
  • a trichloromethylbenzene solution of polymer 3 passed through a filter was applied to a glass substrate, uniformly coated using an applicator, dried at 120 ° C. for 30 minutes and peeled to obtain a 71 ⁇ m thick surface smooth film. . Thereafter, the film was fixed with a chuck distance of 70 mm and a width of 70 mm, and the film was stretched at a stretching temperature of 155 ° C.
  • the total light transmittance is 95.2%, the D-line refractive index is 1.38, the haze is 0.2%, the reflectance is 4.8%, and the slow axis angle with respect to the stretching axis is 0.2 °. It is a ⁇ / 4 wavelength plate. The results are shown in Table 1.
  • Example 13 A methyl ethyl ketone solution obtained by multistage filtration from the polymer 1 synthesized in Production Example 1 in the same manner as in Example 11 was applied to a glass substrate to obtain a 65 ⁇ m thick surface smooth film. Thereafter, the film is fixed with a 70 mm width chuck as the first stretching axis, and the film is fixed with a 30 mm width chuck as the second stretching axis, the stretching temperature is 110 ° C., and the first stretching axis is stretched. A film having a thickness of 10 ⁇ m was obtained by simultaneous biaxial stretching at a magnification of 3.0 times and a stretching ratio of the second stretching axis of 1.1 times.
  • the total light transmittance is 94.5%
  • the D-ray refractive index is 1.408
  • the haze 0.1%
  • the reflectance is 1.2%
  • the angle of the slow axis with respect to the stretching axis is 0.1. This is a ⁇ / 4 wavelength plate.
  • Table 1 The results are shown in Table 1.
  • Example 14 A methyl ethyl ketone solution obtained by multistage filtration from the polymer 1 synthesized in Production Example 1 in the same manner as in Example 11 was applied to a glass substrate to obtain a 65 ⁇ m thick surface smooth film. Thereafter, the film is fixed with a chuck having a width of 70 mm using the width of 70 mm as the first stretching axis, and is fixed with a chuck having a width of 30 mm using the width of 30 mm of the film as the second stretching axis. A film having a thickness of 6 ⁇ m was obtained by simultaneous biaxial stretching at a magnification of 3.6 times and a stretching ratio of the second stretching axis of 1.1 times.
  • the total light transmittance is 94.5%
  • the D-line refractive index is 1.408
  • the haze 0.1%
  • the reflectance 0.7%
  • the angle of the slow axis with respect to the stretching axis is 0.1. This is a ⁇ / 2 wavelength plate.
  • Table 1 The results are shown in Table 1.
  • Re (400 nm) / Re (550 nm ) 1.02
  • a ⁇ / 4 wavelength plate having a thickness of 10 ⁇ m with a phase axis angle of 0.1 ° is stacked at an angle of 60 ° at which the stretching axes of the respective films intersect, and the adhesive 1 is used in the same manner as in Example 7. And a film in which two films were bonded together was produced.
  • the total light transmittance was 92.1%, the haze was 0.2%, the reflectance was 2.4%, and the ⁇ / 4 wavelength plate had a thickness of 21 ⁇ m. Furthermore, in the peeling test by the cross-cut method, it did not peel at all at 100/100 and showed good adhesion. The results are shown in Table 2.
  • D-line refractive index is 1.408, haze is 0.1%, reflectance is 0.7%, and the angle of the slow axis with respect to the stretching axis is 0.1 °.
  • a ⁇ / 2 wavelength plate with a thickness of 6 ⁇ m having an angle of 0.1 ° is laminated using an adhesive 1 in the same manner as in Example 7 by overlapping the angles at which the stretching axes of the respective films intersect at 40 °.
  • a film in which two films were bonded together was produced.
  • the total light transmittance was 93.5%, the haze was 0.2%, the reflectance was 1.4%, and the ⁇ / 2 wavelength plate had a thickness of 13 ⁇ m. Furthermore, in the peeling test by the cross-cut method, it did not peel at all at 100/100 and showed good adhesion. The results are shown in Table 2.
  • the retardation film of the present invention can be suitably used for display materials such as liquid crystal displays and organic EL.
  • display materials such as liquid crystal displays and organic EL.
  • it is useful as a retardation film such as a reflective liquid crystal display, as a polarizing plate compensation film, and further as a polarizer protective film, and has an extremely high industrial value.

Abstract

 本発明の光学フィルムは、実質的に下記一般式(1)で表される繰返し構造単位から選択される少なくとも一種からなるフッ素含有環状オレフィンポリマーからなるフィルムを延伸して得られ、波長550nmの位相差が50nm以上であり、波長550nmの位相差Re(550nm)に対する波長400nmの位相差Re(400nm)の比Re(400nm)/Re(550nm)で表される波長分散性が1.00~1.05であり、かつ、波長800nmの位相差Re(800nm)に対する波長400nmの位相差Re(400nm)の比Re(400nm)/Re(800nm)で表される波長分散性が1.00~1.05であり、全光線透過率が92%以上である、低波長分散性の光学フィルム。

