WO2011125088A1 - 燃料電池用接着材料および燃料電池 - Google Patents

燃料電池用接着材料および燃料電池 Download PDF

Info

Publication number
WO2011125088A1
WO2011125088A1 PCT/JP2010/002413 JP2010002413W WO2011125088A1 WO 2011125088 A1 WO2011125088 A1 WO 2011125088A1 JP 2010002413 W JP2010002413 W JP 2010002413W WO 2011125088 A1 WO2011125088 A1 WO 2011125088A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive material
fuel cell
adhesive
layers
resin
Prior art date
Application number
PCT/JP2010/002413
Other languages
English (en)
French (fr)
Inventor
関根忍
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012509155A priority Critical patent/JP5510539B2/ja
Priority to PCT/JP2010/002413 priority patent/WO2011125088A1/ja
Priority to CN201080065888.7A priority patent/CN102823047B/zh
Priority to EP10849338.8A priority patent/EP2555303B1/en
Priority to US13/579,175 priority patent/US9088026B2/en
Publication of WO2011125088A1 publication Critical patent/WO2011125088A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/33Applications of adhesives in processes or use of adhesives in the form of films or foils for batteries or fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an adhesive material for joining layers of fuel cells and a fuel cell in which the layers are joined by an adhesive material.
  • a fuel cell includes a pair of gas diffusion layers in which a membrane / electrode assembly (Membrane Electrode Assembly, hereinafter also referred to as “MEA”) in which a catalyst layer is formed (coated) on each surface of an electrolyte membrane has a water-repellent layer. It has the structure pinched by.
  • MEA Membrane Electrode Assembly
  • a fuel cell in which each layer is bonded by adsorbing a fluoropolymer to carbon to form a water-repellent layer, placing the water-repellent layer between the MEA and the gas diffusion layer, and performing thermocompression bonding (hot pressing). A method of manufacturing is known.
  • thermocompression bonding moisture in each layer constituting the fuel cell is vaporized by heat at the time of thermocompression bonding, and each layer may be deformed or deteriorated by drying.
  • the electrolyte membrane is bonded to other layers in a dry-shrinked state, so that internal stress generated in the electrolyte membrane is likely to increase due to water absorption during operation after bonding.
  • the ionomer is mainly diffused by thermal motion and entangled between the layers, so that the bonding between the layers is realized. Therefore, sufficient bonding strength is obtained by pressure bonding at room temperature lower than the glass transition temperature of the ionomer. I can't get it. Further, the bonding between the fuel cell layers is required to ensure high electronic conductivity (low electrical resistance).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a technique capable of ensuring the bonding property and electronic conductivity between layers of a fuel cell even by pressure bonding at room temperature.
  • the present invention can be realized as the following forms or application examples.
  • This adhesive material contains an adhesive resin, a conductive resin, and conductive particles, so that it has adhesiveness, and the adhesiveness and entanglement point density between polymer materials between fuel cell layers even by pressure bonding at room temperature. And a strong joint between the layers of the fuel cell can be realized.
  • an adhesive material containing only conductive particles as a conductive material is used for the interlayer bonding of the fuel cell, there may be a problem in interlayer bonding properties.
  • the conductive resin since the conductive resin is included, it is possible to realize both the bonding property between the layers of the fuel cell and the electronic conductivity by using this adhesive material.
  • Application Example 2 The adhesive material according to Application Example 1, An adhesive material in which an average diameter of the conductive particles is larger than an average diameter of a catalyst carrier of the fuel cell.
  • the adhesive resin located around the conductive particles in the adhesive material and the adhesive material containing the conductive resin are the fuel. It is difficult to enter the voids in the catalyst layer of the battery. Therefore, even if this adhesive material is used for bonding between the layers of the fuel cell, it is possible to suppress a decrease in gas diffusibility and suppress a decrease in performance of the fuel cell.
  • the adhesive material can have good bondability.
  • Application Example 4 The adhesive material according to Application Example 3, The adhesive material, wherein the concentration of the conductive particles in the adhesive material is 3% or less.
  • the adhesive material can be made into a paste that can be easily applied to the fuel cell layer.
  • Application Example 5 The adhesive material according to Application Example 4, The adhesive material, wherein the concentration of the conductive resin in the adhesive material is 50% or more.
  • the adhesive material can be made suitable for interlayer joining of fuel cells that perform non-humidified high-temperature operation.
  • the present invention can be realized in various modes, for example, in the form of an adhesive material for a fuel cell, a fuel cell, a fuel cell system, a fuel cell or a method for manufacturing a fuel cell system, and the like. Can do.
  • FIG. 1 is an explanatory view schematically showing a cross-sectional configuration of a fuel cell 100 to which an adhesive material according to an embodiment of the present invention can be applied.
  • the fuel cell 100 includes a membrane / electrode assembly (hereinafter also referred to as “MEA”) 110, a water-repellent layer (water-repellent layers 122 and 124) and a gas diffusion layer (gas diffusion layer) formed on each surface of the MEA 110. 126 and 128).
  • the MEA 110 has a configuration in which catalyst layers (catalyst layers 114 and 116) are formed (coated) on each surface of the electrolyte membrane 112.
  • the fuel cell 100 is used in a stack structure in which a plurality of fuel cells are stacked with a separator (not shown) interposed therebetween.
  • the fuel cell 100 is a solid polymer fuel cell.
  • the electrolyte membrane 112 is an ion exchange membrane formed of a solid polymer material, for example, a fluororesin containing perfluorocarbon sulfonic acid, and has good proton conductivity in a wet state.
  • the catalyst layers 114 and 116 include, for example, platinum or a platinum alloy as a catalyst. More specifically, the catalyst layers 114 and 116 include carbon particles supporting the catalyst and an electrolyte material (ionomer).
  • the gas diffusion layers 126 and 128 are conductive members having gas permeability, and function as flow paths for supplying a reactive gas (a fuel gas containing hydrogen and an oxidizing gas containing oxygen) to the MEA 110.
  • the gas diffusion layers 126 and 128 can be formed of carbon paper, carbon cloth, metal mesh, or foam metal.
  • the water repellent layers 122 and 124 are formed on the surfaces of the gas diffusion layers 126 and 128 on the side facing the MEA 110.
  • the water-repellent layers 122 and 124 are formed of carbon particles and resin particles made of a water-repellent resin such as polytetrafluoroethylene (PTFE), and excessive water from the MEA 110 and the gas diffusion layers 126 and 128 is formed. Promotes the drainage of moisture.
  • PTFE polytetrafluoroethylene
  • Fuel cell manufacturing method The fuel cell 100 according to the present embodiment is manufactured by the following method. First, the MEA 110 and the gas diffusion layers 126 and 128 on which the water repellent layers 122 and 124 are formed are prepared. Next, an adhesive material is applied to at least one of the surface of the MEA 110 (that is, the surface of the catalyst layers 114 and 116) and the surface of the gas diffusion layers 126 and 128 on which the water-repellent layers 122 and 124 are formed.
  • the adhesive material used is an adhesive paste material prepared by mixing an adhesive resin and a conductive resin together with a solvent, and further mixing and adsorbing and dispersing conductive carbon as conductive particles. It is.
  • M-300 manufactured by Toagosei Co., Ltd. is used as the adhesive resin
  • Enocoat BP105 manufactured by Chemitrek Co. is used as the conductive resin
  • Ketjen Black International Co., Ltd. Black EC-600JD is used.
  • the solvent for example, ethanol is used.
  • the MEA 110 and the gas diffusion layers 126 and 128 on which the water-repellent layers 122 and 124 are formed are laminated and pressure-bonded at room temperature (for example, 20 ° C. ⁇ 15 ° C.).
  • room temperature for example, 20 ° C. ⁇ 15 ° C.
  • FIG. 2 is an explanatory view schematically showing the state of the adhesive surface between the catalyst layer and the gas diffusion layer.
  • FIG. 2A shows the adhesive material AM disposed between the catalyst layer 114 and the anode or cathode side water-repellent layer 122 and gas diffusion layer 126.
  • FIG. 2B is an enlarged view of the X1 portion of FIG.
  • the catalyst layer 114 includes carbon particles CC as a catalyst carrier and ionomers IO located around the carbon particles CC.
  • the adhesive material AM includes a conductive carbon CP and an adhesive material RE that is formed of an adhesive resin and a conductive resin and is located around the conductive carbon CP.
  • the average particle diameter Rp of the conductive carbon CP in the adhesive material AM is equal to the average particle diameter of the carbon particles CC as the catalyst carrier of the catalyst layer 114. Greater than Rc.
  • the conductivity in the adhesive material AM is determined.
  • the adhesive material RE located around the conductive carbon CP is likely to enter the voids in the catalyst layer 114, and the gas diffusibility may be lowered due to the voids in the catalyst layer 114 being filled with the adhesive material RE.
  • the conductive carbon CP in the adhesive material AM is larger than the average particle diameter Rc of the carbon particles CC as the catalyst carrier, the conductive carbon CP is positioned around the conductive carbon CP in the adhesive material AM.
  • the adhesive material RE is difficult to enter the voids in the catalyst layer 114, and an adhesive material containing an adhesive resin, a conductive resin, and conductive carbon is used for bonding between the catalyst layer and the gas diffusion layer. In addition, it is possible to suppress a decrease in gas diffusibility, and to suppress a decrease in fuel cell performance.
  • this adhesive material has tackiness, and can increase the adhesion and entanglement point density of the polymer materials between the layers of the fuel cell 100 even by pressure bonding at normal temperature, and the type of ionomer, type of catalyst, gas diffusion It is possible to achieve strong bonding between the layers of the fuel cell 100 without depending on the type of the layer.
  • the fuel cell 100 in which the layers are firmly bonded by normal pressure bonding can be manufactured by using the adhesive material, moisture in each layer constituting the fuel cell is vaporized by heat, and each layer is dried. Deformation or deterioration can be suppressed.
  • FIG. 3 is an explanatory diagram showing changes in the width W of the electrolyte membrane 112 in each state.
  • 3 shows the width W1 of the electrolyte membrane 112 before bonding at normal temperature and normal humidity (for example, relative humidity 65% ⁇ 20%).
  • 3 shows the width W4 of the electrolyte membrane 112 at the time of joining when the fuel cell 100 is joined by crimping at room temperature.
  • the width W1 and the width W4 are substantially the same.
  • the second row of FIG. 3 shows the width W2 of the electrolyte membrane 112 at the time of joining when the fuel cell 100 is joined by thermocompression bonding (hot press). Further, in the third stage of FIG. 3, when the electrolyte membrane 112 swells by absorbing moisture during operation of the fuel cell 100 after joining, the electrolyte membrane 112 is temporarily in a free state (unconstrained state). The virtual width W3 of the electrolyte membrane 112 is shown. As can be seen from FIG. 3, when the fuel cell 100 is joined by thermocompression bonding, an internal strain corresponding to the difference between the width W3 and the width W2 in the electrolyte membrane 112 during operation (strain amount A in the figure). Will occur.
  • an internal strain (strain amount B in the figure) corresponding to the difference between the width W3 and the width W4 is generated in the electrolyte membrane 112 during operation.
  • the distortion amount B is smaller than the distortion amount A. Since the internal stress of the electrolyte membrane 112 is proportional to the amount of internal strain, when the fuel cell 100 is joined by pressure bonding at room temperature, the internal stress generated in the electrolyte membrane during operation is compared to when it is performed by thermocompression bonding. The stress can be reduced, and as a result, the bondability between the layers of the fuel cell 100 can be further improved.
  • the adhesive material used for bonding between layers includes not only conductive carbon but also conductive resin as the conductive material
  • the fuel cell 100 ensures the interlayer bonding while ensuring the interlayer bonding. Can be ensured. That is, when the adhesive material contains only conductive carbon as the conductive material, the concentration of the conductive carbon (ratio of the amount of conductive carbon in the entire adhesive material, the same shall apply hereinafter) is ensured in order to ensure electronic conductivity. If it is increased, the adhesive material cannot be made into a paste, and if the concentration of the solvent is increased to make the adhesive material into a paste, the bonding property between the layers of the fuel cell 100 cannot be sufficiently improved.
  • the electronic conductivity between the layers is ensured by including a conductive resin in the adhesive material, rather than increasing the concentration of the conductive carbon in the adhesive material, the interlaminar bondability and the electronic conductivity are ensured. It is possible to obtain an adhesive material that can secure the above.
  • the adhesive material used for bonding between the layers of the fuel cell 100 has adhesiveness, a strong bonding between the layers is realized by pressure bonding with a pressure smaller than that of general thermocompression bonding. be able to. Therefore, the pores in the catalyst layers 114 and 116 can be prevented from being crushed and the gas diffusibility can be prevented from being lowered, and gas leakage can occur due to the formation of through-holes in the MEA 110 due to the surface of the gas diffusion layers 126 and 128. Can be suppressed. Further, since the layer thickness of the adhesive material in the fuel cell 100 is sufficiently smaller than the carrier diameter of the catalyst layers 114 and 116, the adhesive material closes the pores in the catalyst layers 114 and 116, thereby inhibiting gas diffusibility. I don't have to.
  • Performance evaluation C1.
  • First performance evaluation In accordance with the above-described embodiment, an adhesive material for a fuel cell as an example was produced, and performance was evaluated together with a comparative example. Table 1 shows the compounding ratio (concentration of each component) of the adhesive materials in the examples and comparative examples.
  • Enocoat BP105 manufactured by Chemitrec was used as the conductive resin
  • M-300 manufactured by Toagosei Co., Ltd. was used as the adhesive resin
  • ethanol was used as the solvent
  • Ketjen Black the conductive carbon.
  • International Ketjen Black EC-600JD was used.
  • the adhesive materials of Examples 1 and 2 contain all of a conductive resin, an adhesive resin, a solvent, and conductive carbon.
  • the adhesive materials of Comparative Examples 1, 2, and 3 contain an adhesive resin and a solvent, but do not contain a conductive resin and conductive carbon.
  • the adhesive materials of Comparative Examples 4 and 5 contain an adhesive resin, a solvent, and conductive carbon, but do not contain a conductive resin.
  • a pair of gas diffusion layers manufactured by SGL Carbon Co., Ltd., the size is 11.5 mm long ⁇ 11.5 mm wide
  • a water-repellent layer formed on the adhesive material of each example and each comparative example.
  • the laminate was prepared by applying a load of about 1 kgf at room temperature for 10 seconds at room temperature.
  • a Nafion solution Nafion is a registered trademark of DuPont
  • a laminate was produced by the same method using the Nafion solution instead of the adhesive material.
  • Table 2 shows the results of the first performance evaluation.
  • first performance evaluation an evaluation of whether or not pasting is possible (pasting evaluation), an evaluation of whether or not strong bonding strength can be obtained (bonding evaluation), and ensuring high electronic conductivity It was evaluated whether or not it was possible (electrical resistivity measurement).
  • indicates that pasting has been performed
  • x indicates that pasting has not occurred.
  • bondability evaluation a laminate produced using the adhesive materials (or Nafion solutions) of Examples and Comparative Examples is lifted with tweezers and allowed to fall freely from a height of 30 cm, and a pair of gas diffusion layers are peeled off or not. Judgment was made.
  • indicates that the gas diffusion layer has not been peeled off
  • x indicates that the gas diffusion layer has been peeled off.
  • the electrical resistance value in the thickness direction of the laminate was measured by an AC impedance method, and the electrical resistivity was measured.
  • the concentration of the adhesive resin is preferably 35% or more from the viewpoint of bondability. That is, in the adhesive material of Comparative Example 3, the concentration of the adhesive resin was less than 35% (20%), and good results were not obtained in the bondability evaluation. On the other hand, the adhesive materials of Comparative Examples 1 and 2 had an adhesive resin concentration of 35% or more, and good results were obtained in the bondability evaluation. However, since the adhesive materials of Comparative Examples 1, 2, and 3 do not contain conductive resin and conductive carbon, the laminates manufactured using the adhesive materials of Comparative Examples 1, 2, and 3 have electrical resistivity values. Was relatively large, and high electronic conductivity could not be secured.
  • the concentration of conductive carbon (that is, the solid content ratio) is 3% or less. It turns out that it is preferable. That is, the adhesive material of Comparative Example 5 had a conductive carbon concentration greater than 3% (5%) and could not be pasted. On the other hand, the adhesive material of Comparative Example 4 had a conductive carbon concentration of 3% or less (2.5%), and could be made into a paste. Further, the adhesive material of Comparative Example 4 had an adhesive resin concentration of 35% or more, and good results were obtained in the evaluation of bondability. However, since the adhesive material of Comparative Example 4 does not contain a conductive resin, the laminate manufactured using the adhesive material of Comparative Example 4 has a smaller electrical resistivity value than Comparative Examples 1, 2, and 3. It was relatively large and could not secure high electronic conductivity.
  • the adhesive materials of Examples 1 and 2 since the conductive carbon concentration was 3% or less (2.5%), the adhesive material was pasteable and the adhesive resin concentration was 35% or more. Therefore, good results were obtained in the evaluation of bondability. Furthermore, since the adhesive materials of Examples 1 and 2 contained a conductive resin, the electrical resistivity value was smaller than that of the comparative example, and high electronic conductivity could be ensured.
  • FIG. 4 is an explanatory diagram showing an outline of a laminate used for the second performance evaluation.
  • FIG. 5 is an explanatory diagram showing the results of the second performance evaluation.
  • the adhesive material AM is applied to the end portions (width 1 cm) of the pair of gas diffusion layers GDL on which the water-repellent layer MPL is formed for the adhesive materials of Examples 1 and 2 above.
  • the gas diffusion layer GDL was laminated so as to overlap at the portion where the adhesive material AM was applied, and a laminate was produced.
  • the laminate was cut into a dumbbell shape to produce a tensile test sample, and the bonding strength was measured.
  • FIG. 5 (a) shows the measurement results of the breaking stress when wet (WET) and dry (DRY)
  • FIG. 5 (b) shows the measurement results of the breaking strain when wet and dry. Show.
  • the laminate using the adhesive material of Example 1 showed a higher breaking stress when dry compared to when wet.
  • an adhesive material for joining the layers of the fuel cell it is preferable to reduce the stress or strain generated inside when the electrolyte membrane is dried and contracted and swollen with water.
  • the adhesive material of Example 1 is preferably applied to a fuel cell that uses an electrolyte membrane that easily shrinks during drying.
  • the laminate using the adhesive material of Example 2 showed higher breaking strain when wet compared to when dry. Therefore, the adhesive material of Example 2 is preferably applied to a fuel cell using a highly swelled electrolyte membrane (a degree of swelling is large).
  • the fuel cell since the fuel cell generates heat with power generation, it is cooled by a cooling system device.
  • a high temperature for example, 80 ° C. or more
  • the cooling efficiency can be improved. Therefore, the cooling system can be downsized and simplified, and the fuel cell system can be downsized and simplified. Can do.
  • the fuel cell When the fuel cell is operated without humidification and high temperature, the water absorption linear expansion of the electrolyte membrane tends to increase, and when the adhesive material of Example 2 that swells together when the electrolyte membrane swells is applied, the electrolyte membrane The internal stress is preferably reduced.
  • the interlayer bonding of the fuel cell that performs the non-humidified high temperature operation is an adhesive material containing a conductive resin, an adhesive resin, and a conductive carbon, and the concentration of the adhesive resin is 35%.
  • an adhesive material having a conductive carbon concentration of 3% or less and a conductive resin concentration of 50% or more is preferable to use.
  • an adhesive material containing a conductive resin, an adhesive resin, and conductive carbon, and the concentration of the adhesive resin is 35% or more. It is preferable to use an adhesive material having a concentration of 3% or less and a conductive resin concentration of 25% or less.
  • Modification 1 The configuration of the fuel cell 100 in the above embodiment is merely an example, and the configuration of the fuel cell 100 can be variously changed.
  • the material of each part constituting the fuel cell 100 is specified.
  • the material is not limited to these materials, and various appropriate materials can be used.
  • conductive carbon is used as the conductive particles contained in the adhesive material, but other conductive particles such as carbon nanotubes may be used.
  • the water-repellent layers 122 and 124 are formed on the surfaces of the gas diffusion layers 126 and 128 of the fuel cell 100.
  • the water-repellent layers 122 and 124 are formed on the surfaces of the gas diffusion layers 126 and 128, respectively. 124 may not be formed.
  • the layers are stacked and pressure-bonded at room temperature, whereby the layers are firmly bonded to each other. Can be manufactured.
  • Modification 2 The blending ratio (concentration of each component) of the adhesive material as an example is merely an example, and the present invention is not limited to this. That is, if an adhesive material containing an adhesive resin, conductive particles, and a conductive resin is used, it is possible to ensure the connectivity and electronic conductivity between the layers of the fuel cell even by pressure bonding at room temperature.
  • the average particle size Rp of the conductive carbon CP in the adhesive material AM is larger than the average particle size Rc of the carbon particles CC as the catalyst carrier. Need not be.
  • Fuel cell 110 ... MEA 112 .
  • Electrolyte membrane 114, 116 ... Catalyst layer 122, 124 ... Water-repellent layer 126, 128 ... Gas diffusion layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 燃料電池の層間の接合用の接着材料は、接着性樹脂と、導電性粒子と、導電性樹脂と、を含む。

Description

燃料電池用接着材料および燃料電池
 本発明は、燃料電池の層間の接合用の接着材料および接着材料により層間が接合された燃料電池に関する。
 一般に、燃料電池は、電解質膜のそれぞれの面に触媒層が形成(塗布)された膜・電極接合体(Membrane Electrode Assembly、以下「MEA」とも呼ぶ)が撥水層を有する一対のガス拡散層で狭持された構成を有する。従来、カーボンにフッ素ポリマーを吸着させて撥水層を形成し、MEAとガス拡散層との間に撥水層を配置して熱圧着(ホットプレス)することにより、各層が接合された燃料電池を製造する方法が知られている。
 上記従来の技術では、熱圧着時の熱により燃料電池を構成する各層の水分が気化し、各層が乾燥により変形したり劣化したりする恐れがある。また、熱圧着によれば、電解質膜は乾燥収縮した状態で他の層と接合されるため、接合後の運転時における吸水によって電解質膜に発生する内部応力が大きくなりやすい。他方、上記従来の技術では、主にアイオノマーが熱運動により拡散し、層間において絡み合うことにより、層間の接合が実現されるため、アイオノマーのガラス転移温度より低い常温での圧着では十分な接合強度が得られない。また、燃料電池の層間の接合は、高い電子導電性(低い電気抵抗)の確保が要求される。
 本発明は、上記の課題を解決するためになされたものであり、常温での圧着によっても燃料電池の層間の接合性と電子伝導性とを確保できる技術を提供することを目的とする。
 上記課題の少なくとも一部を解決するために、本発明は、以下の形態または適用例として実現することが可能である。
[適用例1]燃料電池の層間の接合用の接着材料であって、
 接着性樹脂と、
 導電性粒子と、
 導電性樹脂と、を含む、接着材料。
 この接着材料は、接着性樹脂と導電性樹脂と導電性粒子とを含んでいるため、粘着性を有し、常温における圧着によっても燃料電池の層間における高分子材料同士の密着性および絡み合い点密度を高めることができ、燃料電池の層間の強固な接合を実現することができる。また、燃料電池の層間接合に導電性材料として導電性粒子のみを含む接着材料を用いる場合には層間の接合性に問題がある場合があるが、この接着材料は導電性材料として導電性粒子だけでなく導電性樹脂を含んでいるため、この接着材料を用いることで燃料電池の層間の接合性と電子伝導性との両立を実現することができる。
[適用例2]適用例1に記載の接着材料であって、
 前記導電性粒子の平均径は、前記燃料電池の触媒担持体の平均径より大きい、接着材料。
 この接着材料は、導電性粒子の平均径が燃料電池の触媒担持体の平均径より大きいため、接着材料中の導電性粒子の周囲に位置する接着性樹脂および導電性樹脂を含む粘着材が燃料電池の触媒層内の空隙に入り込みにくくなっている。そのため、この接着材料を燃料電池の層間の接合に使用しても、ガス拡散性の低下を抑制することができ、燃料電池の性能低下を抑制することができる。
[適用例3]適用例1または適用例2に記載の接着材料であって、
 前記接着材料における前記接着性樹脂の濃度は35%以上である、接着材料。
 このようにすれば、接着材料を、良好な接合性を有するものとすることができる。
[適用例4]適用例3に記載の接着材料であって、
 前記接着材料における前記導電性粒子の濃度は3%以下である、接着材料。
 このようにすれば、接着材料を、燃料電池の層に塗布することが容易なペースト状とすることができる。
[適用例5]適用例4に記載の接着材料であって、
 前記接着材料における前記導電性樹脂の濃度は50%以上である、接着材料。
 このようにすれば、接着材料を、無加湿高温運転を行う燃料電池の層間接合用に適したものとすることができる。
 なお、本発明は、種々の態様で実現することが可能であり、例えば、燃料電池用接着材料、燃料電池、燃料電池システム、燃料電池または燃料電池システムの製造方法、等の形態で実現することができる。
本発明の実施形態に係る接着材料を適用可能な燃料電池100の断面構成を概略的に示す説明図である。 触媒層とガス拡散層との間の接着面の状態を模式的に示す説明図である。 各状態における電解質膜112の幅Wの変化を示す説明図である。 第2の性能評価に用いる積層体の概要を示す説明図である。 第2の性能評価の結果を示す説明図である。
A.燃料電池の構成:
 図1は、本発明の実施形態に係る接着材料を適用可能な燃料電池100の断面構成を概略的に示す説明図である。燃料電池100は、膜・電極接合体(以下、「MEA」とも呼ぶ)110と、MEA110のそれぞれの面に形成された撥水層(撥水層122および124)およびガス拡散層(ガス拡散層126および128)と、を備えている。MEA110は、電解質膜112のそれぞれの面に触媒層(触媒層114および116)が形成(塗布)された構成を有している。一般に、燃料電池100は、図示しないセパレータを挟んで複数の燃料電池が積層されたスタック構造の状態で使用される。
 本実施形態に係る燃料電池100は、固体高分子型燃料電池である。電解質膜112は、固体高分子材料、例えばパーフルオロカーボンスルホン酸を備えるフッ素系樹脂により形成されたイオン交換膜であり、湿潤状態で良好なプロトン伝導性を有する。触媒層114,116は、触媒として、例えば白金あるいは白金合金を備えている。より具体的には、触媒層114,116は、上記触媒を担持したカーボン粒子と、電解質材料(アイオノマー)と、を含んでいる。
 ガス拡散層126,128は、ガス透過性を有する導電性部材であり、MEA110に反応ガス(水素を含有する燃料ガスおよび酸素を含有する酸化ガス)を供給する流路として機能する。ガス拡散層126,128は、カーボンペーパやカーボンクロス、あるいは金属メッシュや発泡金属によって形成することができる。
 撥水層122,124は、ガス拡散層126,128のMEA110に対向する側の表面に形成される。撥水層122,124は、カーボン粒子と、ポリテトラフルオロエチレン(PTFE:Polytetrafluoroethylene)等の撥水性樹脂からなる樹脂粒子と、により形成されており、MEA110やガス拡散層126,128からの過剰な水分の排出を促進する。
B.燃料電池の製造方法:
 本実施形態に係る燃料電池100は、以下の方法で製造される。最初に、MEA110と、撥水層122,124が形成されたガス拡散層126,128と、が準備される。次に、MEA110の表面(すなわち触媒層114,116の表面)と、撥水層122,124が形成されたガス拡散層126,128の表面と、の少なくとも一方に接着材料が塗布される。
 ここで、使用される接着材料は、接着性樹脂と導電性樹脂とを溶媒と共に混合し、さらに導電性粒子としての導電性カーボンを混合して吸着・分散させることより作製された粘着性ペースト材料である。接着性樹脂としては、例えば東亞合成社のM-300が使用され、導電性樹脂としては、例えばケミトレック社のエノコートBP105が使用され、導電性カーボンとしては、例えばケッチェン・ブラック・インターナショナル社のケッチェンブラックEC-600JDが使用される。また、溶媒としては、例えばエタノールが使用される。
 接着材料の塗布後、MEA110と、撥水層122,124が形成されたガス拡散層126,128と、が積層され、常温(例えば20℃±15℃)で圧着される。以上の工程により、各層が接合された燃料電池100(図1)が製造される。
 図2は、触媒層とガス拡散層との間の接着面の状態を模式的に示す説明図である。図2(a)には、触媒層114と、アノードまたはカソード側の撥水層122およびガス拡散層126と、の間に配置された接着材料AMを示している。また、図2(b)には、図2(a)のX1部を拡大して示している。図2(b)に示すように、触媒層114は、触媒担持体としてのカーボン粒子CCと、カーボン粒子CCの周囲に位置するアイオノマーIOと、を含んでいる。また、接着材料AMは、導電性カーボンCPと、接着性樹脂および導電性樹脂により構成され導電性カーボンCPの周囲に位置する粘着材料REと、を含んでいる。
 ここで、本実施例では、図2(b)に示すように、接着材料AM中の導電性カーボンCPの平均粒径Rpが、触媒層114の触媒担持体としてのカーボン粒子CCの平均粒径Rcより大きい。接着材料AM中の導電性カーボンCPの平均粒径Rpが、触媒担持体としてのカーボン粒子CCの平均粒径Rcと同一もしくはカーボン粒子CCの平均粒径Rcより小さいと、接着材料AM中の導電性カーボンCPの周囲に位置する粘着材料REが触媒層114内の空隙に入り込みやすくなり、粘着材料REによって触媒層114内の空隙が埋まることによるガス拡散性の低下の恐れがある。本実施例では、接着材料AM中の導電性カーボンCPの平均粒径Rpが触媒担持体としてのカーボン粒子CCの平均粒径Rcより大きいため、接着材料AM中の導電性カーボンCPの周囲に位置する粘着材料REが触媒層114内の空隙に入り込みにくくなっており、触媒層とガス拡散層との間の接合に接着性樹脂と導電性樹脂と導電性カーボンとを含む接着材料を使用しても、ガス拡散性の低下を抑制することができ、燃料電池の性能低下を抑制することができる。
 以上説明したように、本実施形態では、燃料電池100の層間(具体的には、MEA110の触媒層114,116と、撥水層122,124が形成されたガス拡散層126,128との間)の接合に使用される接着材料が、接着性樹脂と導電性樹脂と導電性カーボンとを含んでいる。そのため、この接着材料は粘着性を有し、常温における圧着によっても燃料電池100の層間における高分子材料同士の密着性および絡み合い点密度を高めることができ、アイオノマーの種類や触媒の種類、ガス拡散層の種類等に依存せず、燃料電池100の層間の強固な接合を実現することができる。
 また、本実施形態では、上記接着材料を用いることによって常温における圧着により層間が強固に接合された燃料電池100を製造できるため、熱によって燃料電池を構成する各層の水分が気化し各層が乾燥により変形したり劣化したりすることを抑制することができる。
 また、本実施形態では、上記接着材料を用いることによって常温における圧着により層間が強固に接合された燃料電池100を製造できるため、電解質膜112に発生する内部応力を低減し、燃料電池100の層間の接合性をより高めることができる。図3は、各状態における電解質膜112の幅Wの変化を示す説明図である。図3の最上段には、常温かつ常湿(例えば相対湿度65%±20%)における接合前の電解質膜112の幅W1を示している。また、図3の4段目には、燃料電池100の接合が常温での圧着で行われた場合における接合時の電解質膜112の幅W4を示している。幅W1と幅W4とは略同一である。図3の2段目には、燃料電池100の接合が熱圧着(ホットプレス)で行われた場合における接合時の電解質膜112の幅W2を示している。また、図3の3段目には、接合後の燃料電池100の運転時に電解質膜112が水分を吸収して膨潤した際に、仮に電解質膜112が自由状態(拘束されていない状態)であった場合の電解質膜112の仮想的な幅W3を示している。図3からわかるように、燃料電池100の接合が熱圧着で行われた場合には、運転時において電解質膜112に幅W3と幅W2との差に相当する内部歪み(図の歪み量A)が発生する。これに対し、燃料電池100の接合が常温での圧着で行われた場合には、運転時において電解質膜112に幅W3と幅W4との差に相当する内部歪み(図の歪み量B)が発生する。図3から明らかなように、歪み量Bは歪み量Aよりも小さい。電解質膜112の内部応力は、内部歪み量に比例することから、燃料電池100の接合を常温での圧着で行うと、熱圧着で行う場合と比較して、運転時において電解質膜に発生する内部応力を低減することができ、その結果、燃料電池100の層間の接合性をより高めることができる。
 また、本実施形態では、層間の接合に用いる接着材料に、導電性材料として、導電性カーボンだけでなく導電性樹脂が含まれているため、燃料電池100において層間の接合性を確保しつつ層間の電子伝導性を確保することができる。すなわち、接着材料に導電性材料として導電性カーボンのみが含まれる場合に、電子伝導性を確保するために単に導電性カーボンの濃度(接着材料全体に占める導電性カーボン量の割合、以下同様)を高めると接着材料をペースト化できず、接着材料をペースト化するために溶媒の濃度も高めると燃料電池100の層間の接合性を十分に高めることができない。本実施形態では、接着材料における導電性カーボンの濃度を高めるのではなく、接着材料に導電性樹脂を含ませることによって層間の電子伝導性を確保しているため、層間の接合性と電子伝導性とを確保できる接着材料を得ることができる。
 また、本実施形態では、燃料電池100の層間の接合に使用される接着材料が粘着性を有するため、一般的な熱圧着と比較して小さい圧力での圧着により層間の強固な接合を実現することができる。そのため、触媒層114,116中の細孔がつぶれてガス拡散性が低下することを防止できると共に、ガス拡散層126,128の表面のケバによってMEA110に貫通孔が形成されガス漏れが発生する事態を抑制することができる。また、燃料電池100における接着材料の層厚は触媒層114,116の担体径と比較して十分に小さいため、接着材料が触媒層114,116中の細孔を閉鎖してガス拡散性を阻害することもない。
C.性能評価:
C1.第1の性能評価:
 上述した実施形態に則して実施例としての燃料電池用接着材料を作製し、比較例と共に性能を評価した。表1に、実施例および比較例における接着材料の配合比(各成分の濃度)を示す。なお、本性能評価では、導電性樹脂としてケミトレック社のエノコートBP105を使用し、接着性樹脂として東亞合成社のM-300を使用し、溶媒としてエタノールを使用し、導電性カーボンとしてケッチェン・ブラック・インターナショナル社のケッチェンブラックEC-600JDを使用した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1,2の接着材料は、導電性樹脂と接着性樹脂と溶媒と導電性カーボンとをすべて含んでいる。比較例1,2,3の接着材料は、接着性樹脂と溶媒とを含んでいるが、導電性樹脂と導電性カーボンとを含んでいない。比較例4,5の接着材料は、接着性樹脂と溶媒と導電性カーボンとを含んでいるが、導電性樹脂を含んでいない。
 第1の性能評価では、各実施例および各比較例の接着材料について、撥水層が形成された一対のガス拡散層(SGLカーボン社製、サイズは縦11.5mm×横11.5mm)を用意し、一方のガス拡散層の撥水層側の表面に接着材料を少量(0.02ml)塗布して80℃で1時間乾燥し、上記一方のガス拡散層に他方のガス拡散層を互いの撥水層が向かい合うようにして貼り合わせ、常温下で約1kgfの荷重を10秒間加えることにより積層体を作製した。なお、比較例6としてナフィオン溶液(ナフィオンはデュポン社の登録商標)を用意し、接着材料の代わりにナフィオン溶液を用いて同様の方法により積層体を作製した。
 表2に、第1の性能評価の結果を示す。第1の性能評価では、ペースト化が可能であるか否かの評価(ペースト化評価)と、強固な接合強度が得られるか否かの評価(接合性評価)と、高い電子導電性を確保できるか否かの評価(電気抵抗率測定)と、を行った。表2のペースト化欄において、○はペースト化したことを示しており、×はペースト化しなかったことを示している。接合性評価では、実施例および比較例の接着材料(またはナフィオン溶液)を用いて作製された積層体をピンセットで持ち上げて30cmの高さから自由落下させ、一対のガス拡散層が剥離するか否かの判定を行った。表2の接合性欄において、○はガス拡散層が剥離しなかったことを示しており、×はガス拡散層が剥離したことを示している。また、電気抵抗率測定では、積層体の厚さ方向における電気抵抗値を交流インピーダンス法で測定し、電気抵抗率を測定した。
Figure JPOXMLDOC01-appb-T000002
 比較例1,2,3の結果を参照すると、接合性の観点から、接着性樹脂の濃度は35%以上であることが好ましいことがわかる。すなわち、比較例3の接着材料は、接着性樹脂の濃度が35%未満(20%)であり、接合性評価において良好な結果が得られなかった。一方、比較例1,2の接着材料は、接着性樹脂の濃度が35%以上であり、接合性評価において良好な結果が得られた。しかし、比較例1,2,3の接着材料は導電性樹脂および導電性カーボンを含まないため、比較例1,2,3の接着材料を用いて作製された積層体は、電気抵抗率の値が比較的大きく、高い電子導電性を確保できなかった。
 また、比較例4,5の結果を参照すると、接着材料がガス拡散層に塗布可能なペースト状となるためには、導電性カーボンの濃度(すなわち固形分比)が3%以下であることが好ましいことがわかる。すなわち、比較例5の接着材料は、導電性カーボンの濃度が3%より大きく(5%)、ペースト化できなかった。一方、比較例4の接着材料は、導電性カーボンの濃度が3%以下(2.5%)であり、ペースト化ができた。また、比較例4の接着材料は接着性樹脂の濃度が35%以上であり、接合性評価においても良好な結果が得られた。しかし、比較例4の接着材料は導電性樹脂を含まないため、比較例4の接着材料を用いて作製された積層体は、電気抵抗率の値が比較例1,2,3よりは小さいものの比較的大きく、高い電子導電性を確保できなかった。
 また、比較例6としてのナフィオン溶液を用いて作製された積層体は、接合性評価において良好な結果が得られず、また、高い電子導電性の確保もできなかった。
 一方、実施例1および2の接着材料は、導電性カーボンの濃度が3%以下(2.5%)であることからペースト化ができた上に、接着性樹脂の濃度が35%以上であることから接合性評価においても良好な結果が得られた。さらに、実施例1および2の接着材料は、導電性樹脂を含んでいるため、電気抵抗率の値が比較例と比べて小さく、高い電子導電性を確保することができた。
C2.第2の性能評価:
 図4は、第2の性能評価に用いる積層体の概要を示す説明図である。また、図5は、第2の性能評価の結果を示す説明図である。第2の性能評価では、上記実施例1,2の接着材料を対象として、撥水層MPLが形成された一対のガス拡散層GDLの端部(幅1cm)に接着材料AMを塗布し、一対のガス拡散層GDLを接着材料AMが塗布された部分で重なるように積層して作製された積層体を作製し、よりダンベル形状に切り出して引張試験用サンプルを作製し、接合強度を測定した。図5(a)には、湿潤時(WET)および乾燥時(DRY)における破断応力の測定結果を示しており、図5(b)には、湿潤時および乾燥時における破断歪みの測定結果を示している。
 図5に示すように、実施例1の接着材料を用いた積層体では、乾燥時の方が湿潤時と比較して高い破断応力を示した。燃料電池の層間を接合する接着材料としては、電解質膜が乾燥収縮および吸水膨潤した際に、内部に発生する応力もしくは歪みを小さくさせるものであることが好ましい。そのような観点から、実施例1の接着材料は、乾燥時に収縮しやすい電解質膜を用いる燃料電池に適用するのが好ましい。一方、実施例2の接着材料を用いた積層体では、湿潤時の方が乾燥時と比較して高い破断歪みを示した。従って、実施例2の接着材料は、高膨潤の(膨潤の程度の大きい)電解質膜を用いる燃料電池に適用するのが好ましい。
 なお、一般に、燃料電池は発電に伴い発熱するため、冷却系装置によって冷却される。燃料電池を高温(例えば80℃以上)で運転すると、冷却効率を向上させることができることから冷却系装置を小型化・簡素化することができ、ひいては燃料電池システムの小型化、簡素化を図ることができる。燃料電池の無加湿高温運転を行う場合には、電解質膜の吸水線膨張が大きくなる傾向があり、電解質膜が膨潤したときに一緒に膨潤する実施例2の接着材料を適用すると、電解質膜の内部応力が低減されて好ましい。従って、表1を参照すると、無加湿高温運転を行う燃料電池の層間接合には、導電性樹脂と接着性樹脂と導電性カーボンとを含む接着材料であって、接着性樹脂の濃度が35%以上であり、導電性カーボンの濃度が3%以下であり、かつ、導電性樹脂の濃度が50%以上である接着材料を用いることが好ましい。
 また、乾燥時に収縮しやすい電解質膜を用いる場合には、導電性樹脂と接着性樹脂と導電性カーボンとを含む接着材料であって、接着性樹脂の濃度が35%以上であり、導電性カーボンの濃度が3%以下であり、かつ、導電性樹脂の濃度が25%以下である接着材料を用いることが好ましい。
D.変形例:
 なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
D1.変形例1:
 上記実施形態における燃料電池100の構成はあくまで一例であり、燃料電池100の構成は種々変更可能である。例えば、上記実施形態では、燃料電池100を構成する各部の材料を特定しているが、これらの材料に限定されるものではなく、適正な種々の材料を用いることができる。例えば、上記実施形態では、接着材料に含まれる導電性粒子として導電性カーボンが用いられているが、例えばカーボンナノチューブといった他の導電性粒子が用いられてもよい。
 また、上記実施形態では、燃料電池100のガス拡散層126,128の表面には撥水層122,124が形成されているとしているが、ガス拡散層126,128の表面に撥水層122,124が形成されていなくてもよい。この場合にも、MEA110の表面とガス拡散層126,128の表面との少なくとも一方に接着材料を塗布した後、各層を積層して常温で圧着することにより、層間が強固に接合された燃料電池を製造することができる。
D2.変形例2:
 上記実施例としての接着材料の配合比(各成分の濃度)はあくまで一例であり、本発明はこれに限定されるものではない。すなわち、接着性樹脂と導電性粒子と導電性樹脂とを含む接着材料を用いれば、常温での圧着によっても燃料電池の層間の接合性と電子伝導性とを確保できる。また、上記実施形態では、接着材料AM中の導電性カーボンCPの平均粒径Rpが触媒担持体としてのカーボン粒子CCの平均粒径Rcより大きいとしているが、粒径の大小関係が必ずしもこのようである必要はない。
  100…燃料電池
  110…MEA
  112…電解質膜
  114,116…触媒層
  122,124…撥水層
  126,128…ガス拡散層

Claims (10)

  1.  燃料電池の層間の接合用の接着材料であって、
     接着性樹脂と、
     導電性粒子と、
     導電性樹脂と、を含む、接着材料。
  2.  請求項1に記載の接着材料であって、
     前記導電性粒子の平均径は、前記燃料電池の触媒担持体の平均径より大きい、接着材料。
  3.  請求項1または請求項2に記載の接着材料であって、
     前記接着材料における前記接着性樹脂の濃度は35%以上である、接着材料。
  4.  請求項3に記載の接着材料であって、
     前記接着材料における前記導電性粒子の濃度は3%以下である、接着材料。
  5.  請求項4に記載の接着材料であって、
     前記接着材料における前記導電性樹脂の濃度は50%以上である、接着材料。
  6.  燃料電池であって、
     電解質膜と、
     前記電解質膜の両面に配置された触媒層と、
     前記触媒層の前記電解質膜に対向する面とは反対側の面に配置され、前記触媒層に反応ガスを供給するガス拡散層と、を備え、
     前記触媒層と前記ガス拡散層とは接着材料を用いて接合されており、
     前記接着材料は、接着性樹脂と、導電性粒子と、導電性樹脂と、を含む、燃料電池。
  7.  請求項6に記載の燃料電池であって、
     前記導電性粒子の平均径は、前記触媒層の触媒担持体の平均径より大きい、燃料電池。
  8.  請求項6または請求項7に記載の燃料電池であって、
     前記接着材料における前記接着性樹脂の濃度は35%以上である、燃料電池。
  9.  請求項8に記載の燃料電池であって、
     前記接着材料における前記導電性粒子の濃度は3%以下である、燃料電池。
  10.  請求項9に記載の燃料電池であって、
     前記接着材料における前記導電性樹脂の濃度は50%以上である、燃料電池。
PCT/JP2010/002413 2010-04-01 2010-04-01 燃料電池用接着材料および燃料電池 WO2011125088A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012509155A JP5510539B2 (ja) 2010-04-01 2010-04-01 燃料電池用接着材料および燃料電池
PCT/JP2010/002413 WO2011125088A1 (ja) 2010-04-01 2010-04-01 燃料電池用接着材料および燃料電池
CN201080065888.7A CN102823047B (zh) 2010-04-01 2010-04-01 燃料电池用粘接材料及燃料电池
EP10849338.8A EP2555303B1 (en) 2010-04-01 2010-04-01 Fuel cell comprising a bonding material
US13/579,175 US9088026B2 (en) 2010-04-01 2010-04-01 Adhesive material for fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/002413 WO2011125088A1 (ja) 2010-04-01 2010-04-01 燃料電池用接着材料および燃料電池

Publications (1)

Publication Number Publication Date
WO2011125088A1 true WO2011125088A1 (ja) 2011-10-13

Family

ID=44762082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002413 WO2011125088A1 (ja) 2010-04-01 2010-04-01 燃料電池用接着材料および燃料電池

Country Status (5)

Country Link
US (1) US9088026B2 (ja)
EP (1) EP2555303B1 (ja)
JP (1) JP5510539B2 (ja)
CN (1) CN102823047B (ja)
WO (1) WO2011125088A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049058A1 (en) * 2014-09-23 2016-03-31 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Stackless fuel cell
CN113555568A (zh) * 2021-07-26 2021-10-26 中汽创智科技有限公司 一种膜电极及其制备方法
DE102022131492B3 (de) 2022-11-29 2024-01-18 Carl Freudenberg Kg Gasdiffusionslage für Brennstoffzellen mit einer mikroporösen Lage mit verringertem Fluorgehalt
CN116239973B (zh) * 2023-03-02 2024-04-16 鸿基创能科技(广州)有限公司 一种用于膜电极的粘接浆料、单边框膜电极及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173631A (ja) * 1998-12-08 2000-06-23 General Motors Corp <Gm> 陽子交換膜燃料電池のための接着プレ―ト
JP2003282088A (ja) * 2002-03-20 2003-10-03 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池およびその製造法
JP2004214045A (ja) * 2003-01-06 2004-07-29 Matsushita Electric Ind Co Ltd 燃料電池とその製法
JP2007501500A (ja) * 2003-08-06 2007-01-25 ゼネラル・モーターズ・コーポレーション 金属製バイポーラプレート用接着剤結合部

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630252B2 (ja) 1986-08-02 1994-04-20 東邦レーヨン株式会社 レドツクスフロ−型電池用電極部材
JP2002260686A (ja) 2001-03-06 2002-09-13 Asahi Glass Co Ltd 固体高分子型燃料電池用膜・電極接合体の製造方法
KR100773635B1 (ko) * 2001-09-11 2007-11-05 세키스이가가쿠 고교가부시키가이샤 막-전극 접합체, 그의 제조 방법 및 이것을 이용한 고체고분자형 연료 전지
KR100448168B1 (ko) 2001-12-27 2004-09-10 현대자동차주식회사 연료전지용 막-전극-가스켓 접합체의 제조방법
JP2005200620A (ja) 2003-12-15 2005-07-28 Bridgestone Corp 熱可塑性樹脂組成物及び熱可塑性樹脂成形品
JP4133791B2 (ja) 2003-12-19 2008-08-13 本田技研工業株式会社 燃料電池用電極−膜接合体の製造方法
JP2005285569A (ja) 2004-03-30 2005-10-13 Nec Tokin Corp 電解質膜電極接合体及びその製造方法並びに高分子電解質型燃料電池
JP2006294559A (ja) 2005-04-14 2006-10-26 Aisin Chem Co Ltd 撥水ペースト及び燃料電池ガス拡散層並びにその製造方法
US7943268B2 (en) * 2005-10-04 2011-05-17 GM Global Technology Operations LLC Reinforced membrane electrode assembly
WO2008038565A1 (en) * 2006-09-26 2008-04-03 Hitachi Chemical Company, Ltd. Anisotropic conductive adhesive composition, anisotropic conductive film, circuit member connecting structure and method for manufacturing coated particles
JP2008091207A (ja) 2006-10-02 2008-04-17 Sumitomo Metal Ind Ltd 固体高分子形燃料電池用接着層、バイポーラプレート用部材、バイポーラプレート積層体、セル構造体および固体高分子形燃料電池
CN101210158A (zh) 2006-12-26 2008-07-02 中南大学 电池或电容器用导电粘结剂及包含该导电粘结剂的电极用组合物
US20080274407A1 (en) * 2007-05-03 2008-11-06 Roy Joseph Bourcier Layered carbon electrodes for capacitive deionization and methods of making the same
US8512908B2 (en) * 2009-05-14 2013-08-20 GM Global Technology Operations LLC Fabrication of catalyst coated diffusion media layers containing nanostructured thin catalytic layers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173631A (ja) * 1998-12-08 2000-06-23 General Motors Corp <Gm> 陽子交換膜燃料電池のための接着プレ―ト
JP2003282088A (ja) * 2002-03-20 2003-10-03 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池およびその製造法
JP2004214045A (ja) * 2003-01-06 2004-07-29 Matsushita Electric Ind Co Ltd 燃料電池とその製法
JP2007501500A (ja) * 2003-08-06 2007-01-25 ゼネラル・モーターズ・コーポレーション 金属製バイポーラプレート用接着剤結合部

Also Published As

Publication number Publication date
EP2555303A1 (en) 2013-02-06
EP2555303A8 (en) 2013-05-29
US20130040221A1 (en) 2013-02-14
CN102823047A (zh) 2012-12-12
EP2555303A4 (en) 2013-09-25
CN102823047B (zh) 2015-04-01
JP5510539B2 (ja) 2014-06-04
EP2555303B1 (en) 2018-08-15
JPWO2011125088A1 (ja) 2013-07-08
US9088026B2 (en) 2015-07-21

Similar Documents

Publication Publication Date Title
JP4974403B2 (ja) 固体高分子電解質型燃料電池
JP5151063B2 (ja) 燃料電池用電解質膜用多孔質材料、その製造方法、固体高分子型燃料電池用電解質膜、膜−電極接合体(mea)、及び燃料電池
JP2007317391A (ja) 燃料電池用電極及び燃料電池用電極の製造方法、膜−電極接合体及び膜−電極接合体の製造方法、並びに固体高分子型燃料電池
JP5510539B2 (ja) 燃料電池用接着材料および燃料電池
JP2009016171A (ja) 燃料電池用ガス拡散電極及びその製造方法
JP2004220843A (ja) 膜電極接合体
JP2007273141A (ja) 燃料電池及び燃料電池の製造方法
JP2003331852A (ja) 燃料電池用膜−電極接合体およびその製造方法
JP5040000B2 (ja) 膜・電極接合体の製造方法
JP2009140652A (ja) 膜・電極接合体の製造方法
JP2009070675A (ja) 固体高分子形燃料電池用膜電極接合体
JP2005222894A (ja) 膜電極接合体の製造方法
JP2002343377A (ja) 燃料電池用電解質膜−電極接合体およびその製造方法
JP3579886B2 (ja) 燃料電池用電極構造体およびその製造方法
JP5251139B2 (ja) 燃料電池の膜・電極接合体の製造方法
JP2015079639A (ja) 電解質膜・電極構造体
JP5885007B2 (ja) 燃料電池用電極シートの製造方法
JP5614468B2 (ja) 燃料電池用ガス拡散電極の製造方法
JP2006066161A (ja) 燃料電池用膜・電極接合体の製造方法
JP6007163B2 (ja) 電解質膜・電極構造体
JP5423108B2 (ja) 燃料電池
JP5402796B2 (ja) 拡散層一体型触媒層を有する膜電極接合体の作製方法
JP6412995B2 (ja) 電解質膜・電極構造体の製造方法
JP5889720B2 (ja) 電解質膜・電極構造体及びその製造方法
JP2009026468A (ja) 膜−ガス拡散電極接合体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065888.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849338

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509155

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13579175

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010849338

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE