WO2011118250A1 - Dpfの再生制御装置、再生制御方法、および再生支援システム - Google Patents

Dpfの再生制御装置、再生制御方法、および再生支援システム Download PDF

Info

Publication number
WO2011118250A1
WO2011118250A1 PCT/JP2011/051512 JP2011051512W WO2011118250A1 WO 2011118250 A1 WO2011118250 A1 WO 2011118250A1 JP 2011051512 W JP2011051512 W JP 2011051512W WO 2011118250 A1 WO2011118250 A1 WO 2011118250A1
Authority
WO
WIPO (PCT)
Prior art keywords
dpf
ash
differential pressure
cleaning
regeneration
Prior art date
Application number
PCT/JP2011/051512
Other languages
English (en)
French (fr)
Inventor
恒 高柳
増田 具承
青木 泰道
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11759059.6A priority Critical patent/EP2525056A4/en
Priority to US13/581,957 priority patent/US8919105B2/en
Priority to CN201180011828.1A priority patent/CN102782267B/zh
Publication of WO2011118250A1 publication Critical patent/WO2011118250A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/446Auxiliary equipment or operation thereof controlling filtration by pressure measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/0086Filter condition indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor

Definitions

  • the present invention relates to a regeneration control device, a regeneration control method for a diesel particulate filter (hereinafter abbreviated as DPF) for collecting particulate matter (exhaust particulates, hereinafter abbreviated as PM) contained in exhaust gas of a diesel engine, and More particularly, the present invention relates to a regeneration control apparatus, a regeneration control method, and a regeneration support system that perform ash cleaning by estimating the amount of ash deposited on a DPF.
  • DPF diesel particulate filter
  • PM exhaust particulates
  • the DPF is known as an effective technique for reducing PM discharged from a diesel engine.
  • the DPF is a PM collection device using a filter, and soot (soot) components and ash (ash) components discharged from the engine are deposited on the DPF.
  • the soot component can be burned out by forced regeneration, but the ash cannot be burned even if forced regeneration is performed, and accumulates in the DPF. If this ash is deposited, the DPF is clogged, leading to an increase in exhaust pressure. Therefore, it is necessary to predict the amount of accumulated ash and periodically perform ash cleaning.
  • Patent Document 1 discloses a technique for obtaining an ash deposition amount from a DPF differential pressure immediately after completion of regeneration of a DPF
  • Patent Document 2 A technique for calculating the ash accumulation amount by integrating the travel distance is shown.
  • Patent Document 3 calculates the ash emission amount from the map of the engine speed and the fuel consumption amount, and adds the ash emission amount.
  • Patent Document 4 discloses a technique for calculating the ash accumulation amount by detecting the oil level using an oil sensor and integrating the oil level.
  • the DPF differential pressure is higher than when the ash is not deposited.
  • the ash accumulation amount can be quantitatively accurately determined. it is difficult to estimate in.
  • the method is a simple method, but there is a problem in estimation accuracy because conditions such as engine load cannot be considered.
  • the technique of calculating the ash emission amount from the map of the engine speed and the fuel consumption amount of Patent Document 3 and calculating the accumulation amount by adding the ash emission amount it takes a lot of test points to create the map, and it takes time. It is difficult to ensure the accuracy of the entire map.
  • the technique of calculating the ash accumulation amount by detecting the oil level with the oil sensor disclosed in Patent Document 4 requires the installation of the oil sensor, which increases the cost.
  • ash is not mainly composed of carbon like soot, and mainly contains components derived from metallic additives in engine oil, so it cannot be incinerated by combustion, and is blown away by compressed air and washed. Therefore, it is necessary to work in a dedicated service factory with equipment for cleaning. For this reason, a regeneration support system for the DPF is also required which accurately notifies the operator of the ash cleaning request so that the ash cleaning can be efficiently performed at the service factory.
  • the present invention has been made in view of these problems, and it is possible to accurately estimate the amount of ash deposition by a simple method, accurately notify the operator of the ash cleaning request, and perform ash cleaning at a service factory. It is an object of the present invention to provide a DPF regeneration control apparatus, a regeneration control method, and a regeneration support system that can be efficiently performed.
  • the invention according to the DPF regeneration control apparatus of the first invention comprises a diesel particulate filter (DPF) that collects exhaust particulates (PM) in the exhaust passage, and is collected in the DPF.
  • DPF regeneration control device having a forced regeneration means for forcibly regenerating the PM, a differential pressure detection means for detecting a differential pressure across the DPF, and a DPF differential pressure generated by a total accumulation amount of a soot component and an ash component Is set in advance by testing or calculation, and the DPF differential pressure with respect to the deposition amount requiring the cleaning is set as a cleaning request threshold, and the ash deposition amount is deposited more than the deposition amount requiring the cleaning and the output is reduced.
  • a DPF differential pressure setting means for setting a DPF differential pressure with respect to the amount of deposition that needs to be output as an output decrease threshold, and the DPF differential pressure is set to the cleaning request threshold When it is determined whether or not it has been reached, when it is determined and reached whether or not the cleaning request notifying means for outputting a cleaning request and the DPF differential pressure has reached the output lowering threshold value that is greater than the cleaning request threshold value Is provided with an output decrease alarm means for alarming an output decrease.
  • the invention according to the DPF regeneration control method of the second aspect of the invention includes a diesel particulate filter (DPF) that collects exhaust particulates (PM) in the exhaust passage, and forcibly regenerates the PM collected by the DPF.
  • DPF diesel particulate filter
  • the DPF differential pressure generated by the total deposition amount of the soot portion and the ash portion is set in advance by a test or calculation, and the ash deposition amount corresponds to the deposition amount requiring cleaning.
  • a DPF differential pressure is set as a cleaning request threshold, a DPF differential pressure is set as an output decrease threshold with respect to a deposition amount in which the ash deposition amount is larger than the deposition amount requiring cleaning and output reduction is required, and the DPF difference Determining whether or not the pressure has reached the cleaning request threshold, and if so, a cleaning request notification step for outputting a cleaning request; and PF differential pressure to determine if it has reached the cleaning request larger than the threshold value output reduction threshold, If it is judged, characterized in that had a decrease in output warning step of warning the output reduction.
  • the first and second inventions in order to estimate and calculate the ash deposition amount from the differential pressure before and after the DPF, a new sensor is used by using signals from existing differential pressure sensors for forced regeneration control of the DPF. Therefore, it is possible to suppress an increase in cost as compared with a technique in which an oil sensor as in the prior art is installed, the oil level is detected, integrated, and the amount of accumulated ash is calculated.
  • the technique for obtaining the ash deposition amount from the DPF differential pressure does not necessarily increase the DPF differential pressure proportionally even if the ash deposition amount increases. Since the DPF differential pressure hardly increases, there is a problem in accurately predicting only the ash deposition amount from the DPF differential pressure.
  • the total deposition of the preset soot deposition amount and the ash deposition amount is present. Since the ash cleaning time is estimated and notified based on the DPF differential pressure characteristics (see FIG. 3) based on the DPF, the soot deposition amount and the ash deposition are detected as the DPF differential pressure that cannot be detected accurately only by the ash deposition amount. by using the total deposition amount of the amount, it becomes the changes in ash accumulation amount contained therein to be able to determine accurately detected and cleaning time.
  • manual regeneration notifying means for urging manual forced regeneration of the DPF before notifying the ash cleaning request when the cleaning request threshold is reached.
  • the manual forced regeneration notification means for urging the manual forced regeneration of the DPF is provided before the cleaning request is notified, the DPF is forced to be manually regenerated and the soot is burned and removed, so that the DPF difference temporarily
  • the pressure can be decreased and a notification can be made when the DPF differential pressure reaches the cleaning request threshold again. Therefore, the reliability of the DPF cleaning request notification can be improved.
  • the timing of the DPF cleaning work carried to the service factory by manual forced regeneration can be adjusted.
  • the notification interval for prompting the cleaning request after the manual forced regeneration is completed decreases.
  • the cleaning request threshold is reached again after the manual forced regeneration is completed
  • the cleaning request may be notified without executing the manual forced regeneration within a predetermined time from the completion of the manual forced regeneration.
  • the cleaning request is notified without executing manual forced regeneration, and the reliability of the cleaning request notification can be improved.
  • oil dilution occurs in which engine oil is diluted by the fuel used in performing the forced regeneration, which can be prevented.
  • the ash accumulation amount estimation means for estimating the ash accumulation amount of the DPF based on an index having a correlation with the consumption amount of the engine oil is further provided, and the accumulation amount calculated by the ash accumulation amount estimation means. Even if the estimated value does not reach the deposition amount that requires cleaning, it is preferable to output a cleaning request when the DPF differential pressure reaches the cleaning request threshold.
  • the ash accumulation amount estimation accuracy can be improved by further using the ash accumulation amount estimation means for estimating the DPF ash accumulation amount by an index having a correlation with the engine oil consumption amount.
  • ash mainly contains components derived from metallic additives in engine oil, so if the type of engine oil used changes, the method of estimating from the amount of engine oil consumed will give accurate ash accumulation.
  • estimation may be difficult, the accuracy of notification of the ash cleaning request can be maintained even when the engine oil is changed by preferentially outputting the determination of the cleaning request threshold estimated from the DPF differential pressure.
  • a DPF differential pressure correcting unit that corrects the differential pressure detected by the differential pressure detecting unit to a differential pressure in a certain operating state
  • the DPF differential pressure is the DPF differential pressure correcting unit.
  • the corrected differential pressure corrected by the above may be used. In this way, the use of the corrected differential pressure can increase the deposition amount estimation accuracy. In other words, even if the amount of deposit is the same, the differential pressure changes depending on the exhaust gas volume flow rate. Therefore, the exhaust gas volume flow rate at the time of measurement is corrected to the reference gas flow rate in the reference state, and the differential pressure at the reference gas flow rate is corrected. Calculate as
  • a third invention is an invention according to a DPF regeneration support system provided with the DPF regeneration control device of the first invention, and the regeneration control device is connected to an in-vehicle terminal capable of communicating with an ash management server.
  • the ash management server has a database storing service factory locations, calendar information that can be worked on each service factory, and when the cleaning request is notified by the cleaning request notification means of the regeneration control device,
  • the terminal device is characterized in that the nearest service factory capable of ash cleaning and workable calendar information are obtained from the ash management server and displayed on the in-vehicle terminal device.
  • the regeneration control device is provided with a manual regeneration informing means for urging manual forced regeneration of the DPF before notifying the ash cleaning request when the cleaning request threshold is reached.
  • manual regeneration is executed after notification by the manual regeneration notifying means, it is preferable to predict the time when the cleaning request threshold is reached again and update and display the workable calendar information.
  • the third invention preferably, based on the service factory and workable calendar information displayed on the in-vehicle terminal, it is possible to input a service factory designation and work request date and time to the in-vehicle terminal, Work request information may be transmitted from the vessel to the ash management server.
  • Ash does not contain carbon as a main component like soot, and contains components derived mainly from metallic additives in engine oil, so it cannot be incinerated by combustion and must be cleaned with compressed air. It requires work at a dedicated service factory with equipment or a washing machine that can be transported.
  • the nearest service factory and calendar information capable of service work are obtained based on the information from the ash management server, and the service factory and work request are sent from the in-vehicle terminal to the ash management server. Since the date and time can be transmitted, ash cleaning can be performed efficiently at the service factory.