Description

光学フィルム
 本発明は、特定のフッ素含有脂肪族5員環構造を有するフッ素含有環状オレフィンポリマーからなるフィルムを延伸して得られる低波長分散性の光学フィルムに関する。さらに、この光学フィルムの遅相軸が同軸にならない角度で2枚以上のフィルムを貼り合わせた逆波長分散性の光学フィルムに関する。
 近年の液晶や有機ELなどの画像表示装置の進歩は著しく、携帯電話やパソコンモニターなどの中小型画像表示装置や、テレビ用の大型のものまでその用途は拡大している。このような画像表示装置では画像表示の性能向上のために、表示の均一性、コントラストの向上、表示の視野角を拡大するなどの目的で種々の位相差フィルムが使用されている。位相差フィルムは、鮮明な色彩と精細な画像を得るために、複屈折が全面に均一であり、温度、湿度などの条件で厳しい環境下においても光学特性が変化しない事が求められる。
 利用される樹脂材料としては、多くの場合、ポリカーボネート(PC)や環状オレフィンポリマーなどの高分子からなる透明フィルムが使用されている。通常ポリカーボネートからなるフィルムを延伸、配向してなる位相差フィルムの場合、光弾性定数が100×10-12/Pa前後と大きいため、複屈折が大きくなりすぎる事、不均一となる事、貼り合わせなどの組立て時や環境変化によって生じた僅かな応力で複屈折が変化するなどの問題を生じる。また、一部の銘柄を除いて、位相差の波長依存性が正の符号で大きく(中心波長に対して短波長の位相差が大きく長波長の位相差が小さい)、これによって光漏れを起こし、表示の均一性やコントラストを悪化させる問題を生じる。
 このような樹脂本来の物性から生じる問題を解決するために、光弾性定数が比較的小さな材料である環状オレフィンポリマーからなるフィルムを延伸、配向する位相差フィルムが利用されている(例えば、特許文献1、特許文献2)。この中で、光弾性定数が0~20×10-12/Paの範囲の環状オレフィンポリマーからなるフィルムを延伸、配向して作製した位相差フィルムは、初期特性に優れ、使用環境や製造条件の影響を受けにくく信頼性に優れると開示されている(特許文献1)。
 また、位相差の波長依存性は比較的小さくこの点も環状オレフィンポリマーからなる位相差フィルムが表示材料部材として好適に利用される理由である。しかしながら、従来の環状オレフィンポリマーからなる位相差フィルムは、透明性、位相差などの光学機能に優れた材料であっても、フィルムを積層する際、或は、画像表示装置に組み込む際の密着性に乏しく、また、画像表示の更なる高精細化や省エネなどが求められる現在では、波長依存性など位相差機能の更なる性能向上や、省エネに寄与するフィルムの高透明化などの課題がある。
 位相差の波長依存性については、その特性を上記した正の符号を持つもの、波長依存性を示さないもの、負の符号を持つもの(中心波長に対して短波長の位相差が小さく長波長の位相差が大きい)の3種に分類でき、各種画像装置においてそれぞれの特性を利用して適材適所に配置され使用されている。
 ここで、特に負の符号の波長分散は一般的には逆波長分散と呼ぶ。従来の材料はその殆どが正の符号を持つ材料であり、特に比較的大きな正の符号を持つ材料を利用していた初期の液晶表示材料では表示の性能を低下させる主因ともなっていた。その後、フィルムの高分子材料を組成物にする、多層化するなどの検討が行われ正の波長依存性を比較的小さくする事が可能になってきているが、用途によっては十分な性能を引出すまでには至っていない。
 また、波長依存性を示さない高分子材料としては、ポリビニルアルコール(PVA)が知られている。しかしながら、ポリビニルアルコールは、使用環境下での寸法安定性に乏しく、偏光板に見られるような保護フィルムを必要とする事から、実用上、当該材料からなるフィルムを位相差フィルムとして利用する事はできない。さらに、負の符号を示す材料として、特殊ポリカーボネートからなるフィルムを延伸して得られる位相差フィルムが一部の用途で利用されている(特許文献3)。しかしながら、上記したポリカーボネート樹脂特有の光弾性定数に起因する使用上の問題を引き起こす可能性がある。他にも、負の符号を示す材料として高分子材料の組成物を利用する系(特許文献4)、位相差フィルムを積層する系(特許文献5)、特殊な環状オレフィンポリマーをフィルム材料に用いる系(特許文献6、特許文献7)など開示されているが、何れの系においても高分子材料の合成工程、フィルム作製工程、延伸工程などの各工程の煩雑さや、製品の価格面などから広く利用されるまでに至っていない。
 さらに、フッ素を含有する環状オレフィンコポリマーとして、主鎖に5員環構造(A)と複数の環状構造(B)を有する共重合体は、そのモル比(A)/(B)が95/5~1/99の光学材料は、ポリマー鎖自身が配向しても低複屈折であることが知られている(特許文献8)。この共重合体を延伸しても位相差フィルムを製造することができない。
特開2005-128047号公報 特開2003-270435号公報 WO2001/081959号パンフレット 特開2011-112842号公報 特開2004-177951号公報 特開2010-169952号公報 特開2007-108529号公報 WO2011/125323号パンフレット
 本発明は、上記課題に鑑みてなされたものであり、フッ素含有環状オレフィンポリマーの優れた透明性、靭性、成形性を有するとともに、位相差の波長分散性が極めて低い光学フィルムを提供することを目的とする。さらに、この光学フィルムの遅相軸が同軸にならない角度で2枚以上、積層する事で透明性、靭性を有するとともに、位相差の波長分散性が逆波長分散性を有する光学フィルムを提供することを目的とする。
 本発明は、以下に示される。
[1] 実質的に下記一般式(1)で表される繰返し構造単位から選択される少なくとも一種からなるフッ素含有環状オレフィンポリマーからなるフィルムを延伸して得られた光学フィルムであって、
 波長550nmの位相差が50nm以上であり、波長550nmの位相差Re(550nm)に対する波長400nmの位相差Re(400nm)の比Re(400nm)/Re(550nm)で表される波長分散性が1.00~1.05であり、かつ、波長800nmの位相差Re(800nm)に対する波長400nmの位相差Re(400nm)の比Re(400nm)/Re(800nm)で表される波長分散性が1.00~1.05であり、全光線透過率が92%以上である、低波長分散性の光学フィルム;
Figure JPOXMLDOC01-appb-C000002
(式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数8~20のアリールオキシカルボニルアルキルから選ばれ、同一でも異なっていてもよい。R~Rが、フッ素以外または上記置換基以外の基である場合、R~Rはそれぞれ独立に、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。Xは、-O-、-S-、-NR-、-PR-、および-CR-(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す。)から選ばれる。)。
[2] λ/4波長板またはλ/2波長板である、[1]に記載の光学フィルム。
[3]前記フッ素含有環状オレフィンポリマーのワニスを孔径0.5μm以下の孔を備えるフィルターを通過させ、精密ろ過を施し、次いで製膜して得られた前記光学フィルムであって、λ/4波長板またはλ/2波長板である、[2]に記載の光学フィルム。
[4] 前記λ/4波長板は、波長550nmにおける位相差が140±10nmである、[3]に記載の光学フィルム。
[5] 前記λ/2波長板は、波長550nmにおける位相差が280±20nmである、[3]に記載の光学フィルム。
[6] 前記λ/4波長板およびλ/2波長板は、波長550nmにおける位相差ムラが、±0.50nm/cm以下である、[3]に記載の光学フィルム。
[7] 前記λ/4波長板およびλ/2波長板は、波長550nmにおける反射率が、7.0%以下である、[3]に記載の光学フィルム。
[8] 遅相軸が同軸にならない角度で、2枚以上の[1]に記載の光学フィルムを貼り合わせた光学フィルムであって、逆波長分散性Re(400nm)/Re(550nm)が1.00未満であり、かつ全光線透過率が91%以上である、光学フィルム。
[9] 2枚以上の前記光学フィルムが、該光学フィルムとの屈折率差(Δn)が0.1以下である接着材料を介して貼り合わされている、[8]に記載の光学フィルム。
[10] λ/4波長板またはλ/2波長板であることを特徴とする[8]または[9]に記載の光学フィルム。
[11]前記フッ素含有環状オレフィンポリマーのワニスを孔径0.5μm以下の孔を備えるフィルターを通過させ、精密ろ過を施し、次いで製膜して得られた前記光学フィルムであって、 λ/4波長板またはλ/2波長板であることを特徴とする[10]に記載の光学フィルム。
[12] 前記λ/4波長板は、波長550nmにおける位相差が140±10nmである、[11]に記載の光学フィルム。
[13] 前記λ/2波長板は、波長550nmにおける位相差が280±20nmである、[11]に記載の光学フィルム。
[14] 前記λ/4波長板およびλ/2波長板は、波長550nmにおける位相差ムラが、±0.50nm/cm以下である、[11]に記載の光学フィルム。
[15] 前記λ/4波長板およびλ/2波長板は、波長550nmにおける反射率が、7.0%以下である、[11]に記載の光学フィルム。
 本発明において「実質的に下記一般式(1)で表される繰返し構造単位から選択される少なくとも一種からなるフッ素含有環状オレフィンポリマー」とは、複数の環構造を有する構造単位を含まないものであり、本発明の効果を損なわない範囲で、一般式(1)で表される構成単位以外の構成単位を含んでいてもよいことを意味する。
 本発明は、特有のフッ素含有5員環状オレフィンポリマーからなるフィルムを延伸したフィルムであって、光波長400nmから800nmの範囲で位相差の変化が極めて低く、かつ透明性が非常に高い低波長分散性を有する光学フィルムを提供する事ができる。さらに、本発明の光学フィルムの遅相軸が同軸にならない角度で延伸フィルムを貼り合わせる事で透明性が非常に高い逆波長分散特性を有する光学フィルムを提供する事ができ工業的に価値がある。
 以下、本発明の光学フィルムを実施の形態によって説明する。
 本実施形態の光学フィルムは、実質的に下記一般式(1)で表される繰返し構造単位から選択される少なくとも一種からなるフッ素含有環状オレフィンポリマーからなるフィルムを延伸して得られる、低波長分散性の光学フィルムであって下記特性を有する。
 波長550nmの位相差が50nm以上であり、波長550nmの位相差Re(550nm)に対する波長400nmの位相差Re(400nm)の比Re(400nm)/Re(550nm)で表される波長分散性が1.00~1.05であり、かつ、波長800nmの位相差Re(800nm)に対する波長400nmの位相差Re(400nm)の比Re(400nm)/Re(800nm)で表される波長分散性が1.00~1.05であり、全光線透過率が92%以上である。
 以下、光学フィルムを構成するフッ素含有環状オレフィンポリマーについて説明する。
[フッ素含有環状オレフィンポリマー]
 本実施形態において、フッ素含有環状オレフィンポリマーは、実質的に下記一般式(1)で表される繰返し構造単位の少なくとも一種からなる。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数8~20のアリールオキシカルボニルアルキルから選ばれ、同一でも異なっていてもよい。
 R~Rがフッ素を含む場合、R~Rとして、具体的には、フッ素、または、フルオロメチル、ジフルオロメチル、トリフルオロメチル、トリフルオロエチル、ペンタフルオロエチル、ヘプタフルオロプロピル、ヘキサフルオロイソプロピル、ヘプタフルオロイソプロピル、ヘキサフルオロ-2-メチルイソプロピル、ペルフルオロ-2-メチルイソプロピル、n-ペルフルオロブチル、n-ペルフルオロペンチル、ペルフルオロシクロペンチル等の水素の一部または全てがフッ素で置換されたアルキル等のフッ素を含有する炭素数1~10のアルキル、
フルオロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、トリフルオロエトキシ、ペンタフルオロエトキシ、ヘプタフルオロプロポキシ、ヘキサフルオロイソプロポキシ、ヘプタフルオロイソプロポキシ、ヘキサフルオロ-2-メチルイソプロポキシ、ペルフルオロ-2-メチルイソプロポキシ、n-ペルフルオロブトキシ、n-ペルフルオロペンチルオキシ、ペルフルオロシクロペンチルオキシなど水素の一部または全てがフッ素で置換されたアルコキシ等のフッ素を含有する炭素数1~10のアルコキシ、
フルオロメトキシメチル、ジフルオロメトキシメチル、トリフルオロメトキシメチル、トリフルオロエトキシメチル、ペンタフルオロエトキシメチル、ヘプタフルオロプロポキシメチル、ヘキサフルオロイソプロポキシメチル、ヘプタフルオロイソプロポキシメチル、ヘキサフルオロ-2-メチルイソプロポキシメチル、ペルフルオロ-2-メチルイソプロポキシメチル、n-ペルフルオロブトキシメチル、n-ペルフルオロペンチルオキシメチル、ペルフルオロシクロペンチルオキシメチルなど水素の一部または全てがフッ素で置換されたアルコキシアルキル等のフッ素を含有する炭素数2~10のアルコキシアルキル、
ペルフルオロフェニル、トリフルオロフェニルなど水素の一部または全てがフッ素で置換されたアリール等のフッ素を含有する炭素数6~20のアリール、
フルオロメトキシカルボニル、ジフルオロメトキシカルボニル、トリフルオロメトキシカルボニル、トリフルオロエトキシカルボニル、ペンタフルオロエトキシカルボニル、ヘプタフルオロプロポキシカルボニル、ヘキサフルオロイソプロポキシカルボニル、ヘプタフルオロイソプロポキシカルボニル、ヘキサフルオロ-2-メチルイソプロポキシカルボニル、ペルフルオロ-2-メチルイソプロポキシカルボニル、n-ペルフルオロブトキシカルボニル、n-ペルフルオロペンチルオキシカルボニル、ペルフルオロシクロペンチルオキシカルボニルなど水素の一部または全てがフッ素で置換されたアルコキシカルボニル等のフッ素を含有する炭素数2~10のアルコキシカルボニル、
ペルフルオロフェニルオキシカルボニル、トリフルオロフェニルオキシカルボニルなど水素の一部または全てがフッ素で置換されたアリールオキシカルボニル等のフッ素を含有する炭素数7~20のアリールオキシカルボニル、
フルオロメトキシカルボニルメチル、ジフルオロメトキシカルボニルメチル、トリフルオロメトキシカルボニルメチル、トリフルオロエトキシカルボニルメチル、ペンタフルオロエトキシカルボニルメチル、ヘプタフルオロプロポキシカルボニルメチル、ヘキサフルオロイソプロポキシカルボニルメチル、ヘプタフルオロイソプロポキシカルボニルメチル、ヘキサフルオロ-2-メチルイソプロポキシカルボニルメチル、ペルフルオロ-2-メチルイソプロポキシカルボニルメチル、n-ペルフルオロブトキシカルボニルメチル、n-ペルフルオロペンチルオキシカルボニルメチル、ペルフルオロシクロペンチルオキシメチルなど水素の一部または全てがフッ素で置換されたアルコキシカルボニルアルキル等のフッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、
ペルフルオロフェニルオキシカルボニルメチル、トリフルオロフェニルオキシカルボニルメチルなど水素の一部または全てがフッ素で置換されたアリールオキシカルボニルメチル等のフッ素を含有する炭素数8~20のアリールオキシカルボニルアルキル、などを例示することができる。
 R~Rが、フッ素以外または上記以外の基である場合、R~Rはそれぞれ独立に、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルなどを例示することができる。
 R1~R4がフッ素以外または上記以外の基である場合、R1~R4として、具体的には、水素、または、メチル、エチル、プロピル、イソプロピル、2-メチルイソプロピル、n-ブチル、n-ペンチル、シクロペンチル等の炭素数1~10のアルキル、
フェニル、ナフチル等の炭素数6~20のアリール、
メトキシ、エトキシ、tert-ブトキシ等の炭素数1~10のアルコキシ、
メトキシメチル、エトキシメチル、tert-ブトキシメチル等の炭素数2~10のアルコキシアルキル、
メトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニル等の炭素数2~10のアルコキシカルボニル、
フェニルオキシカルボニル、メチルフェニルオキシカルボニル等の炭素数7~20のアリールオキシカルボニル、
メトキシカルボニルメチル、エトキシカルボニルメチル、tert-ブトキシカルボニルメチル等の炭素数3~10のアルコキシカルボニルアルキル、または
フェニルオキシカルボニルメチル、メチルフェニルオキシカルボニルメチル等の炭素数8~20のアリールオキシカルボニルアルキル、などを例示することができる。
 また、R~Rが互いに結合して環構造を形成していてもよく、例えば、ペルフルオロシクロアルキル、酸素を介したペルフルオロシクロエーテル等の環を形成してもよい。
 ただし、一般式(1)は、R~Rが互いに結合して環構造を形成し、複数の環構造を有する構造単位となる態様を含まない。複数の環構造を有する構造単位を含むフッ素含有環状オレフィンポリマーからなるフィルムを延伸した光学フィルムは、配向しても低複屈折であることが知られており、位相差フィルムの観点から好ましくない。複数の環構造を有する構造単位としては、特に限定されないが、例えば、下記一般式(2)の構造単位を挙げることができる。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、R~R10のうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。Xは-O-、-S-、-NR11-、-PR11-、および-CR1112-から(R11、R12はそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれ、同一でも異なってもよい。nは1~3を表す。
 本実施形態において、一般式(1)のXは、-O-、-S-、-NR-、-PR-、および-CR-から(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)選ばれる。
 本実施形態において、フッ素含有環状オレフィンポリマーは、一般式(1)で表される繰り返し構造単位から選択される1種類のみから構成されていてもよく、一般式(1)のR~Rの少なくとも1つが互いに異なる2種類以上の構造単位から構成されていてもよい。
 フッ素含有環状オレフィンポリマーとしては、例えば、ポリ(1-フルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-フルオロ-1-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-フルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1,1-ジフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロエチル-3,5-シクロペンチレンエチレン)、ポリ(1,1-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ[1,2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン]、ポリ(1-ペルフルオロプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-ペルフルオロプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロイソプロピル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロイソプロピル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1,2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2,2,3,3,3a,6a-オクタフルオロシクロペンチル-4,6-シクロペンチレンエチレン)、ポリ(1,1,2,2,3,3,4,4,3a,7a-デカフルオロシクロヘキシル-5,7-シクロペンチレンエチレン)、ポリ(1-ペルフルオロブチル-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロ-iso-ブチル-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロ-tert-ブチル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロ-iso-ブチル-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-ペルフルオロ-iso-ブチル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメチル-2-ペルフルオロエチル-3,5-シクロペンチレンエチレン)、ポリ[1-(1-トリフルオロメチル-2,2,3,3,4,4,5,5-オクタフルオロ-シクロペンチル)-3,5-シクロペンチレンエチレン)]、ポリ[(1,1,2-トリフルオロ-2-ペルフルオロブチル)-3,5-シクロペンチレンエチレン]、ポリ(1,2-ジフルオロ-1-トリフルオロメチル-2-ペルフルオロブチル-3,5-シクロペンチレンエチレン)、ポリ[1-フルオロ-1-ペルフルオロエチル-2,2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン]、ポリ[1,2-ジフルオロ-1-ペルフルオロプロパニル-2-トリフルオロメチル)-3,5-シクロペンチレンエチレン]、ポリ(1-ペルフルオロヘキシル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロヘキシル-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-ペルフルオロヘキシル-3,5-シクロペンチレンエチレン)、ポリ(1-ヘキシル-2-ペルフルオロヘキシル-3,5-シクロペンチレンエチレン)、ポリ(1-オクチル-2-ペルフルオロヘキシル-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロヘプチル-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロオクチル-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロデカニル-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-ペルフルオロペンチル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメチル-2-ペルフルオロブチル-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-ペルフルオロヘキシル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメチル-2-ペルフルオロペンチル-3,5-シクロペンチレンエチレン)、ポリ[1,2-ビス(ペルフルオロブチル)-3,5-シクロペンチレンエチレン]、ポリ[1,2-ビス(ペルフルオロヘキシル)-3,5-シクロペンチレンエチレン]、ポリ(1-メトキシ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニルメチル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)、ポリ(1,1,3,3,3a,6a-ヘキサフルオロフラニル-3,5-シクロペンチレンエチレン)などが挙げられ、
 また、ポリ(1-フルオロ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-フルオロ-1-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-フルオロ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,1-ジフルオロ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロエトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,1-ビス(トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロプロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロプロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-ペルフルオロプロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロ-iso-プロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロ-iso-プロポキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1,2-ビス(トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロ-iso-ブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロ-tert-ブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-ペルフルオロ-iso-ブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-ペルフルオロ-iso-ブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-ペルフルオロエトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-ペルフルオロブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-ペルフルオロブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-フルオロ-1-ペルフルオロエトキシ-2,2-ビス(トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-ペルフルオロプロポキシ-2-トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-ペルフルオロペンチルオキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-ペルフルオロブトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-ペルフルオロペンチル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(ペルフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシ-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチル-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニル-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニルメチル-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1-(2´,2´,2´,-トリフルオロエトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´,2´,3´,3´,3´-ペンタフルオロプロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-(2´,2´,3´,3´,3´-ペンタフルオロプロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-(2´,2´,3´,3´,3´-ペンタフルオロプロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(2´,2´,3´,3´,4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-(1´,1´,1´-トリフルオロ-iso-ブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-(1´,1´,1´-トリフルオロ-iso-ブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-ブチル-2-(1´,1´,1´-トリフルオロ-iso-ブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-(2´,2´,2´-トリフルオロエトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-(2´,2´,3´,3´,4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-(2´,2´,3´,3´,4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1-フルオロ-1-(2´,2´,2´,-トリフルオロエトキシ)-2,2-ビス(トリフルオロメトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-(2´,2´,3´,3´,3´-ペンタフルオロプロポキシ)-2-トリフルオロメトキシ-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-ペルフルオロペンチル-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(ペルフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,1,2-トリフルオロ-2-(1´,1´,1´-トリフルオロ-iso-プロポキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ジフルオロ-1-トリフルオロメトキシ-2-(2´,2´,3´,3´,4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(2´,2´,3´,3´,4´,4´,4´-ヘプタフルオロブトキシ)-3,5-シクロペンチレンエチレン)、ポリ(1,2-ビス(ペルフルオロヘキシルオキシ)-3,5-シクロペンチレンエチレン)などが挙げられ、
また、ポリ(1-トリフルオロメトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-トリフルオロメトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシ-2-トリフルオロメトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチル-2-トリフルオロメトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニル-2-トリフルオロメトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニルメチル-2-トリフルオロメトキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-(ヘキサフルオロ-2´-メチルイソプロポキシカルボニル)-3,5-シクロペンチレンエチレン)、ポリ(1-(ペルフルオロ-2´-メチルイソプロポキシカルボニル)-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロフェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-ペルフルオロフェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシ-2-ペルフルオロフェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチル-2-ペルフルオロフェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニル-2-ペルフルオロフェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニルメチル-2-ペルフルオロフェニルオキシカルボニル-3,5-シクロペンチレンエチレン)、ポリ(1-トリフルオロメトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-2-トリフルオロメトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシ-2-トリフルオロメトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチル-2-トリフルオロメトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニル-2-トリフルオロメトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニルメチル-2-トリフルオロメトキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-(ヘキサフルオロ-2´-メチルイソプロポキシカルボニルメチル)-3,5-シクロペンチレンエチレン)、ポリ(1-(ペルフルオロ-2´-メチルイソプロポキシカルボニルメチル)-3,5-シクロペンチレンエチレン)、ポリ(1-ペルフルオロフェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メチル-1-ペルフルオロフェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-メトキシ-2-ペルフルオロフェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-tert-ブトキシメチル-2-ペルフルオロフェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニル-2-ペルフルオロフェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)、ポリ(1-フェニルオキシカルボニルメチル-2-ペルフルオロフェニルオキシカルボニルメチル-3,5-シクロペンチレンエチレン)などが挙げられる。
 さらに、環状オレフィンポリマーとしては、上記に例示された環状オレフィンポリマーに含まれるシクロペンチレン(一般式(1)の繰返し構造単位に相当)において、-CH-(一般式(1)のXに相当)が、-O-、-S-、-NR-、-PR-、および-CR-(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す)から選択される少なくとも一種で置き換えられた、環状オレフィンポリマーを挙げることもできる。
 フッ素含有環状オレフィンポリマーの分子量は、試料濃度3.0~9.0mg/mlでゲルパーミュエーションクロマトグラフィー(GPC)によって測定したポリスチレン換算の重量平均分子量(Mw)において、通常5,000~1,000,000、好ましくは10,000~300,000である。この重量平均分子量(Mw)が5,000以上であると、延伸による配向物性を発現可能である。また、1,000,000以下であると、溶融成形、溶融延伸が可能な流動性を持つことができる。つまり、上記範囲であると、これらの特性のバランスに優れる。また、重量平均分子量(Mw)と数平均分子量(Mn)との比である分子量分布(Mw/Mn)は、通常1.3~5.0の範囲であり、好ましくは1.5~4.5、より好ましくは1.7~4.0である。この分子量分布(Mw/Mn)が1.3未満であると延伸配向が掛かり難く、位相差フィルムとしての機能が発現しない場合がある。また、分子量分布(Mw/Mn)が5.0を超えた場合、フィルムを加熱した際に延伸チャック間でフィルムが垂れ、所望の位相差の光学フィルムが得られなくなる場合がある。したがって、分子量分布(Mw/Mn)がこの範囲であれば、位相差フィルムを好適に得ることができる。
 示差走査熱量分析によるフッ素含有環状オレフィンポリマーのガラス転移温度は、通常50~300℃の範囲であり、好ましくは、80~280℃、さらに好ましくは100~250℃である。ガラス転移温度が上記範囲であると、使用目的環境で形状を維持することができ、さらに優れた流動性を有し製造安定性に優れるとともに得られる光学フィルムの色相にも優れる。
 本発明の一般式(1)の部分化フッ素化ポリマーは、主鎖も炭化フッ素構造である全フッ素化ポリマーとは異なり、さらに、炭化水素系、エステル系の環状オレフィン樹脂と比較しても、フィルムを貼り合わせる接着材と強固な接着性を発現することができ、優れた密着性を有する貼り合せた光学フィルムを得られる。この理由は、フッ素化ポリマーであるにも関わらず通常市販されているエーテル、ケトンなどの極性溶剤に対して良く溶解する事からも、例えば、主鎖が炭化水素で側鎖にフッ素原子を有する部分的なフッ素化ポリマーである一般式(1)のフッ素含有環状オレフィンポリマーが、非晶性で透明なポリマーであり、極性が大きく、すなわち、双極子モーメントが比較的大きくなる構造に由来していると推測される。それが本発明の一般式(1)で表されるフッ素含有環状オレフィンポリマーの構造上の特徴であり、実施例に示すような実験結果からも明らかなように、当該特徴に基づいて上記のような効果を発揮することができる。
 本実施形態においては、以下に記載のフッ素含有環状オレフィンポリマーの製造方法および光学フィルムの製造方法によって、本実施形態の光学特性を有する光学フィルムやそれらを貼り合せた光学フィルムを好適に得ることができる。
[フッ素含有環状オレフィンポリマーの製造方法]
 本実施形態において、実質的に一般式(1)で表される繰返し構造単位の少なくとも一種からなるフッ素含有環状オレフィンポリマーは、後述する連鎖移動重合によって製造することができる。これによって、本実施形態の光学特性を有する光学フィルムや光学積層フィルムの原料となる、フッ素含有環状オレフィンポリマーを好適に得ることができる。同一のモノマーを使用し、樹脂中の構成単位の構成比率等が同様であっても、本願発明のように製造条件を最適化することによって、本実施形態の光学特性を有する光学フィルムを得ることができる。
 本実施形態において、当該方法によって、分子量分布(Mw/Mn)が通常1.3~5.0の範囲であり、好ましくは1.5~4.5、より好ましくは1.7~4.0のフッ素含有環状オレフィンポリマーを得ることができ、当該ポリマーから得られる光学フィルは適度な溶融成形、溶融延伸性で延伸配向し位相差を発現することができる。これに対し、連鎖移動反応をさせずに、リビング重合で得られた分子量分布が狭いフッ素含有環状オレフィンポリマーは、ポリマー鎖の絡み合いによって分子配向がし難く、当該ポリマーから得られる光学フィルムは位相差の発現性に乏しい。
 具体的には、下記一般式(3)で表わされる環状オレフィンモノマーを開環メタセシス重合触媒によって連鎖移動重合し、得られる重合体の主鎖のオレフィン部を水素添加することによって、フッ素含有環状オレフィンポリマーを合成することができる。
Figure JPOXMLDOC01-appb-C000005
 式(3)中、R~RおよびXは、上記式(1)と同義である。
 ただし、一般式(3)で表わされる環状オレフィンモノマーは、一般式(2)で例示した構造単位を与える態様のR~Rが互いに結合して、複数の環構造を有する態様を含まない。
 なお、本実施形態の効果を損なわない範囲であれば、一般式(3)で表される環状オレフィンモノマー以外のモノマーを含んでいてもよい。
 環状オレフィンモノマーの重合に使用する開環メタセシス重合触媒としては、開環メタセシス重合を行うことができる触媒であれば限定はされないが、例えば、W(N-2,6-Pr )(CHBu)(OBu、W(N-2,6-Pr )(CHBu)(OCMeCF、W(N-2,6-Pr )(CHBu)(OCMe(CF、W(N-2,6-Pr )(CHBu)(OC(CF、W(N-2,6-Me)(CHBu)(OC(CF、W(N-2,6-Pr )(CHCMePh)(OBu、W(N-2,6-Pr )(CHCMePh)(OCMeCF、W(N-2,6-Pr )(CHCMePh)(OCMe(CF、W(N-2,6-Pr )(CHCMePh)(OC(CF、W(N-2,6-Me)(CHCMePh)(OC(CF、またはW(N-2,6-Me)(CHCHCMePh)(OBu(PR)、W(N-2,6-Me)(CHCHCMe)(OBu(PR)、W(N-2,6-Me)(CHCHCPh)(OBu(PR)、W(N-2,6-Me)(CHCHCMePh)(OCMeCF(PR)、W(N-2,6-Me)(CHCHCMe)(OCMeCF(PR)、W(N-2,6-Me)(CHCHCPh)(OCMeCF(PR)、W(N-2,6-Me)(CHCHCMePh)(OCMe(CF(PR)、W(N-2,6-Me)(CHCHCMe)(OCMe(CF(PR)、W(N-2,6-Me)(CHCHCPh)(OCMe(CF(PR)、W(N-2,6-Me)(CHCHCMePh)(OC(CF(PR)、W(N-2,6-Me)(CHCHCMe)(OC(CF(PR)、W(N-2,6-Me)(CHCHCPh)(OC(CF(PR)、W(N-2,6-Pr )(CHCHCMePh)(OCMeCF(PR)、W(N-2,6-Pr )(CHCHCMePh)(OCMe(CF(PR)、W(N-2,6-Pr )(CHCHCMePh)(OC(CF(PR)、W(N-2,6-Pr )(CHCHCMePh)(OPh)(PR)、またはW(N-2,6-Me)(CHCHCMePh)(OBu(Py)、W(N-2,6-Me)(CHCHCMe)(OBu(Py)、W(N-2,6-Me)(CHCHCPh)(OBu(Py)、W(N-2,6-Me)(CHCHCMePh)(OCMeCF(Py)、W(N-2,6-Me)(CHCHCMe)(OCMeCF(Py)、W(N-2,6-Me)(CHCHCPh)(OCMeCF(Py)、W(N-2,6-Me)(CHCHCMePh)(OCMe(CF(Py)、W(N-2,6-Me)(CHCHCMe)(OCMe(CF(Py)、W(N-2,6-Me)(CHCHCPh)(OCMe(CF(Py)、W(N-2,6-Me)(CHCHCMePh)(OC(CF(Py)、W(N-2,6-Me)(CHCHCMe)(OC(CF(Py)、W(N-2,6-Me)(CHCHCPh)(OC(CF(Py)、W(N-2,6-Pr )(CHCHCMePh)(OCMeCF(Py)、W(N-2,6-Pr )(CHCHCMePh)(OCMe(CF(Py)、W(N-2,6-Pr )(CHCHCMePh)(OC(CF(Py)、W(N-2,6-Pr )(CHCHCMePh)(OPh)(Py)等のタングステン系アルキリデン触媒や、Mo(N-2,6-Pr )(CHBu)(OBu、Mo(N-2,6-Pr )(CHBu)(OCMeCF、Mo(N-2,6-Pr )(CHBu)(OCMe(CF、Mo(N-2,6-Pr )(CHBu)(OC(CF、Mo(N-2,6-Me)(CHBu)(OC(CF、Mo(N-2,6-Pr )(CHCMePh)(OCMe、Mo(N-2,6-Pr )(CHCMePh)(OCMeCF、Mo(N-2,6-Pr )(CHCMePh)(OCMe(CF、Mo(N-2,6-Pr )(CHCMePh)(OC(CF、Mo(N-2,6-Me)(CHCMePh)(OC(CF、Mo(N-2,6-Pr )(CHCMePh)(OBu(PR)、Mo(N-2,6-Pr )(CHCMePh)(OCMeCF(PR)、Mo(N-2,6-Pr )(CHCMePh)(OCMe(CF(PR)、Mo(N-2,6-Pr )(CHCMePh)(OC(CF(PR)、Mo(N-2,6-Me)(CHCMePh)(OC(CF(PR)、Mo(N-2,6-Pr )(CHCMePh)(OBu(Py)、Mo(N-2,6-Pr )(CHCMePh)(OCMeCF(Py)、Mo(N-2,6-Pr )(CHCMePh)(OCMe(CF(Py)、Mo(N-2,6-Pr )(CHCMePh)(OC(CF(Py)、Mo(N-2,6-Me)(CHCMePh)(OC(CF(Py

(但し、上記式中のPrはiso-プロピル基を示し、Rはメチル基、エチル基等のアルキル基またはメトキシ基、エトキシ基等のアルコキシ基を示し、Buはtert-ブチル基を示し、Meはメチル基を示し、Phはフェニル基を示し、Pyはピリジン基を示す。)等のモリブデン系アルキリデン触媒や、Ru(CHCHCPh)(PPhCl(但し、式中のPhはフェニル基を示す。)等のルテニウム系アルキリデン触媒を挙げることができ、好ましく使用できる。また、これらの開環メタセシス重合触媒は、単独または二種以上を組み合わせて用いてもよい。
 一方、上記開環メタセシス重合触媒の他に、有機遷移金属錯体、遷移金属ハロゲン化物または遷移金属酸化物と、助触媒としてのルイス酸との組み合せからなる開環メタセシス重合触媒を用いることができるが、極性モノマーに対して重合触媒活性が低く、工業的には好ましくない。
 環状オレフィンモノマーの開環メタセシス重合において、環状オレフィンモノマーと開環メタセシス重合触媒とのモル比は、タングステン、モリブデン、またはルテニウム等の遷移金属アルキリデン触媒の場合は、遷移金属アルキリデン触媒1モルに対して、該モノマーが通常100~30,000モルであり、好ましくは1,000~20,000モルである。
 開環メタセシス重合触媒を上記の量で用いることによって、光学フィルムの色相への影響を抑制し、可視光の吸収が抑制され、透明性に優れた光学フィルムを得る事ができる。
 さらに、上記した範囲に分子量、およびその分布を制御するために、連鎖移動剤としてオレフィンを使用することができる。オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等のα-オレフィンまたはこれらのフッ素含有オレフィンがあげられ、さらに、ビニルトリメチルシラン、アリルトリメチルシラン、アリルトリエチルシラン、アリルトリイソプロピルシラン等のケイ素含有オレフィンまたはこれらのフッ素およびケイ素含有オレフィンがあげられ、また、ジエンとしては、1、4-ペンタジエン、1、5-ヘキサジエン、1、6-ヘプタジエン等の非共役系ジエンまたはこれらのフッ素含有非共役系ジエンがあげられる。さらに、これらオレフィン、フッ素含有オレフィンまたはジエンはそれぞれ単独または2種類以上を併用しても良い。
 上記のオレフィン、フッ素含有オレフィンまたはジエンの使用量は、オレフィンまたはジエンが環状オレフィンモノマー1モルに対して通常0.001~1,000モル、好ましくは0.01~100モルの範囲である。また、オレフィンまたはジエンが遷移金属アルキリデン触媒1モルに対して通常0.1~1,000モル、好ましくは1~500モルの範囲である。
 また、環状オレフィンモノマーの開環メタセシス重合は、無溶媒でも溶媒を使用しても良いが、特に使用する溶媒としては、テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、ジメトキシエタンまたはジオキサン等のエーテル類、酢酸エチル、酢酸プロピルまたは酢酸ブチル等のエステル類、ベンゼン、トルエン、キシレンまたはエチルベンゼン等の芳香族炭化水素、ペンタン、ヘキサンまたはヘプタン等の脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサンまたはデカリン等の脂肪族環状炭化水素、またはメチレンジクロライド、ジクロロエタン、ジクロロエチレン、テトラクロロエタン、クロロベンゼンまたはトリクロロベンゼン等のハロゲン化炭化水素、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、トリフルオロメチルベンゼン、メタキシレンヘキサフルオライド等のフッ素含有芳香族炭化水素、ペルフルオロヘキサン等のフッ素含有脂肪族炭化水素、ペルフルオロシクロデカリン等のフッ素含有脂肪族環状炭化水素、ペルフルオロ-2-ブチルテトラヒドロフラン等のフッ素含有エーテル類が挙げられ、これらの2種類以上を組み合わせて使用しても良い。
 環状オレフィンモノマーの開環メタセシス重合では、該モノマーの反応性および重合溶媒ヘの溶解性によっても異なるが、モノマー溶液に対する環状オレフィンモノマーの濃度は通常5~100質量%、好ましくは10~60質量%の範囲が好ましく、反応温度は、通常-30~150℃であり、好ましくは30~100℃の範囲であり、さらに、反応時間は通常10分~120時間であり、好ましくは30分~48時間の範囲で実施することができる。さらに、ブチルアルデヒド等のアルデヒド類、アセトン等のケトン類、メタノール等のアルコール類、水等の失活剤で反応を停止し、重合体の溶液を得ることができる。
 本実施形態の環状オレフィンポリマーは、環状オレフィンモノマーを開環メタセシス重合して得られたポリマーの主鎖のオレフィン部を、触媒によって水素添加反応することによって得られる。また、その水素添加触媒は使用する溶媒の水素添加反応を起こさずに、該ポリマーの主鎖のオレフィン部を水素添加できる触媒であれば、均一系金属錯体触媒でも不均一系の金属担持触媒のいずれであってもよく、均一系金属錯体触媒として、例えば、クロロトリス(トリフェニルホスフィン)ロジウム、ジクロロトリス(トリフェニルホスフィン)オスミウム、ジクロロヒドリドビス(トリフェニルホスフィン)イリジウム、ジクロロトリス(トリフェニルホスフィン)ルテニウム、ジクロロテトラキス(トリフェニルホスフィン)ルテニウム、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム、ジクロロトリス(トリメチルホスフィン)ルテニウム等が挙げられ、また、不均一系金属担持触媒として、例えば、活性炭担持パラジウム、アルミナ担持パラジウム、活性炭担持ロジウム、アルミナ担持ロジウム、活性炭担持ルテニウム、アルミナ担持ルテニウム等が挙げられる。これら水添触媒は、単独または二種類以上を組合せて使用することができる。
 上記の主鎖のオレフィン部の水素添加処理をするに際して、公知の不均一系または均一系水素添加触媒を使用する場合、水素添加触媒の使用量は、水素添加触媒中の金属成分が、水素添加処理前のポリマー100質量部に対して通常5×10-4質量部~100質量部であり、好ましくは1×10-2質量部~30質量部である。
 水素添加に用いられる溶媒としては、環状オレフィンポリマーを溶解し、かつ、溶媒自身が水素添加されないものであれば特に制限はなく、例えば、テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、ジメトキシエタンなどのエーテル類、酢酸エチル、酢酸プロピルまたは酢酸ブチル等のエステル類、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、デカリンなどの脂肪族環状炭化水素、メチレンジクロリド、クロロホルム、ジクロロエタン、ジクロロエチレン、テトラクロロエタン、クロロベンゼン、トリクロロベンゼンなどのハロゲン化炭化水素、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、トリフルオロメチルベンゼン、メタキシレンヘキサフルオライド等のフッ素含有芳香族炭化水素、ペルフルオロヘキサン等のフッ素含有脂肪族炭化水素、ペルフルオロシクロデカリン等のフッ素含有脂肪族環状炭化水素、ペルフルオロ-2-ブチルテトラヒドロフラン等のフッ素含有エーテル類等が挙げられ、2種以上の溶媒を組合せて使用してもよい。
 上記の主鎖のオレフィン部の水素添加反応は、水素圧力が常圧~30MPa、好ましくは0.5~20MPa、特に好ましくは2~15MPaの範囲で行われ、その反応温度は、通常0~300℃の温度であり、好ましくは室温~250℃、特に好ましくは50~200℃の温度範囲である。水素添加反応の実施様式は、特に制限はないが、例えば、触媒を溶媒中に分散または溶解して行う方法、触媒をカラムなどに充填し、固定相としてポリマー溶液を流通させて行う方法などが挙げられる。
 さらに、主鎖のオレフィン部の水素添加処理は、水素添加処理前の環状オレフィンポリマーの重合溶液を貧溶媒に析出させポリマーを単離した後に、再度溶媒に溶解して水素添加処理を行なっても、重合溶液からポリマーを単離することなく、上記の水添触媒で水素添加処理を行なってもよく、特に制限はない。
 また、環状オレフィンポリマーのオレフィン部の水素添加率は50%以上であり、好ましくは70~100%、さらに好ましくは90~100%である。この水素添加率が50%未満であるとオレフィン部が酸化や光の吸収劣化によって、耐熱性または耐候性を悪化させることがある。
 本実施形態において水添後のポリマー溶液から環状オレフィンポリマーを回収する方法は、特に制限はないが、例えば、撹拌下の貧溶媒に反応溶液を排出する方法、反応溶液中にスチームを吹き込むスチームストリッピング等の方法によってポリマーを析出させ、ろ過、遠心分離、デカンテーション等の方法でポリマーを回収する方法、または、反応溶液から溶媒を加熱等によって蒸発除去する方法等が挙げられる。また、不均一系金属担持触媒を利用して水添反応を実施した場合は、合成液をろ過して金属担持触媒をろ別した後に、上記した方法で環状オレフィンポリマーを回収する事ができる。なお、粒径の大きな触媒成分を予めデカンテーション、延伸分離などの方法でポリマー溶液中に沈降させ、上澄みを採取し、触媒成分を粗取りした溶液をろ過し、上記した方法で環状オレフィンポリマーを回収しても良い。
 なお、得られたポリマー溶液を、後述するような精密ろ過することもできる。この場合、下記の光学フィルムの製造方法において、工程bは省略することもできる。
[光学フィルムの製造方法]
 本実施形態における光学フィルムの製造方法は、例えば、下記の工程を有することができる。
工程a:上記のフッ素含有環状オレフィンポリマーを含むワニスを調製する。
工程b:前記ワニスを孔径0.5μm以下の孔を備えるフィルターを通過させ、精密ろ過を行う。
工程c:ろ過後の前記ワニスからフィルムを製膜する。
工程d:前記フィルムを延伸する。
(工程a)
 まず、フッ素含有環状オレフィンポリマーを有機溶媒に溶解してワニスを調製する。
 この有機溶媒としては、特に制限はないが、例えば、メタキシレンヘキサフロライド、ベンゾトリフロライド、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、トリフルオロメチルベンゼン、ビス(トリフルオロメチル)ベンゼン等のフッ素含有芳香族炭化水素、ペルフルオロヘキサン、ペルフルオロオクタン等のフッ素含有脂肪族炭化水素、ペルフルオロシクロデカリン等のフッ素含有脂肪族環状炭化水素、ペルフルオロ-2-ブチルテトラヒドロフラン等のフッ素含有エーテル類、クロロホルム、クロルベンゼン、トリクロルベンゼンなどのハロゲン化炭化水素、テトラヒドロフラン、ジブチルエーテル、1,2-ジメトキシエタン、ジオキサン等のエーテル類、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類、または、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類等を挙げることができる。これらのうちから、溶解性、製膜性を考慮して選択することができ、単独または二種類以上を組み合わせて用いてもよい。特に、製膜性の観点から大気圧下で70℃以上の沸点をもつ溶媒が好ましい。溶媒の沸点が低いと蒸発速度が速く、塗布する際に部分的に溶媒が乾き始めるなどして膜厚精度の悪化や膜表面にフィッシュアイを発生させる原因となる。
 また、フッ素含有環状オレフィンポリマーを溶解させる濃度は通常1.0~99.0質量%、好ましくは5.0~90.0質量%、より好ましくは10.0~80.0質量%の範囲である。濃度は、ポリマーの溶解性、ろ過プロセスへの適応性、製膜性、フィルムの膜厚を考慮して選択してもよい。
 さらに、本実施形態においてフィルム特性を損なわない範囲であれば、必要に応じて他の公知の成分を加えてよい。他の成分としては、老化防止剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤等の改質剤、紫外線吸収剤、防腐剤、抗菌剤などの安定剤、光増感剤、シランカップリング剤等が挙げられる。
(工程b)
 次いで、工程aで調製したワニスを、孔径が通常は0.5μm以下、好ましくは0.1μm以下、より好ましくは0.05μm以下、さらに好ましくは0.02μm以下の孔を備えるフィルターを通過させ、精密ろ過を行ってもよい。
 精密ろ過のプロセスは、孔径の大きなフィルターから小さなフィルターへポリマー溶液を送る多段プロセスでも、直接、孔径の小さなフィルターへワニスを送る単一プロセスでも良い。フィルターの材質は、テフロン、PP、PES、セルロースなどの有機材料からなるものでも、ガラス繊維、金属などの無機材料からなるものでも良くワニス特性、プロセス適応性から好適に選ばれる。
 また、ワニスをフィルターへ送る方法としては、圧力差を利用する方法でも、スクリューなどを介して機械的な駆動によってワニスをフィルターへ送液する方法でも良い。圧力差を利用する場合の圧力差はフィルターのろ過性能を満たす範囲でプロセスに応じて選択でき、通常は、ワニス液面に掛かる圧力とフィルター下部の圧力の差(ΔP)が3.0MPa以下、好ましくは、1.0MPa以下、より好ましくは0.8MPa以下であり、さらには、フィルターのろ過性能を満たす範囲の圧力であっても、ワニス液面に掛かる圧力とフィルター下部の圧力の差(ΔP)をさらに小さくすることが好ましく、通常は、0.5MPa以下、より好ましくは0.3MPa以下、さらに好ましくは0.1MPa以下である。さらに、ポンプを介して機械的な駆動によってワニスを送液する場合のポンプの形状、トルク、回転数などの緒条件は、フィルターに掛かる圧力差を上記した範囲に調整して行われる。精密ろ過の温度は、フィルター性能、溶液粘度、ポリマーの溶解性を考慮した範囲で選ばれ、通常は-10~200℃、好ましくは0℃~150℃、より好ましくは室温~100℃の範囲で行われる。
 これによって、ポリマーから不溶分、ゲル、異物等を大きく低減することができ、0.5μm以上の異物は、ほとんど見られない。当該ワニスから工程cで延伸前の原反フィルムを作製する事によって、膜厚精度良く、フィッシュアイなど欠陥の発生が抑制されたフィルム製膜が可能となる。さらには、可視光波長領域より小さな細孔のフィルターで高精細な精密ろ過したワニスを利用する事で、フィルム面内の微小な異物、または異物の凝集物に起因して発生する光の散乱、吸収による透明性の悪化を抑制することもできる。これによって、工程dのフィルムの延伸工程においてフィルム全面にわたって均一な延伸配向を掛ける事ができ、面荒れを抑え、位相差ムラ無く、所望の位相差を有する光学フィルムまたは波長板を得ることができる。
 なお、ペレタイズを行う場合には、高粘度の溶融樹脂を送液するに際して、フィルター(ろ過精度0.5μm)を用いたろ過工程が行われる。このろ過工程は、温度および圧力が非常に高く、さらに用いられるフィルターの材質は焼結金属などである。そのため、高温高圧状態においては、高粘度溶融樹脂に含まれる不溶分、ゲルおよび異物等のうち弾性を有するものが、変形しながらフィルターを通過してしまうことがある。これに対して、ワニスのような溶液状態であるとフィルターの目詰まりを生じさせることはあるものの、不溶分、ゲルおよび異物等が変形して通過することはない。このように、ペレタイズに際して高温高圧状態での高粘度溶融樹脂をろ過するフィルターと、比較的低粘度での溶液(ワニス)をろ過するフィルターとは使用実態及びその効果が異なるものである。
(工程c)
 前記のようにワニスをろ過した後、ワニスからフィルムを製膜する。
 製膜方法としては、溶液キャスト法を挙げることができる。ここで、溶液としては前記ワニスを用いることができる。
 溶液キャスト法で製造する場合は、まず、基材の上に、テーブルコート、スピンコート、ディップコート、ダイコート、スプレーコート、バーコート、ロールコート、カーテンフローコートなどの方法でポリマー溶液(ワニス)を塗布し、製膜する。基材としては、ステンレス鋼、シリコン等の金属材料、ガラス、石英等の無機材料、ポリイミド、ポリアミド、ポリエステル、ポリカーボネート、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアクリレート、ポリメタクリレート、ポリアクリレート、エポキシ樹脂、シリコーン樹脂等の樹脂材料等、からなるものを挙げることができる。
 塗膜の乾燥は、加熱板の上に、溶液がキャストされた基材を置いて加熱乾燥させても良く、加熱した乾燥炉に溶液をキャストした基材を入れて加熱乾燥させても良く、空気、窒素などの気体を加熱した温風を塗布膜にあてて乾燥させても良く、これらを組み合わせたプロセスを利用して乾燥させても良い。乾燥時の温度は通常10~250℃、好ましくは20~220℃、より好ましくは30~200℃の範囲であり、ワニスの特性、フィルムの膜厚を考慮して選ばれる。また、温度設定を2種類以上で多段の乾燥温度を設定して塗膜を乾燥させても良い。塗膜を乾燥する時間は、ワニス溶剤の沸点、フィルムの膜厚、プロセス要件を考慮した条件から選択する事ができる。これらによって、基材上にフィルムが形成される。
 基材からのフィルムの剥離は、フィルムの端部に市販のテープを貼り付け、これに応力を加えて剥離してもよく、水、溶剤などの液体をフィルムと基材の接触界面に接触させて基材表面とフィルムの接触面の表面張力の差を利用してフィルムを剥離させても良い。
 このようにして得られたフィルムの膜厚は、通常は10~1000μm、好ましくは20~500μm、より好ましくは30~200μmの範囲で用いられ、工程dのフィルムの延伸工程による影響、または、延伸フィルムを貼り合せる際の影響を考慮した膜厚に設定する事ができる。
 なお、フッ素含有環状オレフィンポリマーの製造工程において、ポリマー溶液を精密ろ過した場合、上記した方法でポリマーを取得し、或いは、造粒工程を設けペレット形状でポリマーを取得する事によって、溶融成形法でフィルムを調製することができる。この場合は、上記工程aおよび工程bを行うことなく、工程cを行うこともできる。
 溶融成形法で製造する場合は、溶融混練機を用いてTダイを経てフィルム化する方法や、インフレーション法等が挙げられる。Tダイによる溶融押出しフィルム製造においては、例えば、必要に応じて添加剤を配合した環状オレフィンポリマーを押出機に投入し、ガラス転移温度よりも通常50℃~200℃高い温度、好ましくは80℃~150℃高い温度にて溶融混練し、Tダイから押出し、冷却ロールなどで溶融ポリマーを冷却することでフィルムに加工する。
 このようにして得られたフィルムの膜厚は、通常は10~1000μm、好ましくは20~500μm、より好ましくは30~200μmの範囲が用いられ、工程dのフィルムの延伸工程による影響、または、延伸フィルムを貼り合せる際の影響を考慮した膜厚に設定する事ができる。
(工程d)
 そして、工程cで得られたフィルムを延伸して、本実施形態の光学フィルムを得る。
 まず、工程cで得られたフィルムを、フッ素含有環状オレフィンポリマーのガラス転移温度に、通常は-20℃~150℃の範囲を加えた温度、好ましくは-5℃~110℃の範囲を加えた温度、さらに好ましくは0℃~80℃の範囲を加えた温度で、通常0.01~30分間、好ましくは0.05~20分間、より好ましくは0.1~10分間程度晒し、予熱工程を行うことができる。これによって、フィルム全面の加熱ムラを解消して均一に延伸する事が可能になる。
 そして、予熱された前記フィルムを、下記条件で延伸する。
 延伸時の温度は、フッ素含有環状オレフィンポリマーのガラス転移温度に対して、通常は-20℃~150℃の範囲を加えた温度、好ましくは-5℃~110℃の範囲を加えた温度、さらに好ましくは0℃~80℃の範囲を加えた温度とすることができる。延伸の倍率は、通常は1.05倍~10倍、好ましくは1.10倍~6.0倍の範囲、さらに好ましくは1.10倍~3.0倍である。また、二軸延伸の場合、高倍率で延伸する軸をMD軸、低倍率で延伸する軸をTD軸として、延伸倍率としてのMD軸倍率/TD軸倍率の比率は、通常は1.05倍~10倍、好ましくは1.10倍~6.0倍の範囲、さらに好ましくは1.10倍~3.0倍である。これらの延伸時の温度と倍率の関係は、λ/4波長板またはλ/2波長板に適した関係で調整することができ、さらに、樹脂の流動や装置の加熱延伸方式、生産性などを考慮して好適に選ばれる。さらに、延伸工程において延伸するフィルムは、典型的には未延伸フィルムであるが、予め延伸を加えたフィルムを延伸工程において再度延伸してもよい。
 フィルムの延伸方法や条件には特に制限はないが、例えば、ロール間の周速度の差異で縦方向に一軸延伸する方法、テンターを用いて横軸方向に一軸延伸する方法、フィルムの両側を把持したクリップを開いて縦方向に延伸し、ガイドレールの広がり角度によって横方向に延伸する同時二軸延伸法、ロール間の周速度の差異で縦方向に延伸し、両端部をクリップで把持してテンターで横方向に延伸する逐次二軸延伸法などの二軸延伸法、縦横方向に左右異なる速度で引張るテンター延伸機や、横又は縦方向に左右等速度で引張り移動する距離が同じで延伸角度を固定または移動する距離が異なるテンター延伸機で斜め延伸する方法、などが挙げられる。
 さらに、工程cにおいて溶融成形法でフィルムを作製する場合は、冷却ロールなどでポリマーを冷却して、再度、予熱工程にフィルムを送り上記した方法で延伸する、工程cと工程dの連続法で本実施形態の光学フィルムを製造してもよい。
<光学フィルム>
 上記のような製造方法で得られる、本実施形態の低波長分散性の光学フィルムは、波長550nmの位相差が50nm以上であり、波長550nmの位相差Re(550nm)に対する波長400nmの位相差Re(400nm)の比Re(400nm)/Re(550nm)で表される波長分散性が、通常1.00~1.05であり、好ましくは、1.00~1.03である。さらに、好ましくは1.00~1.02であり、また、さらに好ましくは1.00~1.01であり、特に好ましくは1.00であり、かつ、この光学フィルムは、波長800nmの位相差Re(800nm)に対する波長400nmの位相差Re(400nm)の比Re(400nm)/Re(800nm)で表される波長分散性が、通常1.00~1.05であり、好ましくは、1.00~1.03である。さらに、好ましくは1.00~1.02であり、また、さらに好ましくは1.00~1.01であり、特に好ましくは1.00である。
 波長550nmの位相差が50nm以上である事で可視光に対する位相差機能を発現し、かつ、これらの2つの波長分散性を満たすことが、可視光の光学フィルムには必要である。本発明者らは鋭意検討した結果、一般式(1)で表される繰返し構造単位内にフッ素原子を含み、さらに主鎖に一つの5員環構造を有するフッ素含有環状オレフィンポリマーからなる光学フィルムは、延伸配向による高い位相差を発現し、さらに低波長分散性を発現することを見出し、本発明を完成させた。一方、一般式(2)のような複数の環状構造を有する繰返し構造単位は、位相差の発現を妨げ、所望の位相差を有する光学フィルムが得られない。よって、一般式(2)のような複数の環状構造を有する繰り返し構造単位を一般式(1)と共重合することは、位相差フィルム材料としては、好ましくない。
 本実施形態の光学フィルムは、光波長400nm~800nmの範囲で、波長550nmの位相差Re(550nm)に対する波長400nmの位相差Re(400nm)の比Re(400nm)/Re(550nm)で表される波長分散性が、通常1.00~1.05であり、好ましくは、1.00~1.03である。さらに、好ましくは1.00~1.02であり、また、さらに好ましくは1.00~1.01であり、特に好ましくは1.00であり、かつ、波長800nmの位相差Re(800nm)に対する波長400nmの位相差Re(400nm)の比Re(400nm)/Re(800nm)で表される波長分散性が、通常1.00~1.05であり、好ましくは、1.00~1.03である。さらに、好ましくは1.00~1.02であり、また、さらに好ましくは1.00~1.01であり、特に好ましくは1.00である。このように光学フィルムとしては、広い波長範囲で波長分散性が低いことが必要である。
 さらに、本実施形態の低波長分散性の光学フィルムは、全光線透過率で92%以上の透明性を有する。好ましくは、93%以上、さらに好ましくは、94%以上、特に好ましくは95%以上である。この高透明なフィルムであるためには、一般式(1)で表されるフッ素含有環状オレフィンポリマーは繰返し構造単位を有するフッ素原子含有率が30~80質量%であり、好ましくは40~75質量%である。
 このような本実施形態の低波長分散性の光学フィルムは、λ/4波長板またはλ/2波長板として用いることができる。
