WO2011121903A1 - 情報記録媒体用ガラス基板の製造方法 - Google Patents

情報記録媒体用ガラス基板の製造方法 Download PDF

Info

Publication number
WO2011121903A1
WO2011121903A1 PCT/JP2011/001410 JP2011001410W WO2011121903A1 WO 2011121903 A1 WO2011121903 A1 WO 2011121903A1 JP 2011001410 W JP2011001410 W JP 2011001410W WO 2011121903 A1 WO2011121903 A1 WO 2011121903A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
glass substrate
glass
glass material
polishing
Prior art date
Application number
PCT/JP2011/001410
Other languages
English (en)
French (fr)
Inventor
葉月 中江
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to US13/638,748 priority Critical patent/US8966939B2/en
Priority to JP2012505904A priority patent/JP5333656B2/ja
Publication of WO2011121903A1 publication Critical patent/WO2011121903A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block
    • Y10T428/315Surface modified glass [e.g., tempered, strengthened, etc.]

Definitions

  • the present invention relates to a method for producing a glass substrate for an information recording medium.
  • a glass substrate as a substrate is polished multiple times with high precision, such as a rough polishing process and a precision polishing process.
  • high smoothness and high cleanliness of the glass material are required, and it is also required to improve productivity.
  • Patent Document 1 As a method of achieving high smoothness, a method of using silica-based abrasive grains such as colloidal silica for final polishing is known, but at the same time, as a means of improving productivity, the silica-based abrasive grains are circulated and used. Is known (Patent Document 1).
  • an information recording medium such as a hard disk drive (HDD) is no exception, and various requirements such as low noise and low energy are required.
  • the glass base plate used as the substrate is required not to contain antimony used as a bubble remover.
  • antimony cerium oxide is often used. Cerium oxide is contained in an amount of about 0.1 to 2% by mass in the glass base plate composition.
  • the first subject of the present invention is a rough polishing step of roughly polishing a glass material containing 0.01 to 2% by mass of cerium oxide, and the amount of cerium on the surface of the glass material is 0.125 ng / cm 2 or less.
  • the second subject of the present invention is a glass substrate for an information recording medium manufactured by the above manufacturing method.
  • silica-based abrasive grains are used and circulated as a polishing material, there is a problem that silica-based abrasive grains aggregate over time and cannot be used as an abrasive material.
  • the cause of the agglomeration of the abrasive is the cerium oxide itself, which is widely used as a rare earth oxide.
  • Cerium oxide has a polishing mechanism.
  • cerium oxide replaces Si—O bonds, which are the main composition, on the surface of the glass material, and a bond of Ce—O occurs. These decompose immediately, but the broken Si are separated without re-bonding. By repeating this, polishing is performed.
  • cerium oxide When cerium oxide is present during polishing performed with silica-based abrasive grains, cerium bonds to the hydroxyl groups of the silica-based abrasive grains and the dispersibility of the silica-based abrasive grains decreases. This is considered to be because the above polishing mechanism of cerium oxide occurs in the same manner with silica-based abrasive grains (and sludge). Thereby, when the slurry is circulated and used, the aggregation of silica-based abrasive grains increases, which adversely affects the smoothness of the glass substrate. Further, since cerium oxide accumulates in the polishing machine, the adverse effect of smoothness is further increased. In addition, cerium oxide remains until reaching the final step, so that it deeply penetrates into the glass material and adversely affects the cleanliness of the final glass substrate.
  • cerium oxide eluted from the glass substrate at the time of polishing also becomes a problem, as is cerium oxide used as an abrasive in rough polishing.
  • cerium oxide used as an abrasive in rough polishing There are various sizes and electronic states of cerium oxide by elution from the glass composition, and it is assumed that silica-based abrasive grains are more likely to aggregate.
  • the present invention has been made in view of the above problems based on such knowledge.
  • the glass substrate for an information recording medium is, for example, an annular base material (substrate) suitable for a magnetic hard disk as an information storage medium.
  • the manufacturing process of a glass substrate includes a lapping process, a rough polishing process, a cleaning process, and a precision polishing process, and is manufactured through a cleaning process by molding an annular disk-shaped glass material by pressing or boring. Is.
  • Glass material As a glass composition used as a raw material of a glass substrate, the main components are SiO 2 55 mass% to 75 mass% or less, Al 2 O 3 5 mass% to 18 mass%, and Li 2 O 1 mass% to 10 mass%. 3% by mass or more and 15% by mass or less of Na 2 O, 0.1% to 5% by mass of K 2 O, 0.1% to 5% by mass of MgO, and 0.1% by mass of CaO 5 mass%, ZrO 2 is contained from 0 mass% to 8 mass%, the total amount of Li 2 O + Na 2 O + K 2 O is 10 mass% to 25 mass%, and (MgO + CaO) / (Li 2 O + Na 2 It is preferable to use one having a mass ratio of O + K 2 O) of 0.10 or more and 0.80 or less.
  • the total amount of SiO 2 + Al 2 O 3 + B 2 O 2 is 65% by mass to 90% by mass (provided that SiO 2 is 45% by mass to 75% by mass, and Al 2 O 3 is 1% by mass). 20% by mass, B 2 O 3 is 0% by mass to 8% by mass), and the total amount of R 2 O is 7% by mass to 20% by mass (where R is Li, Na, K), and the total amount of R′O. Of 0.1 to 12% by mass (where R ′ is Mg, Ca, Sr, Ba, Zn), and the total amount of TiO 2 + ZrO 2 is 0.5% by mass to 10% by mass.
  • the oxides of the polyvalent elements are each V 2 O 5.
  • the molar ratio of the total amount of TiO 2 + ZrO 2 is 0.05 to 0
  • a range of .50 can be used.
  • These glass compositions preferably do not contain phosphorus oxides.
  • it contains 0.01 to 2% by mass of cerium oxide as an alternative component of antimony for removing foam.
  • the content of cerium oxide is particularly preferably 0.5 to 1% by mass. This is because if it is within this range, there is an effect of removing bubbles and the amount that appears during polishing is small.
  • the annular glass material molded by the press method is ground with a relatively rough diamond grindstone (lapping process).
  • the lapping process may be performed once, and preferably performed twice.
  • a rough polishing process is performed on the main surface of the glass material after the lapping process.
  • This rough polishing process is intended to remove scratches and distortions remaining in the lapping process described above, and is performed using a polishing apparatus (specifically, a hard polishing pad made of polyurethane).
  • a polishing apparatus specifically, a hard polishing pad made of polyurethane.
  • a rare earth oxide having a fluorine content of 5% by mass or less that is, an abrasive mainly composed of cerium oxide is supplied to the glass material, and the abrasive cloth and the glass material are relatively moved, The main surface of the glass material is roughly polished.
  • the average particle size of the abrasive used in the rough polishing step is preferably 1 ⁇ m.
  • the rough polishing step uses cerium oxide as an abrasive.
  • Si is cut off on the surface of the glass material by the polishing mechanism of cerium oxide, and polishing with high productivity can be realized.
  • a considerable amount of the remaining cerium oxide is removed in the cleaning process, it is possible not only to maintain high cleanliness of the glass material, but also to an abrasive in the precision polishing process performed after the cleaning process. It is possible to suppress adverse effects as much as possible. Therefore, high smoothness, high cleanliness, and high productivity can be maintained.
  • the glass material after the rough polishing with the cerium polishing material is cleaned by a cleaning process after the rough polishing.
  • the glass material is rinsed by washing with an alkaline detergent having a pH of 13 or higher.