  • a fourth invention is an invention according to a DPF regeneration support system comprising the DPF regeneration control device of the first invention, and the regeneration control device is connected to an in-vehicle terminal that can communicate with an ash management server.
  • the ash management server has a maintenance database that accumulates data on the ash amount washed at the time of ash washing, the accumulated operation time until the washing time, the accumulated fuel consumption amount, and the accumulated engine speed, and the ash amount at the time of washing and
  • the accumulated operation time, accumulated fuel consumption, and accumulated engine speed data read from the regeneration control device are transmitted from the in-vehicle terminal device to the maintenance database of the ash management server and accumulated, and the accumulated latest data
  • a learning means for updating a relational expression set in the ash accumulation amount estimating means A new relation is characterized in that it is set to the ash accumulation amount estimating means via the vehicle-mounted terminal device has.
  • the data of the ash amount cleaned at the time of ash cleaning, the cumulative operation time until the cleaning time, the cumulative fuel consumption amount, and the cumulative engine speed are stored in the ash management server.
  • the relational expression set in the ash accumulation amount estimating means is updated based on the latest data by the learning means, so that the prediction accuracy of the next maintenance time can be improved. Further, since the new relational expression updated from the ash management server is transmitted and set to the ash accumulation amount estimating means on the vehicle side via the in-vehicle terminal unit, it is simple without increasing the size of the DPF regeneration control device.
  • the relational expression can be updated in the control logic.
  • a new sensor is used by using signals from existing differential pressure sensors for forced regeneration control of the DPF. There is no need to install it, and it is possible to estimate the amount of ash deposition with reduced cost compared to the technology that uses the oil sensor in the prior art to detect the oil level and integrate it to calculate the amount of ash accumulation. become.
  • the ash cleaning time is estimated and notified based on the DPF differential pressure characteristic (see FIG. 3) based on the total accumulation of the soot accumulation amount and the ash accumulation amount set in advance, the accuracy is only determined by the ash accumulation amount.
  • the total accumulated amount of DPF differential pressure that cannot be detected well, it is possible to accurately detect changes in the amount of accumulated ash contained therein, determine the cleaning time, and accurately estimate the amount of accumulated ash by a simple method. It is possible to accurately notify the operator of the ash cleaning request.
  • the nearest service factory and calendar information capable of service work are obtained, and the service factory and work request are sent from the in-vehicle terminal to the ash management server.
  • the ash cleaning can be efficiently performed at the service factory.
  • the ash amount washed at the time of ash washing, the accumulated operation time until the washing time, the accumulated fuel consumption amount, and the accumulated engine speed data are accumulated in the ash management server, and the learning means Since the relational expression set in the ash accumulation amount estimating means is updated based on the latest data, the prediction accuracy of the next maintenance time can be improved.
  • FIG. 1 It is a whole block diagram of a diesel engine provided with a regeneration control device of DPF.
  • A is a control flowchart of the forced regeneration control device of the DPF showing the first embodiment, and
  • a DPF regeneration control apparatus is applied to a diesel engine
  • a DOC (pre-stage oxidation catalyst) 5 and a DPF (diesel particulate) that collects PM (exhaust particulates) downstream of the DOC 5 are disposed in an exhaust passage 3 of a diesel engine (hereinafter referred to as an engine) 1.
  • An exhaust gas aftertreatment device 9 comprising a filter 7 is provided.
  • This DOC (pre-stage oxidation catalyst) 5 detoxifies hydrocarbons (HC) and carbon monoxide (CO) in the exhaust gas, oxidizes NO in the exhaust gas to NO 2, and soot collected by the DPF 7 And the function of increasing the exhaust gas temperature by the oxidation reaction heat of the unburned fuel component in the exhaust gas when the soot collected in the DPF 7 is forcibly regenerated.
  • HC hydrocarbons
  • CO carbon monoxide
  • the engine 1 includes an exhaust turbocharger 11 having an exhaust turbine 11 b and a compressor 11 a driven coaxially thereto. Air discharged from the compressor 11 a of the exhaust turbocharger 11 passes through an air pipe 13. Then, after the supply air is cooled by entering the intercooler 15, the supply air flow rate is controlled by the supply air throttle valve 17, and then the illustration of the engine 1 through the intake port provided for each cylinder from the supply air manifold 18. It does not flow into the combustion chamber.
  • the engine 1 is provided with a common rail fuel injection device that controls the fuel injection timing and the injection amount and injects the fuel into the combustion chamber.
  • a predetermined fuel is supplied from the common rail of the common rail fuel injection device to the fuel injection valve.
  • a predetermined amount of fuel is supplied at the injection timing, and a control signal is input to the common rail fuel injection device from a regeneration control device 19 described later.
  • the input position of the control signal to the common rail fuel injection device is denoted by reference numeral 21.
  • an EGR (exhaust gas recirculation) pipe 23 is branched from the middle of the exhaust passage 3, and a part of the exhaust gas (EGR gas) is cooled by an EGR cooler (not shown) through the EGR pipe 23, and an air supply throttle valve 17 is introduced into the downstream portion of the valve 17 via the EGR valve 25.
  • EGR exhaust gas recirculation
  • the combustion gas that is, the exhaust gas 27 combusted in the combustion chamber of the engine 1 passes through the exhaust manifold 29 and the exhaust passage 3 in which exhaust ports provided for each cylinder are gathered, and passes through the exhaust turbine 11b of the exhaust turbocharger 11. After being driven to serve as a power source for the compressor 11a, it flows through the exhaust passage 3 so as to enter the DOC 5 of the exhaust gas aftertreatment device 9.
  • the regeneration control device 19 for the DPF 7 includes an air flow sensor 31 for detecting the air flow rate flowing into the compressor 11a, an intake air temperature sensor 33, a DOC inlet temperature sensor 35, a DPF inlet temperature sensor 37, a DPF differential pressure sensor 39, Signals from the supply air temperature sensor 41 and the supply air pressure sensor 43 after supply are captured. Further, an engine speed signal 45 and a fuel injection amount signal 47 are respectively incorporated.
  • the regeneration control device 19 for the DPF 7 includes a DPF differential pressure correction that corrects the differential pressure value from the differential pressure sensor 39 that detects the differential pressure across the DPF 7 to a differential pressure in a certain operating state.
  • a means 49 is provided, and the corrected differential pressure is calculated by the DPF differential pressure correcting means 49.
  • the exhaust gas volume flow rate at the time of measurement is corrected to the reference gas flow rate in the reference state, and the differential pressure at the reference gas flow rate is corrected. Calculate as By calculating and using this corrected differential pressure, it is possible to increase the estimation accuracy of the ash deposition amount.
  • the relationship between the DPF differential pressure generated by the total accumulation amount of the soot portion and the ash portion as shown in FIG. 3 and the operation time is set in advance by a test or calculation, and the ash accumulation amount is washed.
  • the corrected differential pressure of the DPF 7 with respect to the deposition amount that requires the cleaning is set as the cleaning request threshold value, and the corrected differential pressure of the DPF 7 with respect to the deposition amount that deposits more than the deposition amount that requires the cleaning and requires the output reduction is set.
  • a DPF differential pressure setting means 51 for setting as an output decrease threshold is provided.
  • the regeneration control device 19 determines whether or not the corrected differential pressure has reached the cleaning request threshold, and if so, the cleaning request is issued to prompt the cleaning and removal of the ash deposited on the DPF 7.
  • the cleaning request notifying means 53 for notifying the output
  • the output reduction warning means 55 for determining whether or not the corrected differential pressure has reached the output lowering threshold value larger than the cleaning required threshold value, and for warning the output lowering if it has been reached.
  • the alarm / alarm unit 57 such as a lamp or a buzzer is activated.
  • the exhaust gas temperature exceeds the limit range, and the exhaust gas performance is further deteriorated. At this point, a fail-safe function that lowers the output works. At this time, since it is not desirable that the fail-safe function works without any prior notice, an alarm is given in advance.
  • step S2 it is determined whether the DPF correction differential pressure is equal to or higher than the ash cleaning request threshold value P1. If not, the process proceeds to step S6 and ends. If it is equal to or greater than the ash cleaning request threshold value P1, the process proceeds to step S3 to notify the ash cleaning request.
  • step S4 it is determined whether the DPF correction differential pressure is greater than or equal to the output decrease warning threshold value P2. If not, the process proceeds to step S6 and ends. If the output decrease warning threshold value P2 is exceeded, the process proceeds to step S5 to warn of a decrease in output. Note that the flow shown in FIG. 2A is repeated at a predetermined cycle. Further, the relationship between the ash cleaning request threshold value P1 and the output decrease warning threshold value P2 is a relationship of P1 ⁇ P2 as shown in FIG.
  • the technique for obtaining the ash deposition amount from the differential pressure before and after the DPF does not necessarily increase the DPF differential pressure proportionally even if the ash deposition amount increases. Since the DPF differential pressure hardly increases, there is a problem in accurately predicting only the ash deposition amount from the DPF differential pressure.
  • the soot deposition amount and the ash deposition amount are set in advance. The ash deposition amount is estimated based on the DPF differential pressure characteristic (see FIG. 3) based on the total deposition of the water, and a cleaning request or output reduction is warned with a lamp, a buzzer, or the like.
  • FIG. 3 shows a characteristic curve indicating the relationship between the operation time and the exhaust system pressure loss (DPF corrected differential pressure) using three types of DPFs A, B, and C.
  • the ash cleaning request threshold value P1 and the output decrease warning threshold value P2 are set according to the DPF to be used. However, since the output reduction warning threshold value P2 affects the engine performance, the output reduction warning threshold value P2 is set to a constant value regardless of the type of DPF, and the ash cleaning request threshold value P1 is set according to the capacity of the DPF. Although it can be set, it may be the same value as P1 shown in FIG.
  • the dotted line in FIG. 6 shows a state where forced regeneration is repeated.
  • the second embodiment is characterized in that a manual regeneration notifying unit 72 and a manual forced regeneration unit 74 are provided as shown in FIG. 4 with respect to the first embodiment. Other configurations are the same as those of the first embodiment.
  • manual regeneration notifying means 72 that prompts manual forced regeneration of the DPF 7 is provided. Then, when the operator turns on the switch 76 for executing the forced regeneration by the notification by the manual regeneration notifying means 72, the manual forced regeneration means 74 is operated, and the forced regeneration of the DPF 7 is executed.
  • the outline of forced regeneration control is that when forced regeneration is started, DOC temperature increase control for activating DOC 5 is executed.
  • This DOC temperature increase control is performed by narrowing the air supply throttle valve 17, narrowing the exhaust valve provided on the downstream side of the DPF 7, or performing early post injection after the main injection into the combustion chamber, etc.
  • late post-injection is performed at a crank angle that does not contribute to combustion (about 180 deg after TDC (top dead center)), and fuel of late post-injection that has flowed into activated DOC5 is
  • the exhaust gas temperature is further raised by the oxidation heat generated by the reaction, and the temperature is raised to a temperature of about 600 ° C. at which soot burns in the DPF 7, and the soot is burned and removed.
  • step S12 it is determined whether the DPF correction differential pressure is equal to or higher than the ash cleaning request threshold value P1. If not, the process proceeds to step S24 and ends. If it is equal to or greater than the ash cleaning request threshold value P1, the process proceeds to step S13 and the ash cleaning request timer is counted. In step S14, it is determined whether or not the ash cleaning request timer has exceeded a threshold value. If exceeded, the ash cleaning request notification output is turned on in step S15.
  • step S16 determines whether it is the first time that the ash cleaning request threshold value P1 has been exceeded.
  • the manual regeneration lamp (notification alarm unit 57) blinks by means 72 to prompt manual regeneration. If it is determined in step S16 that it is not the first time that the ash cleaning request threshold P1 has been exceeded, it is determined in step S17 whether or not the ash cleaning request cancellation prohibition timer is equal to or less than the warning cancellation prohibition threshold T1.
  • This ash cleaning request release prohibition timer is a timer that starts counting after completion of forced regeneration of the DPF 7 as shown in step S23.
  • step S17 if the warning cancellation prohibition threshold T1 or less, the warning cancellation is prohibited in step S18, the ash cleaning request warning is maintained and turned ON. If the warning cancellation prohibition threshold T1 is exceeded in step S17, the warning for the ash cleaning request is canceled and the manual regeneration lamp blinks to prompt manual regeneration.
  • step S19 When the ash cleaning request threshold value P1 is first exceeded, the operator is prompted to perform manual regeneration as in step S19. If NO in step S17, that is, manual regeneration is performed after exceeding the ash cleaning request threshold P1, and manual cleaning is urged when the ash cleaning request threshold P1 is again exceeded after T1 time has elapsed after completion. . However, if the ash cleaning request threshold value P1 is exceeded again at T2 within the warning cancellation prohibition threshold value T1, so-called oil dilution occurs in which the engine oil is diluted by the fuel used when the forced regeneration is executed. Regeneration is prohibited, and the process proceeds to step S18 to turn on the output of the ash cleaning request. In this case, ash cleaning request cancellation is prohibited until ash cleaning is executed.
  • step S20 as a result of alarming in step S19, it is determined whether the operator operates the switch 76 to perform manual regeneration. If it is determined that manual regeneration is in progress, the ash cleaning request release prohibition timer is set to zero in step S21. In step S22, it is determined whether the forced regeneration of the DPF 7 is completed. If not completed, the process ends in step S24. If completed, the ash cleaning request release prohibition timer count is started in step S23, and in step S24. finish. The flow shown in FIG. 5 is repeated at a predetermined cycle.
  • the manual forced notification means 72 for urging the manual forced regeneration of the DPF 7 is provided before the cleaning request is notified. Therefore, the DPF 7 is manually regenerated and the soot is burned and removed temporarily. Thus, the DPF differential pressure can be lowered, and a notification can be made when the DPF differential pressure reaches the cleaning request threshold again. Therefore, the reliability of the DPF 7 cleaning request notification can be improved. Moreover, the timing of the DPF cleaning work carried to the service factory by manual forced regeneration can be adjusted.
  • the notification interval for prompting the cleaning request after the manual forced regeneration is completed decreases.
  • the manual regeneration lamp for urging the manual forced regeneration is within a predetermined time (warning release prohibiting threshold T1) from the completion of the manual forced regeneration.
  • T1 a predetermined time
  • the cleaning request is notified without flashing.
  • the cleaning request is notified without executing manual forced regeneration, and the reliability of the cleaning request notification can be improved.
  • oil dilution occurs in which engine oil is diluted by the fuel used in performing the forced regeneration, which can be prevented.
  • the reproduction control device 80 of the third embodiment will be described with reference to FIGS.
  • the third embodiment is provided with an ash deposition amount estimating means 84 as shown in FIG. That is, together with the differential pressure accumulation amount estimation means 82 composed of the DPF differential pressure correction means 49, the DPF differential pressure setting means 51, the cleaning request notification means 53, and the output decrease warning means 55 described in the first embodiment, It is further characterized by further comprising an ash accumulation amount estimation means 84 for estimating the ash accumulation amount of the DPF with an index having a correlation with the consumption amount of the engine oil. Other configurations are the same as those of the first embodiment.
  • the ash accumulation amount estimation means 84 has an overall configuration as shown in FIG.
  • An operating time integrating unit 90 that integrates the operating time at the engine speed is provided.
  • the ash accumulation amount calculation unit 100 for calculating the estimated ash accumulation amount is provided.
  • the engine speed has a correlation with the number of times the piston moves up and down, and has a correlation with the amount of oil supplied to the combustion chamber. Further, when the load is high, the fuel injection amount increases and the combustion temperature rises, so that the amount of ash generated increases.
  • the operation time is calculated as a supplement to the calculation based on the engine speed and the fuel consumption.
  • the integrated value of engine speed, integrated value of fuel consumption, and integrated value of operating time correlate with oil consumption.
  • FIG. 10 shows a relationship between the ash cleaning request threshold A1 and the ash deposition warning threshold A2 based on the ash deposition amount calculated by the ash deposition amount estimation means 84.
  • step S32 it is determined whether or not the ash deposition value calculated by the ash deposition amount estimating means 84 is greater than or equal to the ash cleaning request threshold A1, and if so, an ash cleaning request is notified at step S34. If NO in step S32, it is determined in step S33 whether the DPF corrected differential pressure calculated by the DPF differential pressure correcting means 49 is greater than or equal to the ash cleaning request threshold value P1, and if so, the ash is determined in step S34. Notify cleaning request.
  • step S35 determines whether the ash accumulation value calculated by the ash accumulation amount estimating means 84 is greater than or equal to the ash accumulation warning threshold value A2. in emit ash deposition warning.
  • step S37 it progresses to step S37, it is determined whether a DPF correction
  • the ash accumulation amount estimating means 84 for estimating the ash accumulation amount by an index having a correlation with the consumption amount of the engine oil, and the differential pressure accumulation amount estimation for estimating the ash accumulation amount from the differential pressure of the DPF. Since both the means 82 are provided, the estimation accuracy of the ash deposition amount can be improved.
  • ash mainly contains components derived from metallic additives in engine oil, so if the type of engine oil used changes, it may be difficult to accurately estimate the amount of ash deposition.
  • the accumulation amount estimating means 82 By preferentially outputting the determination of the cleaning request threshold value estimated from the DPF differential pressure by the accumulation amount estimating means 82, the accuracy of notification of the ash cleaning request can be maintained even when the engine oil is changed.
  • the cleaning request is output with priority given to the determination when the estimation of the ash deposition amount due to the DPF differential pressure reaches the ash cleaning request threshold value P1, and the estimation of the ash deposition amount due to the DPF differential pressure is finally output as a warning of a decrease in output It can also be seen from the fact that the determination when the threshold value P2 is reached is the final determination.
  • the fourth embodiment includes the reproduction control device 19 (70, 80) described in the first to third embodiments.
  • the reproduction control device 19 includes the ash management server 103.
  • the vehicle-mounted terminal device 105 that can communicate with the vehicle is configured to be connectable.
  • the in-vehicle terminal 105 is connected to the ash management server 103 via the communication network 104. Further, the ash management server 103 is connected via a communication network 106 to each service factory (F1, F2,... Fn) where ash-cleanable equipment is installed.
  • the ash management server 103 stores a service factory database 107 storing location data of each service factory (F1, F2,... Fn), operating days of each service factory, and calendar information that can be used for ash cleaning work.
  • a calendar database 109 is provided.
  • the in-vehicle terminal 105 When the cleaning request is notified by the cleaning request notification means 53 of the regeneration control device 19, the in-vehicle terminal 105 obtains the nearest service factory and workable calendar information that can be cleaned from the ash management server 103, and the in-vehicle terminal. 105.
  • the in-vehicle terminal device 105 may be connected to the regeneration control device 19 or connected to the regular regeneration control device 19 when a cleaning request is notified from the regeneration control device 19.
  • the regeneration control device 19 has a manual regeneration informing means 72 for urging manual forced regeneration of the DPF 7 before notifying the ash cleaning request when the cleaning request threshold value P1 described in the second embodiment is reached. Is provided.
  • manual regeneration is executed after notification by the manual regeneration informing means 72, the time when the cleaning request threshold is reached again is predicted, the operator is notified, and the prediction result that reaches the cleaning request threshold again is ashed.
  • the management server 103 By transmitting to the management server 103, the workable factory and calendar information are updated and displayed on the in-vehicle terminal 105. That is, the DPF 7 is forcibly regenerated manually to burn and remove the soot, temporarily lowering the DPF differential pressure, and waiting for the cleaning request notification when the DPF differential pressure reaches the cleaning request threshold again. Can be brought into the factory.
  • the prediction of the time when the cleaning demand threshold is reached again is based on the relationship between the DPF differential pressure generated in the DPF differential pressure setting means 51 and the operation time due to the total accumulated amount of soot and ash as shown in FIG. Since it is set in advance by a test or calculation, the next time when the cleaning request threshold is exceeded again is calculated and predicted by the cleaning request prediction unit 110 of the regeneration control device 19 (70) based on the characteristics. Then, the prediction result is given to the ash management server 103 via the in-vehicle terminal 105, and the ash management server 103 updates the workable calendar information based on the service factory database 107 and the calendar database 109. Therefore, the schedule that can be carried into the service factory can be adjusted in advance based on the updated service factory and calendar information by predicting the time when the cleaning request threshold is reached again.
  • the service factory and workable calendar information displayed on the in-vehicle terminal 105 it is possible to input the specification of the service factory and the specification of the work request date from the in-vehicle terminal 105, and the ash management server from the in-vehicle terminal 105
  • the work request information can be transmitted to 103.
  • Ash does not contain carbon as a main component like soot, and contains components derived mainly from metallic additives in engine oil, so it cannot be incinerated by combustion and must be cleaned with compressed air. This requires work in a dedicated service factory with equipment for cleaning. Accordingly, based on the information from the ash management server 103, the nearest service factory and calendar information that can be serviced are obtained, and the service factory and the date of work request are transmitted from the in-vehicle terminal 105 to the ash management server 103. As a result, ash cleaning can be performed efficiently at the service factory.
  • the fifth embodiment includes the reproduction control device 80 described in the third embodiment, and the reproduction control device 80 can communicate with the ash management server 120 via the in-vehicle terminal 105. It is configured.
  • the ash management server 120 includes a calendar database 109, a service factory database 107, a maintenance database 122, and learning means 124 of the fourth embodiment.
  • the maintenance database 122 stores data on the amount of ash washed at the time of ash washing, accumulated operation time until washing, accumulated fuel consumption, and accumulated engine speed. These data are obtained by measuring the amount of ash removed at the time of cleaning and inputting it from the in-vehicle terminal device 105. Further, the accumulated operating time, the accumulated fuel consumption, and the accumulated engine speed are read from the regeneration control device 80 until the time of cleaning. Data is transmitted from the in-vehicle terminal 105 to the ash management server 120 and stored in the maintenance database 122.
  • the learning unit 124 Based on the accumulated latest data, the learning unit 124 has a learning unit 124 that updates a relational expression set in the ash accumulation amount estimation unit 84, and the new relational formula updated by the learning unit 124 is the in-vehicle terminal.
  • the ash accumulation amount estimation means 84 is set via 105.
  • the predetermined primary function equation Y F 2 (X) using the integrated value of the fuel consumption in the second oil consumption estimating unit 94 as a parameter, and the integrated value of the operating time in the third oil consumption estimating unit 96
  • the learning unit 124 updates the relational expression set in the ash accumulation amount estimation unit 84 based on the latest data, the prediction accuracy of the next maintenance time can be improved. Further, since a new relational expression updated from the ash management server 120 is transmitted and set to the ash accumulation amount estimating means 84 via the in-vehicle terminal 105, it is easy without increasing the size of the DPF regeneration control device 80.
  • the relational expression can be updated with simple control logic.
  • the ash deposition amount can be accurately estimated by a simple method, the ash cleaning request can be accurately notified to the worker, and the ash cleaning can be efficiently performed at the service factory. It is suitable for use in a playback control apparatus, playback control method, and playback support system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

DPF7の前後差圧を検出する差圧センサ39と、スート分とアッシュ分との合計の堆積量によって生じるDPF差圧が予め試験または計算によって設定され、アッシュ堆積量が洗浄を必要とする堆積量に対するDPF差圧を洗浄要求閾値として設定し、洗浄要求閾値より多く堆積し出力低下を必要とするDPF差圧を出力低下閾値として設定するDPF差圧設定手段51と、DPF差圧が洗浄要求閾値に達したかどうかを判定して洗浄要求を出力する洗浄要求報知手段53と、出力低下閾値に達したかどうかを判定して出力低下を警報する出力低下警報手段55と、を備えたことを特徴とする。

Description

DPFの再生制御装置、再生制御方法、および再生支援システム
 本発明は、ディーゼルエンジンの排ガス中に含まれるパティキュレートマター(排気微粒子、以下PMと略す)を捕集するためのディーゼルパティキュレートフィルター(以下DPFと略す)の再生制御装置、再生制御方法、および再生支援システムに関し、特に、DPFに堆積されたアッシュ(灰)の堆積量を推定してアッシュ洗浄を行う再生制御装置、再生制御方法、および再生支援システムに関する。
 ディーゼルエンジンから排出されるPMの低減に有効な技術として、DPFが知られている。
 DPFは、フィルターを用いたPM捕集装置であり、このDPFにはエンジンから排出されるスート(すす)成分と、アッシュ(灰)成分が堆積する。スート成分は強制再生により焼ききることが出来るが、アッシュは強制再生を行っても焼ききることが出来ずDPFに堆積していく。このアッシュが堆積するとDPFの目詰まりがおき、排圧上昇につながるため、アッシュの堆積量を予測して定期的にアッシュ洗浄を行うことが必要である。
 このアッシュはエンジンオイルがシリンダとピストンとの隙間から燃焼室に入って、燃焼することによって発生するため、アッシュ堆積量はエンジンオイルの消費量と相関があることが知られている。
 アッシュ堆積量の推定手法に関する技術として種々知られている。例えば、特開2003-83036号公報(特許文献1)には、DPFの再生完了直後にDPF差圧からアッシュ堆積量を求める技術が示され、特許第4032849号公報(特許文献2)には、走行距離を積算してアッシュ堆積量を求める技術が示され、特許第3951618号公報(特許文献3)には、エンジン回転数と燃料消費量のマップからアッシュ排出量を求め、それを積算して堆積量を求める技術が示され、特開2006-29326号公報(特許文献4)には、オイルセンサによりオイルレベルを検知してそれを積算しアッシュ堆積量を算出する技術が示されている。
特開2003-83036号公報 特許第4032849号公報 特許第3951618号公報 特開2006-29326号公報
 しかしながら、特許文献1に示される、DPFの再生完了直後にDPF差圧からアッシュ堆積量を求める技術では、アッシュ堆積量が増えてもDPF差圧は比例して増大するとは限らず、またスートが堆積していない状態では、アッシュが堆積してもDPF差圧はほとんど上昇しないので、DPF差圧からアッシュ堆積量だけを精度よく予測することには問題がある。
 また、アッシュが堆積したDPFにスートが堆積すると、アッシュが堆積していない時に比べてDPF差圧が高くなるが、スートの堆積量との切り分けが出来ないため、アッシュ堆積量を定量的に正確に推定することは困難である。
 さらに、特許文献2の走行距離を積算してアッシュ堆積量を求める技術の場合には、手法としては簡単な方法であるが、エンジン負荷などの条件を考慮出来ないため推定精度に問題がある。
 特許文献3のエンジン回転数と燃料消費量のマップからアッシュ排出量を求め、それを積算して堆積量を求める技術では、マップを作成するのに多くの試験点数が必要で時間がかかるうえ、マップ全体の精度を確保するのが困難である。
 さらに、特許文献4のオイルセンサによりオイルレベルを検知してそれを積算しアッシュ堆積量を算出する技術では、オイルセンサを装備することが必要となりコスト増大につながる問題がある。
 このようにアッシュの堆積量の推定方法には種々の方法があるが、また同時に問題も有している。従って、コスト増大にならず、簡単な方法によって精度よくアッシュ堆積量を推定できる方法が必要とされている。
 さらに、アッシュは、スートのように炭素を主成分とするものではなく、主としてエンジンオイル中の金属系添加剤に起因する成分を含むため燃焼によっては焼却できず、圧縮空気等によって吹き飛ばして洗浄する必要があるので、洗浄に際して設備がある専用のサービス工場での作業が必要となる。
 このため、アッシュの洗浄要求を作業者に正確に報知して、アッシュ洗浄をサービス工場で効率的に行うことができるようにするDPFの再生支援システムも必要になる。
 そこで、本発明は、これら問題に鑑みてなされたもので、簡単な方法によって精度よくアッシュ堆積量を推定できるとともに、アッシュの洗浄要求を作業者に正確に報知して、アッシュ洗浄をサービス工場で効率的に行うことができるDPFの再生制御装置、再生制御方法および再生支援システムを提供することを課題とする。
 上記の課題を解決するために、第1発明のDPFの再生制御装置にかかる発明は、排気通路に排気微粒子(PM)を捕集するディーゼルパティキュレートフィルター(DPF)を備え、該DPFに捕集されたPMを強制再生する強制再生手段を備えたDPFの再生制御装置において、DPFの前後差圧を検出する差圧検出手段と、スート分とアッシュ分との合計の堆積量によって生じるDPF差圧が予め試験または計算によって設定され、アッシュ堆積量が洗浄を必要とする堆積量に対するDPF差圧を洗浄要求閾値として設定し、前記アッシュ堆積量が前記洗浄を要求する堆積量より多く堆積し出力低下を必要とする堆積量に対するDPF差圧を出力低下閾値として設定するDPF差圧設定手段と、前記DPF差圧が前記洗浄要求閾値に達したかどうかを判定し達している場合には洗浄要求を出力する洗浄要求報知手段と、前記DPF差圧が前記洗浄要求閾値より大きい前記出力低下閾値に達したかどうかを判定し達している場合には出力低下を警報する出力低下警報手段と、を備えたことを特徴とする。
 また、第2発明のDPFの再生制御方法にかかる発明は、排気通路に排気微粒子(PM)を捕集するディーゼルパティキュレートフィルター(DPF)を備え、該DPFに捕集されたPMを強制再生する強制再生手段を備えたDPFの再生制御方法において、スート分とアッシュ分との合計の堆積量によって生じるDPF差圧が予め試験または計算によって設定し、アッシュ堆積量が洗浄を必要とする堆積量に対するDPF差圧を洗浄要求閾値として設定し、前記アッシュ堆積量が前記洗浄を要求する堆積量より多く堆積し出力低下を必要とする堆積量に対するDPF差圧を出力低下閾値として設定し、前記DPF差圧が前記洗浄要求閾値に達したかどうかを判定し、達している場合には洗浄要求を出力する洗浄要求報知ステップと、前記DPF差圧が前記洗浄要求閾値より大きい出力低下閾値に達したかどうかを判定し、達している場合には出力低下を警報する出力低下警報ステップと、を有したことを特徴とする。
 かかる第1発明、第2発明によれば、DPFの前後の差圧よりアッシュ堆積量を推定演算するため、DPFの強制再生制御用の既存の差圧センサらの信号を用いることで新たにセンサを設置する必要がなく、従来技術にあるオイルセンサを装備してオイルレベルを検知してそれを積算しアッシュ堆積量を算出する技術に比べて、コスト増大を抑えられる。
 また、DPF差圧からアッシュ堆積量を求める技術は、アッシュ堆積量が増えてもDPF差圧は比例して増大するとは限らず、またスートが堆積していない状態では、アッシュが堆積してもDPF差圧はほとんど上昇しないので、DPF差圧からアッシュ堆積量だけを精度よく予測することには問題があったが、かかる発明では、予め設定されたスート堆積量とアッシュ堆積量との合計堆積に基づくDPF差圧特性(図3参照)に基づいて、アッシュの洗浄時期を推定して報知するものであるため、アッシュ堆積量だけでは精度よく検出できないDPF差圧を、スート堆積量とアッシュ堆積量との合計堆積量を用いることで、そこに含まれるアッシュ堆積量の変化を精度よく検出して洗浄時期を判定できるようになる。
 また、第1発明において好ましくは、前記洗浄要求閾値に達したときに、アッシュ洗浄要求を報知する前にDPFの手動強制再生を促す手動再生報知手段を設けるとよい。
 このように、洗浄要求を報知する前に、DPFの手動強制再生を促す手動強制再生報知手段を設けるので、DPFを手動によって強制再生させてスート分を燃焼除去することで、一時的にDPF差圧を低下させ、改めてDPF差圧が洗浄要求閾値に達したとき報知するようにできる。
 従って、DPFの洗浄要求報知の信頼性を高めることができる。また、手動強制再生によってサービス工場に運んでのDPF洗浄作業のタイミングを調整できる。
 しかし、手動強制再生を何度も実行するに従って、手動強制再生完了から洗浄要求を促す報知の間隔が狭まってくる。この場合、手動強制再生が完了した後に再度前記洗浄要求閾値に達したときに、手動強制再生の完了から所定時間以内の場合には手動強制再生は実行せずに洗浄要求の報知を行うとよい。
 所定時間以内に狭まる場合には、真にアッシュ洗浄が必要になったため、手動強制再生は実行せずに、洗浄要求を報知して、洗浄要求の報知の信頼性を高めることができる。
 さらに、頻繁に強制再生を実行すると強制再生の実行に際して使用される燃料によってエンジンオイルが希釈される所謂オイルダイリューションを生じるため、それを防止することができる。
 また、第1発明において好ましくは、エンジンオイルの消費量と相関関係を有する指標によってDPFのアッシュ堆積量を推定するアッシュ堆積量推定手段をさらに備え、該アッシュ堆積量推定手段によって算出された堆積量の推定値が洗浄を必要とする堆積量に達していない場合であっても、前記DPF差圧が前記洗浄要求閾値に達したときに洗浄要求を出力するとよい。
 このように、エンジンオイルの消費量と相関関係を有する指標によってDPFのアッシュ堆積量を推定するアッシュ堆積量推定手段をさらに備えて併用することで、アッシュ堆積量の推定精度を高めることができる。
 この併用の際に、アッシュは主としてエンジンオイル中の金属系添加剤に起因する成分を含むため使用するエンジンオイルの種類が変わるとエンジンオイルの消費量から推定する手法では、精度良いアッシュ堆積量の推定が困難になるおそれがあるが、DPF差圧から推定した洗浄要求閾値の判定を優先して出力することで、エンジンオイルの変更時においてもアッシュ洗浄要求の報知精度を維持できる。
 また、第1発明において好ましくは、前記差圧検出手段よって検出された差圧を一定の運転状態の差圧に補正するDPF差圧補正手段を備え、前記DPF差圧が前記DPF差圧補正手段によって補正された補正差圧を用いるとよい。
 このように、補正差圧を用いることで、堆積量推定精度を高めることができる。すなわち、同一堆積量であっても、差圧は排ガス体積流量により変化するため、計測時の排ガス体積流量を基準状態の基準ガス流量に補正して、その基準ガス流量における差圧を補正差圧として算出する。
 次に、第3発明は、前記第1発明のDPFの再生制御装置を備えたDPFの再生支援システムにかかる発明であり、前記再生制御装置はアッシュ管理サーバと通信可能な車載端末器に接続され、前記アッシュ管理サーバにはサービス工場の所在地、各サービス工場の作業可能なカレンダー情報を格納したデータベースを有し、前記再生制御装置の洗浄要求報知手段によって洗浄要求が報知されたときに、前記車載端末器は前記アッシュ管理サーバからアッシュ洗浄可能な最寄りのサービス工場及び作業可能カレンダー情報を入手して車載端末器に表示することを特徴とする。
 また、第3発明において好ましくは、前記再生制御装置には、前記洗浄要求閾値に達したときに、アッシュ洗浄要求を報知する前にDPFの手動強制再生を促す手動再生報知手段が設けられ、該手動再生報知手段の報知後に手動再生が実行されたとき、その後再度洗浄要求閾値に達する時期を予測して、前記作業可能カレンダー情報を更新して表示するとよい。
 さらに、第3発明において好ましくは、前記車載端末器に表示されたサービス工場及び作業可能カレンダー情報を基に、該車載端末器にサービス工場の指定、および作業依頼日時を入力可能にし、該車載端末器から前記アッシュ管理サーバへ作業依頼情報が送信されるとよい。
 アッシュは、スートのように炭素を主成分とするものではなく、主としてエンジンオイル中の金属系添加剤に起因する成分を含むため燃焼によっては焼却できず、圧縮空気等によって洗浄する必要があるので、洗浄に際して設備がある専用のサービス工場又は、運搬可能な洗浄機での作業を要する。
 かかる第3発明によれば、アッシュ管理サーバからの情報に基づいて、最寄りのサービス工場、およびサービス作業が可能なカレンダー情報を入手し、さらに車載端末器からアッシュ管理サーバへサービス工場および作業依頼の日時を送信可能にするので、アッシュ洗浄をサービス工場で効率的に行うことができる。
 次に、第4発明は、前記第1発明のDPFの再生制御装置を備えたDPFの再生支援システムにかかる発明であり、前記再生制御装置はアッシュ管理サーバと通信可能な車載端末器に接続され、前記アッシュ管理サーバにはアッシュ洗浄時に洗浄したアッシュ量、洗浄時までの累積運転時間、累積燃料消費量、および累積エンジン回転数のデータを蓄積するメンテナンスデータベースを有し、洗浄時のアッシュ量および再生制御装置から読み取った前記累積運転時間、累積燃料消費量、および累積エンジン回転数のデータを、前記車載端末器から前記アッシュ管理サーバのメンテナンスデータベースに送信して蓄積し、該蓄積した最新のデータを基に、前記アッシュ堆積量推定手段に設定される関係式を更新する学習手段を有し、該更新された新たな関係式が前記車載端末器を介して前記アッシュ堆積量推定手段に設定されることを特徴とする。
 かかる第4発明によれば、洗浄処理が実行された際に、アッシュ洗浄時に洗浄したアッシュ量、洗浄時までの累積運転時間、累積燃料消費量、および累積エンジン回転数のデータを、アッシュ管理サーバに蓄積して、学習手段によって最新のデータに基づいてアッシュ堆積量推定手段に設定される関係式を更新するので、次回メンテナンス時期の予測精度を向上できる。また、アッシュ管理サーバから更新された新たな関係式が車載端末器を介して車両側のアッシュ堆積量推定手段に送信されて設定されるので、DPFの再生制御装置を大型化することなく簡単な制御ロジックで関係式を更新できる。
 第1発明、第2発明によれば、DPFの前後の差圧よりアッシュ堆積量を推定演算するため、DPFの強制再生制御用の既存の差圧センサらの信号を用いることで新たにセンサを設置する必要がなく、従来技術にあるオイルセンサを装備してオイルレベルを検知してそれを積算しアッシュ堆積量を算出する技術に比べて、コスト増大を抑えたアッシュ堆積量の推定ができるようになる。
 また、予め設定されたスート堆積量とアッシュ堆積量との合計堆積に基づくDPF差圧特性(図3参照)に基づいて、アッシュの洗浄時期を推定して報知するため、アッシュ堆積量だけでは精度よく検出できないDPF差圧を、合計堆積量を用いることで、そこに含まれるアッシュ堆積量の変化を精度よく検出して洗浄時期を判定でき、簡単な方法によって精度よくアッシュ堆積量を推定できるとともに、アッシュの洗浄要求を作業者に正確に報知できる。
 また、第3発明によれば、アッシュ管理サーバからの情報に基づいて、最寄りのサービス工場、およびサービス作業が可能なカレンダー情報を入手し、さらに車載端末器からアッシュ管理サーバへサービス工場および作業依頼の日時を送信可能にするので、アッシュ洗浄をサービス工場で効率的に行うことができるようになる。
 また、第4発明によれば、アッシュ洗浄時に洗浄したアッシュ量、洗浄時までの累積運転時間、累積燃料消費量、および累積エンジン回転数のデータを、アッシュ管理サーバに蓄積して、学習手段によって最新のデータに基づいてアッシュ堆積量推定手段に設定される関係式を更新するので、次回メンテナンス時期の予測精度を向上できる。
DPFの再生制御装置を備えるディーゼルエンジンの全体構成図である。 (a)は第1実施形態を示すDPFの強制再生制御装置の制御フローチャート、(b)は閾値の説明図である。 排気系圧損におけるスートによる圧損とアッシュによる圧損との関係を示す説明図である。 第2実施形態を示す再生制御装置の構成図である。 第2実施形態を示す再生制御装置の制御フローチャートである。 第2実施形態の手動再生報知手段についての動作説明図である。 第3実施形態を示す再生制御装置の構成図である。 第3実施形態を示す再生制御装置の制御フローチャートである。 第3実施形態のアッシュ堆積推定手段の構成ブロック図である。 第3実施形態の閾値の説明図である。 第4実施形態の全体構成図である。 第5実施形態を示すアッシュ管理サーバの構成図である。
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
 まず、図1を参照して、DPFの再生制御装置をディーゼルエンジンに適用した全体構成について説明する。
 図1に示すように、ディーゼルエンジン(以下エンジンという)1の排気通路3には、DOC(前段酸化触媒)5と該DOC5の下流側にPM(排気微粒子)を捕集するDPF(ディーゼルパティキュレートフィルター)7とからなる排ガス後処理装置9が設けられている。 
 このDOC(前段酸化触媒)5は、排ガス中の炭化水素(HC)や一酸化炭素(CO)を無害化するとともに、排ガス中のNOをNOに酸化して、DPF7で捕集されたスートを燃焼除去するする機能や、DPF7に捕集されたスートを強制再生する場合に排ガス中の未燃燃料成分の酸化反応熱により排ガス温度を上昇させる機能を有する。
 エンジン1は、排気タービン11bとこれに同軸駆動されるコンプレッサ11aを有する排気ターボ過給機11を備えており、該排気ターボ過給機11のコンプレッサ11aから吐出された空気は空気管13を通って、インタークーラ15に入り給気が冷却された後、給気スロットルバルブ17で給気流量が制御され、その後、給気マニホールド18からシリンダ毎に設けられた吸気ポートを通ってエンジン1の図示しない燃焼室内に流入するようになっている。
 また、エンジン1においては、燃料の噴射時期及び噴射量を制御して燃焼室に噴射するコモンレール燃料噴射装置が設けられており、該コモンレール燃料噴射装置のコモンレールから燃料噴射弁に対して所定の燃料噴射時期に、所定の燃料量が供給されるようになっていて、該コモンレール燃料噴射装置には後述する再生制御装置19から制御信号が入力される。コモンレール燃料噴射装置への制御信号の入力位置を符号21で示す。
 また、排気通路3の途中から、EGR(排ガス再循環)管23が分岐されて、排ガスの一部(EGRガス)がEGR管23通り、EGRクーラ(不図示)で降温され、給気スロットルバルブ17の下流部位にEGRバルブ25を介して投入されるようになっている。
 エンジン1の燃焼室で燃焼された燃焼ガス即ち排ガス27は、シリンダ毎に設けられた排気ポートが集合した排気マニホールド29及び排気通路3を通って、前記排気ターボ過給機11の排気タービン11bを駆動してコンプレッサ11aの動力源となった後、排気通路3を通って排ガス後処理装置9のDOC5に入るように流れる。
 DPF7の再生制御装置19には、コンプレッサ11aへ流入する空気流量を検出する空気流量センサ31、吸気温度センサ33、DOC入口温度センサ35、およびDPF入口温度センサ37、DPFの差圧センサ39、過給後の給気温度センサ41、給気圧力センサ43からの信号が取りこまれる。
 さらにエンジン回転数信号45、燃料噴射量信号47、がそれぞれ取りこまれるようになっている。
(第1実施形態)
 以上の構成において、本発明の再生制御装置19について説明する。このDPF7の再生制御装置19には、図1に示すように、DPF7の前後差圧を検出する差圧センサ39からの差圧値を、一定の運転状態の差圧に補正するDPF差圧補正手段49が設けられ、DPF差圧補正手段49によって補正差圧が算出される。
 すなわち、同一堆積量であっても、差圧は排ガス体積流量により変化するため、計測時の排ガス体積流量を基準状態の基準ガス流量に補正して、その基準ガス流量における差圧を補正差圧として算出する。この補正差圧を算出して用いることで、アッシュ堆積量の推定精度を高めることができる。
 また、再生制御装置19には、図3に示すようなスート分とアッシュ分との合計の堆積量によって生じるDPF差圧と運転時間の関係が予め試験または計算によって設定され、アッシュ堆積量が洗浄を必要とする堆積量に対するDPF7の補正差圧を洗浄要求閾値として設定し、アッシュ堆積量が前記洗浄を要求する堆積量より多く堆積し出力低下を必要とする堆積量に対するDPF7の補正差圧を出力低下閾値として設定するDPF差圧設定手段51が設けられている。
 また、再生制御装置19には、補正差圧が前記洗浄要求閾値に達したかどうかを判定し、達している場合にはDPF7に堆積したアッシュを洗浄して除去することを促すために洗浄要求を報知する洗浄要求報知手段53と、補正差圧が洗浄要求閾値より大きい出力低下閾値に達したかどうかを判定し、達している場合には出力低下を警報する出力低下警報手段55とを備え、ランプやブザー等の報知警報部57を作動させる。
 本発明においては、洗浄要求に対して洗浄を行わずにアッシュが許容限界値を超えてしまった場合には、排ガス温度が限界範囲を超えるため、さらに排ガス性能が悪化するため、許容補正差圧以上になると出力を低下していくフェイルセーフ機能が働く。このとき何の前触れもなくフェイルセーフ機能が働くのは望ましくないため予め警報するものである。
 以上の構成を有した、再生制御装置の制御フローを、図2(a)を参照して説明する。まず開始すると、ステップS2で、DPF補正差圧がアッシュ洗浄要求閾値P1以上かを判定する。以上でない場合にはステップS6に進んで終了し、アッシュ洗浄要求閾値P1以上の場合には、ステップS3に進んでアッシュ洗浄要求を報知する。
 次に、ステップS4で、DPF補正差圧が出力低下警告閾値P2以上かを判定する。以上でない場合にはステップS6に進んで終了し、出力低下警告閾値P2以上の場合には、ステップS5に進んで出力低下を警告する。なお、図2(a)に示すフローは所定の周期で繰り返される。
 また、アッシュ洗浄要求閾値P1と出力低下警告閾値P2との関係は、図2(b)のようにP1<P2の関係になっている。
 DPFの前後差圧からアッシュ堆積量を求める技術は、アッシュ堆積量が増えてもDPF差圧は比例して増大するとは限らず、またスートが堆積していない状態では、アッシュが堆積してもDPF差圧はほとんど上昇しないので、DPF差圧からアッシュ堆積量だけを精度よく予測することには問題があったが、本第1実施形態は、予め設定されたスート堆積量とアッシュ堆積量との合計堆積によるDPF差圧特性(図3参照)に基づいて、アッシュ堆積量を推定して洗浄要求や出力低下をランプやブザー等で警告するものである。
 このように、アッシュ堆積量だけ検出するのではなく、合計堆積量のDPF差圧を検出することで、そこに含まれるアッシュ堆積量の増加状態を精度よく判定して報知、警告できるようになる。
 従って、特別なセンサを設けることなく、簡単な方法によって精度よくアッシュ堆積量を推定できるとともに、アッシュの洗浄要求を作業者に正確に報知できる。
 図3は、A、B、Cの3種類のDPFを用いて、運転時間と排気系圧損(DPF補正差圧)との関係を示す特性曲線を表すものである。使用するDPFによってアッシュ洗浄要求閾値P1、出力低下警告閾値P2を設定する。ただし、出力低下警告閾値P2についてはエンジン性能に影響するため、どの種類のDPFを用いても出力低下警告閾値P2は一定値とし、アッシュ洗浄要求閾値P1については、DPFの容量等に応じてそれぞれ設定できるが、図6に示したP1のように同一値としてもよい。なお、図6の点線は、強制再生を繰り返している状態を示すものである。
(第2実施形態)
 次に、図4~図6を参照して、第2実施形態の再生制御装置70について説明する。この第2実施形態は、第1実施形態に対して、図4に示すように、手動再生報知手段72および手動強制再生手段74を設けたことが特徴である。その他の構成については第1実施形態と同一である。
 アッシュ洗浄要求閾値P1に達したときに、アッシュ洗浄要求を報知する前に、DPF7の手動強制再生を促す手動再生報知手段72が設けている。そしてこの手動再生報知手段72による報知によって、作業者が強制再生を実行させるスイッチ76をON操作すると、手動強制再生手段74が作動して、DPF7の強制再生が実行される。
 強制再生の制御概要は、強制再生が開始されると、DOC5を活性化するためのDOC昇温制御が実行される。このDOC昇温制御は、給気スロットルバルブ17を絞ったり、DPF7の下流側に設けられた排気バルブを絞ったり、燃焼室内への主噴射後にアーリーポスト噴射等を実施すること等によって行われ、DOC5が十分活性した後に、燃焼に寄与しないクランク角(TDC(上死点)後約180deg)において、レイトポスト噴射を行って、活性化されたDOC5に流入されたレイトポスト噴射の燃料がDOC5において反応して発生した酸化熱によって排ガス温度をさらに上昇せしめて、DPF7内でスート(すす)が燃焼する約600℃の温度まで昇温させ、スートを燃焼除去する。
 以上の構成を有した第2実施形態の再生制御装置70の制御フローを、図5を参照して説明する。まず開始すると、ステップS12で、DPF補正差圧がアッシュ洗浄要求閾値P1以上かを判定する。以上でない場合にはステップS24に進んで終了し、アッシュ洗浄要求閾値P1以上の場合には、ステップS13に進んでアッシュ洗浄要求タイマをカウントする。ステップS14で、アッシュ洗浄要求タイマが閾値を超えたかを判定し、超えた場合にはステップS15で、アッシュ洗浄要求の報知出力をONする。このようにDPF補正差圧がアッシュ洗浄要求閾値P1以上を判定しても、誤検知を防止するためにすぐにアッシュ洗浄要求の報知出力をONすることなく、所定時間後を設定して報知の出力をする。
 次にアッシュ洗浄要求タイマが閾値を越えない場合、ステップS16に進んで、アッシュ洗浄要求閾値P1を超えたのは最初かどうかを判定し、最初であれば、ステップS19に進んで、手動再生報知手段72よって手動再生ランプ(報知警報部57)を点滅して手動再生を促す。また、ステップS16で、アッシュ洗浄要求閾値P1を超えたのが最初でないと判定した場合には、ステップS17で、アッシュ洗浄要求解除禁止タイマが、警告解除禁止閾値T1以下かどうかを判定する。このアッシュ洗浄要求解除禁止タイマは、ステップS23に示すようにDPF7の強制再生完了後にカウントが開始されるタイマである。ステップS17で警告解除禁止閾値T1以下であればステップS18で警告解除を禁止してアッシュ洗浄要求の警告を維持してONにする。ステップS17で警告解除禁止閾値T1を超える場合には、アッシュ洗浄要求の警告を解除して手動再生ランプを点滅して手動再生を促す。
 このステップS16~S19の部分について図6を参照してさらに説明する。アッシュ洗浄要求閾値P1を最初に超えたときには、ステップS19のように作業者に手動再生を促す。また、ステップS17でNOの場合、つまりアッシュ洗浄要求閾値P1を超えた後に手動再生を行い、完了してからT1時間以上経過後に、再びアッシュ洗浄要求閾値P1を超えた場合には手動再生を促す。
 しかし、警告解除禁止閾値T1以内のT2に再びアッシュ洗浄要求閾値P1を超えた場合には、強制再生の実行に際して使用される燃料によってエンジンオイルが希釈される所謂オイルダイリューションが生じるため、強制再生を禁止して、ステップS18に進んでアッシュ洗浄要求の出力をONにする。この場合、アッシュ洗浄が実行されるまでアッシュ洗浄要求解除を禁止する。
 次に、ステップS20では、ステップS19で警報した結果、作業者がスイッチ76を操作して、手動再生が実行させているかを判定する。手動再生中であると判定した場合にはステップS21でアッシュ洗浄要求解除禁止タイマをゼロにセットする。ステップS22でDPF7の強制再生が完了したかを判定し、完了していなければステップS24で終了し、完了していればステップS23でアッシュ洗浄要求解除禁止タイマカウントを開始する、そして、ステップS24で終了する。なお、図5に示すフローは所定の周期で繰り返えされる。
 第2実施形態によれば、洗浄要求を報知する前に、DPF7の手動強制再生を促す手動強制報知手段72を設けるので、DPF7を手動によって強制再生させてスート分を燃焼除去することで、一時的にDPF差圧を低下させ、改めてDPF差圧が洗浄要求閾値に達したとき報知するようにできる。
 従って、DPF7の洗浄要求報知の信頼性を高めることができる。また、手動強制再生によってサービス工場に運んでのDPF洗浄作業のタイミングを調整できる。
 しかし、手動強制再生を何度も実行するに従って、手動強制再生完了から洗浄要求を促す報知の間隔が狭まってくる。この場合、手動強制再生が完了した後に再度前記洗浄要求閾値に達したときに、手動強制再生の完了から所定時間(警告解除禁止閾値T1)以内の場合には手動強制再生を促す手動再生ランプの点滅はさせずに、洗浄要求の報知を行う。
 所定時間以内に狭まる場合には、真にアッシュ洗浄が必要になったため、手動強制再生は実行せずに、洗浄要求を報知して、洗浄要求の報知の信頼性を高めることができる。
 さらに、頻繁に強制再生を実行すると強制再生の実行に際して使用される燃料によってエンジンオイルが希釈される所謂オイルダイリューションを生じるため、それを防止することができる。
(第3実施形態)
 次に、図7~図10を参照して、第3実施形態の再生制御装置80について説明する。この第3実施形態は、第1実施形態に対して、図7に示すように、アッシュ堆積量推定手段84が設けられている。すなわち、第1実施形態で説明した、DPF差圧補正手段49と、DPF差圧設定手段51と、洗浄要求報知手段53と、出力低下警報手段55とからなる差圧堆積量推定手段82とともに、エンジンオイルの消費量と相関関係を有する指標によってDPFのアッシュ堆積量を推定するアッシュ堆積量推定手段84をさらに備えることを特徴とする。その他の構成については第1実施形態と同一である。
 アッシュ堆積量推定手段84は、図9に示すような全体構成からなっている。規定回転数以上のエンジン回転数の積算値を算出するエンジン回転数積算部86と、規定回転数以上のエンジン回転数における燃料消費量を積算する燃料消費量積算部88と、規定回転数以上のエンジン回転数における運転時間を積算する運転時間積算部90とを備えている。 
 さらに、エンジン回転数積算部86によるエンジン回転数の積算値をパラメータとした所定の1次関数式Y=F(X)によって、オイル消費量を算出する第1オイル消費量推定部92が設けられている。
 同様に、燃料消費量積算部88による燃料消費量の積算値をパラメータとした所定の1次関数式Y=F(X)によって、オイル消費量を算出する第2オイル消費量推定部94が設けられ、さらに、運転時間積算部90による運転時間の積算値をパラメータとした所定の1次関数式Y=F(X)によって、オイル消費量を算出する第3オイル消費量推定部96が設けられている。
 さらに、図9の最大値選択部98によって、それぞれのパラメータによって算出したオイル消費量のうち最大のものを選択し、オイル消費量からアッシュ堆積量を算出する算出式Y=F(X)によって、アッシュ堆積量推定値を算出するアッシュ堆積量算出部100を備えている。
 エンジン回転数は、ピストンの上下運動の回数に相関があり、燃焼室へのオイル供給量と相関がある。また、負荷が高いと燃料噴射量が多くなり、燃焼温度が上昇することで、アッシュの発生量が増加する。また、運転時間については、エンジン回転数による算出および燃料消費量による算出を補うものとして算出する。
 エンジン回転数の積算値、燃料消費量の積算値、運転時間の積算値は、オイル消費量に相関するものであり、アッシュはすでに説明したように、主としてエンジンオイル中の金属系添加剤に起因する成分を含むため、エンジンオイル量に相関することから、これらパラメータによる1次関数式を用いてエンジンオイル量を推定することでアッシュ堆積量を推定する。
 なお、1次関数式Y=F(X)、Y=F(X)、Y=F(X)、さらにY=F(X)については、予め試験、または計算によって関係式を算出しておく。
 図10には、アッシュ堆積量推定手段84によって算出したアッシュ堆積量を基に、アッシュ洗浄要求閾値A1と、アッシュ堆積警告閾値A2との関係について示す。アッシュ堆積量が、アッシュ洗浄要求閾値A1に達すると、アッシュ洗浄要求を行い、アッシュメンテナンス時期であることを知らせる。しかし、アッシュ洗浄要求を超えても作業者がアッシュメンテナンスを行わずに、アッシュ堆積警告閾値A2を超えた場合には、アッシュ堆積警告のフェイルセーフとなる。すなわち、出力低下が行われる。
 以上の構成を有した第3実施形態の再生制御装置80の制御フローを、図8を参照して説明する。
 まず開始すると、ステップS32で、アッシュ堆積量推定手段84によって算出されたアッシュ堆積値が、アッシュ洗浄要求閾値A1以上かを判定し、以上の場合にはステップS34でアッシュ洗浄要求を報知する。ステップS32がNOの場合には、ステップS33で、DPF差圧補正手段49によって算出されたDPF補正差圧が、アッシュ洗浄要求閾値P1以上かを判定して、以上の場合にはステップS34でアッシュ洗浄要求を報知する。
 さらに、ステップS33でNOの場合には、ステップS35に進んで、アッシュ堆積量推定手段84によって算出されたアッシュ堆積値が、アッシュ堆積警告閾値A2以上かを判定し、以上の場合にはステップS36でアッシュ堆積警告を発する。ステップS35がNOの場合には、ステップS37に進んで、DPF補正差圧が、出力低下警告閾値P2以上かを判定して、以上の場合にはステップS38で出力低下警告を行う。そして、ステップS37でNOの場合には、ステップS39に進んで終了する。なお、図8に示すフローは所定の周期で繰り返される。
 第3実施形態によれば、エンジンオイルの消費量と相関関係を有する指標によってアッシュ堆積量を推定するアッシュ堆積量推定手段84と、DPFの差圧からアッシュ堆積量を推定する差圧堆積量推定手段82とを共に備えるので、アッシュ堆積量の推定精度を高めることができる。
 併用の際に、アッシュは主としてエンジンオイル中の金属系添加剤に起因する成分を含むため使用するエンジンオイルの種類が変わると精度良いアッシュ堆積量の推定が困難になるおそれがあるが、差圧堆積量推定手段82による、DPF差圧から推定した洗浄要求閾値の判定を優先して出力することで、エンジンオイルの変更時においてもアッシュ洗浄要求の報知精度を維持できる。
 すなわち、DPF差圧によるアッシュ堆積量の推定がアッシュ洗浄要求閾値P1に達したときの判定を優先して洗浄要求を出力するとともに、最終的にDPF差圧によるアッシュ堆積量の推定が出力低下警告閾値P2に達したときの判定を最終的な判定としていることからも分かる。
(第4実施形態)
 次に、図11を参照して、第4実施形態のDPFの再生支援システムについて説明する。この第4実施形態は、図11に示すように、第1実施形態~第3実施形態で説明した再生制御装置19(70、80)を備え、該再生制御装置19には、アッシュ管理サーバ103と通信可能な車載端末器105が接続可能に構成されている。
 この車載端末器105を再生制御装置19に接続することで、車載端末器105から通信ネットワーク104を介してアッシュ管理サーバ103に接続される。さらに、このアッシュ管理サーバ103は、通信ネットワーク106を介して、アッシュ洗浄可能な設備が設置されている各サービス工場(F1、F2、…Fn)と接続されている。
 そして、アッシュ管理サーバ103内には、各サービス工場(F1、F2、…Fn)の所在地データが格納されたサービス工場データベース107、各サービス工場の稼働日、さらにアッシュ洗浄作業可能なカレンダー情報を格納したカレンダーデータベース109を有している。
 再生制御装置19の洗浄要求報知手段53によって洗浄要求が報知されたときに、車載端末器105はアッシュ管理サーバ103からアッシュ洗浄可能な最寄りのサービス工場及び作業可能カレンダー情報を入手して車載端末器105に表示する。車載端末器105は、再生制御装置19から洗浄要求が報知されたときに、再生制御装置19に接続しても、常時再生制御装置19に接続しておいてもよい。
 また、再生制御装置19(70)には、第2実施形態で説明した洗浄要求閾値P1に達したときに、アッシュ洗浄要求を報知する前にDPF7の手動強制再生を促す手動再生報知手段72が設けられている。そして、該手動再生報知手段72の報知後に手動再生が実行されると、再度洗浄要求閾値に達する時期を予測して、作業者に報知するとともに、その再度洗浄要求閾値に達する予測結果を、アッシュ管理サーバ103に送信することで、作業可能な工場およびカレンダー情報が更新されて、車載端末器105に表示されるようになっている。
 すなわち、DPF7を手動によって強制再生させてスート分を燃焼除去することで、一時的にDPF差圧を低下させ、改めてDPF差圧が洗浄要求閾値に達したときの洗浄要求報知を待って、サービス工場に搬入するようにできる。
 この再度の洗浄要求閾値に達する時期の予測は、DPF差圧設定手段51内には図3に示すようなスート分とアッシュ分との合計の堆積量によって生じるDPF差圧と運転時間の関係が予め試験または計算によって設定されているため、その特性を基に、再生制御装置19(70)の洗浄要求予測部110にて次回再度洗浄要求閾値を超える時期を演算して予測する。そして、その予測結果を、車載端末器105を介してアッシュ管理サーバ103に与えて、アッシュ管理サーバ103で、サービス工場データベース107、カレンダーデータベース109を基に、作業可能なカレンダー情報が更新される。
 従って、サービス工場への搬入可能なスケジュールを、再度洗浄要求閾値に達する時期を予測して更新されたサービス工場およびカレンダー情報を基に予め調整できるようになる。
 さらに、車載端末器105に表示されたサービス工場及び作業可能カレンダー情報を基に、車載端末器105からサービス工場の指定、および作業依頼日時の指定を入力可能にし、車載端末器105からアッシュ管理サーバ103へ作業依頼情報が送信できるようになっている。
 アッシュは、スートのように炭素を主成分とするものではなく、主としてエンジンオイル中の金属系添加剤に起因する成分を含むため燃焼によっては焼却できず、圧縮空気等によって洗浄する必要があるので、洗浄に際して設備がある専用のサービス工場での作業を要する。
 従って、アッシュ管理サーバ103からの情報に基づいて、最寄りのサービス工場、およびサービス作業が可能なカレンダー情報を入手し、さらに車載端末器105からアッシュ管理サーバ103へサービス工場および作業依頼の日時を送信可能にするので、アッシュ洗浄をサービス工場で効率的に行うことができる。
(第5実施形態)
 次に、図12を参照して、第5実施形態のDPFの再生支援システムについて説明する。この第5実施形態は、図12に示すように、第3実施形態で説明した再生制御装置80を備え、この再生制御装置80は、車載端末器105を介してアッシュ管理サーバ120と通信可能に構成されている。
 このアッシュ管理サーバ120には、第4実施形態のカレンダーデータベース109、サービス工場データベース107、さらにメンテナンスデータベース122、学習手段124を有している。
 このメンテナンスデータベース122には、アッシュ洗浄時に洗浄したアッシュ量、洗浄時までの累積運転時間、累積燃料消費量、および累積エンジン回転数のデータをそれぞれ蓄積するようになっている。これらデータは、洗浄時に除去したアッシュ量を計測して車載端末器105から入力し、さらに、再生制御装置80から読み取った洗浄時までの累積運転時間、累積燃料消費量、および累積エンジン回転数のデータを、車載端末器105から前記アッシュ管理サーバ120へ送信してメンテナンスデータベース122に蓄積する。
 該蓄積した最新のデータを基に、アッシュ堆積量推定手段84に設定される関係式を更新する学習手段124を有し、該学習手段124によって更新された新たな関係式が、前記車載端末器105を介してアッシュ堆積量推定手段84に設定される。
 学習手段124で更新される関係式は、第3実施形態で説明した第1オイル消費量推定部92におけるエンジン回転数の積算値をパラメータとした所定の1次関数式Y=F(X)、第2オイル消費量推定部94における燃料消費量の積算値をパラメータとした所定の1次関数式Y=F(X)、および第3オイル消費量推定部96における運転時間の積算値をパラメータとした所定の1次関数式Y=F(X)、およびオイル消費量からアッシュ堆積量を算出する算出式Y=F(X)が更新される。
 このように、洗浄処理が実行される際に、アッシュ洗浄時に洗浄したアッシュ量、洗浄時までの累積運転時間、累積燃料消費量、および累積エンジン回転数のデータを、アッシュ管理サーバ120に蓄積して、学習手段124によって最新のデータに基づいてアッシュ堆積量推定手段84に設定される関係式を更新するので、次回メンテナンス時期の予測精度を向上できる。また、アッシュ管理サーバ120から更新された新たな関係式が車載端末器105を介してアッシュ堆積量推定手段84に送信されて設定されるので、DPFの再生制御装置80を大型化することなく簡単な制御ロジックで関係式を更新できる。
 本発明によれば、簡単な方法によって精度よくアッシュ堆積量を推定できるとともに、アッシュの洗浄要求を作業者に正確に報知して、アッシュ洗浄をサービス工場で効率的に行うことができるので、DPFの再生制御装置、再生制御方法および再生支援システムへの利用に適している。

Claims (10)

  1.  排気通路に排気微粒子(PM)を捕集するディーゼルパティキュレートフィルター(DPF)を備え、該DPFに捕集されたPMを強制再生する強制再生手段を備えたDPFの再生制御装置において、
     DPFの前後差圧を検出する差圧検出手段と、
     スート分とアッシュ分との合計の堆積量によって生じるDPF差圧が予め試験または計算によって設定され、アッシュ堆積量が洗浄を必要とする堆積量に対するDPF差圧を洗浄要求閾値として設定し、前記アッシュ堆積量が前記洗浄を要求する堆積量より多く堆積し出力低下を必要とする堆積量に対するDPF差圧を出力低下閾値として設定するDPF差圧設定手段と、
     前記DPF差圧が前記洗浄要求閾値に達したかどうかを判定し達している場合には洗浄要求を出力する洗浄要求報知手段と、
     前記DPF差圧が前記洗浄要求閾値より大きい前記出力低下閾値に達したかどうかを判定し達している場合には出力低下を警報する出力低下警報手段と、
     を備えたことを特徴とするDPFの再生制御装置。
  2.  前記洗浄要求閾値に達したときに、アッシュ洗浄要求を報知する前にDPFの手動強制再生を促す手動再生報知手段を設けたことを特徴とする請求項1記載のDPFの再生制御装置。
  3.  前記手動強制再生が完了した後に再度前記洗浄要求閾値に達したときに、手動強制再生の完了から所定時間以内の場合には手動強制再生は実行せずに洗浄要求の報知を行うことを特徴とする請求項2記載のDPFの再生制御装置。
  4.  エンジンオイルの消費量と相関関係を有する指標によってDPFのアッシュ堆積量を推定するアッシュ堆積量推定手段をさらに備え、該アッシュ堆積量推定手段によって算出された堆積量の推定値が洗浄を必要とする堆積量に達していない場合であっても、前記DPF差圧が前記洗浄要求閾値に達したときに洗浄要求を出力することを特徴とする請求項1記載のDPFの再生制御装置。
  5.  前記差圧検出手段よって検出された差圧を一定の運転状態の差圧に補正するDPF差圧補正手段を備え、前記DPF差圧が前記DPF差圧補正手段によって補正された補正差圧を用いることを特徴とする請求項1記載のDPFの再生制御装置。
  6.  排気通路に排気微粒子(PM)を捕集するディーゼルパティキュレートフィルター(DPF)を備え、該DPFに捕集されたPMを強制再生する強制再生手段を備えたDPFの再生制御方法において、
     スート分とアッシュ分との合計の堆積量によって生じるDPF差圧が予め試験または計算によって設定し、
     アッシュ堆積量が洗浄を必要とする堆積量に対するDPF差圧を洗浄要求閾値として設定し、
     前記アッシュ堆積量が前記洗浄を要求する堆積量より多く堆積し出力低下を必要とする堆積量に対するDPF差圧を出力低下閾値として設定し、
     前記DPF差圧が前記洗浄要求閾値に達したかどうかを判定し、達している場合には洗浄要求を出力する洗浄要求報知ステップと、
     前記DPF差圧が前記洗浄要求閾値より大きい出力低下閾値に達したかどうかを判定し、達している場合には出力低下を警報する出力低下警報ステップと、
     を有したことを特徴とするDPFの再生制御方法。
  7.  請求項1乃至5のいずれか1項記載のDPFの再生制御装置を備え、該再生制御装置はアッシュ管理サーバと通信可能な車載端末器に接続され、前記アッシュ管理サーバにはサービス工場の所在地、各サービス工場の作業可能なカレンダー情報を格納したデータベースを有し、前記再生制御装置の洗浄要求報知手段によって洗浄要求が報知されたときに、前記車載端末器は前記アッシュ管理サーバからアッシュ洗浄可能な最寄りのサービス工場及び作業可能カレンダー情報を入手して車載端末器に表示することを特徴とするDPFの再生支援システム。
  8.  前記再生制御装置には、前記洗浄要求閾値に達したときに、アッシュ洗浄要求を報知する前にDPFの手動強制再生を促す手動再生報知手段が設けられ、該手動再生報知手段の報知後に手動再生が実行されたとき、その後再度洗浄要求閾値に達する時期を予測して、前記作業可能カレンダー情報を更新して表示することを特徴とする請求項7に記載のDPFの再生支援システム。
  9.  前記車載端末器に表示されたサービス工場及び作業可能カレンダー情報を基に、該車載端末器にサービス工場の指定、および作業依頼日時を入力可能にし、該車載端末器から前記アッシュ管理サーバへ作業依頼情報が送信されることを特徴とする請求項7または8記載のDPFの再生支援システム。
  10.  請求項4記載のDPFの再生制御装置を備え、該再生制御装置はアッシュ管理サーバと通信可能な車載端末器に接続され、前記アッシュ管理サーバにはアッシュ洗浄時に洗浄したアッシュ量、洗浄時までの累積運転時間、累積燃料消費量、および累積エンジン回転数のデータを蓄積するメンテナンスデータベースを有し、洗浄時のアッシュ量および再生制御装置から読み取った前記累積運転時間、累積燃料消費量、および累積エンジン回転数のデータを、前記車載端末器から前記アッシュ管理サーバのメンテナンスデータベースに送信して蓄積し、該蓄積した最新のデータを基に、前記アッシュ堆積量推定手段に設定される関係式を更新する学習手段を有し、該更新された新たな関係式が前記車載端末器を介して前記アッシュ堆積量推定手段に設定されることを特徴とするDPFの再生支援システム。
PCT/JP2011/051512 2010-03-25 2011-01-26 Dpfの再生制御装置、再生制御方法、および再生支援システム WO2011118250A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11759059.6A EP2525056A4 (en) 2010-03-25 2011-01-26 PLAYBACK CONTROL DEVICE, PLAYBACK CONTROL PROCEDURE AND PLAYBACK SUPPORT SYSTEM FOR DPF
US13/581,957 US8919105B2 (en) 2010-03-25 2011-01-26 DPF regeneration control device, DPF regeneration control method, and DPF regeneration support system
CN201180011828.1A CN102782267B (zh) 2010-03-25 2011-01-26 Dpf的再生控制装置、再生控制方法及再生支持系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010070121A JP5562697B2 (ja) 2010-03-25 2010-03-25 Dpfの再生制御装置、再生制御方法、および再生支援システム
JP2010-070121 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011118250A1 true WO2011118250A1 (ja) 2011-09-29

Family

ID=44672828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051512 WO2011118250A1 (ja) 2010-03-25 2011-01-26 Dpfの再生制御装置、再生制御方法、および再生支援システム

Country Status (6)

Country Link
US (1) US8919105B2 (ja)
EP (1) EP2525056A4 (ja)
JP (1) JP5562697B2 (ja)
KR (1) KR20120112850A (ja)
CN (1) CN102782267B (ja)
WO (1) WO2011118250A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023131348A1 (zh) * 2022-01-10 2023-07-13 潍柴动力股份有限公司 双dpf移除的监控方法、装置和发动机

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5307056B2 (ja) * 2010-03-05 2013-10-02 ヤンマー株式会社 エンジン装置
JP2013104416A (ja) 2011-11-16 2013-05-30 Mitsubishi Heavy Ind Ltd Dpfのpm堆積量推定装置
JP2013245615A (ja) * 2012-05-25 2013-12-09 Toyota Motor Corp エンジンの排気浄化装置
US9091190B2 (en) * 2012-08-01 2015-07-28 GM Global Technology Operations LLC Accumulated ash correction during soot mass estimation in a vehicle exhaust aftertreatment device
WO2014030953A1 (ko) * 2012-08-23 2014-02-27 대동공업 주식회사 디젤엔진 배기가스 후처리 장치의 강제 재생시기 표출제어방법 및 강제 재생을 위한 제어방법
US9765673B2 (en) * 2012-11-30 2017-09-19 Johnson Matthey Plc Soot monitoring method and alert system
JP2015218709A (ja) * 2014-05-21 2015-12-07 いすゞ自動車株式会社 車両用管理システム
JP6443140B2 (ja) * 2015-03-10 2018-12-26 いすゞ自動車株式会社 排気管燃料噴射器用閉塞防止装置
US20160326934A1 (en) * 2015-05-08 2016-11-10 Hyundai Motor Company Control method for informing a driver when to clean diesel particulate filter
JP6233450B2 (ja) * 2015-06-02 2017-11-22 トヨタ自動車株式会社 排気浄化システムの制御装置
DE102015220486A1 (de) * 2015-10-21 2017-04-27 Bayerische Motoren Werke Aktiengesellschaft Verfahren und System zur Regeneration eines Rußpartikelfilters
CN107097529B (zh) * 2015-12-07 2020-06-09 精工爱普生株式会社 印刷装置
JP6640547B2 (ja) * 2015-12-18 2020-02-05 三菱日立パワーシステムズ株式会社 フィルタ逆洗装置、チャー回収装置及びフィルタ逆洗方法、ガス化複合発電設備
KR102488199B1 (ko) 2016-04-28 2023-01-13 주식회사 대동 작업차의 dpf 강제 재생 시스템 및 방법
JP6776810B2 (ja) * 2016-10-26 2020-10-28 いすゞ自動車株式会社 排気浄化用フィルタのメンテナンス報知方法
KR102336396B1 (ko) * 2017-04-17 2021-12-07 현대자동차주식회사 Dpf의 클리닝 시점 판단 시스템
CN108087071B (zh) * 2017-12-05 2021-09-28 南京依柯卡特排放技术股份有限公司 对dpf碳载量的判断方法
JP6943808B2 (ja) 2018-04-24 2021-10-06 株式会社クボタ ディーゼルエンジンの排気処理装置
CN108915832B (zh) * 2018-06-20 2020-06-26 潍柴动力股份有限公司 柴油机dpf清灰控制方法
JP6932673B2 (ja) * 2018-06-26 2021-09-08 株式会社クボタ ディーゼルエンジンの排気処理装置
JP6969513B2 (ja) * 2018-07-17 2021-11-24 株式会社豊田自動織機 排気処理装置
CN109538333B (zh) * 2018-09-17 2021-09-14 广东工业大学 柴油机排气颗粒捕集器再生时刻的判定方法
CN113507978A (zh) * 2018-12-18 2021-10-15 唐纳森公司 具有主动脉冲清洁的过滤系统
JP6590097B1 (ja) * 2019-02-20 2019-10-16 トヨタ自動車株式会社 Pm量推定装置、pm量推定システム、データ解析装置、内燃機関の制御装置、および受信装置
CN110295982B (zh) * 2019-06-30 2020-09-29 潍柴动力股份有限公司 一种dpf再生控制方法、装置、存储介质及计算机设备
CN110848042B (zh) * 2019-10-12 2022-04-26 江苏大学 一种气液多相喷射清除dpf颗粒和灰分的装置及控制方法
JP2021071092A (ja) * 2019-10-31 2021-05-06 栗田工業株式会社 内燃機関を備えた車両の触媒付排気ガス後処理装置のメンテナンスの提案方法
CN111980789B (zh) * 2020-07-17 2021-12-14 东风汽车集团有限公司 汽油车颗粒捕集器性能劣化的诊断方法与系统
CN111905488A (zh) * 2020-08-04 2020-11-10 中国科学院广州能源研究所 一种布袋除尘装置及控制方法
CN112360636B (zh) * 2020-11-18 2022-10-04 上汽大通汽车有限公司 一种不同环境下gpf服务站再生选点标定方法
LU102367B1 (en) * 2020-12-31 2022-06-30 Ecosphere S A Diesel particulate filter Diagnostic
CN112761766B (zh) * 2021-01-27 2022-03-15 东风商用车有限公司 一种dpf碳载量估算方法及系统
CN113741196B (zh) * 2021-09-14 2022-04-01 江苏海平面数据科技有限公司 一种基于车联网大数据的dpf再生周期控制优化方法
KR102671112B1 (ko) 2022-02-25 2024-05-31 홍성호 디젤 미립자 필터의 세정 시스템
CN114941564B (zh) * 2022-05-31 2023-11-17 潍柴动力股份有限公司 一种pn排放控制方法、装置、车辆及存储介质
CN115163264B (zh) * 2022-06-30 2024-02-02 深圳市易孔立出软件开发有限公司 一种车辆检测方法、装置、系统及存储介质
CN115779589B (zh) * 2023-02-06 2023-05-05 山东国瀚机电科技有限公司 一种矿用干式除尘器的电控系统智能控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432849B2 (ja) 1983-12-22 1992-06-01 Asahi Chemical Ind
JP2002123524A (ja) * 2000-10-12 2002-04-26 Mitsubishi Heavy Ind Ltd ディーゼルエンジン車のディーゼル微粒子除去フィルタの交換可能店舗検索システムおよびディーゼルエンジン車の車載装置
JP2003083036A (ja) 2001-09-14 2003-03-19 Mitsubishi Motors Corp パティキュレートフィルタの再生制御装置
JP2004132268A (ja) * 2002-10-10 2004-04-30 Toyota Motor Corp 内燃機関の排気浄化装置
JP2005113752A (ja) * 2003-10-07 2005-04-28 Mitsubishi Fuso Truck & Bus Corp 車両の排気浄化装置
JP2006029326A (ja) 2004-07-10 2006-02-02 Robert Bosch Gmbh 内燃機関の排気領域内に配置されている粒子フィルタの作動方法およびその方法を実行する内燃機関の運転装置
JP2007016722A (ja) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd エンジンの排気浄化装置
JP3951618B2 (ja) 2001-02-21 2007-08-01 いすゞ自動車株式会社 ディーゼルパティキュレートフィルタ装置とその再生制御方法
JP2009138704A (ja) * 2007-12-10 2009-06-25 Mitsubishi Fuso Truck & Bus Corp 排気後処理装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3757853B2 (ja) * 2001-11-30 2006-03-22 トヨタ自動車株式会社 排気浄化装置の再生制御方法
RU2349767C2 (ru) * 2002-07-25 2009-03-20 Рифаат А. КЭММЕЛ Система и способ дополнительной обработки выхлопных газов
US7357822B2 (en) * 2002-08-13 2008-04-15 Bosch Automotive Systems Corporation Filter control apparatus
CN2769529Y (zh) * 2003-01-07 2006-04-05 中国环境科学研究院 柴油机排气颗粒物过滤器电加热再生自动控制系统
JP4320621B2 (ja) * 2003-08-25 2009-08-26 株式会社デンソー 内燃機関の排気浄化装置
JP2007524786A (ja) * 2004-02-12 2007-08-30 ダイムラークライスラー・アクチェンゲゼルシャフト パティキュレートフィルタの状態判定装置
US7462222B2 (en) * 2004-10-05 2008-12-09 Caterpillar Inc. Filter service system
US20060191258A1 (en) * 2005-02-28 2006-08-31 Caterpillar Inc. Particulate trap regeneration control system
JP4574460B2 (ja) * 2005-06-14 2010-11-04 本田技研工業株式会社 内燃機関の排気浄化装置
US7607295B2 (en) 2005-07-07 2009-10-27 Nissan Motor Co., Ltd. Particulate accumulation amount estimating system
US8384397B2 (en) * 2006-05-01 2013-02-26 Filter Sensing Technologies, Inc. Method and system for controlling filter operation
JP4692376B2 (ja) * 2006-05-10 2011-06-01 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2008121573A (ja) * 2006-11-13 2008-05-29 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008215535A (ja) * 2007-03-06 2008-09-18 Toyota Motor Corp ディーゼル車の制御装置
US8161738B2 (en) * 2008-11-26 2012-04-24 Corning Incorporated Systems and methods for estimating particulate load in a particulate filter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432849B2 (ja) 1983-12-22 1992-06-01 Asahi Chemical Ind
JP2002123524A (ja) * 2000-10-12 2002-04-26 Mitsubishi Heavy Ind Ltd ディーゼルエンジン車のディーゼル微粒子除去フィルタの交換可能店舗検索システムおよびディーゼルエンジン車の車載装置
JP3951618B2 (ja) 2001-02-21 2007-08-01 いすゞ自動車株式会社 ディーゼルパティキュレートフィルタ装置とその再生制御方法
JP2003083036A (ja) 2001-09-14 2003-03-19 Mitsubishi Motors Corp パティキュレートフィルタの再生制御装置
JP2004132268A (ja) * 2002-10-10 2004-04-30 Toyota Motor Corp 内燃機関の排気浄化装置
JP2005113752A (ja) * 2003-10-07 2005-04-28 Mitsubishi Fuso Truck & Bus Corp 車両の排気浄化装置
JP2006029326A (ja) 2004-07-10 2006-02-02 Robert Bosch Gmbh 内燃機関の排気領域内に配置されている粒子フィルタの作動方法およびその方法を実行する内燃機関の運転装置
JP2007016722A (ja) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd エンジンの排気浄化装置
JP2009138704A (ja) * 2007-12-10 2009-06-25 Mitsubishi Fuso Truck & Bus Corp 排気後処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2525056A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023131348A1 (zh) * 2022-01-10 2023-07-13 潍柴动力股份有限公司 双dpf移除的监控方法、装置和发动机

Also Published As

Publication number Publication date
EP2525056A4 (en) 2016-05-25
US20130000282A1 (en) 2013-01-03
JP5562697B2 (ja) 2014-07-30
US8919105B2 (en) 2014-12-30
KR20120112850A (ko) 2012-10-11
EP2525056A1 (en) 2012-11-21
JP2011202573A (ja) 2011-10-13
CN102782267B (zh) 2015-01-28
CN102782267A (zh) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5562697B2 (ja) Dpfの再生制御装置、再生制御方法、および再生支援システム
JP4048993B2 (ja) エンジンの排気浄化装置
JP6325532B2 (ja) 異常に頻度が高いディーゼルパティキュレートフィルタ再生を検出する方法、エンジン、排気後処理システム、警告システム及び方法
EP1905991B1 (en) Control method of exhaust gas purification system and exhaust gas purification system
US8209962B2 (en) Diesel particulate filter soot permeability virtual sensors
JP3801135B2 (ja) エンジンの排気ガス浄化装置
US20090145111A1 (en) Problem detection apparatus and method in exhaust purifying apparatus
EP2218884A1 (en) Exhaust gas post-processing device
WO2010073511A1 (ja) 排気浄化装置の再生不良診断方法
AU2011342304A1 (en) DPF system
JP2008157199A (ja) センサの異常検出装置
EP2581572B1 (en) Exhaust-gas purification system
JP2010116857A (ja) エアフロセンサの異常診断装置及び異常診断方法
JP5931328B2 (ja) エンジンの排ガス浄化装置および浄化方法
JP6414802B2 (ja) ディーゼルエンジンのエンジンオイル劣化診断装置
JP5912494B2 (ja) ディーゼルエンジンの排気浄化装置
KR101551083B1 (ko) 자동차용 dpf 시스템 고장 진단 방법
KR20070062309A (ko) 디젤 자동차의 매연 포집필터 진단장치 및 그 방법
JP2020051405A (ja) 内燃機関の診断装置
CN118088338B (zh) 进气流量传感器的异常检测方法、装置和电子控制装置
JP7302541B2 (ja) 排気処理システム
JP2018178775A (ja) フィルタ再生制御装置およびフィルタ再生制御方法
JP2022018447A (ja) 温度センサの診断装置
KR20130088505A (ko) 디젤엔진 매연여과장치의 람다센서를 이용한 실시간 매연 산화율 측정장치 및 매연 산화율 측정방법, 그리고 이 매연 산화율 측정방법에 따른 매연여과장치 재생 제어방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180011828.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759059

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011759059

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7341/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127022753

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13581957

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE