WO2011122493A1 - 電気銅めっき用高純度銅アノード、その製造方法および電気銅めっき方法 - Google Patents

電気銅めっき用高純度銅アノード、その製造方法および電気銅めっき方法 Download PDF

Info

Publication number
WO2011122493A1
WO2011122493A1 PCT/JP2011/057450 JP2011057450W WO2011122493A1 WO 2011122493 A1 WO2011122493 A1 WO 2011122493A1 JP 2011057450 W JP2011057450 W JP 2011057450W WO 2011122493 A1 WO2011122493 A1 WO 2011122493A1
Authority
WO
WIPO (PCT)
Prior art keywords
grain boundary
anode
purity copper
electroplating
boundary length
Prior art date
Application number
PCT/JP2011/057450
Other languages
English (en)
French (fr)
Inventor
中矢 清隆
喜多 晃一
訓 熊谷
加藤 直樹
眞美 渡邊
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020127021980A priority Critical patent/KR20130018655A/ko
Priority to CN201180018264.4A priority patent/CN102844472B/zh
Priority to US13/637,842 priority patent/US20130075272A1/en
Publication of WO2011122493A1 publication Critical patent/WO2011122493A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention provides, for example, a high-purity copper anode for electrolytic copper plating that prevents generation of particles such as slime generated on the anode side in the electrolytic copper plating bath during electrolytic copper plating using a copper pyrophosphate bath and a method for producing the same Furthermore, the present invention relates to an electrolytic copper plating method using a high-purity copper anode that can reduce plating defects caused by generation of particles.
  • high-purity copper is used as an anode electrode for copper plating in electrolytic copper plating in a pyrophosphoric acid bath used for through-hole plating of printed circuit boards.
  • slime mainly composed of copper powder or metal salt is generated on the electrode surface during dissolution of the anode, and peels from the anode electrode and flows out into the bath.
  • the slime that has flowed out of the bath adheres to the surface of the cathode electrode, and there is a problem that plating defects such as protrusions are liable to occur.
  • Patent Document 1 the oxygen content contained in the anode is specified, and an electric power using a pure copper anode in which the crystal grain size of the anode electrode is specified is used.
  • Copper plating is known.
  • Patent Document 2 pure copper with a refined crystal grain is obtained as an anode by hot forging-cold working-strain removal annealing of a high-purity copper ingot.
  • the electrolytic copper plating used is also known.
  • a high-purity copper anode for electrolytic copper plating that prevents the generation of particles such as slime generated on the anode side in the electrolytic copper plating bath and the manufacturing method thereof in electrolytic copper plating using a copper pyrophosphate bath The purpose is to provide. It is another object of the present invention to provide an electrolytic copper plating method using a high-purity copper anode that can reduce plating defects caused by the generation of particles.
  • the inventors of the present invention conducted extensive research on the relationship between the form of grain boundaries of high-purity copper anode, the generation of anode slime, and plating defects during electrolytic copper plating using a copper pyrophosphate bath. Obtained knowledge.
  • electrolytic copper plating using a high purity copper anode using a conventional copper pyrophosphate bath copper dissolves as the electrolysis progresses.
  • the dissolution of copper in the anode proceeds non-uniformly, and particularly, the dissolution proceeds selectively and preferentially at the grain boundaries.
  • partial dropout of crystal grains and the like occur, which is a factor in the generation of slime.
  • the present inventors in a high-purity copper anode for electrolytic copper plating, so-called so-called special out of the grain boundaries of the crystal grains on the surface of the high-purity copper anode so that dissolution from the anode surface proceeds uniformly.
  • the grain boundary formation rate is increased so that the unit grain boundary length L ⁇ N of the special grain boundary is equal to or greater than a specific value with respect to the unit grain boundary length L N of all crystal grains (L ⁇ N / L N ⁇ 0). .35) Controlled.
  • the dissolution of copper from the anode surface proceeded uniformly, and the generation of particles such as anode slime was reduced.
  • the special grain boundary is a corresponding grain boundary belonging to 3 ⁇ ⁇ ⁇ 29 with a ⁇ value defined based on “Trans.Met.Soc.AIME, 185,501 (1949)”, and “ Acta.Metallurica.Vol.14, p.1479, (1966) ”, the corresponding corresponding portion lattice orientation defect Dq in the corresponding grain boundary is a grain boundary satisfying Dq ⁇ 15 ° / ⁇ 1 / 2. Is defined as being.
  • the inventors of the present invention in producing a high purity copper anode for electrolytic copper plating, gave a predetermined cold working and hot working to give a working strain, and then given a predetermined temperature range (250 to 900 ° C.). By performing the recrystallization heat treatment at, a so-called special grain boundary formation ratio (L ⁇ N / L N ⁇ 0.35) among the grain boundaries existing on the surface of the copper anode is high. It has been found that high purity copper anodes can be produced.
  • the present inventors use a high-purity copper anode with a high special grain boundary formation ratio (L ⁇ / L ⁇ 0.35). For example, when through-hole plating is performed on a printed circuit board, the through-hole is formed. It has been found that a precise plating layer free from contamination and projection defects such as protrusions can be formed on the inner surface.
  • the first aspect of the present invention is that a high purity copper anode for electroplating uses a scanning electron microscope to irradiate individual crystal grains on the surface of the anode with an electron beam, and the orientation difference between adjacent crystal grains is The interface between crystal grains of 15 ° or more is defined as a crystal grain boundary, the total grain boundary length L of the crystal grain boundary in the measurement range is measured, and the unit total grain boundary length L N converted to the unit area of 1 mm 2 is expressed as Seeking Similarly, using a scanning electron microscope, each crystal grain on the anode surface is irradiated with an electron beam to determine the position of the crystal grain boundary where the interface between adjacent crystal grains constitutes a special grain boundary, When the total special grain boundary length L ⁇ of the special grain boundary is measured, and this is converted per unit area 1 mm 2 , the unit total special grain boundary length L ⁇ N is obtained.
  • the special grain boundary length ratio L ⁇ N / L N between the unit grain boundary length L N of the crystal grain boundary measured above and the unit total special grain boundary length L ⁇ N of the special grain boundary similarly measured above is L ⁇ N / L N ⁇ 0.35
  • a high-purity copper anode for electroplating characterized by having a grain boundary structure that satisfies the above relationship.
  • the high purity copper anode for electroplating according to the first aspect of the present invention may have an average crystal grain size of 3 to 1000 ⁇ m.
  • a recrystallization heat treatment is performed at 250 to 900 ° C., whereby a special grain boundary length ratio L ⁇ N / L It is a manufacturing method of the high purity copper anode for electroplating which makes N 0.35 or more.
  • the processing may be performed by at least one of cold processing and hot processing.
  • cold processing and recrystallization heat treatment, or hot processing and recrystallization heat treatment, or a combination of these, are used.
  • the recrystallization heat treatment may be performed by statically holding without applying the processing strain.
  • each crystal grain on the anode surface is irradiated with an electron beam using a scanning electron microscope, and the orientation difference between adjacent crystal grains is 15 ° or more.
  • the interface between crystal grains is defined as a crystal grain boundary, the total grain boundary length L of the crystal grain boundary in the measurement range is measured, and the unit total grain boundary length L N is calculated by converting this per unit area 1 mm 2 .
  • each crystal grain on the anode surface is irradiated with an electron beam to determine the position of the crystal grain boundary where the interface between adjacent crystal grains constitutes a special grain boundary.
  • the unit total grain boundary length of the above measured grain boundary It is L N and, also a unit total special grain boundaries of the special grain boundaries as described above measured length Erushiguma N
  • the high-purity copper anode for electrolytic copper plating of the present invention its production method and electrolytic copper plating method, for example, even when a precise plating layer is formed on the inner surface of a through-hole of a printed board by electrolytic copper plating, In addition to suppressing the generation of anode slime, it is possible to prevent the occurrence of plating defects such as contamination and protrusions due to the slime on the inner surface of the through hole.
  • FIGS. 3 to 9 are schematic diagrams showing the progress of dissolution of the anode surface by electrolysis, where (a) is an initial state where electrolysis is started, and (b) is a time when a certain time has elapsed after starting electrolysis.
  • (c) shows the result of the selective dissolution of the grain boundary, resulting in non-uniform current density due to the shape factor.
  • (D) shows the state in which undissolved crystal grains are peeled off and peeled off due to the dissolution of grain boundaries.
  • the EBSD analysis results of the present invention 3 are shown, with the thick lines indicating special grain boundaries and the thin lines indicating general grain boundaries (the same applies to FIGS. 3 to 9).
  • the EBSD analysis result of this invention 5 is shown.
  • the EBSD analysis result of this invention 8 is shown.
  • the EBSD analysis result of this invention 10 is shown.
  • the EBSD analysis result of this invention 13 is shown.
  • the EBSD analysis result of this invention 20 is shown.
  • the EBSD analysis result of the comparative example 1 is shown.
  • the EBSD analysis result of the comparative example 4 is shown.
  • the present inventors investigated the progress of dissolution of the surface of the high purity copper anode in electrolytic copper plating, and obtained the following knowledge. As shown in the schematic diagrams of FIGS. 1A to 1D, in the initial state (a) where electrolysis is started, no significant change occurs on the anode surface. However, in the state (b) after a lapse of a certain time after the start of electrolysis, the crystal grains on the anode surface begin to selectively dissolve from the grain boundaries that are chemically unstable as compared to the inside of the grains.
  • the current density becomes non-uniform due to the shape factor, and therefore the grain boundary further causes selective dissolution at an accelerated rate.
  • the dissolution of the grain boundaries proceeds, so that undissolved crystal grains peel and peel off, which causes generation of anode slime, which also causes plating defects.
  • a new surface is generated in the anode portion where undissolved crystal grains are peeled off and peeled off, voltage fluctuations are generated, and it becomes increasingly difficult to perform stable electrolytic operation.
  • the special grain boundary as defined above in a high-purity copper anode (corresponding grain boundary belonging to 3 ⁇ ⁇ ⁇ 29 in ⁇ value, and the inherent corresponding site lattice orientation defect Dq in the corresponding grain boundary is Dq ⁇ 15. All of the grain boundaries satisfying ° / ⁇ 1/2 ) are special grains having the total special grain boundary length L ⁇ N in the unit area and the total grain boundary length L N of the crystal grain boundary in the high purity copper anode.
  • the field length ratio L ⁇ N / L N has a grain boundary structure that satisfies the relationship of L ⁇ N / L N ⁇ 0.35, it is special in that it is stable in crystal structure and chemically stable The proportion of grain boundaries increases.
  • the ratio of the special grain boundary is increased, the selective dissolution of the grain boundary is less likely to occur, and peeling / peeling of undissolved crystal grains is suppressed.
  • generation of anode slime is reduced, and at the same time, generation of plating defects due to slime is also reduced.
  • the unit total crystal grain boundary length L N can be obtained using a scanning electron microscope.
  • each crystal grain on the anode surface is irradiated with an electron beam, and crystal orientation data is obtained from the obtained backscattered electron diffraction pattern.
  • the interface between the crystal grains having an orientation difference between adjacent crystal grains of 15 ° or more is used as the crystal grain boundary, and the total grain boundary length L of the crystal grain boundary in the measurement range is calculated.
  • the total grain boundary length L N can be obtained by dividing the total grain boundary length L by the measurement area and converting it to a unit grain boundary length per 1 mm 2 of unit area.
  • the special grain boundary length ratio L ⁇ N / L N is L ⁇ N / L N ⁇ 0.35
  • the selective dissolution of the crystal grain boundary during electrolysis cannot be suppressed, the generation of anode slime is reduced, and the plating defects caused by slime Therefore, the special grain boundary length ratio L ⁇ N / L N was determined to be L ⁇ N / L N ⁇ 0.35.
  • the high purity copper anode according to the first aspect of the present invention is an anode made of copper having a Cu content of 99.96% by mass or more as defined in Table 2 of JIS / H2123.
  • copper belonging to one or two types of high purity copper can be used.