  • the glass material is washed and rinsed with an acid detergent having a pH of 1 or less, and finally washed with a hydrofluoric acid (HF) solution.
  • HF hydrofluoric acid
  • cerium oxide it is most efficient to perform cleaning in the order of alkali cleaning, acid cleaning, and HF.
  • the abrasive is first dispersed and removed with an alkaline detergent, and then the abrasive is dissolved and removed with an acid detergent.
  • the glass material is etched with HF to remove the abrasive deeply stuck in the glass material.
  • the glass material after rough polishing is washed so that the amount of cerium oxide on the surface of the glass material becomes a small amount (0.125 ng / cm 2 or less) before performing the precision polishing step, it causes the colloidal silica to aggregate.
  • the amount of cerium oxide is reduced, and the number of times the abrasive is circulated can be increased to improve productivity.
  • the cleaning process is performed before the precision polishing process, the aggregation of the slurry in the precision polishing process can be suppressed even when a glass material containing 0.01 to 2% by mass of cerium oxide is used. Therefore, it is possible to improve productivity even when using environmentally friendly materials.
  • the amount of cerium adhering to the glass material before the precision polishing step is small, the final glass substrate can be kept clean.
  • cerium oxide is hardly soluble, a strong acid is required.
  • a strong acid deteriorates the smoothness of the glass substrate (glass material).
  • the cleaning step can be performed before the final precision polishing step to dissolve and clean cerium, even if a strong acid is used, the smoothness of the glass substrate is not adversely affected. Further, the smoothness of the final glass substrate is also improved.
  • the polishing pad is changed from a hard polishing pad to a soft polishing pad, and a precision polishing process is performed.
  • the processing performed in this precision polishing step maintains the flat and smooth main surface obtained in the above-described rough polishing step, and for example, the surface roughness (Rmax (maximum height of microwaviness)) of the main surface is about 6 nm or less.
  • Rmax maximum height of microwaviness
  • the abrasive it is preferable to use an abrasive containing colloidal silica having a particle diameter lower than that of the cerium-based abrasive in the rough polishing step and an average particle diameter of 20 nm.
  • a polishing liquid (slurry) containing the abrasive is supplied to the glass material, and the surface of the glass material is mirror-polished by sliding the polishing pad and the glass material relatively.
  • the amount polished by precision polishing is 0.2 to 2 ⁇ m, preferably 0.3 to 1.5 ⁇ m. If the amount to be polished is less than 0.2 ⁇ m, flat smoothness cannot be secured, and if it is more than 2 ⁇ m, the amount of cerium increases. Further, when polishing is performed at 0.3 to 1.5 ⁇ m, flat smoothness and sustainability (circulation use) can be secured.
  • the slurry is circulated and used, for example, by the method disclosed in Japanese Patent Application Laid-Open No. 2008-246645 previously proposed by the present application.
  • the slurry volume is (a) liters
  • the number of glass materials to be polished is (b)
  • the cerium oxide content of the glass material is (X) mass%
  • the allowance is (Y ) ⁇ m
  • Z Y ⁇ substrate area (cm 2 ) ⁇ substrate density (g / cm 3 ) (1)
  • Each item is managed so that
  • the glass material that has finished the precision polishing step is stored in water without being dried (including natural drying), and is transported to the next cleaning step in a wet state. This is because if the glass material is dried with the polishing residue remaining, it may be difficult to remove the abrasive (colloidal silica) by the cleaning treatment. It is necessary to remove the abrasive without exposing the surface of the mirror-finished glass material. For example, when the cleaning liquid has an etching action or a leaching action on the glass material, the glass surface that has been bent or mirror-finished is roughened, resulting in a satin-finished finish surface. The flying height of the magnetic head cannot be reduced sufficiently on the finished surface of the pear-like surface.
  • this cleaning liquid has no etching action or leaching action with respect to glass, and is configured as a cleaning liquid having selective dissolution performance with respect to a silica-based abrasive. That is, it is preferable to select a composition that does not contain hydrofluoric acid (HF) or silicic acid (H 2 SiF 6 ), which is a factor for etching glass, as the cleaning liquid. A glass substrate is manufactured through this cleaning process.
  • HF hydrofluoric acid
  • H 2 SiF 6 silicic acid
  • Patent Document 2 a comparative example
  • Glass composition The following four types of glass materials were prepared.
  • Example 1 A glass substrate precursor was obtained by performing a roughening process, an end mirror polishing process, and a lapping process by a known method using the glass material 1.
  • a rough polishing step was performed using a polyurethane hard polishing pad on the glass substrate precursor after the lapping step.
  • a cerium oxide having a fluorine content of 5 mass% or less as a main component and an abrasive having an average particle size of 1 ⁇ m is supplied to the glass substrate precursor, and the hard polishing pad and the glass substrate precursor are relative to each other.
  • the main surface of the glass substrate precursor was roughly polished.
  • the substrate was rinsed with a pH 13 alkaline detergent. Subsequently, the substrate was washed with an acid detergent (nitric acid) having a pH of 0, rinsed, and finally washed with HF (0.1% solution).
  • the application conditions are 40 kHz for alkaline detergents, 80 kHz for acid detergents, and 170 kHz for HF detergents.
  • a precision polishing process was performed.
  • this precision polishing step 30 liters of slurry containing colloidal silica having a particle size lower than that of the cerium-based abrasive in the rough polishing step and an average particle size of 20 nm was circulated.
  • This slurry was supplied to the glass substrate precursor after completion of the cleaning step, and the polishing pad and the glass substrate precursor were relatively slid to mirror-polish the surface of the glass substrate precursor.
  • the machining allowance (Y) polished by precision polishing at this time was 0.8 ⁇ m.
  • Example 2 By using the glass material 2, a roughening process, an end mirror polishing process, and a lapping process were performed by a known method to obtain a glass substrate precursor.
  • the glass substrate precursor was subjected to the rough polishing step and the cleaning step of Example 1, and the precision removal step was performed by changing the machining allowance (Y) of Example 1 to 1.9.
  • the cleaning step the specifications for circulation were set so that (c) was 1.7 ⁇ m under the above conditions.
  • Example 3 A glass substrate precursor was obtained by performing a roughening process, an end mirror polishing process, and a lapping process by a known method using the glass material 3. The glass substrate precursor was subjected to a rough polishing step and a cleaning step of Example 1, and a precision polishing step was performed by changing the machining allowance (Y) of Example 1 to 1.0. In the cleaning process, the specifications for circulation were set so that (c) was 1.8 ⁇ m under the above conditions.
  • Example 4 A glass substrate precursor was obtained by performing a roughening step, an end mirror polishing step, and a lapping step by a known method using the glass material 4.
  • the glass substrate precursor was subjected to a rough polishing step and a cleaning step of Example 1, and a precision polishing step was performed by changing the machining allowance (Y) of Example 1 to 1.0.
  • the cleaning step the specifications for the circulation use were set so that (c) was 2.5 ⁇ m under the above conditions.
  • Example 5 A glass substrate precursor was obtained by performing a roughening step, an end mirror polishing step, and a lapping step by a known method using the glass material 4. A rough polishing step, a cleaning step, and a precision polishing step were performed on the glass substrate precursor under the same conditions as in Example 1.
  • Example 6 A glass substrate precursor was obtained by performing a roughening step, an end mirror polishing step, and a lapping step by a known method using the glass material 4. A rough polishing step was performed on the glass substrate precursor under the same conditions as in Example 1. Next, a cleaning process was performed under the following conditions.
  • the glass substrate precursor after the rough polishing step was washed in the order of alkaline detergent, nitric acid, alkaline detergent, and HF.
  • the ultrasonic waves applied at the time of each cleaning were alkaline detergent (US 40 kHz), nitric acid (US 80 kHz), alkaline detergent (950 kHz), and HF (170 kHz), respectively.
  • Each tank, particularly an ultrasonic tank of an alkaline detergent (950 kHz) was deaerated and cleaned. Thereafter, a precision polishing step was performed in the same manner as in Example 1.
  • Example 7 A glass substrate precursor was obtained by performing a roughening process, an end mirror polishing process, and a lapping process by a known method using the glass material 3. The rough polishing process, the cleaning process, and the precision polishing process of Example 1 were performed on this glass substrate precursor.
  • the value of (c) is set to 2.7 ⁇ m (Example 7), 2.1 ⁇ m (Example 8), 1.4 ⁇ m (Example 9), 0 under the above conditions.
  • the machining allowance (Y) is 1.5 ⁇ m (Example 7), 1.2 ⁇ m (Example 8), and 0.8 ⁇ m (Example 10) and 0.4 ⁇ m (Example 11), respectively.
  • Example 1 A glass substrate precursor was obtained by performing a roughening step, an end mirror polishing step, and a lapping step by a known method using the glass material 4. The rough polishing step of Example 1 was performed on this glass substrate precursor.
  • Example 1 a cleaning liquid in which citric acid, sulfamic acid, and HF were mixed was used, and cleaning was performed by applying an ultrasonic wave of 120 kHz to obtain a comparative example.
  • the specifications for circulation were set so that (c) was 2.9 ⁇ m under the above conditions.
  • a precision polishing step was performed under the same conditions as in Example 1.
  • the amount of cerium deposited (Q) ng / cm 2 on the surface of the obtained glass substrate was measured with a general high frequency inductively coupled plasma mass spectrometer (ICP-MS), and 10 sheets The average value of was calculated.
  • ICP-MS inductively coupled plasma mass spectrometer
  • the slurry was circulated and used 20 times in the precision polishing process, and the quality at the 5th, 7th and 20th times was evaluated in four stages of ⁇ , ⁇ , ⁇ , and ⁇ . Evaluation is performed by the surface roughness Ra at each circulation number (5th, 7th, 20th).
  • the surface roughness Ra is the surface roughness of a square region of 5 ⁇ m in length and 5 ⁇ m in width on the main surface of the glass substrate that has been subjected to the cleaning treatment, and 10 glass substrates are observed with an atomic force microscope (AFM). It was evaluated as follows.
  • the present invention provides a rough polishing step of rough polishing a glass material containing 0.01 to 2% by mass of cerium oxide, and the rough polishing step so that the amount of cerium on the surface of the glass material is 0.125 ng / cm 2 or less.
  • a glass for an information recording medium comprising: a cleaning process for cleaning a subsequent glass material; and a precision polishing process for precisely polishing the glass material after the cleaning process using a polishing material containing colloidal silica.
  • a method for manufacturing a substrate is a concept including not only cerium oxide on the surface remaining in the rough polishing step but also cerium oxide eluted from the glass material.
  • the colloidal silica is agglomerated because the glass material after rough polishing is washed so that the cerium oxide on the surface of the glass material becomes a small amount (0.125 ng / cm 2 or less) before performing the precision polishing step.
  • the cleaning process is performed before the precision polishing process, the aggregation of the slurry in the precision polishing process can be suppressed even when a glass material containing 0.01 to 2% by mass of cerium oxide is used. Therefore, it is possible to improve productivity even when using environmentally friendly materials.
  • the final glass substrate can be kept clean. Furthermore, since cerium oxide is sparingly soluble, a strong acid is required. However, a strong acid deteriorates the smoothness of the glass substrate (glass material). However, in this embodiment, since the cleaning step can be performed before the final precision polishing step to dissolve and wash cerium, even if a strong acid is used, the smoothness of the glass substrate is not adversely affected. Further, the smoothness of the final glass substrate is also improved.
  • the stock removal of the glass material after the cleaning step in the precision polishing step is 0.2 ⁇ m to 2 ⁇ m
  • the volume of slurry used as an abrasive in the precision polishing step is (a) liters
  • the number of glass materials to be polished is (b)
  • the cerium oxide content of the glass material is (X) mass%
  • the machining allowance is (Y) ⁇ m
  • Z Y ⁇ substrate area (cm 2 ) ⁇ substrate density (g / cm 3 ) (1)
  • the precision polishing step is (X ⁇ Z) ⁇ b ⁇ a ⁇ 3 ( ⁇ g / l) (2)
  • the abrasive is circulated and used so that In this aspect, it is possible to obtain a suitable maximum number of circulation uses in consideration of the cerium oxide of the glass material to be polished in managing the number of times of circulation use of the slurry used as the abrasive in the precision polishing process. Become.
  • the rough polishing step uses cerium oxide as an abrasive.
  • Si is cut off on the surface of the glass material by the polishing mechanism of cerium oxide, and polishing with high productivity can be realized.
  • a considerable amount of the remaining cerium oxide is removed in the cleaning process, it is possible not only to maintain high cleanliness of the glass material, but also to an abrasive in the precision polishing process performed after the cleaning process. It is possible to suppress adverse effects as much as possible. Therefore, high smoothness, high cleanliness, and high productivity can be maintained.
  • the glass material has the following composition.
  • SiO 2 55 mass% to 75 mass%, Al 2 O 3 : 5% by mass to 18% by mass, Li 2 O: 1% by mass to 10% by mass, Na 2 O: 3% by mass to 15% by mass, K 2 O: 0.1% by mass to 5% by mass, However, the total amount of Li 2 O + Na 2 O + K 2 O: 10% by mass to 25% by mass, MgO: 0.1% by mass to 5% by mass, CaO: 0.1% by mass to 5% by mass, ZrO 2 : 0 to 8% by mass, 0.10 ⁇ (MgO + CaO) / (Li 2 O + Na 2 O + K 2 O) ⁇ 0.80.
  • the molar ratio of the total amount of the product to the total amount of TiO 2 + ZrO 2 (total amount of oxide of the polyvalent element / (total amount of TiO 2 + ZrO 2 )) is in the range of 0.05 to 0.50.
  • the glass material after rough polishing is washed so that the cerium adhering to the glass material becomes a small amount before performing the precision polishing step. It is possible to increase the number of times of circulation use and improve productivity. In addition, the smoothness of the final glass substrate is improved. Furthermore, even when a glass material containing 0.01 to 2% by mass of cerium oxide is used, aggregation of the abrasive in the precision polishing process can be suppressed. Therefore, it is possible to improve productivity even when using environmentally friendly materials. In addition, cleanliness of the final glass substrate can be ensured, and even if a strong acid is used, the smoothness of the glass substrate is not adversely affected.
  • the colloidal silica is circulated when precision polishing a glass material containing cerium oxide in its composition.
  • the number of times it can be used is increased, so that the productivity can be remarkably increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Glass Compositions (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

 酸化セリウムを組成に含むガラス素材を精密研磨加工する際に、コロイダルシリカを研磨材として循環使用するに当たり、循環使用できる回数が制限されることを防ぎ、もって生産性を格段に高めること。 酸化セリウムを0.01~2質量%含有するガラス素材を粗研磨する粗研磨工程と、前記ガラス素材表面のセリウム量が0.125ng/cm以下となるように前記粗研磨工程後のガラス素材を洗浄する洗浄工程と、コロイダルシリカを含む研磨材を循環使用して前記洗浄工程後のガラス素材を精密研磨する精密研磨工程と、を備えることを特徴とする情報記録媒体用ガラス基板の製造方法。

Description

情報記録媒体用ガラス基板の製造方法
 本発明は情報記録媒体用ガラス基板の製造方法に関する。
 昨今、磁気ハードディスクドライブに代表される情報記録用媒体の基材(サブストレート)として、ガラス基板の需要が高まっている。
 情報記録用媒体の高記録密度化を実現するため、サブストレートとしてのガラス基板には、粗研磨工程、精密研磨工程等、高精度に複数回の研磨が行われる。かかる研磨工程においては、ガラス素材の高い平滑性、高い清潔度が要請され、しかも、生産性を向上することも要請される。
 高い平滑性を達成する方法としてはコリダルシリカ等のシリカ系砥粒を最終研磨に使用する方法が知られているが、同時に生産性を向上させる手段としてはそのシリカ系砥粒を循環させて使うことが知られている(特許文献1)。
 一方、現在世間では環境対策が叫ばれている。ハードディスクドライブ(HDD)等の情報記録用媒体も例外ではなく、低騒音、低エネルギー等の様々な要求が求められている。例えば、その基板として用いられるガラス素板には、泡とりとして使われているアンチモンを含まないことが要求されている。このアンチモンの代替成分としては、酸化セリウムが使われることが多い。酸化セリウムは、ガラス素板組成のうち、0.1~2質量%程度含まれている。
特開2008-246645号公報
 本発明の目的は、酸化セリウムを組成に含むガラス素材を精密研磨加工する際に、コロイダルシリカを研磨材として循環使用するに当たり、循環使用できる回数が制限されることを防ぎ、もって生産性を格段に高めることのできる情報記録媒体用ガラス基板の製造方法を提供することである。
 すなわち、本発明の第一の主題は、酸化セリウムを0.01~2質量%含有するガラス素材を粗研磨する粗研磨工程と、前記ガラス素材表面のセリウム量が0.125ng/cm2 以下となるように前記粗研磨工程後のガラス素材を洗浄する洗浄工程と、コロイダルシリカを含む研磨材を循環使用して前記洗浄工程後のガラス素材を精密研磨する精密研磨工程と、を備えることを特徴とする。
 また、本発明の第二の主題は、上記製造方法によって製造された情報記録媒体用ガラス基板である。
 従来、シリカ系砥粒を研磨材として使用して循環させた場合、時間経過を経ることにシリカ系砥粒が凝集してしまうため研磨材として使えなくなる問題があった。
 この問題を解決する技術として、フィルタにて凝集したシリカ系砥粒を除去する技術がある。しかしながら、この技術では、凝集したシリカ系砥粒がフィルタよりも小さい場合にフィルタを通過してしまうため、効果が出ないという問題があった。特に最近のシリカ系砥粒は20nm程度のものを使用しているため、通常のフィルタでは効果的ではない。他方、フィルタの目が小さいと、目詰まりを起こすため加工ができない。このようなことから研磨材を循環使用することができるのは、3回程度が限度であり、生産効率が悪くなるという問題があった。
 本発明者は、鋭意研究の結果、研磨材が凝集する原因が、希土類酸化物として広く利用されている酸化セリウム自体にあることをつきとめた。
 酸化セリウムは、研磨メカニズムを有している。この研磨メカニズムにおいては、圧力を受けた際にガラス素材の表面で主な組成であるSi-Oの結合に酸化セリウムが置き換わり、Ce-Oという結合が起こる。これらはすぐに分解するが、切れたSiは再度結合することなくこれらは切り離される。これを繰り返すことにより研磨が行われる。
 酸化セリウムがシリカ系砥粒で行う研磨の際に存在した場合、セリウムは、シリカ系砥粒の水酸基と結合し、シリカ系砥粒の分散性が低下する。これは酸化セリウムの上記研磨メカニズムがシリカ系砥粒(およびスラッジ)でも同様に起こるためであると考えられる。それにより、スラリーを循環使用していくとシリカ系砥粒の凝集が大きくなり、ガラス基板の平滑性に悪影響を及ぼす。また、研磨機に酸化セリウムがたまっていくため、平滑性の悪影響はさらに大きくなる。しかも、酸化セリウムは、最終工程に至るまで残存することで深くガラス素材に浸透し、最終のガラス基板の清潔性に悪影響を及ぼす。
 アンチモンの代替成分として酸化セリウムを含むガラス基板においては、研磨時にガラス基板から溶出する酸化セリウムも、粗研磨で研磨材として使用される酸化セリウムと同様に問題となる。ガラス組成からの溶出による酸化セリウムは、様々な大きさ、電子状態のものがあり、シリカ系砥粒がより凝集しやすい状況になってしまうと推測される。
 このように、酸化セリウムが含まれるガラス基板においては、シリカ系砥粒の凝集がより顕著に表れるため、循環使用する回数が制限されてしまうことがわかってきた。
 本発明は、かかる知見に基づき、上記課題に鑑みてなされたものである。
 以下、本発明の好ましい実施の形態並びに実施例について説明する。しかしながら、本発明は、以下に説明する実施形態や実施例の製造方法に限られているわけではない。
 本実施形態に係る情報記録媒体用のガラス基板は、例えば、情報記憶媒体としての磁気ハードディスクに好適な環状の基材(サブストレート)となるものである。ガラス基板の製造過程は、プレス加工や孔ぐり加工で環状ディスク状のガラス素材を成型し、ラッピング工程、粗研磨工程、洗浄工程、並びに精密研磨工程を含み、さらに、洗浄工程を経て製造されるものである。
 (ガラス素材)
 ガラス基板の素材となるガラス組成物としては、主成分がSiOを55質量%から75質量%以下、Alを5質量%以上18質量%以下、LiOを1質量%以上10質量%以下、NaOを3質量%以上15質量%以下、KOを0.1質量%から5質量%、MgOを0.1質量%から5質量%、CaOを0.1質量%から5質量%、ZrOを0質量%から8質量%含有しており、LiO+NaO+KOの総量が10質量%から25質量%であって、(MgO+CaO)/(LiO+NaO+KO)の質量比が0.10以上0.80以下のものを利用することが好ましい。
 また、別の態様としては、SiO+Al+Bの総量が65質量%から90質量%(但し、SiOは45質量%から75質量%、Alは1質量%から20質量%、Bは0質量%から8質量%)、ROの総量を7質量%から20質量%(但し、Rは、Li、Na、K)、R’Oの総量を0.1質量%から12質量%(但し、R’は、Mg、Ca、Sr、Ba、Zn)、TiO+ZrOの総量を0.5質量%から10質量%、を含有するガラス素材であって、V、Mn、Ni、Mo、Sn、Ce及びBiからなる群の中から選ばれる少なくとも1種の多価元素を含有し、多価元素の酸化物が、それぞれ、V、MnO、Ni、MoO、SnO、CeO、Biとした場合における、多価元素の酸化物の総量の、TiO+ZrOの総量に対するモル比率(前記多価元素の酸化物の総量/(TiO+ZrOの総量))が、0.05~0.50の範囲のものを採用することが可能である。
 これらのガラス組成物は、リン酸化物を含まないことが好ましい。上記の組成に加え、泡とり用のアンチモンの代替成分として酸化セリウムを0.01~2質量%含有している。酸化セリウムの含有量は、特に、0.5~1質量%が好ましい。この範囲であれば泡とりの効果もあり、研磨の際に出てくる量も少ないからである。
 プレス法で成型した環状のガラス素材は、比較的粗いダイヤモンド砥石で研削加工する(ラッピング工程)。ラッピング工程は、1回でもよく、好ましくは、2回実行する。
 (粗研磨工程:主表面粗研磨工程)
 まず、ラッピング工程を終えたガラス素材の主表面に粗研磨工程を施す。この粗研磨工程は、上述したラッピング工程で残留した傷や歪みの除去を目的とするもので、研磨装置(詳しくは、ポリウレタン製の硬質研磨パッド)を用いて実施する。具体的には、フッ素含有量が5質量%以下である希土類酸化物、すなわち酸化セリウムを主成分とする研磨材をガラス素材に供給し、研磨布とガラス素材とを相対的に移動させて、当該ガラス素材の主表面を粗研磨する。粗研磨工程で使用する研磨材の平均粒径は1μmが好ましい。
 前記粗研磨工程は、酸化セリウムを研磨材として使用する。この態様では、酸化セリウムの研磨機構により、ガラス素材の表面でSiが切り離され、生産性の高い研磨を実現することができる。しかも、残存している酸化セリウムは、洗浄工程で相当量除去されるので、ガラス素材の清潔性を高く維持することができるばかりでなく、洗浄工程の後で行われる精密研磨工程の研磨材に悪影響を及ぼすことも可及的に抑制することが可能となる。従って、高い平滑性、高い清潔性、並びに高い生産性を維持することができる。
 (洗浄工程:粗研磨後洗浄工程)
 セリウム研磨材による粗研磨後のガラス素材は、粗研磨後洗浄工程によって洗浄される。まず、pH13以上のアルカリ洗剤で洗浄を行い、ガラス素材にリンスを行う。続いてpH1以下の酸系洗剤でガラス素材を洗浄、リンスし、最後にフッ化水素酸(HF)溶液による洗浄を行う。酸化セリウムに関しては、アルカリ洗浄、酸洗浄、HFの順で洗浄を行うことが最も効率的である。これはまずアルカリ洗剤で研磨材を分散除去し、続いて酸洗剤で研磨材を溶解除去、最後にHFによってガラス素材をエッチングし、ガラス素材に深く刺さっている研磨材を除去するのである。
 このとき、これらを単一の槽で用いて洗浄した場合には、効率的な洗浄ができない。特に、酸洗剤とHFを同一槽に入れた場合、HFのエッチング速度は、研磨材の多い場所で低下するため、基板内を均一にエッチングできなくなるからである。また、各洗浄の後にリンス槽を用いることが好ましい。これらの洗剤には、場合によって界面活性剤、分散材、キレート剤、還元材などを添加しても良い。また、各洗浄槽には、超音波を印加し、それぞれの洗剤には脱気水を使用することが好ましい。上記に加え、ラッピング工程(内径加工、外径加工)中に酸化セリウムを使用している場合は、それら各工程後にHF洗浄を行うことが好ましい。
 精密研磨工程を行う前に、ガラス素材表面の酸化セリウムが少量(0.125ng/cm以下)となるように粗研磨後のガラス素材を洗浄しているので、コロイダルシリカが凝集する原因となる酸化セリウムが少なくなり、研磨材の循環使用回数を増加し、生産性を向上することが可能となる。さらに、洗浄工程が精密研磨工程の前に施されるので、酸化セリウムを0.01~2質量%含有するガラス素材を用いても、精密研磨工程でのスラリーの凝集を抑制することができる。従って、環境に配慮した素材を用いても、生産性の向上を高めることが可能になる。加えて、精密研磨工程の前にガラス素材に付着しているセリウムが少量となるので、最終のガラス基板の清潔性を確保することができる。
 さらに、酸化セリウムは難溶性であるため強い酸が必要である。しかしながら強い酸は、ガラス基板(ガラス素材)の平滑性を悪化させる。しかるに本態様では、最終の精密研磨工程の前に洗浄工程を実行し、セリウムを溶解洗浄することができるので、強い酸を使用しても、ガラス基板の平滑性に悪影響を及ぼすこともない。また、最終品であるガラス基板の平滑性も向上する。
 (精密研磨工程)
 次に、粗研磨工程で使用したものと同様の研磨装置を用い、研磨パッドを硬質研磨パッドから軟質研磨パッドに替えて、精密研磨工程を実施する。この精密研磨工程で行う処理は、上述した粗研磨工程で得られた平坦平滑な主表面を維持しつつ、例えば主表面の表面粗さ(Rmax(微小うねりの最大高さ))が6nm程度以下である平滑な鏡面に仕上げる鏡面研磨処理である。研磨材としては、粗研磨工程のセリウム系研磨材より粒子径が低い、平均粒子径は20nmのコロイダルシリカを含む研磨材を用いることが好ましい。
 かかる研磨材を含む研磨液(スラリー)をガラス素材に供給し、研磨パッドとガラス素材とを相対的に摺動させて、ガラス素材の表面を鏡面研磨する。このとき精密研磨で研磨される量(取り代)は0.2~2μm、好ましくは0.3~1.5μmである。研磨される量が、0.2μmより少ないと平坦平滑性が確保できず、2μmより多いとセリウム量が多くなってしまう。また、0.3~1.5μmにて研磨を行うと平坦平滑性と持続性(循環使用)が確保できる。
 スラリーは、例えば、本件出願が先に提案している特開2008-246645号公報に開示されている方法で、循環使用される。スラリーを循環利用する際には、スラリーの容量を(a)リットル、研磨されるガラス素材の枚数を(b)枚、ガラス素材の酸化セリウム含有量を(X)質量%、取り代を(Y)μmとし、
   Z=Y×基板面積(cm)×基板密度(g/cm)・・・(1)
 とすると、
   (X×Z)×b÷a<3(μg/l)・・・(2)
になるように各諸元が管理される。
 この態様では、精密研磨工程で研磨材として用いられるスラリーの循環使用回数を管理するに当たり、研磨されるガラス素材の酸化セリウムにも配慮して、好適な最大の循環使用回数を求めることが可能になる。ある態様では、スラリーの容量(a)が30リットルのとき、ガラス素材の枚数(b)は、100枚位となる。
 (洗浄工程:鏡面研磨後洗浄工程)
 精密研磨工程(主面鏡面研磨工程)を終えたガラス素材の洗浄処理を下記の通りに行う。
 まず、精密研磨工程を終えたガラス素材を乾燥(自然乾燥を含む)させることなく、水中で保管し、湿潤状態のまま次の洗浄工程へ搬送する。研磨残渣が残った状態のままガラス素材を乾燥させてしまうと、洗浄処理により研磨材(コロイダルシリカ)を除去することが困難になる場合があるからである。鏡面仕上げされたガラス素材の表面をあらすことなく、研磨材を除去する必要がある。例えば、洗浄液がガラス素材に対してエッチング作用やリーチング作用を有している場合、折角、鏡面仕上げしたガラス表面が荒らされてしまい、梨子地状の仕上げ表面となってしまう。梨子地状の仕上げ表面では、磁気ヘッドの浮上量を十分に低減させることができない。したがって、この洗浄液はガラスに対して、エッチング作用やリーチング作用を有せず、シリカ系の研磨材に対して選択的溶解性能を備える洗浄液として組成されることが好ましい。すなわち、ガラスをエッチングする要因であるフッ化水素酸(HF)やケイフッ酸(HSiF)等を含まない組成を洗浄液として選定することが好ましい。この洗浄工程を経て、ガラス基板が製造される。
 次に、本発明の実施例について説明し、比較例(特許文献2)と対比する。
 (ガラス組成)
 ガラス素材の組成として、以下の4種類のものを用意した。
Figure JPOXMLDOC01-appb-T000001
 (実施例1)
 ガラス素材1を用いて、公知の方法により、荒ずり工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。ラッピング工程を終えたガラス基板前駆体にポリウレタン製の硬質研磨パッドを用いて粗研磨工程を実施した。粗研磨工程は、フッ素含有量が5質量%以下である酸化セリウムを主成分とし、平均粒径が1μmの研磨材をガラス基板前駆体に供給し、硬質研磨パッドとガラス基板前駆体とを相対的に移動させて、当該ガラス基板前駆体の主表面を粗研磨した。
 次に、洗浄工程を実施した。この洗浄工程では、pH13のアルカリ洗剤で洗浄し、リンスを行った。続いて、pH0の酸系洗剤(硝酸)で洗浄して、リンスし、最後にHF(0.1%液)による洗浄を行った。印加条件は、アルカリ洗剤では40kHz、酸洗剤では80kHz、HF洗剤では170kHzである。
 この洗浄工程の後、精密研磨工程を実施した。この精密研磨工程では、粗研磨工程のセリウム系研磨材より粒子径が低い、平均粒子径が20nmのコロイダルシリカを含むスラリー30リットルを循環使用した。このスラリーを洗浄工程終了後のガラス基板前駆体に供給し、研磨パッドとガラス基板前駆体とを相対的に摺動させて、ガラス基板前駆体の表面を鏡面研磨した。このとき精密研磨で研磨される取り代(Y)は0.8μmとした。また、(2)式の左辺(X×Z)×b÷aを(c)μmとした場合、ガラス基板前駆体やスラリーの組成の比率と取り代(Y)とのバランスを考慮し、上記条件で(c)が2.9μmとなるように循環使用の諸元を設定した。
 (実施例2)
 ガラス素材2を用いて、公知の方法により、荒ずり工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。このガラス基板前駆体に対し、実施例1の粗研磨工程、洗浄工程を施し、さらに実施例1の取り代(Y)を1.9に変更して精密研磨工程を実施した。また、洗浄工程では、上記条件で(c)が1.7μmとなるように循環使用の諸元を設定した。
 (実施例3)
 ガラス素材3を用いて、公知の方法により、荒ずり工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。このガラス基板前駆体に対し、実施例1の粗研磨工程、洗浄工程を施し、さらに実施例1の取り代(Y)を1.0に変更して精密研磨工程を実施した。また、洗浄工程では、上記条件で(c)が1.8μmとなるように循環使用の諸元を設定した。
 (実施例4)
 ガラス素材4を用いて、公知の方法により、荒ずり工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。このガラス基板前駆体に対し、実施例1の粗研磨工程、洗浄工程を施し、さらに実施例1の取り代(Y)を1.0に変更して精密研磨工程を実施した。また、洗浄工程では、上記条件で(c)が2.5μmとなるように循環使用の諸元を設定した。
 (実施例5)
 ガラス素材4を用いて、公知の方法により、荒ずり工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。このガラス基板前駆体に対し、実施例1と同じ条件で粗研磨工程、洗浄工程、精密研磨工程を実施した。
 (実施例6)
 ガラス素材4を用いて、公知の方法により、荒ずり工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。このガラス基板前駆体に対し、実施例1と同じ条件で粗研磨工程を実施した。次いで、以下の条件で洗浄工程を実施した。
 粗研磨工程後のガラス基板前駆体をアルカリ洗剤、硝酸、アルカリ洗剤、HFの順で洗浄した。各洗浄時において印可した超音波は、それぞれアルカリ洗剤(US40kHz)、硝酸(US80kHz)、アルカリ洗剤(950kHz)、HF(170kHz)とした。各槽、特に、アルカリ洗剤(950kHz)の超音波槽は、脱気を行い、洗浄した。その後、実施例1と同様に精密研磨工程を実施した。