 具体的には、実質的に一般式(1)で表される繰り返し構造単位の少なくとも一種からなるフッ素含有環状オレフィンポリマーからなるフィルムを、様々な方法の延伸技術によって一軸(MD方向)、二軸(MD方向とTD方向)、厚み方向に延伸し高分子鎖を配向して作製することができる。λ/4波長板またはλ/2波長板は、表示材料用途において画像表示の性能向上のために、表示の均一性、コントラストの向上、表示の視野角を拡大するなどの目的で使用することができる。
 さらに、位相差フィルムとしての光学フィルムのλ/4波長板において、位相差は、視認性が強い550nmの波長で、通常は140nm±10nmであり、好ましくは、140nm±7nm、さらに好ましくは、140nm±5nmである。また、λ/2波長板において、位相差は、同様に550nmの波長で通常は280nm±20nmであり、好ましくは280nm±10nmであり、さらに好ましくは280nm±5nmである。
 本実施形態において、調製したワニスを、孔径が通常は0.5μm以下、好ましくは0.1μm以下、より好ましくは0.05μm以下、さらに好ましくは0.02μm以下の孔を備えるフィルターを通過させ、精密ろ過する工程を設け、原反フィルムを製造し、延伸フィルム作製時の条件を最適化する事で、位相差ムラを抑える事ができる。位相差のムラは、例えば、位相差の測定装置においてフィルムを固定するサンプルステージを、特定の範囲で縦、横方向に走査して多点の位相差データを取得し、数値解析によって平均値、標準偏差(σ)を算出して、平均値を位相差として、標準偏差値に符号(±)を付したものを位相差のムラとして評価する事ができる。本実施形態における、λ/4波長板は、波長550nmにおける位相差ムラが、通常±0.50nm/cm以下であり、好ましくは、±0.10nm/cm以下であり、さらに好ましくは±0.05nm/cm以下であり、特に好ましくは±0.00nm/cm以下である光学フィルムである。また、λ/2波長板は、波長550nmにおける位相差ムラが、通常±0.50nm/cm以下であり、好ましくは、±0.10nm/cm以下であり、さらに好ましくは±0.05nm/cm以下であり、特に好ましくは±0.00nm/cm以下である光学フィルムである。
 また、前記の精密ろ過工程を設け、原反フィルムを製造し、延伸フィルム作製時の条件を最適化する事で、フィルム表面の面荒れを抑えることができる。これにより、フィルム表面での入射光の乱反射を抑え、光の反射を小さくすることができる。本実施形態における、λ/4波長板は、波長550nmにおける反射率が、通常7.0%以下であり、好ましくは、6.0%以下であり、さらに好ましくは、5.0%以下、特に好ましくは3.0%以下である光学フィルムである。λ/2波長板は、波長550nmにおける反射率が、通常7.0%以下であり、好ましくは、6.0%以下であり、さらに好ましくは、5.0%以下、特に好ましくは3.0%以下である光学フィルムである。
 さらに、本実施形態の光学フィルムの原料である部分化フッ素含有環状オレフィンポリマーは、従来、位相差フィルムとして利用されてきたポリカーボネート(PC)からなる光学フィルムの光弾性定数と比べ1/5以下と小さく、フィルムを積層した際の貼り合わせの残留応力歪みや、温度変化、湿度変化に伴う材料の収縮によって発生する微小な応力によって不必要な位相差が発生し難い。そのため、応力歪による位相差の発生の程度の点からも、本実施形態のフッ素含有環状オレフィンポリマーからなる光学フィルムを位相差フィルムとして好適に利用できる。
 本実施形態の低波長分散性の光学フィルムの膜厚は用途に応じて選択することができ、特に制限はないが、通常は10~500μm、好ましくは、20~300μm、より好ましくは30~200μmの範囲が用いられる。また、本実施形態の光学フィルムは、λ/4波長板、λ/2波長板としての低波長分散性を維持しながら、光透過性を高め、濁度(ヘイズ)を小さくし、位相差フィルムに反射防止機能を付与することもできる。これによって、液晶ディスプレイや有機ELディスプレイのようなデバイスを小型化、軽量化、曲げ性を向上させることをしても良い。そのためには、光学フィルムの膜厚は0.1~10μm、好ましくは、0.5~10μm、より好ましくは1.0~10μmの範囲で用いてもよい。 さらに、延伸前の原反のフィルムの膜厚は延伸による影響、または、延伸フィルムを積層する際の影響を考慮した膜厚に設定することができる。
 本実施形態の光学フィルムは、2枚以上の前記延伸フィルムを遅相軸が同軸にならない角度で貼り合わせた光学フィルム(光学積層フィルム)として用いることができる。
 この光学フィルムは、前記逆波長分散性Re(400nm)/Re(550nm)が1.00未満であり、好ましくは、0.98未満であり、特に好ましくは、0.96未満である。遅相軸とは、延伸配向したフィルムにおいて、例えば、大塚電子社製リタデーション測定装置Rets-100で位相差を測定した際に観測される、ポリマー鎖が配向した状態でのその配向方向を示す基準軸である。位相差はこの遅相軸の向きに応じて発現し、延伸時の延伸軸(掛かる応力)の方向とは必ずしも一致しない。    すなわち、フィルムを積層する場合、その角度はそれぞれのフィルムの遅相軸が交差する角度であり、必ずしも延伸軸が基準にならない場合がある。したがって、本実施形態において、延伸フィルムを貼り合せる際には、延伸軸に対する遅相軸を確認し、その結果に応じて貼り合せるフィルムの角度を調整する必要がある。
 また、遅相軸を基準に延伸フィルムを重ね、遅相軸が交差しない平行状態の0°から遅相軸を交差させ角度を変化させていくと、その位相差は角度に応じて第一周期をπとする周期的な変化を示した。遅相軸が交差しない0°と180°のとき、位相差は2枚の延伸フィルムのそれぞれの位相差値の和の値をとる最大値を示し、一方、2枚の延伸フィルムの遅相軸が直行する90°のとき、2枚の延伸フィルムのそれぞれの位相差の差の値をとる最小値を示した。さらに、鋭意検討した結果、この貼り合わせた位相差フィルムの波長依存性は、正の波長分散性を有する2枚の延伸フィルムを貼り合わせるとある特定の角度で位相差は逆波長分散性を有することを見出した。
 本実施形態の光学フィルムの遅相軸が同軸にならない角度で2枚以上の延伸フィルムを貼り合わせた光学フィルムは、位相差比Re(400nm)/Re(550nm)が1.00~1.05である正の波長分散性を示す2枚の位相差フィルムを、それぞれの遅相軸が交差する角度の範囲が、通常40°~160°で、好ましくは50°~150°であり、特に好ましくは55°~145°で貼り合わせて得られる。これによって、位相差比Re(400nm)/Re(550nm)が1.00未満である逆波長分散性を示す位相差フィルムを得ることができる。
 さらに、本実施形態の逆波長分散性の光学フィルムは、全光線透過率で91%以上の透明性を有する。好ましくは、92%以上、さらに好ましくは、93%以上、特に好ましくは94%以上である。この高透明なフィルムであるためには、一般式(1)で表されるフッ素含有環状オレフィンポリマーは繰返し構造単位を有するフッ素原子含有率が30~80質量%であり、好ましくは40~75質量%である。
 また、本実施形態の逆波長分散性の光学フィルムは、λ/4波長板またはλ/2波長板として用いることができる。
 λ/4波長板またはλ/2波長板は以下のようにして得ることができる。
 前記低波長分散性の光学フィルムを様々な方法の延伸技術によって一軸(MD方向)、二軸(MD方向とTD方向)、厚み方向に延伸し高分子鎖を配向して延伸フィルムを作製する。複数枚の延伸フィルムを、それらの光軸を交差させて積層する際に、位相差を所定の機能を発現する位相差に調整しながら位相差の波長分散性を制御する。これによって、全可視領域等の広い波長帯域にわたり所定の位相差を示すλ/4波長板または、λ/2波長板を作製することができる。
 さらに、光学フィルムからなるλ/4波長板は、視認性が強い550nmの波長において、位相差は、通常は140nm±10nmであり、好ましくは、140nm±7nm、さらに好ましくは、140nm±5nmである。また、λ/2波長板は、同様に550nmの波長において、位相差は、通常は280nm±20nmであり、好ましくは280nm±10nmであり、さらに好ましくは280nm±5nmである。
 本実施形態において、調製したワニスを、孔径が通常は0.5μm以下、好ましくは0.1μm以下、より好ましくは0.05μm以下、さらに好ましくは0.02μm以下の孔を備えるフィルターを通過させ、精密ろ過する工程を設け、原反フィルムを製造し、延伸フィルム作製時の条件を最適化する事で、位相差ムラを抑える事ができる。前記と同様に、数値解析によって平均値、標準偏差(σ)を算出して、平均値を位相差として、標準偏差値に符号(±)を付したものを位相差ムラとして評価する事ができる。本実施形態における、λ/4波長板は、波長550nmにおける位相差ムラが、通常 ±0.50nm/cm以下であり、好ましくは、±0.10nm/cm以下であり、さらに好ましくは、±0.05nm/cm以下、特に好ましくは±0.00nm/cm以下である光学フィルムである。また、λ/2波長板は、波長550nmにおける位相差ムラが、通常 ±0.50nm/cm以下であり、好ましくは、±0.10nm/cm以下であり、さらに好ましくは、±0.05nm/cm以下、特に好ましくは±0.00nm/cm以下である光学フィルムである。
 また、前記の精密ろ過工程を設け、原反フィルムを製造し、延伸フィルム作製時の条件を最適化する事で、フィルム表面の面荒れを抑え、これにより、フィルム表面での入射光の乱反射を抑え、光の反射を小さくでき、本実施形態における、λ/4波長板は、波長550nmにおける反射率が、通常7.0%以下であり、好ましくは、6.0%以下であり、さらに好ましくは、5.0%以下、特に好ましくは3.0%以下である光学フィルムである。λ/2波長板は、波長550nmにおける反射率が、通常7.0%以下であり、好ましくは、6.0%以下であり、さらに好ましくは、5.0%以下、特に好ましくは3.0%以下である光学フィルムである。
 特に、液晶ディスプレイまたは有機ELディスプレイ用の光学フィルムとしては、従来、外光反射を防止する反射防止機能としてλ/4波長板とλ/2波長板の2枚構成のフィルム部材を使用しなければ広帯域のλ/4波長板として機能が出せなかったが、本実施形態の逆波長分散性でかつ高透明なλ/4波長板を使用することで、広帯域のλ/4波長板として視認性を向上させ、かつ、フィルム部材を1枚にすることができ、コスト軽減やモジュールの薄型化などに有効である。
 前記の逆波長分散性のλ/4波長板とλ/2波長板を作製するために貼り合わせる延伸フィルムのそれぞれの位相差は、通常50~1000nm、好ましくは55~800nm、さらに好ましくは60~600nmの範囲であり、これらのフィルムを複数枚積層することができる。これによって、フィルム強度も向上させることができる。これらの位相差の範囲で、フィルムのヘイズは、通常は0.6%以下であり、好ましくは0.5%以下であり、特に好ましくは0.3%以下である。
 本実施形態の逆波長分散性の光学フィルムの膜厚は用途に応じて選択することができ、特に制限はないが、通常は10~500μm、好ましくは、20~300μm、より好ましくは30~200μmの範囲が用いられる。また、本実施形態の光学フィルムのλ/4波長板、λ/2波長板としての逆波長分散性を維持しながら、光透過性を高め、濁度(ヘイズ)を小さし、位相差フィルムに反射防止機能を付与することもできる。これによって、液晶ディスプレイや有機ELディスプレイのようなデバイスを小型化、軽量化、曲げ性を向上させることをしても良い。そのためには、光学フィルムの膜厚は0.1~10μm、好ましくは、0.5~10μm、より好ましくは1.0~10μmの範囲で用いてもよい。 さらに、延伸前の原反のフィルムの膜厚、および貼り合せに用いる延伸フィルムの膜厚は、延伸による影響、または、延伸フィルムを積層する際の影響を考慮した膜厚に設定することができる。
 本実施形態の逆波長分散性の光学フィルムは、2枚以上の光学フィルムを、この光学フィルムとの屈折率差(Δn)が0.1以下である接着材料で貼り合せることができる。
 ここで接着材料と貼り合わせる光学フィルムとの波長400~800nmにおける屈折率差は、通常0.1以下であり、好ましくは0.08以下であり、さらに好ましくは0.07以下である。この屈折率差にすることで、フィルムと接着層の界面反射に起因する光透過の悪化の程度を小さくし、全光線透過率を高く維持することができ、積層したフィルムで全光線透過率が91%以上の高い透明性を維持した位相差フィルムを作製することができる。
 また、延伸フィルムを接着する材料としては、特に制限されるものではないが、光硬化性樹脂が好ましく用いられる。この光硬化性樹脂は、少なくとも、1種類以上の光硬化性モノマーと1種類以上の光硬化開始剤とを含む組成物である。さらに好ましくは、この組成物に、実質的に一般式(1)で表される繰返し構造単位の少なくとも一種からなるフッ素含有環状オレフィンポリマーを混合した組成物である。それらは任意の割合で混合することができる。好ましくは、光硬化性モノマーとフッ素含有環状オレフィンポリマーとの質量比は、100/0~5/95であり、さらに好ましくは、95/5~30/70である。
 光硬化性モノマーとしては、反応性二重結合基を有する化合物、カチオン重合可能な開環重合性化合物等を含む樹脂等が挙げられる。これらの化合物は、1分子中に反応性基を1個有しても、複数個有してもよい。また、光重合開始剤としては、光の照射によってラジカルを生成する光ラジカル開始剤、光の照射によってカチオンを生成する光カチオン開始剤などが挙げられる。
 光硬化性モノマーと光硬化開始剤を混合した組成物を得る場合、光硬化開始剤の使用量は、光硬化性モノマー100質量部に対して0.05質量部以上が好ましく、0.1~10質量部がより好ましい。
 光硬化性モノマーである反応性二重結合基を有する化合物としては、例えば、ノルボルネン、ノルボルナジエンなどの環状オレフィン類、シクロヘキシルメチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル、エチルビニルエーテルなどのアルキルビニルエーテル類、酢酸ビニルなどのビニルエステル類、(メタ)アクリル酸、フェノキシエチルアクリレート、ベンジルアクリレート、ステアリルアクリレート、ラウリルアクリレート、2-エチルヘキシルアクリレート、アリルアクリレート、1,3-ブタンジオールジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート、エトキシエチルアクリレート、メトキシエチルアクリレート、グリシジルアクリレート、テトラヒドロフルフリールアクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ポリオキシエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4 - ヒドロキシブチルビニルエーテル、N,N-ジエチルアミノエチルアクリレート、N,N-ジメチルアミノエチルアクリレート、N-ビニルピロリドン、ジメチルアミノエチルメタクリレートなどの(メタ)アクリル酸及びその誘導体またはそれらのフッ素含有アクリレート類、フルオロジエン(CF=CFOCFCFCF=CF、CF=CFOCFCF(CF)CF=CF、CF=CFCFC(OH)(CF)CHCH=CH、CF=CFCFC(OH)(CF)CH=CH、CF=CFCFC(CF)(OCHOCH)CHCH=CH、CF=CFCHC(C(CFOH)(CF)CHCH=CH等)等が挙げられる。これらを、単独で用いても、2種以上組み合わせて用いてもよい。
 また、カチオン重合可能な開環重合性化合物の光硬化性モノマーとしては、例えば、シクロヘキセンエポキシド、ジシクロペンタジエンオキサイド、リモネンジオキサイド、4-ビニルシクロヘキセンジオキサイド、3,4-エポキシシクロヘキシルメチル-3´,4´-エポキシシクロヘキサンカルボキシレート、ジ(3,4-エポキシシクロヘキシル)アジペート、(3,4-エポキシシクロヘキシル)メチルアルコール、(3,4-エポキシ-6-メチルシクロヘキシル)メチル-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、エチレン1,2-ジ(3,4-エポキシシクロヘキサンカルボン酸)エステル、(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、フェニルグリシジルエーテル、ジシクロヘキシル-3,3´-ジエポキシド、ビスフェノールA型エポキシ樹脂、ハロゲン化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、o-、m-、p-クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、多価アルコールのポリグリシジルエーテル、3,4-エポキシシクロヘキセニルメチル-3´,4´-エポキシシクロヘキセンカルボキシレートといった脂環式エポキシ樹脂あるいは水添ビスフェノールAのグリシジルエーテル等のエポキシ化合物等の、エポキシ化合物類、さらに、3-メチル-3-(ブトキシメチル)オキセタン、3-メチル-3-(ペンチロキシメチル)オキセタン、3-メチル-3-(ヘキシロキシメチル)オキセタン、3-メチル-3-(2-エチルヘキシロキシメチル)オキセタン、3-メチル-3-(オクチロキシメチル)オキセタン、3-メチル-3-(デカノロキシメチル)オキセタン、3-メチル-3-(ドデカノロキシメチル)オキセタン、3-メチル-3-(フェノキシメチル)オキセタン、3-エチル-3-(ブトキシメチル)オキセタン、3-エチル-3-(ペンチロキシメチル)オキセタン、3-エチル-3-(ヘキシロキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、3-エチル-3-(オクチロキシメチル)オキセタン、3-エチル-3-(デカノロキシメチル)オキセタン、3-エチル-3-(ドデカノロキシメチル)オキセタン、3-(シクロヘキシロキシメチル)オキセタン、3-メチル-3-(シクロヘキシロキシメチル)オキセタン、3-エチル-3-(シクロヘキシロキシメチル)オキセタン、3-エチル-3-(フェノキシメチル)オキセタン、3,3-ジメチルオキセタン、3-ヒドロキシメチルオキセタン、3-メチル-3-ヒドロキシメチルオキセタン、3-エチル-3-ヒドロキシメチルオキセタン、3-エチル-3-フェノキシメチルオキセタン、3-n-プロピル-3-ヒドロキシメチルオキセタン、3-iso-プロピル-3-ヒドロキシメチルオキセタン、3-n-ブチル-3-ヒドロキシメチルオキセタン、3-iso-ブチル-3-ヒドロキシメチルオキセタン、3-sec-ブチル-3-ヒドロキシメチルオキセタン、3-tert-ブチル-3-ヒドロキシメチルオキセタン、3-エチル-3-(2-エチルヘキシル)オキセタン等があり、オキセタニル基を2個以上有する化合物としてビス(3-エチル-3-オキセタニルメチル)エーテル、1,2-ビス(3-エチル-3-オキセタニルメトキシ)エタン、1,3-ビス(3-エチル-3-オキセタニルメトキシ)プロパン、1,3-ビス(3-エチル-3-オキセタニルメトキシ)-2,2-ジメチル-プロパン、1,4-ビス(3-エチル-3-オキセタニルメトキシ)ブタン、1,6-ビス(3-エチル-3-オキセタニルメトキシ)ヘキサン、1,4-ビス[(3-メチル-3-オキセタニル)メトキシ]ベンゼン、1,3-ビス[(3-メチル-3-オキセタニル)メトキシ]ベンゼン、1,4-ビス{[(3-メチル-3-オキセタニル)メトキシ]メチル}ベンゼン、1,4-ビス{[(3-メチル-3-オキセタニル)メトキシ]メチル}シクロヘキサン、4,4´-ビス{[(3-メチル-3-オキセタニル)メトキシ]メチル}ビフェニル、4,4´-ビス{[(3-メチル-3-オキセタニル)メトキシ]メチル}ビシクロヘキサン、2,3-ビス[(3-メチル-3-オキセタニル)メトキシ]ビシクロ[2.2.1]ヘプタン、2,5-ビス[(3-メチル-3-オキセタニル)メトキシ]ビシクロ[2.2.1]ヘプタン、2,6-ビス[(3-メチル-3-オキセタニル)メトキシ]ビシクロ[2.2.1]ヘプタン、1,4-ビス[(3-エチル-3-オキセタニル)メトキシ]ベンゼン、1,3-ビス[(3-エチル-3-オキセタニル)メトキシ]ベンゼン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}シクロヘキサン、4,4´-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ビフェニル、4,4´-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ビシクロヘキサン、2,3-ビス[(3-エチル-3-オキセタニル)メトキシ]ビシクロ[2.2.1]ヘプタン、2,5-ビス[(3-エチル-3-オキセタニル)メトキシ]ビシクロ[2.2.1]ヘプタン、2,6-ビス[(3-エチル-3-オキセタニル)メトキシ]ビシクロ[2.2.1]ヘプタン等のオキセタン化合物類が挙げられる。また、これらのうち、単独で用いても、2種以上組み合わせて用いてもよい。
 また、光の照射によってラジカルを生成する光ラジカル開始剤としては、例えば、アセトフェノン、p-tert-ブチルトリクロロアセトフェノン、クロロアセトフェノン、2,2-ジエトキシアセトフェノン、ヒドロキシアセトフェノン、2,2-ジメトキシ-2´-フェニルアセトフェノン、2-アミノアセトフェノン、ジアルキルアミノアセトフェノンなどのアセトフェノン類、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾイン-iso-プロピルエーテル、ベンゾイン-iso-ブチルエーテル、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-2-メチルプロパン-1-オン、1-(4-iso-プロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オンなどのベンゾイン類、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、メチル-o-ベンゾイルベンゾエート、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、ヒドロキシプロピルベンゾフェノン、アクリルベンゾフェノン、4,4´-ビス(ジメチルアミノ)ベンゾフェノンなどのベンゾフェノン類、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、ジエチルチオキサントン、ジメチルチオキサントンなどのチオキサントン類、ペルフルオロ(tert-ブチルペルオキシド)、ペルフルオロベンゾイルペルオキシドなどのフッ素系ペルオキシド類、α-アシルオキシムエステル、ベンジル-(o-エトキシカルボニル)-α - モノオキシム、アシルホスフィンオキサイド、グリオキシエステル、3 -ケトクマリン、2 - エチルアンスラキノン、カンファーキノン、テトラメチルチウラムスルフィド、アゾビス-iso-ブチロニトリル、ベンゾイルペルオキシド、ジアルキルペルオキシド、tert-ブチルペルオキシピバレート等が挙げられる。また、これらの光ラジカル開始剤は、単独で用いても、2種以上組み合わせて用いてもよい。
 光の照射によってカチオンを生成する光カチオン開始剤としては、光照射によって、前記カチオン重合可能な開環重合性化合物類のカチオン重合を開始させる化合物であれば特に限定はないが、光カチオン開始剤は、例えば、オニウム陽イオンと対を成す陰イオンとのオニウム塩のように光反応しルイス酸を放出する化合物が好ましい。
 オニウム陽イオンの具体例としては、ジフェニルヨードニウム、4-メトキシジフェニルヨードニウム、ビス(4-メチルフェニル)ヨードニウム、ビス(4-tert-ブチルフェニル)ヨードニウム、ビス(ドデシルフェニル)ヨードニウム、トリフェニルスルホニウム、ジフェニル-4-チオフェノキシフェニルスルホニウム、ビス〔4-(ジフェニルスルフォニオ)-フェニル〕スルフィド、ビス〔4-(ジ(4-(2-ヒドロキシエチル)フェニル)スルホニオ)-フェニル〕スルフィド、η5-2,4-(シクロペンタジェニル)〔1,2,3,4,5,6-η-(メチルエチル)ベンゼン〕-鉄(1+)等が挙げられる。また、オニウム陽イオン以外に、過塩素酸イオン、トリフルオロメタンスルホン酸イオン、トルエンスルホン酸イオン、トリニトロトルエンスルホン酸イオン等が挙げられる。
 一方、陰イオンの具体例としては、テトラフルオロボレート、ヘキサフルオロホスフェート、ヘキサフルオロアンチモネート、ヘキサフルオロアルセネート、ヘキサクロロアンチモネート、テトラ(フルオロフェニル)ボレート、テトラ(ジフルオロフェニル)ボレート、テトラ(トリフルオロフェニル)ボレート、テトラ(テトラフルオロフェニル)ボレート、テトラ(ペンタフルオロフェニル)ボレート、テトラ(ペルフルオロフェニル)ボレート、テトラ(トリフルオロメチルフェニル)ボレート、テトラ(ジ(トリフルオロメチル)フェニル)ボレート等が挙げられる。また、これらの光カチオン開始剤は、単独で用いても、2種以上組み合わせて用いてもよい。
 さらに、好ましくは、本実施形態の2枚以上の光学フィルムを貼り合せた光学フィルムにおいて、光学フィルムとの屈折率差(Δn)が0.1以下である接着材料を調製するために、1種類以上の光硬化性モノマーと1種類以上の光硬化開始剤とからなる混合物に、実質的に一般式(1)で表される繰返し構造単位の少なくとも一種からなるフッ素含有環状オレフィンポリマーを混合することができる。さらに、その他に公知の成分として老化防止剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤等の改質剤、紫外線吸収剤、防腐剤、抗菌剤などの安定剤、光増感剤、シランカップリング剤、溶媒等を混合することもできる。
 さらに、本実施形態の逆波長分散性の光学フィルムは、2枚以上の光学フィルムを光硬化性樹脂である接着剤を介して貼り合せ作製する事ができる。光硬化性樹脂からなる接着剤は、本実施形態の光学フィルム作製の工程bに記載した方法で精密ろ過したものを用いる事で、貼り合せの際の接着層への異物の混入を防ぎ、膜厚精度良く、位相差ムラを抑え、フィッシュアイなどの欠陥の発生を抑制した逆波長分散性の光学フィルムを得る事ができる。この際に用いられるフィルターの孔径は、通常は0.5μm以下、好ましくは0.1μm以下、より好ましくは0.05μm以下、さらに好ましくは0.02μm以下であり、ポリマーワニス調整時の精密ろ過工程で使用する最終段階のフィルター孔径と等しく、あるいは、それ以下の孔径のフィルターが選ばれる。また、光硬化性樹脂を接着剤としてフィルムに塗布する方法には、特に制限はないが、例えば、テーブルコート、スピンコート、ダイコート、スプレーコート、バーコート、ロールコート、カーテンフローコートなどの方法でフィルムに光硬化性樹脂を塗布する方法が挙げられる。光学フィルムに接着材を塗布した後、他の光学フィルムを載置し、紫外線などの光を照射することで貼り合わせることができる。さらに、積層したフィルムの膜厚を均一にする、或は、生産性を向上させるために、押出ラミネート法、ドライラミネート法などの公知の方法でフィルムと光硬化性樹脂を圧着しても良く、光硬化性樹脂の粘度、フィルム表面の張力、フィルムの弾性などを考慮して圧着応力、温度、ローラー間の距離を最適化する事で積層したフィルムの膜厚をコントロールする事ができる。この際のUV照射の方法は圧着しながらUV照射しても、圧着した後にUV照射しても何れの方法でも良い。
 照射光としては、光硬化開始剤に光を照射することによってラジカル反応またはイオン反応を引起すエネルギーを与えることができれば特に限定されるものではない。この光源としては、波長400nm以下の光線、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯およびメタルハライドランプ、i線、G線、KrFエキシマレーザ光、ArFエキシマレーザ光を用いることができる。
 光硬化性樹脂への照射強度は、目的とする製品毎に制御されるものであって特に限定されるものではない。例えば、後述の光重合開始剤の活性化に有効な光波長領域(光重合開始剤によって異なるが、通常300~420nmの光が用いられる)の光照射強度が0.1~100mW/cmであることが好ましい。組成物への照射強度が0.1mW/cm未満であると、反応時間が長くなり過ぎ、100mW/cmを超えると、ランプから輻射される熱および組成物の重合時の発熱によって、得られる硬化物の凝集力の低下や黄変あるいは支持体の劣化が生じる恐れがある。
 光の照射時間は、目的とする製品毎に制御されるものであって特に限定されるものではないが、光波長領域での光照射強度と光照射時間の積として表される積算光量が3~1000mJ/cmに設定することが出来る。更に好ましくは5~500mJ/cmであり、特に好ましくは10~300mJ/cmである。組成物への積算光量が3mJ/cm未満であると、光重合開始剤からの活性種の発生が十分でなく、得られる硬化物の特性の低下が生じるおそれがあり、1000mJ/cmを超えると、生産性向上のためには不利なものとなる。また、重合反応を促進するために加熱を併用することも場合によっては好ましい。また、光を照射して硬化性樹脂を硬化させる場合の温度は、0~100℃が好ましく、0~60℃がより好ましく、フッ素含有環状オレフィンポリマーからなる位相差フィルムの軟化温度より低い温度で好適に選ばれる。
 光を照射して硬化性材料を硬化させた接着層の厚みは、特に制限はないが、好ましくは0.5μm~100μmであり、より好ましくは0.5μm~50μmであり、最も好ましくは0.5μm~10μmである。厚みが100μmを超えるとUV照射時の硬化収縮によってフィルムにシワを生じたり、位相差特性が変化したりする場合があり、0.5μm未満であるとフィルムの膜厚均一性などの問題から光硬化性樹脂とフィルム表面の界面に接触ムラを生じ、硬化後の接着強度が得られなくなる場合がある。
 このように透明性高く、位相差の波長分散性が小さな、または、逆波長分散性を示す位相差フィルムは、液晶ディスプレイ、反射型液晶ディスプレイ、有機ELディスプレイ、インナータッチパネル、液晶プロジェクター等の表示材料用途の部材として用いる事ができ、例えば、液晶ディスプレイ部材として用いる場合、黒表示を補正する事で画像表示のコントラストを向上させる事ができる。また、特定の位相差、具体的には140nm、280nmのフィルムは、それぞれλ/4波長板、λ/2波長板として直線偏光を円偏光に、円偏光を直線偏光に変換する偏光素子として各種画像表示材料に利用されているが、例えば、本実施形態の逆波長分散のλ/4波長板を反射型液晶ディスプレイ部材として利用する事で、積層する位相差フィルムの枚数を低減でき、かつ、視野角特性に優れた画像表示を可能にする事もできる。
 以下、実施例において、本発明を説明するが、本発明はこれらの例によって何ら限定されるものではない。なお、実施例において合成したポリマーの分析値測定方法、フィルムの延伸方法および位相差の測定方法を以下に示し、低波長分散性のフィルムの物性値を表-1に、低波長分散性のフィルムを貼り合わせた光学フィルムの物性値を表-2に示す。
 [重量平均分子量(Mw)、分子量分布(Mw/Mn)]
 下記の条件下でゲルパーミュエーションクロマトグラフィー(GPC)を使用して、テトラヒドロフラン(THF)に溶解したポリマーの重量平均分子量(Mw)および数平均分子量(Mn)を以下の条件で、ポリスチレンスタンダードによって分子量を較正して測定した。検出器:日本分光社製RI-2031および875-UV、直列連結カラム:Shodex K-806M,804,803,802.5、カラム温度:40℃、流量:1.0ml/分、試料濃度:3.0mg/ml
 [環状オレフィンポリマーの水素添加率]
 水素添加反応を行った開環メタセシス重合体の粉末を重水素化クロロホルム、または重水素化テトラヒドロフランに溶解し、日本電子社製核磁気共鳴装置を用いて270MHz-H-NMRスペクトルを測定し、δ=4.5~7.0ppmの主鎖の二重結合炭素に結合する水素に由来するシグナルの積分値によって水素添加率を算出した。
 [環状オレフィンコポリマーの組成(モル)比]
 開環メタセシス重合体を水素添加した環状オレフィンコポリマーを重水素化テトラヒドロフランに溶解し以下の方法によって測定し組成を算出した。
 基準物質としてオルトジフルオロベンゼンを加え、日本電子社製ECX400型核磁気共鳴装置を用いて、373MHz-19F-NMRスペクトルを測定し、δ=-139ppmのオルトジフルオロベンゼンを基準シグナルにδ=-150~-200ppmの-CF、δ=-100~-150ppmの-CF、または、δ=-60~-100ppmの-CFに由来するフッ素の積分値によって組成を算出した。
 [ガラス転移温度]
 島津製作所社製DSC-50を用い、測定試料を窒素雰囲下で10℃/分の昇温速度で加熱し測定した。
 [フィルムの延伸方法]
 井元製作所社製延伸装置IMC-19FCを用い、チャック間70mm×幅70mmで所定の温度へ加熱した後、30mm/minの速度で所定の倍率へ一軸延伸した。また、フィルムの70mm幅を第一延伸軸として70mm幅のチャックで固定し、フィルムの30mm幅を第二延伸軸として30mm幅のチャックで固定し、所定の温度へ加熱した後、30mm/minの速度で第一延伸軸、第二延伸軸それぞれの所定の倍率へ同時二軸延伸した。
 [位相差の測定]
 大塚電子社製リタデーション測定装置RETS-100を用い、ハロゲンランプを光源にマルチチャンネル分光光度計を検出器として回転検光子法によって測定した。波長400nmから800nmの位相差を、サンプルステージを移動させながら50mm×50mmの範囲で16点(4行、4列)測定したデータから、数値解析によって波長400nm、550nmおよび800nmの平均値を算出して位相差とし、それらの数値解析によって標準偏差を算出して符号(±)を付して位相差のムラとした。ここで、位相差のムラは、単位面積あたりの波長550nmの標準偏差値で表される。すなわち、位相差ムラ = 波長550nmの±標準偏差値÷25cmであり、単位は、nm/cmである。表-1および表-2に示す。
[延伸フィルムの遅相軸確認]
 フィルムを貼り合わせる際の延伸フィルムの延伸軸と遅相軸の関係を大塚電子社製リタデーション測定装置RETS-100のサンプル軸出し機能を利用して確認し、延伸軸と遅相軸の関係で延伸軸に対する遅相軸の角度が0°(平行)~1°の範囲にあるフィルムを利用して延伸軸を基準に貼り合わせた。
[屈折率の測定]
 アタゴ社製多波長アッベ屈折計を使用して10mm×20mmのサイズに切り出したフィルムを用いて波長589nm(D線)の屈折率を測定した。また、光硬化性モノマーと光硬化開始剤を混合した組成物の屈折率も同様に測定した。
[全光線透過率および濁度(ヘイズ)の測定]
 日本電色工業社製ヘイズメーターNDH4000を使用し、JIS K 7361「プラスチック透明材料の全光線透過率の試験方法」に準拠して測定した。測定結果は、全光線透過率について測定精度から小数点一桁目を四捨五入してもよい。
[反射率の測定]
 日立製U-4100型分光光度計を使用し、波長200~800nmの範囲で入射角5°の正反射を測定し、測定結果から波長550nmの反射率を確認した。
[フィルムの密着性試験]
 JIS K 5600 5-6「クロスカット法」に準拠して、貼り合わせたフィルムの片面を2mm×2mmのサイズで100マスを碁盤目状にカットしたフィルムに、ニチバン社製セロハンテープを貼り付け剥離し、残膜数をカウントして評価した。
[製造例1] ポリマー1
 5,5,6-トリフルオロ-6-(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン(100g)と1-ヘキセン(0.268g)のテトラヒドロフラン溶液に、Mo(N-2,6-Pr )(CHCMePh)(OBut(50mg)のテトラヒドロフラン溶液を添加し、70℃にて開環メタセシス重合を行った。得られたポリマーのオレフィン部を、パラジウムアルミナ(5g)によって160℃で水素添加反応を行い、ポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)のテトラヒドロフラン溶液を得た。その溶液を孔径5μmのフィルターで加圧ろ過しパラジウムアルミナを除去した溶液をメタノールに加え、白色のポリマーをろ別、乾燥し99gのポリマー1を得た。水素添加率は100%、重量平均分子量(Mw)は83000、分子量分布(Mw/Mn)は1.73、ガラス転移温度は109℃であった。
[製造例2] ポリマー2
 モノマーを5,6-ジフルオロ-5,6-ビス(トリフルオロメチル)-ビシクロ[2.2.1]ヘプト-2-エン(50g)に変更した以外は製造例1と同様にポリ[1,2-ジフルオロ-1,2-ビス(トリフルオロメチル)-3,5-シクロペンチレンエチレン]のポリマー2を得た(49g)。水素添加率は100%、重量平均分子量(Mw)は95000、分子量分布(Mw/Mn)は1.52、ガラス転移温度は125℃であった。
[製造例3] ポリマー3
 5,6-ジフルオロ-5-へプタフルオロ-iso-プロピル-6-トリフルオロメチルビシクロ[2.2.1]ヘプト-2-エン(50g)と1-ヘキセン(0.034g)のトリフルオロメチルトルエン溶液に、Mo(N-2,6-Pr )(CHCMePh)(OBut(15mg)のトリフルオロメチルベンゼン溶液を添加し、70℃にて開環メタセシス重合を行った。得られたポリマー溶液をTHFへ溶媒置換しオレフィン部を、パラジウムアルミナ(2.5g)によって160℃で水素添加反応を行い、ポリ(1,2-ジフルオロ-1-へプタフルオロ-iso-プロピル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)のTHF溶液を得た。その溶液を孔径5μmのフィルターで加圧ろ過しパラジウムアルミナを除去した溶液をメタノールに加え、白色のポリマーをろ別、乾燥し49gのポリマー3を得た。水素添加率は100%、重量平均分子量(Mw)は142000、分子量分布(Mw/Mn)は1.40、ガラス転移温度は137℃であった。
[製造例4] ポリマー4
 モノマーを5,6-ジフルオロ-5-へプタフルオロ-iso-プロピル-6-トリフルオロメチルビシクロ[2.2.1]ヘプト-2-エン(37g)と5,6-ジフルオロ-5,6-ビストリフルオロメチル-7-オキサ-ビシクロ[2.2.1]ヘプト-2-エン(27g)の2種類に変更して、開環メタセシス重合触媒をMo(N-2,6-Pr )(CHCMePh)(OCMe(CF(38mg)に変更した以外は製造例3と同様にポリ(1,2-ジフルオロ-1-へプタフルオロ-iso-プロピル-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)とポリ(1, 2-ジフルオロ-1, 2-ビストリフルオロメチル-4-オキサ-3,5-シクロペンチレンエチレン)共重合体のポリマー4を得た(63g)。水素添加率は100%、組成比=50/50、重量平均分子量(Mw)は138000、分子量分布(Mw/Mn)は1.55、ガラス転移温度は101℃であった。
[製造例5] ポリマー5
 製造例1と同様な方法でポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)のテトラヒドロフラン溶液を得た。その溶液を孔径5μmのフィルターで加圧ろ過しパラジウムアルミナを除去した溶液を、次いで1μmのフィルターで加圧ろ過し、さらに0.1μmのフィルターを2回通し、最終的に0.05μmのフィルターで多段加圧ろ過した。その後、ポリマーのTHF溶液を40℃に加熱しながら真空ポンプで濃縮して、次に溶剤としてメチルイソブチルケトンを加えて80℃に加熱しながら真空ポンプで濃縮、乾固して98gのポリマー5を得た。更に、得られたポリマー5を30質量%濃度でメチルイソブチルケトンに再度、溶解させてポリマー5のメチルイソブチルケトン溶液を調整した。
[製造例6] ポリマー6
 製造例4に記載の2種類のモノマーを5-メチル-ビシクロ[2.2.1]ヘプト-2-エン(20.0g)と8-メチル-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(32.2g)に、溶媒をシクロヘキサンに変更した以外は製造例4と同様な方法によって、ポリ(1-メチル-シクロペンチレンエチレン)とポリ(3-メチル-トリシクロ[4.3.0.12,5]デカニレンエチレン)の共重合体のシクロヘキサン溶液を得た。その溶液を孔径5μmのフィルターで加圧ろ過し、溶液をメタノールに加え、白色のポリマーをろ別、乾燥し51gのポリマー6を得た。水素添加率は100%、組成比〔A〕/〔B〕=50/50、重量平均分子量(Mw)は82000、分子量分布(Mw/Mn)は2.26、ガラス転移温度は104℃であった。
[製造例7] ポリマー7
 2種類のモノマーを5,5,6-トリフルオロ-6-トリフルオロメチル-ビシクロ[2.2.1]ヘプト-2-エン(7.8g)と8, 8, 9-トリフルオロ-9-トリフルオロメチル-テトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(34.5g)を製造例1と同様な方法によって、ポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)とポリ(3, 3, 4-トリフルオロ-4-トリフルオロメチル-7,9-トリシクロ[4.3.0.12,5]デカニレンエチレン)の共重合体のテトラヒドロフラン溶液を得た。溶液をメタノールに加え、白色のポリマーをろ別、乾燥し41gのポリマー7を得た。水素添加率は100%、組成比〔A〕/〔B〕=30/70、重量平均分子量(Mw)は75000、分子量分布(Mw/Mn)は3.06、ガラス転移温度は169℃であった。
[製造例8] ポリマー8
 5,5,6-トリフルオロ-6-(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン(10g)のテトラヒドロフラン溶液に、Mo(N-2,6-Pr )(CHCMePh)(OBut(84mg)のテトラヒドロフラン溶液を添加し、連鎖移動剤を入れず、70℃にてリビング開環メタセシス重合を行った。得られたポリマーのオレフィン部を、パラジウムアルミナ(5g)によって160℃で水素添加反応を行い、ポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)のテトラヒドロフラン溶液を得た。その溶液を孔径5μmのフィルターで加圧ろ過し、得られた溶液をメタノールに加え、淡黄色のポリマーをろ別、乾燥して9gのポリマー8を得た。水素添加率は100%、重量平均分子量(Mw)は65000、分子量分布(Mw/Mn)は1.03、ガラス転移温度は110℃であった。
[実施例1]
 製造例1で合成したポリマー1をメチルエチルケトンに30質量%濃度で溶解し、その溶液を孔径1μmのフィルターで加圧ろ過し、次いで0.1μmのフィルター、さらに、0.05μmのフィルターで多段加圧ろ過したメチルエチルケトン溶液をガラス基板に塗布し、アプリケーターを用いて均一にコートした後、100℃で30分乾燥して剥離する事で厚み65μmの表面平滑なフィルムを得た。その後、チャック間70mm、幅70mmでフィルムを固定し、延伸温度を120℃、延伸倍率を1.7倍延伸して厚み36μmのフィルムを得た。フィルムの位相差は146.97±1.59nm(λ=400nm)、144.09±1.51nm(λ=550nm)、143.71±1.54nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であった。また、全光線透過率は94.5%、D線屈折率は1.408、ヘイズは0.3%、反射率は5.5%、延伸軸に対する遅相軸の角度は0.2°であり、λ/4波長板である。結果を表-1に示す。
[実施例2]
 実施例1と同様な方法で厚み65μmの表面平滑なフィルムを得た。その後、チャック間70mm、幅70mmでフィルムを固定して、延伸温度を115℃、延伸倍率を2.3倍に変更して延伸する事で厚み24μmのフィルムを得た。フィルムの位相差は288.42±1.75nm(λ=400nm)、279.00±1.70nm(λ=550nm)、278.74±1.72nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.03、Re(400nm)/Re(800nm)=1.03であった。また、全光線透過率は94.5%、D線屈折率は1.408、ヘイズは0.3%、反射率は5.5%、延伸軸に対する遅相軸の角度は0.1°であり、λ/2波長板である。結果を表-1に示す。
[実施例3]
 製造例2で合成したポリマー2をメチルエチルケトンに30質量%濃度で溶解し、その溶液を孔径1μmのフィルターで加圧ろ過し、次いで0.1μmのフィルターを2回通し、さらに、0.05μmのフィルターで多段加圧ろ過し、その溶液を実施例1と同様な方法で厚み67μmの表面平滑なフィルムを得た。その後、チャック間70mm、幅70mmでフィルムを固定して、延伸温度を135℃、延伸倍率を1.7倍延伸して厚み36μmのフィルムを得た。フィルムの位相差は144.11±1.40nm(λ=400nm)、141.83±1.49nm(λ=550nm)、140.95±1.43nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であった。また、全光線透過率は94.9%、D線屈折率は1.391、ヘイズは0.3%、反射率は5.1%、延伸軸に対する遅相軸の角度は0.3°であり、λ/4波長板である。結果を表-1に示す。
[実施例4]
 製造例3で合成したポリマー3をトリフルオロメチルベンゼンに30質量%濃度で溶解し、その溶液を孔径1μmのフィルターで加圧ろ過し、次いで0.1μmのフィルターを2回通し、さらに、0.05μmのフィルターで多段加圧ろ過し、そのトリクロロメチルベンゼン溶液をガラス基板に塗布し、アプリケーターを用いて均一にコートした後、120℃で30分乾燥して剥離する事で厚み71.0μmの表面平滑なフィルムを得た。その後、チャック間70mm、幅70mmでフィルムを固定して延伸温度を155℃、延伸倍率を1.6倍延伸して厚み40μmのフィルムを得た。フィルムの位相差は144.21±1.53nm(λ=400nm)、141.05±1.50nm(λ=550nm)、141.01±1.51nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であった。また、全光線透過率は95.2%、D線屈折率は1.38、ヘイズは0.3%、反射率は4.8%、延伸軸に対する遅相軸角度は0.2°であり、λ/4波長板である。結果を表-1に示す。
[実施例5]
 製造例4で合成したポリマー4をメチルイソブチルケトンに30質量%濃度で溶解し、その溶液を孔径1μmのフィルターで加圧ろ過し、次いで0.1μmのフィルターで多段加圧ろ過し、その溶液をガラス基板に塗布し、アプリケーターを用いて均一にコートした後、120℃で30分乾燥して剥離する事で厚み63μmの表面平滑なフィルムを得た。その後、チャック間70mm、幅70mmでフィルムを固定し、延伸温度を111℃、延伸倍率を1.8倍延伸して厚み32μmのフィルムを得た。フィルムの位相差は144.62±1.22nm(λ=400nm)、140.67±1.27nm(λ=550nm)、140.53±1.23nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.03、Re(400nm)/Re(800nm)=1.03であった。また、全光線透過率は95.1%、D線屈折率は1.39、ヘイズは0.3%、反射率は6.5%、延伸軸に対する遅相軸角度は0.1°であり、λ/4波長板である。結果を表-1に示す。
[実施例6]
 製造例5で調整したポリマー5のメチルイソブチルケトン溶液をガラス基板に塗布し、アプリケーターを用いて均一にコートした後、120℃で30分乾燥して剥離する事で、厚み64μmの表面平滑なフィルムを得た。その後、チャック間70mm、幅70mmでフィルムを固定し、延伸温度を120℃、延伸倍率を1.7倍延伸して厚み35μmのフィルムを得た。フィルムの位相差は145.87±1.51nm(λ=400nm)、143.01±1.53nm(λ=550nm)、142.59±1.50nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であった。また、全光線透過率は94.5%、D線屈折率は1.408、ヘイズは0.3%、反射率は5.5%、延伸軸に対する遅相軸の角度は0.1°であり、λ/4波長板である。結果を表-1に示す。
[実施例7]
 実施例1と同様な方法でポリマー1から作製した2枚のフィルムの位相差が、それぞれ、146.97±1.43nm(λ=400nm)、144.09±1.42nm(λ=550nm)、143.71±1.45nm(λ=800nm)でRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であり、また、全光線透過率は94.5%、D線屈折率は1.408、ヘイズは0.3%、反射率は5.5%、延伸軸に対する遅相軸の角度は0.2°である厚み36μmのλ/4波長板と145.49±1.39nm(λ=400nm)、143.06±1.40nm(λ=550nm)、142.32±1.41nm(λ=800nm)でRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であり、また、全光線透過率は94.5%であり、D線屈折率は1.408、ヘイズは0.3%、反射率は5.5%、延伸軸に対する遅相軸の角度が0.1°である厚み36μmのλ/4波長板を、3-エチル-3[{(3-エチルオキセタン-3-イル)メトキシ}メチル]オキセタンと1、7-オクタジエン-ジ-エポキシドの質量比90/10(D線屈折率=1.449)の組成物に光重合開始剤アデカオプトマーSP-172(旭電化工業社製)を1.0wt%加えた溶液を接着剤1(屈折率差 0.041)としてそれぞれのフィルムの延伸軸が交差する角度を60°で重ねUV照射し、2枚の位相差フィルムを貼り合わせたフィルムを作製した。フィルムの位相差は129.91±1.30nm(λ=400nm)、141.12±1.38nm(λ=550nm)、146.76±1.32nm(λ=800nm)でありRe(400nm)/Re(550nm)=0.92、Re(400nm)/Re(800nm)=0.89であった。また、全光線透過率は92.1%であり、ヘイズは0.6%、反射率は7.9%、厚み75μmのλ/4波長板であった。さらに、クロスカット法による剥離試験では100/100で全く剥離せず、良好な密着性を示した。結果を表-2に示す。
[実施例8]
 実施例7の接着剤1にポリマー1を溶解した3-エチル-3[{(3-エチルオキセタン-3-イル)メトキシ}メチル]オキセタンと1、7-オクタジエン-ジ-エポキシドおよびポリ(1,1,2-トリフルオロ-2-トリフルオロメチル-3,5-シクロペンチレンエチレン)の質量比70/15/15(D線屈折率1.44)の組成物に光重合開始剤アデカオプトマーSP-172(旭電化工業社製)を1.0wt%加えた溶液を接着剤2(屈折率差 0.032)として、実施例3のポリマー2から作製した位相差が144.11±1.11nm(λ=400nm)、141.83±1.15nm(λ=550nm)、140.95±1.13nm(λ=800nm)でRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であり、全光線透過率は94.9%、D線屈折率は1.391、ヘイズは0.3%、反射率は5.1%、延伸軸に対する遅相軸の角度は0.3°である36μmのλ/4波長板と実施例1と同様な方法でポリマー1から作製したフィルムの位相差が146.21±1.32nm(λ=400nm)、143.31±1.35nm(λ=550nm)、142.89±1.37nm(λ=800nm)でRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であり、全光線透過率は94.5%、D線屈折率は1.408、ヘイズは0.3%、反射率は5.5%、延伸軸に対する遅相軸の角度が0.1°である36μmのλ/4波長板をそれぞれのフィルムの延伸軸が交差する角度が60°で重ねUV照射し、2枚の位相差フィルムを貼り合わせたフィルムを作製した。フィルムの位相差は129.41±1.22nm(λ=400nm)、142.21±1.29nm(λ=550nm)、146.99±1.25nm(λ=800nm)でありRe(400nm)/Re(550nm)=0.91、Re(400nm)/Re(800nm)=0.88であった。また、全光線透過率は93.7%であり、ヘイズは0.6%、反射率は6.3%、75μmのフィルムλ/4波長板であった。さらに、クロスカット法による剥離試験では100/100で全く剥離せず、良好な密着性を示した。結果を表-2に示す。
[実施例9]
 実施例2と同様な方法でポリマー1から作製した2枚のフィルムの位相差が、それぞれ、288.42±1.82nm(λ=400nm)、279.00±1.84nm(λ=550nm)、276.21±1.81nm(λ=800nm)でRe(400nm)/Re(550nm)=1.03、Re(400nm)/Re(800nm)=1.04の全光線透過率は94.5%、D線屈折率は1.408、ヘイズは0.3%、反射率は5.5%、延伸軸に対する遅相軸の角度は0.1°である厚み24μmのλ/2波長板と288.31±1.79nm(λ=400nm)、280.03±1.80nm(λ=550nm)、279.23±1.77nm(λ=800nm)でRe(400nm)/Re(550nm)=1.03、Re(400nm)/Re(800nm)=1.03の全光線透過率は94.5%、ヘイズは0.3%、反射率は5.5%、D線屈折率は1.408、延伸軸に対する遅相軸角度が0.1°である厚み24μmのλ/2波長板を、それぞれのフィルムの延伸軸が交差する角度を40°で重ね、実施例7と同様な方法で接着剤1を用いて接着し、2枚のフィルムを貼り合わせたフィルムを作製した。フィルムの位相差は226.77±1.77nm(λ=400nm)、279.96±1.79nm(λ=550nm)、293.96±1.78nm(λ=800nm)でありRe(400nm)/Re(550nm)=0.81、Re(400nm)/Re(800nm)=0.77であった。また、全光線透過率は93.5%、ヘイズは0.6%、反射率は6.5%、厚み50μmのλ/2波長板であった。さらに、クロスカット法による剥離試験では100/100で全く剥離せず、良好な密着性を示した。結果を表-2に示す。
[実施例10]
 実施例1と同様な方法でポリマー1から全光線透過率は94.5%、D線屈折率は1.408、ヘイズは0.3%、反射率は5.5%の3枚の延伸フィルムを作製した。フィルム(I)の位相差は144.80±1.54nm(λ=400nm)、141.94±1.51nm(λ=550nm)、141.58±1.53nm(λ=800nm)でRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であり、延伸軸に対する遅相軸の角度が0.1°である36μmのλ/4波長板、フィルム(II)の位相差は141.22±1.49nm(λ=400nm)、138.31±1.45nm(λ=550nm)、137.95±1.47nm(λ=800nm)でRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であり、延伸軸に対する遅相軸の角度が0.2°である36μmのλ/4波長板、フィルム(III)の位相差は145.12nm±1.49(λ=400nm)、142.36±1.45nm(λ=550nm)、141.69±1.43nm(λ=800nm)でRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であり、延伸軸に対する遅相軸の角度が0.1°である36μmのλ/4波長板であった。
 次に、フィルム(I)とフィルム(II)の延伸軸が交差する角度を80°、フィルム(II)とフィルム(III)の延伸軸が交差する角度を10°で重ね実施例7の接着剤1で3枚のフィルムを貼り合せたフィルムを作製した。フィルムの位相差は132.11±1.40nm(λ=400nm)、137.22±1.42nm(λ=550nm)、144.96±1.41nm(λ=800nm)でありRe(400nm)/Re(550nm)=0.96、Re(400nm)/Re(800nm)=0.91であった。また、全光線透過率は92.9%であり、ヘイズは0.6%、反射率は7.1%、厚み110μmのλ/4波長板であった。さらに、クロスカット法による剥離試験では100/100で全く剥離せず、良好な密着性を示した。結果を表-2に示す。
[比較例1]
 厚み55μmのカネカ社製ポリカーボネート系フィルムエルメックをチャック間70mm、幅70mmでフィルムを固定して、延伸温度を160℃、延伸倍率を1.2倍延伸して厚み47μmのフィルムを得た。フィルムの位相差が163.32±1.80nm(λ=400nm)、139.59±1.82nm(λ=550nm)、132.61±1.79nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.17、Re(400nm)/Re(800nm)=1.23であり、全光線透過率は90.3%、ヘイズは0.7%、反射率は10.3%、であった。結果を表-1に示す。
[比較例2]
 製造例6で合成したポリマー6を、シクロヘキサンに30質量%濃度で溶解し、その溶液を孔径1μmのフィルターで加圧ろ過し、次いで0.1μmのフィルターを2回通し、さらに、0.05μmのフィルターで多段加圧ろ過し、その溶液をフィルムの乾燥温度を120℃に変更し、実施例1と同様な方法で厚み71μmのフィルムを作製し、チャック間70mm、幅70mmでフィルムを固定して、延伸温度を115℃、延伸倍率を1.9倍延伸して厚み41μmのフィルムを得た。フィルムの位相差が152.03±1.66nm(λ=400nm)、138.21±1.69nm(λ=550nm)、134.52±1.65nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.10、Re(400nm)/Re(800nm)=1.13であり、全光線透過率は89.7%、ヘイズは0.5%、反射率は9.7%であった。
 さらに、得られた2枚のフィルムを、市販されている如何なるUV硬化性接着剤で貼り合せを試みたが、接着フィルムを形成することができなかった。結果を表-1に示す。
[比較例3]
 製造例7で合成したポリマー7を、メチルイソブチルケトンに30質量%濃度で溶解し、その溶液を孔径1μmのフィルターで加圧ろ過し、次いで0.1μmのフィルターで多段加圧ろ過し、その溶液をガラス基板に塗布し、アプリケーターを用いて均一にコートした後、100℃で30分乾燥して剥離する事で厚み34.9μmの表面平滑なフィルムを得た。その後、チャック間30mm、幅30mmでフィルムを固定し、延伸温度を189℃、延伸倍率を1.3倍延伸して厚み30μmのフィルムを得た。フィルムの位相差は6.58±0.70nm(λ=400nm)、6.21±0.73nm(λ=550nm)、6.08±0.74nm(λ=800nm)でRe(400nm)/Re(550nm)=1.06、Re(400nm)/Re(800nm)=1.08であり、また、同条件で1.8倍延伸したフィルムは延伸後の厚みで25μm、フィルムの位相差は9.36±0.40nm(λ=400nm)、8.83±0.44nm(λ=550nm)、8.65±0.43nm(λ=800nm)でRe(400nm)/Re(550nm)=1.06、Re(400nm)/Re(800nm)=1.08であった。
 また、延伸温度を175℃、延伸倍率を3.0倍延伸した厚み18μmフィルムの位相差は18.18±0.99nm(λ=400nm)、17.15±0.97nm(λ=550nm)、16.83±0.92nm(λ=800nm)でRe(400nm)/Re(550nm)=1.06、Re(400nm)/Re(800nm)=1.08であった。
 さらに、延伸温度を165℃、延伸倍率を3.0倍の設定で延伸すると、フィルムが破断した。結果を表-1に示す。
[比較例4]
 製造例8で合成したポリマー8を、メチルエチルケトンに30質量%濃度で溶解し、その溶液を孔径1μmのフィルターで加圧ろ過し、次いで0.1μmのフィルター、さらに、0.05μmのフィルターで多段加圧ろ過し、淡黄色の溶液を実施例1と同様な方法で、溶液キャスト法によって厚み63μmの全光線透過率85%の黄色く着色したフィルムを作製した。さらに、実施例1と同様な方法で1.7倍延伸して作製したフィルムの位相差は38.03±0.91nm(λ=550nm)であり、さらに3.0倍延伸したフィルムは、破断した。結果を表-1に示す。
[比較例5]
 製造例1で合成したポリマー1をメチルエチルケトンに30質量%濃度で溶解した。次に、精密ろ過工程を行うことなく、実施例1と同様に溶液をガラス基板に塗布し、アプリケーターを用いて均一にコートした。その後、100℃で30分乾燥して剥離する事で、厚み65μmの片面(大気面)に凹凸のある荒れた状態のフィルムを得た。16点平均の厚み誤差が±3μmであった。その後、チャック間70mm、幅70mmでフィルムを固定し、延伸温度を120℃、延伸倍率を1.7倍延伸して平均厚み37μmのフィルムを得た。フィルムの位相差は135.26±25nm(λ=400nm)、132.61±24nm(λ=550nm)、132.59±24nm(λ=800nm)であり、Re(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であった。また、全光線透過率は89.4%、ヘイズは0.9%、反射率は8.1%であり、フィルムの面荒れによる厚み誤差が±5μmと極めて大きく、ディスプレイなどの光学部材としては不適であった。D線屈折率は1.408、延伸軸に対する遅相軸の角度は0.2°であり、λ/4波長板である。結果を表-1に示す。
[比較例6]
 実施例1と同様な方法で作製した2枚のフィルムの位相差が、それぞれ、144.39±1.57nm(λ=400nm)、142.05±1.59nm(λ=550nm)、141.14±1.54nm(λ=800nm)でRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であり延伸軸に対する遅相軸の角度が0.1°である厚み36μmの延伸フィルムと、フィルムの位相差が143.09±1.44nm(λ=400nm)、140.85±1.49nm(λ=550nm)、139.74±1.45nm(λ=800nm)でRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であり延伸軸に対する遅相軸の角度が0.1°である厚み36μmの延伸フィルムを、接着材料を1-フェニル-1、2-エポキシエタンと3-エチル-3[{(3-エチルオキセタン-3-イル)メトキシ}メチル]オキセタンの質量比90/10(D線屈折率=1.52)の組成物に光重合開始剤アデカオプトマーSP-172(旭電化工業社製)を1.0wt%加えた溶液を接着剤3(屈折率差 0.112)に変更し、それぞれのフィルムの延伸軸が交差する角度を60°で重ねUV照射し、2枚の延伸フィルムを貼り合せた厚み75μmのフィルムを作製した。フィルムの位相差は128.88±1.39nm(λ=400nm)、140.09±1.33nm(λ=550nm)、140.09±1.35nm(λ=800nm)でありRe(400nm)/Re(550nm)=0.92、Re(400nm)/Re(800nm)=0.92であり、全光線透過率は89.8%、ヘイズは0.9%、反射率は10.2%であった。結果を表-2に示す。
[実施例11]
 製造例1で合成したポリマー1をメチルエチルケトンに30質量%濃度で溶解し、その溶液を孔径1μmのフィルターで加圧ろ過し、次いで0.1μmのフィルター、さらに、0.05μmのフィルター、最終的に0.02μmのフィルターで多段加圧ろ過したメチルエチルケトン溶液をガラス基板に塗布し、アプリケーターを用いて均一にコートした後、100℃で30分乾燥して剥離する事で厚み65μmの表面平滑なフィルムを得た。その後、チャック間70mm、幅70mmでフィルムを固定し、延伸温度を120℃、延伸倍率を1.7倍延伸して厚み36μmのフィルムを得た。フィルムの位相差は146.91±0.01nm(λ=400nm)、144.10±0.02nm(λ=550nm)、143.67±0.01nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であった。また、全光線透過率は94.5%であり、D線屈折率は1.408、ヘイズは0.2%、反射率は5.5%、延伸軸に対する遅相軸の角度は0.2°であり、λ/4波長板である。結果を表-1に示す。
[実施例12]
 製造例3で合成したポリマー3を実施例4に記載の方法で多段ろ過し、さらに0.02μmのフィルターで液面上部とフィルター下部の圧力差(ΔP)を0.05MPaに保持しながら3回フィルターを通したポリマー3のトリクロロメチルベンゼン溶液をガラス基板に塗布し、アプリケーターを用いて均一にコートした後、120℃で30分乾燥して剥離する事で厚み71μmの表面平滑なフィルムを得た。その後、チャック間70mm、幅70mmでフィルムを固定し、延伸温度を155℃、延伸倍率を1.6倍延伸して厚み40μmのフィルムを得た。フィルムの位相差は144.51±0.01nm(λ=400nm)、144.21±0.01nm(λ=550nm)、144.05±0.01nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.00、Re(400nm)/Re(800nm)=1.00であった。また、全光線透過率は95.2%であり、D線屈折率は1.38、ヘイズは0.2%、反射率は4.8%、延伸軸に対する遅相軸角度は0.2°であり、λ/4波長板である。結果を表-1に示す。
[実施例13]
 製造例1で合成したポリマー1から実施例11と同様な方法で多段ろ過して得られたメチルエチルケトン溶液をガラス基板に塗布し、厚み65μmの表面平滑なフィルムを得た。その後、フィルムの70mm幅を第一延伸軸として70mm幅のチャックで固定し、フィルムの30mm幅を第二延伸軸として30mm幅のチャックで固定し、延伸温度を110℃、第一延伸軸の延伸倍率を3.0倍、第二延伸軸の延伸倍率を1.1倍で同時二軸延伸して厚み10μmのフィルムを得た。フィルムの位相差は142.09±0.02nm(λ=400nm)、139.45±0.01nm(λ=550nm)、138.91±0.01nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02であった。また、全光線透過率は94.5%であり、D線屈折率は1.408、ヘイズは0.1%、反射率は1.2%、延伸軸に対する遅相軸の角度は0.1°であり、λ/4波長板である。結果を表-1に示す。
[実施例14]
 製造例1で合成したポリマー1から実施例11と同様な方法で多段ろ過して得られたメチルエチルケトン溶液をガラス基板に塗布し、厚み65μmの表面平滑なフィルムを得た。その後、フィルムの70mm幅を第一延伸軸として70mm幅のチャックで固定し、フィルムの30mm幅を第二延伸軸として30mm幅のチャックで固定し、延伸温度を105℃、第一延伸軸の延伸倍率を3.6倍、第二延伸軸の延伸倍率を1.1倍で同時二軸延伸して厚み6μmのフィルムを得た。フィルムの位相差は289.99±0.02nm(λ=400nm)、280.57±0.01nm(λ=550nm)、280.22±0.01nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.03、Re(400nm)/Re(800nm)=1.03であった。また、全光線透過率は94.5%であり、D線屈折率は1.408、ヘイズは0.1%、反射率は0.7%、延伸軸に対する遅相軸の角度は0.1°であり、λ/2波長板である。結果を表-1に示す。
[実施例15]
 実施例11と同様な方法でポリマー1から作製した2枚のフィルムの位相差が、それぞれ、144.51±0.01nm(λ=400nm)、144.21±0.01nm(λ=550nm)、144.05±0.01nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.00、Re(400nm)/Re(800nm)=1.00の全光線透過率は95.2%、D線屈折率は1.38、ヘイズは0.2%、反射率は4.8%、延伸軸に対する遅相軸角度は0.2°である厚み40μmのλ/4波長板と、144.50±0.01nm(λ=400nm)、144.20±0.01nm(λ=550nm)、144.06±0.01nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.00、Re(400nm)/Re(800nm)=1.00の全光線透過率は95.2%、D線屈折率は1.38、ヘイズは0.2%、反射率は4.8%、延伸軸に対する遅相軸角度は0.1°である厚み40μmのλ/4波長板を、それぞれのフィルムの延伸軸が交差する角度を60°で重ね、実施例7と同様な方法で接着剤1を用いて接着し、2枚のフィルムを貼り合わせたフィルムを作製した。フィルムの位相差は130.15±0.01nm(λ=400nm)、144.61±0.01nm(λ=550nm)、147.89±0.02nm(λ=800nm)でありRe(400nm)/Re(550nm)=0.90、Re(400nm)/Re(800nm)=0.88であった。また、全光線透過率は94.7%であり、ヘイズは0.4%、反射率は5.3%、厚み80μmのλ/4波長板であった。さらに、クロスカット法による剥離試験では100/100で全く剥離せず、良好な密着性を示した。結果を表-2に示す。
[実施例16]
 実施例12と同様な方法でポリマー1から作製した2枚のフィルムの位相差が、それぞれ、142.09±0.02nm(λ=400nm)、139.45±0.01nm(λ=550nm)、138.91±0.01nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02の全光線透過率は94.5%であり、D線屈折率は1.408、ヘイズは0.1%、反射率は1.2%、延伸軸に対する遅相軸の角度は0.1°である厚み10μmのλ/4波長板と141.91±0.01nm(λ=400nm)、139.17±0.02nm(λ=550nm)、139.54±0.02nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.02、Re(400nm)/Re(800nm)=1.02の全光線透過率は94.5%であり、D線屈折率は1.408、ヘイズは0.1%、反射率は1.2%、延伸軸に対する遅相軸の角度は0.1°である厚み10μmのλ/4波長板を、それぞれのフィルムの延伸軸が交差する角度を60°で重ね、実施例7と同様な方法で接着剤1を用いて接着し、2枚のフィルムを貼り合わせたフィルムを作製した。フィルムの位相差は130.05±0.01nm(λ=400nm)、141.36±0.02nm(λ=550nm)、146.12±0.02nm(λ=800nm)でありRe(400nm)/Re(550nm)=0.92、Re(400nm)/Re(800nm)=0.89であった。また、全光線透過率は92.1%であり、ヘイズは0.2%、反射率は2.4%、厚み21μmのλ/4波長板であった。さらに、クロスカット法による剥離試験では100/100で全く剥離せず、良好な密着性を示した。結果を表-2に示す。
[実施例17]
 実施例14と同様な方法でポリマー1から作製した2枚のフィルムの位相差が、それぞれ、289.99±0.02nm(λ=400nm)、280.57±0.01nm(λ=550nm)、278.84±0.02nm(λ=800nm)でありRe(400nm)/Re(550nm)=1.03、Re(400nm)/Re(800nm)=1.04の光線透過率は94.5%であり、D線屈折率は1.408、ヘイズは0.1%、反射率は0.7%、延伸軸に対する遅相軸の角度は0.1°である厚み6μmのλ/2波長板と288.92±0.01nm(λ=400nm)、280.50±0.02nm(λ=550nm)、277.81±0.02nm(λ=800nm)でRe(400nm)/Re(550nm)=1.03、Re(400nm)/Re(800nm)=1.04の全光線透過率は94.5%であり、D線屈折率は1.408、ヘイズは0.1%、反射率は0.7%、延伸軸に対する遅相軸の角度は0.1°である厚み6μmのλ/2波長板を、それぞれのフィルムの延伸軸が交差する角度を40°で重ね、実施例7と同様な方法で接着剤1を用いて接着し、2枚のフィルムを貼り合わせたフィルムを作製した。フィルムの位相差は222.04±0.02nm(λ=400nm)、274.12±0.01nm(λ=550nm)、288.36±0.03nm(λ=800nm)でありRe(400nm)/Re(550nm)=0.81、Re(400nm)/Re(800nm)=0.77であった。また、全光線透過率は93.5%であり、ヘイズは0.2%、反射率は1.4%、厚み13μmのλ/2波長板であった。さらに、クロスカット法による剥離試験では100/100で全く剥離せず、良好な密着性を示した。結果を表-2に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 本発明の位相差フィルムは、液晶ディスプレイ、有機ELなどの表示材料に好適に利用できる。特に、逆波長分散フィルムの用途としては、反射型液晶ディスプレイなどの位相差フィルムとして、また、偏光板補償フィルム、さらには偏光子保護フィルムとして有用であり工業的価値が極めて高い。
 この出願は、2013年4月3日に出願された日本出願特願2013-077982号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (15)

  1.  実質的に下記一般式(1)で表される繰返し構造単位から選択される少なくとも一種からなるフッ素含有環状オレフィンポリマーからなるフィルムを延伸して得られた光学フィルムであって、
     波長550nmの位相差が50nm以上であり、波長550nmの位相差Re(550nm)に対する波長400nmの位相差Re(400nm)の比Re(400nm)/Re(550nm)で表される波長分散性が1.00~1.05であり、かつ、波長800nmの位相差Re(800nm)に対する波長400nmの位相差Re(400nm)の比Re(400nm)/Re(800nm)で表される波長分散性が1.00~1.05であり、全光線透過率が92%以上である、低波長分散性の光学フィルム;
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R~Rのうち、少なくとも1つは、フッ素、フッ素を含有する炭素数1~10のアルキル、フッ素を含有する炭素数1~10のアルコキシ、フッ素を含有する炭素数2~10のアルコキシアルキル、フッ素を含有する炭素数6~20のアリール、フッ素を含有する炭素数2~10のアルコキシカルボニル、フッ素を含有する炭素数7~20のアリールオキシカルボニル、フッ素を含有する炭素数3~10のアルコキシカルボニルアルキル、フッ素を含有する炭素数8~20のアリールオキシカルボニルアルキルから選ばれ、同一でも異なっていてもよい。R~Rが、フッ素以外または上記置換基以外の基である場合、R~Rはそれぞれ独立に、水素、炭素数1~10のアルキル、炭素数6~20のアリール、炭素数1~10のアルコキシ、炭素数2~10のアルコキシアルキル、炭素数2~10のアルコキシカルボニル、炭素数7~20のアリールオキシカルボニル、炭素数3~10のアルコキシカルボニルアルキル、または炭素数8~20のアリールオキシカルボニルアルキルから選ばれる。Xは、-O-、-S-、-NR-、-PR-、および-CR-(R、Rはそれぞれ独立に水素または炭素数1~20のアルキルを表す。)から選ばれる。)。
  2.  λ/4波長板またはλ/2波長板である、請求項1に記載の光学フィルム。
  3.  前記フッ素含有環状オレフィンポリマーのワニスを孔径0.5μm以下の孔を備えるフィルターを通過させ、精密ろ過を施し、次いで製膜して得られた前記光学フィルムであって、λ/4波長板またはλ/2波長板である、請求項2に記載の光学フィルム。
  4.  前記λ/4波長板は、波長550nmにおける位相差が140±10nmである、請求項3に記載の光学フィルム。
  5.  前記λ/2波長板は、波長550nmにおける位相差が280±20nmである、請求項3に記載の光学フィルム。
  6.  前記λ/4波長板およびλ/2波長板は、波長550nmにおける位相差ムラが、±0.50nm/cm以下である、請求項3に記載の光学フィルム。
  7.  前記λ/4波長板およびλ/2波長板は、波長550nmにおける反射率が、7.0%以下である、請求項3に記載の光学フィルム。
  8.  遅相軸が同軸にならない角度で、2枚以上の請求項1に記載の光学フィルムを貼り合わせた光学フィルムであって、逆波長分散性Re(400nm)/Re(550nm)が1.00未満であり、かつ全光線透過率が91%以上である、光学フィルム。
  9.  2枚以上の前記光学フィルムが、該光学フィルムとの屈折率差(Δn)が0.1以下である接着材料を介して貼り合わされている、請求項8に記載の光学フィルム。
  10.  λ/4波長板またはλ/2波長板であることを特徴とする請求項8または9に記載の光学フィルム。
  11.  前記フッ素含有環状オレフィンポリマーのワニスを孔径0.5μm以下の孔を備えるフィルターを通過させ、精密ろ過を施し、次いで製膜して得られた前記光学フィルムであって、λ/4波長板またはλ/2波長板であることを特徴とする請求項10に記載の光学フィルム。
  12.  前記λ/4波長板は、波長550nmにおける位相差が140±10nmである、請求項11に記載の光学フィルム。
  13.  前記λ/2波長板は、波長550nmにおける位相差が280±20nmである、請求項11に記載の光学フィルム。
  14.  前記λ/4波長板およびλ/2波長板は、波長550nmにおける位相差ムラが、±0.50nm/cm以下である、請求項11に記載の光学フィルム。
  15.  前記λ/4波長板およびλ/2波長板は、波長550nmにおける反射率が、7.0%以下である、請求項11に記載の光学フィルム。
PCT/JP2014/058339 2013-04-03 2014-03-25 光学フィルム WO2014162928A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157027759A KR101805280B1 (ko) 2013-04-03 2014-03-25 광학 필름
US14/782,049 US10035889B2 (en) 2013-04-03 2014-03-25 Optical film
JP2015510017A JP6144756B2 (ja) 2013-04-03 2014-03-25 光学フィルムおよびその製造方法
CN201480020071.6A CN105164559B (zh) 2013-04-03 2014-03-25 光学膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-077982 2013-04-03
JP2013077982 2013-04-03

Publications (1)

Publication Number Publication Date
WO2014162928A1 true WO2014162928A1 (ja) 2014-10-09

Family

ID=51658226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058339 WO2014162928A1 (ja) 2013-04-03 2014-03-25 光学フィルム

Country Status (6)

Country Link
US (1) US10035889B2 (ja)
JP (1) JP6144756B2 (ja)
KR (1) KR101805280B1 (ja)
CN (1) CN105164559B (ja)
TW (1) TWI614302B (ja)
WO (1) WO2014162928A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039934A1 (ja) * 2019-08-30 2021-03-04 日本ゼオン株式会社 位相差フィルム及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11932929B2 (en) * 2017-08-21 2024-03-19 George Edward Parris Method and materials for creating patterns of carbon and/or other elements on substrates or within liquid or frozen media by directed energy deposition of carbon and other elements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002088216A1 (fr) * 2001-04-27 2002-11-07 Mitsui Chemicals, Inc. Polymeres cycloolefiniques fluores, procedes de preparation de monomeres cycloolefiniques fluores et polymeres associes, et leur application
JP2004163680A (ja) * 2002-11-13 2004-06-10 Fuji Photo Film Co Ltd 偏光変換素子及び液晶プロジェクター用投光装置
JP2007177046A (ja) * 2005-12-27 2007-07-12 Mitsui Chemicals Inc フッ素含有環状オレフィンポリマーを用いた光学部品
JP2008268913A (ja) * 2007-03-29 2008-11-06 Asahi Kasei Chemicals Corp 積層光学フィルム
JP2011197409A (ja) * 2010-03-19 2011-10-06 Nippon Shokubai Co Ltd 位相差フィルムとその製造方法および画像表示装置
WO2011125323A1 (ja) * 2010-04-06 2011-10-13 三井化学株式会社 光学材料およびその成形物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW533323B (en) 2000-04-24 2003-05-21 Teijin Ltd Process for producing retardation film
JP4178810B2 (ja) * 2001-12-25 2008-11-12 Jsr株式会社 熱可塑性ノルボルネン系樹脂系光学用フィルム
JP2003270435A (ja) 2002-03-13 2003-09-25 Nippon Zeon Co Ltd 広帯域波長板
JP3912159B2 (ja) * 2002-03-29 2007-05-09 Jsr株式会社 光学用フィルムおよびその製造方法並びに偏光板
JP2004177951A (ja) 2002-11-15 2004-06-24 Fujitsu Display Technologies Corp 液晶表示装置
US7719646B2 (en) 2002-11-15 2010-05-18 Sharp Kabushiki Kaisha Liquid crystal display device
JP4273321B2 (ja) 2003-10-21 2009-06-03 Jsr株式会社 波長板
JP2007108529A (ja) 2005-10-14 2007-04-26 Jsr Corp 位相差フィルムの製造方法、位相差フィルムおよびその用途
CN101473253B (zh) * 2006-06-28 2012-05-23 夏普株式会社 复合双折射介质、偏光板和液晶显示装置
JP5178551B2 (ja) 2009-01-23 2013-04-10 Jx日鉱日石エネルギー株式会社 逆分散性位相差フィルム及びそれを用いた液晶表示装置
US9056938B2 (en) * 2009-08-26 2015-06-16 Mitsui Chemicals, Inc. Fluorine-containing cyclic olefin polymer composition, imprint product obtained using the composition, and method for producing the same
JP2011112842A (ja) 2009-11-26 2011-06-09 Kaneka Corp 位相差フィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002088216A1 (fr) * 2001-04-27 2002-11-07 Mitsui Chemicals, Inc. Polymeres cycloolefiniques fluores, procedes de preparation de monomeres cycloolefiniques fluores et polymeres associes, et leur application
JP2004163680A (ja) * 2002-11-13 2004-06-10 Fuji Photo Film Co Ltd 偏光変換素子及び液晶プロジェクター用投光装置
JP2007177046A (ja) * 2005-12-27 2007-07-12 Mitsui Chemicals Inc フッ素含有環状オレフィンポリマーを用いた光学部品
JP2008268913A (ja) * 2007-03-29 2008-11-06 Asahi Kasei Chemicals Corp 積層光学フィルム
JP2011197409A (ja) * 2010-03-19 2011-10-06 Nippon Shokubai Co Ltd 位相差フィルムとその製造方法および画像表示装置
WO2011125323A1 (ja) * 2010-04-06 2011-10-13 三井化学株式会社 光学材料およびその成形物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039934A1 (ja) * 2019-08-30 2021-03-04 日本ゼオン株式会社 位相差フィルム及びその製造方法

Also Published As

Publication number Publication date
JPWO2014162928A1 (ja) 2017-02-16
JP6144756B2 (ja) 2017-06-07
TWI614302B (zh) 2018-02-11
CN105164559A (zh) 2015-12-16
CN105164559B (zh) 2018-03-23
KR20150123330A (ko) 2015-11-03
US20160032063A1 (en) 2016-02-04
KR101805280B1 (ko) 2017-12-05
TW201444908A (zh) 2014-12-01
US10035889B2 (en) 2018-07-31

Similar Documents

Publication Publication Date Title
KR101470710B1 (ko) 불소 함유 환상 올레핀 폴리머 조성물, 이 조성물로부터 수득된 전사체 및 그의 제조방법
TWI582199B (zh) 偏光板及積層光學構件
US9314963B2 (en) Imprint product and method for producing the same
TW201137001A (en) Polarizing plate
US20180093404A1 (en) Retardation plate and method for producing retardation plate
US20200292742A1 (en) Phase difference film and production method for the same
WO2008010317A1 (fr) Polymères de métathèse d'ouverture de cycle, ses produits d'hydrogénation, leur procédé de fabrication et leurs utilisations
JP6386370B2 (ja) 積層構造物、光硬化性組成物および積層構造物の製造方法
JP6144756B2 (ja) 光学フィルムおよびその製造方法
JP6954299B2 (ja) 光学フィルムの製造方法
JP2015100984A (ja) 積層体及び偏光板
KR102550087B1 (ko) 광학 적층체, 편광판 및 액정 표시 장치
WO2017115776A1 (ja) 光学積層体、偏光板及び液晶表示装置
JP6777176B2 (ja) 光学積層体及びその製造方法、偏光板及び表示装置
WO2019142528A1 (ja) 凹凸構造体の製造方法、凹凸構造体を製造する方法に用いられる積層体および当該積層体の製造方法
CN115298587A (zh) 偏振膜及图像显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480020071.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015510017

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14782049

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157027759

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14779657

Country of ref document: EP

Kind code of ref document: A1