  • One type of high-purity copper has a Cu content of 99.99% by mass or more, the allowable upper limit of P is 0.0003% by mass, the allowable upper limit of O is 0.001% by mass, and Pb, Zn,
  • the contents of Bi, Cd, Hg, S, Se, and Te must also be less than or equal to a predetermined allowable upper limit value.
  • the average crystal grain size (a twin crystal is counted as a crystal grain) of the high purity copper anode of the present invention is preferably 3 to 1000 ⁇ m. When the average crystal grain size is out of this range, more anode slime is generated.
  • the special grain boundary length ratio L ⁇ N / L N between the unit total special grain boundary length L ⁇ of the special grain boundary and the total grain boundary length L N of the crystal grain boundary is L ⁇ N / L N ⁇ 0.35
  • a high-purity copper anode having a grain boundary structure satisfying the relationship is subjected to processing (cold processing and / or hot processing) in the production of high-purity copper for electroplating, and after processing strain is applied, 350 to It can be manufactured by performing recrystallization heat treatment at 900 ° C.
  • a manufacturing example (A) As a specific manufacturing example, for example, As a manufacturing example (A), after hot working with high reduction of 5 to 80% on high purity copper for electroplating in a temperature range of 400 to 900 ° C., the above processing strain is not applied for 3 to 300 seconds.
  • a method for producing a high-purity copper anode for electroplating having a grain boundary structure that satisfies the relationship of L ⁇ N / L N ⁇ 0.35 by holding statically and performing a recrystallization heat treatment can be mentioned.
  • the special grain boundary length ratio L ⁇ N / L N between the unit total special grain boundary length L ⁇ N of the special grain boundary and the total grain boundary length L N of the crystal grain boundary is L ⁇ N / L N ⁇ 0.35
  • the crystal grain boundary of the high purity copper anode is specified and the total grain boundary length L N is measured using a scanning electron microscope.
  • each crystal grain on the anode surface is irradiated with an electron beam, and crystal orientation data is obtained from the obtained backscattered electron diffraction pattern.
  • the interface between the crystal grains having an orientation difference between adjacent crystal grains of 15 ° or more is used as the grain boundary, and the total grain boundary length L of the grain boundary in the measurement range is Ask.
  • the unit total grain boundary length L N can be obtained by dividing the total grain boundary length L by the measurement area and converting it to a unit grain boundary length per 1 mm 2 of unit area.
  • the measurement of the special grain boundaries in particular and the unit total special grain boundary length Erushiguma N can be also obtained by using a field emission scanning electron microscope.
  • each crystal grain on the anode surface is irradiated with an electron beam, and the interface between the crystal grains adjacent to each other determines the position of the grain boundary constituting the special grain boundary.
  • the total special grain boundary length L ⁇ of the special grain boundary is measured, divided by the measurement area, and converted to the unit grain boundary length per unit area 1 mm 2 , thereby obtaining the unit total special grain boundary length L ⁇ . N can be obtained.
  • an EBSD measuring apparatus using a field emission scanning electron microscope (HITACHI S4300-SE, EDAX / TSL OIM Data Collection) and analysis software (EDAX / TSL OIM Data Analysis ver. 5). .2), the crystal grain boundary and the special grain boundary are specified, and the length can be calculated.
  • the average crystal grain size of the high purity copper anode is determined by determining the grain boundaries from the results obtained by the above EBSD measuring device and analysis software.
  • the average crystal grain size (diameter) can be obtained by calculating the number of particles, dividing the area by the number of crystal grains, calculating the crystal grain area, and converting it into a circle.
  • Tough pitch pure copper having a purity of 99.9% by mass or more, high purity copper (4N OFC) having a purity of 99.99% by mass or more, high purity copper (5N OFC) having a purity of 99.999% by mass or more, purity 99.9999
  • Hot processing temperature, processing method, processing rate
  • / or cold processing processing method, processing on recrystallized or cast material of ultra high purity copper (6N OFC) of mass% or more under the conditions shown in Table 1 Rate
  • heat treatment temperature, time
  • high purity copper anodes referred to as the present invention anodes
  • the cold wire drawing in Table 1 is a process of drawing a wire sample having a cross-sectional shape of ⁇ 60 mm into a cross-sectional shape of ⁇ 30 mm by drawing, and ball molding is a cylindrical sample having a cross-sectional area of ⁇ 30 mm cut to a length of 47 mm Is formed into a sphere having a diameter of about 40 mm by die forging.
  • Table 1 only hot processing-heat treatment, cold processing-heat treatment, or repetition of these operations as many times as necessary are listed as repetitions under the same conditions. However, it is possible to repeat the process under different conditions (processing temperature, processing method, processing rate, holding temperature, holding time) as long as they are within the conditions specified in each claim. is there.
  • the EBSD measuring apparatus HITACHI S4300-SE, EDAX / TSL OIM Data Collection
  • analysis software EDAX / TSL OIM Data Analysis ver. 5.2
  • the crystal grain boundaries and special grain boundaries were specified, and the unit total grain boundary length L N and the unit total special grain boundary length L ⁇ N were determined.
  • Table 3 shows L N , L ⁇ N and special grain boundary length ratio L ⁇ N / L N.
  • Table 3 also shows the average crystal grain size values obtained from the results obtained by the EBSD measuring apparatus and analysis software.
  • 2 to 7 show the results of EBSD analysis of the anodes 3, 5, 8, 10, 13, and 20 of the present invention, respectively.
  • the amount of anode slime generated from the start of electrolytic copper plating to the completion of electrolytic copper plating on the fifth printed circuit board was measured. Further, the inner surface of the through-hole of the printed board after plating was observed with an optical microscope, and a protrusion having a height of 3 ⁇ m or more formed on the inner surface of the through-hole was regarded as a defect, and the number of protrusion defects was counted. The measurement results are shown in Tables 5 and 6.
  • the electrolytic copper plating it has an excellent effect that the generation of anode slime can be suppressed and the generation of plating defects on the surface of the material to be plated can be prevented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

 スライム等のパーティクルの発生およびこれに起因するめっき不良を低減することができる電気めっき用高純度銅アノード、その製造方法、これを用いた電気銅めっき方法を提供する。電気めっき用高純度銅に加工を施して加工歪みを与えた後、再結晶化熱処理を行うことにより、アノード表面の銅結晶粒の結晶粒界の単位全粒界長さLと、特殊粒界の単位全特殊粒界長さLσとの特殊粒界長比率Lσ/Lが、0.35以上となる結晶粒界組織を有せしめ、電気銅めっき浴中のアノード側で発生するスライム等のパーティクルの発生を抑制することでめっき不良の低減を図る。

Description

電気銅めっき用高純度銅アノード、その製造方法および電気銅めっき方法
 この発明は、例えば、ピロリン酸銅浴を用いた電気銅めっきに際し、電気銅めっき浴中のアノード側で発生するスライム等のパーティクルの発生を防止する電気銅めっき用高純度銅アノードとその製造方法、さらに、パーティクルの発生に起因するめっき不良を低減することができる高純度銅アノードを用いた電気銅めっき方法に関する。
 本願は、2010年3月30日に、日本に出願された特願2010-077215号に基づき優先権を主張し、その内容をここに援用する。
 従来、プリント基板のスルーホールめっきなどで用いられているピロリン酸浴中での電気銅めっきでは、銅めっき用アノード電極として高純度銅が用いられている。
 しかし、上記の電気銅めっきでは、アノード溶解時に電極表面に銅粉や金属塩を主成分とするスライムが発生し、アノード電極から剥離して浴中に流出する。この浴中に流出したスライムは、カソード電極表面に付着し、突起等のめっき不良を発生させやすくするという問題があった。
 そこで、このような問題を解決する手法として、例えば、特許文献1に示されるように、アノードに含有される酸素含有量を規定するとともに、アノード電極の結晶粒度を規定した純銅アノードを用いた電気銅めっきが知られている。
 また、別の解決策として、例えば、特許文献2に示されるように、高純度銅インゴットを、熱間鍛造-冷間加工―歪除去焼鈍することにより、結晶粒を微細化した純銅をアノードとして用いた電気銅めっきも知られている。
特許第4011336号明細書 特開2001-240949号公報
 従来の銅めっきアノードを用いたピロリン酸浴中での電気銅めっきにおいては、銅粉や金属塩を主成分とするスライムの発生防止が十分であるとはいえない。特に、プリント基板のスルーホールめっきなどの精緻なめっきが要求される場合には、スライム等のパーティクル発生に起因するめっき不良の発生が十分満足できる程度に抑制されていない。
 そこで、この発明では、ピロリン酸銅浴を用いた電気銅めっきに際し、電気銅めっき浴中のアノード側で発生するスライム等のパーティクルの発生を防止する電気銅めっき用高純度銅アノードとその製造方法を提供することを目的とする。また、上記のパーティクルの発生に起因するめっき不良を低減することができる高純度銅アノードを用いた電気銅めっき方法を提供することを目的とする。
 本発明者等は、ピロリン酸銅浴を用いた電気銅めっき時における、高純度銅アノードの結晶粒界の形態とアノードスライムの発生、めっき欠陥の関連性について鋭意研究を行った結果、以下の知見を得た。
 従来のピロリン酸銅浴を用いた高純度銅アノードを用いた電気銅めっきにおいては、電解の進行とともに銅が溶解してゆく。このアノードにおける銅の溶解は不均一に進行し、特に、結晶粒界では、選択的かつ優先的に溶解が進行する。その結果、部分的な結晶粒の脱落等が発生し、これがスライム発生の一要因となる。
 そこで、本発明者等は、電気銅めっき用の高純度銅アノードにおいて、アノード表面からの溶解が均一に進行するように、該高純度銅アノード表面の結晶粒の粒界のうち、所謂、特殊粒界の形成割合を高め、特殊粒界の単位粒界長さLσが、全結晶粒の単位粒界長さLに対して特定の値以上になるよう(Lσ/L≧0.35)制御した。その結果、アノード表面からの銅の溶解は均一に進行し、アノードスライム等のパーティクルの発生も低減した。すなわち、特殊粒界の形成割合を適正に制御する事により、アノードでのスライム発生に起因するめっき不良を大幅に低減し得ることを見出した。
 ここで、特殊粒界とは、「Trans.Met.Soc.AIME,185,501(1949)」に基づき定義されるΣ値で3≦Σ≦29に属する対応粒界であって、かつ、「Acta.Metallurgica.Vol.14,p.1479,(1966)」で述べられている当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2を満たす結晶粒界であるとして定義される。
 また、本発明者等は、電気銅めっき用の高純度銅アノードの製造に際し、所定の冷間加工、熱間加工を施して加工歪みを与えた後、所定の温度範囲(250~900℃)で再結晶化熱処理を行うことによって、銅アノードの表面に存在する結晶粒界のうちの、所謂、特殊粒界の形成割合の高い(Lσ/L≧0.35)電気銅めっき用の高純度銅アノードを製造し得ることを見出した。
 さらに、本発明者等は、特殊粒界の形成割合の高い(Lσ/L≧0.35)高純度銅アノードを使用し、例えば、プリント基板のスルーホールめっきを行った場合には、スルーホール内面には汚染、突起等のめっき欠陥のない精緻なめっき層を形成し得ることを見出した。
 本発明の第一の態様は、電気めっき用高純度銅アノードにおいて、走査型電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、隣接する結晶粒相互の配向方位差が15°以上の結晶粒の界面を結晶粒界とし、測定範囲における結晶粒界の全粒界長さLを測定し、これを単位面積1mm当たりに換算した単位全粒界長さLを求め、
また、同じく走査型電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、相互に隣接する結晶粒の界面が特殊粒界を構成する結晶粒界の位置を決定するとともに、特殊粒界の全特殊粒界長さLσを測定し、これを単位面積1mm当たりに換算して単位全特殊粒界長さLσを求めた場合、
上記測定した結晶粒界の単位全粒界長さLNと、同じく上記測定した特殊粒界の単位全特殊粒界長さLσとの特殊粒界長比率Lσ/LNが、
 Lσ/L≧0.35
の関係を満足する結晶粒界組織を有することを特徴とする電気めっき用高純度銅アノードである。
 本発明の第一の態様の電気めっき用高純度銅アノードは、平均結晶粒径が3~1000μmであってもよい。
 本発明の第二の態様は、電気めっき用高純度銅に加工を施して加工歪みを与えた後、250~900℃で再結晶化熱処理を行うことにより、特殊粒界長比率Lσ/Lを0.35以上とする電気めっき用高純度銅アノードの製造方法である。
 本発明の第二の態様の電気めっき用高純度銅アノード製造方法では、加工は、冷間加工または熱間加工の内の少なくとも何れかにより行ってもよい。
 本発明の第二の態様の電気めっき用高純度銅アノード製造方法では、冷間加工と再結晶化熱処理、あるいは、熱間加工と再結晶化熱処理、またはこれらを組み合わせた処理を、特殊粒界長比率Lσ/Lが0.35以上となるまで繰り返し行ってもよい。
 本発明の第二の態様の電気めっき用高純度銅アノード製造方法では、350~900℃の温度範囲で圧下率5~80%の熱間加工を施し、その後、3~300秒間、上記加工歪みを与えずに静的に保持し、再結晶化熱処理を行ってもよい。
 本発明の第二の態様の電気めっき用高純度銅アノード製造方法では、圧下率5~80%の冷間加工を施し、その後、250~900℃の温度範囲に加熱し、5分~5時間、上記加工歪みを与えずに静的に保持し、再結晶化熱処理を行ってもよい。
 本発明の第三の態様の電気銅めっき方法は、走査型電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、隣接する結晶粒相互の配向方位差が15°以上の結晶粒の界面を結晶粒界とし、測定範囲における結晶粒界の全粒界長さLを測定し、これを単位面積1mm当たりに換算した単位全粒界長さLを求め、また、同じく走査型電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、相互に隣接する結晶粒の界面が特殊粒界を構成する結晶粒界の位置を決定するとともに、特殊粒界の全特殊粒界長さLσを測定し、これを単位面積1mm当たりに換算して単位全特殊粒界長さLσを求めた場合、上記測定した結晶粒界の単位全粒界長さLNと、同じく上記測定した特殊粒界の単位全特殊粒界長さLσとの特殊粒界長比率Lσ/LNが、Lσ/L≧0.35の関係を満足する結晶粒界組織を有する電気めっき用高純度銅アノードを用いた電気銅めっき方法である。
 この発明の電気銅めっき用の高純度銅アノード、その製造方法および電気銅めっき方法によれば、例えば、電気銅めっきにより、プリント基板のスルーホール内面に精緻なめっき層を形成する場合にも、アノードスライムの発生を抑制するとともに、スルーホール内面におけるスライムに起因する汚染、突起等のめっき欠陥の発生防止を図ることができる。
(a)~(d)は、電解によるアノード表面の溶解進行状況を示す模式図であり、(a)は電解が開始された初期状態、(b)は電解を開始し一定時間経過時点での粒界の選択的溶解が始まった状態、(c)は粒界の選択的溶解の結果、形状因子による電流密度の不均一化が生じ、そのため、さらに加速度的な粒界の選択溶解が起こっている状態、(d)は粒界の溶解によって、未溶解の結晶粒が剥離・剥落を生じる状態、をそれぞれ示す。 本発明3のEBSD解析結果を示し、太い線が特殊粒界、細い線が一般粒界を示す(図3~9についても同じ)。 本発明5のEBSD解析結果を示す。 本発明8のEBSD解析結果を示す。 本発明10のEBSD解析結果を示す。 本発明13のEBSD解析結果を示す。 本発明20のEBSD解析結果を示す。 比較例1のEBSD解析結果を示す。 比較例4のEBSD解析結果を示す。
 本発明者等は、電気銅めっきにおける高純度銅アノード表面の溶解進行状況について調査したところ、以下の知見を得た。
 図1(a)~(d)の模式図に示すように、電解が開始された初期状態(a)では、アノード表面に大きな変化は生じない。しかし、電解開始後、一定の時間経過した状態(b)では、アノード表面の結晶粒は、粒内に比べ化学的に不安定な粒界から選択的に溶解し始める。さらに電解が進行した状態(c)では、粒界が選択的に溶解された結果、形状因子による電流密度の不均一化が生じ、そのため、さらに加速度的に粒界が選択溶解を起こすようになる。さらに電解が進行した状態(d)では、粒界の溶解が進むため、未溶解の結晶粒が剥離・剥落するようになり、アノードスライムの発生原因となり、また、これがめっき不良発生原因ともなる。また、未溶解の結晶粒が剥離・剥落したアノード部分には新生面が生成し、電圧変動が発生するようになり、安定した電解操業を行うことが次第に困難となる。
 本発明者等は、上記知見をもとに、電気銅めっき用の高純度銅アノードとして、電解時間の経過とともに、粒界からの選択的溶解(不均一溶解)を生じないようなアノードについてさらに研究した。その結果、以下を見出した。高純度銅アノードにおける前記定義したところの特殊粒界(Σ値で3≦Σ≦29に属する対応粒界であって、かつ、当該対応粒界における固有対応部位格子方位欠陥Dqが、Dq≦15°/Σ1/2を満たす結晶粒界)のいずれも単位面積中の全特殊粒界長さLσと、高純度銅アノードにおける結晶粒界の全結晶粒界長さLとの特殊粒界長比率Lσ/Lが、Lσ/L≧0.35の関係を満足する結晶粒界組織を有する場合には、結晶構造的に安定、かつ、化学的にも安定である特殊粒界の割合が増加する。上記特殊粒界の割合が増加すると、粒界の前記選択的溶解が生じにくくなり、未溶解の結晶粒の剥離・剥落が抑制されるようになる。結果として、アノードスライムの発生が低減され、同時に、スライム起因のめっき欠陥の発生も低減されるようになる。
 単位全結晶粒界長さLNは、走査型電子顕微鏡を用いて求めることができる。まず、アノード表面の個々の結晶粒に電子線を照射し、得られた後方散乱電子回折パターンから結晶の配向データを求める。次に個々の結晶の配向データを基に、隣接する結晶粒相互の配向方位差が15°以上の結晶粒の界面を結晶粒界として、測定範囲における結晶粒界の全粒界長さLを求める。最後に、この全粒界長さLを測定面積で除算し、単位面積1mm当たりの単位粒界長さに換算することによって、単位全結晶粒界長さLNを求めることができる。
 特殊粒界長比率Lσ/Lが、Lσ/L<0.35では、電解時の結晶粒界の選択溶解を抑えることができず、アノードスライムの発生低減、スライム起因のめっき欠陥の発生低減を図ることができないので、特殊粒界長比率Lσ/Lを、Lσ/L≧0.35と定めた。
 本発明の第一の態様の高純度銅アノードとは、JIS・H2123の表2に規定されるCu含有量が99.96質量%以上の銅からなるアノードである。本発明の第一の態様の高純度銅アノードには、高純度銅1種または2種に属する銅を使用することができる。高純度銅1種は、Cu含有量が99.99質量%以上であり、Pの許容上限は0.0003質量%、Oの許容上限は0.001質量%であり、また、Pb、Zn、Bi、Cd、Hg、S、Se、Teの含有量も所定の許容上限値以下でなければならない。高純度銅2種では、Cu含有量が99.96質量%以上であり、Oの含有量は0.001質量%以下に抑えられる。
 また、本発明の高純度銅アノードの平均結晶粒径(双晶も結晶粒としてカウント)は、3~1000μmであることが望ましい。平均結晶粒径がこの範囲から外れるとアノードスライムがより多く発生する。
 特殊粒界の単位全特殊粒界長さLσと、結晶粒界の全結晶粒界長さLとの特殊粒界長比率Lσ/Lが、Lσ/L≧0.35の関係を満足する結晶粒界組織を有する高純度銅アノードは、電気めっき用高純度銅の製造に際し、加工(冷間加工及び/又は熱間加工)を施して加工歪みを与えた後、350~900℃で再結晶化熱処理を行うことにより、製造することができる。
 具体的な製造例としては、例えば、
製造例(A)として、400~900℃の温度範囲で、電気めっき用高純度銅に圧下率5~80%の熱間加工を施した後、3~300秒間、上記加工歪みを与えずに静的に保持し、再結晶化熱処理を行うことによって、Lσ/L≧0.35の関係を満足する結晶粒界組織を有する電気めっき用の高純度銅アノードの製造方法が挙げられる。
 また、他の製造例としては、
製造例(B)として、圧下率5~80%の冷間加工を施した後、350~900℃の温度範囲に加熱し、5分~5時間、上記加工歪みを与えずに静的に保持し、再結晶化熱処理を行うことによって、Lσ/L≧0.35の関係を満足する結晶粒界組織を有する電気めっき用の高純度銅アノードの製造方法が挙げられる。
 前記製造例(A)および(B)記載の特定の圧下率の熱間加工、冷間加工により歪みを与えた後、所定の温度範囲で、歪みを付与せず静的に保持した状態で再結晶させることによって、特殊粒界の形成が促進され、単位全特殊粒界長さLσの比率を高め、特殊粒界長比率Lσ/Lの値を0.35以上とすることができる。
 また、上記の熱間加工、冷間加工および熱処理を、何度か繰り返し行うことによりLσ/L≧0.35となる結晶粒界組織を得ることも何ら差し支えない。
 特殊粒界の単位全特殊粒界長さLσと、結晶粒界の全結晶粒界長さLとの特殊粒界長比率Lσ/Lが、Lσ/L≧0.35の関係を満足する結晶粒界組織を有する高純度銅アノードを電気めっき用のアノードとして用いて電気銅めっきを行うことにより、アノードスライムの発生低減を図ることができる。さらに、例えば、プリント基板のスルーホール内面に銅めっきした場合には、スルーホールに汚染、突起等のめっき欠陥のない精緻なめっき層を形成することが可能となる。
 高純度銅アノードの結晶粒界の特定と単位全粒界長さLNの測定は、走査型電子顕微鏡を用いて行う。まず、アノード表面の個々の結晶粒に電子線を照射し、得られた後方散乱電子回折パターンから結晶の配向データを求める。次に個々の結晶の配向データを基に、隣接する結晶粒相互の配向方位差が15°以上の結晶粒の界面を結晶粒界として、測定範囲における結晶粒界の全粒界長さLを求める。最後に、この全粒界長さLを測定面積で除算し、単位面積1mm当たりの単位粒界長さに換算することにより単位全粒界長さLNを求めることができる。また、特殊粒界の特定と単位全特殊粒界長さLσの測定は、同じく電界放出型走査電子顕微鏡を用いて求めることができる。まず、アノード表面の個々の結晶粒に電子線を照射し、相互に隣接する結晶粒の界面が特殊粒界を構成する粒界の位置を決定する。そして、特殊粒界の全特殊粒界長さLσを測定し、これを測定面積で除算し、単位面積1mm当たりの単位粒界長さに換算することにより、単位全特殊粒界長さLσを求めることができる。
 具体的には、電界放出型走査電子顕微鏡を用いたEBSD測定装置(HITACHI社製 S4300-SE,EDAX/TSL社製 OIM Data Collection)と、解析ソフト(EDAX/TSL社製 OIM Data Analysis ver.5.2)によって、結晶粒界、特殊粒界を特定し、その長さを算出することにより行うことができる。
 また、高純度銅アノードの平均結晶粒径(双晶も結晶粒としてカウントする)の測定は、上記EBSD測定装置と解析ソフトによって得られた結果から結晶粒界を決定し、観察エリア内の結晶粒子数を算出し、エリア面積を結晶粒子数で割って結晶粒子面積を算出し、それを円換算することにより平均結晶粒径(直径)を求めることができる。
 つぎに、この発明について、実施例により具体的に説明する。
 純度99.9質量%以上のタフピッチ純銅(TPC)、純度99.99質量%以上の高純度銅(4N OFC)、純度99.999質量%以上の高純度銅(5N OFC)、純度99.9999質量%以上の超高純度銅(6N OFC)の再結晶材あるいは鋳造材に、表1に示す条件で熱間加工(温度、加工法、加工率)および/または冷間加工(加工法、加工率)、熱処理(温度、時間)を施し、あるいは、これらを繰り返し行い、熱処理後に水冷し、表3に示す所定サイズの本発明の高純度銅アノード(本発明アノードという)1~20を製造した。
 本表1における冷間伸線加工とは、断面形状φ60mmのワイヤー状サンプルを引き抜き加工によりφ30mmの断面形状にするプロセス、ボール成型加工とは、長さ47mmに切断した断面積φ30mmの円筒状サンプルを型鍛造により、直径約40mmの球体に成型するプロセスである。
 なお、表1中の実施例としては、熱間加工-熱処理,冷間加工-熱処理あるいはこれらを所要回数繰り返し行う場合に、同一条件での繰り返しのみを挙げているが、必ずしも同一条件で繰り返す必要はなく、特許請求の範囲の各請求項で規定された条件の範囲内であれば、異なる条件(加工温度、加工法,加工率,保持温度,保持時間)での繰り返しを行うことも可能である。
 上記で製造した本発明アノードについて、前記EBSD測定装置(HITACHI社製 S4300-SE,EDAX/TSL社製 OIM Data Collection)と、解析ソフト(EDAX/TSL社製 OIM Data Analysis ver.5.2)によって、結晶粒界、特殊粒界を特定し、単位全粒界長さLおよび単位全特殊粒界長さLσを求めた。
 表3に、L,Lσ及び特殊粒界長比率Lσ/Lを示す。
 上記EBSD測定装置と解析ソフトによって得た結果から求めた平均結晶粒径の値も表3に示す。
 また、図2~図7に、それぞれ、本発明アノード3、5、8、10、13、20のEBSD解析結果を示す。
 比較のため、上記で作製した高純度銅アノード素材に対して、表2に示す条件(少なくとも一つの条件は本発明範囲外の条件である)で、熱間加工(温度、加工法、加工率)、冷間加工(加工法、加工率)、再結晶化熱処理(温度、時間)を行い、表4に示す比較例の高純度銅アノード(比較例アノードという)1~5を製造した。
 また、上記で製造した比較例アノードについても、本発明と同様にして、単位全粒界長さL、単位全特殊粒界長さLσ、特殊粒界長比率Lσ/Lおよび平均結晶粒径を求めた。
この値を表4に示す。
 また、図8、図9には、それぞれ、比較例アノード1, 4のEBSD解析結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記の本発明アノード1~20、比較例アノード1~5(いずれも、アノード表面積は400cm)を用い、プリント基板をカソードとして、5枚のプリント基板のスルーホールに対して、ピロリン酸銅浴を用いた電気銅めっきを行った。
 めっき液: ピロリン酸銅80g/L、ピロリン酸カリウム400g/L、pH8.5(pHはアンモニアで調整)
 めっき条件:液温 50℃、
       カソード電流密度 3 A/dm
       めっき時間 20 分/枚、
 上記の本発明アノード1~20、比較例アノード1~5について、電気銅めっき開始から5枚目のプリント基板の電気銅めっき完了までに発生したアノードスライム発生量を測定した。
 また、めっき後のプリント基板のスルーホール内面を、光学顕微鏡で観察し、スルーホール内面に形成されている高さ3μm以上の突起を欠陥とみなして、突起欠陥数をカウントした。
 これらの測定結果を表5、表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5、表6に示される結果から、本発明の電気銅めっき用の高純度銅アノード、電気銅めっき用の高純度銅アノードの製造方法および電気銅めっき方法によれば、例えば、プリント基板のスルーホール内面に銅めっき層を形成する場合にも、アノードスライムの発生を抑制するとともに、スルーホール内面における汚染、突起等のめっき欠陥の発生防止を図ることができることが分かる。
 特殊粒界長比率Lσ/Lが0.35未満である比較例アノードでは、アノードスライム発生量が多いばかりか、スライム起因のめっき欠陥が多発していることが分かる。
 電気銅めっきに際して、アノードスライムの発生を抑制でき、被めっき材表面におけるめっき欠陥の発生を防止し得るという優れた効果を有する。特に、プリント基板のスルーホール内面への銅めっき層形成に適用された場合には、プリント基板のスルーホール内面における汚染、突起等の欠陥の発生を防止することができるため、工業的な有用性が極めて高い。

Claims (9)

  1.  電気めっき用高純度銅アノードにおいて、
    (a)走査型電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、隣接する結晶粒相互の配向方位差が15°以上の結晶粒の界面を結晶粒界とし、測定範囲における結晶粒界の全粒界長さLを測定し、これを単位面積1mm当たりに換算した単位全粒界長さLを求め、
    (b)走査型電子顕微鏡を用いて、アノード表面の個々の結晶粒に電子線を照射し、相互に隣接する結晶粒の界面が特殊粒界を構成する結晶粒界の位置を決定するとともに、特殊粒界の全特殊粒界長さLσを測定し、これを単位面積1mm当たりに換算して単位全特殊粒界長さLσを求めた場合、
    (c)上記測定した結晶粒界の単位全粒界長さLと、同じく上記測定した特殊粒界の単位全特殊粒界長さLσとの特殊粒界長比率Lσ/Lが、
     Lσ/L≧0.35
    の関係を満足する結晶粒界組織を有することを特徴とする電気めっき用高純度銅アノード。
  2.  平均結晶粒径が3~1000μmである請求項1に記載の電気めっき用高純度銅アノード。
  3.  電気めっき用高純度銅に加工を施して加工歪みを与えた後、250~900℃で再結晶化熱処理を行うことにより、特殊粒界長比率Lσ/Lを0.35以上とすることを特徴とする請求項1または2に記載の電気めっき用高純度銅アノードの製造方法。
  4.  加工は、冷間加工または熱間加工の内の少なくとも何れかにより行う請求項3に記載の電気めっき用高純度銅アノードの製造方法。
  5.  冷間加工と再結晶化熱処理、あるいは、熱間加工と再結晶化熱処理、またはこれらを組み合わせた処理を、特殊粒界長比率Lσ/Lが0.35以上となるまで繰り返し行う請求項3に記載の電気めっき用高純度銅アノードの製造方法。
  6.  冷間加工と再結晶化熱処理、あるいは、熱間加工と再結晶化熱処理、またはこれらを組み合わせた処理を、特殊粒界長比率Lσ/Lが0.35以上となるまで繰り返し行う請求項4に記載の電気めっき用高純度銅アノードの製造方法。
  7.  350~900℃の温度範囲で圧下率5~80%の熱間加工を施し、その後、3~300秒間、上記加工歪みを与えずに静的に保持し、再結晶化熱処理を行う請求項3に記載の電気めっき用高純度銅アノードの製造方法。
  8.  圧下率5~80%の冷間加工を施し、その後、250~900℃の温度範囲に加熱し、5分~5時間、上記加工歪みを与えずに静的に保持し、再結晶化熱処理を行う請求項3に記載の電気めっき用高純度銅アノードの製造方法。
  9.  請求項1または2に記載の電気めっき用高純度銅アノードを用いた電気銅めっき方法。
PCT/JP2011/057450 2010-03-30 2011-03-25 電気銅めっき用高純度銅アノード、その製造方法および電気銅めっき方法 WO2011122493A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127021980A KR20130018655A (ko) 2010-03-30 2011-03-25 전기 구리 도금용 고순도 구리 애노드, 그 제조 방법 및 전기 구리 도금 방법
CN201180018264.4A CN102844472B (zh) 2010-03-30 2011-03-25 电解铜电镀用高纯度铜阳极、其制造方法及电解铜电镀方法
US13/637,842 US20130075272A1 (en) 2010-03-30 2011-03-25 Highly pure copper anode for electrolytic copper plating, method for manufacturing same, and electrolytic copper plating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010077215A JP5376168B2 (ja) 2010-03-30 2010-03-30 電気銅めっき用高純度銅アノード、その製造方法および電気銅めっき方法
JP2010-077215 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122493A1 true WO2011122493A1 (ja) 2011-10-06

Family

ID=44712199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057450 WO2011122493A1 (ja) 2010-03-30 2011-03-25 電気銅めっき用高純度銅アノード、その製造方法および電気銅めっき方法

Country Status (7)

Country Link
US (1) US20130075272A1 (ja)
JP (1) JP5376168B2 (ja)
KR (1) KR20130018655A (ja)
CN (1) CN102844472B (ja)
MY (1) MY166615A (ja)
TW (1) TWI534303B (ja)
WO (1) WO2011122493A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160047017A1 (en) * 2013-04-08 2016-02-18 Mitsubishi Materials Corporation Hot-rolled copper plate
WO2023033038A1 (ja) * 2021-09-02 2023-03-09 三菱マテリアル株式会社 めっき皮膜付端子材及び端子材用銅板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783293B1 (ja) * 2014-04-22 2015-09-24 三菱マテリアル株式会社 円筒型スパッタリングターゲット用素材
EP3506332B1 (en) * 2017-12-29 2020-12-23 Jeol Ltd. Scanning electron microscope and analysis method
TWI749818B (zh) * 2020-10-22 2021-12-11 元智大學 金屬導線結構改質方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240949A (ja) * 2000-02-29 2001-09-04 Mitsubishi Materials Corp 微細な結晶粒を有する高純度銅加工品素材の製造方法
JP2002275698A (ja) * 2001-03-13 2002-09-25 Mitsubishi Materials Corp 電気メッキ用含燐銅陽極
JP2003171797A (ja) * 2001-12-07 2003-06-20 Nikko Materials Co Ltd 電気銅めっき方法、電気銅めっき用純銅アノード及びこれらを用いてめっきされたパーティクル付着の少ない半導体ウエハ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3403918B2 (ja) * 1997-06-02 2003-05-06 株式会社ジャパンエナジー 高純度銅スパッタリングタ−ゲットおよび薄膜
JP3859384B2 (ja) * 1999-03-08 2006-12-20 日鉱金属株式会社 屈曲性に優れるフレキシブルプリント回路基板用圧延銅箔およびその製造方法
KR100877923B1 (ko) * 2001-06-07 2009-01-12 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨 전해 구리 도금법
JP4076751B2 (ja) * 2001-10-22 2008-04-16 日鉱金属株式会社 電気銅めっき方法、電気銅めっき用含リン銅アノード及びこれらを用いてめっきされたパーティクル付着の少ない半導体ウエハ
JP4064121B2 (ja) * 2002-02-13 2008-03-19 日鉱金属株式会社 含リン銅アノードを使用する電気銅めっき方法
US20030188975A1 (en) * 2002-04-05 2003-10-09 Nielsen Thomas D. Copper anode for semiconductor interconnects
CN103726097B (zh) * 2007-11-01 2016-08-17 Jx日矿日石金属株式会社 铜阳极或含磷铜阳极、在半导体晶片上电镀铜的方法及粒子附着少的半导体晶片
JP4607165B2 (ja) * 2007-11-20 2011-01-05 Jx日鉱日石金属株式会社 電気銅めっき方法
US9260790B2 (en) * 2007-12-18 2016-02-16 Integran Technologies Inc. Method for preparing polycrystalline structures having improved mechanical and physical properties

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240949A (ja) * 2000-02-29 2001-09-04 Mitsubishi Materials Corp 微細な結晶粒を有する高純度銅加工品素材の製造方法
JP2002275698A (ja) * 2001-03-13 2002-09-25 Mitsubishi Materials Corp 電気メッキ用含燐銅陽極
JP2003171797A (ja) * 2001-12-07 2003-06-20 Nikko Materials Co Ltd 電気銅めっき方法、電気銅めっき用純銅アノード及びこれらを用いてめっきされたパーティクル付着の少ない半導体ウエハ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160047017A1 (en) * 2013-04-08 2016-02-18 Mitsubishi Materials Corporation Hot-rolled copper plate
US9938606B2 (en) * 2013-04-08 2018-04-10 Mitsubishi Materials Corporation Hot-rolled copper plate
WO2023033038A1 (ja) * 2021-09-02 2023-03-09 三菱マテリアル株式会社 めっき皮膜付端子材及び端子材用銅板
JP7315120B1 (ja) * 2021-09-02 2023-07-26 三菱マテリアル株式会社 めっき皮膜付端子材及び端子材用銅板

Also Published As

Publication number Publication date
TW201202487A (en) 2012-01-16
KR20130018655A (ko) 2013-02-25
MY166615A (en) 2018-07-17
US20130075272A1 (en) 2013-03-28
CN102844472A (zh) 2012-12-26
TWI534303B (zh) 2016-05-21
JP5376168B2 (ja) 2013-12-25
JP2011208224A (ja) 2011-10-20
CN102844472B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
KR100815141B1 (ko) 전기도금용 인함유동 양극
JP5499933B2 (ja) 電気銅めっき用含リン銅アノード、その製造方法および電気銅めっき方法
WO2011122493A1 (ja) 電気銅めっき用高純度銅アノード、その製造方法および電気銅めっき方法
JP4076751B2 (ja) 電気銅めっき方法、電気銅めっき用含リン銅アノード及びこれらを用いてめっきされたパーティクル付着の少ない半導体ウエハ
JP2009097040A (ja) すずめっきの耐磨耗性に優れるすずめっき銅又は銅合金条
JP5668915B2 (ja) リン成分が均一分散されかつ微細均一な結晶組織を有するめっき用含リン銅アノード材の製造方法およびめっき用含リン銅アノード材
JP4034095B2 (ja) 電気銅めっき方法及び電気銅めっき用含リン銅アノード
JPH0649958B2 (ja) 電解銅箔の製造方法
JP2010216003A (ja) めっき用銅材及びめっき用銅材の製造方法、並びに、銅めっき材の製造方法
JP6066007B1 (ja) 精製銅の製造方法及び電線の製造方法
TW201736612A (zh) Cu-Ni-Si系銅合金條及其製造方法
JP4607165B2 (ja) 電気銅めっき方法
JP2011127147A (ja) Cu系材料のSnめっき層の剥離方法
JP6619942B2 (ja) 半導体ウエハへの電気銅めっきに使用する銅アノード又は含燐銅アノード及び銅アノード又は含燐銅アノードの製造方法
JP6066010B1 (ja) 精製銅並びに電線の製造方法
JP6960363B2 (ja) Coアノード、Coアノードを用いた電気Coめっき方法及びCoアノードの評価方法
JP5234844B2 (ja) 電気銅めっき方法、電気銅めっき用含リン銅アノード及びこれらを用いてめっきされたパーティクル付着の少ない半導体ウエハ
JP5626582B2 (ja) 電気銅めっき用含リン銅アノードおよびそれを用いた電気銅めっき方法
JP2011006747A (ja) 電解コンデンサ用アルミニウム箔
JP2008163454A (ja) 電気銅めっき用含リン銅アノード及びその製造方法
JP5179549B2 (ja) 電気銅めっき方法
JPH0544100A (ja) アルミ系材料の表面処理方法
JP2005336585A (ja) 銅合金箔及びその製造方法
KR20140030012A (ko) 전기 도금용 애노드재의 제조방법 및 전기 도금용 애노드

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018264.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127021980

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8567/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13637842

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11762724

Country of ref document: EP

Kind code of ref document: A1