 (実施例7~11)
 ガラス素材3を用いて、公知の方法により、荒ずり工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。このガラス基板前駆体に対し、実施例1の粗研磨工程、洗浄工程、精密研磨工程を実施した。
 また、(2)式の効果を確認するため、(c)の値を上記条件で2.7μm(実施例7)、2.1μm(実施例8)、1.4μm(実施例9)、0.9μm(実施例10)、0.4μm(実施例11)となるように、取り代(Y)をそれぞれ1.5μm(実施例7)、1.2μm(実施例8)、0.8μm(実施例9)、0.5μm(実施例10)、0.2μm(実施例11)に変更した。
 (比較例1)
 ガラス素材4を用いて、公知の方法により、荒ずり工程、端面鏡面研磨工程、ラッピング工程を施して、ガラス基板前駆体を得た。このガラス基板前駆体に対し、実施例1の粗研磨工程を施した。
 次いで、実施例1の洗浄工程に代えて、クエン酸、スルファミン酸、HFを混合した洗浄液を使用し、120kHzの超音波を印加して洗浄し、比較例とした。また、洗浄工程では、上記条件で(c)が2.9μmとなるように循環使用の諸元を設定した。その後、実施例1と同一条件で、精密研磨工程を実施した。
 (評価方法)
 各実施例1~11、比較例1~2において、精密研磨工程での循環使用回数の可否をセリウム量や表面粗さで評価した。
 セリウム量を検査する方法としては、得られたガラス基板表面のセリウム付着量(Q)ng/cm、を一般的な高周波誘導結合プラズマ質量分析装置(ICP-MS)で計測し、10枚分の平均値を演算した。
 また、精密研磨工程でのスラリーの循環使用を20回実行し、5回目、7回目、20回目のときの良否を◎、○、△、×の四段階で評価した。評価は、各循環回数(5回目、7回目、20回目)での表面粗さRaで行う。表面粗さRaは、洗浄処理を終えたガラス基板の主表面の縦5μm、横5μmの正方形領域の表面粗さであり、原子間力顕微鏡(AFM)で10枚のガラス基板を観察し、下記のように評価した。
 ◎:表面粗さRaの平均が0.3Ånm以上1.0Å未満である。
 ○:表面粗さRaの平均が1.0Å以上1.5Å未満である。
 △:表面粗さRaの平均が1.5Å以上2.0Å未満である。
 ×:表面粗さRaの平均が2.0Å以上である。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、酸化セリウムを0.01~2質量%含有するガラス素材を粗研磨し、ガラス素材表面のセリウム量が0.125ng/cm以下となるように精密研磨した実施例1~11は、精密研磨工程でのスラリの循環使用を20回にしても優れた評価結果を示した。一方で、ガラス素材表面のセリウム量を0.125ng/cmより大きい値となるように精密研磨した比較例1は、いずれのスラリ使用回数時にも評価に劣る結果となった。
 上述した実施の形態は、本発明の好ましい具体例を例示したものに過ぎず、本発明は上述した実施形態に限定されない。本発明の特許請求の範囲内で種々の変更が可能であることはいうまでもない。
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 本発明は、酸化セリウムを0.01~2質量%含有するガラス素材を粗研磨する粗研磨工程と、前記ガラス素材表面のセリウム量が0.125ng/cm2 以下となるように前記粗研磨工程後のガラス素材を洗浄する洗浄工程と、コロイダルシリカを含む研磨材を循環使用して前記洗浄工程後のガラス素材を精密研磨する精密研磨工程と、を備えることを特徴とする情報記録媒体用ガラス基板の製造方法である。「ガラス素材表面のセリウム量」は、粗研磨工程で残存した表面の酸化セリウムのみならず、ガラス素材から溶出した酸化セリウムも含む概念である。この態様では、精密研磨工程を行う前に、ガラス素材表面の酸化セリウムが少量(0.125ng/cm以下)となるように粗研磨後のガラス素材を洗浄しているので、コロイダルシリカが凝集する原因となる酸化セリウムが少なくなり、研磨材の循環使用回数を増加し、生産性を向上することが可能となる。さらに、洗浄工程が精密研磨工程の前に施されるので、酸化セリウムを0.01~2質量%含有するガラス素材を用いても、精密研磨工程でのスラリーの凝集を抑制することができる。従って、環境に配慮した素材を用いても、生産性の向上を高めることが可能になる。加えて、精密研磨工程の前にガラス素材に付着しているセリウムが少量となるので、最終のガラス基板の清潔性を確保することができる。さらに、酸化セリウムは難溶性であるため強い酸が必要である。しかしながら強い酸は、ガラス基板(ガラス素材)の平滑性を悪化させる。しかるに本態様では、最終の精密研磨工程の前に洗浄工程を実行し、セリウムを溶解洗浄することができるので、強い酸を使用しても、ガラス基板の平滑性に悪影響を及ぼすこともない。また、最終品であるガラス基板の平滑性も向上する。
 好ましい態様において、前記精密研磨工程における前記洗浄工程後のガラス素材の取り代は、0.2μm~2μmであり、かつ前記精密研磨工程に研磨材として使用されるスラリーの容量を(a)リットル、研磨される前記ガラス素材の枚数を(b)枚、前記ガラス素材の酸化セリウム含有量を(X)質量%、前記取り代を(Y)μmとし、
   Z=Y×基板面積(cm)×基板密度(g/cm)・・・(1)
 とすると、前記精密研磨工程は、
   (X×Z)×b÷a<3(μg/l)・・・(2)
になるように前記研磨材を循環使用する。この態様では、精密研磨工程で研磨材として用いられるスラリーの循環使用回数を管理するに当たり、研磨されるガラス素材の酸化セリウムにも配慮して、好適な最大の循環使用回数を求めることが可能になる。
 好ましい態様において、前記粗研磨工程は、酸化セリウムを研磨材として使用する。この態様では、酸化セリウムの研磨機構により、ガラス素材の表面でSiが切り離され、生産性の高い研磨を実現することができる。しかも、残存している酸化セリウムは、洗浄工程で相当量除去されるので、ガラス素材の清潔性を高く維持することができるばかりでなく、洗浄工程の後で行われる精密研磨工程の研磨材に悪影響を及ぼすことも可及的に抑制することが可能となる。従って、高い平滑性、高い清潔性、並びに高い生産性を維持することができる。
 好ましい態様において、前記ガラス素材は、以下の組成を有している。
 SiO:55質量%から75質量%、
 Al:5質量%から18質量%、
 LiO:1質量%から10質量%、
 NaO:3質量%から15質量%、
 KO:0.1質量%から5質量%、
 但し、LiO+NaO+KOの総量:10質量%から25質量%、
 MgO:0.1質量%から5質量%、
 CaO:0.1質量%から5質量%、
 ZrO:0質量%から8質量%であり、
 0.10≦(MgO+CaO)/(Li2 O+Na2 O+K2 O)≦0.80。
 別の好ましい態様において、前記ガラス素材は、
 SiO+Al+B2 O2 の総量:65質量%から90質量%、
   但し、SiO:45質量%から75質量%、
      Al:1質量%から20質量%、
      B:0質量%から8質量%、
 ROの総量:7質量%から20質量%、
   但し、R=Li、Na、K、
 R’Oの総量:0.1質量%から12質量%、
   但し、R’=Mg、Ca、Sr、Ba、Zn、
 TiO2 +ZrO2 の総量:0.5質量%から10質量%、
 を含有するガラス素材であって、V、Mn、Ni、Mo、Sn、Ce及びBiからなる群の中から選ばれる少なくとも1種の多価元素を含有し、
 前記多価元素の酸化物が、それぞれ、V、MnO、Ni、MoO、SnO、CeO、Biであるとした場合における、前記多価元素の酸化物の総量の、TiO+ZrOの総量に対するモル比率(前記多価元素の酸化物の総量/(TiO+ZrOの総量))が、0.05~0.50の範囲である。
 以上説明したように、本発明によれば、精密研磨工程を行う前に、ガラス素材に付着しているセリウムが少量となるように粗研磨後のガラス素材を洗浄しているので、研磨材の循環使用回数を増加し、生産性を向上することが可能となる。また、最終品であるガラス基板の平滑性が向上する。さらに、酸化セリウムを0.01~2質量%含有するガラス素材を用いても、精密研磨工程での研磨材の凝集を抑制することができる。従って、環境に配慮した素材を用いても、生産性の向上を高めることが可能になる。加えて、最終のガラス基板の清潔性を確保することができ、強い酸を使用しても、ガラス基板の平滑性に悪影響を及ぼすこともない。従って、本発明によれば、高い平滑性、高い清潔性、並びに高い環境保全性を確保することができ、しかも、酸化セリウムを組成に含むガラス素材を精密研磨加工する際に、コロイダルシリカを循環使用できる回数を増加し、もって生産性を格段に高めることができるという顕著な効果を奏する。
 以上の情報記録媒体用ガラス基板の製造方法によって製造された情報記録媒体用ガラス基板ものである。
 この出願は、2010年3月29日に出願された日本国特許出願特願2010-75324を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。

Claims (6)

  1. 酸化セリウムを0.01~2質量%含有するガラス素材を粗研磨する粗研磨工程と、
     前記ガラス素材表面のセリウム量が0.125ng/cm2 以下となるように前記粗研磨工程後のガラス素材を洗浄する洗浄工程と、
     コロイダルシリカを含む研磨材を循環使用して前記洗浄工程後のガラス素材を精密研磨する精密研磨工程と、
     を備えることを特徴とする情報記録媒体用ガラス基板の製造方法。
  2. 請求項1記載の上記ガラス基板の製造方法において、
     前記精密研磨工程における前記洗浄工程後のガラス素材の取り代は、0.2~2μmであり、
     かつ、前記精密研磨工程に研磨材として使用されるスラリーの容量を(a)リットル、研磨される前記ガラス素材の枚数を(b)枚、前記ガラス素材の酸化セリウム含有量を(X)質量%、前記取り代を(Y)μmとし、
      Z=Y×基板面積(cm)×基板密度(g/cm)・・・(1)
     とすると、前記精密研磨工程は、
      (X×Z)×b÷a<3(μg/l)・・・(2)
    になるように前記研磨材を循環使用することを特徴とする上記ガラス基板の製造方法。
  3. 請求項1又は2記載の情報記録媒体用ガラス基板の製造方法において、
     前記粗研磨工程は、酸化セリウムを研磨材として使用することを特徴とする情報記録媒体用ガラス基板の製造方法。
  4. 請求項1から3の何れか1項に記載の情報記録媒体用ガラス基板の製造方法において、
     前記ガラス素材は、以下の組成を有していることを特徴とする情報記録媒体用ガラス基板の製造方法。
     SiO:55質量%から75質量%、
     Al :5質量%から18質量%、
     LiO:1質量%から10質量%、
     NaO:3質量%から15質量%、
     KO:0.1質量%から5質量%、
     但し、LiO+NaO+KOの総量:10質量%から25質量%、
     MgO:0.1質量%から5質量%、
     CaO:0.1質量%から5質量%、
     ZrO:0質量%から8質量%であり、
     0.10≦(MgO+CaO)/(LiO+NaO+KO)≦0.80。
  5. 請求項1から3の何れか1項に記載の情報記録媒体用ガラス基板の製造方法において、
     前記ガラス素材は、
     SiO+Al+Bの総量:65質量%から90質量%、
       但し、SiO:45質量%から75質量%、
          Al:1質量%から20質量%、
          B:0質量%から8質量%、
     ROの総量:7質量%から20質量%、
       但し、R=Li、Na、K、
     R’Oの総量:0.1質量%から12質量%、
       但し、R’=Mg、Ca、Sr、Ba、Zn、
     TiO+ZrOの総量:0.5質量%から10質量%、
     を含有するガラス素材であって、V、Mn、Ni、Mo、Sn、Ce及びBiからなる群の中から選ばれる少なくとも1種の多価元素を含有し、
     前記多価元素の酸化物が、それぞれ、V、MnO、Ni、MoO、SnO、CeO、Biであるとした場合における、前記多価元素の酸化物の総量の、TiO+ZrOの総量に対するモル比率(前記多価元素の酸化物の総量/(TiO+ZrOの総量))が、0.05~0.50の範囲である
     ことを特徴とする情報記録媒体用ガラス基板の製造方法。
  6. 請求項1から5の何れか1項に記載の情報記録媒体用ガラス基板の製造方法によって製造された情報記録媒体用ガラス基板。
PCT/JP2011/001410 2010-03-29 2011-03-10 情報記録媒体用ガラス基板の製造方法 WO2011121903A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/638,748 US8966939B2 (en) 2010-03-29 2011-03-10 Method for producing glass substrate for information recording medium
JP2012505904A JP5333656B2 (ja) 2010-03-29 2011-03-10 情報記録媒体用ガラス基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010075324 2010-03-29
JP2010-075324 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011121903A1 true WO2011121903A1 (ja) 2011-10-06

Family

ID=44711673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001410 WO2011121903A1 (ja) 2010-03-29 2011-03-10 情報記録媒体用ガラス基板の製造方法

Country Status (3)

Country Link
US (1) US8966939B2 (ja)
JP (1) JP5333656B2 (ja)
WO (1) WO2011121903A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083597A (ja) * 2012-10-19 2014-05-12 Asahi Glass Co Ltd ガラス基板の研磨方法
JP2014083598A (ja) * 2012-10-19 2014-05-12 Asahi Glass Co Ltd ガラス基板の研磨方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6332041B2 (ja) * 2014-01-20 2018-05-30 信越化学工業株式会社 合成石英ガラス基板の製造方法
US10663684B2 (en) 2016-03-23 2020-05-26 CommScope Connectivity Belgium BVBA Module and enclosure for use therein

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051099A (ja) * 2003-07-30 2005-02-24 Ses Co Ltd 基板の洗浄方法
JP2005203507A (ja) * 2004-01-14 2005-07-28 Siltronic Japan Corp 半導体ウェーハの加工方法および半導体ウェーハ処理装置
JP2009157968A (ja) * 2007-12-25 2009-07-16 Hoya Corp 磁気ディスク用ガラス基板の製造方法
JP2009193608A (ja) * 2008-02-12 2009-08-27 Konica Minolta Opto Inc 情報記録媒体用ガラス基板の製造方法、情報記録媒体用ガラス基板及び磁気記録媒体
WO2009116278A1 (ja) * 2008-03-19 2009-09-24 Hoya株式会社 磁気記録媒体基板用ガラス、磁気記録媒体基板、磁気記録媒体およびそれらの製造方法
JP2010001201A (ja) * 2007-12-21 2010-01-07 Ohara Inc 結晶化ガラス

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4071309B2 (ja) * 1995-11-14 2008-04-02 Hoya株式会社 磁気ディスク用ガラス基板及びその製造方法、並びに磁気ディスクメディアの製造方法
JP2000343390A (ja) * 1999-06-04 2000-12-12 Nippon Sheet Glass Co Ltd ガラス基板の処理方法
JP4310884B2 (ja) 2000-05-12 2009-08-12 株式会社デンソー 研磨方法、研磨剤組成物及び研磨装置
JP2002150547A (ja) * 2000-11-06 2002-05-24 Nippon Sheet Glass Co Ltd 情報記録媒体用ガラス基板の製造方法
JP4947754B2 (ja) * 2001-03-27 2012-06-06 日本板硝子株式会社 情報記録媒体用基板及びその製造方法、情報記録媒体、並びにガラス素板
JP5283247B2 (ja) * 2005-12-22 2013-09-04 花王株式会社 ガラス基板用研磨液組成物
JP2008246645A (ja) 2007-03-30 2008-10-16 Konica Minolta Opto Inc 研磨装置
JPWO2009157306A1 (ja) * 2008-06-25 2011-12-08 旭硝子株式会社 磁気ディスク用ガラス基板の両面研磨装置、研磨方法及び製造方法
WO2010001743A1 (ja) 2008-07-03 2010-01-07 旭硝子株式会社 ガラス基板の研磨方法及び製造方法
MY158962A (en) * 2008-09-30 2016-11-30 Hoya Corp Glass substrate for a magnetic disk and magnetic disk
JP5326866B2 (ja) * 2009-06-30 2013-10-30 日産自動車株式会社 駆動力配分装置のトランクション伝動容量制御装置
US8585463B2 (en) * 2010-06-29 2013-11-19 Konica Minolta Advanced Layers, Inc. Process for producing glass substrate for information recording medium
US8903167B2 (en) 2011-05-12 2014-12-02 Microsoft Corporation Synthesizing training samples for object recognition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051099A (ja) * 2003-07-30 2005-02-24 Ses Co Ltd 基板の洗浄方法
JP2005203507A (ja) * 2004-01-14 2005-07-28 Siltronic Japan Corp 半導体ウェーハの加工方法および半導体ウェーハ処理装置
JP2010001201A (ja) * 2007-12-21 2010-01-07 Ohara Inc 結晶化ガラス
JP2009157968A (ja) * 2007-12-25 2009-07-16 Hoya Corp 磁気ディスク用ガラス基板の製造方法
JP2009193608A (ja) * 2008-02-12 2009-08-27 Konica Minolta Opto Inc 情報記録媒体用ガラス基板の製造方法、情報記録媒体用ガラス基板及び磁気記録媒体
WO2009116278A1 (ja) * 2008-03-19 2009-09-24 Hoya株式会社 磁気記録媒体基板用ガラス、磁気記録媒体基板、磁気記録媒体およびそれらの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083597A (ja) * 2012-10-19 2014-05-12 Asahi Glass Co Ltd ガラス基板の研磨方法
JP2014083598A (ja) * 2012-10-19 2014-05-12 Asahi Glass Co Ltd ガラス基板の研磨方法

Also Published As

Publication number Publication date
JP5333656B2 (ja) 2013-11-06
US20130029099A1 (en) 2013-01-31
JPWO2011121903A1 (ja) 2013-07-04
US8966939B2 (en) 2015-03-03

Similar Documents

Publication Publication Date Title
JP4993046B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP5177087B2 (ja) 情報記録媒体用ガラス基板及びその製造方法、磁気記録媒体
US7927186B2 (en) Method for producing glass substrate for magnetic disk
JP4336524B2 (ja) 情報記録媒体用ガラス基材の製造方法
JP4243307B2 (ja) ガラス基板の加工方法及びガラス基板加工用リンス剤組成物
JP2001089749A (ja) 研磨用組成物
JP4560789B2 (ja) 磁気ディスク基板の研磨方法
JP5333656B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP4115722B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP4713064B2 (ja) 情報記録媒体用ガラス基板の製造方法及びその製造方法で製造された情報記録媒体用ガラス基板
CN102906814B (zh) 信息记录介质用玻璃基板的制造方法及磁盘的制造方法
JP5906823B2 (ja) 磁気記録媒体用ガラス基板の製造方法
JP6419578B2 (ja) ハードディスク用ガラス基板の製造方法
WO2013118648A1 (ja) ガラス製品の製造方法および磁気ディスクの製造方法
JP4954338B1 (ja) ガラス製品の製造方法
JP5719833B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP2004002163A (ja) 化学強化ガラスの製造方法、および情報記録媒体用ガラス基板の製造方法
JP2016059973A (ja) 研磨スラリーの再生方法、基板の製造方法
JP5636243B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP2012079365A (ja) 情報記録媒体用ガラス基板の製造方法
WO2012133374A1 (ja) 磁気ディスク用ガラス基板の製造方法
JP2013025841A (ja) ガラス基板の製造方法
JP2009176344A (ja) 情報記録媒体用ガラス基板の製造方法
JP2011110637A (ja) 磁気ディスク用ガラス基板の製造方法
WO2012133373A1 (ja) 磁気ディスク用ガラス基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762156

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505904

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13638748

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11762156

Country of ref document: EP

Kind code of ref document: A1