WO2011118515A1 - 表示装置および表示装置用アレイ基板の製造方法 - Google Patents

表示装置および表示装置用アレイ基板の製造方法 Download PDF

Info

Publication number
WO2011118515A1
WO2011118515A1 PCT/JP2011/056522 JP2011056522W WO2011118515A1 WO 2011118515 A1 WO2011118515 A1 WO 2011118515A1 JP 2011056522 W JP2011056522 W JP 2011056522W WO 2011118515 A1 WO2011118515 A1 WO 2011118515A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
reference signal
source electrode
oxide semiconductor
Prior art date
Application number
PCT/JP2011/056522
Other languages
English (en)
French (fr)
Inventor
豪 鎌田
青森 繁
井出 哲也
誠二 大橋
昇平 勝田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/635,507 priority Critical patent/US20130001546A1/en
Priority to CN2011800154112A priority patent/CN102822884A/zh
Priority to JP2012506977A priority patent/JPWO2011118515A1/ja
Publication of WO2011118515A1 publication Critical patent/WO2011118515A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate

Definitions

  • the present invention relates to a display device using an oxide semiconductor as a switching element and a method for manufacturing an array substrate for a display device.
  • a thin film transistor provided on a TFT substrate requires at least three types of electrodes (source electrode, drain electrode, and gate electrode).
  • the gate constituting the thin film transistor has low resistance
  • the source / drain has low resistance
  • the source / drain and the gate are insulated
  • the pixel electrode is transparent, connected to the drain, Insulation is required.
  • an a-Si type thin film transistor applied to a thin film transistor on a TFT substrate requires an n + a-Si layer at a connection portion with an electrode metal so that there is no Schottky barrier.
  • FIG. 21A a first photolithography process is performed when a gate electrode 101 having a desired shape is formed after forming a laminated film of Al and Mo on an insulating substrate 100.
  • a gate insulating film 102 made of SiN, an a-Si layer 103, and an n + a-Si layer (P-doped layer) 105 are stacked by a CVD method.
  • FIG. 21B a gate insulating film 102 made of SiN, an a-Si layer 103, and an n + a-Si layer (P-doped layer) 105 are stacked by a CVD method.
  • element separation is performed on the a-Si layer 103 and the n + a-Si layer 105 by the second photolithography process, and the element portion 106 corresponding to the upper side of the gate electrode 101 is formed.
  • film formation Mo / Al / Mo laminated film
  • channel etching and source / drain formation are performed.
  • a third photolithography step is performed when the channel portion 117, the source electrode 108, and the drain electrode 109 are formed.
  • a SiN protective film 110 is formed by a CVD method, and a contact hole 111 reaching the drain electrode 109 is formed by a fourth photolithography process.
  • a fifth photolithography process is performed when the pixel electrode 112 connected to the drain electrode 109 through the contact hole 111 is formed. I do.
  • the five-mask process is necessary, and the film formation by the CVD method is necessary twice.
  • FIG. 22A a first photolithography process is performed when a gate electrode 121 having a desired shape is formed after a laminated film of Al and Mo is formed on an insulating substrate 120. Thereafter, as shown in FIG. 22B, a gate insulating film 122 made of SiN, an a-Si layer 123, and a protective layer 125 are laminated by a CVD method. Next, as shown in FIG. 22C, the a-Si layer 123 and the protective layer 125 are separated from each other by a second photolithography process to form a corresponding element portion 126 above the gate electrode 121.
  • a film Mo / Al / Mo laminated film
  • the source / drain is formed so as to partially cover the element portion 126.
  • a third photolithography process is performed when the source electrode 128 and the drain electrode 129 are formed.
  • an n + a-Si layer 124 is interposed between the source electrode 128 and the element portion 126 and between the drain electrode 129 and the element portion 126.
  • a protective film 130 of SiN is formed by a CVD method, and a contact hole 131 reaching the drain electrode 129 is formed by a fourth photolithography process.
  • a fifth photolithography step is performed when the pixel electrode 132 connected to the drain electrode 129 through the contact hole 131 is formed. I do.
  • the five-mask process is necessary, and the film formation by the CVD method is necessary twice.
  • FIG. 23A when a gate electrode 141 having a desired shape is formed after a laminated film of Al and Mo is formed on an insulating substrate 140, a first photolithography process is performed. Thereafter, as shown in FIG. 23B, a gate insulating film 142 made of SiN, an a-Si layer 143, an n + a-Si layer 145, and a source / drain forming electrode film (Mo / Al / Mo laminated film) 146 Are stacked by the CVD method. Next, as shown in FIG.
  • element isolation is performed on the electrode layer 146, the n + a-Si layer 145, and the a-Si layer 143 by the second photolithography process, and the gate electrode 141 is positioned above the gate electrode 141. A corresponding element portion 144 is formed. Thereafter, channel etching and source / drain formation are performed. Then, as shown in FIG. 23D, when forming the channel portion 147, the source electrode 148, and the drain electrode 149, the second photolithography process is used without increasing the photolithography process by halftone exposure. Process. In this halftone exposure, the structure shown in FIG. 23D can be obtained by performing ashing while changing the film thickness of the partially remaining resist 155.
  • a protective film 150 of SiN is formed, and a contact hole 151 reaching the drain electrode 149 is formed by a third photolithography process.
  • a transparent conductive film of ITO indium tin oxide
  • fourth photolithography is performed. Perform the process.
  • a four-mask process is necessary, and film formation by the CVD method is required twice.
  • the four-mask process is currently considered to be the shortest process and is being used.
  • the pixel electrodes 161 are arranged in a matrix so as to correspond to the display region of one substrate 160 that sandwiches the liquid crystal layer.
  • the common bus line 163 is connected to the source side of the switching element 162 connected to each pixel electrode 161 arranged in the row direction (X direction in FIG. 24).
  • a gate bus line 165 is connected to the gate side of the switching elements 162 arranged in the row direction.
  • a plurality of stripe-shaped data bus lines 167 extending in the column direction (Y direction in FIG. 24) are formed on the liquid crystal layer side of the opposite substrate 166 sandwiching the liquid crystal layer.
  • a reference signal voltage (common voltage) is applied from the common bus line 163 to the pixel electrode 161 via the switching element 162 that is turned on by input from the gate bus line 165. Then, a data signal is input to the data bus line 167. Therefore, the alignment of the liquid crystal molecules existing in the intersection region between the plurality of data bus lines 167 and the pixel electrode 161 is controlled, and display is performed.
  • a liquid crystal display device of a fifth example a liquid crystal display device having a panel structure equivalent to the above-described counter data type and having a drain electrode and a source electrode as a microcrystalline or polycrystalline n + Si layer is known.
  • FIG. 27 an a-Si thin film transistor structure as shown in FIG. 27 is disclosed.
  • a drain layer 171 and a source layer 172 made of a microcrystalline or polycrystalline n + Si layer are arranged on an insulating substrate 170 made of glass with a space therebetween.
  • an a-Si: H layer (hydrogenated amorphous silicon layer) 173 is formed so as to cover them.
  • a SiN layer 175 and a gate electrode 176 are formed thereon.
  • the wiring structure described in Patent Document 2 has a plurality of scan bus lines SB.
  • Each scan bus line SB is connected to the gate G of the TFT, and the liquid crystal LC is connected to the source S of the TFT to the next scan bus line SB.
  • an n + Si layer 181 is formed on the insulating substrate 180, and patterning of the source electrode and the drain electrode is performed. I do.
  • a semiconductor layer 182 is formed, a gate insulating film 183, an Al gate electrode 185, and a gate bus line are formed and patterned into a desired shape.
  • an ITO film is formed to form display electrodes 186 and connection portions 187 as shown in FIGS. 29E and 29F, thereby completing a thin film transistor matrix.
  • a liquid crystal display device having a TFT 200 as shown in FIG. 30 is known.
  • pixel electrodes 191 are provided in a matrix on a main substrate 190.
  • a scanning signal line 192 and a reference signal line 193 are provided in parallel between the pixel electrodes 191.
  • a gate insulating film 196 and a semiconductor layer 197 are formed so as to cover the gate terminal 195 formed in part of the scanning signal line 192.
  • a part of the pixel electrode 191 is connected to one side of the semiconductor layer 197 as a drain terminal 191a.
  • a connection line 198 connected to the reference signal line 193 is connected to the other side of the semiconductor layer 197 as a source terminal 198a.
  • the pixel electrode 191 and the connection line 198, and the source terminal 198a and the drain terminal 191a are made of n + a-Si: H or microcrystalline n + silicon (see Patent Document 3).
  • the gate bus line 165 and the data bus line 167 are not stacked. Therefore, since there are few laminated short circuit line defects and there is no step over the wiring, disconnection is unlikely to occur, and it is possible to perform inspection and repair individually for each substrate, and there is an advantage that a high yield can be realized. Further, considering the substrate 160 on the side where the switching element 162 is formed, the source and the drain can be applied even with a high resistance wiring, so that it may be possible to form a film together with the pixel electrode, which seems promising.
  • the CVD method is used for forming the n + a-Si layer and the insulating film / a-Si layer.
  • the a-Si layer is defenseless against light from the back side of the glass substrate and has a problem of light leakage.
  • the film formation by the CVD method is performed because the n + a-Si layer and the insulating film / a-Si layer are formed. It only takes 2 times.
  • the n + a-Si layer cannot be said to be transparent, and a transmittance loss occurs.
  • the n + a-Si layer is too thin, problems such as disconnection, deterioration of reliability, and high resistance occur.
  • the present inventor Based on the examination of the liquid crystal display device having the conventional structure as described above, the present inventor has devised a special thin film transistor structure for the above-described counter data type liquid crystal display device. As a result, it has been found that it is possible to provide a display device that can be manufactured by a process that is simpler than that of the conventional manufacturing method, hardly cause loss of transmittance, and hardly cause a problem of light leakage. Further, based on the above-mentioned examination, the present inventor can manufacture a display device that can be manufactured by a process that is simplified compared to the conventional manufacturing method, hardly causes a loss of transmittance, and does not easily cause a problem of light leakage. The inventors have found out that they can be provided and have reached the present invention.
  • a display device includes: A first substrate; A second substrate disposed to face the first substrate; A display medium layer provided between the first substrate and the second substrate; A plurality of stripe-shaped data electrodes formed on the first substrate and extending in a column direction; A plurality of scanning lines and a plurality of reference signal lines formed on the second substrate and extending in the row direction; A plurality of pixel electrodes formed on the second substrate and arranged in a matrix; A plurality of switching elements formed on the second substrate, controlled on / off by the plurality of scanning lines, and provided between the plurality of reference signal lines and the plurality of pixel electrodes; An oxide semiconductor layer provided between the source electrode and the drain electrode, The switching element is formed by arranging a gate electrode in proximity to the oxide semiconductor layer through an insulating layer, The pixel electrode is provided connected to the source electrode or the drain electrode, The source electrode or the drain electrode to which the pixel electrode is connected is made of the same material as the pixel electrode, The source electrode and the drain electrode are formed of
  • the pixel electrode, the drain electrode, and the source electrode may be made of a reducing material of indium gallium zinc oxide.
  • the pixel electrode, the drain electrode, the source electrode, and the connection lines between these electrodes and the reference signal line are all made of a reducing material of indium gallium zinc oxide
  • the oxide semiconductor layer may be made of indium gallium zinc oxide.
  • a backlight of a light emitting diode may be attached.
  • the reference signal line and the source electrode or drain electrode of the switching element connected to the reference signal line, and the pixel electrode and the drain electrode or source electrode of the switching element connected to the pixel electrode are both transparent conductive. Consisting of a membrane,
  • the oxide semiconductor layer interposed between the source electrode and the drain electrode may be made of indium gallium zinc oxide.
  • the plurality of reference signal lines, the source electrode or drain electrode of the switching element connected to the reference signal line, and the pixel electrode and the drain electrode or source electrode of the switching element connected to the pixel electrode are both the second electrode.
  • An insulating film is formed to cover the source electrode and the drain electrode and the oxide semiconductor layer interposed therebetween, A gate electrode may be formed on the insulating film.
  • a scanning line including the gate electrode and the reference signal line are formed on the second substrate;
  • An insulating film is formed to cover the scanning line and the reference signal line,
  • An oxide semiconductor layer is formed on the insulating film and on the gate electrode,
  • a source electrode, a drain electrode, and a pixel electrode connected to any of these may be formed on the insulating film.
  • a scanning line including the gate electrode and the reference signal line are formed on the second substrate;
  • An insulating film is formed to cover the scanning line and the reference signal line,
  • An oxide semiconductor layer is formed on the insulating film and on the gate electrode,
  • a source electrode and a drain electrode, and a pixel electrode connected to any of these are formed on the insulating film,
  • the oxide semiconductor layer is made of indium gallium zinc oxide,
  • the pixel electrode, the source electrode, and the drain electrode may be made of a reducing material of indium gallium zinc oxide.
  • An array substrate manufacturing method includes: A reference signal line, a source electrode or a drain electrode connected to the reference signal line, a pixel electrode, and a drain electrode connected to the pixel electrode on a second substrate arranged to face the first substrate
  • the source electrode is formed using a transparent conductive material, Forming an oxide semiconductor layer so as to be connected to the source electrode and the drain electrode; Forming an insulating film on the oxide semiconductor layer;
  • a scan line including a gate electrode is formed on the second substrate so that the gate electrode is positioned on the insulating film between the source electrode and the drain electrode.
  • the gate electrode and the scanning line may be a metal wiring made of a metal material.
  • An array substrate manufacturing method includes: A pixel electrode and a drain electrode or a source electrode connected to the pixel electrode are formed using a transparent conductive material on a second substrate arranged to face the first substrate, Forming an oxide semiconductor layer so as to be connected to the source electrode and the drain electrode; Forming an insulating film on the oxide semiconductor layer; Forming a scan line having a gate electrode on the second substrate so that the gate electrode is positioned on the insulating film between the source electrode and the drain electrode; A reference signal line connected to the source electrode or drain electrode on the side not connected to the pixel electrode is formed on the insulating film.
  • the scanning line, the gate electrode, and the reference signal line may be metal wiring made of a metal material.
  • a method of manufacturing an array substrate according to another aspect of the present invention includes: A reference signal line, a gate electrode, and a scanning line are formed on a second substrate arranged to face the first substrate, Forming an insulating film so as to cover the reference signal line, the gate electrode, and the scanning line; Forming an oxide semiconductor layer over the insulating film on the gate electrode; A source electrode and a gate electrode sandwiching the oxide semiconductor layer on the gate electrode from both sides and a pixel electrode connected to any one of these electrodes are formed.
  • the scanning line, the gate electrode, and the reference signal line may be metal wiring made of a metal material.
  • a manufacturing method of the array substrate After forming the oxide semiconductor layer, forming a channel protective film on the oxide semiconductor layer, Perform film formation for source electrode and gate electrode formation, The film may be patterned to form a source electrode and a gate electrode.
  • a method of manufacturing an array substrate includes: A reference signal line, a gate electrode, and a scanning line are formed on a second substrate arranged to face the first substrate, Forming an insulating film so as to cover the reference signal line, the gate electrode, and the scanning line; Forming an indium gallium zinc oxide layer to occupy the insulating film on the gate electrode, the pixel electrode formation position, the gate electrode formation position, and the source electrode formation position; A portion of the indium gallium zinc oxide layer excluding the position on the gate electrode is reduced to be a conductor.
  • the scanning line, the gate electrode, and the reference signal line may be metal wiring made of a metal material.
  • the method for manufacturing the array substrate Forming a display medium layer between the first substrate and the second substrate; Forming a plurality of stripe-shaped data electrodes extending in a column direction on the first substrate; Forming a plurality of scanning lines and a plurality of reference signal lines extending in the row direction on the second substrate; Forming a plurality of pixel electrodes arranged in a matrix on the second substrate; On the second substrate, on / off is controlled by the plurality of scanning lines, and a plurality of switching elements provided between the plurality of reference signal lines and the plurality of pixel electrodes are formed, The reference signal line, the pixel electrode, and the switching element may be formed on the second substrate.
  • a stripe-shaped data electrode is provided on one substrate, a pixel electrode and a switching element arranged in a matrix on the other substrate, a scanning line for selecting the switching element, and a voltage is applied to the pixel electrode.
  • the present invention relates to a counter data type display device including a reference signal line for application.
  • an oxide semiconductor layer is provided between a source electrode and a drain electrode to form a switching element.
  • a pixel electrode and a drain electrode or a source electrode connected to the pixel electrode are formed of the same material and formed simultaneously. Therefore, it is possible to reduce the step of forming an electrode while effectively using an oxide semiconductor layer that does not cause a problem of leakage current due to light. Further, it is possible to reduce the number of processes by reducing the photolithography process at the time of manufacturing the array substrate having the switching elements.
  • FIG. 6B is a cross-sectional view taken along line B 1 -B 2 in the thin film transistor shown in FIG. 6A. It is a principal part top view which shows 2nd Embodiment of the thin-film transistor with which the display apparatus is equipped. It is a top view of the terminal part which shows 2nd Embodiment of the thin-film transistor with which the display apparatus is equipped.
  • FIG. 8B is a cross-sectional view taken along line B 3 -B 4 in the thin film transistor shown in FIG. 8A.
  • FIG. 8B is a cross-sectional view taken along line B 5 -B 6 in the thin film transistor shown in FIG. 8A. It is a figure which shows an example of the manufacturing method of the thin-film transistor of 2nd Embodiment, Comprising: It is a top view which shows the state in which the film
  • FIG. 12C is a diagram showing an example of a method for manufacturing the thin film transistor according to the second embodiment, and is a cross-sectional view taken along line B 7 -B 8 in FIG. 11A.
  • FIG. 11B is a diagram illustrating an example of a method for manufacturing the thin film transistor according to the second embodiment, and is a cross-sectional view of another portion along line B 9 -B 10 in FIG. 11A.
  • FIG. 12C is a diagram illustrating an example of a method for manufacturing the thin film transistor according to the second embodiment, and is a cross-sectional view taken along line B 11 -B 12 in FIG. 11D.
  • FIG. 12C is a diagram illustrating an example of a method for manufacturing the thin film transistor according to the second embodiment, and is a cross-sectional view taken along line B 13 -B 14 in FIG. 11D.
  • FIG. 12C is a diagram illustrating an example of a method for manufacturing the thin film transistor according to the second embodiment, and is a cross-sectional view taken along line B 15 -B 16 in FIG. 11G.
  • FIG. 12C is a diagram illustrating an example of a method for manufacturing the thin film transistor according to the second embodiment, and is a cross-sectional view taken along line B 17 -B 18 in FIG. 11G. It is a principal part top view which shows 3rd Embodiment of the thin-film transistor with which the display apparatus is equipped.
  • FIG. 12B is a cross-sectional view taken along line B 19 -B 20 of FIG. 12A. It is a figure which shows an example of the manufacturing method of the thin-film transistor of 3rd Embodiment, Comprising: It is a top view which shows the state which formed the film
  • FIG. 12B is a cross-sectional view taken along line B 19 -B 20 of FIG. 12A.
  • FIG. 12B is a cross-sectional view taken along line B 19 -B 20 of FIG. 12A.
  • FIG. 14C is a diagram showing an example of a method for manufacturing the thin film transistor according to the third embodiment and is a cross-sectional view taken along line B 21 -B 22 of FIG. 14A. It is a figure which shows an example of the manufacturing method of the thin-film transistor of 3rd Embodiment, Comprising: It is a top view which shows the state in which the insulating film, the oxide semiconductor film, and the protective film were formed. It is a figure which shows an example of the manufacturing method of the thin-film transistor of 3rd Embodiment, Comprising: It is sectional drawing of a terminal part.
  • FIG. 14C is a diagram showing an example of a method for manufacturing the thin film transistor according to the third embodiment and is a cross-sectional view taken along line B 23 -B 24 in FIG. 14D. It is a figure which shows an example of the manufacturing method of the thin-film transistor of 3rd Embodiment, Comprising: It is a top view which shows the state which etched. It is a figure which shows an example of the manufacturing method of the thin-film transistor of 3rd Embodiment, Comprising: It is sectional drawing of the terminal part of the state etched in FIG. 14G.
  • 14C is a diagram showing an example of a method for manufacturing the thin film transistor according to the third embodiment and is a cross-sectional view taken along line B 25 -B 26 in FIG. 14G. It is a figure which shows an example of the manufacturing method of the thin-film transistor of 3rd Embodiment, Comprising: It is a top view which shows the state in which the pixel electrode was formed. It is a figure which shows an example of the manufacturing method of the thin-film transistor of 3rd Embodiment, Comprising: It is sectional drawing of the terminal part of a state in which the pixel electrode was formed in FIG. FIG.
  • FIG. 14C is a view showing an example of a method for manufacturing the thin film transistor according to the third embodiment and is a cross-sectional view taken along line B 27 -B 28 of FIG. 14J. It is a principal part top view which shows 4th Embodiment of the thin-film transistor with which the display apparatus is equipped. It is a top view of the terminal part which shows 4th Embodiment of the thin-film transistor with which the display apparatus is equipped.
  • FIG. 15B is a cross-sectional view taken along line B 29 -B 30 shown in FIG. 15A. It is a figure which shows an example of the manufacturing method of the thin-film transistor of 4th Embodiment, Comprising: It is a top view which shows the state which formed the film
  • FIG. 18B is a view showing an example of a method for manufacturing the thin film transistor according to the fourth embodiment and is a cross-sectional view taken along line B 31 -B 32 of FIG. 17A. It is a figure which shows an example of the manufacturing method of the thin-film transistor of 4th Embodiment, Comprising: It is a top view which shows the state in which the insulating film and the oxide semiconductor film were formed.
  • FIG. 18C is a diagram showing an example of a method for manufacturing the thin film transistor according to the fourth embodiment and is a cross-sectional view taken along line B 33 -B 34 of FIG. 17D. It is a figure which shows an example of the manufacturing method of the thin-film transistor of 4th Embodiment, Comprising: It is a top view which shows the state which etched.
  • FIG. 18A is a view showing an example of a method of manufacturing a thin film transistor according to the fourth embodiment, and is a cross-sectional view of the main part in the same state along the line B 35 -B 36 in FIG. 17G.
  • FIG. 18A shows an example of the manufacturing method of the thin-film transistor of 4th Embodiment, Comprising: It is a top view which shows the state in which the pixel electrode was formed.
  • FIG. 18B is a view showing an example of a method for manufacturing the thin film transistor according to the fourth embodiment and is a cross-sectional view taken along line B 37 -B 38 of FIG. 17A. It is a principal part top view which shows 5th Embodiment of the thin-film transistor with which the display apparatus is equipped. It is a top view of the terminal part which shows 5th Embodiment of the thin-film transistor with which the display apparatus is equipped.
  • FIG. 18B is a cross-sectional view taken along line B 39 -B 40 shown in FIG.
  • FIG. 20A is a diagram showing an example of a method for manufacturing the thin film transistor according to the fifth embodiment, and is a fragmentary cross-sectional view taken along line B 41 -B 42 of FIG. 20A.
  • FIG. 20A is a diagram showing an example of a method for manufacturing the thin film transistor according to the fifth embodiment, and is a fragmentary cross-sectional view taken along line B 43 -B 44 of FIG. 20D.
  • FIG. 20A is a view showing an example of a manufacturing method of the thin film transistor according to the fifth embodiment and is a cross-sectional view taken along line B 45 -B 46 of FIG. 20G.
  • FIG. 20A is a view showing an example of a method for manufacturing the thin film transistor according to the fifth embodiment and is a cross-sectional view taken along line B 47 -B 48 of FIG. 20J.
  • FIG. 46 is an explanatory diagram of the liquid crystal display device.
  • FIG. 2 is an equivalent circuit diagram of the liquid crystal display device. It is a figure which shows the 5th example of the TFT substrate applied to the liquid crystal display device, Comprising: It is sectional drawing of the thin-film transistor part of a counter data type liquid crystal display device.
  • FIG. 2 is an equivalent circuit diagram of the liquid crystal display device. It is a figure which shows an example of the manufacturing process of the opposing data type liquid crystal display device shown to FIG. 27 and FIG.
  • FIG. 29A is a diagram showing an example of a manufacturing process of the counter data type liquid crystal display device shown in FIG. 27 and FIG. 28, and is a plan view showing a state where the source / drain of FIG. 29A is formed.
  • FIG. 29 is a diagram showing an example of a manufacturing process of the counter data type liquid crystal display device shown in FIGS. 27 and 28, in which an a-Si film and an n + a-Si film are separated from each other, and a pattern of a gate electrode and a gate bus line It is sectional drawing which shows the state which formed.
  • FIG. 29 is a diagram showing an example of a manufacturing process of the counter data type liquid crystal display device shown in FIG. 27 and FIG. 28, in which the a-Si film and the n + a-Si film of FIG. It is a top view which shows the state which formed this pattern.
  • It is a figure which shows an example of the manufacturing process of the opposing data type liquid crystal display device shown to FIG. 27 and FIG. 28, Comprising: It is sectional drawing which shows the state in which the pixel electrode was formed.
  • FIG. 1 is a diagram showing an outline of both substrates in a state where both substrates are opposed to each other and wirings formed on both substrates.
  • FIG. 2 is a diagram showing the wiring of the counter substrate.
  • FIG. 3 is a diagram showing wiring of the element side substrate.
  • FIG. 4 is a diagram showing a wiring structure around the pixel electrode.
  • FIG. 5 is a schematic diagram showing an entire circuit as a display device when both substrates are combined.
  • 6A and 6B are configuration diagrams illustrating an example of a thin film transistor as a switching element applied to a display device.
  • FIG. 7 is a cross-sectional view of the main part of the thin film transistor.
  • a first substrate 1 such as rectangular glass and a second substrate 2 sandwich a liquid crystal layer, an organic EL thin film layer, or the like as a display medium layer.
  • a sealing material is disposed in the peripheral portion between the first substrate 1 and the second substrate 2.
  • the liquid crystal layer is sealed by being surrounded by the substrates 1 and 2 and the sealing material.
  • illustration of the sealing material and the sealing structure is omitted, and only the main parts of the wiring elements and electrode portions formed on the substrate are shown.
  • substrate 2 are normally comprised from a transparent glass substrate etc.
  • the display method is a reflective display type, a substrate that is not transparent may be used as one of the substrates.
  • a plurality of stripe-shaped data electrodes 3 extending in the column direction (Y direction in FIG. 1) are provided on the surface of the first substrate 1 on the display medium layer side.
  • the one end 3a side in the length direction of these data electrodes 3 is extended to the peripheral side of the first substrate 1 through the extension wiring 4, so that the first substrate side terminal assembly portion 5 is formed.
  • the first board-side terminal assembly 5 is defined as a region where a driving IC 25 (FIG. 5), which will be described later, or a flexible printed board (FPC board) on which a driving IC and an electronic component are mounted, is terminal-joined. .
  • a plurality of rectangular pixel electrodes 10 are formed in a matrix on the surface (upper surface) of the second substrate 2 on the display medium layer side.
  • a plurality of pixel electrodes 10 arranged at predetermined intervals in the column direction (Y direction) are arranged so as to correspond to the data electrodes 3 on the first substrate 1 side.
  • the interval between the pixel electrodes 10 arranged in the row direction (X direction) is equal to the interval between the data electrodes 3 formed on the first substrate 1.
  • a display device is configured.
  • n is 1920 ⁇ 3
  • m is 1080 as a color display configuration using RGB color filters.
  • the number of n ⁇ m pixel electrodes 10 arranged in this embodiment can be appropriately adjusted according to the resolution required for the display device. In the present embodiment, only one example is shown. An appropriate number of arrays may be employed in accordance with the required resolution of the display device.
  • a plurality of scanning lines 11 extending in the row direction (X direction) and a plurality of reference signal lines 12 extending in the row direction are provided. Are formed along the pixel electrodes 10 arranged in a matrix.
  • Each scanning line 11 passes through the vicinity of the pixel electrode 10 and extends to the end side of the second substrate 2, and in the column direction (Y direction) on the right end side of the second substrate 2 shown in FIG. 1.
  • FIG. 3 shows a state in which m scanning lines 11 are connected to the output terminal side of the gate driver 13. For this reason, these scanning lines 11 are shown in a distinguished manner with reference numerals G1 to Gm for convenience.
  • a switching element T1 such as a thin film transistor (TFT) element is disposed between each scanning line 11 and the pixel electrode 10 adjacent thereto.
  • the gate G of each switching element T1 is connected to the scanning line 11, and the drain D of each switching element T1 is connected to the pixel electrode 10.
  • the reference signal line 12 is formed along the row direction so as to pass through the vicinity of each pixel electrode 10 in parallel with the scanning line 11, and the switching element T ⁇ b> 1 in the vicinity of each pixel electrode 10.
  • the reference signal lines 12 are connected together as an extension wiring 16 formed on the left end side of the second substrate 2.
  • the extension wiring 16 extends in the column direction on the left end side of the second substrate 2 and extends to the corner portion on the left end side of the second substrate 2.
  • a driving IC 25 for driving the display device A is terminal-connected to the first substrate-side terminal assembly 5 in the first substrate 1.
  • the driving IC 25 supplies data signals to the plurality of data electrodes 3 on the first substrate 1 side.
  • a driving IC (not shown) is also attached to the second substrate 2 side, and issues a selection command to the gate driver 13 as to whether one of the scanning lines 11 is selected.
  • a reference signal voltage can be applied.
  • the driving IC 25 connected to the first board side terminal assembly 5 and the driving IC provided on the second board 2 side may have a single IC configuration, or may be driven by an FPC board or the like. It may be a composite driving module on which an IC for use and other electronic components are mounted.
  • the detailed configurations of the IC 25 and the driving IC are not limited in the present embodiment, but in any case, a function necessary for driving the display device A may be provided.
  • the driving ICs may be provided individually on the first substrate 1 side and the second substrate 2 side, or provided on only one of the substrates, and the first substrate 1 and the second substrate 2 are provided. May be connected to each other using a conductive material or the like.
  • a color filter in which RGB colors are arranged is usually arranged between the first substrate 1 and the data electrode 3.
  • the description of the color filter is omitted.
  • a liquid crystal display device using a color-filter-on-array technology in which a color filter is provided on the second substrate 2 side is also provided. Therefore, a structure in which a color filter is provided on the second substrate 2 side can be employed.
  • FIG. 6A shows a planar configuration of the switching element (thin film transistor) T1 of the first example.
  • the source electrode 21 and the drain electrode 20 are arranged on the second insulating substrate 2 such as glass with a space therebetween.
  • the oxide semiconductor layer 22 formed in a stripe shape so as to partially cover the source electrode 21 and the drain electrode 20, and the insulating film 23 provided so as to cover the oxide semiconductor layer 22 A gate electrode 11a is formed on the substrate.
  • the source electrode 21 constitutes the source S shown in FIG.
  • the drain electrode 20 constitutes the drain D shown in FIG.
  • the gate electrode 11a constitutes the gate G shown in FIG.
  • the reference signal line 12 and the pixel electrode 10 formed on the second substrate 2 are all ITO (indium tin oxide), IZO (indium zinc oxide), IGO (indium gallium oxide). It is made of any transparent conductive material such as a transparent material obtained by reducing IGZO (indium gallium zinc oxide).
  • a drain electrode 20 is formed by extending a part of the pixel electrode 10 in a stripe shape in the column direction (Y direction) on the second substrate 2.
  • the reference signal line 12 extends on the second substrate 2 in the row direction (X direction) as described with reference to FIG. Further, a part of the reference signal line 12 is extended and formed as a connection line 12 so as to individually pass the side portion of the pixel electrode 10A.
  • the leading end side of the connection line 12 is disposed in the vicinity of the drain electrode 20 as a source electrode 21 formed in a bowl shape so as to wrap around the periphery of the distal end portion of the drain electrode 20.
  • FIG. 6A only two combinations of the pixel electrode 10, the connection line 12 disposed around the pixel electrode 10, the source electrode 21, and the drain electrode 20 are illustrated. However, this combination structure is formed on the second substrate 2 by the same number as the pixel electrodes 10 arranged in a matrix on the second substrate 2, as shown in FIG.
  • a stripe-shaped oxide semiconductor layer 22 covering a part of the drain electrode 20 and the source electrode 21 and extending by a predetermined length in the X direction so as to pass over the drain electrode 20 and the source electrode 21 is the second.
  • a scanning line 11 of metal wiring made of a metal material such as Al is formed on the oxide semiconductor layer 22 with an insulating film 23 interposed therebetween.
  • the insulating layer 23 used here is made of an insulating layer such as a SiO 2 / SiN x layer.
  • other insulating films (SiO 2 , SiN x ) used as an interlayer insulating film of the display device may be used.
  • the oxide semiconductor layer 22 used in the structure described above is made of IGZO.
  • This IGZO is an In—Ga—Zn—O-based amorphous oxide semiconductor film represented by a composition formula of InGaZnO x .
  • the intervening portion serves as a channel generation portion 22a
  • a part of the scanning line 11 is disposed on the channel generation portion 22a via the insulating film 23, and the portion serves as the gate electrode 11a.
  • a staggered switching element T1 is configured.
  • reference numeral 19 denotes a backlight including a light emitting diode (LED) 18.
  • a required number of the light emitting diodes 18 are provided in the display device A together with the light guide plate and the like. However, in FIG. 7, the light guide plate is not shown for the sake of simplicity, and only one light emitting diode 18 is shown.
  • a data signal is input to the plurality of data electrodes 3 of the first substrate 1 from the driving IC 25 connected to the first substrate-side terminal assembly 5, and the gate driver 13 is driven.
  • the scanning line 11 is selected.
  • the driving IC on the second substrate side supplies the reference signal voltage (common voltage) from the reference signal line 12 to the pixel electrode 10 connected to the switching element T1.
  • the alignment of liquid crystal molecules and the like of the liquid crystal layer existing at the intersection between the data line 3 to which the signal is input and the pixel electrode 10 to which the reference signal voltage is applied is controlled, and the light transmittance is controlled.
  • the organic EL material layer is interposed at the intersection, the light emitting property of the organic EL material is controlled. Thereby, it is possible to display a target video or the like.
  • an oxide semiconductor layer 22 made of IGZO or the like is formed on the second substrate 2, and under the oxide semiconductor layer 22, a source electrode 21 made of a transparent conductive material is formed. And a drain electrode 20 are provided.
  • the second substrate 2 exists directly under the oxide semiconductor layer 22. Therefore, when the display device is a liquid crystal display device including the backlight 19, the light of the backlight 19 is received from the back side of the second substrate 2.
  • the oxide semiconductor layer 22 of IGZO the problem of light leakage current generation can be avoided. That is, when the backlight 19 includes the light emitting diode 18 having the above-described configuration, the use of the oxide semiconductor layer 22 can suppress the generation of leakage current for the following reason.
  • IGZO is a transparent body, it absorbs light with a short wavelength (approximately 420 nm or less), which may affect the characteristics of the semiconductor.
  • the backlight 19 is a cold cathode tube, the wavelength of mercury UV light is converted with a phosphor.
  • the light emitted from the blue phosphor provided in the cold-cathode tube contains light having a wavelength of 420 nm or less, which is likely to cause a problem. Therefore, when using a cold cathode tube backlight, some shielding means such as a light shielding layer is required.
  • the backlight 19 when the backlight 19 includes the light emitting diode 18 as a light source, it is possible to configure the backlight 19 that hardly emits light of 420 nm or less. Therefore, in this case, the problem of leakage current generation in the oxide semiconductor layer 22 of IGZO can be avoided.
  • a semiconductor layer such as a-Si
  • the IGZO oxide semiconductor layer 22 when the IGZO oxide semiconductor layer 22 is used, the problem of light leakage can be avoided as described above. Therefore, the photolithography process can be simplified because it is not necessary to provide a light shielding layer.
  • the terminal portion 12b of the reference signal line 12 can be formed from a transparent conductive material such as ITO
  • the terminal portion 11b of the scanning line 11 is formed from a metal material such as Al. Can be formed.
  • a transparent conductive film made of ITO or the like is formed on the insulating second substrate 2. Thereafter, a first photolithography process for performing resist coating, exposure processing, development processing, wet etching processing, and resist stripping is performed.
  • the thin film pixel electrode 10A, the drain electrode 20, the source electrode 21, the connection line 12, and the reference signal line 12 shown in FIGS. 6A and 6B made of a transparent conductive film are formed. Therefore, the pixel electrode 10A, the drain electrode 20, the source electrode 21, the connection line 12, and the reference signal line 12 are made of the same material (the above-described transparent conductive material) and are simultaneously formed.
  • an oxide semiconductor layer of IGZO is formed by a sputtering method.
  • an insulating film 23 having a laminated structure of SiO 2 / SiN x is formed by a CVD method.
  • the scanning line 11 and the gate electrode 11a having a laminated structure of Al / Mo are formed by sputtering.
  • resist coating, exposure processing, development processing, Al / Mo layer etching processing by wet etching processing, SiO 2 / SiN x layer etching processing by dry etching processing, and IGZO oxide semiconductor layer etching processing by wet etching are performed.
  • a second photolithography process is performed. Accordingly, the switching element T1 having the structure shown in FIGS.
  • a scanning film 11 having a laminated structure of Al / Mo and a laminated film having a thickness of about 300 nm are applied as the gate electrode 11a.
  • an insulating film 23 having a thickness of about 400 nm is applied as the SiO 2 / SiN x layer for the gate.
  • an IGZO oxide semiconductor layer 22 having a thickness of about 100 nm is applied. Accordingly, the pixel electrode 10A, the drain electrode 20, the source electrode 21, and the reference signal line 12 made of ITO having a thickness of about 80 nm or 100 nm can be formed.
  • a polarizing plate or the like is attached, a source driver is mounted, and a gate driver 13 is provided on the second substrate 2. Thereby, a TFT array substrate for a display device can be obtained.
  • the pixel electrode 10A, the drain electrode 20, the source electrode 21, the connection line 12, and the reference signal line 12 made of the same material, for example, a transparent conductive material such as ITO are formed by simultaneous film formation. It is necessary to etch the oxide semiconductor layer 22 made of IGZO.
  • the selective etching of the transparent conductive material / IGZO such as ITO can be realized by using, for example, an etching solution containing any one of acetic acid, organic acid (citric acid), hydrochloric acid, and perchloric acid. That is, in the thin film semiconductor containing two or more kinds of oxides selected from IGZO, IZO, IGO, and ITO, wet etching having precision and high selectivity can be performed by using the above-described acid.
  • acetic acid As the acetic acid described above, a commercially available acetic acid solution may be used as it is, or diluted with pure water up to 4 times the volume of the stock solution. In order to maintain a high etching selectivity of IZO to IGZO, it is more desirable to dilute with pure water 0.5 to 2 times the volume of the stock solution.
  • the above-described etching process using acetic acid can be performed by immersing in an acetic acid aqueous solution.
  • the organic acid is not limited to citric acid, and may be any generally known organic acid such as malonic acid, malic acid, tartaric acid, oxalic acid, formic acid, glycolic acid, maleic acid and the like.
  • citric acid a solution obtained by completely dissolving commercially available citric acid (citric acid monohydrate, chemical formula C 3 H 4 (OH) (COOH) 3 .H 2 O, white solid crystals) with pure water. is there.
  • hydrochloric acid described above commercially available concentrated hydrochloric acid may be used as it is, or may be diluted with pure water up to 60 times the volume of the stock solution.
  • the hydrochloric acid concentration of the etching solution containing hydrochloric acid should be diluted with pure water 4 to 60 times the volume of the stock solution. Is preferred.
  • a commercially available concentrated perchloric acid solution may be used as it is, or it may be diluted with pure water up to 20 times the volume of the stock solution.
  • a preferable perchloric acid concentration can be diluted with pure water 1 to 20 times the volume of the stock solution.
  • a gate insulating film for example, a silicon nitride film, which is usually used cannot be etched with the above-mentioned acidic etching solution, that is, any one solution of acetic acid, organic acid, hydrochloric acid or perchloric acid.
  • the dielectric material such as silicon oxide, silicon nitride oxide, HfO 2 , HfAlO, HfSiON, Y 2 O 3 or the like is not etched by the acidic etchant as a gate insulating film instead of the silicon nitride film, It can be applied to the switching element T1.
  • the etching rate difference of ITO with respect to IZO, IGZO, and IGO can be controlled to be different by 3 digits in units of nm / min.
  • the etching rate of IZO, IGZO, and IGO can be controlled from 0.05 to 0.06 nm / min with respect to the etching rate of 0.5 to 10 nm / min, etching can be performed at a suitable selection ratio.
  • citric acid and perchloric acid can also be used for an etching process having a similar etching rate difference.
  • the number of film formation processes by sputtering is 3, the number of film formation processes by CVD is 1, the number of photolithography processes is 2, the number of dry etching processes is 1, and the number of wet etching processes is 1.
  • the switching element T1 can be formed on the second substrate 2. That is, according to the manufacturing method described above, the switching element T1 can be manufactured by setting the film forming process by the CVD method as one process and the photolithography process as two processes. Therefore, as compared with the manufacturing method in which the photolithography process of 4 to 5 steps and the film formation by the CVD method of 2 steps are required as in the prior art described above, the process can be saved. Therefore, the manufacturing cost of the thin film transistor array substrate for the display device can be reduced.
  • the pixel electrode 10A, the drain electrode 20, the source electrode 21, the connection line 12, and the reference signal line 12 are made of ITO, but these are made conductive by reducing IGZO with hydrogen. You may comprise with the material which did.
  • the oxide semiconductor layer 22 is also formed using IGZO. For this reason, the process for forming the ITO film can be omitted and the process for forming the IGZO film can be shared, and further process saving can be promoted.
  • FIGSecond Example of Switching Element> 8A to 10 are diagrams showing a second example of the switching element applied to the array substrate according to the present invention.
  • the switching element T2 of the second example is an example in which the reference signal line portion of the switching element T1 of the first example described above is configured differently. Other structures are the same as those of the first example described above.
  • FIG. 8A shows a planar configuration of the switching element (thin film transistor) T2 of the second embodiment.
  • the pixel electrode 10A formed on the insulating second substrate 2 such as glass is made of the same transparent conductive material as that of the first embodiment described above.
  • the pixel electrode 10A is formed in a rectangular shape as a whole, a drain electrode 20 is formed by extending a part of the pixel electrode 10A in a stripe shape.
  • the reference signal line 12 ⁇ / b> B extends in the row direction (X direction) on the second substrate 2. Further, a part of the reference signal line 12B is extended and formed as a connection line 12a so as to individually pass the side part of the pixel electrode 10. The distal end side of the connection line 12 a is disposed in the vicinity of the drain electrode 20 as a source electrode 21 formed in a bowl shape so as to go around one end of the drain electrode 20.
  • the reference signal line 12B has a portion extending in the row direction (X direction) formed on the insulating film 23 as a metal wiring made of a metal material such as aluminum.
  • connection line 12a is made of a transparent conductive material on the second substrate 2 in the same manner as the structure of the first embodiment described above. Therefore, as shown in FIG. 10, the reference signal line 12 ⁇ / b> B and the connection line 12 a are electrically connected by a conductive portion 25 that occupies a contact hole 24 formed so as to penetrate the oxide semiconductor layer 22 and the insulating film 23. It is connected to the.
  • a stripe-shaped oxide semiconductor layer 22 covering a part of the drain electrode 20 and the source electrode 21 and extending in the X direction so as to pass over the drain electrode 20 and the source electrode 21 is formed on the second substrate 2.
  • a scanning line 11 of metal wiring made of a metal material such as Al is formed on the oxide semiconductor layer 22 with an insulating film 23 interposed therebetween.
  • a part of the oxide semiconductor layer 22 is interposed between the source electrode 21 and the drain electrode 20, so that the interposed part is a channel generation unit 22 a.
  • a part of the scanning line 11 is arranged on the channel generation part 22a via the insulating film 23, and the part is used as the gate electrode 11a, so that the switching element T2 is configured. This is the same as the embodiment described above.
  • the switching element T2 of the second example an effect equivalent to that of the switching element T1 of the above-described embodiment can be obtained.
  • the switching element T2 of the second embodiment is different from the above-described embodiment in that the reference signal line 12B is a metal wiring. Therefore, the reference signal line 12B can be a low resistance wiring. Therefore, even when the reference signal line 12B becomes long when applied to a large display device, problems such as signal delay due to an increase in wiring resistance hardly occur, and even a large display device can cope with it without any problem.
  • Has characteristics. 8B in order to connect the layer 26 made of a transparent conductive material such as ITO and the terminal 27, a contact hole 28 is formed in the insulating film 23 to form a conductive portion 29. To do. Thereby, the upper and lower layers can be conducted through the insulating film 23.
  • a transparent conductive film made of ITO is formed on the insulating second substrate 2. Thereafter, a first photolithography process for performing resist coating, exposure processing, development processing, wet etching processing, and resist stripping is performed. As a result, the pixel electrode 10A, the drain electrode 20, the source electrode 21, and the connection line 12 having a planar shape shown in FIG. 11A made of a transparent conductive film are formed. Therefore, the pixel electrode 10A, the drain electrode 20, the source electrode 21, and the connection line 12 are made of the same material and are simultaneously formed.
  • an oxide semiconductor layer of IGZO is formed by a sputtering method.
  • the insulating film 23 having a laminated structure of SiO 2 / SiN x is formed by a CVD method.
  • a second photolithographic process is performed in which the SiO 2 / SiN x layer is etched by resist coating, exposure, development, and dry etching, and the IGZO oxide semiconductor layer is etched by wet etching. 24 is formed.
  • a scanning line 11 and a gate electrode 11a having a laminated structure of Al / Mo are formed by sputtering.
  • the switching element T2 having the structure shown in FIGS. 8A, 8B, 9, and 10 can be formed on the second substrate 2. Furthermore, a TFT array substrate can be obtained by providing the gate driver 13.
  • the number of deposition processes by sputtering is 3, the number of deposition processes by CVD is 1, the number of photolithography processes is 3, the number of dry etching processes is 1, and the wet process is 1
  • the number of etching steps is 3.
  • the switching element T ⁇ b> 2 can be formed on the second substrate 2. That is, according to the manufacturing method described above, the switching element T2 can be manufactured by setting the film forming process by the CVD method as one process and the number of photolithography processes as three processes. Therefore, as compared with the manufacturing method in which 4 to 5 photolithography steps and film formation by the CVD method of 2 steps are required as in the conventional technique described above, the process can be saved. Therefore, the manufacturing cost of the thin film transistor array substrate for the display device can be reduced.
  • FIG. 12A shows a planar configuration of a switching element (thin film transistor) T3 of the third example.
  • the switching element T3 of the third example is described with reference signal lines 12C and scanning lines 11B formed on the insulating second substrate 2 on the second substrate 2 with reference to FIG. As described above, it extends in the row direction (X direction).
  • the reference signal line 12C and the scanning line 11B are metal wirings made of a metal material such as Al.
  • a gate electrode 31 having a convex shape in plan view is formed in the vicinity of the pixel electrode of each scanning line 11B.
  • An insulating film 33 is formed to cover the reference signal line 12C and the scanning line 11B.
  • An island-shaped oxide semiconductor layer 35 and a channel protective layer 36 are stacked on the insulating film 33 and above the gate electrode 31.
  • a pixel electrode 10B made of a transparent conductive film such as ITO is formed on the insulating film 33.
  • a drain electrode 37 extending from the pixel electrode 10 ⁇ / b> B is formed so as to cover one side end portions of the oxide semiconductor layer 35 and the channel protective layer 36.
  • a connection line 38 extends from a part of the reference signal line 12C located near the pixel electrode 10B to a position near the gate electrode 31 along the insulating film 33.
  • One end of the connection line 38 is formed so as to cover the other end of the oxide semiconductor layer 35 and the channel protective layer 36, and a source electrode 39 is formed.
  • the end of the connection line 38 on the reference signal line 12C side is connected to the reference signal line 12C through a contact hole 40 formed in the insulating film 33.
  • the oxide semiconductor layer 35 is interposed between the source electrode 39 and the drain electrode 37, and the gate electrode 31 is disposed under the oxide semiconductor layer 35, whereby the inverted stagger type switching element T ⁇ b> 3. Is formed.
  • FIG. 12B is a diagram illustrating the configuration of the terminal portion of the wiring portion.
  • the insulating film covers the terminal portion 34C.
  • a terminal conductor 34E made of a transparent conductive material such as ITO is connected through a contact hole 34D formed in the insulating film.
  • the resistance of the reference signal line 12C and the scanning line 11B can be reduced as a metal wiring made of a metal material. Therefore, as in the case of the second example described above, there is an effect that can be applied even to a large liquid crystal display device.
  • the structure of the switching element T3 according to the present embodiment is used, it is possible to easily dispose an anti-static diode around the second substrate 2. Further, since it has an inverted staggered structure, it has a feature that it has high compatibility with a general liquid crystal display manufacturing facility and is easy to manufacture.
  • the backlight 19 is the light-emitting diode 18 having the above-described configuration, the use of the oxide semiconductor layer 22 can reduce the occurrence of leakage current particularly in the visible light region. it can.
  • an Al / Mo laminated film is formed on the insulating second substrate 2 as shown in FIGS. 14A and 14C. Then, a first photolithography process is performed in which the Al / Mo layer is etched by resist coating, exposure processing, development processing, wet etching processing, and resist peeling. As a result, the scanning line 11B having the gate electrode 31 and the terminal portion 34C connected to the reference signal line 12C and the terminal of the necessary wiring are formed. Next, as shown in FIGS. 14D and 14F, an insulating film 33 having a laminated structure of SiO 2 / SiN x film is formed by a CVD method.
  • FIGS. 14D and 14F an oxide semiconductor layer of IGZO and a protective film are formed by sputtering.
  • a second photolithography process is performed in which resist coating, exposure processing, development processing, wet etching processing, and resist stripping are performed as shown in FIGS. 14D and 14F.
  • a SiO 2 / SiN x layer is etched by resist coating, exposure processing, development processing, and dry etching processing to form a transparent conductive film made of ITO.
  • a third photolithography process is performed in which resist coating, exposure processing, development processing, wet etching processing, and resist stripping are performed.
  • the pixel electrode 10B, the drain electrode 37, the source electrode 39, and the connection line 38 having a planar shape shown in FIG.
  • a contact hole 34D is formed in the insulating film 33 laminated thereon, and a terminal portion conductor 34E made of ITO can be formed to constitute a terminal.
  • the switching element T3 having the structure shown in FIGS. 12A, 12B, and 13 can be formed on the second substrate 2, and a TFT array substrate can be obtained by providing the gate driver 13 thereon. .
  • the number of deposition processes by sputtering is 3, the number of deposition processes by CVD is 1, the number of photolithography processes is 4, the number of dry etching processes is 1, and the wet process is performed.
  • the number of etching steps is 3.
  • the switching element T3 can be formed on the second substrate 2. That is, according to the manufacturing method described above, the conventional n + a-Si layer is not necessary. Therefore, the mask in the photolithography process can be reduced compared to the inverted staggered manufacturing method that requires the n + a-Si layer.
  • the above-mentioned process is a photolithography process of 4 and is a 4 mask process, it can be combined with the process shown in FIG. 14D and FIG. 14G by halftone exposure. Can be realized.
  • FIG. 15A shows a planar configuration of a switching element (thin film transistor) T4 of the fourth example.
  • the switching element T4 of the fourth example is described with reference signal lines 12C and scanning lines 11B formed on an insulating second substrate 2 on the second substrate 2 with reference to FIG. As described above, it extends in the row direction (X direction).
  • the reference signal line 12C and the scanning line 11B are metal wirings made of a metal material such as Al.
  • a gate electrode 31 having a convex shape in plan view is formed in the vicinity of the pixel electrode of each scanning line 11B.
  • An insulating film 33 is formed to cover the reference signal line 12C and the scanning line 11B.
  • An island-shaped oxide semiconductor layer 35 is stacked on the insulating film 33 and above the gate electrode 31.
  • a pixel electrode 10B made of a transparent conductive film such as ITO is formed on the insulating film 33.
  • a drain electrode 37 extending from the pixel electrode 10 ⁇ / b> B is formed so as to cover one end of the oxide semiconductor layer 35.
  • a connection line 38 extends from a part of the reference signal line 12C located near the pixel electrode 10B to a position near the gate electrode 31 along the insulating film 33.
  • connection line 38 is formed so as to cover the other end of the oxide semiconductor layer 35, and a source electrode 39 is formed.
  • the end of the connection line 38 on the reference signal line 12C side is connected to the reference signal line 12C through a contact hole 40 formed in the insulating film 33.
  • the oxide semiconductor layer 35 is interposed between the source electrode 39 and the drain electrode 37, and the gate electrode 31 is disposed under the oxide semiconductor layer 35, so that the inverted staggered switching element T4 is provided. Is formed.
  • FIG. 15B is a diagram illustrating the configuration of the terminal portion of the wiring portion.
  • the terminal portion 34C is covered with an insulating film, and a terminal portion conductor 34E made of a transparent conductive material such as ITO is connected through a contact hole 34D formed in the insulating film.
  • an Al / Mo laminated film is formed on the insulating second substrate 2 by sputtering. Then, a first photolithography process is performed in which the Al / Mo layer is etched by resist coating, exposure processing, development processing, wet etching processing, and resist peeling. Thus, the scanning line 11B including the gate electrode 31 and the reference signal line 12C are formed.
  • an insulating film 33 having a laminated structure of SiO 2 / SiN x is formed by a CVD method. Then, an oxide semiconductor layer of IGZO is formed by a sputtering method.
  • a second photolithography process for performing resist coating, exposure processing, development processing, wet etching processing, and resist stripping is performed.
  • the state shown in FIGS. 17D and 17F is obtained.
  • the SiO 2 / SiN x layer is etched by resist coating, exposure processing, development processing, and dry etching processing to obtain the states shown in FIGS. 17G and 17I.
  • a transparent conductive film made of ITO is formed.
  • a third photolithography process is performed in which resist coating, exposure processing, development processing, wet etching processing, and resist stripping are performed.
  • a terminal can be formed by forming a contact hole 34D in the insulating film 33 laminated thereon and forming a terminal portion conductor 34E made of ITO.
  • the switching element T4 having the structure shown in FIGS. 15A, 15B, and 16 can be formed on the second substrate 2, and a TFT array substrate can be obtained by providing the gate driver 13 thereon. .
  • the number of deposition processes by sputtering is 3, the number of deposition processes by CVD is 1, the number of photolithography processes is 4, the number of dry etching processes is 2, The number of etching steps is 3.
  • the switching element T4 can be formed on the second substrate 2. That is, according to the manufacturing method described above, the conventional n + a-Si layer is not necessary. Therefore, the mask in the photolithography process can be reduced compared to the inverted staggered manufacturing method that requires the n + a-Si layer.
  • the above-mentioned process is a photolithography process of 4 and is a 4 mask process, it can be combined with the process shown in FIG. 17D and FIG. 17G by halftone exposure. Can be realized.
  • FIG. 18A shows a planar configuration of a switching element (thin film transistor) T5 of the fifth example.
  • the reference signal line 12C and the scanning line 11B formed on the insulating second substrate 2 are described on the second substrate 2 with reference to FIG. As described above, it extends in the row direction (X direction).
  • the reference signal line 12C and the scanning line 11B are metal wirings made of a metal material such as Al.
  • a gate electrode 31 having a convex shape in plan view is formed in the vicinity of the pixel electrode of each scanning line 11B.
  • An insulating film 33 is formed to cover the reference signal line 12C and the scanning line 11B.
  • An IGZO oxide semiconductor layer 39 is stacked on the insulating film 33 and above the gate electrode 31. Further, in the fifth example, a pixel electrode 10C made of an oxide semiconductor layer of IGZO is formed.
  • a drain electrode 41 extending from the pixel electrode 10 ⁇ / b> C is formed so as to be integrally connected to the oxide semiconductor layer 39.
  • a connection line 42 made of an IGZO oxide semiconductor layer is formed on the insulating film 33 so as to extend from a part of the reference signal line 12C located near the pixel electrode 10C to a position near the gate electrode 31.
  • One end of the connection line 42 is formed so as to be integrally connected to the oxide semiconductor layer 40.
  • a portion integrally connected to the oxide semiconductor layer 39 is a source electrode 43.
  • the oxide semiconductor layer 39, the pixel electrode 10C, the drain electrode 41, the source electrode 43, and the connection line 42 are all made of IGZO.
  • the oxide semiconductor layer 39 is provided as a semiconductor layer, and the pixel electrode 10C, the drain electrode 41, the source electrode 43, and the connection line 42 are all made conductive by subjecting IGZO to a hydrogen plasma treatment to obtain a reducing substance.
  • the end of the connection line 42 on the reference signal line 12C side is connected to the reference signal line 12C through a contact hole 40 formed in the insulating film 33.
  • the oxide semiconductor layer 39 is interposed between the source electrode 43 and the drain electrode 41, and the gate electrode 31 is disposed under the oxide semiconductor layer 39, whereby an inverted staggered thin film transistor is formed.
  • FIG. 18B is a diagram illustrating the configuration of the terminal portion of the wiring portion.
  • the terminal part 34C is covered with an insulating film, and a terminal part conductor 34E made of a reducing substance of IGZO is connected through a contact hole 34D formed in the insulating film.
  • the scanning line 11B and the reference signal line 12C are metal wiring. Therefore, the scanning line 11B and the reference signal line 12C can be low resistance wiring. Therefore, even when the scanning line 11B and the reference signal line 12C are long when applied to a large display device, problems such as signal delay due to an increase in wiring resistance hardly occur. It has features that can be handled without any problems Further, when the backlight 19 is the light emitting diode 18 having the above-described structure, when the oxide semiconductor layer 22 is used, the generation of leakage current particularly in the visible light region can be reduced. Further, when the structure of the switching element T5 of the present embodiment is used, it is possible to easily dispose a diode for preventing static electricity around the second substrate 2. Further, since the basic structure is an inverted staggered structure, it has a feature that it has high compatibility with a general liquid crystal display manufacturing facility and is easy to manufacture.
  • an Al / Mo laminated film is formed on the insulating second substrate 2 by sputtering. Then, a first photolithography process is performed in which the Al / Mo layer is etched by resist coating, exposure processing, development processing, wet etching processing, and resist peeling. Thus, the scanning line 11B including the gate electrode 31 and the reference signal line 12C are formed. Next, as shown in FIGS. 20D and 20F, an insulating film 33 having a laminated structure of SiO 2 / SiN x is formed by a CVD method.
  • a second photolithography process is performed in which resist coating, exposure processing, development processing, and dry etching are performed. Thereby, the state shown in FIGS. 20D and 20F is obtained.
  • IGZO is formed by sputtering. Then, by applying resist, exposing, developing, and wet etching, the IGZO film 45 is formed into a pixel electrode shape, a source electrode shape, an island shape passing over the gate electrode, a drain electrode shape, and a connection line shape. Processing is performed as shown in FIG. Then, a hydrogen plasma treatment is performed from a state in which the island-shaped portion passing over the gate electrode is covered with a resist 46 by applying resist, exposing, and developing.
  • the pixel electrode 10C, the source electrode 41, the drain electrode 43, and the connection line 42 are made of IGZO except for the portion covered with the resist.
  • the switching element T5 is formed as a conductor made of a reducing substance.
  • a terminal can be configured by forming a contact hole 34D in the insulating film 33 stacked thereon and forming a terminal portion conductor 34E made of a reducing substance of IGZO.
  • the switching element T5 having the structure shown in FIGS. 18A, 18B, and 19 can be formed on the second substrate 2, and a TFT lay substrate can be obtained by providing the gate driver 13.
  • the number of film formation processes by sputtering is 2, the number of film formation processes by CVD is 1, the number of photolithography processes is 4, the number of dry etching processes is 1, and the wet process is performed.
  • the number of etching steps is 2, and the hydrogen plasma treatment step is 1.
  • the switching element T5 can be formed on the second substrate 2.
  • the film forming process by the CVD method can be set to 1, and the number of photolithography processes can be set to 4, thereby realizing a process saving.
  • the conventional n + a-Si layer is unnecessary. Therefore, the mask in the photolithography process can be reduced compared to the inverted staggered manufacturing method that requires the n + a-Si layer.
  • the above-described process is a photolithography process of 4 and is a 4 mask process, but it can also serve as the process shown in FIGS. 20G and 20I by halftone exposure. Therefore, further process saving can be realized in that case.
  • an oxide semiconductor layer can be incorporated in the switching element to make it less susceptible to light leakage current.
  • the pixel electrode of the counter data supply type display device and the electrode connected to the pixel electrode can be made of the same material and simultaneously formed into a film, so that the process can be saved and the cost of the liquid crystal television can be reduced.
  • first substrate 2 ... second substrate, 3.
  • Data electrode, 10, 10A, 10B, 10C ... pixel electrodes, 11, 11A, 11B ... scanning lines, 12, 12, 12B, 12C ... reference signal line, 13 ... Gate driver, T1, T2, T3, T4, T5... Switching element (thin film transistor), 20, 37, 41 ... drain electrode, 21, 39, 43 ... source electrode, 22, 35, 39 ... oxide semiconductor layer, 23.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

表示装置は、第1の基板(1)に形成され、列方向に延びるストライプ形状の複数のデータ電極(3)と、第2の基板(2)に形成され、行方向に延びる、複数の走査線(11)および複数の基準信号線(12)と、第2の基板(2)に形成され、マトリクス状に配置された複数の画素電極(10)と、第2の基板(2)に形成され、複数の走査線(11)によってオン/オフが制御され、かつ、複数の基準信号線(12)と複数の画素電極(10)との間に設けられた複数のスイッチング素子(T1)と、ソース電極(21)とドレイン電極(20)との間に設けられる酸化物半導体層(22)とを備える。酸化物半導体層(22)に絶縁層(23)を介しゲート電極(11a)を近接配置してスイッチング素子(T1)が形成され、ソース電極(21)あるいはドレイン電極(20)に接続されて画素電極(10)が設けられる。画素電極(10)が接続されているソース電極(21)あるいはドレイン電極(20)が画素電極(10)と同一材料からなる。ソース電極(21)とドレイン電極(20)とが同時成膜された膜からなる。

Description

表示装置および表示装置用アレイ基板の製造方法
 本発明は、酸化物半導体をスイッチング素子に用いた表示装置および表示装置用アレイ基板の製造方法に関する。
 本願は、2010年3月26日に、日本に出願された特願2010-072382号に基づき優先権を主張し、その内容をここに援用する。
 アクティブマトリクス駆動の液晶パネルを搭載した大型液晶テレビのコストダウンのためには、省プロセス化が有効である。しかし、現在の大型液晶テレビ用薄膜トランジスタ基板(TFT基板)の製造プロセスにあっては、4~5回のフォトリソグラフィプロセスと、2回のCVD(Chemical Vapor Deposition)プロセスによる成膜とが最低限必要である。これらの処理が、省プロセス化の実質的な限界とされている。
 TFT基板に設けられる薄膜トランジスタには、最低でも3種類の電極(ソース電極、ドレイン電極、ゲート電極)が必要である。そして、薄膜トランジスタを構成するゲートが低抵抗であること、ソース・ドレインが低抵抗であること、ソース・ドレインとゲートが絶縁されていること、画素電極が透明であり、ドレインに接続され、ゲートと絶縁されていること、などが要求される。また、TFT基板の薄膜トランジスタに適用されているa-Si型の薄膜トランジスタは、ショットキー障壁が無いように電極メタルとの接続部分にna-Si層を必須とする。
 以上の背景において、現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第1の例について図21A~図21Fを基に説明する。
 図21Aに示すように、絶縁基板100の上にAlとMoの積層膜を形成してから所望形状のゲート電極101を形成する場合に第1のフォトリソグラフィ工程を行う。その後、図21Bに示すように、SiNからなるゲート絶縁膜102とa-Si層103と、na-Si層(Pドープ層)105とをCVD法により積層する。
 次に、図21Cに示すように、a-Si層103とna-Si層105とに対して第2のフォトリソグラフィ工程により素子分離を行い、ゲート電極101の上方に対応する素子部106を形成する。その後、ソース・ドレインを形成するための成膜(Mo/Al/Moの積層膜)を行い、チャネルエッチング並びにソース・ドレイン形成を行なう。そして、図21Dに示すように、チャネル部117とソース電極108とドレイン電極109とを形成する際に、第3のフォトリソグラフィ工程を行う。なお、前述したチャネルエッチングを行なう場合、チャネル部形成用のa-Si層103を全部エッチングで除去しないように、膜が無くなる寸前でエッチングを停止する必要がある。
 次いで、図21Eに示すように、CVD法によりSiNの保護膜110を形成し、第4のフォトリソグラフィ工程によりドレイン電極109に達するコンタクトホール111を形成する。そして、図21Fに示すように、ITO(インジウムスズ酸化物)の透明導電膜を形成後、コンタクトホール111を介してドレイン電極109に接続する画素電極112を形成する際に第5のフォトリソグラフィ工程を行う。
 このように、第1の例のa-Si型薄膜トランジスタの製造プロセスにおいては、5枚マスクプロセスが必要であり、CVD法による成膜が2回は必要である。
 次に、a-Si型薄膜トランジスタ製造プロセスの第2の例について図22A~図22Fを基に説明する。
 図22Aに示すように、絶縁基板120の上にAlとMoの積層膜を形成してから所望形状のゲート電極121を形成する場合に第1のフォトリソグラフィ工程を行う。その後、図22Bに示すように、SiNからなるゲート絶縁膜122とa-Si層123と保護層125とをCVD法により積層する。
 次に、図22Cに示すように、a-Si層123と保護層125とに対して、第2のフォトリソグラフィ工程により素子分離を行い、ゲート電極121の上方に対応する素子部126を形成する。その後、na-Si層とソース・ドレインとを形成するための成膜(Mo/Al/Moの積層膜)を行い、素子部126を部分的に被覆するような形状のソース・ドレイン形成を行なう。そして、図22Dに示すように、ソース電極128とドレイン電極129とを形成する際に第3のフォトリソグラフィ工程を行う。この第2の例の構造においてソース電極128と素子部126との間、及び、ドレイン電極129と素子部126との間には、na-Si層124が介在されている。この構造を用いる場合、前述した第1の例のように、a-Si層103が無くなる寸前でエッチングを停止するなどの高度なエッチング技術が不要であり、その面では有利な製造方法となる。
 次に、図22Eに示すように、CVD法によりSiNの保護膜130を形成し、第4のフォトリソグラフィ工程によりドレイン電極129に達するコンタクトホール131を形成する。そして、図22Fに示すように、ITO(インジウムスズ酸化物)の透明導電膜を形成後、コンタクトホール131を介してドレイン電極129に接続する画素電極132を形成する際に第5のフォトリソグラフィ工程を行う。
 このように、第2の例のa-Si型薄膜トランジスタの製造プロセスにおいては、5枚マスクプロセスが必要であり、CVD法による成膜が2回は必要である。
 次に、a-Si型薄膜トランジスタ製造プロセスの第3の例について図23A~図23Fを基に説明する。
 図23Aに示すように、絶縁基板140の上にAlとMoの積層膜を形成してから所望形状のゲート電極141を形成する場合に第1のフォトリソグラフィ工程を行なう。その後、図23Bに示すように、SiNからなるゲート絶縁膜142とa-Si層143とna-Si層145とソース・ドレイン形成用の電極膜(Mo/Al/Moの積層膜)146とをCVD法により積層する。
 次に、図23Cに示すように、電極層146とna-Si層145とa-Si層143とに対して、第2のフォトリソグラフィ工程により素子分離を行い、ゲート電極141の上方に対応する素子部144を形成する。その後、チャネルエッチング並びにソース・ドレイン形成を行なう。そして、図23Dに示すように、チャネル部147とソース電極148とドレイン電極149とを形成する際に、ハーフトーン露光によりフォトリソグラフィ工程を増加することなく、第2のフォトリソグラフィ工程を利用して加工する。このハーフトーン露光の際、部分的に残したレジスト155の膜厚を変えてアッシングを行うことで、図23Dに示す構造を得ることができる。
 次いで、レジストを除去した後、図23Eに示すように、SiNの保護膜150を形成し、第3のフォトリソグラフィ工程によりドレイン電極149に達するコンタクトホール151を形成する。そして、図23Fに示すように、ITO(インジウムスズ酸化物)の透明導電膜を形成後、コンタクトホール151を介してドレイン電極149に接続する画素電極152を形成する際に、第4のフォトリソグラフィ工程を行う。
 このように、第3の例のa-Si型薄膜トランジスタの製造プロセスにおいては、4枚マスクプロセスが必要であり、CVD法による成膜が2回は必要である。しかし、この第3の例のように、4枚マスクプロセスが現状では最短プロセスであると考えられ、利用されている。
 次に、液晶表示装置に適用されているTFT基板の第4の例として、図24~図26に示すように、特許文献1に記載されている対向データ型の液晶表示装置について説明する。
 この例の液晶表示装置は、液晶層を挟持するべき一方の基板160の表示領域に対応するように画素電極161がマトリクス状に配置される。また、行方向(図24のX方向)に並ぶ各画素電極161に接続されているスイッチング素子162のソース側に、コモンバスライン163が接続される。それとともに、行方向に並ぶスイッチング素子162のゲート側に、ゲートバスライン165が接続されている。また、液晶層を挟持する対向側の基板166の液晶層側に、列方向(図24のY方向)に延びたストライプ状のデータバスライン167が複数形成されている。
 この例の液晶表示装置は、ゲートバスライン165からの入力によってオン状態にされたスイッチング素子162を介して、コモンバスライン163から画素電極161に基準信号電圧(共通電圧)が印加される。そして、データバスライン167にデータ信号が入力される。従って、複数のデータバスライン167と画素電極161との交差領域に存在する液晶分子の配向が制御され、表示が行なわれる。
 また、第5の例の液晶表示装置として、前述の対向データ型と同等のパネル構造であって、ドレイン電極とソース電極を微結晶または多結晶nSi層とした液晶表示装置が知られている(特許文献2参照)。
 この特許文献2に記載された構造例として、図27に示すようなa-Si型薄膜トランジスタの構造が開示されている。この構造では、ガラスからなる絶縁性基板170の上に、微結晶または多結晶nSi層からなるドレイン層171とソース層172とを間隔をあけて配置している。そして、それらを覆ってa-Si:H層(水素化アモルファスシリコン層)173を形成している。そして、その上にSiN層175とゲート電極176とを形成している。
 特許文献2に記載されている配線構造は、図28に示すように、スキャンバスラインSBを複数有する。そして、各スキャンバスラインSBをTFTのゲートGに接続し、TFTのソースSに液晶LCを次位のスキャンバスラインSBに接続している。
 この第5の例の液晶表示装置用薄膜トランジスタマトリクスを製造するには、図29A及び図29Bに示すように、絶縁基板180の上にnSi層181を形成し、ソース電極とドレイン電極のパターニングを行う。次いで、図29Cに示すように、半導体層182を形成し、ゲート絶縁膜183、Alのゲート電極185及びゲートバスラインを形成し、所望の形状にパターニングする。その後、ITO膜を成膜して図29E及び図29Fに示すように、表示電極186と接続部187を形成し、薄膜トランジスタマトリクスを完成させる。
 次に、第6の例の液晶表示装置として、図30に示すようなTFT200が構成された液晶表示装置が知られている。この液晶表示装置では、主基板190上にマトリクス状に画素電極191が設けられている。そして、画素電極191の間に走査信号線192と基準信号線193とが並列的に設けられている。そして、走査信号線192の一部に形成されているゲート端子195を覆うように、ゲート絶縁膜196と半導体層197が形成されている。そして、半導体層197の一側に、画素電極191の一部が、ドレイン端子として191aとして接続されている。そして、半導体層197の他側に、基準信号線193に接続された接続線198が、ソース端子198aとして接続されている。この液晶表示装置では、画素電極191と接続線198及びソース端子198aとドレイン端子191aが、na-Si:Hから、あるいは微結晶nシリコンから構成されている(特許文献3参照)。
特開昭62-133478号公報 特開昭63-309926号公報 特開2000-258795号公報
 従来のa-Si型薄膜トランジスタの製造プロセスについて再度検討してみると、薄膜トランジスタの電極が3種類必要である。また、ゲート並びにソース・ドレインが低抵抗であること、画素電極が透明であること、ゲートとソース・ドレインの積層が必須であることを考慮し、メタル層が3層最低必要とすると、メタル層のパターン形成は3回必要である。また、層間絶縁膜が2層必要であることを考慮すると絶縁膜の穴あけパターン形成が1回は必要である。また、CVD法による成膜が最低2回必要であり、フォトリソグラフィ工程が最低4回必要であると仮定すると、前述した4枚マスクプロセスが現状では最短プロセスと考えられる。
 しかしながら昨今、液晶テレビ用のTFT基板製造プロセスにおいて更なる省プロセス化を試みる必要が生じている。そのため、本発明者は従来知られている液晶表示装置の構造と、それらに適用されている薄膜トランジスタの構造とについて再度検討を行った。
 前述した第4の例として図24~図26を基に説明した対向データ型の液晶表示装置にあっては、ゲートバスライン165とデータバスライン167との積層が無い。そのため、積層短絡線欠陥が少なく、配線に段差の乗り越え部分が無いので、断線が生じ難い上に、基板ごとに個別に検査とリペアが可能であり、高歩留まりを実現可能な利点を有する。また、スイッチング素子162を形成する側の基板160について考慮すると、ソースとドレインは高抵抗配線でも適用可能であるので、画素電極と兼用で成膜できる可能性があり、有望と思われる。
 また、前述した第5の例として、図27~図29Fを基に説明した液晶表示装置にあっては、na-Si層と絶縁膜/a-Si層の成膜のため、CVD法による成膜は2回で済む。しかし、a-Si層はガラス基板裏面側からの光に無防備であり、光リークの問題を有している。
 前述した第6の例として、図30を基に説明した液晶表示装置にあっては、na-Si層と絶縁膜/a-Si層との成膜のため、CVD法による成膜は2回で済む。しかし、na-Si層は透明とは言えず、透過率ロスが生じる。また、na-Si層を薄くし過ぎると段切れや信頼性の低下や、高抵抗などの課題が生じる。
 以上のような従来構造の液晶表示装置の検討に基づき、本発明者は、前述した対向データ型の液晶表示装置について、特別な薄膜トランジスタ構造の工夫を行なった。これにより、従来の製造方法よりも簡略化した工程で製造することができ、透過率ロスが生じ難く、光リークの問題も生じ難い表示装置を提供できることを知見し、本発明に到達した。
 また、前述の検討に基づき、本発明者は、従来の製造方法よりも簡略化した工程で製造することができ、透過率ロスが生じ難く、光リークの問題も生じ難い表示装置の製造方法を提供できることを知見し、本発明に到達した。
(1) 本発明の一態様による表示装置は、
 第1の基板と、
 前記第1の基板に対向するように配置された第2の基板と、
 前記第1の基板と前記第2の基板との間に設けられた表示媒体層と、
 前記第1の基板に形成され、列方向に延びるストライプ形状の複数のデータ電極と、
 前記第2の基板に形成され、行方向に延びる、複数の走査線および複数の基準信号線と、
 前記第2の基板に形成され、マトリクス状に配置された複数の画素電極と、
 前記第2の基板に形成され、前記複数の走査線によってオン/オフが制御され、かつ、前記複数の基準信号線と前記複数の画素電極との間に設けられた複数のスイッチング素子と、
 ソース電極とドレイン電極との間に設けられる酸化物半導体層とを備え、
 前記酸化物半導体層に絶縁層を介しゲート電極を近接配置して前記スイッチング素子が形成され、
 前記ソース電極あるいは前記ドレイン電極に接続されて前記画素電極が設けられ、
 前記画素電極が接続されている前記ソース電極あるいは前記ドレイン電極が前記画素電極と同一材料からなり、
 前記ソース電極と前記ドレイン電極とが同時成膜された膜からなる。
(2) 上記の表示装置において、
 前記走査線を走査して対応する走査線に沿って設けられている前記スイッチング素子のオン/オフ制御が行なわれ、
 オン状態のスイッチング素子を介して前記基準信号線から前記画素電極に基準信号電圧が印加され、
 前記複数のデータ電極にはそれぞれに対応するデータ信号が入力され、電圧印加された画素電極とデータ電極との間に介在された前記表示媒体層の分子配向または発光率を制御して表示しても良い。
(3) 上記の表示装置において、
 前記画素電極と前記ドレイン電極及び前記ソース電極とが、インジウムガリウム亜鉛酸化物の還元物質からなっても良い。
(4) 上記の表示装置において、
 前記画素電極と前記ドレイン電極及び前記ソース電極とこれら電極と前記基準信号線との接続線が、いずれもインジウムガリウム亜鉛酸化物の還元物質からなり、
 前記酸化物半導体層が、インジウムガリウム亜鉛酸化物からなっても良い。
(5) 上記の表示装置において、
 発光ダイオードのバッライトが付設されても良い。
(6) 上記の表示装置において、
 前記基準信号線及びこの基準信号線に接続された前記スイッチング素子のソース電極あるいはドレイン電極と、前記画素電極及びこの画素電極に接続された前記スイッチング素子のドレイン電極あるいはソース電極とがいずれも透明導電膜からなり、
 前記ソース電極と前記ドレイン電極との間に介在される前記酸化物半導体層が、インジウムガリウム亜鉛酸化物からなっても良い。
(7) 上記の表示装置において、
 前記複数の基準信号線とそれに接続された前記スイッチング素子のソース電極あるいはドレイン電極と、前記画素電極及びこの画素電極に接続された前記スイッチング素子のドレイン電極あるいはソース電極とが、いずれも前記第2の基板上に形成され、
 前記ソース電極及び前記ドレイン電極とそれらの間に介在された前記酸化物半導体層とを覆って絶縁膜が形成され、
 前記絶縁膜上にゲート電極が形成されても良い。
(8) 上記の表示装置において、
 前記ゲート電極を備えた走査線と前記基準信号線とが、前記第2の基板上に形成され、
 前記走査線と前記基準信号線とを覆って絶縁膜が形成され、
 前記絶縁膜上であって前記ゲート電極上に、酸化物半導体層が形成され、
 前記絶縁膜上にソース電極とドレイン電極と、これらのいずれかに接続された画素電極とが形成されても良い。
(9) 上記の表示装置において、
 前記ゲート電極を備えた走査線と前記基準信号線とが、前記第2の基板上に形成され、
 前記走査線と前記基準信号線とを覆って絶縁膜が形成され、
 前記絶縁膜上であって前記ゲート電極上に、酸化物半導体層が形成され、
 前記絶縁膜上にソース電極とドレイン電極と、これらのいずれかに接続された画素電極とが形成され、
 前記酸化物半導体層は、インジウムガリウム亜鉛酸化物からなり、
 前記画素電極、ソース電極及びドレイン電極が、インジウムガリウム亜鉛酸化物の還元物質からなっても良い。
(10) 本発明の一態様によるアレイ基板の製造方法は、
 第1の基板に対向するように配置された第2の基板上に、基準信号線及びこの基準信号線に接続されたソース電極あるいはドレイン電極と、画素電極及びこの画素電極に接続されたドレイン電極あるいはソース電極とを透明導電材料を用いて形成し、
 前記ソース電極及び前記ドレイン電極に接続するように酸化物半導体層を形成し、
 前記酸化物半導体層上に絶縁膜を形成し、
 前記ソース電極と前記ドレイン電極間の絶縁膜上に、ゲート電極が位置するように、前記第2の基板上にゲート電極を備えた走査線を形成する。
(11) 上記のアレイ基板の製造方法において、
 前記ゲート電極及び前記走査線を、金属材料からなるメタル配線としても良い。
(12) 本発明の他の態様によるアレイ基板の製造方法は、
 第1の基板に対向するように配置された第2の基板上に、画素電極及びこの画素電極に接続されたドレイン電極あるいはソース電極を、透明導電材料を用いて形成し、
 前記ソース電極及び前記ドレイン電極に接続するように酸化物半導体層を形成し、
 前記酸化物半導体層上に絶縁膜を形成し、
 前記ソース電極とドレイン電極間の絶縁膜上にゲート電極が位置するように、前記第2の基板上にゲート電極を備えた走査線を形成し、
 前記絶縁膜上に前記画素電極に接続されていない側のソース電極あるいはドレイン電極に接続する基準信号線を形成する。
(13) 上記のアレイ基板の製造方法において、
 前記走査線と前記ゲート電極と前記基準信号線とを、金属材料からなるメタル配線としても良い。
(14) 本発明の他の態様によるアレイ基板の製造方法は、
 第1の基板に対向するように配置された第2の基板上に、基準信号線及びゲート電極と走査線を形成し、
 前記基準信号線と前記ゲート電極と前記走査線とを覆うように絶縁膜を形成し、
 前記ゲート電極上の絶縁膜上に酸化物半導体層を形成し、
 前記ゲート電極上の酸化物半導体層を両側から挟むソース電極及びゲート電極およびこれらいずれかの電極に接続する画素電極を形成する。
(15) 上記のアレイ基板の製造方法において、
 前記走査線と前記ゲート電極と前記基準信号線とを、金属材料からなるメタル配線としても良い。
(16) 上記のアレイ基板の製造方法、
 前記酸化物半導体層を形成後、前記酸化物半導体層の上にチャネル保護膜を形成し、
 ソース電極及びゲート電極形成用の成膜を行い、
 この膜をパターニングしてソース電極及びゲート電極を形成しても良い。
(17) 本発明の更に他の態様によるアレイ基板の製造方法は、
 第1の基板に対向するように配置された第2の基板上に、基準信号線及びゲート電極と走査線を形成し、
 前記基準信号線と前記ゲート電極と前記走査線とを覆うように絶縁膜を形成し、
 前記ゲート電極上の絶縁膜上と画素電極形成位置とゲート電極形成位置とソース電極形成位置とを占めるようにインジウムガリウム亜鉛酸化物層を形成し、
 前記インジウムガリウム亜鉛酸化物層において前記ゲート電極上の位置を除く部分を還元処理して導体化する。
(18) 上記のアレイ基板の製造方法において、
 前記インジウムガリウム亜鉛酸化物層を還元する処理として、水素雰囲気中におけるプラズマ処理を施しても良い。
(19) 上記のアレイ基板の製造方法において、
 前記走査線と前記ゲート電極と前記基準信号線とを、金属材料からなるメタル配線としても良い。
(20) 上記のアレイ基板の製造方法において、
 前記第1の基板と前記第2の基板との間に表示媒体層を形成し、
 前記第1の基板に、列方向に延びるストライプ形状の複数のデータ電極を形成し、
 前記第2の基板に、行方向に延びる、複数の走査線および複数の基準信号線を形成し、
 前記第2の基板に、マトリクス状に配置された複数の画素電極を形成し、
 前記第2の基板に、前記複数の走査線によってオン/オフが制御され、かつ、前記複数の基準信号線と前記複数の画素電極との間に設けられた複数のスイッチング素子を形成し、
 前記第2の基板に、前記基準信号線と前記画素電極と前記スイッチング素子とを形成しても良い。
 本発明は、一方の基板にストライプ状のデータ電極を設け、他方の基板にマトリクス状に配置した画素電極及びスイッチング素子と、このスイッチング素子を選択するための走査線と、この画素電極に電圧を印加するための基準信号線とを備えてなる対向データ型の表示装置に関する。この表示装置では、ソース電極とドレイン電極との間に酸化物半導体層を設けてスイッチング素子を構成する。また、画素電極とそれに接続するドレイン電極あるいはソース電極を同一材料かつ同時成膜により形成した膜とする。そのため、光によるリーク電流の問題を生じない酸化物半導体層を有効に利用しつつ、電極を成膜する工程を削減することができる。また、スイッチング素子を備えたアレイ基板製造時のフォトリソグラフィ工程を削減して省プロセス化を図ることができる。
本発明に係る表示装置の一実施形態を示す構成図である。 同実施形態の表示装置に備えられる対向側基板の回路構成の一例を示す構成図である。 同実施形態の表示装置に備えられる素子側基板の回路構成の一例を示す構成図である。 同実施形態の表示装置に備えられる素子側基板の回路構成において画素電極とスイッチング素子を含む部分の等価回路構成を示す図である。 同実施形態の表示装置に備えられる両基板を一体化した場合の回路構成の一例を示す構成図である。 同表示装置に備えられる薄膜トランジスタの第1実施形態を示す平面図である。 同表示装置に備えられる薄膜トランジスタの第1実施形態を示す端子部分の平面図である。 図6Aに示す薄膜トランジスタにおけるB-B線に沿う断面図である。 同表示装置に備えられる薄膜トランジスタの第2実施形態を示す要部平面図である。 同表示装置に備えられる薄膜トランジスタの第2実施形態を示す端子部分の平面図である。 図8Aに示す薄膜トランジスタにおけるB-B線に沿う断面図である。 図8Aに示す薄膜トランジスタにおけるB-B線に沿う断面図である。 第2実施形態の薄膜トランジスタの製造方法の一例を示す図であって、ソース・ドレイン用の膜を形成した状態を示す平面図である。 第2実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図11AのB-B線に沿う断面図である。 第2実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図11AのB-B10線に沿う他の部分の断面図である。 第2実施形態の薄膜トランジスタの製造方法の一例を示す図であって、絶縁膜を形成した状態を示す平面図である。 第2実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図11DのB11-B12線に沿う断面図である。 第2実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図11DのB13-B14線に沿う断面図である。 第2実施形態の薄膜トランジスタの製造方法の一例を示す図であって、ゲート電極を形成した状態を示す平面図である。 第2実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図11GのB15-B16線に沿う断面図である。 第2実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図11GのB17-B18線に沿う断面図である。 同表示装置に備えられる薄膜トランジスタの第3実施形態を示す要部平面図である。 同表示装置に備えられる薄膜トランジスタの第3実施形態を示す端子部分の平面図である。 図12AのB19-B20線に沿う断面図である。 第3実施形態の薄膜トランジスタの製造方法の一例を示す図であって、ゲート・コモン形成用の膜を成膜した状態を示す平面図である。 第3実施形態の薄膜トランジスタの製造方法の一例を示す図であって、端子部分の平面図である。 第3実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図14AのB21-B22線に沿う断面図である。 第3実施形態の薄膜トランジスタの製造方法の一例を示す図であって、絶縁膜と酸化物半導体膜と保護膜を形成した状態を示す平面図である。 第3実施形態の薄膜トランジスタの製造方法の一例を示す図であって、端子部分の断面図である。 第3実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図14DのB23-B24線に沿う断面図である。 第3実施形態の薄膜トランジスタの製造方法の一例を示す図であって、エッチングした状態を示す平面図である。 第3実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図14Gでエッチングした状態の端子部分の断面図である。 第3実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図14GのB25-B26線に沿う断面図である。 第3実施形態の薄膜トランジスタの製造方法の一例を示す図であって、画素電極を形成した状態を示す平面図である。 第3実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図14Jで画素電極を形成した状態の端子部分の断面図である。 第3実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図14JのB27-B28線に沿う断面図である。 同表示装置に備えられる薄膜トランジスタの第4実施形態を示す要部平面図である。 同表示装置に備えられる薄膜トランジスタの第4実施形態を示す端子部分の平面図である。 図15Aに示すB29-B30線に沿う断面図である。 第4実施形態の薄膜トランジスタの製造方法の一例を示す図であって、ゲート・コモン形成用の膜を成膜した状態を示す平面図である。 第4実施形態の薄膜トランジスタの製造方法の一例を示す図であって、端子部分の平面図である。 第4実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図17AのB31-B32線に沿う断面図である。 第4実施形態の薄膜トランジスタの製造方法の一例を示す図であって、絶縁膜と酸化物半導体膜を形成した状態を示す平面図である。 第4実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図17Dの絶縁膜と酸化物半導体膜を形成した状態の端子部分の断面図である。 第4実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図17DのB33-B34線に沿う断面図である。 第4実施形態の薄膜トランジスタの製造方法の一例を示す図であって、エッチングした状態を示す平面図である。 第4実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図17Gのエッチングした状態の端子部分の断面図である。 第4実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図17GのB35-B36線に沿う同状態の要部断面図である。 第4実施形態の薄膜トランジスタの製造方法の一例を示す図であって、画素電極を形成した状態を示す平面図である。 第4実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図17Jの画素電極を形成した状態の端子部分の断面図である。 第4実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図17AのB37-B38線に沿う断面図である。 同表示装置に備えられる薄膜トランジスタの第5実施形態を示す要部平面図である。 同表示装置に備えられる薄膜トランジスタの第5実施形態を示す端子部分の平面図である。 図18Aに示すB39-B40線に沿う断面図である。 第5実施形態の薄膜トランジスタの製造方法の一例を示す図であって、ゲート・コモン形成用の膜を成膜した状態を示す平面図である。 第5実施形態の薄膜トランジスタの製造方法の一例を示す図であって、端子部分の平面図である。 第5実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図20AのB41-B42線に沿う要部断面図である。 第5実施形態の薄膜トランジスタの製造方法の一例を示す図であって、絶縁膜と酸化物半導体膜を形成した状態を示す平面図である。 第5実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図20Dの絶縁膜と酸化物半導体膜を形成した状態の端子部分の断面図である。 第5実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図20DのB43-B44線に沿う要部断面図である。 第5実施形態の薄膜トランジスタの製造方法の一例を示す図であって、画素電極を形成した状態を示す平面図である。 第5実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図20Gの画素電極を形成した状態の端子部分の断面図である。 第5実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図20GのB45-B46線に沿う断面図である。 第5実施形態の薄膜トランジスタの製造方法の一例を示す図であって、プラズマ処理を施した状態を示す平面図である。 第5実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図20Jのプラズマ処理を施した状態の端子部分の断面図である。 第5実施形態の薄膜トランジスタの製造方法の一例を示す図であって、図20JのB47-B48線に沿う断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第1の例について示す図であって、基板上にゲートを形成した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第1の例について示す図であって、基板上にゲート絶縁膜とa-Si膜とna-Si膜を形成した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第1の例について示す図であって、a-Si膜とna-Si膜とを素子分離した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第1の例について示す図であって、チャネル部を形成した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第1の例について示す図であって、保護膜を形成した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第1の例について示す図であって、画素電極を形成した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第2の例について示す図であって、基板上にゲートを形成した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第2の例について示す図であって、基板上にゲート絶縁膜とa-Si膜と保護膜とを形成した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第2の例について示す図であって、保護膜とa-Si膜とを素子分離した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第2の例について示す図であって、na-Si膜とソース・ドレインを形成した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第2の例について示す図であって、保護膜を形成した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第2の例について示す図であって、画素電極を形成した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第3の例について示す図であって、基板上にゲートを形成した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第3の例について示す図であって、基板上にゲート絶縁膜とa-Si膜とna-Si膜とソース・ドレイン形成用膜を形成した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第3の例について示す図であって、a-Si膜とna-Si膜とソース・ドレイン形成用膜とを素子分離した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第3の例について示す図であって、チャネル部を形成した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第3の例について示す図であって、保護膜を形成した状態を示す断面図である。 現状のTFT基板の製造に適用されているa-Si型薄膜トランジスタ製造プロセスの第3の例について示す図であって、画素電極を形成した状態を示す断面図である。 液晶表示装置に適用されているTFT基板の第4の例を示す図であって、対向データ型の液晶表示装置の構成図である。 同液晶表示装置の説明図である。 同液晶表示装置の等価回路図である。 液晶表示装置に適用されているTFT基板の第5の例を示す図であって、対向データ型の液晶表示装置の薄膜トランジスタ部分の断面図である。 同液晶表示装置の等価回路図である。 図27と図28とに示す対向データ型液晶表示装置の製造工程の一例を示す図であって、基板上にソース・ドレインを形成した状態を示す断面図である。 図27と図28とに示す対向データ型液晶表示装置の製造工程の一例を示す図であって、図29Aのソース・ドレインを形成した状態の平面図である。 図27と図28とに示す対向データ型液晶表示装置の製造工程の一例を示す図であって、a-Si膜とna-Si膜を素子分離し、ゲート電極及びゲートバスラインのパターンを形成した状態を示す断面図である。 図27と図28とに示す対向データ型液晶表示装置の製造工程の一例を示す図であって、図29Cのa-Si膜とna-Si膜を素子分離、ゲート電極及びゲートバスラインのパターンを形成した状態を示す平面図である。 図27と図28とに示す対向データ型液晶表示装置の製造工程の一例を示す図であって、画素電極を形成した状態を示す断面図である。 図27と図28とに示す対向データ型液晶表示装置の製造工程の一例を示す図であって、画素電極を形成した状態を示す平面図である。 液晶表示装置に適用されているTFT基板の第6の例を示す図であって、対向データ型の液晶表示装置の薄膜トランジスタ部分の断面図である。
 以下、図面を参照しながら本発明に係る表示装置の一実施形態について説明する。
 本実施形態の表示装置は、対になる基板間に液晶層などの表示媒体層が挟持される形態の対向データ供給型表示装置に適用される。図1は、両方の基板を対向させた状態の両基板と、両基板に形成されている配線の概要を示す図である。図2は、対向側基板の配線を示す図である。図3は、素子側基板の配線を示す図である。図4は、画素電極まわりの配線構造を示す図である。図5は、両基板を組み合わせた場合の表示装置としての全体回路を示す概略図である。図6A及び図6Bは、表示装置に適用されているスイッチング素子としての薄膜トランジスタの一例を示す構成図である。図7は、同薄膜トランジスタの要部断面図である。
 <表示装置の構成>
 本実施形態の表示装置Aは、図1に示すように、矩形状ガラスなどの第1の基板1と第2の基板2とが、表示媒体層としての液晶層や有機EL薄膜層などを挟み込むように対向配置されて構成されている。第1の基板1と第2の基板2との間に挟持する表示媒体層が液晶層である場合、第1の基板1と第2の基板2との周辺部分には、シール材が配置されて両基板1、2とシール材とに囲まれて液晶層が封止される。しかし、図1ではシール材や封止構造については図示を省略し、基板に形成されている配線要素や電極部分の要部のみを示している。また、第1の基板1および第2の基板2は、通常、透明なガラス基板などから構成される。しかし、表示方式が反射表示型の場合、どちらか一方の基板は透明ではない基板が使用される場合がある。
 図1に示すように第1の基板1の表示媒体層側の面に、列方向(図1のY方向)に延びたストライプ状の複数のデータ電極3が設けられている。これらのデータ電極3の長さ方向の一端部3a側を、第1の基板1の周辺部側に延長配線4を介し延出させて、第1の基板側端子集合部5が形成されている。この第1の基板側端子集合部5は、後述の駆動用IC25(図5)あるいは駆動用ICと電子部品を搭載したフレキシブルプリント基板(FPC基板)等が端子接合される領域として区画されている。
 第2の基板2側においては、図1に示すように、第2の基板2の表示媒体層側の面(上面)にマトリクス状に矩形状の画素電極10が複数形成されている。
 これらの画素電極10のうち、列方向(Y方向)に所定の間隔をあけて配列された複数の画素電極10が、第1の基板1側のデータ電極3と対応するように配置されている。行方向(X方向)に配列されている画素電極10の間隔は、第1の基板1に形成されているデータ電極3の間隔と同等とされている。なお、図1では、画素電極10の配列状態を簡略記載したので、3つの画素電極のみを図示している。しかし、実際には、適用する表示装置の解像度に合わせて、図3に示すように、行方向に任意数n個、列方向に任意数m個の画素電極をマトリクス状に配置することにより、表示装置が構成されている。これが例えば、フルHD規格の解像度の表示装置である場合、RGB方式のカラーフィルタを用いたカラー表示構成としてnが1920×3となり、mが1080となる。なお、この実施形態におけるn×m個の画素電極10の配列個数は、表示装置に求められる解像度に応じて適宜調整できる。本実施形態では、その一例を示したに過ぎない。要求される表示装置の解像度に合わせて、適宜の数の配列を採用すれば良い。
 次に、第2の基板2においてマトリクス状に配列されている画素電極10の近傍には、行方向(X方向)に延びる複数の走査線11と、行方向に延びる複数の基準信号線12とが、マトリクス状に配列された各画素電極10に沿うように形成されている。
 走査線11は、それぞれ画素電極10の近傍を通過し、第2の基板2の端部側まで延出形成され、図1に示す第2の基板2の右端部側において列方向(Y方向)に延在するように配置されているゲートドライバ13の出力端子にそれぞれ接続されている。図3では、ゲートドライバ13の出力端子側にm本の走査線11が接続された状態を示している。そのため、これらの走査線11を、便宜的にG1~Gmの符号を付して区別して図示した。
 また、各走査線11とそれに近接する画素電極10との間に薄膜トランジスタ(TFT)素子などのスイッチング素子T1が配置されている。各スイッチング素子T1のゲートGが走査線11に接続され、各スイッチング素子T1のドレインDが画素電極10に接続されている。
 基準信号線12は、図1に示すように、走査線11と平行に各画素電極10の近傍を通過するように行方向に沿って形成されるとともに、各画素電極10の近傍のスイッチング素子T1のソースSに接続されている。また、各基準信号線12が第2の基板2の左端部側に形成された延長配線16に一まとめにして接続されている。この延長配線16は、第2の基板2の左端部側に列方向に延在形成され、第2の基板2の左端部側のコーナ部分まで延設されている。
 そして、第1の基板1における第1の基板側端子集合部5に、表示装置Aを駆動するための駆動用IC25が端子接続されている。この駆動用IC25は、第1の基板1側の複数のデータ電極3にデータ信号を供給する。また、第2の基板2側にも図示略の駆動用ICが取り付けられ、ゲートドライバ13に対し、いずれかの走査線11を選択するのか選択指令を出し、目的の位置の基準信号線12に対して基準信号電圧を印加できるようになっている。
 なお、第1の基板側端子集合部5に接続される駆動用IC25と、第2の基板2側に設けられる駆動用ICとは、IC単体構成であっても良いし、FPC基板等に駆動用ICと他の電子部品などを搭載した複合型駆動用モジュールであっても良い。そのため、IC25と駆動用ICの詳細な構成について本実施形態では問わないが、いずれにおいても表示装置Aを駆動するために必要な機能を備えていれば良い。また、駆動用ICは、第1の基板1側と第2の基板2側にそれぞれ個別に設けても良いし、どちらか一方の基板のみに設け、第1の基板1と第2の基板2との間を、導通材などを用いて配線接続するようにしても良い。
 なお、本実施形態の表示装置Aにおいて、カラー表示構成とする場合には、RGBの色を配置したカラーフィルタを第1の基板1とデータ電極3との間に通常配置する。しかし、本実施形態では、カラーフィルタの説明を省略する。また、近年では第2の基板2側に、カラーフィルタを設けるタイプのカラーフィルタオンアレイ(Color-Filter-On-Array)技術を用いた液晶表示装置も提供されている。そのため、カラーフィルタを第2の基板2側に設ける構造とすることもできる。
 前述した構成の表示装置Aにおいて、第2の基板2側に形成されている薄膜トランジスタとしてのスイッチング素子の具体的な構成例について以下に説明する。
 図6Aは、第1の例のスイッチング素子(薄膜トランジスタ)T1の平面構成を示す。スイッチング素子T1では、ガラスなどの絶縁性の第2の基板2上にソース電極21と、ドレイン電極20とが間隔をあけて配置されている。また、スイッチング素子T1では、ソース電極21とドレイン電極20とを部分的に覆うようにストライプ状に形成されている酸化物半導体層22と、酸化物半導体層22を覆うように設けられる絶縁膜23の上にゲート電極11aが形成される。ソース電極21が図1に示すソースSを構成する。ドレイン電極20が図1に示すドレインDを構成する。ゲート電極11aが図1に示すゲートGを構成する。
 この例では、第2の基板2上に形成されている基準信号線12と画素電極10とがいずれもITO(インジウムスズ酸化物)、IZO(インジウム亜鉛酸化物)、IGO(インジウムガリウム酸化物)、IGZO(インジウムガリウム亜鉛酸化物)を還元した透明材料などのいずれかの透明導電材料からなる。画素電極10は全体として矩形状に形成されているが、その一部をストライプ状に第2の基板2において列方向(Y方向)に延出形成してドレイン電極20が形成されている。
 基準信号線12は、第2の基板2上において、図1を基に説明したように、行方向(X方向)に延在されている。更に、基準信号線12の一部が、個々に画素電極10Aの側部を通過するように、接続線12として延出形成されている。この接続線12の先端側が、ドレイン電極20の先端部周囲を回り込むように鉤形に形成されたソース電極21として、ドレイン電極20の近傍に配置されている。なお、図6Aでは、画素電極10とその周囲に配置される接続線12とソース電極21とドレイン電極20との組み合わせ構造を、2組のみ記載している。しかし、この組み合わせ構造は、図1に示すように、第2の基板2上においてマトリクス状に配置されている各画素電極10と同じ数だけ第2の基板2上に形成されている。
 そして、ドレイン電極20とソース電極21の一部分を覆って、ドレイン電極20とソース電極21の上を通過するようにX方向に所定長さで延在するストライプ状の酸化物半導体層22が第2の基板2上に積層されている。そして、酸化物半導体層22の上に、絶縁膜23を介してAlなどの金属材料からなるメタル配線の走査線11が形成されている。ここで用いられる絶縁層23は、SiO/SiN層などの絶縁層からなる。しかし、表示装置の層間絶縁膜として用いられるその他の絶縁膜(SiO、SiN)などを用いても良いのは勿論である。
 次に、前述した構造において用いる酸化物半導体層22は、IGZOからなる。このIGZOは、InGaZnOの組成式で示されるIn-Ga-Zn-O系のアモルファス酸化物半導体膜である。
 以上の構成において、ソース電極21とドレイン電極20との間に酸化物半導体層22の一部が介在されている。これにより、この介在部分がチャネル生成部22aとされ、このチャネル生成部22aの上に絶縁膜23を介して走査線11の一部が配置され、その部分がゲート電極11aとされることで、スタガ型のスイッチング素子T1が構成されている。
 なお、図7に符号19は、発光ダイオード(LED)18を備えるバックライトである。この発光ダイオード18は、導光板などとともに必要個数だけ表示装置Aに設けられている。しかし、図7では簡略化のために導光板の図示は省略し、発光ダイオード18を1個のみ図示した。
 本実施形態の表示装置Aにおいて、第1の基板側端子集合部5に接続される駆動用IC25から第1の基板1の複数のデータ電極3にデータ信号を入力し、ゲートドライバ13を駆動して走査線11の選択を行なう。また、必要なスイッチング素子T1をオン状態にすると同時に、スイッチング素子T1に接続された画素電極10に対して基準信号線12から第2の基板側の駆動用ICが基準信号電圧(共通電圧)を印加する。これにより、信号入力されたデータ線3と基準信号電圧が印加された画素電極10との交差部分に存在されている液晶層の液晶分子などの配向を制御し、光の透過率を制御する。あるいは交差部分に有機EL材料層が介在されている場合は、有機EL材料の発光性を制御する。これにより、目的の映像などの表示を行うことができる。
 この例のスイッチング素子T1においては、IGZOなどからなる酸化物半導体層22が、第2の基板2の上に形成されていて、酸化物半導体層22の下には、透明導電材料のソース電極21とドレイン電極20が設けられている。あるいは、酸化物半導体層22の下に第2の基板2が直に存在する。よって、表示装置がバックライト19を備えた液晶表示装置である場合、第2の基板2の裏面側からバックライト19の光を受ける。しかし、IGZOの酸化物半導体層22である場合、光リーク電流発生の問題を回避することができる。
 即ち、バックライト19が、前述した構成の発光ダイオード18を備える場合、酸化物半導体層22を用いると、以下の理由でリーク電流の発生を抑制することができる。
 IGZOは透明体であるが、短波長(およそ420nm以下)の光は吸収し、半導体としての特性に影響が及ぶおそれがある。ここで仮にバックライト19が冷陰極管からなる場合は、水銀のUV光を蛍光体で波長変換する。しかし、UV光は取り除くことが容易ではないこと、また、冷陰極管に設けられる青色の蛍光体からの発光に420nm以下の波長の光が含まれていることから問題となりやすい。そのため、冷陰極管のバックライトを用いる場合は遮光層など、何らかの遮蔽手段が必要になる。この点において、バックライト19が光源としての発光ダイオード18を備える場合は、420nm以下の光をほとんど出さないバックライト19を構成することが可能である。そのため、この場合にIGZOの酸化物半導体層22においてリーク電流発生の問題を回避することができる。
 この点において、a-Siなどの半導体層を用いた場合は、光リーク電流を防止するためには、第2の基板2上に別途フォトリソグラフィ工程を追加して遮光層を設ける必要が生じてその分の工程数が増加する。これに対し、IGZOの酸化物半導体層22を用いた場合は、上述のように、光リークの問題を回避できる。そのため、遮光層を設ける必要がない分、フォトリソグラフィ工程の簡略化を図ることができる。
 なお、前述した構成において、図6Bに示すように、基準信号線12の端子部分12bをITOなどの透明導電材料から形成することができ、走査線11の端子部分11bをAlなどの金属材料から形成することができる。
 前述した構成のスイッチング素子T1を備えたアレイ基板を製造するには、絶縁性の第2の基板2の上に、ITOなどからなる透明導電膜を成膜する。その後、レジスト塗布、露光処理、現像処理、ウエットエッチング処理、レジスト剥離を行う第1回目のフォトリソ工程を施す。これにより、透明導電膜からなる図6A及び図6Bに示す薄膜状の画素電極10A、ドレイン電極20、ソース電極21、接続線12、基準信号線12を形成する。よって、画素電極10A、ドレイン電極20、ソース電極21、接続線12、基準信号線12は、同一材料(上述の透明導電材料)からなり同時成膜される。
 次に、前述の工程の後、IGZOの酸化物半導体層をスパッタ法により成膜する。そして、SiO/SiNの積層構造の絶縁膜23をCVD法により成膜する。そして、Al/Moの積層構造の走査線11とゲート電極11aをスパッタ法により成膜する。そして、レジスト塗布、露光処理、現像処理、ウエットエッチング処理によるAl/Mo層のエッチング処理、ドライエッチング処理によりSiO/SiN層のエッチング処理、ウエットエッチングによるIGZOの酸化物半導体層のエッチング処理を行う第2回目のフォトリソグラフィ工程を施す。これにより、図6A及び図6B、図7に示す構造のスイッチング素子T1を、第2の基板2上に作成することができる。
 また、この形態の構造において、例えば、Al/Moの積層構造の走査線11とゲート電極11aとして膜厚300nm程度の積層膜とを適用する。また、ゲート用のSiO/SiN層として膜厚400nm程度の絶縁膜23を適用する。また、膜厚100nm程度のIGZOの酸化物半導体層22を適用する。これにより、膜厚80nmあるいは100nm程度のITOからなる画素電極10Aとドレイン電極20とソース電極21と基準信号線12を形成することができる。
 セル化の後、偏光板等の貼り付け、ソースドライバの実装、第2の基板2上にゲートドライバ13を設ける。これにより、表示装置用のTFTアレイ基板を得ることができる。
 なお、前述の製造方法においては、同時成膜により同一の材料、例えば、ITOなどの透明導電材料からなる画素電極10A、ドレイン電極20、ソース電極21、接続線12、基準信号線12に対し、IGZOからなる酸化物半導体層22をエッチングする必要がある。しかし、ITOなどの透明導電材料/IGZOの選択エッチングについては、例えば、酢酸、有機酸(クエン酸)、塩酸又は過塩素酸のいずれか1種を含むエッチング液を用いて実現することができる。
 即ち、IGZO、IZO、IGO及びITOから選ばれた二種以上の酸化物を含む薄膜半導体において、上述の酸を用いることにより、精密かつ高選択性を有するウエットエッチングを行うことが出来る。
 前述した酢酸は、市販の酢酸液を原液のまま使用してもよいし、原液の容積の4倍までの純水で希釈して使用してもよい。IZO対IGZOの高エッチング選択比を維持するため、原液の容積の0.5倍から2倍の純水で希釈することがより望ましい。前述した酢酸を用いたエッチング工程は、酢酸水溶液に浸漬することによって行なうことができる。
 有機酸としては、クエン酸に限らず、マロン酸、リンゴ酸、酒石酸、シュウ酸、ギ酸、グリコール酸、マレイン酸等、一般に知られている有機酸であればよい。特定の条件により有機酸にある配位子、例えばCOOはInと結合し、錯イオンを形成して溶解する。以下では、クエン酸を用いる場合について説明をする。前述したクエン酸は、市販のクエン酸(クエン酸・1水和物、化学式C(OH)(COOH)・HO、白色固体結晶)を純水で完全に溶解した溶液である。
 前述した塩酸は、市販の濃塩酸を原液のまま使用してもよいし、原液の容積の60倍までの純水で希釈して使用してもよい。
 IZO、IGZO及びIGOを含むインジウム酸化物の対ITOエッチング選択比を高くかつ安定に維持するため、塩酸を含むエッチング液の塩酸濃度は、原液の容積の4から60倍の純水で希釈することが好ましい。
 前述した過塩素酸は、市販の濃過塩素酸溶液を原液のまま使用してもよいし、原液の容積の20倍までの純水で希釈して使用してもよい。過塩素酸を含むエッチング液において、好ましい過塩素酸濃度は、原液の容積の1から20倍の純水で希釈することができる。
 上述のエッチング液を用いることで、インジウム酸化物のエッチング速度の速さを、IZO、IGZO、IGO、ITOの順にすることが出来る。
 前述した酸性エッチング液、即ち酢酸、有機酸、塩酸又は過塩素酸のいずれか一種の溶液では、通常よく使われるゲート絶縁膜、例えばシリコン窒化膜をエッチング出来ないことが知られている。更に、シリコン窒化膜の代わりにゲート絶縁膜として、例えば酸化シリコン、もしくは窒化酸化シリコン、HfO、HfAlO、HfSiON、Y等の誘電体材料も上記酸性エッチング液にエッチングされないので、前述のスイッチング素子T1に応用することが可能である。
 これらの酸のうち、例えば、酢酸においてIZO、IGZO、IGOに対しITOのエッチング速度差をnm/分単位で3桁異なるように制御することができる。例えば、IZO、IGZO、IGOのエッチング速度を0.5~10nm/分に対しITOを0.05~0.06nm/分に制御できるので好適な選択比でエッチングができる。また、クエン酸や過塩素酸においても同様なエッチング速度差とするエッチング処理に利用できる。
 以上説明した製造方法によれば、スパッタ法による成膜工程数を3とし、CVD法による成膜工程を1とし、フォトリソグラフィ工程数を2とし、ドライエッチング工程数を1とし、ウエットエッチング工程数を1とすることで、第2の基板2上にスイッチング素子T1を形成することができる。
 即ち、上述の製造方法によれば、CVD法による成膜工程を1工程とし、フォトリソグラフィ工程2工程とすることで、スイッチング素子T1を製造することができる。よって、前述した従来技術のように、4~5工程のフォトリソグラフィ工程と、2工程のCVD法による成膜とが必要であった製造方法に比較し、省プロセス化を実現できる。よって、表示装置用の薄膜トランジスタアレイ基板の製造コストを低減することができる。
 前述した構成のスイッチング素子T1にあっては、画素電極10A、ドレイン電極20、ソース電極21、接続線12、基準信号線12をITOで形成したが、これらを、IGZOを水素還元して導体化した材料で構成しても良い。これらをIGZOで形成する場合、酸化物半導体層22もIGZOから形成する。そのため、ITOを成膜するプロセスを省略してIGZOを成膜するプロセスでもって、共用化できるので、更なる省プロセス化を推進できる。
 <スイッチング素子の第2の例>
 図8A~図10は、本発明に係るアレイ基板に適用されるスイッチング素子の第2の例を示す図である。この第2の例のスイッチング素子T2は、前述した第1の例のスイッチング素子T1の基準信号線の部分を異なる構成とした例である。その他の構造については、前述した第1の例の構造と同等とされている。
 図8Aは、第2実施形態のスイッチング素子(薄膜トランジスタ)T2の平面構成を示す。この第2実施形態のスイッチング素子T2は、ガラスなどの絶縁性の第2の基板2上に形成されている画素電極10Aが、いずれも前述した第1実施形態と同様の透明導電材料からなる。画素電極10Aは、全体として矩形状に形成されているが、その一部をストライプ状に延出形成してドレイン電極20が形成されている。
 基準信号線12Bは、第2の基板2上において、図1を基に説明したように、行方向(X方向)に延在されている。また、基準信号線12Bの一部が、個々に画素電極10の側部を通過するように接続線12aとして延出形成されている。この接続線12aの先端側が、ドレイン電極20の一端周囲を回り込むように鉤形に形成されたソース電極21として、ドレイン電極20の近傍に配置されている。ただし、この第2の例において基準信号線12Bは、行方向(X方向)に延在されている部分が、アルミなどの金属材料からなるメタル配線として絶縁膜23上に形成されている。接続線12aの部分は、前述した第1実施形態の構造と同様に第2の基板2上に、透明導電材料から構成されている。
 従って、図10に示すように、基準信号線12Bと接続線12aとは、酸化物半導体層22と絶縁膜23とを貫通するように形成したコンタクトホール24の部分を占める導通部25により電気的に接続されている。
 そして、ドレイン電極20とソース電極21の一部分を覆って、ドレイン電極20とソース電極21の上を通過するようにX方向に延在するストライプ状の酸化物半導体層22が第2の基板2上に積層されている。そして、酸化物半導体層22の上に、絶縁膜23を介してAlなどの金属材料からなるメタル配線の走査線11が形成されている。この構造については、前述した第1実施形態の構造と同等である。
 以上の構成において、ソース電極21とドレイン電極20との間に酸化物半導体層22の一部が介在されていることで、この介在部分がチャネル生成部22aとされている。このチャネル生成部22aの上に、絶縁膜23を介して走査線11の一部が配置されて、その部分がゲート電極11aとされることで、スイッチング素子T2が構成されている。この点については、前述した実施形態と同等である。
 この第2の例のスイッチング素子T2においては、前述した実施形態のスイッチング素子T1と同等の効果を得ることができる。この第2実施形態のスイッチング素子T2において、前述した実施形態と異なっている点は、基準信号線12Bをメタル配線としている点である。このため、基準信号線12Bを低抵抗配線とすることが可能である。よって、大型の表示装置に適用して基準信号線12Bが長くなった場合であっても、配線抵抗の増加による信号遅延などの問題を生じ難く、大型の表示装置であっても支障なく対応できる特徴を有する。
 なお、前述した構成において、図8Bに示すように、ITOなどの透明導電材料からなる層26と端子27とを接続するために、絶縁膜23にコンタクトホール28を形成して導通部29を形成する。これにより、絶縁膜23を介してその上下層の導通ができる。
 前述した構成のスイッチング素子T2を製造するには、絶縁性の第2の基板2の上に、ITOからなる透明導電膜を成膜する。その後、レジスト塗布、露光処理、現像処理、ウエットエッチング処理、レジスト剥離を行う第1回目のフォトリソ工程を施す。これにより、透明導電膜からなる図11Aに示す平面形状の画素電極10A、ドレイン電極20、ソース電極21、接続線12を形成する。よって、画素電極10A、ドレイン電極20、ソース電極21、接続線12は、同一材料からなり同時成膜される。
 前述の工程の後、図11Dに示すように、IGZOの酸化物半導体層を、スパッタ法により成膜する。そして、SiO/SiNの積層構造の絶縁膜23を、CVD法により成膜する。そして、レジスト塗布、露光処理、現像処理、ドライエッチング処理によりSiO/SiN層のエッチング処理、ウエットエッチングによるIGZOの酸化物半導体層のエッチング処理を行う第2回目のフォトリソ工程を施し、コンタクトホール24を形成する。次いで、図11Gに示すように、Al/Moの積層構造の走査線11とゲート電極11aとをスパッタ法により成膜する。そして、レジスト塗布、露光処理、現像処理、ウエットエッチング処理によるAl/Mo層のエッチング処理を施す。これにより、図8A及び図8B、図9、図10に示す構造のスイッチング素子T2を第2の基板2上に作成することができる。更に、ゲートドライバ13を設けることで、TFTアレイ基板を得ることができる。
 以上説明した第2の製造方法によれば、スパッタ法による成膜工程数を3とし、CVD法による成膜工程を1とし、フォトリソグラフィ工程数を3とし、ドライエッチング工程数を1とし、ウエットエッチング工程数を3とする。これにより、第2の基板2上にスイッチング素子T2を形成することができる。
 即ち、上述の製造方法によれば、CVD法による成膜工程を1工程とし、フォトリソグラフィ工程数を3工程とすることで、スイッチング素子T2を製造することができる。そのため、前述した従来技術のように、4~5工程のフォトリソグラフィ工程と、2工程のCVD法による成膜とが必要であった製造方法に比較し、省プロセス化を実現できる。よって、表示装置用の薄膜トランジスタアレイ基板の製造コストを低減することができる。
 <スイッチング素子の第3の例>
 図12A及び図12B、図13は、本発明に係る第3の例のスイッチング素子T3を示す図である。この例のスイッチング素子T3は、前述した例のスイッチング素子T1、T2に対し、走査線と基準信号線をいずれも金属材料からなるメタル配線としてTFT部分を逆スタガ構造とした例を示す。
 図12Aは、第3の例のスイッチング素子(薄膜トランジスタ)T3の平面構成を示す。この第3の例のスイッチング素子T3は、絶縁性の第2の基板2上に形成されている基準信号線12Cと走査線11Bとが、第2の基板2上において、図1を基に説明したように、行方向(X方向)に延在されている。これらの基準信号線12Cと走査線11Bとが、Alなどの金属材料からなるメタル配線とされている。
 各走査線11Bの画素電極近傍部分に、平面視凸型のゲート電極31が形成されている。これらの基準信号線12Cと走査線11Bとを覆って、絶縁膜33が形成されている。この絶縁膜33上であって、ゲート電極31の上方側に、アイランド状の酸化物半導体層35とチャネル保護層36とが積層されている。また、絶縁膜33上に、ITOなどの透明導電膜からなる画素電極10Bが形成されている。この画素電極10Bから延出するドレイン電極37が、酸化物半導体層35とチャネル保護層36との一側端部を覆うように形成されている。また、画素電極10B近くに位置する基準信号線12Cの一部からゲート電極31に近い位置まで、絶縁膜33の上に沿って接続線38が延出形成されている。接続線38の一端部が、酸化物半導体層35とチャネル保護層36との他側端部を覆うように形成され、ソース電極39が形成されている。基準信号線12C側の接続線38の端部は、絶縁膜33に形成されたコンタクトホール40を介して基準信号線12Cに接続されている。
 以上の構成において、ソース電極39とドレイン電極37との間に酸化物半導体層35が介在され、酸化物半導体層35の下に、ゲート電極31が配置されることで逆スタガ型のスイッチング素子T3が形成されている。
 なお、図12Bは、配線部分の端子部分の構成を示す図である。端子部34Cを絶縁膜が覆っている。絶縁膜に形成されているコンタクトホール34Dを介して、ITOなどの透明導電材料からなる端子部導体34Eが接続されている。
 本実施形態のスイッチング素子T3を用いることにより、基準信号線12Cと走査線11Bとを金属材料製のメタル配線として低抵抗化できる。そのため、前述した第2の例の場合と同様、大型の液晶表示装置であっても適用できる効果がある。また、本実施形態のスイッチング素子T3の構造を用いる場合、第2の基板2の周辺部に静電気対策のダイオードを配置することが容易にできる。また、逆スタガ構造であるために、一般的な液晶表示装置の製造設備との親和性が高く、製造し易いという特徴を有する。
 更に、図13に示すように、バックライト19が、前述した構成の発光ダイオード18である場合、酸化物半導体層22を用いることにより、特に可視光域でのリーク電流の発生を少なくすることができる。
 前述した構成のスイッチング素子T3を製造するには、図14A、図14Cに示すように、絶縁性の第2の基板2の上に、Al/Moの積層膜を形成する。そして、レジスト塗布、露光処理、現像処理、ウエットエッチング処理、レジスト剥離によりAl/Mo層のエッチング処理を施す第1回目のフォトリソグラフィ工程を施す。これにより、ゲート電極31を備えた走査線11B、及び基準信号線12Cと必要な配線の端子に接続される端子部34Cを形成する。
 次に、図14D、図14Fに示すように、SiO/SiN膜の積層構造の絶縁膜33をCVD法により成膜する。そして、IGZOの酸化物半導体層と保護膜とをスパッタ法により成膜する。そして、レジスト塗布、露光処理、現像処理、ウエットエッチング処理、レジスト剥離を、図14D、図14Fに示すように行う第2回目のフォトリソグラフィ工程を施す。次に、図14G、図14Iに示すように、レジスト塗布、露光処理、現像処理、ドライエッチング処理によりSiO/SiN層のエッチング処理を行い、ITOからなる透明導電膜を成膜する。その後、レジスト塗布、露光処理、現像処理、ウエットエッチング処理、レジスト剥離を行う第3回目のフォトリソグラフィ工程を施す。これにより、透明導電膜からなる図14Jに示す平面形状の画素電極10B、ドレイン電極37、ソース電極39、接続線38を形成する。なお、端子部34Cではその上に積層されている絶縁膜33にコンタクトホール34Dを形成し、ITOからなる端子部導体34Eを形成することで端子を構成することができる。
 これにより、図12A及び図12B、図13に示す構造のスイッチング素子T3を、第2の基板2上に作成することができ、これにゲートドライバ13を設けることでTFTアレイ基板を得ることができる。
 以上説明した第3の製造方法によれば、スパッタ法による成膜工程数を3とし、CVD法による成膜工程を1とし、フォトリソグラフィ工程数を4とし、ドライエッチング工程数を1とし、ウエットエッチング工程数を3とする。これにより、第2の基板2上にスイッチング素子T3を形成することができる。
 即ち、上述の製造方法によれば、従来技術のna-Si層が不要である。そのため、na-Si層を必要としていた逆スタガ型の製造方法に対し、フォトリソグラフィ工程におけるマスクを削減できる効果がある。
 また、上述の工程はフォトリソグラフィ工程が4であり、4マスク工程であるが、ハーフトーン露光によって図14D、図14Gに示す工程を兼ねることが可能であるので、その場合に更なる省プロセス化を実現することができる。
 <スイッチング素子の第4の例>
 図15A及び図15B、図16は本発明に係る第4の例のスイッチング素子T4を示す図である。この例のスイッチング素子T4は、前述した例のスイッチング素子T3に対し、チャネル保護層36を省略してなる逆スタガ構造とした例を示す。
 図15Aは、第4の例のスイッチング素子(薄膜トランジスタ)T4の平面構成を示す。この第4の例のスイッチング素子T4は、絶縁性の第2の基板2上に形成されている基準信号線12Cと走査線11Bとが、第2の基板2上において、図1を基に説明したように、行方向(X方向)に延在されている。これらの基準信号線12Cと走査線11BとがAlなどの金属材料からなるメタル配線とされている。
 各走査線11Bの画素電極近傍部分に平面視凸型のゲート電極31が形成されている。これらの基準信号線12Cと走査線11Bとを覆って絶縁膜33が形成されている。この絶縁膜33上であって、ゲート電極31の上方側に、アイランド状の酸化物半導体層35が積層されている。また、絶縁膜33上にITOなどの透明導電膜からなる画素電極10Bが形成されている。この画素電極10Bから延出するドレイン電極37が、酸化物半導体層35の一側端部を覆うように形成されている。また、画素電極10B近くに位置する基準信号線12Cの一部からゲート電極31に近い位置まで、絶縁膜33の上に沿って接続線38が延出形成されている。接続線38の一端部が、酸化物半導体層35の他側端部を覆うように形成され、ソース電極39が形成されている。基準信号線12C側の接続線38の端部は、絶縁膜33に形成されたコンタクトホール40を介して基準信号線12Cに接続されている。
 以上の構成において、ソース電極39とドレイン電極37との間に酸化物半導体層35が介在され、酸化物半導体層35の下にゲート電極31が配置されることで、逆スタガ型のスイッチング素子T4が形成されている。
 なお、図15Bは、配線部分の端子部分の構成を示す図である。端子部34Cを絶縁膜が覆い、絶縁膜に形成されているコンタクトホール34Dを介してITOなどの透明導電材料からなる端子部導体34Eが接続されている。
 前述した構成のスイッチング素子T4を製造するには、図17A、図17Cに示すように、絶縁性の第2の基板2の上にAl/Moの積層膜をスパッタ法により形成する。そして、レジスト塗布、露光処理、現像処理、ウエットエッチング処理、レジスト剥離によりAl/Mo層のエッチング処理を施す第1回目のフォトリソグラフィ工程を施す。これにより、ゲート電極31を備えた走査線11B、及び基準信号線12Cを形成する。
 次に、図17D、図17Fに示すように、SiO/SiNの積層構造の絶縁膜33をCVD法により成膜する。そして、IGZOの酸化物半導体層をスパッタ法により成膜する。そして、レジスト塗布、露光処理、現像処理、ウエットエッチング処理、レジスト剥離を行う第2回目のフォトリソグラフィ工程を施す。これにより、図17D、図17Fに示す状態とする。次に、レジスト塗布、露光処理、現像処理、ドライエッチング処理によりSiO/SiN層のエッチング処理を行い、図17G、図17Iに示す状態とする。その後、ITOからなる透明導電膜を成膜する。その後、レジスト塗布、露光処理、現像処理、ウエットエッチング処理、レジスト剥離を行う第3回目のフォトリソグラフィ工程を施す。これにより、透明導電膜からなる図17J、図17Lに示す平面形状の画素電極10B、ドレイン電極37、ソース電極39、接続線38を形成する。なお、端子部34Cでは、その上に積層されている絶縁膜33にコンタクトホール34Dを形成し、ITOからなる端子部導体34Eを形成することで端子を構成することができる。
 これにより、図15A及び図15B、図16に示す構造のスイッチング素子T4を、第2の基板2上に作成することができ、これにゲートドライバ13を設けることでTFTアレイ基板を得ることができる。
 以上説明した第4の製造方法によれば、スパッタ法による成膜工程数を3とし、CVD法による成膜工程を1とし、フォトリソグラフィ工程数を4とし、ドライエッチング工程数を2とし、ウエットエッチング工程数を3とする。これにより、第2の基板2上にスイッチング素子T4を形成することができる。
 即ち、上述の製造方法によれば、従来技術のna-Si層が不要である。そのため、na-Si層を必要としていた逆スタガ型の製造方法に対し、フォトリソグラフィ工程におけるマスクを削減できる効果がある。
 また、上述の工程はフォトリソグラフィ工程が4であり、4マスク工程であるが、ハーフトーン露光によって図17D、図17Gに示す工程を兼ねることが可能であるので、その場合に更なる省プロセス化を実現することができる。
 <スイッチング素子の第5の例>
 図18A及び図18B、図19は、本発明に係る第5の例のスイッチング素子T5を示す図である。この例のスイッチング素子T5は、前述した例のスイッチング素子T4に対し、画素電極とドレイン電極とソース電極と接続線とを、IGZOの酸化物半導体の還元物質から構成した逆スタガ構造の一例を示す。
 図18Aは、第5の例のスイッチング素子(薄膜トランジスタ)T5の平面構成を示す。この第5実施形態のスイッチング素子T5は、絶縁性の第2の基板2上に形成されている基準信号線12Cと走査線11Bとが、第2の基板2上において、図1を基に説明したように、行方向(X方向)に延在されている。これらの基準信号線12Cと走査線11BとがAlなどの金属材料からなるメタル配線とされている。
 各走査線11Bの画素電極近傍部分に、平面視凸型のゲート電極31が形成されている。これらの基準信号線12Cと走査線11Bとを覆って、絶縁膜33が形成されている。この絶縁膜33上であって、ゲート電極31の上方側にIGZOの酸化物半導体層39が積層されている。
 更に、この第5の例ではIGZOの酸化物半導体層からなる画素電極10Cが形成されている。この画素電極10Cから延出するドレイン電極41が、酸化物半導体層39に一体接続するように形成されている。また、画素電極10C近くに位置する基準信号線12Cの一部からゲート電極31に近い位置まで、IGZOの酸化物半導体層からなる接続線42が、絶縁膜33上に延出形成されている。接続線42の一端部が、酸化物半導体層40に一体接続するように形成されている。酸化物半導体層39に一体接続する部分が、ソース電極43とされている。酸化物半導体層39と画素電極10Cとドレイン電極41とソース電極43と接続線42とは、いずれもIGZOからなる。酸化物半導体層39は半導体層として設けられ、画素電極10Cとドレイン電極41とソース電極43と接続線42とは、いずれもIGZOを水素プラズマ処理して還元物質とすることで導体化される。
 基準信号線12C側の接続線42の端部は、絶縁膜33に形成されたコンタクトホール40を介して基準信号線12Cに接続されている。
 以上の構成において、ソース電極43とドレイン電極41との間に、酸化物半導体層39が介在され、酸化物半導体層39の下にゲート電極31が配置されることで逆スタガ型の薄膜トランジスタが形成されている。
 なお、図18Bは、配線部分の端子部分の構成を示す図である。端子部34Cを絶縁膜が覆い、絶縁膜に形成されているコンタクトホール34Dを介してIGZOの還元物質からなる端子部導体34Eが接続されている。
 この第5の例のスイッチング素子T5においては、走査線11Bと基準信号線12Cとをメタル配線としている。そのため、走査線11Bと基準信号線12Cとを低抵抗配線とすることが可能である。よって、大型の表示装置に適用して走査線11Bと基準信号線12Cが長くなった場合であっても配線抵抗の増加による信号遅延などの問題を生じ難く、大型の表示装置であっても支障なく対応できる特徴を有する。また、バックライト19が前述した構成の発光ダイオード18である場合、酸化物半導体層22を用いたときに、特に可視光域でのリーク電流の発生を少なくすることができる。
 また、本実施形態のスイッチング素子T5の構造を用いる場合、第2の基板2の周辺部に、静電気対策のダイオードを配置することが容易にできる。また、基本構造が逆スタガ構造であるために一般的な液晶表示装置の製造設備との親和性が高く、製造し易いという特徴を有する。
 前述した構成のスイッチング素子T5を製造するには、図20A、図20Cに示すように、絶縁性の第2の基板2の上にAl/Moの積層膜をスパッタ法により形成する。そして、レジスト塗布、露光処理、現像処理、ウエットエッチング処理、レジスト剥離によりAl/Mo層のエッチング処理を施す第1回目のフォトリソグラフィ工程を施す。これにより、ゲート電極31を備えた走査線11B、及び基準信号線12Cを形成する。次に、図20D、図20Fに示すように、SiO/SiNの積層構造の絶縁膜33をCVD法により成膜する。そして、レジスト塗布、露光処理、現像処理、ドライエッチングを行う第2回目のフォトリソグラフィ工程を施す。これにより、図20D、図20Fに示す状態とする。次に、IGZOをスパッタ法で成膜する。そして、レジスト塗布、露光処理、現像処理、ウエットエッチング処理によりIGZO膜45を画素電極形状と、ソース電極形状と、ゲート電極上を通過するアイランド形状とドレイン電極形状と、接続線の形状に図20G、図20Iに示すように加工する。そして、レジスト塗布、露光処理、現像処理を施してゲート電極上を通過するアイランド形状部分をレジスト46で覆った状態から水素プラズマ処理を施す。
 この水素プラズマ処理により、図20J、図20Lに示すように、レジストで覆われた部分以外が導体化されて画素電極10Cと、ソース電極41と、ドレイン電極43と、接続線42とがIGZOの還元物質からなる導体として構成されてスイッチング素子T5が形成される。なお、端子部34Cでは、その上に積層されている絶縁膜33にコンタクトホール34Dを形成し、IGZOの還元物質からなる端子部導体34Eを形成することで、端子を構成することができる。
 これにより、図18A及び図18B、図19に示す構造のスイッチング素子T5を、第2の基板2上に作成することができ、ゲートドライバ13を設けることでTFTレイ基板を得ることができる。
 以上説明した第5の製造方法によれば、スパッタ法による成膜工程数を2とし、CVD法による成膜工程を1とし、フォトリソグラフィ工程数を4とし、ドライエッチング工程数を1とし、ウエットエッチング工程数を2とし、水素プラズマ処理工程を1とする。これにより、第2の基板2上にスイッチング素子T5を形成することができる。
 また、CVD法による成膜工程を1とし、フォトリソグラフィ工程数を4とすることができ、省プロセス化を実現することができる。
 上述の製造方法によれば、従来技術のna-Si層が不要である。そのため、na-Si層を必要としていた逆スタガ型の製造方法に対し、フォトリソグラフィ工程におけるマスクを削減できる効果がある。
 また、上述の工程はフォトリソグラフィ工程が4であり、4マスク工程であるが、ハーフトーン露光によって図20G、図20Iに示す工程を兼ねることが可能である。よって、その場合に更なる省プロセス化を実現することができる。
 本発明に係る表示装置は、スイッチング素子に酸化物半導体層を組み込んで光リーク電流の影響を受け難くすることができる。また、対向データ供給型表示装置の画素電極と、それに接続する電極とを同一材料、同時成膜として省プロセス化を図り、液晶テレビなどのコスト削減を実現することができる。
1…第1の基板、
2…第2の基板、
3…データ電極、
10、10A、10B、10C…画素電極、
11、11A、11B…走査線、
12、12、12B、12C…基準信号線、
13…ゲートドライバ、
T1、T2、T3、T4、T5…スイッチング素子(薄膜トランジスタ)、
20、37、41…ドレイン電極、
21、39、43…ソース電極、
22、35、39…酸化物半導体層、
23…絶縁膜、
25…駆動用IC

Claims (20)

  1.  第1の基板と、
     前記第1の基板に対向するように配置された第2の基板と、
     前記第1の基板と前記第2の基板との間に設けられた表示媒体層と、
     前記第1の基板に形成され、列方向に延びるストライプ形状の複数のデータ電極と、
     前記第2の基板に形成され、行方向に延びる、複数の走査線および複数の基準信号線と、
     前記第2の基板に形成され、マトリクス状に配置された複数の画素電極と、
     前記第2の基板に形成され、前記複数の走査線によってオン/オフが制御され、かつ、前記複数の基準信号線と前記複数の画素電極との間に設けられた複数のスイッチング素子と、
     ソース電極とドレイン電極との間に設けられる酸化物半導体層とを備え、
     前記酸化物半導体層に絶縁層を介しゲート電極を近接配置して前記スイッチング素子が形成され、
     前記ソース電極あるいは前記ドレイン電極に接続されて前記画素電極が設けられ、
     前記画素電極が接続されている前記ソース電極あるいは前記ドレイン電極が前記画素電極と同一材料からなり、
     前記ソース電極と前記ドレイン電極とが同時成膜された膜からなる表示装置。
  2.  前記走査線を走査して対応する走査線に沿って設けられている前記スイッチング素子のオン/オフ制御が行なわれ、
     オン状態のスイッチング素子を介して前記基準信号線から前記画素電極に基準信号電圧が印加され、
     前記複数のデータ電極にはそれぞれに対応するデータ信号が入力され、電圧印加された画素電極とデータ電極との間に介在された前記表示媒体層の分子配向または発光率を制御して表示する請求項1に記載の表示装置。
  3.  前記画素電極と前記ドレイン電極及び前記ソース電極とが、インジウムガリウム亜鉛酸化物の還元物質からなる請求項1に記載の表示装置。
  4.  前記画素電極と前記ドレイン電極及び前記ソース電極とこれら電極と前記基準信号線との接続線が、いずれもインジウムガリウム亜鉛酸化物の還元物質からなり、
     前記酸化物半導体層が、インジウムガリウム亜鉛酸化物からなる請求項1に記載の表示装置。
  5.  発光ダイオードのバッライトが付設される請求項1に記載の表示装置。
  6.  前記基準信号線及びこの基準信号線に接続された前記スイッチング素子のソース電極あるいはドレイン電極と、前記画素電極及びこの画素電極に接続された前記スイッチング素子のドレイン電極あるいはソース電極とがいずれも透明導電膜からなり、
     前記ソース電極と前記ドレイン電極との間に介在される前記酸化物半導体層が、インジウムガリウム亜鉛酸化物からなる請求項1に記載の表示装置。
  7.  前記複数の基準信号線とそれに接続された前記スイッチング素子のソース電極あるいはドレイン電極と、前記画素電極及びこの画素電極に接続された前記スイッチング素子のドレイン電極あるいはソース電極とが、いずれも前記第2の基板上に形成され、
     前記ソース電極及び前記ドレイン電極とそれらの間に介在された前記酸化物半導体層とを覆って絶縁膜が形成され、
     前記絶縁膜上にゲート電極が形成される請求項6に記載の表示装置。
  8.  前記ゲート電極を備えた走査線と前記基準信号線とが、前記第2の基板上に形成され、
     前記走査線と前記基準信号線とを覆って絶縁膜が形成され、
     前記絶縁膜上であって前記ゲート電極上に、酸化物半導体層が形成され、
     前記絶縁膜上にソース電極とドレイン電極と、これらのいずれかに接続された画素電極とが形成される請求項6に記載の表示装置。
  9.  前記ゲート電極を備えた走査線と前記基準信号線とが、前記第2の基板上に形成され、
     前記走査線と前記基準信号線とを覆って絶縁膜が形成され、
     前記絶縁膜上であって前記ゲート電極上に、酸化物半導体層が形成され、
     前記絶縁膜上にソース電極とドレイン電極と、これらのいずれかに接続された画素電極とが形成され、
     前記酸化物半導体層は、インジウムガリウム亜鉛酸化物からなり、
     前記画素電極、ソース電極及びドレイン電極が、インジウムガリウム亜鉛酸化物の還元物質からなる請求項6に記載の表示装置。
  10.  第1の基板に対向するように配置された第2の基板上に、基準信号線及びこの基準信号線に接続されたソース電極あるいはドレイン電極と、画素電極及びこの画素電極に接続されたドレイン電極あるいはソース電極とを透明導電材料を用いて形成し、
     前記ソース電極及び前記ドレイン電極に接続するように酸化物半導体層を形成し、
     前記酸化物半導体層上に絶縁膜を形成し、
     前記ソース電極と前記ドレイン電極間の絶縁膜上に、ゲート電極が位置するように、前記第2の基板上にゲート電極を備えた走査線を形成するアレイ基板の製造方法。
  11.  前記ゲート電極及び前記走査線を、金属材料からなるメタル配線とする請求項10に記載のアレイ基板の製造方法。
  12.  第1の基板に対向するように配置された第2の基板上に、画素電極及びこの画素電極に接続されたドレイン電極あるいはソース電極を、透明導電材料を用いて形成し、
     前記ソース電極及び前記ドレイン電極に接続するように酸化物半導体層を形成し、
     前記酸化物半導体層上に絶縁膜を形成し、
     前記ソース電極とドレイン電極間の絶縁膜上にゲート電極が位置するように、前記第2の基板上にゲート電極を備えた走査線を形成し、
     前記絶縁膜上に前記画素電極に接続されていない側のソース電極あるいはドレイン電極に接続する基準信号線を形成するアレイ基板の製造方法。
  13.  前記走査線と前記ゲート電極と前記基準信号線とを、金属材料からなるメタル配線とする請求項12に記載のアレイ基板の製造方法。
  14.  第1の基板に対向するように配置された第2の基板上に、基準信号線及びゲート電極と走査線を形成し、
     前記基準信号線と前記ゲート電極と前記走査線とを覆うように絶縁膜を形成し、
     前記ゲート電極上の絶縁膜上に酸化物半導体層を形成し、
     前記ゲート電極上の酸化物半導体層を両側から挟むソース電極及びゲート電極およびこれらいずれかの電極に接続する画素電極を形成するアレイ基板の製造方法。
  15.  前記走査線と前記ゲート電極と前記基準信号線とを、金属材料からなるメタル配線とする請求項14に記載のアレイ基板の製造方法。
  16.  前記酸化物半導体層を形成後、前記酸化物半導体層の上にチャネル保護膜を形成し、
     ソース電極及びゲート電極形成用の成膜を行い、
     この膜をパターニングしてソース電極及びゲート電極を形成する請求項14に記載のアレイ基板の製造方法。
  17.  第1の基板に対向するように配置された第2の基板上に、基準信号線及びゲート電極と走査線を形成し、
     前記基準信号線と前記ゲート電極と前記走査線とを覆うように絶縁膜を形成し、
     前記ゲート電極上の絶縁膜上と画素電極形成位置とゲート電極形成位置とソース電極形成位置とを占めるようにインジウムガリウム亜鉛酸化物層を形成し、
     前記インジウムガリウム亜鉛酸化物層において前記ゲート電極上の位置を除く部分を還元処理して導体化するアレイ基板の製造方法。
  18.  前記インジウムガリウム亜鉛酸化物層を還元する処理として、水素雰囲気中におけるプラズマ処理を施す請求項17に記載のアレイ基板の製造方法。
  19.  前記走査線と前記ゲート電極と前記基準信号線とを、金属材料からなるメタル配線とする請求項17に記載のアレイ基板の製造方法。
  20.  前記第1の基板と前記第2の基板との間に表示媒体層を形成し、
     前記第1の基板に、列方向に延びるストライプ形状の複数のデータ電極を形成し、
     前記第2の基板に、行方向に延びる、複数の走査線および複数の基準信号線を形成し、
     前記第2の基板に、マトリクス状に配置された複数の画素電極を形成し、
     前記第2の基板に、前記複数の走査線によってオン/オフが制御され、かつ、前記複数の基準信号線と前記複数の画素電極との間に設けられた複数のスイッチング素子を形成し、
     前記第2の基板に、前記基準信号線と前記画素電極と前記スイッチング素子とを形成する請求項10、12、14、17のいずれかの項に記載のアレイ基板の製造方法。
PCT/JP2011/056522 2010-03-26 2011-03-18 表示装置および表示装置用アレイ基板の製造方法 WO2011118515A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/635,507 US20130001546A1 (en) 2010-03-26 2011-03-18 Display device and method for producing array substrate for display device
CN2011800154112A CN102822884A (zh) 2010-03-26 2011-03-18 显示装置和显示装置用阵列基板的制造方法
JP2012506977A JPWO2011118515A1 (ja) 2010-03-26 2011-03-18 表示装置および表示装置用アレイ基板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-072382 2010-03-26
JP2010072382 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118515A1 true WO2011118515A1 (ja) 2011-09-29

Family

ID=44673070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056522 WO2011118515A1 (ja) 2010-03-26 2011-03-18 表示装置および表示装置用アレイ基板の製造方法

Country Status (4)

Country Link
US (1) US20130001546A1 (ja)
JP (1) JPWO2011118515A1 (ja)
CN (1) CN102822884A (ja)
WO (1) WO2011118515A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042125A1 (ja) * 2012-09-12 2014-03-20 シャープ株式会社 半導体装置およびその製造方法
KR101829858B1 (ko) 2011-09-30 2018-02-21 엘지디스플레이 주식회사 산화물 박막트랜지스터 및 이의 제조방법
JP2018137475A (ja) * 2013-03-14 2018-08-30 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2021152667A (ja) * 2012-11-30 2021-09-30 株式会社半導体エネルギー研究所 目にやさしい表示装置
JP2023029901A (ja) * 2013-05-10 2023-03-07 株式会社半導体エネルギー研究所 表示装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457875B (zh) * 2009-02-19 2014-10-21 Prime View Int Co Ltd 顯示裝置及其製造方法
US9171940B2 (en) * 2011-01-13 2015-10-27 Sharp Kabushiki Kaisha Thin film transistor substrate, display device, and method for manufacturing thin film transistor substrate
US9040981B2 (en) 2012-01-20 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10522670B2 (en) * 2012-06-26 2019-12-31 Nxp Usa, Inc. Semiconductor device with selectively etched surface passivation
US9134860B2 (en) * 2012-08-16 2015-09-15 Eastman Kodak Company Method of making a display device
KR101989809B1 (ko) * 2012-11-14 2019-06-18 삼성디스플레이 주식회사 표시 장치의 제조 방법
JP2014208570A (ja) * 2013-03-25 2014-11-06 日本電気硝子株式会社 強化ガラス基板及びその製造方法
JP6475424B2 (ja) * 2013-06-05 2019-02-27 株式会社半導体エネルギー研究所 半導体装置
CN103700628B (zh) * 2013-12-26 2016-05-04 京东方科技集团股份有限公司 阵列基板制作方法、阵列基板及显示装置
CN105514120B (zh) 2016-01-21 2018-07-20 京东方科技集团股份有限公司 一种双栅tft阵列基板及其制造方法和显示装置
WO2017170219A1 (ja) * 2016-03-31 2017-10-05 シャープ株式会社 アクティブマトリクス基板、その製造方法および表示装置
CN106711231A (zh) * 2017-01-13 2017-05-24 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、显示基板及其制备方法
US20180374953A1 (en) * 2017-06-22 2018-12-27 Shenzhen China Star Optoelectronics Technology Co. Ltd. Metal oxide thin film transistor and method of manufacturing the same, and display panel
CN109143705A (zh) * 2018-09-18 2019-01-04 深圳市华星光电技术有限公司 提高显示清晰度的面板
KR102206782B1 (ko) * 2019-03-04 2021-01-25 엘지전자 주식회사 디스플레이 장치
US11869921B2 (en) 2020-01-21 2024-01-09 Boe Technology Group Co., Ltd. Light emitting plate, wiring plate and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258795A (ja) * 1999-03-04 2000-09-22 Sharp Corp 液晶表示素子およびその製造方法ならびに液晶表示装置
JP2002076356A (ja) * 2000-09-01 2002-03-15 Japan Science & Technology Corp 半導体デバイス
JP2008040343A (ja) * 2006-08-09 2008-02-21 Nec Corp 薄膜トランジスタアレイ、その製造方法及び液晶表示装置
JP2009141002A (ja) * 2007-12-04 2009-06-25 Canon Inc 絶縁層を有する酸化物半導体素子およびそれを用いた表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101631454B1 (ko) * 2008-10-31 2016-06-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 논리회로
US20120327060A1 (en) * 2010-03-10 2012-12-27 Sharp Kabushiki Kaisha Display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258795A (ja) * 1999-03-04 2000-09-22 Sharp Corp 液晶表示素子およびその製造方法ならびに液晶表示装置
JP2002076356A (ja) * 2000-09-01 2002-03-15 Japan Science & Technology Corp 半導体デバイス
JP2008040343A (ja) * 2006-08-09 2008-02-21 Nec Corp 薄膜トランジスタアレイ、その製造方法及び液晶表示装置
JP2009141002A (ja) * 2007-12-04 2009-06-25 Canon Inc 絶縁層を有する酸化物半導体素子およびそれを用いた表示装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101829858B1 (ko) 2011-09-30 2018-02-21 엘지디스플레이 주식회사 산화물 박막트랜지스터 및 이의 제조방법
WO2014042125A1 (ja) * 2012-09-12 2014-03-20 シャープ株式会社 半導体装置およびその製造方法
CN104620389A (zh) * 2012-09-12 2015-05-13 夏普株式会社 半导体装置及其制造方法
US9224869B2 (en) 2012-09-12 2015-12-29 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same
CN104620389B (zh) * 2012-09-12 2017-11-17 夏普株式会社 半导体装置及其制造方法
JP2021152667A (ja) * 2012-11-30 2021-09-30 株式会社半導体エネルギー研究所 目にやさしい表示装置
JP2018137475A (ja) * 2013-03-14 2018-08-30 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2023029901A (ja) * 2013-05-10 2023-03-07 株式会社半導体エネルギー研究所 表示装置

Also Published As

Publication number Publication date
CN102822884A (zh) 2012-12-12
JPWO2011118515A1 (ja) 2013-07-04
US20130001546A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
WO2011118515A1 (ja) 表示装置および表示装置用アレイ基板の製造方法
JP6725317B2 (ja) 表示装置
US9356052B2 (en) Thin film transistor with integrated connecting portion
TWI418038B (zh) 顯示裝置
KR101398094B1 (ko) 액정 디스플레이 및 어레이 기판
JP5172178B2 (ja) 薄膜トランジスタ、それを用いた表示装置、及びそれらの製造方法
JP4967631B2 (ja) 表示装置
US8928122B2 (en) Wiring structure, thin film transistor array substrate including the same, and display device
US9064749B2 (en) Array substrate
KR101473675B1 (ko) 박막 트랜지스터 표시판 및 그 제조 방법
WO2012011258A1 (ja) 基板及びその製造方法、表示装置
KR100866943B1 (ko) Tft 어레이 기판 및 그 제조 방법과, 이것을 사용한표시장치
US9257454B2 (en) Thin film transistor array substrate
JP2004004680A (ja) 表示装置用配線基板及びその製造方法
JP2005049877A (ja) 薄膜トランジスタ表示板及びその製造方法
US9989828B2 (en) Semiconductor device and liquid crystal display device
JP4954868B2 (ja) 導電層を備えた基板の製造方法
US9612498B2 (en) Semiconductor device and display device
JP5324758B2 (ja) 薄膜トランジスタ、表示装置、およびその製造方法
KR20110076654A (ko) 액정표시장치 제조 방법
US6356319B1 (en) Liquid crystal display device and method of manufacturing the same
JP5221082B2 (ja) Tft基板
JP2010210732A (ja) 液晶表示パネル及びその製造方法
JP6482256B2 (ja) 薄膜トランジスタ基板および液晶表示装置
JP2010181474A (ja) 薄膜トランジスタアレイ基板、反射型液晶表示装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015411.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759321

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13635507

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012506977

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759321

Country of ref document: EP

Kind code of ref document: A1