WO2011115129A1 - フェライト磁性材料、フェライト磁石、フェライト焼結磁石 - Google Patents
フェライト磁性材料、フェライト磁石、フェライト焼結磁石 Download PDFInfo
- Publication number
- WO2011115129A1 WO2011115129A1 PCT/JP2011/056091 JP2011056091W WO2011115129A1 WO 2011115129 A1 WO2011115129 A1 WO 2011115129A1 JP 2011056091 W JP2011056091 W JP 2011056091W WO 2011115129 A1 WO2011115129 A1 WO 2011115129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ferrite
- magnetic material
- magnet
- hcj
- crystal
- Prior art date
Links
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 189
- 239000000696 magnetic material Substances 0.000 title claims abstract description 81
- 239000000203 mixture Substances 0.000 claims abstract description 33
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000013078 crystal Substances 0.000 claims description 75
- 239000002245 particle Substances 0.000 claims description 68
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 11
- 238000002441 X-ray diffraction Methods 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 230000005484 gravity Effects 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 4
- 230000014509 gene expression Effects 0.000 claims 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 54
- 238000000465 moulding Methods 0.000 description 53
- 238000010298 pulverizing process Methods 0.000 description 36
- 230000008569 process Effects 0.000 description 35
- 239000011230 binding agent Substances 0.000 description 23
- 239000002994 raw material Substances 0.000 description 23
- 239000000463 material Substances 0.000 description 22
- 239000002002 slurry Substances 0.000 description 22
- 239000000843 powder Substances 0.000 description 21
- 239000011575 calcium Substances 0.000 description 20
- 238000010304 firing Methods 0.000 description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 15
- 238000001354 calcination Methods 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 14
- 230000007423 decrease Effects 0.000 description 13
- 239000006247 magnetic powder Substances 0.000 description 12
- 230000005415 magnetization Effects 0.000 description 12
- 238000002156 mixing Methods 0.000 description 12
- 239000012298 atmosphere Substances 0.000 description 11
- 239000008188 pellet Substances 0.000 description 11
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- -1 for example Polymers 0.000 description 9
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 150000005846 sugar alcohols Polymers 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 7
- 238000001746 injection moulding Methods 0.000 description 7
- 239000011572 manganese Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 6
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 6
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 6
- 239000002612 dispersion medium Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000600 sorbitol Substances 0.000 description 6
- 239000001993 wax Substances 0.000 description 6
- 239000003125 aqueous solvent Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052746 lanthanum Inorganic materials 0.000 description 5
- 239000012188 paraffin wax Substances 0.000 description 5
- 238000007493 shaping process Methods 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 239000006087 Silane Coupling Agent Substances 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000004014 plasticizer Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(2+);cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000005381 magnetic domain Effects 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910000018 strontium carbonate Inorganic materials 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- IKWTVSLWAPBBKU-UHFFFAOYSA-N a1010_sial Chemical compound O=[As]O[As]=O IKWTVSLWAPBBKU-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910000413 arsenic oxide Inorganic materials 0.000 description 1
- 229960002594 arsenic trioxide Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- CMGJQFHWVMDJKK-UHFFFAOYSA-N lanthanum;trihydrate Chemical compound O.O.O.[La] CMGJQFHWVMDJKK-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N o-dicarboxybenzene Natural products OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2608—Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
- C04B35/2633—Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2641—Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62695—Granulation or pelletising
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63408—Polyalkenes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63424—Polyacrylates; Polymethacrylates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3239—Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3241—Chromium oxides, chromates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3256—Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3258—Tungsten oxides, tungstates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
- C04B2235/3277—Co3O4
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3286—Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3287—Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3294—Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3409—Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5409—Particle size related information expressed by specific surface values
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6022—Injection moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/605—Making or treating the green body or pre-form in a magnetic field
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6588—Water vapor containing atmospheres
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/76—Crystal structural characteristics, e.g. symmetry
- C04B2235/767—Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/787—Oriented grains
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/788—Aspect ratio of the grains
Definitions
- the present invention relates to a ferrite magnetic material, and a ferrite magnet and a ferrite sintered magnet made of the ferrite magnetic material.
- a material of a permanent magnet made of an oxide hexagonal M-type (Magnet Plumbite-type) Sr ferrite or Ba ferrite is known. Ferrite magnetic materials made of these ferrites are provided as permanent magnets in the form of sintered ferrite or bonded magnets. In recent years, along with miniaturization and high performance of electronic components, permanent magnets made of a ferrite magnetic material have been required to have high magnetic properties while being small.
- Patent Document 1 discloses an oxide magnetic material from which a ferrite sintered magnet having high Br and HcJ can be obtained by containing at least La, Ba and Co in M-type Ca ferrite.
- Patent Document 2 discloses an oxide magnetic material in which a ferrite sintered magnet having high Br and HcJ can be obtained by adding La, Sr, and Co to M-type Ca ferrite.
- Patent Document 3 discloses a sintered magnet having high Br and HcJ by including Sr, La and Co in the M-type Sr ferrite.
- the permanent magnet In addition to having high Br and HcJ, the permanent magnet also has a high ratio of magnetic field values (Hk) when the magnetization to HcJ is 90% of Br, so-called squareness ratio (Hk / HcJ). Is preferred. When Hk / HcJ is high, demagnetization due to an external magnetic field or temperature change is small, and stable magnetic characteristics can be obtained.
- the orientation of the easy magnetization axis (c-axis direction in the case of M-type ferrite) of the crystal grains constituting the ferrite phase is aligned, that is, the orientation of the easy magnetization axis is increased, and the anisotropy It is effective to make it easier.
- the orientation is increased, with M-type ferrite, crystal grains tend to grow in the hard axis direction perpendicular to the easy axis, so the average crystal grain diameter in the hard axis direction and easy magnetization
- the aspect ratio indicated by the ratio of the average crystal grain size in the axial direction tends to be high. As the aspect ratio increases, the crystal grains are easily affected by a demagnetizing field.
- an increase in the average crystal grain size in the hard axis direction indicates that the number of crystal grains that become single magnetic domain particles (about 1 ⁇ m in the case of M-type ferrite) decreases. Due to these influences, HcJ decreases, and it becomes difficult to achieve compatibility with high Br.
- the present invention has been made in view of such circumstances, and from a ferrite magnetic material that can maintain a high Br and HcJ and obtain a permanent magnet having a high Hk / HcJ, and the ferrite magnetic material. It aims at providing the magnet which becomes.
- the ferrite magnetic material of the present invention is a ferrite magnetic material having a main phase composed of a ferrite phase having a hexagonal crystal structure, and has a composition of a metal element represented by the following formula (1).
- R is at least one element selected from the group consisting of rare earth elements (including Y) and Bi and includes at least La, and M is Co, Mn, Mg, Ni, Cu And at least one element selected from the group consisting of Zn and containing at least Co,
- w, x, y, z and m satisfy the following formulas (2), (3), (4), (5), (6), (7) and (8), 0.25 ⁇ w ⁇ 0.5 (2) 0.01 ⁇ x ⁇ 0.35 (3) 0.0001 ⁇ y ⁇ 0.013 (4) y ⁇ x (5) 8.7 ⁇ z ⁇ 9.9 (6) 1.0 ⁇ w / m ⁇ 2.1 (7) 0.017 ⁇ m / z ⁇ 0.055 (8) Including at least a Si component as a subcomponent, The content y1 in terms of SiO 2 of this Si component in the ferrite magnetic material is represented on
- the ferrite magnetic material of the present invention is represented by the above formula (1), each element satisfies the conditions of formulas (2) to (8), and further contains a Si component as a subcomponent, A ratio y1% by mass in terms of SiO 2 of the Si component in the ferrite magnetic material is represented on the Y axis, When the total amount x1 of z and m is represented on the X axis, The relationship between x1 and y1 is that four points a (8.9, 1.2), b (8.3, 0.95), and c (10.0) in the XY coordinates having the X axis and the Y axis. , 0.35) and d (10.6, 0.6), the ferrite magnet or ferrite sintered magnet having not only high Br and HcJ but also high Hk / HcJ become.
- the degree of crystal orientation Or (f) ⁇ (001) / ⁇ (hkl) determined by X-ray diffraction measurement is 0.9 or more.
- the maximum value and the minimum value of the particle diameter passing through the center of gravity of the cross section of each crystal particle are respectively determined, and the average of the maximum value and the minimum value of the particle diameters in a predetermined number or more of the crystal particles is L ( ⁇ m) and S ( ⁇ m, respectively).
- the L and S satisfy the following formulas (9) and (10).
- FIG. 1 shows the Y content of y2 mass% of the Si component in the ferrite magnetic material in terms of SiO 2 on the Y axis and the total amount x1 of z and m on the X axis.
- FIG. 2 is a cross-sectional view of crystal grains for explaining a method for measuring the crystal grain diameter and aspect ratio of the crystal grains constituting the ferrite sintered magnet according to one embodiment of the present invention.
- 3A is a cross-sectional SEM photograph of a sintered ferrite magnet according to an example of the present invention, and FIG.
- FIG. 3B is a cross-sectional SEM photograph of a ferrite sintered magnet according to a comparative example of the present invention.
- FIG. 4 is a cross-sectional view of a main part of a magnetic field injection molding machine used in the method for manufacturing a sintered magnet according to one embodiment of the present invention.
- the ferrite magnetic material constituting the ferrite sintered magnet according to one embodiment of the present invention has a main phase composed of a ferrite phase having a hexagonal crystal structure.
- the ferrite phase is preferably magnetoplumbite type (M type) ferrite (hereinafter referred to as “M type ferrite”).
- M type ferrite magnetoplumbite type
- “main phase consisting of ferrite phase” means that a ferrite sintered magnet usually consists of “main phase (crystal particles)” and “grain boundary part”, and this “main phase” is the ferrite phase.
- the proportion of the main phase in the sintered body is preferably 95% by volume or more.
- the ferrite magnetic material constituting the ferrite sintered magnet is in the form of a sintered body and has a structure including crystal grains (main phase) and grain boundaries.
- the average crystal grain size of crystal grains in this sintered body is preferably 1.4 ⁇ m or less, more preferably 0.5 to 1.4 ⁇ m. By having such an average crystal grain size, high HcJ is easily obtained.
- the average crystal grain size described here is an arithmetic mean value of the grain diameters in the hard axis (a-axis) direction of crystal grains in the sintered body of M-type ferrite.
- the crystal grain size of the sintered body of ferrite magnetic material can be measured with a scanning electron microscope.
- the ferrite magnetic material of the present embodiment has a metal element composition represented by the following formula (1).
- R is at least one element selected from the group consisting of rare earth elements (including Y) and Bi and includes at least La, and M is Co, Mn, Mg, Ni, It is at least one element selected from the group consisting of Cu and Zn and contains at least Co.
- w, x, y, z and m represent atomic ratios of R, Sr, Ba, Fe and M, respectively, and the following formulas (2), (3), (4), All of (5), (6), (7) and (8) are satisfied.
- 0.25 ⁇ w ⁇ 0.5 (2) 0.01 ⁇ x ⁇ 0.35 (3) 0.0001 ⁇ y ⁇ 0.013 (4) y ⁇ x (5) 8.7 ⁇ z ⁇ 9.9 (6) 1.0 ⁇ w / m ⁇ 2.1 (7) 0.017 ⁇ m / z ⁇ 0.055 (8)
- the ferrite magnetic material includes at least a Si component as a subcomponent other than the above-described composition of the metal element, and as shown in FIG. 1, the content y1 of the Si component in the ferrite magnetic material in terms of SiO 2
- mass% is represented on the Y-axis
- b 8.3, 0.95
- c (10.0, 0.35)
- d (10.6, 0.6).
- composition ratio of oxygen is affected by the composition ratio of each metal element and the valence of each element (ion), and increases or decreases so as to maintain electrical neutrality in the crystal. Further, in the firing step described later, oxygen deficiency may occur when the firing atmosphere is a reducing atmosphere.
- the atomic ratio of Ca (1-wxy) in the composition of the metal element constituting the ferrite magnetic material described above is preferably more than 0.25 and less than 0.59. If the atomic ratio of Ca is too small, the ferrite magnetic material may not be M-type ferrite.
- the sintered ferrite magnet of the present embodiment in addition to containing SiO 2 as an auxiliary component as described below, may further comprise other auxiliary components.
- a Ca component may be included as a subcomponent.
- the sintered ferrite magnet of the present embodiment includes Ca as a component constituting the ferrite phase that is the main phase as described above. Therefore, when Ca is contained as a subsidiary component, for example, the amount of Ca analyzed from the sintered body is the total amount of the main phase and the subsidiary component. That is, when the Ca component is used as the subcomponent, the Ca atomic ratio (1-wxy) in the general formula (1) is a value including the subcomponent. Since the range of the atomic ratio (1-wxy) is specified based on the composition analyzed after sintering, it applies to both cases where the Ca component is included and not included as a subcomponent. I can do it.
- the element represented by R includes at least La, and as other than La, at least one selected from the group consisting of rare earth elements (including Y) and Bi is preferable, and at least one selected from the group consisting of rare earth elements Is more preferable.
- R contains only La from the viewpoint of improving the anisotropic magnetic field.
- the atomic ratio (w) of R in the composition of the metal element constituting the ferrite magnetic material is more than 0.25 and less than 0.5, and in this range, Br, HcJ, and Hk / HcJ are good. Is obtained. If the atomic ratio of R is too small, the solid solution amount of M in the ferrite magnetic material becomes insufficient, and Br and HcJ decrease. On the other hand, if it is too large, a non-magnetic hetero phase such as orthoferrite is generated, and Hk / HcJ becomes low, making it difficult to obtain a practical magnet. From such a viewpoint, the atomic ratio of R is preferably 0.3 or more and less than 0.5, and more preferably 0.3 to 0.45.
- the atomic ratio (x) of Sr is more than 0.01 and less than 0.35, and satisfactory Br, HcJ, and Hk / HcJ are satisfied within this range. If the atomic ratio of Sr is too small, the ratio of Ca and / or La increases, and Hk / HcJ decreases. On the other hand, when the atomic ratio of Sr is too large, Br and HcJ become insufficient. From such a viewpoint, the atomic ratio of Sr is preferably 0.05 to 0.25, and more preferably 0.1 to 0.2.
- the atomic ratio (y) of Ba is more than 0.0001 and less than 0.013, and satisfactory Br, HcJ, and Hk / HcJ are satisfied by being in this range. If the atomic ratio of Ba is too small, a sufficient Hk / HcJ improvement effect cannot be obtained. On the other hand, if it is too large, Br and HcJ will undesirably decrease. From such a viewpoint, the atomic ratio of Ba is preferably 0.0004 to 0.01.
- the atomic ratio (x) of Sr and the atomic ratio (y) of Ba satisfy the relationship y ⁇ x.
- the atomic ratio (z) of Fe is more than 8.7 and less than 9.9, and satisfactory Br, HcJ, and Hk / HcJ are satisfied within this range. If the atomic ratio of Fe is too small or too large, Br and HcJ are disadvantageously reduced.
- the atomic ratio of Fe is preferably 8.8 to 9.6.
- the element represented by M includes at least Co, and other than Co is preferably at least one selected from the group consisting of Mn, Mg, Ni, Cu and Zn, and is selected from the group consisting of Mn, Ni and Zn At least one is more preferable. However, it is particularly preferable that M contains only Co from the viewpoint of improving the anisotropic magnetic field.
- the composition of the metal element constituting the ferrite magnetic material satisfies the condition that, for the atomic ratio (m) of M, m / z is more than 0.017 and less than 0.055. Further, the condition that w / m exceeds 1.0 and is less than 2.1 is satisfied. By satisfying these conditions, good Br, HcJ and Hk / HcJ can be obtained. When the atomic ratio of M is too small, good Br and HcJ cannot be obtained. In particular, when the ratio of Co is too small, good HcJ cannot be obtained. On the other hand, when the ratio of M is too large, Br and HcJ tend to decrease rather.
- m / z is preferably 0.02 to 0.035.
- the w / m is preferably 1.2 to 1.9, and more preferably 1.4 to 1.8.
- the ferrite magnetic material according to the present invention includes subcomponents described later in addition to the composition of the metal elements described above.
- the accessory component can be contained in both the main phase and the grain boundary of the ferrite magnetic material.
- the components other than the subcomponents are the main composition. From the viewpoint of obtaining sufficient magnetic properties, the content of the main phase in the ferrite magnetic material is preferably 90% by mass or more, and more preferably 95 to 100% by mass.
- the ferrite magnetic material of this embodiment includes at least a Si (silicon) component as a subcomponent.
- the Si component includes both Si atoms themselves and Si-containing compounds (SiO 2 and the like).
- the compound containing Si as long as it has a composition containing Si, it is not particularly limited, for example, SiO 2, Na 2 SiO 3 , SiO 2 ⁇ nH 2 O , and the like. Since the ferrite magnetic material contains the Si component, the sinterability is improved, and the sintered product is a ferrite sintered magnet in which the crystal grain size of the sintered body is appropriately adjusted and the magnetic properties are well controlled. As a result, high Hk / HcJ can be obtained while maintaining Br and HcJ well.
- the ferrite magnetic material of the present embodiment represents, on the Y axis, a ratio y1 mass% in terms of SiO 2 of the Si component in the ferrite magnetic material, and the total amount x1 of z and m is expressed as x1.
- the relationship between x1 and y1 is that the four points a (8.9, 1.2) and b (8.3, 0. 95), c (10.0, 0.35) and d (10.6, 0.6).
- the content of the Si component is the sum of all Si components, preferably 0.35 to 1.2% by mass in terms of SiO 2 , more preferably 0.4 to 1. 1% by mass.
- Si component has such a content, high HcJ is obtained.
- the ferrite magnetic material contains the above-described metal element composition and subcomponents including at least the Si component, but the composition of the ferrite magnetic material can be measured by fluorescent X-ray quantitative analysis. The presence of the main phase can be confirmed by X-ray diffraction or electron beam diffraction.
- the ferrite magnetic material of the present embodiment may contain a component other than the Si component as a subcomponent.
- a component other than the Si component as a subcomponent.
- Al and / or Cr may be included. These tend to improve the HcJ of the sintered ferrite magnet.
- the content of Al and / or Cr is 0.1% by mass or more in total in terms of Al 2 O 3 or Cr 2 O 3 with respect to the entire ferrite magnetic material. It is preferable that However, since these components may lower Br of the ferrite sintered magnet, it is desirable that the content is 3% by mass or less from the viewpoint of obtaining good Br.
- the subcomponent may include boron B, for example, as a B 2 O 3.
- B the calcining temperature when obtaining the ferrite magnetic material and the firing temperature when obtaining the sintered body made of the ferrite magnetic material can be lowered, so that a ferrite sintered magnet can be obtained with high productivity. become.
- the saturation magnetization of the ferrite sintered magnet may decrease if there is too much B, the content of B may be 0.5% by mass or less as B 2 O 3 with respect to the entire ferrite magnetic material. preferable.
- the ferrite magnetic material of the present embodiment includes Ga, Mg, Cu, Mn, Ni, Zn, In, Li, Ti, Zr, Ge, Sn, V, Nb, Ta, Sb, As, and W as subcomponents.
- Mo or the like may be included in the form of an oxide.
- oxides of the stoichiometric composition of each atom 5% by mass or less of gallium oxide, 5% by mass or less of magnesium oxide, 5% by mass or less of copper oxide, 5% by mass or less of manganese oxide, oxidation Nickel 5 mass% or less, zinc oxide 5 mass% or less, indium oxide 3 mass% or less, lithium oxide 1 mass% or less, titanium oxide 3 mass% or less, zirconium oxide 3 mass% or less, germanium oxide 3 mass% or less, tin oxide 3 mass% or less, vanadium oxide 3 mass% or less, niobium oxide 3 mass% or less, tantalum oxide 3 mass% or less, antimony oxide 3 mass% or less, arsenic oxide 3 mass% or less, tungsten oxide 3 mass% or less, molybdenum oxide 3 It is preferable that it is below mass%. However, when a plurality of these are included in combination, it is desirable that the total be 5% by mass or less in order to avoid deterioration of magnetic
- the ferrite magnetic material of the present embodiment preferably does not contain alkali metal elements (Na, K, Rb, etc.) as subcomponents.
- Alkali metal elements tend to reduce the saturation magnetization of the magnet 1.
- the alkali metal element may be contained in the raw material for obtaining the ferrite magnetic material, for example, and may be contained in the ferrite magnetic material as long as it is inevitably contained. .
- the content of the alkali metal element that does not greatly affect the magnetic properties is 3% by mass or less.
- a method for measuring the crystal orientation degree Or (f) will be described.
- one side of a disc or cylindrical ferrite sintered magnet is polished smoothly, XRD measurement is performed on this smooth polished surface, a diffraction pattern is obtained, and a diffraction peak derived from the ferrite sintered magnet is identified. To do. Then, the crystallographic orientation degree (X-ray orientation degree) of the sintered ferrite magnet is obtained from the plane index and peak intensity of this diffraction peak.
- the c-plane (plane perpendicular to the c-axis) in the structure is a generic name, and ⁇ I (00L) indicates the sum of all peak intensities belonging to the (00L) plane. Further, (hkL) indicates all detected diffraction peaks, and ⁇ I (hkL) is the sum of the peak intensities.
- the c-plane represented by (00L) is a plane perpendicular to the easy axis direction of magnetization in the ferrite sintered magnet of the present embodiment.
- the higher the total peak intensity of the (00L) plane, that is, the higher the Or (f) ⁇ I (00L) / ⁇ I (hkL), the more easily the axes of magnetization are aligned. improves.
- the sintered ferrite magnet according to the present embodiment is composed of crystal particles having an elliptical cross section.
- the maximum value and the minimum value of the particle diameter passing through the center of gravity of the cross section of each crystal particle are obtained on a cut surface obtained by cutting the crystal particles constituting the ferrite sintered magnet along a plane parallel to the c-axis direction.
- the L and S satisfy the following formulas (9) and (10).
- the range of L is more preferably L ⁇ 1.37, and further preferably 0.6 ⁇ L ⁇ 1.37.
- the range of L / S is more preferably L / S ⁇ 2.35, and more preferably 1.7 ⁇ L / S ⁇ 2.35.
- the L / S is a so-called aspect ratio parameter.
- the magnetization difficult axis hexagonal structure a-axis, S in FIG. 2 perpendicular to the easy magnetization axis (c-axis in the hexagonal crystal structure, direction L in FIG. 2).
- the crystal grains tend to grow in the direction).
- the aspect ratio indicated by the ratio of the average crystal grain size in the hard axis direction and the average crystal grain size in the easy axis direction tends to be high. And if an aspect ratio becomes high, it will become easy to receive to the influence of a demagnetizing field within a crystal grain.
- an increase in the average crystal grain size in the hard axis direction indicates that the number of crystal grains that become single magnetic domain particles (about 1 ⁇ m in the case of M-type ferrite) decreases. Due to these influences, HcJ decreases and it becomes difficult to achieve compatibility with high Br.
- the M-type ferrite has an easy magnetization axis in the c-axis direction. For this reason, in order to measure the average maximum particle size L and the average minimum particle size S, first, a cross section parallel to the c-axis direction of the sintered ferrite magnet is cut out. Then, the cross section is subjected to mirror polishing and etching treatment with hydrofluoric acid. The crystal grain boundary portion is removed by the etching process, and the crystal grains are easily observed. Next, the cross section is observed with a scanning electron microscope (SEM), and a particle cross-sectional image parallel to the c-axis direction is obtained. An example of the obtained cross-sectional image is shown in FIG.
- SEM scanning electron microscope
- the maximum value and the minimum value of the particle size passing through the center of gravity of the particle cross-section are measured.
- the maximum particle diameter l ( ⁇ m) that is the maximum value of the particle diameter passing through the centroid J of the particle cross section of one crystal particle 20 and the minimum particle diameter that passes through the centroid J.
- the minimum particle size s ( ⁇ m) as a value is derived.
- the arithmetic average value of the maximum particle size and the minimum particle size is calculated for a predetermined number of crystal particles, and defined as an average maximum particle size L and an average minimum particle size S, respectively.
- the predetermined number of crystal grains for obtaining the average is preferably 500 or more.
- the magnet made of the ferrite magnetic material in the present embodiment is not limited to the ferrite sintered magnet as described above, and examples thereof include a bond magnet in which ferrite magnetic material powder is bonded by a binder.
- the ferrite magnetic material conditions as described above may be satisfied in the ferrite magnetic material powder.
- the average particle diameter of primary particles constituting the ferrite magnetic material powder is not particularly limited, but is preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less, and even more preferably 0.1 to 1 ⁇ m. . If this average particle size is too large, the ratio of multi-domain particles in the powder becomes high, and there is a risk that HcJ will decrease. On the other hand, if the average particle size is too small, the magnetism is lowered due to thermal disturbance, and the orientation and moldability during molding in a magnetic field are deteriorated.
- binder examples include nitrile rubber (for example, NBR rubber), chlorinated polyethylene, polyamide resin (for example, nylon 6, nylon 12 (or more, registered trademark)), and the like.
- the ferrite sintered magnet can be manufactured through a blending process, a calcination process, a pulverization process, a molding process, and a firing process.
- pulverization slurry may be included between a grinding
- the raw materials of the ferrite magnetic material are blended to obtain a raw material mixture.
- a compound (raw material compound) containing one or more of elements constituting the ferrite magnetic material can be mentioned.
- the raw material compound is preferably, for example, a powder.
- the raw material compound include oxides of each element or compounds (carbonates, hydroxides, nitrates, etc.) that become oxides upon firing.
- SrCO 3 , La (OH) 3 , Fe 2 O 3 , BaCO 3 , CaCO 3 and Co 3 O 4 can be exemplified.
- the average particle diameter of the raw material compound powder is preferably about 0.1 to 2.0 ⁇ m, for example, from the viewpoint of enabling homogeneous blending.
- examples of the raw material for the Si component in the ferrite magnetic material include SiO 2, but are not particularly limited as long as they are Si-containing compounds. Moreover, you may mix
- each raw material is weighed and mixed so as to obtain a desired composition of the ferrite magnetic material, and then mixed and pulverized for about 0.1 to 20 hours using a wet attritor, ball mill or the like. Can be done.
- a Si raw material for example, SiO 2
- a Ca raw material for example, CaCO 3
- the timing of addition may be adjusted so that a desired composition and magnetic characteristics can be easily obtained.
- the raw material powder obtained in the blending step is calcined.
- the calcination is preferably performed in an oxidizing atmosphere such as air.
- the calcination temperature is preferably in the temperature range of 1100 to 1400 ° C, more preferably 1100 to 1300 ° C, and still more preferably 1150 to 1300 ° C.
- the calcination time can be 1 second to 10 hours, and is preferably 1 second to 5 hours.
- the calcined body obtained by calcining contains 70% or more of the main phase (M phase) as described above.
- the primary particle size of the calcined body is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and still more preferably 2 ⁇ m or less.
- the pulverization step the calcined body that has been granulated or agglomerated in the calcination step is pulverized and again powdered. Thereby, the shaping
- raw materials that were not blended in the blending step may be added (post-addition of raw materials).
- the pulverization step may be performed in a two-step process, for example, after the calcined body is pulverized (coarse pulverization) into a coarse powder, and then finely pulverized (fine pulverization).
- the coarse pulverization is performed using, for example, a vibration mill until the average particle size becomes 0.5 to 5.0 ⁇ m.
- the coarsely pulverized material obtained by the coarse pulverization is further pulverized by a wet attritor, a ball mill, a jet mill or the like.
- the average particle size of the pulverized material obtained is preferably 0.08 to 2.0 ⁇ m, more preferably 0.1 to 1.0 ⁇ m, and still more preferably about 0.1 to 0.5 ⁇ m.
- fine grinding is performed.
- the specific surface area of the finely pulverized material (for example, determined by the BET method) is preferably about 4 to 12 m 2 / g.
- the suitable pulverization time varies depending on the pulverization method. For example, in the case of a wet attritor, about 30 minutes to 20 hours is preferable, and in the case of wet pulverization using a ball mill, about 10 to 50 hours are preferable.
- the addition can be performed at the time of fine pulverization.
- SiO 2 as a Si component and CaCO 3 as a Ca component can be added during fine pulverization, but these may be added in a blending step or a coarse pulverization step.
- non-aqueous solvents such as toluene and xylene can be used as a dispersion medium.
- non-aqueous solvent high orientation tends to be obtained during wet molding described later.
- an aqueous solvent it is advantageous from the viewpoint of productivity.
- a polyhydric alcohol represented by the general formula C n (OH) n H n + 2 may be added in order to increase the degree of orientation of the sintered body obtained after firing.
- n is preferably 4 to 100, more preferably 4 to 30, more preferably 4 to 20, and further preferably 4 to 12. Is more preferable.
- the polyhydric alcohol include sorbitol. Two or more polyhydric alcohols may be used in combination. Furthermore, other known dispersants may be used in combination with the polyhydric alcohol.
- the addition amount is preferably 0.05 to 5.0% by mass, preferably 0.1 to 3.0% by mass, with respect to the object to be added (eg, coarsely pulverized material) More preferably, it is more preferably 0.2 to 2.0% by mass.
- the polyhydric alcohol added in the fine pulverization step is thermally decomposed and removed in a baking step described later.
- the pulverized material preferably finely pulverized material
- CIM C-eramic Injection Molding
- the addition of the polyhydric alcohol such as sorbitol causes the occurrence of powder agglomeration during drying of the finely pulverized slurry, or the binder resin. This is not preferable because the dispersion of the powder into the inside becomes worse.
- the powder may be surface-treated with no dispersant added or with a dispersant having a hydrophilic group and a hydrophobic (lipophilic) group in the same molecule, such as a silane coupling agent.
- the amount of the dispersant added may be 0.3 to 3.0% by mass with respect to the object to be added (eg, coarsely pulverized material).
- a dispersant is preferably added to and mixed with the slurry after pulverization, but is not limited to this example, and is added to the powder after drying or added in a kneading step with a binder resin. May be.
- the pulverized material (preferably finely pulverized material) obtained after the pulverizing step is molded to obtain a molded body, and then the molded body is baked to obtain a sintered body.
- Molding can be performed by any method of dry molding, wet molding, or CIM molding.
- a magnetic field is applied while pressure-molding the dried magnetic powder to form a compact, and then the compact is fired.
- the wet molding method for example, a liquid component is removed while pressure-forming a slurry containing magnetic powder while applying a magnetic field to form a molded body, and then the molded body is fired.
- the dry molding method has the advantage that the time required for the molding process is short because the dried magnetic powder is pressure-molded in a mold, but the degree of orientation of the magnetic powder due to the magnetic field during molding is low. Improvement is difficult, and the resulting magnetic properties of the sintered magnet are inferior to those of the sintered magnet obtained by the wet molding method.
- the magnetic powder is easily oriented by the magnetic field at the time of molding, and the magnetic characteristics of the sintered magnet are good.
- pressing is performed while removing the liquid component, it takes time to mold. There is.
- the dried magnetic powder is heat-kneaded together with a binder resin, and the formed pellets are injection-molded in a mold to which a magnetic field is applied to obtain a preform.
- This is a method of firing after the binder removal treatment.
- the method for molding the ferrite magnetic material according to the above-described embodiment is not particularly limited, but preferably CIM molding, wet molding, and particularly preferably CIM molding.
- CIM molding and wet molding will be described in detail.
- the finely pulverized slurry containing magnetic powder is dried after wet pulverization.
- the drying temperature is preferably 80 to 150 ° C, more preferably 100 to 120 ° C.
- the drying time is preferably 1 to 40 hours, more preferably 5 to 25 hours.
- the average particle size of the primary particles of the magnetic powder after drying is preferably in the range of 0.08 to 2 ⁇ m, more preferably in the range of 0.1 to 1 ⁇ m.
- the dried magnetic powder is kneaded with a binder resin, waxes, a lubricant, a plasticizer, a sublimation compound (hereinafter referred to as “organic component”), and formed into pellets with a pelletizer or the like.
- the organic component is preferably contained in the molded body in an amount of 35 to 60% by volume, more preferably 40 to 55% by volume.
- the kneading may be performed by, for example, a kneader.
- the pelletizer for example, a twin-screw single-screw extruder is used.
- thermoplastic resin a polymer compound such as a thermoplastic resin is used.
- thermoplastic resin for example, polyethylene, polypropylene, ethylene vinyl acetate copolymer, atactic polypropylene, acrylic polymer, polystyrene, polyacetal, or the like is used. .
- waxes synthetic waxes such as paraffin wax, urethanized wax, and polyethylene glycol are used in addition to natural waxes such as carnauba wax, montan wax, and beeswax.
- a fatty acid ester is used
- the plasticizer for example, a phthalic acid ester is used.
- the addition amount of the binder resin is preferably 3 to 20% by mass with respect to 100% by mass of the magnetic powder, the addition amount of waxes is preferably 3 to 20% by mass, and the addition amount of the lubricant is preferably 0.1%. ⁇ 5% by mass.
- the addition amount of the plasticizer is preferably 0.1 to 5% by mass with respect to 100% by mass of the binder resin.
- the pellet 10 is injection molded into the mold 8 using the magnetic field injection molding apparatus 2 shown in FIG.
- the mold 8 Before injection into the mold 8, the mold 8 is closed, a cavity 12 is formed inside, and a magnetic field is applied to the mold 8.
- the pellet 10 is heated and melted to 160 to 230 ° C., for example, inside the extruder 6 and injected into the cavity 12 of the mold 8 by a screw.
- the temperature of the mold 8 is 20 to 80 ° C.
- the applied magnetic field to the mold 8 may be about 398 to 1592 kA / m (5 to 20 kOe).
- the preformed body obtained by CIM molding is heat-treated at a temperature of 100 to 600 ° C. in the air or in nitrogen, and the binder is removed to obtain a molded body. If the binder removal process is insufficient or the temperature rise rate during removal of the binder is abrupt, cracking or cracking will occur in the molded body or sintered body due to the rapid volatilization of the organic components mentioned above and the generation of decomposition gas. End up. Therefore, depending on the organic component to be debindered, the temperature increase rate in the temperature range where it volatilizes or decomposes is appropriately adjusted to a slow temperature increase rate of, for example, about 0.01 to 1 ° C./min.
- the binder removal process may be performed.
- the binder removal process may be performed in a plurality of times.
- the binder-treated molded body is sintered, for example, in the air at a temperature of preferably 1100 to 1250 ° C., more preferably 1160 to 1230 ° C. for about 0.2 to 3 hours.
- a ferrite sintered magnet according to the above is obtained. If the temperature is too low or the temperature holding time is too short, the desired magnetic properties can be obtained due to insufficient sintered body density and insufficient reaction of the added elements. I can't. Also, if the firing temperature is too high or the temperature holding time is too long, the desired magnetic properties cannot be obtained due to abnormal growth of crystal grains or formation of a different phase other than M-type ferrite. .
- a baking process is implemented continuously with the above-mentioned binder removal process, after performing a binder removal process once, it may cool to room temperature and may implement baking.
- the slurry is concentrated to a predetermined concentration to obtain a slurry for wet molding, It is preferable to perform molding using this. Concentration of the slurry can be performed by centrifugation, filter press, or the like.
- the wet forming slurry is preferably such that the finely pulverized material accounts for about 30 to 80% by mass in the total amount of the slurry.
- water is preferable as a dispersion medium for dispersing the finely pulverized material.
- a surfactant such as gluconic acid, gluconate or sorbitol may be added to the slurry.
- a non-aqueous solvent may be used as the dispersion medium.
- an organic solvent such as toluene or xylene can be used.
- a surfactant such as oleic acid.
- the slurry for wet molding may be prepared by adding a dispersion medium or the like to the finely pulverized material in a dry state after pulverization.
- the wet molding slurry is then molded in a magnetic field.
- the molding pressure is preferably about 9.8 to 49 MPa (0.1 to 0.5 ton / cm 2 ), and the applied magnetic field may be about 398 to 1592 kA / m.
- the pressing direction and the magnetic field application direction during molding may be the same direction or orthogonal directions.
- Calcination of the molded body obtained by wet molding can be performed in an oxidizing atmosphere such as the air.
- the firing temperature is preferably 1050 to 1270 ° C., more preferably 1080 to 1240 ° C.
- the firing time (the time for maintaining the firing temperature) is preferably about 0.5 to 3 hours.
- a surfactant dispersant
- heating is performed at a temperature rising rate of about 2.5 ° C./min in a temperature range of about 100 to 500 ° C. It is preferable to remove (degreasing treatment).
- these processes may be performed at the beginning of a baking process, and may be performed separately before a baking process.
- a bonded magnet instead of a ferrite sintered magnet as a magnet
- the obtained pulverized product and a binder are mixed and formed in a magnetic field.
- a bonded magnet containing the ferrite magnetic material powder of the present invention can be obtained.
- a bonded magnet can be obtained.
- the shape of the magnet obtained by the present invention is not limited as long as it is made of the ferrite magnetic material of the present invention.
- the ferrite magnet can have various shapes such as an arc segment shape having anisotropy, a flat plate shape, and a cylindrical shape.
- the arc segment shape is a shape in which a flat plate is curved in an arc shape in one direction.
- a high Hk / HcJ can be obtained while maintaining a high Br and HcJ regardless of the shape of the magnet, and particularly a high Br and HcJ can be maintained even for arc segment shaped magnets.
- high Hk / HcJ is obtained.
- Ferrite magnets in this embodiment are, for example, for fuel pumps, for power windows, for ABS (antilock brake system), for fans, for wipers, for power steering, for active suspension, for starters, for door locks, It can be used as a member of an automobile motor such as an electric mirror.
- VTR capstan VTR rotary head, VTR reel, VTR loading, VTR camera capstan, VTR camera rotary head, VTR camera zoom, VTR camera focus, radio cassette etc. It can be used as a member for motors for OA / AV devices such as CD / DVD / MD spindle, CD / DVD / MD loading, and CD / DVD optical pickup.
- motors for home appliances such as air conditioner compressors, freezer compressors, electric tool driving, dryer fans, shaver driving, electric toothbrushes and the like.
- motors for FA equipment such as a robot shaft, joint drive, robot main drive, machine tool table drive, machine tool belt drive and the like.
- Other applications include motorcycle generators, speaker / headphone magnets, magnetron tubes, MRI magnetic field generators, CD-ROM clampers, distributor sensors, ABS sensors, fuel / oil level sensors, magnet latches, isolators. And the like.
- it can also be used as a target (pellet) when the magnetic layer of the magnetic recording medium is formed by vapor deposition or sputtering.
- a metal element compound powder constituting a ferrite sintered magnet was prepared as a starting material.
- Starting materials are iron oxide (Fe 2 O 3 ; including Mn, Cr, Al, Si, Cl as impurities), lanthanum hydroxide (La (OH) 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), Barium carbonate (BaCO 3 ), and cobalt oxide (Co 3 O 4 ) were prepared and weighed so as to have the compositions of the samples shown in Tables 1 to 6. Further, silicon oxide (SiO 2 , water content: about 20%, and the same raw material is used thereafter) as the Si component raw material has the composition of each sample shown in Tables 1 to 6 with respect to the total amount of the starting raw material. Weighed out.
- Example 1 the ratio of Sr (x) to the ratio of Ca (1-wxy) is shown in Example 2 (Table 2).
- Example 2 Table 2
- Samples were prepared by changing the Fe ratio (z) in Table 5 and the SiO 2 content in Example 6 (Table 6).
- ⁇ Calcination process> The starting material and SiO 2 were mixed and pulverized with a wet attritor to obtain a slurry-like material mixture. After drying this raw material mixture, a calcining treatment was performed in the atmosphere at 1225 ° C. for 2 hours to obtain a calcined body.
- the obtained calcined body was coarsely pulverized by a small lot vibration mill to obtain a coarsely pulverized material.
- the obtained coarsely pulverized material was subjected to iron oxide (Fe 2 O 3) so that the ratio of the metal elements constituting the sintered ferrite magnet after firing became the value shown in each sample shown in Tables 1 to 6.
- Fe 2 O 3 iron oxide
- Mn, Cr, Al, Si, Cl as impurities
- 0.45 wt% of sorbitol was added as appropriate.
- the mixture was finely pulverized with a wet ball mill so that the specific surface area (SSA) determined by the BET method was 8.0 to 9.0 m 2 / g to obtain a slurry.
- the obtained slurry was dried and sized to obtain a ferrite material powder.
- Molding was performed by CIM molding.
- ferrite material powder, PP used as polypropylene and binder resin
- paraffin wax 5.1% by mass
- acrylic resin 1% by mass
- DOP dioctyl phthalate, added as a plasticizer
- the material powder was weighed to be 87% by mass
- PP 5.1% by mass
- paraffin wax 5.1% by mass
- acrylic resin 1% by mass
- DOP 2% by mass.
- these were kneaded for 2.5 hours at 165 ° C. using a pressure heating kneader, and the kneaded product (compound) was formed into a pellet shape with a pelletizer to obtain pellets 10 shown in FIG.
- the pellet 10 was injection molded into the mold 8 using the magnetic field injection molding apparatus 2 shown in FIG.
- the mold 8 Prior to injection into the mold 8, the mold 8 was closed, a cavity 12 was formed inside, and a magnetic field was applied to the mold 8.
- the pellet 10 was heated and melted inside the extruder 6 and injected into the cavity 12 of the mold 8 by a screw.
- the injection temperature was 185 ° C.
- the mold temperature was 40 ° C.
- the applied magnetic field during injection was 1273 kA / m.
- the preform formed in the magnetic field injection molding process was disk-shaped and had a diameter of 30 mm and a thickness of 3 mm.
- the preform was subjected to a dewaxing treatment in a humidified air atmosphere at a maximum temperature of 230 ° C. for a total of 50 hours.
- This dewaxed molded body is subjected to a binder removal treatment by slowly raising the temperature from 150 to 500 ° C. in the atmosphere, followed by firing in the atmosphere for 1 hour at 1190 to 1230 ° C. to obtain a sintered body.
- a sintered ferrite magnet was obtained.
- Example 7 a ferrite sintered body was obtained in the same manner as in Examples 1 to 6, except that in the molding step, the volume percentage of the organic component in the molded body was changed to the value shown in Table 7.
- the organic component is the total of PP (polypropylene), paraffin wax, acrylic resin, and DOP (dioctyl phthalate).
- the mixing ratio of PP, paraffin wax, acrylic resin, and DOP is the organic ratio in the molded body. Even if the component ratio was changed, the ratio was constant so that the ratio shown in Example 1 was obtained.
- the degree of crystal orientation, the crystal particle diameter, and the aspect ratio of the sintered magnet were changed by changing the volume ratio of the organic component in the compact.
- Example 8 a ferrite sintered magnet was produced and evaluated in the same manner as in Examples 1 to 6 except that sorbitol was not added in the pulverization step and the ferrite material powder (filler) was treated with a silane coupling agent. . Specifically, in Example 8, fine pulverization was performed without adding sorbitol to the coarsely pulverized material, and after completion of the fine pulverization, silane coupling agents (KBM-503 and KBM-1003 manufactured by Shin-Etsu Silicone Co., Ltd.) were added.
- silane coupling agents KBM-503 and KBM-1003 manufactured by Shin-Etsu Silicone Co., Ltd.
- Ferrite sintered magnets were obtained in the same manner as in Examples 1 to 6, except that 1 wt% of the coarsely pulverized material was added to the finely pulverized slurry, and further mixed and dispersed for 0.5 hr by a wet ball mill.
- Example 9 a ferrite sintered magnet was obtained and evaluated in the same manner as in Examples 1 to 6 except that CIM molding was changed to wet molding. That is, in Example 9, the molding / firing process was performed as follows. First, pulverization was performed using toluene as a dispersion medium to obtain a pulverized slurry. During this fine pulverization, oleic acid was added in an amount of 1.3 wt% with respect to the coarsely pulverized material. The amount of solvent of the obtained slurry was adjusted so that the solid content concentration would be 74 to 76% by mass, and this slurry was molded in a magnetic field using a wet magnetic field molding machine with an applied magnetic field of 1.2 T.
- a cylindrical molded body having a height of 15 mm was produced. Next, the obtained molded body was sufficiently dried in the atmosphere at room temperature, and then fired in the atmosphere at 1200 to 1230 ° C. for 1 hour to obtain a sintered ferrite magnet as a sintered body.
- Example No. 1-4 Sample No. 5-5 of Example 5, and Examples 6-9, one surface of a disk-shaped ferrite sintered magnet was polished smoothly, and this smooth polished surface was On the other hand, XRD (X-ray diffraction) measurement was performed (X-ray source: CuK ⁇ ), and a diffraction peak derived from a ferrite sintered magnet was identified. The degree of crystal orientation Or (f) of the sintered magnet was determined from the plane index and peak intensity of the identified diffraction peak. Since sample numbers 1-4 in Table 1 and sample numbers 5-4 in Table 5 are the same sample, the column of sample number 5-4 in Table 5 shows the degree of crystal orientation in the same manner.
- ⁇ Crystal particle diameter, aspect ratio> For each sintered ferrite magnet, the crystal grain size and aspect ratio were determined as follows. First, a cross section parallel to the c-axis (magnetization easy axis) direction of the sintered ferrite magnet was cut out, mirror-polished on the cross section, and etched with hydrofluoric acid (concentration 36%). Next, the etched surface was observed with a scanning electron microscope (SEM) to obtain a cross-sectional image of the crystal particles. A cross-sectional image of sample number 1-4 (or 3-3, 4-4, 5-4, 7-8) by SEM is shown in FIG. 3A, and a cross-sectional image of sample number 7-1 by SEM is shown in FIG. ) Respectively.
- SEM scanning electron microscope
- Tables 1 to 9 collectively show the composition, magnetic properties, crystal orientation, crystal particle diameter, and aspect ratio of each sample of Examples 1 to 9.
- the ratio (x) of Sr is more than 0.0003 and less than 0.373, and the ratio (1-wxy) of Ca is more than 0.229 and less than 0.601. It was found that high Hk / HcJ can be obtained while maintaining Br and HcJ well. According to Table 1, when the Sr ratio (x) is 0.05 to 0.25 and the Ca ratio (1-wxy) is 0.354 to 0.551, Br It has been found that higher Hk / HcJ can be obtained while maintaining HcJ better.
- the y1 mass% ratio in terms of SiO 2 of the Si component of the ferrite magnetic material represents the Y-axis
- x1 And y1 indicate that the four points a (8.9, 1.2), b (8.3, 0.95), c (10.0, 0.35) and d (10.6, 0.6), it was found that high Hk / HcJ can be obtained while maintaining Br and HcJ well.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hard Magnetic Materials (AREA)
- Magnetic Ceramics (AREA)
Abstract
Description
Ca1-w-x-yRwSrxBayFezMm (1)
ただし、式(1)中、Rは希土類元素(Yを含む)及びBiからなる群より選ばれる少なくとも1種の元素であってLaを少なくとも含み、Mは、Co、Mn、Mg、Ni、Cu及びZnからなる群より選ばれる少なくとも1種の元素であってCoを少なくとも含み、
式(1)中、w、x、y、z及びmは、下記式(2)、(3)、(4)、(5)、(6)、(7)及び(8)を満たし、
0.25<w<0.5 (2)
0.01<x<0.35 (3)
0.0001<y<0.013 (4)
y<x (5)
8.7<z<9.9 (6)
1.0<w/m<2.1 (7)
0.017<m/z<0.055 (8)
副成分として少なくともSi成分を含み、
前記フェライト磁性材料中のこのSi成分のSiO2 換算での含有量y1をY軸に表わし、
前記zとmの合計量x1をX軸に表わしたときに、
x1とy1の関係が、前記X軸及びY軸を持つX-Y座標における4つの点a(8.9,1.2)、b(8.3,0.95)、c(10.0,0.35)及びd(10.6,0.6)で囲まれる範囲内にあることを特徴とする。
前記フェライト磁性材料中の前記Si成分のSiO2 換算での比率y1質量%をY軸に表わし、
前記zとmの合計量x1をX軸に表わしたときに、
x1とy1の関係が、前記X軸及びY軸を持つX-Y座標における4つの点a(8.9,1.2)、b(8.3,0.95)、c(10.0,0.35)及びd(10.6,0.6)で囲まれる範囲内にあることで、高いBr及びHcJを有するのみならず、高いHk/HcJを有するフェライト磁石又はフェライト焼結磁石となる。
前記各結晶粒子の断面の重心を通る粒径の最大値と最小値をそれぞれ求め、所定数以上の結晶粒子における前記粒径の最大値と最小値の平均をそれぞれL(μm)、S(μm)としたとき、
前記L及びSが、下記式(9)及び(10)を満たす。
L≦1.4 (9)
L/S≦2.4 (10)
本発明の一実施形態に係るフェライト焼結磁石を構成するフェライト磁性材料は、六方晶構造を有するフェライト相からなる主相を有するものである。前記フェライト相としてはマグネトプランバイト型(M型)フェライト(以下では、「M型フェライト」とする。)が好ましい。なお、マグネトプランバイト型(M型)フェライトからなる主相を特に「M相」という。ここで「フェライト相からなる主相」とは、通常、フェライト焼結磁石は「主相(結晶粒子)」と「粒界部分」とからなるところ、この「主相」がフェライト相であることを意味する。焼結体に占める主相の割合としては、好ましくは95体積%以上である。
Ca1-w-x-yRwSrxBayFezMm (1)
0.25<w<0.5 (2)
0.01<x<0.35 (3)
0.0001<y<0.013 (4)
y<x (5)
8.7<z<9.9 (6)
1.0<w/m<2.1 (7)
0.017<m/z<0.055 (8)
本実施形態に係るフェライト焼結磁石について、X線回折(XRD)測定により求めた結晶配向度Or(f)=Σ(00l)/Σ(hkl)は、0.9以上であることが好ましく、より好ましくは0.92以上である。
本実施形態に係るフェライト焼結磁石は、図2に示すように、断面が楕円状の結晶粒子から構成される。本実施形態では前記フェライト焼結磁石を構成する結晶粒子をc軸方向に平行な面で切断した切断面において、前記各結晶粒子の断面の重心を通る粒径の最大値と最小値をそれぞれ求め、所定数以上の結晶粒子の平均をそれぞれL(μm)、S(μm)としたとき、前記L及びSが、下記式(9)及び(10)を満たすことが好ましい。
L≦1.4 (9)
L/S≦2.4 (10)
以下の実施形態では、フェライト磁性材料からなるフェライト焼結磁石の製造方法の一例を示す。本実施形態では、フェライト焼結磁石は、配合工程、仮焼工程、粉砕工程、成形工程及び焼成工程を経て製造することが出来る。また、粉砕工程と成形工程の間に、微粉砕スラリーの乾燥工程、混練工程が含まれる場合があり、成形工程と焼成工程の間に、脱脂工程が含まれる場合がある。各工程について、以下に説明する。
配合工程では、フェライト磁性材料の原料を配合して、原料混合物を得る。まず、フェライト磁性材料の原料としては、これを構成する元素のうちの1種又は2種以上を含む化合物(原料化合物)が挙げられる。原料化合物は、例えば粉末状のものが好適である。原料化合物としては、各元素の酸化物、又は焼成により酸化物となる化合物(炭酸塩、水酸化物、硝酸塩等)が挙げられる。例えばSrCO3、La(OH)3、Fe2O3、BaCO3、CaCO3及びCo3O4等が例示出来る。原料化合物の粉末の平均粒径は、例えば、均質な配合を可能とする観点から、0.1~2.0μm程度とすることが好ましい。
仮焼工程では、配合工程で得られた原料粉末を仮焼する。仮焼は、例えば、空気中等の酸化性雰囲気中で行うことが好ましい。仮焼の温度は、1100~1400℃の温度範囲とすることが好ましく、1100~1300℃がより好ましく、1150~1300℃が更に好ましい。仮焼の時間は、1秒間~10時間とすることができ、1秒間~5時間であると好ましい。仮焼により得られる仮焼体は、前述したような主相(M相)を70%以上含む。仮焼体の一次粒子径は、好ましくは10μm以下であり、より好ましくは5μm以下であり、更に好ましくは2μm以下である。
粉砕工程では、仮焼工程で顆粒状や塊状となった仮焼体を粉砕し、再び粉末状にする。これにより、後述する成形工程での成形が容易となる。この粉砕工程では、前述したように、配合工程で配合しなかった原料を添加しても良い(原料の後添加)。粉砕工程は、例えば、仮焼体を粗い粉末となるように粉砕(粗粉砕)した後、これを更に微細に粉砕する(微粉砕)、2段階の工程で行っても良い。
すなわち、PIM(Powder Injection Molding)、粉末射出成形の一種)成形を用いる場合、前記のソルビトール等の多価アルコールの添加は、微粉砕スラリー乾燥時において粉末の凝集発生が顕著となったり、バインダ樹脂中への粉末の分散が悪くなる等の要因となり、好ましくない。その場合、分散剤を何も添加しないか、シランカップリング剤等の同一分子内に親水性基と疎水性(親油性)基を有する分散剤で、粉末を表面処理しても良い。その分散剤の添加量は、添加対象物(例えば粗粉砕材)に対して、0.3~3.0質量%であれば良い。このような分散剤は、微粉砕終了後のスラリーに添加して混合するのが好ましいが、この例に制限されることなく、乾燥後の粉末に添加したり、バインダ樹脂との混練工程で添加されても良い。
成形・焼成工程では、粉砕工程後に得られた粉砕材(好ましくは微粉砕材)を成形して成形体を得た後、この成形体を焼成して焼結体を得る。成形は、乾式成形、湿式成形又はCIM成形のいずれの方法でも行うことが出来る。乾式成形法では、例えば、乾燥した磁性粉末を加圧成形しつつ磁場を印加して成形体を形成し、その後に、成形体を焼成する。湿式成形法では、例えば、磁性粉末を含むスラリーを磁場印加中で加圧成形しながら液体成分を除去して成形体を形成し、その後に、成形体を焼成する。
CIM成形法によってフェライト焼結磁石を得る場合には、湿式粉砕後、磁性粉末を含む微粉砕スラリーを乾燥させる。乾燥温度は、好ましくは80~150°C、更に好ましくは100~120°Cである。また、乾燥時間は、好ましくは1~40時間、更に好ましくは5~25時間である。乾燥後の磁性粉末の一次粒子の平均粒径は、好ましくは0.08~2μmの範囲内、更に好ましくは0.1~1μmの範囲内である。
湿式成形法によってフェライト焼結磁石を得る場合は、例えば、上述した微粉砕工程を湿式で行うことでスラリーを得た後、このスラリーを所定の濃度に濃縮して、湿式成形用スラリーを得、これを用いて成形を行うことが好ましい。スラリーの濃縮は、遠心分離やフィルタープレス等によって行うことが出来る。湿式成形用スラリーは、その全量中、微粉砕材が30~80質量%程度を占めるものであると好ましい。スラリーにおいて、微粉砕材を分散する分散媒としては水が好ましい。この場合、スラリーには、グルコン酸、グルコン酸塩、ソルビトール等の界面活性剤を添加しても良い。また、分散媒としては非水系溶媒を使用しても良い。非水系溶媒としては、トルエンやキシレン等の有機溶媒を使用することが出来る。この場合には、オレイン酸等の界面活性剤を添加することが好ましい。なお、湿式成形用スラリーは、微粉砕後の乾燥状態の微粉砕材に、分散媒等を添加することによって調製しても良い。
<配合工程>
まず、出発原料としてフェライト焼結磁石を構成する金属元素の化合物の粉末を準備した。出発原料は、酸化鉄(Fe2 O3 ;不純物として、Mn、Cr、Al、Si、Clを含む)、水酸化ランタン(La(OH)3 )、炭酸カルシウム(CaCO3 )炭酸ストロンチウム(SrCO3 )、炭酸バリウム(BaCO3 )、酸化コバルト(Co3 O4 )を準備し、表1~6に記載の各試料の組成になるように秤量した。また、Si成分原料として、酸化ケイ素(SiO2 、含水率:約20%前後、以後も同一原料使用)を出発原料の総量に対して、表1~6に記載の各試料の組成になるように秤量した。
前記出発原料及びSiO2、それぞれの粉末を湿式アトライタにて混合、粉砕し、スラリー状の原料混合物を得た。この原料混合物を乾燥後、大気中、1225℃で2時間保持する仮焼処理を行い、仮焼体を得た。
得られた仮焼体を小型ロット振動ミルにて粗粉砕し、粗粉砕材を得た。焼成後のフェライト焼結磁石を構成する金属元素の比率が、表1~6に記載の各試料に示す値となるように、得られた粗粉砕材に対して、酸化鉄(Fe2 O3 ;不純物として、Mn、Cr、Al、Si、Clを含む)、炭酸カルシウム(CaCO3 )、炭酸ストロンチウム(SrCO3 )、酸化コバルト(Co3 O4 )、及び副成分として酸化ケイ素(SiO2 )を、それぞれ適宜添加するとともにソルビトールを0.45wt%添加した。次いで、湿式ボールミルにて、BET法により求められる比表面積(SSA)が、8.0~9.0m2/gとなるように微粉砕し、スラリーを得た。得られたスラリーを乾燥、整粒し、フェライト材料粉末を得た。
成形は、CIM成形により行った。まず、前述の実施工程で得られたフェライト材料粉末、PP(ポリプロピレン、バインダ樹脂として使用)、パラフィンワックス、アクリル樹脂、及びDOP(フタル酸ジオクチル、可塑剤として添加)を準備し、これらを、フェライト材料粉末=87質量%、PP=5.1質量%、パラフィンワックス=5.1質量%、アクリル樹脂=1質量%、DOP=2質量%となるように秤量した。次いでこれらを加圧加熱ニーダーを用いて、165℃で2.5hr混練し、混練物(コンパウンド)をペレタイザでペレット状に成形し、図4に示すペレット10を得た。
実施例7では、成形工程において、成形体中の有機成分の体積百分率を表7に示す値になるように変えた以外は、実施例1~6と同様にしてフェライト焼結体を得た。なお、前記有機成分とは、PP(ポリプロピレン)、パラフィンワックス、アクリル樹脂、及びDOP(フタル酸ジオクチル)の合計であり、PP、パラフィンワックス、アクリル樹脂、DOPの混合比率は、成形体中の有機成分比率が変化しても、実施例1に示す比率となるように一定とした。
実施例7では、成形体中の有機成分の体積割合を変えることにより、焼結磁石の結晶配向度、結晶粒子径、アスペクト比を変化させた。
実施例8では、粉砕工程においてソルビトールを添加せず、フェライト材料粉末(フィラー)をシランカップリング剤処理した以外は実施例1~6と同様にしてフェライト焼結磁石を作製し、評価を行った。具体的には、実施例8では粗粉砕材にソルビトールを添加せずに微粉砕を実施し、微粉砕終了後、シランカップリング剤(信越シリコーン(株)製KBM-503、KBM-1003)を粗粉砕材に対して1wt%、微粉砕スラリー中に添加し、更に湿式ボールミルにて0.5hr混合、分散処理を行った以外、実施例1~6と同様にフェライト焼結磁石を得た。
実施例9は、CIM成形を湿式成形に変えた以外は実施例1~6と同様にしてフェライト焼結磁石を得て、評価を行った。すなわち、実施例9では成形・焼成工程を以下の通り行った。
まず、トルエンを分散媒として微粉砕を実施し、微粉砕スラリーを得た。この微粉砕時にオレイン酸を、粗粉砕材に対して1.3wt%添加した。得られたスラリーを、固形分濃度が74~76質量%となるように溶媒量を調整し、このスラリーを湿式磁場成形機を用いて印加磁場を1.2Tとして磁場中成形し、直径30mm、高さ15mmの円柱状成形体を作製した。次に、得られた成形体を大気中、室温にて十分に乾燥した後、大気中、1200~1230℃で1時間保持する焼成を行い、焼結体であるフェライト焼結磁石を得た。
まず、実施例1~9の各試料について、アルキメデス法により密度測定を行った。
次いで、実施例1~9の各フェライト焼結磁石の上下面を加工した後、25℃の大気雰囲気中にて、最大印加磁場1989kA/mのB-Hトレーサを使用して磁気特性(残留磁束密度Br、保磁力HcJ、角形比Hk/HcJ)を測定した。結果を表1~9に示す。ここで、Hkは磁気ヒステリシスループの第2象限において、磁束密度が残留磁束密度の90%になるときの外部磁界強度である。
実施例1の試料番号1-4、実施例5の試料番号5-5、実施例6~9の各試料について円板状のフェライト焼結磁石の片面を平滑に研磨し、この平滑研磨面に対してXRD(X線回折)測定を行い(X線源:CuKα)、フェライト焼結磁石に由来する回折ピークを同定した。同定した回折ピークの面指数とピーク強度から、焼結磁石の結晶配向度Or(f)を求めた。なお、表1の試料番号1-4、表5の試料番号5-4は同一試料であるため、表5の試料番号5-4の欄にも同様に結晶配向度を示す。
各フェライト焼結磁石について、次のようにして結晶粒子径及びアスペクト比を求めた。
まず、フェライト焼結磁石のc軸(磁化容易軸)方向に並行な断面を切り出し、その断面に鏡面研磨し、フッ酸(濃度36%)によるエッチング処理を行った。次いで、エッチング処理面を走査型電子顕微鏡(SEM)で観察し、結晶粒子の断面像を得た。試料番号1-4(もしくは3-3、4-4、5-4、7-8)のSEMによる断面像を図3(a)、試料番号7-1のSEMによる断面像を図3(b)にそれぞれ示す。
また、表7より、前記フェライト磁性材料において、平均最大粒径Lが1.47未満又はL/Sが2.46未満だと、高いHcJが得られることが確認できた。
8… 金型
10… ペレット
12… キャビティ
20… 結晶粒子
Claims (7)
- 六方晶構造を有するフェライト相からなる主相を有するフェライト磁性材料であって、
前記フェライト磁性材料を構成する金属元素の組成は下記式(1)で表され、
Ca1-w-x-yRwSrxBayFezMm ・・・(1)
ただし、式(1)中、Rは希土類元素(Yを含む)及びBiからなる群より選ばれる少なくとも1種の元素であってLaを少なくとも含み、Mは、Co、Mn、Mg、Ni、Cu及びZnからなる群より選ばれる少なくとも1種の元素であってCoを少なくとも含み、
前記式(1)中、w、x、y、z及びmは、下記式(2)、(3)、(4)、(5)、(6)、(7)及び(8)を満たし、
0.25<w<0.5 ・・・(2)
0.01<x<0.35 ・・・(3)
0.0001<y<0.013 ・・・(4)
y<x ・・・(5)
8.7<z<9.9 ・・・(6)
1.0<w/m<2.1 ・・・(7)
0.017<m/z<0.055 ・・・(8)
副成分として少なくともSi成分を含み、
前記フェライト磁性材料中の前記Si成分のSiO2 換算での含有量y1質量%をY軸に表わし、
前記zとmの合計量x1をX軸に表わしたときに、
x1とy1の関係が、前記X軸及びY軸を持つX-Y座標における4つの点a(8.9,1.2)、b(8.3,0.95)、c(10.0,0.35)及びd(10.6,0.6)で囲まれる範囲内にあることを特徴とするフェライト磁性材料。 - 請求項1に記載のフェライト磁性材料からなるフェライト磁石。
- 前記フェライト磁石において、X線回折測定により求めた結晶配向度Or(f)=Σ(001)/Σ(hkl)が0.9以上であることを特徴とする、請求項2に記載のフェライト磁石。
- 前記フェライト磁石を構成する結晶粒子をc軸方向に平行な面で切断した切断面において、
前記各結晶粒子の断面の重心を通る粒径の最大値と最小値をそれぞれ求め、所定数以上の結晶粒子における前記粒径の最大値と最小値の平均をそれぞれL(μm)、S(μm)としたとき、
前記L及びSが、下記式(9)及び(10)を満たす、請求項2に記載のフェライト磁石。
L≦1.4 ・・・(9)
L/S≦2.4 ・・・(10) - 請求項1に記載のフェライト磁性材料からなるフェライト焼結磁石。
- 前記フェライト焼結磁石において、X線回折測定により求めた結晶配向度Or(f)=Σ(001)/Σ(hkl)が0.9以上であることを特徴とする、請求項5に記載のフェライト焼結磁石。
- 前記フェライト焼結磁石を構成する結晶粒子をc軸方向に平行な面で切断した切断面において、
前記各結晶粒子の断面の重心を通る粒径の最大値と最小値をそれぞれ求め、所定数以上の結晶粒子における前記粒径の最大値と最小値の平均をそれぞれL(μm)、S(μm)としたとき、
前記L及びSが、下記式(9)及び(10)を満たす、請求項5に記載のフェライト焼結磁石。
L≦1.4 ・・・(9)
L/S≦2.4 ・・・(10)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/520,270 US8591760B2 (en) | 2010-03-17 | 2011-03-15 | Ferrite magnetic material, ferrite magnet, and ferrite sintered magnet |
KR1020127016460A KR101245265B1 (ko) | 2010-03-17 | 2011-03-15 | 페라이트 자성 재료, 페라이트 자석, 페라이트 소결 자석 |
CN201180004147.2A CN102666431B (zh) | 2010-03-17 | 2011-03-15 | 铁素体磁性材料、铁素体磁铁、铁素体烧结磁铁 |
KR1020127034230A KR101613649B1 (ko) | 2010-03-17 | 2011-03-15 | 페라이트 자성 재료, 페라이트 자석, 페라이트 소결 자석 |
EP11756314.8A EP2511249B9 (en) | 2010-03-17 | 2011-03-15 | Ferrite magnetic material, ferrite magnet, ferrite sintered magnet |
US14/070,842 US9202613B2 (en) | 2010-03-17 | 2013-11-04 | Ferrite magnetic material, ferrite magnet, and ferrite sintered magnet |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-061302 | 2010-03-17 | ||
JP2010061302 | 2010-03-17 | ||
JP2011-002288 | 2011-01-07 | ||
JP2011002288A JP5120467B2 (ja) | 2010-03-17 | 2011-01-07 | フェライト磁性材料、フェライト磁石、フェライト焼結磁石 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/520,270 A-371-Of-International US8591760B2 (en) | 2010-03-17 | 2011-03-15 | Ferrite magnetic material, ferrite magnet, and ferrite sintered magnet |
US14/070,842 Continuation US9202613B2 (en) | 2010-03-17 | 2013-11-04 | Ferrite magnetic material, ferrite magnet, and ferrite sintered magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011115129A1 true WO2011115129A1 (ja) | 2011-09-22 |
Family
ID=44649213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/056091 WO2011115129A1 (ja) | 2010-03-17 | 2011-03-15 | フェライト磁性材料、フェライト磁石、フェライト焼結磁石 |
Country Status (6)
Country | Link |
---|---|
US (2) | US8591760B2 (ja) |
EP (1) | EP2511249B9 (ja) |
JP (1) | JP5120467B2 (ja) |
KR (2) | KR101613649B1 (ja) |
CN (1) | CN102666431B (ja) |
WO (1) | WO2011115129A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120105185A1 (en) * | 2009-06-30 | 2012-05-03 | Hitachi Metals, Ltd. | Method for producing sintered ferrit magnet, and sintered ferrite magnet |
WO2013005476A1 (ja) * | 2011-07-01 | 2013-01-10 | Tdk株式会社 | 射出成形用組成物およびその製造方法 |
US20130079451A1 (en) * | 2011-09-26 | 2013-03-28 | Tdk Corporation | Injection molding composition and producing method thereof |
WO2014034401A1 (ja) * | 2012-08-31 | 2014-03-06 | 日立金属株式会社 | フェライト仮焼体、フェライト焼結磁石の製造方法及びフェライト焼結磁石 |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011004791A1 (ja) * | 2009-07-08 | 2011-01-13 | Tdk株式会社 | フェライト磁性材料 |
JP5120467B2 (ja) * | 2010-03-17 | 2013-01-16 | Tdk株式会社 | フェライト磁性材料、フェライト磁石、フェライト焼結磁石 |
AU2012388637B2 (en) * | 2012-08-27 | 2016-04-21 | Yingui Sun | Artificial snow at normal temperature |
JP6152854B2 (ja) | 2012-09-28 | 2017-06-28 | 日立金属株式会社 | フェライト焼結磁石及びその製造方法 |
JP6316601B2 (ja) * | 2014-01-20 | 2018-04-25 | アイチエレック株式会社 | 回転子および永久磁石電動機 |
JP6316600B2 (ja) * | 2014-01-20 | 2018-04-25 | アイチエレック株式会社 | 回転子および永久磁石電動機 |
JP6316602B2 (ja) * | 2014-01-20 | 2018-04-25 | アイチエレック株式会社 | 回転子および永久磁石電動機 |
JP6379577B2 (ja) * | 2014-03-27 | 2018-08-29 | Tdk株式会社 | 六方晶フェライト焼結体、及びこれを用いた高周波磁性部品 |
CN103964828B (zh) * | 2014-05-06 | 2016-04-27 | 安徽大学 | 一种高性能永磁铁氧体材料及其制备方法 |
JP6583631B2 (ja) | 2016-01-15 | 2019-10-02 | Tdk株式会社 | フェライト焼結磁石 |
CN106242543A (zh) * | 2016-07-02 | 2016-12-21 | 南通保来利轴承有限公司 | 一种用于变频空调压缩机的铁氧体材料及其制备方法 |
CN106348740A (zh) * | 2016-08-10 | 2017-01-25 | 深圳市麦捷微电子科技股份有限公司 | 一种网络变压器用高磁导率高q值铁氧体磁芯及制备方法 |
JP6791267B2 (ja) * | 2016-12-22 | 2020-11-25 | Tdk株式会社 | フェライト焼結磁石、フェライト粒子、ボンド磁石、モータ及び発電機 |
KR102258552B1 (ko) * | 2017-03-31 | 2021-06-01 | 유니온머티리얼 주식회사 | 페라이트 자성재료 및 페라이트 소결자석 |
JP7087465B2 (ja) * | 2018-03-07 | 2022-06-21 | Tdk株式会社 | フェライト焼結磁石の製造方法、フェライト粒子の製造方法、及びボンド磁石の製造方法 |
JP7087464B2 (ja) * | 2018-03-07 | 2022-06-21 | Tdk株式会社 | フェライト焼結磁石の製造方法、フェライト粒子の製造方法、及びボンド磁石の製造方法 |
JP7047530B2 (ja) * | 2018-03-28 | 2022-04-05 | Tdk株式会社 | フェライト焼結磁石及びフェライト焼結磁石の製造方法 |
JP7052479B2 (ja) * | 2018-03-28 | 2022-04-12 | Tdk株式会社 | フェライト焼結磁石 |
JP7155573B2 (ja) * | 2018-03-28 | 2022-10-19 | Tdk株式会社 | フェライト焼結磁石 |
JP7000954B2 (ja) * | 2018-03-28 | 2022-01-19 | Tdk株式会社 | フェライト焼結磁石 |
CN110323025B (zh) | 2018-03-28 | 2021-12-10 | Tdk株式会社 | 铁氧体烧结磁铁 |
JP7338161B2 (ja) * | 2019-02-05 | 2023-09-05 | Tdk株式会社 | フェライト焼結磁石 |
JP7529383B2 (ja) | 2019-02-07 | 2024-08-06 | Tdk株式会社 | フェライト焼結磁石 |
JP7275739B2 (ja) | 2019-03-27 | 2023-05-18 | Tdk株式会社 | フェライト焼結磁石及びこれを備える回転電気機械 |
JP7275740B2 (ja) | 2019-03-27 | 2023-05-18 | Tdk株式会社 | フェライト焼結磁石及びこれを備える回転電気機械 |
JP7268440B2 (ja) | 2019-03-27 | 2023-05-08 | Tdk株式会社 | フェライト焼結磁石及びこれを備える回転電気機械 |
JP7508967B2 (ja) | 2019-09-24 | 2024-07-02 | 株式会社プロテリアル | フェライト仮焼体、フェライト焼結磁石及びその製造方法 |
JP7338361B2 (ja) * | 2019-09-25 | 2023-09-05 | Tdk株式会社 | フェライト焼結磁石 |
JP7338395B2 (ja) | 2019-10-18 | 2023-09-05 | Tdk株式会社 | フェライト焼結磁石及びこれを備える回転電気機械 |
JP7367582B2 (ja) * | 2020-03-23 | 2023-10-24 | Tdk株式会社 | フェライト焼結磁石 |
JP7367581B2 (ja) * | 2020-03-23 | 2023-10-24 | Tdk株式会社 | フェライト焼結磁石 |
CN117831877A (zh) * | 2020-03-24 | 2024-04-05 | 株式会社博迈立铖 | 煅烧铁氧体和烧结铁氧体磁体及其制备方法 |
JP6927404B1 (ja) * | 2020-03-24 | 2021-08-25 | 日立金属株式会社 | フェライト仮焼体、フェライト焼結磁石及びその製造方法 |
CN111453976A (zh) * | 2020-04-07 | 2020-07-28 | 南京溧水金洪磁性元件有限公司 | 一种永磁铁氧体球磨混料制备工艺及其使用方法 |
CN111302783A (zh) * | 2020-04-07 | 2020-06-19 | 南京溧水金洪磁性元件有限公司 | 一种用于低噪音永磁电机的永磁铁氧体生产方法及其使用方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0478566B2 (ja) | 1983-06-27 | 1992-12-11 | Mitsubishi Chem Ind | |
JP3163279B2 (ja) | 1997-02-25 | 2001-05-08 | ティーディーケイ株式会社 | 焼結磁石およびモータ |
WO2005027153A1 (ja) * | 2003-09-12 | 2005-03-24 | Neomax Co., Ltd. | フェライト焼結磁石 |
WO2007077811A1 (ja) | 2005-12-28 | 2007-07-12 | Hitachi Metals, Ltd. | 酸化物磁性材料 |
WO2008105449A1 (ja) * | 2007-03-01 | 2008-09-04 | Tdk Corporation | フェライト焼結磁石 |
JP2009246243A (ja) * | 2008-03-31 | 2009-10-22 | Tdk Corp | フェライト焼結磁石 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH078566B2 (ja) | 1986-11-13 | 1995-02-01 | 富士ゼロックス株式会社 | インクジエツト記録装置 |
CN1849675A (zh) * | 2003-09-12 | 2006-10-18 | 株式会社新王磁材 | 铁氧体烧结磁铁 |
EP1953123B1 (en) | 2005-11-25 | 2011-05-04 | Hitachi Metals, Ltd. | Oxide based magnetic material, process for producing the same, sintered ferrite magnet and process for producing the same |
BRPI0709010A2 (pt) * | 2006-03-10 | 2011-06-21 | Hitachi Metals Ltd | máquina rotativa, ìmã aglutinado, rolete ìmã, e método para produzir ìmã de ferrita sinterizada |
JP2009296243A (ja) | 2008-06-04 | 2009-12-17 | Toshiba Corp | 無線通信装置 |
WO2011004791A1 (ja) * | 2009-07-08 | 2011-01-13 | Tdk株式会社 | フェライト磁性材料 |
JP5120467B2 (ja) * | 2010-03-17 | 2013-01-16 | Tdk株式会社 | フェライト磁性材料、フェライト磁石、フェライト焼結磁石 |
-
2011
- 2011-01-07 JP JP2011002288A patent/JP5120467B2/ja active Active
- 2011-03-15 WO PCT/JP2011/056091 patent/WO2011115129A1/ja active Application Filing
- 2011-03-15 KR KR1020127034230A patent/KR101613649B1/ko active IP Right Grant
- 2011-03-15 US US13/520,270 patent/US8591760B2/en active Active
- 2011-03-15 EP EP11756314.8A patent/EP2511249B9/en active Active
- 2011-03-15 KR KR1020127016460A patent/KR101245265B1/ko active IP Right Grant
- 2011-03-15 CN CN201180004147.2A patent/CN102666431B/zh active Active
-
2013
- 2013-11-04 US US14/070,842 patent/US9202613B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0478566B2 (ja) | 1983-06-27 | 1992-12-11 | Mitsubishi Chem Ind | |
JP3163279B2 (ja) | 1997-02-25 | 2001-05-08 | ティーディーケイ株式会社 | 焼結磁石およびモータ |
WO2005027153A1 (ja) * | 2003-09-12 | 2005-03-24 | Neomax Co., Ltd. | フェライト焼結磁石 |
WO2007077811A1 (ja) | 2005-12-28 | 2007-07-12 | Hitachi Metals, Ltd. | 酸化物磁性材料 |
WO2008105449A1 (ja) * | 2007-03-01 | 2008-09-04 | Tdk Corporation | フェライト焼結磁石 |
JP2009246243A (ja) * | 2008-03-31 | 2009-10-22 | Tdk Corp | フェライト焼結磁石 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2511249A4 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9773593B2 (en) | 2009-06-30 | 2017-09-26 | Hitachi Metals, Ltd. | Method for producing sintered ferrite magnet, and sintered ferrite magnet |
US20120105185A1 (en) * | 2009-06-30 | 2012-05-03 | Hitachi Metals, Ltd. | Method for producing sintered ferrit magnet, and sintered ferrite magnet |
US9162928B2 (en) * | 2009-06-30 | 2015-10-20 | Hitachi Metals, Ltd. | Method for producing sintered ferrite magnet, and sintered ferrite magnet |
US20140131612A1 (en) * | 2011-07-01 | 2014-05-15 | Tdk Corporation | Injection molding composition and producing method thereof |
WO2013005476A1 (ja) * | 2011-07-01 | 2013-01-10 | Tdk株式会社 | 射出成形用組成物およびその製造方法 |
US9305689B2 (en) * | 2011-07-01 | 2016-04-05 | Tdk Corporation | Injection molding composition and producing method thereof |
JP2013071852A (ja) * | 2011-09-26 | 2013-04-22 | Tdk Corp | 射出成形用組成物およびその製造方法 |
US8765860B2 (en) * | 2011-09-26 | 2014-07-01 | Tdk Corporation | Injection molding composition and producing method thereof |
CN103011789B (zh) * | 2011-09-26 | 2014-08-06 | Tdk株式会社 | 射出成形用组合物及其制造方法 |
KR101488896B1 (ko) * | 2011-09-26 | 2015-02-02 | 티디케이가부시기가이샤 | 사출 성형용 조성물 및 그 제조 방법 |
CN103011789A (zh) * | 2011-09-26 | 2013-04-03 | Tdk株式会社 | 射出成形用组合物及其制造方法 |
US20130079451A1 (en) * | 2011-09-26 | 2013-03-28 | Tdk Corporation | Injection molding composition and producing method thereof |
CN104584149A (zh) * | 2012-08-31 | 2015-04-29 | 日立金属株式会社 | 铁氧体煅烧体、铁氧体烧结磁体的制造方法及铁氧体烧结磁体 |
WO2014034401A1 (ja) * | 2012-08-31 | 2014-03-06 | 日立金属株式会社 | フェライト仮焼体、フェライト焼結磁石の製造方法及びフェライト焼結磁石 |
EP2892058A4 (en) * | 2012-08-31 | 2016-04-06 | Hitachi Metals Ltd | FERRITE CALCINE BODY, PROCESS FOR PRODUCING FERRITE SINTERED MAGNET, AND FERRITE SINTERED MAGNET |
JPWO2014034401A1 (ja) * | 2012-08-31 | 2016-08-08 | 日立金属株式会社 | フェライト仮焼体、フェライト焼結磁石の製造方法及びフェライト焼結磁石 |
US9601248B2 (en) | 2012-08-31 | 2017-03-21 | Hitachi Metals, Ltd. | Calcined ferrite, sintered ferrite magnet and its production method |
Also Published As
Publication number | Publication date |
---|---|
CN102666431B (zh) | 2015-06-17 |
EP2511249A4 (en) | 2013-10-02 |
US20140097378A1 (en) | 2014-04-10 |
US8591760B2 (en) | 2013-11-26 |
EP2511249A1 (en) | 2012-10-17 |
KR101613649B1 (ko) | 2016-04-20 |
KR20120086736A (ko) | 2012-08-03 |
US20120280167A1 (en) | 2012-11-08 |
US9202613B2 (en) | 2015-12-01 |
EP2511249B9 (en) | 2017-08-30 |
CN102666431A (zh) | 2012-09-12 |
KR101245265B1 (ko) | 2013-03-19 |
JP2011213575A (ja) | 2011-10-27 |
JP5120467B2 (ja) | 2013-01-16 |
EP2511249B1 (en) | 2017-05-03 |
KR20130018341A (ko) | 2013-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5120467B2 (ja) | フェライト磁性材料、フェライト磁石、フェライト焼結磁石 | |
JP6492596B2 (ja) | フェライト焼結磁石 | |
JP6589647B2 (ja) | フェライト焼結磁石 | |
WO2018117261A1 (ja) | フェライト焼結磁石、フェライト粒子、ボンド磁石、モータ及び発電機 | |
JP6583631B2 (ja) | フェライト焼結磁石 | |
CN109155175B (zh) | 铁氧体磁铁 | |
US20070023970A1 (en) | Method for producing ferrite sintered magnet | |
JP4720994B2 (ja) | フェライト磁性材料の製造方法 | |
JP6863374B2 (ja) | フェライト磁石 | |
JP2001223104A (ja) | 焼結磁石の製造方法 | |
JP6988563B2 (ja) | フェライト焼結磁石、及び回転機 | |
JP2019149534A (ja) | フェライト焼結磁石、モータ、及び発電機 | |
JP2019220610A (ja) | フェライト焼結磁石、モータ、及び発電機 | |
JP2006156745A (ja) | 酸化物磁性体の製造方法 | |
JP2005286172A (ja) | 焼結磁石の製造方法、フェライト磁性材料の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11756314 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127016460 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13520270 Country of ref document: US Ref document number: 1610/KOLNP/2012 Country of ref document: IN |
|
REEP | Request for entry into the european phase |
Ref document number: 2011756314 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011756314 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |