WO2011115011A1 - 固体電解キャパシタ及びその製造方法並びに固体電解キャパシタ用溶液 - Google Patents

固体電解キャパシタ及びその製造方法並びに固体電解キャパシタ用溶液 Download PDF

Info

Publication number
WO2011115011A1
WO2011115011A1 PCT/JP2011/055779 JP2011055779W WO2011115011A1 WO 2011115011 A1 WO2011115011 A1 WO 2011115011A1 JP 2011055779 W JP2011055779 W JP 2011055779W WO 2011115011 A1 WO2011115011 A1 WO 2011115011A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
electrolytic capacitor
solid electrolytic
compound
hydroxy
Prior art date
Application number
PCT/JP2011/055779
Other languages
English (en)
French (fr)
Inventor
祥子 大出
寧 太陸
Original Assignee
信越ポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社 filed Critical 信越ポリマー株式会社
Priority to US13/635,263 priority Critical patent/US8773843B2/en
Publication of WO2011115011A1 publication Critical patent/WO2011115011A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/792Post-treatment doping with low-molecular weight dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants

Definitions

  • the present invention relates to a solid electrolytic capacitor, a method of manufacturing the same, and a solution for solid electrolytic capacitor.
  • capacitors used in electronic devices are required to lower the impedance (equivalent series resistance) in a high frequency region.
  • so-called functional capacitors in which an oxide film of a valve metal such as aluminum, tantalum, niobium or the like is used as a dielectric have been used to meet this demand.
  • the structure of this capacitor is, as disclosed in Patent Document 1, an anode made of a porous body of valve metal, a dielectric layer formed by oxidizing the surface of the anode, a conductive solid electrolyte layer, and a carbon layer. And a cathode having a silver layer or the like laminated thereon.
  • a conductive film containing a conductive polymer may be used as the solid electrolyte layer.
  • Patent Document 4 As a method of forming a conductive film other than the electrolytic polymerization method and the chemical oxidation polymerization method, for example, in Patent Document 4, it is water-soluble by chemical oxidation polymerization of aniline while coexisting a polymer anion having a sulfo group, a carboxy group or the like.
  • a method has been proposed in which polyaniline is prepared, and the aqueous solution of polyaniline is applied and dried to form a coating. It is said that this method can easily form a highly conductive conductive film.
  • the solid electrolyte has a nitrogen-containing aroma in a capacitor including an anode made of a porous body of valve metal, a dielectric layer formed by oxidizing the surface of the anode and a solid electrolyte formed on the dielectric. It is disclosed that the composition comprises, as an essential component, a conductive polymer (PEDOT / PSS polymer dispersion) to which a group compound is added.
  • a conductive polymer PEDOT / PSS polymer dispersion
  • composition constituting this solid electrolyte shows that the functional capacitors such as the aluminum electrolytic capacitor and the tantalum capacitor can be easily manufactured (see Patent Document 5).
  • Japanese Patent Application Publication No. 2003-37024 Japanese Patent Application Laid-Open No. 63-158829 JP-A-63-173313 Japanese Patent Application Laid-Open 7-105718 JP, 2006-100774, A JP 2007-027767 A JP 2007-096284 A JP, 2009-009997, A JP, 2009-09999, A JP, 2006-287182, A WO 2007/091656 JP, 2008-109069, A JP, 2008-109068, A Japanese Patent Publication No. 2009-508342
  • Patent Documents 2 to 4 when the method of forming a conductive film described in Patent Documents 2 to 4 is applied when forming a solid electrolyte layer of a capacitor, there arises a problem that the withstand voltage of the capacitor is lowered. Moreover, the electrolytic polymerization method described in Patent Document 2 is complicated because it forms a conductive layer made of manganese oxide, and since manganese oxide has low conductivity, a conductive polymer with high conductivity is used. There was a problem that the effect to use faded.
  • Patent Document 6 The capacitor described in Patent Document 6 has a problem that it is necessary to reduce the ESR.
  • attempts to apply conductive polymer dispersions containing these as additives to the solid electrolyte of a capacitor can be made by inconsisting in the capacitor element of a monomer, which is a conductive polymer precursor, which has been conventionally performed.
  • many of the dispersion dopants are polymer sulfonic acids, so many problems remain, and the actual application has not been achieved.
  • This invention is proposed in view of the above-mentioned subject, and while maintaining low ESR and high heat resistance, it aims at providing a solid electrolytic capacitor with high stability over temperature.
  • Another object of the present invention is to provide a method of manufacturing a solid electrolytic capacitor which can easily manufacture a capacitor having a low ESR and a high temperature stability.
  • Another object of the present invention is to provide a solution for a solid electrolytic capacitor suitable for producing a capacitor with low ESR and high temperature stability.
  • one aspect of the present invention is a solid electrolytic capacitor comprising at least a porous anode body, a dielectric layer formed on the surface of the anode body, and a cathode body.
  • a solid electrolytic capacitor comprising a first hydroxy group compound (b) having a group and a second hydroxy group compound (c) having an amino group and one or more hydroxy groups.
  • Patent Documents 1 to 6 The conductive complex (a) of a cationized conductive polymer and a polymer anion, which is an essential component in the present invention, is also disclosed in Patent Documents 1 to 6, and further, it has an amino group and one or more hydroxy groups.
  • the hydroxy compounds (c) of 2 are disclosed in Patent Documents 6-14.
  • Patent Documents 6 to 9 the method of use differs from the present invention, and among them, Patent Documents 8 and 9 are merely mentioned as examples of amines.
  • a conductive complex (a) of a cationized conductive polymer and a polymer anion, a first hydroxy compound (b) having four or more hydroxy groups, an amino group and one or more hydroxy groups The mere disclosure of the second hydroxy compounds (c) having is disclosed in the patent documents 10-13. However, the example which used these simultaneously is not disclosed.
  • Another aspect of the present invention is a solution for a solid electrolytic capacitor used to form a solid electrolyte layer of a solid electrolytic capacitor, wherein the solution for solid electrolytic capacitor is at least a cationized conductive polymer. And a conductive complex with a polymer anion (a), a first hydroxy compound having four or more hydroxy groups (b), and a second hydroxy compound having an amino group and one or more hydroxy groups (c And a solvent, and a solution for a solid electrolytic capacitor.
  • Still another aspect of the present invention is a method of manufacturing a solid electrolytic capacitor, comprising at least a porous anode body, a dielectric layer formed on the surface of the anode body, and a cathode body, A conductive complex (a) with at least a cationized conductive polymer and a polymer anion, a first hydroxy compound (b) having four or more hydroxy groups, an amino group and one or more hydroxy groups
  • the second aspect of the present invention provides a method of manufacturing a solid electrolytic capacitor, comprising the step of forming a solid electrolyte layer containing the second hydroxy group compound (c) having the following structure in contact with a dielectric layer.
  • Still another aspect of the present invention is a capacitor formed by interposing and winding a separator carrying a solid electrolyte between a porous anode body having a dielectric layer formed thereon and a cathode body,
  • the solid electrolyte provides a solid electrolytic capacitor formed by immersing the capacitor solution.
  • a capacitor formed by interposing and winding a separator carrying a solid electrolyte between a porous anode body and a cathode body on which a dielectric layer is formed.
  • a method there is provided a method of manufacturing a solid electrolytic capacitor, comprising the steps of immersing the capacitor solution to form the solid electrolyte.
  • the solid electrolytic capacitor according to the present invention has low ESR, high heat resistance, and good temperature stability.
  • the method for producing a solid electrolytic capacitor according to the present invention can simply produce a capacitor having a low ESR and a good temperature stability.
  • the solution for a solid electrolytic capacitor according to the present invention is suitable for the production of a solid electrolytic capacitor having a low ESR and a good temperature stability, a low solution viscosity and a good solution viscosity stability.
  • the solution for a solid electrolytic capacitor of the present embodiment comprises at least a conductive complex (a) of water and / or a mixed solvent of water and water, a cationized conductive polymer and a polymer anion, and four or more hydroxy groups. It is characterized by containing the 1st hydroxy-type compound (b) which it has, and the 2nd hydroxy-type compound (c) which has an amino group and one or more hydroxy groups.
  • This solid electrolytic capacitor solution is a solid electrolytic capacitor comprising a porous anode body, a dielectric layer formed on the surface of the anode body, and a cathode body, the solid electrolytic capacitor being in contact with the dielectric layer. It is used to form an electrolyte layer.
  • the conductive complex refers to at least a conductive complex containing a cationized conductive polymer and a polymer anion and having conductivity.
  • An anionic dopant can be included as needed.
  • a conductive complex is easily obtained by chemical oxidation polymerization of a precursor monomer of a conductive polymer in the presence of an oxidizing agent or an oxidation polymerization catalyst in the presence of a polymeric anion dissolved or dispersed in a solvent. Can.
  • the conductive polymer any organic polymer whose main chain is constituted by a ⁇ conjugated system can be used.
  • polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyanilines, polyacenes, polythiophene vinylenes, and copolymers of these, and the like can be mentioned.
  • Polypyrroles, polythiophenes and polyanilines are preferred from the viewpoint of easiness of polymerization and stability in air.
  • the conductive polymer can obtain sufficient conductivity even if it remains unsubstituted, but in order to further enhance the conductivity, an alkyl group, a carboxy group, a sulfo group, an alkoxy group, a hydroxy group, a cyano group, etc. It is preferable to introduce a functional group into the conductive polymer.
  • Such conductive polymers include polypyrrole, poly (3-methylpyrrole), poly (3-ethylpyrrole), poly (3-n-propylpyrrole), poly (3-butylpyrrole), poly (3-Octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4-dibutylpyrrole), poly (3-carboxypyrrole) Poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), poly (3-hydroxypyrrole), poly (3 -Methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3-hexyloxypyrrole), poly (3-methyl-4-hexyloxypyrrole), poly (3-methyl-4-hexyloxypyrrole), poly (
  • polypyrrole one or two selected from polypyrrole, polythiophene, poly (N-methylpyrrole), poly (3-methylthiophene), poly (3-methoxythiophene) and poly (3,4-ethylenedioxythiophene)
  • the (co) polymer consisting of the above is suitably used from the point of resistance value and reactivity.
  • polypyrrole and poly (3,4-ethylenedioxythiophene) are more preferable in terms of higher conductivity and improved heat resistance.
  • the conductive polymer can be easily produced by chemical oxidation polymerization of a precursor monomer for forming the conductive polymer in a solvent, in the presence of an appropriate oxidizing agent, an oxidation catalyst and a polymer anion described later.
  • the precursor monomer has a ⁇ conjugated system in the molecule, and the ⁇ conjugated system is formed in the main chain even when polymerized by the action of an appropriate oxidizing agent.
  • an appropriate oxidizing agent for example, pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof and the like can be mentioned.
  • precursor monomers include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3, 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxypyrrole, 3-methyl-4-carboxypyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3 -Ethyl thiophene, 3-propyl thiophene 3-butylthiophene, 3-hexxy
  • the polymeric anion refers to a polymer having an anionic group in the side chain of the polymer.
  • the anion group may be a functional group capable of causing chemical oxidation doping to the conductive polymer, but among them, from the viewpoint of easiness of production and stability, mono-substituted sulfate ester group, mono-substituted phosphoric acid Ester group, phosphate group, carboxy group, sulfo group and the like are preferable. Furthermore, from the viewpoint of the doping effect of the functional group to the conductive polymer, a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
  • polystyrene resin examples include substituted or unsubstituted polyalkylenes, substituted or unsubstituted polyalkenylenes, substituted or unsubstituted polyimides, substituted or unsubstituted polyamides, substituted or unsubstituted polyesters, and copolymers of these. Or a structural unit having an anionic group, or a structural unit having an anionic group and a structural unit having no anionic group.
  • the anion group of the polymer anion functions as a dopant for the conductive polymer to improve the conductivity and heat resistance of the conductive polymer.
  • polymer anion examples include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic sulfonic acid, polymethacrylic sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfonic acid, polyvinyl Examples thereof include carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacrylic carboxylic acid, polymethacrylic carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid and the like. These homopolymers may be sufficient and 2 or more types of copolymers may be sufficient.
  • polystyrene sulfonic acid polyacrylic sulfonic acid
  • polymethacrylic sulfonic acid are preferable.
  • the polymerization degree of the polymer anion is preferably in the range of 10 to 100,000 monomer units, and more preferably in the range of 50 to 10,000 from the viewpoint of solvent solubility and conductivity.
  • a method for producing a polymer anion for example, a method of directly introducing an anion group into a polymer having no anion group using an acid, a method of sulfonating a polymer having no anion group with a sulfonating agent, an anion group containing The method of manufacturing by superposition
  • the method of producing by polymerization of an anionic group-containing polymerizable monomer includes a method of producing an anionic group-containing polymerizable monomer in a solvent by oxidative polymerization or radical polymerization in the presence of an oxidizing agent and / or a polymerization catalyst. Specifically, a predetermined amount of an anionic group-containing polymerizable monomer is dissolved in a solvent, kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and / or a polymerization catalyst is dissolved in the solvent is added in advance. Let react in time. The polymer obtained by the reaction is adjusted to a constant concentration by the solvent. In this production method, the anionic group-containing polymerizable monomer may be copolymerized with a polymerizable monomer having no anion group.
  • the oxidizing agent, the oxidation catalyst, and the solvent used in the polymerization of the anionic group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer forming the conductive polymer.
  • the obtained polymer is a polymer anion salt, it is preferable to convert it to a polymer anion acid.
  • an ion exchange method using an ion exchange resin, an ultrafiltration method and the like may be mentioned, and among them, the ultrafiltration method is preferable from the viewpoint of easy operation.
  • the anionic group-containing polymerizable monomer is a monomer in which a part of the monomer is substituted with a monosubstituted sulfate group, a carboxy group, a sulfo group or the like, and, for example, a substituted or unsubstituted ethylene sulfonic acid compound, a substituted or unsubstituted Styrene sulfonic acid compound, substituted or unsubstituted acrylate sulfonic acid compound, substituted or unsubstituted methacrylate sulfonic acid compound, substituted or unsubstituted acrylamido sulfonic acid compound, substituted or unsubstituted cyclovinylene sulfonic acid compound, substituted or unsubstituted Butadiene sulfonic acid compounds, and substituted or unsubstituted vinyl aromatic sulfonic acid compounds.
  • vinylsulfonic acid and its salts allylsulfonic acid and its salts, methallylsulfonic acid and its salts, styrenesulfonic acid and its salts, methalyloxybenzenesulfonic acid and its salts, allyloxybenzenesulfonic acid and the like
  • Its salts ⁇ -methylstyrene sulfonic acid and its salts, acrylamido-t-butyl sulfonic acid and its salts, 2-acrylamido-2-methylpropane sulfonic acid and its salts, cyclobutene-3-sulfonic acid and its salts, isoprene sulfone Acid and salts thereof, 1,3-butadiene-1-sulfonic acid and salts thereof, 1-methyl-1,3-butadiene-2-sulfonic acid and salts thereof, 1-methyl-1,3-butadiene-4-sulfone Acid and its salts,
  • polymerizable monomers having no anionic group examples include ethylene, propene, 1-butene, 2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, styrene, p-methylstyrene, p -Ethylstyrene, p-butylstyrene, 2,4,6-trimethylstyrene, p-methoxystyrene, ⁇ -methylstyrene, 2-vinylnaphthalene, 6-methyl-2-vinylnaphthalene, 1-vinylimidazole, vinylpyridine, Vinyl acetate, acryl aldehyde, acrylonitrile, N-vinyl-2-pyrrolidone, N-vinyl acetamide, N-vinyl formamide, N-vinyl imidazol, acrylamide, N, N-dimethyl acrylamide, acrylic acid, methyl acrylate, Ethyl
  • the solvent solubility can be controlled by copolymerizing the polymerizable monomer having no anionic group.
  • the amount of the polymer anion in the conductive complex can be suitably used as long as the conductive polymer can be stably dissolved or dispersed in a solvent, and is not particularly limited.
  • the molar amount of the anionic group in the polymer anion is in the range of 1 to 5 times the molar amount of the conductive polymer. Within this range, it is possible to simultaneously achieve high conductivity and stable dispersibility of the conductive composite. When it is less than 1 time, the dispersibility tends to be deteriorated, and when it is more than 5 times, the conductivity tends to be lowered.
  • the aqueous dispersion solution of the conductive complex containing the polymer anion and the conductive polymer is usually in a state lower than pH 3, strong in acidity, and low in the immersion property to the capacitor element. It is preferable to adjust the acidity in order to improve the immersing property of the anode foil and the cathode foil.
  • the capacitor solution of the present embodiment can be suitably used as long as the pH is in the range of 3 to 13. It is preferable to adjust the acidity in order to improve the immersing property of the anode foil and the cathode foil. More preferably, the pH is in the range of 3 to 8.
  • the initial characteristics can not even be expressed in ESR, capacity and the like.
  • the pH is 8 or more, there is no problem with the initial characteristics, but the heat resistance is inferior to long-term.
  • the pH is 13 or more, the characteristics are significantly reduced by the heat resistance test in a short period.
  • the pH of the aqueous solution can be easily adjusted by adding an alkaline compound to an aqueous solution in which the conductive complex of the polymer anion and the conductive polymer is dissolved or dispersed.
  • the acidity of the conductive complex can be easily varied, and a salt of a polymeric anion can be formed.
  • a pH adjuster may be appropriately used, and as the pH adjuster, for example, alkalis, amines, imidazoles, pyridines and the like can be used.
  • alkali examples include sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia and the like.
  • amines include aliphatic amines such as ethylamine, diethylamine, methylethylamine and triethylamine, aniline, benzylamine, aromatic amines such as pyrrole, imidazole and pyridine, and derivatives thereof.
  • aliphatic amines examples include primary amines (methylamine, ethylamine, propylamine, butylamine, ethylenediamine etc.), secondary amines (dimethylamine, diethylamine, dipropylamine, methylethylamine, diphenylamine, iminodiethanol etc.), With polymeric amines using secondary amines (trimethylamine, triethylamine, tripropylamine, triphenylamine etc.), tetraalkylammonium (tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, methyltriethylammonium, dimethyldiethylammonium etc.) Can form an ammonium salt of
  • imidazoles and derivatives thereof include imidazole, 2-methylimidazole, 2-propylimidazole, 2-undecylimidazole, 2-phenylimidazole, N-methylimidazole, 1- (2-hydroxyethyl) imidazole , 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2- Ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 1-acetylimidazole, 4,5-imidazoledicarboxylic acid, dimethyl 4,5-imidazoledicarboxylate, benzimidazole, 2-aminobenzene Imidazole, 2-amino-base lens imidazole-2-sulfonic acid, 2-amin
  • pyrimidines and their derivatives include 2-amino-4-chloro-6-methyl pyrimidine, 2-amino-6-chloro-4-methoxy pyrimidine, 2-amino-4,6-dichloro pyrimidine, 2-amino-4,6-dihydroxypyrimidine, 2-amino-4,6-dimethyl pyrimidine, 2-amino-4,6-dimethoxy pyrimidine, 2-amino pyrimidine, 2-amino-4-methyl pyrimidine, 4,6 -Dihydroxypyrimidine, 2,4-dihydroxypyrimidine-5-carboxylic acid, 2,4,6-triaminopyrimidine, 2,4-dimethoxypyrimidine, 2,4,5-trihydroxypyrimidine, 2,4-pyrimidinediol, etc. Can be mentioned.
  • the solvent used in the production of the conductive polymer is not particularly limited, as long as it is a solvent capable of dissolving or dispersing the precursor monomer and can maintain the oxidizing power of the oxidizing agent and the oxidation catalyst.
  • polar solvents such as water, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylenephosphortriamide, acetonitrile, benzonitrile, cresol, phenol, xylenol, etc.
  • alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone and methyl ethyl ketone, hydrocarbons such as hexane, benzene and toluene, carboxylic acids such as formic acid and acetic acid, ethylene carbonate and propylene carbonate Carbonate compounds, ether compounds such as dioxane and diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether Chain ethers such as polypropylene glycol dialkyl ether, 3-methyl-2-oxazolidinone heterocyclic compounds such as, acetonitrile, glutarodinitrile, methoxy acetonitrile, propionitrile, nitrile compounds such as benzonitrile and the like.
  • solvents may be used alone, may be a mixture of two or more types, or may be a mixture with another organic solvent.
  • the oxidizing agent and the oxidation catalyst may be any one that can oxidize the precursor monomer to obtain a conductive polymer, for example, ammonium peroxodisulfate, sodium peroxodisulfate, potassium peroxodisulfate etc.
  • Transition metal compounds such as ferric chloride, ferric chloride, ferric sulfate, ferric nitrate, ferric chloride, metal halide compounds such as boron trifluoride and aluminum chloride, silver oxide, cesium oxide
  • hydrogen peroxide, peroxides such as ozone, organic peroxides such as benzoyl peroxide, and oxygen.
  • the first hydroxy compound of this embodiment refers to an aliphatic compound having four or more hydroxy groups in the molecule.
  • Sugars, sugar alcohols, polyhydroxys and the like can be mentioned.
  • saccharides and sugar derivatives such as sucrose, maltose, xylose and cellulose
  • sugar alcohols such as D-glucitol, mannit, pentaerythritol and dipentaerythritol, and polyvinyl alcohol.
  • a compound having a high melting point is preferred. More preferably, pentaerythritol, dipentaerythritol etc. which have melting
  • the content of the first hydroxy compound can be suitably used as long as it is contained in an amount of 1 or more by mass ratio with respect to the conductive complex.
  • the content of the first hydroxy compound is more than the mass of the conductive complex. More preferably, it is in the range of 1 to 20 times. Within this range, the heat resistance and conductivity of the solid electrolyte can be compatible. If it exceeds 20 times, the film formability of the solid electrolyte tends to deteriorate.
  • the second hydroxy compound of this embodiment refers to a compound having one or more amino groups and one or more hydroxy groups in the molecule.
  • the second hydroxy group compound contains an amino group in the molecule, whereby the amino group easily forms an ionic bond with a part of the conductive complex in the solid electrolyte, and the film formability of the solid electrolyte can be improved. It is. At the same time, it is considered that the inclusion of a hydroxy group in the molecule facilitates the interaction with the first hydroxy compound and the third hydroxy compound in the solid electrolyte.
  • the second hydroxy compound preferably has a C1 to C4 alkylene between the amino group and the hydroxy group, and preferably has one or more alkyl groups in the amino group.
  • the second hydroxy compound preferably contains one or more selected from ethylaminoethanol, diethylaminoethanol, methylaminoethanol and dimethylaminoethanol, and is preferably nitrilotriethanol.
  • Aminoethanol, 2- (methylamino) ethanol, 2-diethylaminoethanol, 2- (dimethylamino) ethanol, 1-amino-2- from the viewpoint of film forming property of the conductive polymer, conductivity and solution stability, etc.
  • Preferred are butanol, 2-amino-1-butanol, nitrilotriethanol and the like.
  • the content of the second hydroxy compound can be suitably used if it is contained in an amount of 0.1 to 1.0 times by mass ratio with respect to the conductive complex.
  • the content of the second hydroxy compound is less than the mass of the conductive complex.
  • it is in the range of 0.3 to 0.8 times. Within this range, the film-forming properties of the solid electrolyte and the conductivity can be compatible. If it exceeds 1 times, the conductivity of the solid electrolyte tends to deteriorate.
  • the third hydroxy group compound of this embodiment refers to a compound having 1 to 3 hydroxy groups in the molecule. Reactive monomer compounds, glycol compounds and the like can be mentioned.
  • the third hydroxy compounds are preferably (meth) acrylics and (meth) acrylamides.
  • glycol compounds include diethylene glycol monoethyl ether (DEGEE) and the like.
  • the content of the third hydroxy compound can be suitably used as long as it is contained 0.5 times or more by mass ratio with respect to the conductive complex.
  • the content of the third hydroxy compound is greater than the mass of the conductive complex. More preferably, it is in the range of 1 to 20 times. Within this range, the heat resistance and conductivity of the solid electrolyte can be compatible. If it exceeds 20 times, the film formability of the solid electrolyte tends to deteriorate.
  • solvent As a solvent for the solid electrolytic capacitor solution of the present invention, water and a solvent that can be mixed with water can be suitably used.
  • polar solvents such as water, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylenephosphortriamide, acetonitrile, benzonitrile, cresol, phenol, xylenol, etc.
  • alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone and methyl ethyl ketone, hydrocarbons such as hexane, benzene and toluene, carboxylic acids such as formic acid and acetic acid, ethylene carbonate and propylene carbonate Carbonate compounds, ether compounds such as dioxane and diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether Chain ethers such as polypropylene glycol dialkyl ether, 3-methyl-2-oxazolidinone heterocyclic compounds such as, acetonitrile, glutarodinitrile, methoxy acetonitrile, propionitrile, nitrile compounds such as benzonitrile and the like.
  • ketones such as acetone and methyl ethyl ketone
  • hydrocarbons such as hexane, benz
  • the conductive composite of this embodiment preferably has an average particle diameter of 1,500 nm or less in consideration of the immersing property into the inside of the capacitor element. More preferably, it is 500 nm or less. When the average particle size is 1,500 nm or more, many particles larger than the pores of the porous aluminum foil are contained, and the immersion property to the inside may be deteriorated, so it is difficult to obtain characteristics such as capacitance. . Moreover, it is preferable that d50 is 1000 nm or less. More preferably, it is 100 nm or less.
  • the adjustment of the particle size can be controlled by adjusting the degree of polymerization of the conductive polymer and the molecular weight of the polymer anion when synthesizing the conductive complex.
  • the conductive complex can also be controlled by the dispersion method after synthesis, the addition of a dispersant, and the like. As a dispersion method, high pressure grinding etc. are available.
  • the solid content concentration of the conductive complex is preferably 0.5 to 3.0% by mass, and more preferably 1.0 to 2.0% by mass. If the solid content concentration is 0.5% by mass or more, a solid electrolyte membrane can be easily formed, and if it is 3.0% by mass or less, the viscosity is reduced, and the inside of the capacitor base material 10a of the porous body The solution for capacitors can be easily permeated.
  • the viscosity of the solution is preferably 100 mPa ⁇ s or less, more preferably 50 mPa ⁇ s or less, and particularly preferably 30 mPa ⁇ s or less because the permeability becomes high.
  • a method of lowering the viscosity of the solution for capacitors for example, a method of lowering the solid concentration of the solution for capacitors, a method of adjusting the molecular weight of the polymer anion, a method of adding a low viscosity solvent component, high ⁇ conjugated conductivity Methods such as enhancing the dispersibility of molecules can be mentioned. Only one of these may be applied, or two or more methods may be applied in combination.
  • the mass average molecular weight of the polymer anion is preferably 100,000 to 1,000,000, and more preferably 200,000 to 800,000. If the mass average molecular weight of the polymer anion is 100,000 or more and 1,000,000 or less, the viscosity of the capacitor solution can be lowered, and the conductive polymer solution can easily permeate into the inside of the capacitor base material 10a of the porous body. it can.
  • Examples of the low viscosity solvent component in the method of adding the low viscosity solvent component include alcohol solvents such as methanol, and ether solvents such as diethyl ether.
  • Examples of methods for enhancing the dispersibility of the capacitor solution include a high pressure dispersion method, an ultrasonic dispersion method, and a high-speed fluid dispersion method.
  • a compound that can raise the conductivity of the conductive polymer can be added.
  • the conductivity improver interacts with the conductive polymer or the dopant of the conductive polymer to improve the electric conductivity of the conductive polymer.
  • ether compounds nitrogen-containing aromatic cyclic compounds, compounds having two or more hydroxy groups, compounds having two or more carboxy groups, one or more hydroxy groups and one or more It is preferable that it is one or more types of compounds selected from the group which consists of the compound which has a carboxy group, the compound which has an amido group, the compound which has an imide group, a lactam compound, the compound which has glycidyl group, an acryl compound etc.
  • Nitrogen-containing aromatic cyclic compounds for example, pyridines containing one nitrogen atom and derivatives thereof, imidazoles containing two nitrogen atoms and derivatives thereof, pyrimidines And derivatives thereof, pyrazines and derivatives thereof, triazines containing three nitrogen atoms and derivatives thereof, and the like. From the viewpoint of solvent solubility and the like, pyridines and derivatives thereof, imidazoles and derivatives thereof, pyrimidines and derivatives thereof are preferable.
  • the nitrogen-containing aromatic cyclic compound may be one having a substituent such as an alkyl group, a hydroxy group, a carboxy group, a cyano group, a phenyl group, a phenol group, an ester group, an alkoxyl group or a carbonyl group introduced into the ring. You may or may not have been introduced.
  • the ring may be polycyclic.
  • pyridines and derivatives thereof include pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 4-ethylpyridine, N-vinylpyridine, 2,4-dimethylpyridine, and 2,4. , 6-trimethylpyridine, 3-cyano-5-methylpyridine, 2-pyridinecarboxylic acid, 6-methyl-2-pyridinecarboxylic acid, 4-pyridinecarboxaldehyde, 4-aminopyridine, 2,3-diaminopyridine, 2 2,6-Diaminopyridine, 2,6-diamino-4-methylpyridine, 4-hydroxypyridine, 4-pyridinemethanol, 2,6-dihydroxypyridine, 2,6-pyridinedimethanol, methyl 6-hydroxynicotinate, 2 -Hydroxy-5-pyridinemethanol, ethyl 6-hydroxynicotinate, 4 Pyridinemethanol, 4-pyridineethanol, 2-phenylpyridine, 3-methylquinoline, 3-ethylquinoline, quinolinol, 2,3
  • imidazoles and derivatives thereof include imidazole, 2-methylimidazole, 2-propylimidazole, 2-undecylimidazole, 2-phenylimidazole, N-methylimidazole, N-vinylimidazole, N-allylimidazole 1- (2-hydroxyethyl) imidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2 -Methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 1-acetylimidazole, 4,5-imidazole dicarboxylic acid, 4,5-imidazoledicarboxylic acid Acid dimethyl, benzimidazole, 2-aminobenzimidazole, 2-
  • pyrimidines and their derivatives include 2-amino-4-chloro-6-methyl pyrimidine, 2-amino-6-chloro-4-methoxy pyrimidine, 2-amino-4,6-dichloro pyrimidine, 2-amino-4,6-dihydroxypyrimidine, 2-amino-4,6-dimethyl pyrimidine, 2-amino-4,6-dimethoxy pyrimidine, 2-amino pyrimidine, 2-amino-4-methyl pyrimidine, 4,6 -Dihydroxypyrimidine, 2,4-dihydroxypyrimidine-5-carboxylic acid, 2,4,6-triaminopyrimidine, 2,4-dimethoxypyrimidine, 2,4,5-trihydroxypyrimidine, 2,4-pyrimidinediol, etc. Can be mentioned.
  • pyrazines and derivatives thereof include pyrazine, 2-methylpyrazine, 2,5-dimethylpyrazine, pyrazinecarboxylic acid, 2,3-pyrazinedicarboxylic acid, 5-methylpyrazinecarboxylic acid, pyrazine amide, 5 -Methylpyrazine amide, 2-cyanopyrazine, aminopyrazine, 3-aminopyrazine-2-carboxylic acid, 2-ethyl-3-methylpyrazine, 2-ethyl-3-methylpyrazine, 2,3-dimethylpyrazine, 2, 3-diethylpyrazine and the like.
  • triazines and derivatives thereof include 1,3,5-triazine, 2-amino-1,3,5-triazine, 3-amino-1,2,4-triazine, 2,4-diamino -6-phenyl-1,3,5-triazine, 2,4,6-triamino-1,3,5-triazine, 2,4,6-tris (trifluoromethyl) -1,3,5-triazine, 2,4,6-Tri-2-pyridine-1,3,5-triazine, 3- (2-pyridine) -5,6-bis (4-phenylsulfonic acid) -1,2,4-triazine disodium , 3- (2-pyridine) -5,6-diphenyl-1,2,4-triazine, 3- (2-pyridine) -5,6-diphenyl-1,2,4-triazine- ⁇ , ⁇ '- Disodium disulfonate, 2-hydroxy-4,6-dichloro B. -1,3,5-
  • the substituent introduced into the nitrogen atom of the nitrogen-containing aromatic cyclic compound includes a hydrogen atom, an alkyl group, a hydroxy group, a carboxy group, a cyano group, a phenyl group, a phenol group, an ester group, an alkoxyl group, a carbonyl group, etc. Can be mentioned.
  • the kind of substituent can introduce the substituent shown above.
  • the content of the nitrogen-containing aromatic cyclic compound is preferably in the range of 0.1 to 100 mol, and more preferably in the range of 0.5 to 30 mol with respect to 1 mol of the anion group of the polymer anion. More preferably, from the viewpoint of the conductivity of the conductive composite, the range of 1 to 10 moles is particularly preferable.
  • the content of the nitrogen-containing aromatic cyclic compound is less than 0.1 mol, the conductivity may be insufficient.
  • the nitrogen-containing aromatic cyclic compound is contained in excess of 100 moles, the content of the conjugated conductive polymer decreases, and it is also difficult to obtain sufficient conductivity.
  • -Compounds having two or more hydroxy groups As compounds having two or more hydroxy groups, for example, propylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, glycerin, diglycerin, isoprene glycol, di- Methylol propionic acid, butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol, trimethylolethane, trimethylolpropane, thiodiethanol, tartaric acid, D-glucalic acid, Polyvalent aliphatic alcohols such as glutaconic acid, 1,4-dihydroxybenzene, 1,3-dihydroxybenzene, 2,3-dihydroxy-1-pentadecylbenzene, 2,4-dihydroxyacetophenone, 2,5-dihydroxyacetophenone 2,4-dihydroxybenzophenone
  • the content of the compound having two or more hydroxy groups is preferably in the range of 0.05 to 50 mol, and more preferably in the range of 0.3 to 10 mol with respect to 1 mol of the anion group of the polymer anion. Is more preferred.
  • the content of the compound having two or more hydroxy groups is less than 0.05 mol with respect to 1 mol of the anionic group of the polymer anion, the conductivity and the heat resistance may be insufficient.
  • the content of the compound having two or more hydroxy groups is more than 50 mol per 1 mol of anion group units of the polymer anion, the content of the conductive polymer in the solid electrolyte layer 13 decreases. Again, it is difficult to obtain sufficient conductivity, and the physical properties of the solid electrolyte layer 13 may change.
  • -Compounds having two or more carboxy groups As compounds having two or more carboxy groups, maleic acid, fumaric acid, itaconic acid, citraconic acid, malonic acid, 1,4-butanedicarboxylic acid, succinic acid, tartaric acid, Aliphatic carboxylic acid compounds such as adipic acid, D-glucalic acid, glutaconic acid, citric acid, phthalic acid, terephthalic acid, isophthalic acid, tetrahydrophthalic anhydride, 5-sulfoisophthalic acid, 5-hydroxyisophthalic acid, methyltetrahydroanhydride At least one or more aromatic rings such as phthalic acid, 4,4'-oxydiphthalic acid, biphenyltetracarboxylic acid dianhydride, benzophenonetetracarboxylic acid dianhydride, naphthalenedicarboxylic acid, trimellitic acid, pyromellitic acid, etc. Aromatic carboxylic acid compounds
  • the compound having two or more carboxy groups is preferably in the range of 0.1 to 30 moles, and more preferably in the range of 0.3 to 10 moles relative to 1 mole of the anionic group unit of the polymer anion. . If the content of the compound having two or more carboxy groups is less than 0.1 mol with respect to 1 mol of the anionic group of the polymer anion, the conductivity and heat resistance may be insufficient. When the content of the compound having two or more carboxy groups is more than 30 mol with respect to 1 mol of the anion group unit of the polymer anion, the content of the conductive polymer in the solid electrolyte layer 13 is reduced, again It is difficult to obtain sufficient conductivity, and the physical properties of the solid electrolyte layer 13 may change.
  • the content of the compound having one or more hydroxy groups and one or more carboxy groups is preferably 1 to 5,000 parts by mass, and 50 to 500 parts by mass with respect to 100 parts by mass of the conductive composite. It is more preferable that If the content of the compound having one or more hydroxy groups and one or more carboxy groups is less than 1 part by mass, conductivity and heat resistance may be insufficient. In addition, when the content of the compound having one or more hydroxy groups and one or more carboxy groups is more than 5,000 parts by mass, the content of the conductive polymer in the solid electrolyte decreases, and the conductivity is also sufficient. It is difficult to get sex.
  • the compound having an amide group is a monomolecular compound having an amide bond represented by -CO-NH- (where a portion of CO is a double bond) in the molecule. That is, as the amide compound, for example, a compound having a functional group at both ends of the bond, a compound having a cyclic compound bonded to one end of the bond, urea and urea derivatives wherein the functional groups at both ends are hydrogen Etc.
  • amide compound examples include acetamide, malonamide, succinamide, benzamide, naphthoamide, phthalamide, isophthalamide, terephthalamide, nicotinamide, isonicotinamide, 2-fluamide, formamide, N-methylformamide, propionamide, propiolamide Butylamide, Isobutylamide, Palmitamide, Stearylamide, Oleamide, Oxamide, Glutaramide, Adipamide, Cinnamamide, Glucholamide, Lactoamide, Glyceramide, Taltalamide, Citrulamide, Glyoxylamide, Plubamide, Acetoacetamide, Dimethylacetamide, Benzylamide, Anthranyl Amide, ethylenediaminetetraacetamide, diacetamide, triase Amide, dibenzamide, tribenzamide, rhodanine, urea, 1-acetyl-2-thiourea, biuret, butylurea, dibutylurea, dibutyl
  • the molecular weight of the amide compound is preferably 46 to 10,000, more preferably 46 to 5,000, and particularly preferably 46 to 1,000.
  • the content of the amide compound is preferably 1 to 5,000 parts by mass, and more preferably 50 to 500 parts by mass with respect to a total of 100 parts by mass of the conductive composite.
  • the content of the amide compound is less than 1 part by mass, the conductivity and the heat resistance may be insufficient.
  • the content of the amide compound exceeds 5,000 parts by mass, the content of the conductive polymer in the solid electrolyte decreases, and it is difficult to obtain sufficient conductivity as well.
  • an imide compound As an imide compound, since electroconductivity becomes higher, the monomolecular compound (henceforth an imide compound) which has an imide bond is preferable.
  • the imide compound phthalimide and phthalimide derivatives, succinimide and succinimide derivatives, benzimide and benzimide derivatives, maleimide and maleimide derivatives, naphthalimide and naphthalimide derivatives and the like can be mentioned from the skeleton thereof.
  • Imide compounds are classified into aliphatic imides, aromatic imides and the like depending on the types of functional groups at both ends, but from the viewpoint of solubility, aliphatic imides are preferable.
  • aliphatic imide compounds are classified into saturated aliphatic imide compounds having an unsaturated bond between carbon atoms in the molecule and unsaturated aliphatic imide compounds having an unsaturated bond between carbon atoms in the molecule.
  • the saturated aliphatic imide compound is a compound represented by R 1 -CO-NH-CO-R 2 and is a compound in which both R 1 and R 2 are saturated hydrocarbons.
  • R 1 -CO-NH-CO-R 2 is a compound in which both R 1 and R 2 are saturated hydrocarbons.
  • succinimide is a compound represented by R 1 -CO-NH-CO-R 2 and is a compound in which both R 1 and R 2 are saturated hydrocarbons.
  • succinimide 5-butylhydantoin acid, 5,5-dimethylhydantoin, 1-methylhydantoin, 1,5 3,5-trimethylhydantoin, 5-hydantoin acetic acid, N-hydroxy-5-norbornene-2,3-dicarboximide, glutarimide, semicarbazide, ⁇ , ⁇ -dimethyl-6-methylsuccinimide, bis [2- (succinimide oxy) Examples include carbonyloxy) ethyl]
  • the unsaturated aliphatic imide compound is a compound represented by R 1 -CO-NH-CO-R 2 and is a compound in which one or both of R 1 and R 2 are one or more unsaturated bonds.
  • R 1 and R 2 are one or more unsaturated bonds.
  • Specific examples are 1,3-dipropylene urea, maleimide, N-methyl maleimide, N-ethyl maleimide, N-hydroxy maleimide, 1,4-bismaleimidobutane, 1,6-bismaleimidohexane, 1,8-bis Maleimidooctane, N-carboxyheptylmaleimide and the like can be mentioned.
  • the molecular weight of the imide compound is preferably 60 to 5,000, more preferably 70 to 1,000, and particularly preferably 80 to 500.
  • the content of the imide compound is preferably 10 to 10,000 parts by mass, and more preferably 50 to 5,000 parts by mass with respect to 100 parts by mass of the conductive composite. It is not preferable that the addition amount of the imide compound is less than the lower limit value because the effect by the addition of the imide compound is reduced. Moreover, when the said upper limit is exceeded, since the electroconductive fall resulting from the fall of an electroconductive polymer density
  • Lactam Compound is a intramolecular cyclic amide of an aminocarboxylic acid, and is a compound in which a part of the ring is -CO-NR- (R is hydrogen or an optional substituent). However, one or more carbon atoms of the ring may be replaced by unsaturation or a heteroatom.
  • lactam compounds include pentano-4-lactam, 4-pentanelactam-5-methyl-2-pyrrolidone, 5-methyl-2-pyrrolidinone, hexano-6-lactam, 6-hexanelactam and the like.
  • -Compound having a glycidyl group examples include ethyl glycidyl ether, butyl glycidyl ether, t-butyl glycidyl ether, allyl glycidyl ether, benzyl glycidyl ether, glycidyl phenyl ether, bisphenol A, diglycidyl ether, acrylic And glycidyl compounds such as acid glycidyl ether and methacrylic acid glycidyl ether.
  • organic solvent when some organic solvent remains in the solid electrolyte, it functions as a conductivity improver.
  • organic solvent which can be a conductivity improver include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylenephosphortriamide, N-vinylpyrrolidone, Polar solvents such as N-vinylformamide, N-vinylacetamide, phenols such as cresol, phenol, xylenol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,3-butylene glycol, 1,4 -Multivalent compounds such as butylene glycol, glycerin, diglycerin, isoprene glycol, butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonan
  • Aliphatic alcohols carbonate compounds such as ethylene carbonate and propylene carbonate, ether compounds such as dioxane and diethyl ether, dialkyl ethers, linear ethers such as propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, and the like
  • Heterocyclic compounds such as methyl-2-oxazolidinone and the like, acetonitrile, glutaronitrile, nitrile compounds such as methoxyacetonitrile, propionitrile, benzonitrile and the like can be mentioned.
  • solvents may be used alone or as a mixture of two or more.
  • any compound having an ether group can be suitably used.
  • the content of the ether compound is preferably 1 to 10,000 parts by mass, preferably 50 to 1,500 parts by mass, with respect to 100 parts by mass of the conductive complex of the conductive polymer and the polymer anion. Is more preferred. If the content of the ether compound is less than 1 part by mass, the conductivity of the conductive complex may not be high, and if it exceeds 10,000 parts by mass, the stability of the capacitor solution tends to be low.
  • the conductivity may be improved by containing the monomer anion in the conductive complex of the present embodiment. It may be included as needed.
  • the method for introducing the monomer anion is not particularly limited, and may be added when synthesizing the conductive complex from the precursor monomer of the conductive polymer and the polymer anion, and the precursor monomer of the conductive polymer and the polymer anion
  • the conductive complex may be synthesized from the above and then added to the dispersion solution of the conductive complex.
  • monomer anions include organic carboxylic acids, organic sulfonic acids and inorganic acids.
  • organic carboxylic acid an aliphatic, aromatic, cyclic aliphatic or the like containing one or more carboxy groups
  • organic carboxylic acid an aliphatic, aromatic, cyclic aliphatic or the like containing one or more carboxy groups
  • formic acid, acetic acid, oxalic acid, benzoic acid, phthalic acid, maleic acid, fumaric acid, malonic acid, tartaric acid, citric acid, lactic acid, succinic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, nitroacetic acid, Triphenylacetic acid etc. are mentioned.
  • organic sulfonic acid an aliphatic, aromatic, cyclic aliphatic or the like containing one or more sulfo groups, or a polymer containing sulfo groups can be used.
  • a compound containing one sulfo group for example, methanesulfonic acid, ethanesulfonic acid, 1-propanesulfonic acid, 1-butanesulfonic acid, 1-hexanesulfonic acid, 1-heptanesulfonic acid, 1-octanesulfonic acid, 1 -Nonanesulfonic acid, 1-decanesulfonic acid, 1-dodecanesulfonic acid, 1-tetradecanesulfonic acid, 1-pentadecanesulfonic acid, 2-bromoethanesulfonic acid, 3-chloro-2-hydroxypropanesulfonic acid, trifluoromethanesulfone Acid, trifluoroethanesulfonic acid, colistin methanesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, aminomethanesulfonic acid, 1-amino-2-naphthol-4-sulfonic acid,
  • Examples of those containing two or more sulfo groups include ethanedisulfonic acid, butanedisulfonic acid, pentanedisulfonic acid, decanedisulfonic acid, o-benzenedisulfonic acid, m-benzenedisulfonic acid, p-benzenedisulfonic acid, toluene disulfonic acid Xylenedisulfonic acid, chlorobenzenedisulfonic acid, fluorobenzenedisulfonic acid, dimethylbenzenedisulfonic acid, diethylbenzenedisulfonic acid, aniline-2,4-disulfonic acid, aniline-2,5-disulfonic acid, 3,4-dihydroxy-1,3 -Benzenedisulfonic acid, naphthalenedisulfonic acid, methylnaphthalenedisulfonic acid, ethylnaphthalenedisulfonic acid, pentadecylnaphthalenedisulfonic acid,
  • Binder resin can be added to the solid electrolyte of the capacitor of the present embodiment in order to adjust the film forming property of the conductive complex.
  • polyesters polyurethanes, acrylics, epoxys, polyamides, polyacrylamides, silane coupling agents and the like.
  • the configuration of the solid electrolytic capacitor according to this embodiment includes an anode foil 11 as an anode body made of a porous body of valve metal, a dielectric layer 12 formed by oxidizing the surface of the anode 11, and a cathode as a cathode body. It is roughly configured to have a foil 14, a separator 15 interposed between the anode foil 11 and the cathode foil 14, and a solid electrolyte layer 13 made of a solid electrolyte carried by the separator.
  • valve metal forming the anode foil 11 examples include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and the like. Of these, aluminum, tantalum and niobium are preferred.
  • the surface is oxidized, or the sintered body of tantalum particles or niobium particles is oxidized and pelletized. Can be mentioned. Irregularities are formed on the surface of the treated product.
  • the dielectric layer 12 is formed, for example, by anodizing the surface of the anode foil 11 in an electrolytic solution such as an aqueous solution of ammonium adipate. Therefore, as shown in FIG. 1, as in the case of the anode foil 11, irregularities are also formed on the surface of the dielectric layer 12.
  • the cathode comprises a solid electrolyte layer 13 supported by a separator 15 and a cathode foil 14 such as aluminum foil formed on the solid electrolyte layer 13.
  • the solid electrolyte of the present embodiment comprises a conductive complex (a) with at least a cationized conductive polymer and a polymer anion, and a first hydroxy compound (b) having at least four hydroxy groups and an amino group. And a second hydroxy compound (c) having one or more hydroxy groups, which is disposed between the anode body and the cathode body and formed in contact with the anode body.
  • the solid electrolyte of the present embodiment can be formed from the solid electrolytic capacitor solution. As a formation method, it can form by methods, such as a coating method, a printing method, a dip method.
  • the solid electrolyte of the present embodiment is substantially fixed by crosslinking or solidification.
  • the solid electrolyte of the present embodiment contains water.
  • the solid electrolyte is formed by the conventional in-situ polymerization method, it is necessary to remove water as much as possible as described in Patent Document 6.
  • the capacitor of the present embodiment when the solid electrolyte contains a predetermined amount of water, the function of the capacitor is significantly improved. That is, in the capacitor of the present embodiment, the capacitance can be improved and the ESR can be lowered by the presence of an appropriate amount of water. This is presumed to be related to the solid electrolyte of the present embodiment containing a large amount of a polymer anion such as polystyrene sulfonic acid.
  • the water content is 7% by mass or less, it can be suitably used. Preferably it is 5 mass% or less. 4 mass% or less is more preferable.
  • the water content is more than 7% by mass, the film quality of the solid electrolyte tends to be weak, the high temperature heat resistance of the solid electrolytic capacitor is deteriorated, and the capacitance and the ESR are easily deteriorated in long-term durability.
  • the water content is 0.1% by mass or less, the capacitance decreases.
  • both the electrostatic capacity and the ESR can be compatible. Furthermore, by adjusting the water content to 4% by mass or less, excellent long-term durability can be exhibited.
  • the adjustment of the amount of water in the solid electrolyte can be controlled by the drying conditions, the drying atmosphere, and the like. For example, it is possible to carry out the drying temperature in the temperature range of 100 to 300.degree. In addition, the water content can be suitably adjusted even in a reduced pressure atmosphere.
  • the electrolytic solution is immersed, and a higher electrostatic capacity can be obtained by using the electrolytic solution as well.
  • the electrolyte solution is not particularly limited as long as it has high conductivity, and a known electrolyte is dissolved in a known solvent.
  • the solvent in the electrolytic solution examples include alcohol solvents such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol and glycerin, lactone solvents such as ⁇ -butyrolactone, ⁇ -valerolactone and ⁇ -valerolactone, Amide solvents such as N-methylformamide, N, N-dimethylformamide, N-methylacetamide, N-methylpyrrolidinone and the like, acetonitrile, nitrile solvents such as 3-methoxypropionitrile, water and the like.
  • alcohol solvents such as ethylene glycol, diethylene glycol, propylene glycol, 1,4-butanediol and glycerin
  • lactone solvents such as ⁇ -butyrolactone, ⁇ -valerolactone and ⁇ -valerolactone
  • Amide solvents such as N-methylformamide, N, N-dimethylformamide, N-methylacetamide,
  • the solid electrolytic capacitor 10 is formed by winding the separator 15 supporting the solid electrolyte 13 between the porous anode foil 11 and the cathode foil 14 on which the dielectric layer is formed.
  • the solid electrolyte layer 13 is formed by immersing or applying a solid electrolytic capacitor solution and drying. Examples of the method of applying the solution for solid electrolytic capacitor include known methods such as coating, impregnation, and spray. Examples of the drying method include known methods such as hot air drying.
  • the mixed solution thus obtained is kept at 20 ° C. and 29.64 g of ammonium persulfate and 8.0 g of a ferric sulfate oxidation catalyst solution dissolved in 200 ml of ion exchanged water are added while stirring. Stir for time to react.
  • the resulting reaction solution is dialyzed to remove impure ions, and then ion-exchanged to contain about 1.6% by mass of a conductive complex of polystyrene sulfonic acid and poly (3,4-ethylenedioxythiophene).
  • a solution (hereinafter referred to as a PEDOT-PSS solution) was obtained.
  • Example 1 In the conductive polymer solution (MBI) prepared in Preparation Example 1, 0.28 g of aminoethanol, 0.35 g of methylaminoethanol, 0.42 g of dimethylaminoethanol and 0.42 g of ethylaminoethanol are often added. It added and obtained each conductive polymer solution.
  • the obtained conductive polymer solution was immersed in a capacitor element under reduced pressure, and then dried with a hot air dryer at 150 ° C. for 30 minutes. Furthermore, immersion in each conductive polymer solution was repeated twice to form a solid electrolyte layer between the dielectric layer and the cathode.
  • the capacitor element in which the solid electrolyte layer was formed was loaded into an aluminum case, and sealed with a sealing rubber.
  • the initial value of the electrostatic capacitance in 120 Hz and ESR in 100 kHz was measured using LCR meter 2345 (made by NF circuit design block company). The results are shown in Table 1.
  • the ESR is an index of impedance.
  • Comparative example 1 Using the same method as in Example 1, 0.47 g of diethylamine was added to a conductive polymer solution (MBI) to prepare a solid electrolytic capacitor of Comparative Example 1. The evaluation results using the same evaluation method as in Example 1 are shown in Table 1.
  • Example 2 In the conductive polymer solution (MBII) prepared in Preparation Example 2, 0.42 g of aminoethanol, 0.52 g of methylaminoethanol, 0.63 g of dimethylaminoethanol, 0.63 g of ethylaminoethanol, respectively. 0.63 g of aminopropanol, 1.0 g of iminodiethanol and 1.4 g of nitrilotriethanol were added to obtain each conductive polymer solution.
  • Example 3 In each case, 0.8 g of a silane coupling agent (KBM-403) and 0.8 g of a polyester were added to the conductive polymer solution (MBIII) prepared in Preparation Example 3 to obtain each conductive polymer solution. I got
  • Comparative example 4 A solid electrolytic capacitor of Comparative Example 4 using a conductive polymer solution (MBIV) was produced in the same manner as in Example 1. The evaluation results similar to those of Example 1 are shown in Table 3.
  • Comparative example 5 The solid electrolytic capacitor of Comparative Example 5 using a conductive polymer solution (MBV) was produced using the same method as in Example 1. The evaluation results similar to those of Example 1 are shown in Table 3.
  • the content of the conductive complex (a) is smaller by mass ratio than the first hydroxy compound (b) and higher than the second hydroxy compound (c). According to the values of ESR and high temperature ESR, the ESR is low and the temperature stability is high. On the other hand, Comparative Examples 1 to 5 not satisfying such conditions had high ESR and low temperature stability.
  • the invention of the solid electrolytic capacitor according to the present application can be used for various electronic devices including digital devices.
  • the solution for a solid electrolytic capacitor and the method for producing a solid electrolytic capacitor according to the present invention can be used for a solid electrolytic capacitor suitable for various electronic devices including digital devices.
  • capacitor 11 anode foil 12 dielectric layer 13 solid electrolyte layer 14 cathode foil 15 separator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 高い静電容量及び低いESRを維持させるとともに、耐熱性が高い個体電解キャパシタを提供する。固体電解キャパシタ10は、誘電体層が形成されてなる多孔質の陽極箔11と陰極箔14との間に、固体電解質13を担持してなるセパレータ15を介在し巻回してなり、該固体電解質層は、少なくとも、カチオン化された導電性高分子及びポリマーアニオンとの導電性複合体(a)と、4つ以上のヒドロキシ基を有する第1のヒドロキシ類化合物(b)と、アミノ基と1つ以上のヒドロキシ基を有する第2のヒドロキシ類化合物(c)とを含み、該導電性複合体(a)の含有量は、質量比で、該第1のヒドロキシ類化合物(b)より少なく、且つ該第2のヒドロキシ類化合物(c)より多い。

Description

固体電解キャパシタ及びその製造方法並びに固体電解キャパシタ用溶液
 本発明は、固体電解キャパシタ及びその製造方法並びに固体電解キャパシタ用溶液に関する。
 近年、電子機器のデジタル化に伴い、電子機器に用いられるキャパシタは高周波領域におけるインピーダンス(等価直列抵抗)を低下させることが要求されている。従来から、この要求に対応すべく、アルミニウム、タンタル、ニオブなどの弁金属の酸化皮膜を誘電体とした、所謂、機能性キャパシタ(以下、キャパシタと略す。)が使用されている。
 このキャパシタの構造は、特許文献1に示されるように、弁金属の多孔質体からなる陽極と、陽極の表面を酸化して形成した誘電体層と、導電性の固体電解質層と、カーボン層、銀層などが積層された陰極とを有するものが一般的である。固体電解質層としては、導電性高分子を含有する導電性膜を用いることがある。
 導電性高分子を含有する導電性膜の形成法としては、弁金属の多孔質体表面にマンガン酸化物からなる導電層をあらかじめ形成した後にこれを電極として通電して重合する電解重合法(特許文献2参照)や、酸化剤を用いて導電性高分子を構成する前駆体モノマーを重合する化学酸化重合法が広く知られている(特許文献3参照)。
 電解重合法及び化学酸化重合法以外の導電性膜の形成法としては、例えば、特許文献4では、スルホ基、カルボキシ基等を持つポリマーアニオンを共存させながらアニリンを化学酸化重合して水溶性のポリアニリンを調製し、そのポリアニリン水溶液を塗布、乾燥して塗膜を形成する方法が提案されている。この方法では、簡便に高い導電性の導電性膜を形成できるとされている。
 すでに我々は弁金属の多孔質体からなる陽極と、該陽極の表面が酸化されて形成された誘電体層と該誘電体上に形成された固体電解質を含むキャパシタにおいて該固体電解質が窒素含有芳香族化合物を添加した導電性ポリマー(PEDOT/PSSポリマー分散液)を必須成分とする組成物から成ることを開示している。
 この固体電解質を構成する組成物の特徴はアルミ電解キャパシタ及びタンタルキャパシタ等の機能性キャパシタを簡便に製造できることを示したものである(特許文献5参照)。
 一方、導電性高分子分散体をキャパシタの固体電解質として適用しようという試みは、既に10年以上前から行われている。このような導電性高分子分散体に関する添加物として、カチオン化された導電性高分子とポリマーアニオンとの導電性複合体(特許文献1~5参照)、アミノ基と1つ以上のヒドロキシ基を有するヒドロキシ類化合物(特許文献6~14)が開示されている。
特開2003-37024号公報 特開昭63-158829号公報 特開昭63-173313号公報 特開平7-105718号公報 特開2006-100774号公報 特開2007-027767号公報 特開2007-096284号公報 特開2009-009997号公報 特開2009-009999号公報 特開2006-287182号公報 国際公開第2007/091656号 特開2008-109069号公報 特開2008-109068号公報 特表2009-508342号公報
 しかし、キャパシタの固体電解質層を形成する際に、特許文献2~4に記載された導電性膜の形成方法を適用した場合には、キャパシタの耐電圧が低くなるという問題が生じた。しかも、特許文献2に記載の電解重合法では、マンガン酸化物からなる導電層を形成する分、煩雑になる上に、マンガン酸化物は導電性が低いため、高導電性の導電性高分子を使用する効果が薄れるという問題があった。
 特許文献3に記載の化学酸化重合法では、重合時間が長く、また、膜の厚みを確保するために繰り返し重合しなければならず、導電性膜の形成効率が低かった上に、電解重合に比べて導電性も低かった。キャパシタの導電性が低いと、等価直列抵抗(以下、ESRという。)が高くなるという問題が生じる。
 特許文献5に記載のコンデンサにおいても、高温耐熱において静電容量が低下するという問題があった。
 特許文献6に記載のコンデンサは、ESRを低下させる必要があるという問題があった。
 一方、特許文献1~5に記載のカチオン化された導電性高分子とポリマーアニオンとの導電性複合体、特許文献6~14に記載のアミノ基と1つ以上のヒドロキシ基を有するヒドロキシ類化合物についても、これらを添加物とする導電性高分子分散体をキャパシタの固体電解質として適用しようという試みは、従来行われている導電性高分子前駆体であるモノマーのキャパシタ素子内でのインシツ(in-situ)重合法と異なり分散体のドーパントの多くはポリマースルホン酸であることから多くの課題が残されており、実際の適用には至っていないのが現状である。
 本発明は、上述の課題に鑑みて提案されるものであって、低いESR及び高い耐熱性を維持させるとともに、温度に対する安定性が高い固体電解キャパシタを提供することを目的とする。また、ESRが低く、温度安定性が高いキャパシタを簡便に製造できる固体電解キャパシタの製造方法を提供することを目的とする。さらに、ESRが低く、温度安定性が高いキャパシタの製造に適した固体電解キャパシタ用溶液を提供することを目的とする。
 上述の課題を解決するために、本発明の一態様は、少なくとも、多孔質からなる陽極体と、陽極体の表面に形成されている誘電体層と、陰極体とを具備する固体電解キャパシタにおいて、誘電体層と接して形成された固体電解質層を有し、該固体電解質層には少なくともカチオン化された導電性高分子及びポリマーアニオンとの導電性複合体(a)と4つ以上のヒドロキシ基を有する第1のヒドロキシ類化合物(b)とアミノ基と1つ以上のヒドロキシ基を有する第2のヒドロキシ類化合物(c)が含まれる固体電解キャパシタを提供する。
 本発明における必須成分であるカチオン化された導電性高分子とポリマーアニオンとの導電性複合体(a)は特許文献1~6中でも開示され、更にアミノ基と1つ以上のヒドロキシ基を有する第2のヒドロキシ類化合物(c)は特許文献6~14に於いて開示されている。しかしながら、特許文献6~9に於いては使用方法が本発明と異なりまたその中でも特許文献8及び9についてはアミン類の例示として挙げられているにすぎない。
 特許文献6に記載のコンデンサにおいては、陽極誘電体の上部に既に導電体が設けられているため基本的にはこのようなアミノ基と1つ以上のヒドロキシ基を有する第2のヒドロキシ類化合物(c)成分を使用する必要はなく、単に陽極の酸化防止の可能性に配慮した記載である。特許文献14に於いてもまたアミン類の例示として挙げられているにすぎない。
 更にはカチオン化された導電性高分子とポリマーアニオンとの導電性複合体(a)、4つ以上のヒドロキシ基を有する第1のヒドロキシ類化合物(b)、アミノ基と1つ以上のヒドロキシ基を有する第2のヒドロキシ類化合物(c)の単なる開示は、特許文献10~13に於いて開示されている。しかしながら、これらを同時に用いた例は開示されていない。
 本発明に於いては発明者らの地道な探索の結果これら(a)、(b)、(c)の成分を併用し、且つ特定の量比で存在させることによって上記課題を解決し実際の適用に道を開いたものである。このことは、以下の本発明の他の態様においても同様である。
 また、本発明の他の態様は、固体電解キャパシタの固体電解質層を形成するために用いられる固体電解キャパシタ用溶液であって、該固体電解キャパシタ用溶液は、少なくともカチオン化された導電性高分子及びポリマーアニオンとの導電性複合体(a)と4つ以上のヒドロキシ基を有する第1のヒドロキシ類化合物(b)とアミノ基と1つ以上のヒドロキシ基を有する第2のヒドロキシ類化合物(c)と溶媒とを有する固体電解キャパシタ用溶液を提供する。
 また、本発明のさらに他の態様は、少なくとも、多孔質からなる陽極体と、陽極体の表面に形成されている誘電体層と、陰極体とを具備する固体電解キャパシタの製造方法であって、少なくともカチオン化された導電性高分子及びポリマーアニオンとの導電性複合体(a)と4つ以上のヒドロキシ基を有する第1のヒドロキシ類化合物(b)とアミノ基と1つ以上のヒドロキシ基を有する第2のヒドロキシ類化合物(c)が含まれる固体電解質層を誘電体層と接して形成する工程を有する固体電解キャパシタの製造方法を提供する。
 また、本発明のさらに他の態様は、誘電体層が形成されてなる多孔質の陽極体と陰極体との間に、固体電解質を担持してなるセパレータを介在し巻回してなるキャパシタにおいて、該固体電解質は、前記キャパシタ用溶液を浸漬して形成された固体電解キャパシタを提供する。
 また、本発明のさらに他の態様は、誘電体層が形成されてなる多孔質の陽極体と陰極体との間に、固体電解質を担持してなるセパレータを介在し巻回してなるキャパシタの製造方法において、前記キャパシタ用溶液を浸漬して該固体電解質を形成する工程を有する固体電解キャパシタの製造方法を提供する。
 本発明に係る固体電解キャパシタは、ESRが低く、耐熱性が高いとともに、温度安定性が良好である。
 本発明に係る固体電解キャパシタの製造方法は、ESRが低く、温度安定性が良好なキャパシタを簡便に製造することができる。
 本発明に係る固体電解キャパシタ用溶液は、ESRが低く、温度安定性が良好な固体電解キャパシタの製造に適し、溶液粘度が低く、溶液粘度安定性が良好である。
固体電解キャパシタにおける一実施形態を示す断面図である。 固体電解キャパシタにおける他の実施形態を示す斜視図である。
[固体電解キャパシタ用溶液]
 次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、図面は模式的なものであり、図面における寸法、比率等は現実のものとは異なり、以下の説明を参酌して判断すべきことに留意すべきである。
 又、以下に示す実施の形態は、この発明の技術的思想を具体化するための構成や方法を例示するものであって、この発明の実施の形態は、発明の内容を下記のものに特定するものでない。この発明の実施の形態は、請求の範囲において、種々の変更を加えることができる。
 以下、本発明の固体電解キャパシタ用溶液の一実施形態について説明する。
 本実施形態の固体電解キャパシタ用溶液は、少なくとも、水及び/又は水と混合溶媒とカチオン化された導電性高分子及びポリマーアニオンとの導電性複合体(a)と4つ以上のヒドロキシ基を有する第1のヒドロキシ類化合物(b)とアミノ基と1つ以上のヒドロキシ基を有する第2のヒドロキシ類化合物(c)とを含有することを特徴とする。
 この固体電解キャパシタ用溶液は、多孔質からなる陽極体と、該陽極体の表面に形成されている誘電体層と、陰極体とを具備する固体電解キャパシタにおいて、該誘電体層と接して固体電解質層を形成するために用いられる。
 [導電性複合体]
 導電性複合体は、少なくとも、カチオン化された導電性高分子とポリマーアニオンとを含み、導電性を有するものを指す。必要に応じてアニオンドーパントを含ませることができる。ここでは特に限定するものではない。導電性複合体は、溶媒に溶解又は分散されたポリマーアニオンの存在下において、導電性高分子の前駆体モノマーを、酸化剤又は酸化重合触媒の存在下で化学酸化重合することによって容易に得ることができる。
 (導電性高分子)
 導電性高分子は、主鎖がπ共役系で構成されている有機高分子であれば使用できる。例えば、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体等が挙げられる。重合の容易さ、空気中での安定性の点からは、ポリピロール類、ポリチオフェン類及びポリアニリン類が好ましい。
 導電性高分子は無置換のままでも、充分な導電性を得ることができるが、導電性をより高めるためには、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基を導電性高分子に導入することが好ましい。
 このような導電性高分子の具体例としては、ポリピロール、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)、ポリ(チオフェン)、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3,4-ジヒドロキシチオフェン)、ポリ(3,4-ジメトキシチオフェン)、ポリ(3,4-ジエトキシチオフェン)、ポリ(3,4-ジプロポキシチオフェン)、ポリ(3,4-ジブトキシチオフェン)、ポリ(3,4-ジヘキシルオキシチオフェン)、ポリ(3,4-ジヘプチルオキシチオフェン)、ポリ(3,4-ジオクチルオキシチオフェン)、ポリ(3,4-ジデシルオキシチオフェン)、ポリ(3,4-ジドデシルオキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3,4-プロピレンジオキシチオフェン)、ポリ(3,4-ブテンジオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)、ポリアニリン、ポリ(2-メチルアニリン)、ポリ(3-イソブチルアニリン)、ポリ(2-アニリンスルホン酸)、ポリ(3-アニリンスルホン酸)等が挙げられる。
 なかでも、ポリピロール、ポリチオフェン、ポリ(N-メチルピロール)、ポリ(3-メチルチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)から選ばれる1種又は2種以上からなる(共)重合体が抵抗値、反応性の点から好適に用いられる。さらには、ポリピロール、ポリ(3,4-エチレンジオキシチオフェン)は、導電性がより高い上に、耐熱性が向上する点から、より好ましい。
 上記導電性高分子は、溶媒中、導電性高分子を形成する前駆体モノマーを、適切な酸化剤と酸化触媒と後述のポリマーアニオンの存在下で化学酸化重合することによって容易に製造できる。
 (前駆体モノマー)
 前駆体モノマーは、分子内にπ共役系を有し、適切な酸化剤の作用によって高分子化した際にもその主鎖にπ共役系が形成されるものである。例えば、ピロール類及びその誘導体、チオフェン類及びその誘導体、アニリン類及びその誘導体等が挙げられる。
 前駆体モノマーの具体例としては、ピロール、3-メチルピロール、3-エチルピロール、3-n-プロピルピロール、3-ブチルピロール、3-オクチルピロール、3-デシルピロール、3-ドデシルピロール、3,4-ジメチルピロール、3,4-ジブチルピロール、3-カルボキシピロール、3-メチル-4-カルボキシピロール、3-メチル-4-カルボキシエチルピロール、3-メチル-4-カルボキシブチルピロール、3-ヒドロキシピロール、3-メトキシピロール、3-エトキシピロール、3-ブトキシピロール、3-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-デシルチオフェン、3-ドデシルチオフェン、3-オクタデシルチオフェン、3-ブロモチオフェン、3-クロロチオフェン、3-ヨードチオフェン、3-シアノチオフェン、3-フェニルチオフェン、3,4-ジメチルチオフェン、3,4-ジブチルチオフェン、3-ヒドロキシチオフェン、3-メトキシチオフェン、3-エトキシチオフェン、3-ブトキシチオフェン、3-ヘキシルオキシチオフェン、3-ヘプチルオキシチオフェン、3-オクチルオキシチオフェン、3-デシルオキシチオフェン、3-ドデシルオキシチオフェン、3-オクタデシルオキシチオフェン、3,4-ジヒドロキシチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-ジヘキシルオキシチオフェン、3,4-ジヘプチルオキシチオフェン、3,4-ジオクチルオキシチオフェン、3,4-ジデシルオキシチオフェン、3,4-ジドデシルオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、3,4-ブテンジオキシチオフェン、3-メチル-4-メトキシチオフェン、3-メチル-4-エトキシチオフェン、3-カルボキシチオフェン、3-メチル-4-カルボキシチオフェン、3-メチル-4-カルボキシエチルチオフェン、3-メチル-4-カルボキシブチルチオフェン、アニリン、2-メチルアニリン、3-イソブチルアニリン、2-アニリンスルホン酸、3-アニリンスルホン酸等が挙げられる。
 (ポリマーアニオン)
 ポリマーアニオンは、高分子の側鎖にアニオン基を有する高分子を指す。
 アニオン基としては、導電性高分子への化学酸化ドープが起こりうる官能基であればよいが、なかでも、製造の容易さ及び安定性の観点からは、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。さらに、官能基の導電性高分子へのドープ効果の観点より、スルホ基、一置換硫酸エステル基、カルボキシ基がより好ましい。
 高分子としては、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステル及びこれらの共重合体であって、アニオン基を有する構成単位からなるもの、またはアニオン基を有する構成単位とアニオン基を有さない構成単位とからなるものである。
 このポリマーアニオンのアニオン基は、導電性高分子に対するドーパントとして機能して、導電性高分子の導電性と耐熱性を向上させる。
 ポリマーアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。
 これらのうち、ポリスチレンスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸が好ましい。
 ポリマーアニオンの重合度は、モノマー単位が10~100,000個の範囲であることが好ましく、溶媒溶解性及び導電性の点からは、50~10,000個の範囲がより好ましい。
 ポリマーアニオンの製造方法としては、例えば、酸を用いてアニオン基を有さないポリマーにアニオン基を直接導入する方法、アニオン基を有さないポリマーをスルホ化剤によりスルホン酸化する方法、アニオン基含有重合性モノマーの重合により製造する方法が挙げられる。
 アニオン基含有重合性モノマーの重合により製造する方法は、溶媒中、アニオン基含有重合性モノマーを、酸化剤及び/又は重合触媒の存在下で、酸化重合又はラジカル重合によって製造する方法が挙げられる。具体的には、所定量のアニオン基含有重合性モノマーを溶媒に溶解させ、これを一定温度に保ち、それに予め溶媒に所定量の酸化剤及び/又は重合触媒を溶解した溶液を添加し、所定時間で反応させる。その反応により得られたポリマーは溶媒によって一定の濃度に調整される。この製造方法において、アニオン基含有重合性モノマーにアニオン基を有さない重合性モノマーを共重合させてもよい。
 アニオン基含有重合性モノマーの重合に際して使用する酸化剤及び酸化触媒、溶媒は、導電性高分子を形成する前駆体モノマーを重合する際に使用するものと同様である。得られたポリマーがポリマーアニオン塩である場合には、ポリマーアニオン酸に変質させることが好ましい。アニオン酸に変質させる方法としては、イオン交換樹脂を用いたイオン交換法、限外ろ過法等が挙げられ、これらの中でも、作業が容易な点から限外ろ過法が好ましい。
 アニオン基含有重合性モノマーは、モノマーの一部が一置換硫酸エステル基、カルボキシ基、スルホ基等で置換されたものであり、例えば、置換若しくは未置換のエチレンスルホン酸化合物、置換若しくは未置換のスチレンスルホン酸化合物、置換若しくは未置換のアクリレートスルホン酸化合物、置換若しくは未置換のメタクリレートスルホン酸化合物、置換若しくは未置換のアクリルアミドスルホン酸化合物、置換若しくは未置換のシクロビニレンスルホン酸化合物、置換若しくは未置換のブタジエンスルホン酸化合物、置換若しくは未置換のビニル芳香族スルホン酸化合物が挙げられる。
 具体的には、ビニルスルホン酸及びその塩類、アリルスルホン酸及びその塩類、メタリルスルホン酸及びその塩類、スチレンスルホン酸及びその塩類、メタリルオキシベンゼンスルホン酸及びその塩類、アリルオキシベンゼンスルホン酸及びその塩類、α-メチルスチレンスルホン酸及びその塩類、アクリルアミド-t-ブチルスルホン酸及びその塩類、2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩類、シクロブテン-3-スルホン酸及びその塩類、イソプレンスルホン酸及びその塩類、1,3-ブタジエン-1-スルホン酸及びその塩類、1-メチル-1,3-ブタジエン-2-スルホン酸及びその塩類、1-メチル-1,3-ブタジエン-4-スルホン酸及びその塩類、アクリル酸エチルスルホン酸(CHCH-COO-(CH-SOH)及びその塩類、アクリル酸プロピルスルホン酸(CHCH-COO-(CH-SOH)及びその塩類、アクリル酸-t-ブチルスルホン酸(CHCH-COO-C(CHCH-SOH)及びその塩類、アクリル酸-n-ブチルスルホン酸(CHCH-COO-(CH-SOH)及びその塩類、アリル酸エチルスルホン酸(CHCHCH-COO-(CH-SOH)及びその塩類、アリル酸-t-ブチルスルホン酸(CHCHCH-COO-C(CHCH-SOH)及びその塩類、4-ペンテン酸エチルスルホン酸(CHCH(CH-COO-(CH-SOH)及びその塩類、4-ペンテン酸プロピルスルホン酸(CHCH(CH-COO-(CH-SOH)及びその塩類、4-ペンテン酸-n-ブチルスルホン酸(CHCH(CH-COO-(CH-SOH)及びその塩類、4-ペンテン酸-t-ブチルスルホン酸(CHCH(CH-COO-C(CHCH-SOH)及びその塩類、4-ペンテン酸フェニレンスルホン酸(CHCH(CH-COO-C-SOH)及びその塩類、4-ペンテン酸ナフタレンスルホン酸(CHCH(CH-COO-C10-SOH)及びその塩類、メタクリル酸エチルスルホン酸(CHC(CH)-COO-(CH-SOH)及びその塩類、メタクリル酸プロピルスルホン酸(CHC(CH)-COO-(CH-SOH)及びその塩類、メタクリル酸-t-ブチルスルホン酸(CHC(CH)-COO-C(CHCH-SOH)及びその塩類、メタクリル酸-n-ブチルスルホン酸(CHC(CH)-COO-(CH-SOH)及びその塩類、メタクリル酸フェニレンスルホン酸(CHC(CH)-COO-C-SOH)及びその塩類、メタクリル酸ナフタレンスルホン酸(CHC(CH)-COO-C10-SOH)及びその塩類、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。また、これらを2種以上含む共重合体であってもよい。
 アニオン基を有さない重合性モノマーとしては、エチレン、プロぺン、1-ブテン、2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、スチレン、p-メチルスチレン、p-エチルスチレン、p-ブチルスチレン、2,4,6-トリメチルスチレン、p-メトキシスチレン、α-メチルスチレン、2-ビニルナフタレン、6-メチル-2-ビニルナフタレン、1-ビニルイミダゾール、ビニルピリジン、ビニルアセテート、アクリルアルデヒド、アクリルニトリル、N-ビニル-2-ピロリドン、N-ビニルアセトアミド、N-ビニルホルムアミド、N-ビニルイミダゾ-ル、アクリルアミド、N,N-ジメチルアクリルアミド、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸イソオクチル、アクリル酸イソノニルブチル、アクリル酸ラウリル、アクリル酸アリル、アクリル酸ステアリル、アクリル酸イソボニル、アクリル酸シクロヘキシル、アクリル酸ベンジル、アクリル酸エチルカルビトール、アクリル酸フェノキシエチル、アクリル酸ヒドロキシエチル、アクリル酸メトキシエチル、アクリル酸エトキシエチル、アクリル酸メトキシブチル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、アクリロイルモルホリン、ビニルアミン、N,N-ジメチルビニルアミン、N,N-ジエチルビニルアミン、N,N-ジブチルビニルアミン、N,N-ジ-t-ブチルビニルアミン、N,N-ジフェニルビニルアミン、N-ビニルカルバゾール、ビニルアルコール、塩化ビニル、フッ化ビニル、メチルビニルエーテル、エチルビニルエーテル、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、2-メチルシクロヘキセン、ビニルフェノール、1,3-ブタジエン、1-メチル-1,3-ブタジエン、2-メチル-1,3-ブタジエン、1,4-ジメチル-1,3-ブタジエン、1,2-ジメチル-1,3-ブタジエン、1,3-ジメチル-1,3-ブタジエン、1-オクチル-1,3-ブタジエン、2-オクチル-1,3-ブタジエン、1-フェニル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1-ヒドロキシ-1,3-ブタジエン、2-ヒドロキシ-1,3-ブタジエン等が挙げられる。
 これらアニオン基を有さない重合性モノマーを共重合することで溶媒溶解性をコントロールすることができる。
 導電性複合体中のポリマーアニオン量は、導電性高分子を溶媒に安定して溶解又は分散させることが可能であれば、好適に使用でき、特に限定しない。好ましくは、ポリマーアニオン中のアニオン基のモル量が導電性高分子のモル量に対し、1~5倍の範囲である。この範囲であれば、導電性複合体が高い導電性と安定した分散性が両立可能となる。1倍より少なくなると分散性が悪くなる傾向があり、5倍より多くなると導電性が低下する傾向がある。
 (ポリマーアニオン塩)
 ポリマーアニオン及び導電性高分子を含む導電性複合体の水分散溶液は、通常pH3より低い状態であり、酸性度が強く、キャパシタ素子ヘの浸漬性が低い。陽極箔及び陰極箔の内部への浸漬性を向上させるために、酸性度を調整した方が好ましい。本実施形態のキャパシタ用溶液は、pH3~13の範囲であれば好適に使用できる。陽極箔及び陰極箔の内部への浸漬性を向上させるために、酸性度を調整した方が好ましい。より好ましくはpH3~8の範囲である。
 pH3以下である場合、ESR、容量などに於いて初期特性の発現すらできない。pH8以上の場合には初期特性は問題ないが長期の耐熱性に劣る。更にpH13以上の場合は短期間での耐熱試験によって特性が顕著に低下する。
 前記ポリマーアニオンと導電性高分子との導電性複合体の溶解又は分散水溶液中に、アルカリ性化合物を添加することで、該水溶液のpHを容易に調整することができる。該水溶液のpHを調整することで、該導電性複合体の酸性度が容易に変動させることができ、ポリマーアニオンの塩を形成することができる。
 酸性度を調整する方法としては、pH調整剤を用いて、適宜行えばよく、pH調整剤としては、例えばアルカリ類、アミン類、イミダソール類、ピリジン類等が使用できる。
 アルカリ類としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニアなどが挙げられる。また、アミン類としては、例えば、エチルアミン、ジエチルアミン、メチルエチルアミン、トリエチルアミンのような脂肪族アミン、アニリン、ベンジルアミン、ピロール、イミダゾール、ピリジンのような芳香族アミンもしくはこれらの誘導体などが挙げられる。
 これらの中でも、弱塩基の脂肪族アミン類、イミダゾール類、ピリジン類、金属アルコキシド類が好ましい。
 脂肪族アミン類としては、例えば、一級アミン(メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン等)、二級アミン(ジメチルアミン、ジエチルアミン、ジプロピルアミン、メチルエチルアミン、ジフェニルアミン、イミノジエタノール等)、三級アミン(トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリフェニルアミン等)、テトラアルキルアンモニウム(テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、メチルトリエチルアンモニウム、ジメチルジエチルアンモニウム等を用いてポリマーアニオンとのアンモニウム塩を形成できる。
 イミダゾール類及びその誘導体の具体的な例としては、イミダゾール、2-メチルイミダゾール、2-プロピルイミダゾール、2-ウンデジルイミダゾール、2-フェニルイミダゾール、N-メチルイミダゾール、1-(2-ヒドロキシエチル)イミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、1-アセチルイミダゾール、4,5-イミダゾールジカルボン酸、4,5-イミダゾールジカルボン酸ジメチル、ベンズイミダゾール、2-アミノべンズイミダゾール、2-アミノべンズイミダゾール-2-スルホン酸、2-アミノ-1-メチルべンズイミダゾール、2-ヒドロキシべンズイミダゾール、2-(2-ピリジル)べンズイミダゾール等が挙げられる。
 ピリミジン類及びその誘導体の具体的な例としては、2-アミノ-4-クロロ-6-メチルピリミジン、2-アミノ-6-クロロ-4-メトキシピリミジン、2-アミノ-4,6-ジクロロピリミジン、2-アミノ-4,6-ジヒドロキシピリミジン、2-アミノ-4,6-ジメチルピリミジン、2-アミノ-4,6-ジメトキシピリミジン、2-アミノピリミジン、2-アミノ-4-メチルピリミジン、4,6-ジヒドロキシピリミジン、2,4-ジヒドロキシピリミジン-5-カルボン酸、2,4,6-トリアミノピリミジン、2,4-ジメトキシピリミジン、2,4,5-トリヒドロキシピリミジン、2,4-ピリミジンジオール等が挙げられる。
 (溶媒)
 導電性高分子の製造で使用する溶媒としては特に制限されず、前記前駆体モノマーを溶解又は分散しうる溶媒であり、酸化剤及び酸化触媒の酸化力を維持させることができるものであればよい。例えば、水、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチレンホスホルトリアミド、アセトニトリル、ベンゾニトリル等の極性溶媒、クレゾール、フェノール、キシレノール等のフェノール類、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ヘキサン、ベンゼン、トルエン等の炭化水素類、ギ酸、酢酸等のカルボン酸、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、ジオキサン、ジエチルエーテル等のエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル類、3-メチル-2-オキサゾリジノン等の複素環化合物、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物等が挙げられる。これらの溶媒は、単独で用いてもよいし、2種類以上の混合物としてもよいし、他の有機溶媒との混合物としてもよい。
 (酸化剤及び酸化触媒)
 酸化剤、酸化触媒としては、前記前駆体モノマーを酸化させて導電性高分子を得ることができるものであればよく、例えば、ぺルオキソ二硫酸アンモニウム、ぺルオキソ二硫酸ナトリウム、ぺルオキソ二硫酸カリウム等のぺルオキソ二硫酸塩、塩化第二鉄、硫酸第二鉄、硝酸第二鉄、塩化第二銅等の遷移金属化合物、三フッ化ホウ素、塩化アルミニウムなどの金属ハロゲン化合物、酸化銀、酸化セシウム等の金属酸化物、過酸化水素、オゾン等の過酸化物、過酸化ベンゾイル等の有機過酸化物、酸素等が挙げられる。
 [第1のヒドロキシ類化合物]
 本実施形態の第1のヒドロキシ類化合物は、分子内に4以上のヒドロキシ基を有する脂肪族性化合物を指す。糖類、糖アルコール類、ポリヒドロキシ類等が挙げられる。
 具体的には、例えば、ショ糖、マルトース、キシロース、セルロース等の糖類及び糖誘導体、D-グルシトール、マンニット、ペンタエリスリトール、ジペンタエリスリトール等の糖アルコール類、ポリビニルアルコール等が挙げられる。導電性高分子膜の熱安定性の観点から高い融点を有する化合物が好ましい。より好ましくは170℃以上の融点を有する、ペンタエリスリトール、ジペンタエリスリトール等が挙げられる。
 第1のヒドロキシ類化合物の含有量は、導電性複合体に対し、質量比で1倍以上含まれていれば、好適に使用できる。好ましくは、第1のヒドロキシ類化合物の含有量は、導電性複合体の質量より多く含まれる。さらに好ましくは、1~20倍の範囲である。この範囲であれば固体電解質の耐熱性と導電性が両立できる。20倍を超えると固体電解質の製膜性が悪くなる傾向がある。
 [第2のヒドロキシ類化合物]
 本実施形態の第2のヒドロキシ類化合物は、分子内に1つ以上のアミノ基及び1つ以上のヒドロキシ基を有する化合物を指す。
 第2のヒドロキシ類化合物は分子内にアミノ基を含むことで、アミノ基が固体電解質中の導電性複合体の一部分とイオン結合を形成しやすく、固体電解質の製膜性を向上することが可能である。また、同時に分子内にヒドロキシ基を含むことで、固体電解質中の第1のヒドロキシ類化合物、第3のヒドロキシ類化合物とも相互作用を生じやすくなると考えられる。
 第2のヒドロキシ類化合物は、アミノ基とヒドロキシ基との間にC1~C4のアルキレンを有することが好ましく、アミノ基に一つ以上アルキル基を有することが好ましい。また、第2のヒドロキシ類化合物は、エチルアミノエタノール、ジエチルアミノエタノール、メチルアミノエタノール、ジメチルアミノエタノールから選ばれる一つ以上含むことが好ましく、ニトリロトリエタノールであることが好ましい。
 具体的には、例えば、アミノメタノール、アミノエタノール、3-アミノ-1-プロパノール、2-アミノ-2-メチル-1-プロパノール、エチルアミノプロパノール、2-(2-アミノエトキシ)エタノール、2-アミノ-2-メチル-1,3-プロパンジオール、2-アミノ-1,3-プロパンジオール、3-アミノ-1,2-プロパンジオール、1-アミノ-2-ブタノール、2-アミノ-1-ブタノール、2-アミノシクロヘキサノール、N-シクロヘキシルエタノールアミンN-(3-アミノプロピル)ジエタノールアミン、2-(ブチルアミノ)エタノール、2-(tert-ブチルアミノ)エタノール、N-(2-シアノエチル)ジエタノールアミン、2-(2-ジエチルアミノエトキシ)エタノール、2-(エチルアミノ)エタノール、2-(メチルアミノ)エタノール、2-ジエチルアミノエタノール、2-(ジメチルアミノ)エタノール、ジイソプロパノールアミン、2-(イソプロピルアミノ)エタノール、3-(ジエチルアミノ)-1,2-プロパンジオール、2-[2-(ジメチルアミノ)エトキシ]エタノール、3-(ジメチルアミノ)-1,2-プロパンジオール、D-グルカミン、N-メチル-D-グルカミン、1-(2-ヒドロキシエチル)ピロリジン、2-[(ヒドロキシメチル)アミノ]エタノール、イミノジエタノール、N-エチルジエタノールアミン、N-ブチルジエタノールアミン、ニトリロトリエタノール等が挙げられる。導電性高分子の製膜性、導電性及び溶液の安定性等の観点からアミノエタノール、2-(メチルアミノ)エタノール、2-ジエチルアミノエタノール、2-(ジメチルアミノ)エタノール、1-アミノ-2-ブタノール、2-アミノ-1-ブタノール、ニトリロトリエタノール等が好ましい。
 第2のヒドロキシ類化合物の含有量は、導電性複合体に対し、質量比で0.1~1.0倍含まれてあれば、好適に使用できる。好ましくは、第2のヒドロキシ類化合物の含有量は、導電性複合体の質量より少なく含まれる。好ましくは、0.3~0.8倍の範囲である。この範囲であれば固体電解質の製膜性と導電性が両立できる。1倍を超えると固体電解質の導電性が悪くなる傾向がある。
 [第3のヒドロキシ類化合物]
 本実施形態の第3のヒドロキシ類化合物は、分子内に1~3個のヒドロキシ基を有する化合物を指す。反応性モノマー化合物、グリコール系化合物等が挙げられる。第3のヒドロキシ類化合物としては、(メタ)アクリル類、(メタ)アクリルアミド類であることが好ましい。
 反応性モノマー化合物としては、アクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシエチル(HEMA)、アクリル酸2-ヒドロキシブチル、メタクリル酸2-ヒドロキシブチル、N-(ヒドロキシメチル)アクリルアミド、N-(ヒドロキシメチル)メタクリルアミド等が挙げられる。グリコール系化合物としては、ジエチレングリコールモノエチルエーテル(DEGEE)等が挙げられる。
 第3のヒドロキシ類化合物の含有量は、導電性複合体に対し、質量比で0.5倍以上含まれていれば、好適に使用できる。好ましくは、第3のヒドロキシ類化合物の含有量は、導電性複合体の質量より多く含まれる。さらに好ましくは、1~20倍の範囲である。この範囲であれば固体電解質の耐熱性と導電性が両立できる。20倍を超えると固体電解質の製膜性が悪くなる傾向がある。
 (溶媒)
 本発明の固体電解キャパシタ溶液の溶媒としては、水及び水と混合し得る溶媒が好適に使用できる。例えば、水、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチレンホスホルトリアミド、アセトニトリル、ベンゾニトリル等の極性溶媒、クレゾール、フェノール、キシレノール等のフェノール類、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ヘキサン、ベンゼン、トルエン等の炭化水素類、ギ酸、酢酸等のカルボン酸、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、ジオキサン、ジエチルエーテル等のエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル類、3-メチル-2-オキサゾリジノン等の複素環化合物、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物等が挙げられる。
 (粒子径)
 本実施形態の導電性複合体は、キャパシタ素子内部への浸漬性を考慮して、平均粒子径が1500ナノメートル以下であることが好ましい。より好ましくは500ナノメートル以下である。平均粒子径は1500ナノメートル以上であると、多孔質のアルミニウム箔の孔より大きい粒子が多く含まれ、内部への浸漬性が悪くなることがあるため、静電容量等の特性が得られにくい。また、d50が1000ナノメート以下であることが好ましい。より好ましくは100ナノメートル以下である。
 粒子径の調整は、導電性複合体を合成する時の導電性高分子の重合度及びポリマーアニオンの分子量の調整によって制御することが可能である。また、導電性複合体を合成後の分散方法、分散剤の添加等によっても制御できる。分散方法としては高圧粉砕等がある。
 (溶液粘度)
 本実施形態のキャパシタ用溶液としては、導電性複合体の固形分濃度を0.5~3.0質量%にすることが好ましく、1.0~2.0質量%にすることがより好ましい。固形分濃度が0.5質量%以上であれば、固体電解質膜を容易に形成でき、3.0質量%以下であれば、粘度を低下させて、多孔質体のキャパシタ用基材10aの内部にキャパシタ用溶液を容易に浸透させることができる。
 溶液の粘度は、浸透性が高くなることから、100mPa・s以下であることが好ましく、50mPa・s以下であることがより好ましく、30mPa・s以下であることが特に好ましい。
 キャパシタ用溶液の粘度を低くする方法としては、例えば、キャパシタ用溶液の固形分濃度を低くする方法、ポリマーアニオンの分子量調整を用いる方法、低粘度溶媒成分を添加する方法、π共役系導電性高分子の分散性を高める方法などが挙げられる。これらのうちの1種のみを適用してもよいし、2種以上の方法を組み合わせて適用してもよい。
 ポリマーアニオンの分子量調整を用いる方法では、ポリマーアニオンの質量平均分子量を10万~100万にすることが好ましく、20万~80万にすることがより好ましい。ポリマーアニオンの質量平均分子量が10万以上かつ100万以下にすれば、キャパシタ用溶液を低粘度化でき、多孔質体のキャパシタ基材10aの内部に導電性高子溶液を容易に浸透させることができる。
 低粘度溶媒成分を添加する方法における低粘度溶媒成分としては、例えば、メタノール等のアルコール系溶媒、ジエチルエーテル等のエーテル系溶媒などが挙げられる。
 キャパシタ用溶液の分散性を高める方法としては、例えば、高圧分散法、超音波分散法、高速流体分散法などが挙げられる。
 (高導電化剤)
 本実施形態の固体電解キャパシタの固体電解質の導電性をより高くするために、導電性高分子の導電性を引上げることができる化合物を添加することができる。ここで、導電性向上剤は、導電性高分子又は導電性高分子のドーパントと相互作用して、導電性高分子の電気伝導度を向上させるものである。
 これらの化合物としては、例えば、エーテル化合物、窒素含有芳香族性環式化合物、2個以上のヒドロキシ基を有する化合物、2個以上のカルボキシ基を有する化合物、1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物、アミド基を有する化合物、イミド基を有する化合物、ラクタム化合物、グリシジル基を有する化合物、アクリル化合物等からなる群より選ばれる1種類以上の化合物であることが好ましい。
 ・窒素含有芳香族性環式化合物
 窒素含有芳香族性環式化合物としては、例えば、一つの窒素原子を含有するピリジン類及びその誘導体、二つの窒素原子を含有するイミダゾール類及びその誘導体、ピリミジン類及びその誘導体、ピラジン類及びその誘導体、三つの窒素原子を含有するトリアジン類及びその誘導体等が挙げられる。溶媒溶解性等の観点からは、ピリジン類及びその誘導体、イミダゾール類及びその誘導体、ピリミジン類及びその誘導体が好ましい。
 また、窒素含有芳香族性環式化合物は、アルキル基、ヒドロキシ基、カルボキシ基、シアノ基、フェニル基、フェノール基、エステル基、アルコキシル基、カルボニル基等の置換基が環に導入されたものでもよいし、導入されていないものでもよい。また、環は多環であってもよい。
 ピリジン類及びその誘導体の具体的な例としては、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、4-エチルピリジン、N-ビニルピリジン、2,4-ジメチルピリジン、2,4,6-トリメチルピリジン、3-シアノ-5-メチルピリジン、2-ピリジンカルボン酸、6-メチル-2-ピリジンカルボン酸、4-ピリジンカルボキシアルデヒド、4-アミノピリジン、2,3-ジアミノピリジン、2,6-ジアミノピリジン、2,6-ジアミノ-4-メチルピリジン、4-ヒドロキシピリジン、4-ピリジンメタノール、2,6-ジヒドロキシピリジン、2,6-ピリジンジメタノール、6-ヒドロキシニコチン酸メチル、2-ヒドロキシ-5-ピリジンメタノール、6-ヒドロキシニコチン酸エチル、4-ピリジンメタノール、4-ピリジンエタノール、2-フェニルピリジン、3-メチルキノリン、3-エチルキノリン、キノリノール、2,3-シクロペンテノピリジン、2,3-シクロヘキサノピリジン、1,2-ジ(4-ピリジル)エタン、1,2-ジ(4-ピリジル)プロパン、2-ピリジンカルボキシアルデヒド、2-ピリジンカルボン酸、2-ピリジンカルボニトリル、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3-ピリジンスルホン酸等が挙げられる。
 イミダゾール類及びその誘導体の具体的な例としては、イミダゾール、2-メチルイミダゾール、2-プロピルイミダゾール、2-ウンデジルイミダゾール、2-フェニルイミダゾール、N-メチルイミダゾール、N-ビニルイミダゾール、N-アリルイミダゾール、1-(2-ヒドロキシエチル)イミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、1-アセチルイミダゾール、4,5-イミダゾールジカルボン酸、4,5-イミダゾールジカルボン酸ジメチル、ベンズイミダゾール、2-アミノべンズイミダゾール、2-アミノべンズイミダゾール-2-スルホン酸、2-アミノ-1-メチルべンズイミダゾール、2-ヒドロキシべンズイミダゾール、2-(2-ピリジル)べンズイミダゾール等が挙げられる。
 ピリミジン類及びその誘導体の具体的な例としては、2-アミノ-4-クロロ-6-メチルピリミジン、2-アミノ-6-クロロ-4-メトキシピリミジン、2-アミノ-4,6-ジクロロピリミジン、2-アミノ-4,6-ジヒドロキシピリミジン、2-アミノ-4,6-ジメチルピリミジン、2-アミノ-4,6-ジメトキシピリミジン、2-アミノピリミジン、2-アミノ-4-メチルピリミジン、4,6-ジヒドロキシピリミジン、2,4-ジヒドロキシピリミジン-5-カルボン酸、2,4,6-トリアミノピリミジン、2,4-ジメトキシピリミジン、2,4,5-トリヒドロキシピリミジン、2,4-ピリミジンジオール等が挙げられる。
 ピラジン類及びその誘導体の具体的な例としては、ピラジン、2-メチルピラジン、2,5-ジメチルピラジン、ピラジンカルボン酸、2,3-ピラジンジカルボン酸、5-メチルピラジンカルボン酸、ピラジンアミド、5-メチルピラジンアミド、2-シアノピラジン、アミノピラジン、3-アミノピラジン-2-カルボン酸、2-エチル-3-メチルピラジン、2-エチル-3-メチルピラジン、2,3-ジメチルピラジン、2,3-ジエチルピラジン等が挙げられる。
 トリアジン類及びその誘導体の具体的な例としては、1,3,5-トリアジン、2-アミノ-1,3,5-トリアジン、3-アミノ-1,2,4-トリアジン、2,4-ジアミノ-6-フェニル-1,3,5-トリアジン、2,4,6-トリアミノ-1,3,5-トリアジン、2,4,6-トリス(トリフルオロメチル)-1,3,5-トリアジン、2,4,6-トリ-2-ピリジン-1,3,5-トリアジン、3-(2-ピリジン)-5,6-ビス(4-フェニルスルホン酸)-1,2,4-トリアジン二ナトリウム、3-(2-ピリジン)-5,6-ジフェニル-1,2,4-トリアジン、3-(2-ピリジン)-5,6-ジフェニル-1,2,4―トリアジン-ρ,ρ’-ジスルホン酸二ナトリウム、2-ヒドロキシ-4,6-ジクロロ-1,3,5-トリアジン等が挙げられる。
 窒素含有芳香族性環式化合物の窒素原子に導入される置換基としては、水素原子、アルキル基、ヒドロキシ基、カルボキシ基、シアノ基、フェニル基、フェノール基、エステル基、アルコキシル基、カルボニル基等が挙げられる。置換基の種類は前記に示される置換基を導入することができる。
 窒素含有芳香族性環式化合物の含有量は、ポリマーアニオンのアニオン基単位1モルに対して0.1~100モルの範囲であることが好ましく、0.5~30モルの範囲であることがより好ましく、導電性複合体の導電性の観点からは、1~10モルの範囲が特に好ましい。窒素含有芳香族性環式化合物の含有率が0.1モルより少なくなると、導電性が不足することがある。また、窒素含有芳香族性環式化合物が100モルを超えて含まれると共役系導電性高分子の含有量が少なくなり、やはり充分な導電性が得られにくい。
 ・2個以上のヒドロキシ基を有する化合物
 2個以上のヒドロキシ基を有する化合物としては、例えば、プロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、グリセリン、ジグリセリン、イソプレングリコール、ジメチロールプロピオン酸、ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、チオジエタノール、酒石酸、D-グルカル酸、グルタコン酸等の多価脂肪族アルコール類、1,4-ジヒドロキシベンゼン、1,3-ジヒドロキシベンゼン、2,3-ジヒドロキシ-1-ペンタデシルベンゼン、2,4-ジヒドロキシアセトフェノン、2,5-ジヒドロキシアセトフェノン、2,4-ジヒドロキシベンゾフェノン、2,6-ジヒドロキシベンゾフェノン、3,4-ジヒドロキシベンゾフェノン、3,5-ジヒドロキシベンゾフェノン、2,4’-ジヒドロキシジフェニルスルフォン、2,2’,5,5’-テトラヒドロキシジフェニルスルフォン、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシジフェニルスルフォン、ヒドロキシキノンカルボン酸及びその塩類、2,3-ジヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、2,5-ジヒドロキシ安息香酸、2,6-ジヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸、1,4-ヒドロキノンスルホン酸及びその塩類、4,5-ヒドロキシベンゼン-1,3-ジスルホン酸及びその塩類、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン-2,6-ジカルボン酸、1,6-ジヒドロキシナフタレン-2,5-ジカルボン酸、1,5-ジヒドロキシナフトエ酸、1,4-ジヒドロキシ-2-ナフトエ酸フェニルエステル、4,5-ジヒドロキシナフタレン-2,7-ジスルホン酸及びその塩類、1,8-ジヒドロキシ-3,6-ナフタレンジスルホン酸及びその塩類、6,7-ジヒドロキシ-2-ナフタレンスルホン酸及びその塩類、1,2,3-トリヒドロキシベンゼン(ピロガロール)、1,2,4-トリヒドロキシベンゼン、5-メチル-1,2,3-トリヒドロキシベンゼン、5-エチル-1,2,3-トリヒドロキシベンゼン、5-プロピル-1,2,3-トリヒドロキシベンゼン、トリヒドロキシ安息香酸、トリヒドロキシアセトフェノン、トリヒドロキシベンゾフェノン、トリヒドロキシベンゾアルデヒド、トリヒドロキシアントラキノン、2,4,6-トリヒドロキシベンゼン、テトラヒドロキシ-p-ベンゾキノン、テトラヒドロキシアントラキノン、ガーリック酸メチル(没食子酸メチル)、ガーリック酸エチル(没食子酸エチル)、ヒドロキノンスルホン酸カリウム等の芳香族化合物等が挙げられる。
 2個以上のヒドロキシ基を有する化合物の含有量は、ポリマーアニオンのアニオン基単位1モルに対して0.05~50モルの範囲であることが好ましく、0.3~10モルの範囲であることがより好ましい。2個以上のヒドロキシ基を有する化合物の含有量が、ポリマーアニオンのアニオン基単位1モルに対して0.05モルより少なくなると、導電性及び耐熱性が不足することがある。また、2個以上のヒドロキシ基を有する化合物の含有量が、ポリマーアニオンのアニオン基単位1モルに対して50モルより多くなると、固体電解質層13中の導電性高分子の含有量が少なくなり、やはり充分な導電性が得られにくく、固体電解質層13の物性が変化することがある。
 ・2個以上のカルボキシ基を有する化合物
 2個以上のカルボキシ基を有する化合物としては、マレイン酸、フマル酸、イタコン酸、シトラコン酸、マロン酸、1,4-ブタンジカルボン酸、コハク酸、酒石酸、アジピン酸、D-グルカル酸、グルタコン酸、クエン酸等の脂肪族カルボン酸類化合物、フタル酸、テレフタル酸、イソフタル酸、テトラヒドロ無水フタル酸、5-スルホイソフタル酸、5-ヒドロキシイソフタル酸、メチルテトラヒドロ無水フタル酸、4,4’-オキシジフタル酸、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ナフタレンジカルボン酸、トリメリット酸、ピロメリット酸等の、芳香族性環に少なくとも一つ以上のカルボキシ基が結合している芳香族カルボン酸類化合物、ジグリコール酸、オキシ二酪酸、チオ二酢酸、チオ二酪酸、イミノ二酢酸、イミノ酪酸等が挙げられる。
 2個以上のカルボキシ基を有する化合物は、ポリマーアニオンのアニオン基単位1モルに対して0.1~30モルの範囲であることが好ましく、0.3~10モルの範囲であることがより好ましい。2個以上のカルボキシ基を有する化合物の含有量が、ポリマーアニオンのアニオン基単位1モルに対して0.1モルより少なくなると、導電性及び耐熱性が不足することがある。また2個以上のカルボキシ基を有する化合物の含有量が、ポリマーアニオンのアニオン基単位1モルに対して30モルより多くなると、固体電解質層13中の導電性高分子の含有量が少なくなり、やはり充分な導電性が得られにくく、固体電解質層13の物性が変化することがある。
 ・1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物
 1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物としては、酒石酸、グリセリン酸、ジメチロールブタン酸、ジメチロールプロパン酸、D-グルカル酸、グルタコン酸等が挙げられる。
 1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物の含有量は、導電性複合体100質量部に対して1~5,000質量部であることが好ましく、50~500質量部であることがより好ましい。1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物の含有量が1質量部より少なくなると、導電性及び耐熱性が不足することがある。また、1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物の含有量が5,000質量部より多くなると、固体電解質中の導電性高分子の含有量が少なくなり、やはり充分な導電性が得ることが難しい。
 ・アミド化合物
 アミド基を有する化合物は、-CO-NH-(COの部分は二重結合)で表されるアミド結合を分子中に有する単分子化合物である。すなわち、アミド化合物としては、例えば、上記結合の両末端に官能基を有する化合物、上記結合の一方の末端に環状化合物が結合された化合物、上記両末端の官能基が水素である尿素及び尿素誘導体などが挙げられる。
 アミド化合物の具体例としては、アセトアミド、マロンアミド、スクシンアミド、ベンズアミド、ナフトアミド、フタルアミド、イソフタルアミド、テレフタルアミド、ニコチンアミド、イソニコチンアミド、2-フルアミド、ホルムアミド、N-メチルホルムアミド、プロピオンアミド、プロピオルアミド、ブチルアミド、イソブチルアミド、パルミトアミド、ステアリルアミド、オレアミド、オキサミド、グルタルアミド、アジプアミド、シンナムアミド、グルコールアミド、ラクトアミド、グリセルアミド、タルタルアミド、シトルアミド、グリオキシルアミド、プルブアミド、アセトアセトアミド、ジメチルアセトアミド、ベンジルアミド、アントラニルアミド、エチレンジアミンテトラアセトアミド、ジアセトアミド、トリアセトアミド、ジベンズアミド、トリベンズアミド、ローダニン、尿素、1-アセチル-2-チオ尿素、ビウレット、ブチル尿素、ジブチル尿素、1,3-ジメチル尿素、1,3-ジエチル尿素及びこれらの誘導体等が挙げられる。
 アミド化合物の分子量は46~10,000であることが好ましく、46~5,000であることがより好ましく、46~1,000であることが特に好ましい。
 アミド化合物の含有量は、導電性複合体の合計100質量部に対して1~5,000質量部であることが好ましく、50~500質量部であることがより好ましい。アミド化合物の含有量が1質量部より少なくなると、導電性及び耐熱性が不足することがある。また、アミド化合物の含有量が5,000質量部より多くなると、固体電解質の導電性高分子の含有量が少なくなり、やはり充分な導電性が得ることが難しい。
 ・イミド化合物
 イミド化合物としては、導電性がより高くなることから、イミド結合を有する単分子化合物(以下、イミド化合物という。)が好ましい。イミド化合物としては、その骨格より、フタルイミド及びフタルイミド誘導体、スクシンイミド及びスクシンイミド誘導体、ベンズイミド及びベンズイミド誘導体、マレイミド及びマレイミド誘導体、ナフタルイミド及びナフタルイミド誘導体などが挙げられる。
 また、イミド化合物は両末端の官能基の種類によって、脂肪族イミド、芳香族イミド等に分類されるが、溶解性の観点からは、脂肪族イミドが好ましい。
 さらに、脂肪族イミド化合物は、分子内の炭素間に不飽和結合を有する飽和脂肪族イミド化合物と、分子内の炭素間に不飽和結合を有する不飽和脂肪族イミド化合物とに分類される。
 飽和脂肪族イミド化合物は、R-CO-NH-CO-Rで表される化合物であり、R1,R2の両方が飽和炭化水素である化合物である。具体的には、シクロヘキサン-1,2-ジカルボキシイミド、アラントイン、ヒダントイン、バルビツル酸、アロキサン、グルタルイミド、スクシンイミド、5-ブチルヒダントイン酸、5,5-ジメチルヒダントイン、1-メチルヒダントイン、1,5,5-トリメチルヒダントイン、5-ヒダントイン酢酸、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミド、グルタルイミド、セミカルバジド、α,α-ジメチル-6-メチルスクシンイミド、ビス[2-(スクシンイミドオキシカルボニルオキシ)エチル]スルホン、α-メチル-α-プロピルスクシンイミド、シクロヘキシルイミドなどが挙げられる。
 不飽和脂肪族イミド化合物は、R-CO-NH-CO-Rで表される化合物であり、R1,R2の一方又は両方が1つ以上の不飽和結合である化合物である。具体例は、1,3-ジプロピレン尿素、マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-ヒドロキシマレイミド、1,4-ビスマレイミドブタン、1,6-ビスマレイミドヘキサン、1,8-ビスマレイミドオクタン、N-カルボキシヘプチルマレイミドなどが挙げられる。
 イミド化合物の分子量は60~5,000であることが好ましく、70~1,000であることがより好ましく、80~500であることが特に好ましい。
 イミド化合物の含有量は、導電性複合体100質量部に対して10~10,000質量部であることが好ましく、50~5,000質量部であることがより好ましい。イミド化合物の添加量が前記下限値未満であると、イミド化合物添加による効果が低くなるため好ましくない。また、前記上限値を超えると、導電性高分子濃度の低下に起因する導電性の低下が起こるため好ましくない。
 ・ラクタム化合物
 ラクタム化合物とは、アミノカルボン酸の分子内環状アミドであり、環の一部が-CO-NR-(Rは水素又は任意の置換基)である化合物である。ただし、環の一個以上の炭素原子が不飽和やヘテロ原子に置き換わっていてもよい。
 ラクタム化合物としては、例えば、ペンタノ-4-ラクタム、4-ペンタンラクタム-5-メチル-2-ピロリドン、5-メチル-2-ピロリジノン、ヘキサノ-6-ラクタム、6-ヘキサンラクタム等が挙げられる。
 ・グリシジル基を有する化合物
 グリシジル基を有する化合物としては、例えば、エチルグリシジルエーテル、ブチルグリシジルエーテル、t-ブチルグリシジルエーテル、アリルグリシジルエーテル、ベンジルグリシジルエーテル、グリシジルフェニルエーテル、ビスフェノールA、ジグリシジルエーテル、アクリル酸グリシジルエーテル、メタクリル酸グリシジルエーテル等のグリシジル化合物などが挙げられる。
 ・有機溶媒
 また、一部の有機溶媒も固体電解質中に残存した場合に導電性向上剤として機能する。導電性向上剤になりうる有機溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチレンホスホルトリアミド、N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド等の極性溶媒、クレゾール、フェノール、キシレノール等のフェノール類、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、グリセリン、ジグリセリン、イソプレングリコール、ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、ネオペンチルグリコール等の多価脂肪族アルコール類、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、ジオキサン、ジエチルエーテル等のエーテル化合物、ジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル類、3-メチル-2-オキサゾリジノン等の複素環化合物、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物等が挙げられる。これらの溶媒は、単独で用いてもよいし、2種類以上の混合物としてもよい。
 [エーテル化合物]
 エーテル化合物として、エーテル基を有する化合物であれば好適に使用できる。
 具体例としては、ジエチレングリコール、トリエチレングリコール、オリゴポリエチレングリコール、トリエチレングリコールモノクロルヒドリン、ジエチレングリコールモノクロルヒドリン、オリゴエチレングリコールモノクロルヒドリン、トリエチレングリコールモノブロムヒドリン、ジエチレングリコールモノブロムヒドリン、オリゴエチレングリコールモノブロムヒドリン、ポリエチレングリコール、ポリエーテル、グリシジルエーテル類、ポリエチレングリコールグリシジルエーテル類、ポリエチレンオキシド、トリエチレングリコールモノブチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、テトラエチレングリコールモノブチルエーテル等、トリエチレングリコール・ジメチルエーテル、テトラエチレングリコール・ジメチルエーテル、ジエチレングリコール・ジメチルエーテル、ジエチレングリコール・ジエチルエーテル・ジエチレングリコール・ジブチルエーテル、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、ポリプロピレンジオキシド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸アミドなどが挙げられる。
 エーテル化合物の含有量としては、導電性高分子とポリマーアニオンとの導電性複合体100質量部に対して1~10,000質量部であることが好ましく、50~1,500質量部であることがより好ましい。エーテル化合物の含有量が1質量部未満であると、導電性複合体の導電性が高くならないことがあり、10,000質量部を超えると、キャパシタ用溶液の安定性が低くなる傾向にある。
 (モノマーアニオン)
 本実施形態の導電性複合体に、モノマーアニオンが含まれたことで導電性を向上させることがある。必要に応じて含まれても良い。モノマーアニオンの導入方法としては、特に限定せず、導電性高分子の前駆体モノマーとポリマーアニオンから導電性複合体を合成する時に添加してもよく、導電性高分子の前駆体モノマーとポリマーアニオンから導電性複合体を合成した後に、導電性複合体の分散溶液に添加しても良い。モノマーアニオンとしては、有機カルボン酸、有機スルホン酸、無機酸等が挙げられる。
 有機カルボン酸としては、脂肪族、芳香族、環状脂肪族等にカルボキシ基を一つ又は二つ以上を含むものを使用できる。例えば、ギ酸、酢酸、シュウ酸、安息香酸、フタル酸、マレイン酸、フマル酸、マロン酸、酒石酸、クエン酸、乳酸、コハク酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ニトロ酢酸、トリフェニル酢酸等が挙げられる。
 有機スルホン酸としては、脂肪族、芳香族、環状脂肪族等にスルホ基を一つ又は二つ以上含むもの、又は、スルホ基を含む高分子を使用できる。
 スルホ基を一つ含むものとして、例えば、メタンスルホン酸、エタンスルホン酸、1-プロパンスルホン酸、1-ブタンスルホン酸、1-ヘキサンスルホン酸、1-ヘプタンスルホン酸、1-オクタンスルホン酸、1-ノナンスルホン酸、1-デカンスルホン酸、1-ドデカンスルホン酸、1-テトラデカンスルホン酸、1-ペンタデカンスルホン酸、2-ブロモエタンスルホン酸、3-クロロ-2-ヒドロキシプロパンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロエタンスルホン酸、コリスチンメタンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、アミノメタンスルホン酸、1-アミノ-2-ナフトール-4-スルホン酸、2-アミノ-5-ナフトール-7-スルホン酸、3-アミノプロパンスルホン酸、N-シクロヘキシル-3-アミノプロパンスルホン酸、ベンゼンスルホン酸、アルキルベンゼンスルホン酸、p-トルエンスルホン酸、キシレンスルホン酸、エチルベンゼンスルホン酸、プロピルベンゼンスルホン酸、ブチルベンゼンスルホン酸、ペンチルベンゼンスルホン酸、ヘキチルベンゼンスルホン酸、ヘプチルベンゼンスルホン酸、オクチルベンゼンスルホン酸、ノニルベンゼンスルホン酸、デシルベンゼンスルホン酸、ウンデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ペンタデシルベンゼンスルホン酸、ヘキサデシルベンゼンスルホン酸、2,4-ジメチルベンゼンスルホン酸、ジプロピルベンゼンスルホン酸、4-アミノベンゼンスルホン酸、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、4-アミノ-2-クロロトルエン-5-スルホン酸、4-アミノ-3-メチルベンゼン-1-スルホン酸、4-アミノ-5-メトキシ-2-メチルベンゼンスルホン酸、2-アミノ-5-メチルベンゼン-1-スルホン酸、4-アミノ-2-メチルベンゼン-1-スルホン酸、5-アミノ-2-メチルベンゼン-1-スルホン酸、4-アミノ-3-メチルベンゼン-1-スルホン酸、4-アセトアミド-3-クロロベンゼンスルホン酸、4-クロロ-3-ニトロベンゼンスルホン酸、p-クロロベンゼンスルホン酸、ナフタレンスルホン酸、メチルナフタレンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸、ペンチルナフタレンスルホン酸、4-アミノ-1-ナフタレンスルホン酸、8-クロロナフタレン-1-スルホン酸、ナフタレンスルホン酸ホルマリン重縮合物、メラミンスルホン酸ホルマリン重縮合物、アントラキノンスルホン酸、ピレンスルホン酸等が挙げられる。また、これらの金属塩も使用できる。
 スルホ基を二つ以上含むものとしては、例えば、エタンジスルホン酸、ブタンジスルホン酸、ペンタンジスルホン酸、デカンジスルホン酸、o-ベンゼンジスルホン酸、m-ベンゼンジスルホン酸、p-ベンゼンジスルホン酸、トルエンジスルホン酸、キシレンジスルホン酸、クロロベンゼンジスルホン酸、フルオロベンゼンジスルホン酸、ジメチルベンゼンジスルホン酸、ジエチルベンゼンジスルホン酸、アニリン-2,4-ジスルホン酸、アニリン-2,5-ジスルホン酸、3,4-ジヒドロキシ-1,3-ベンゼンジスルホン酸、ナフタレンジスルホン酸、メチルナフタレンジスルホン酸、エチルナフタレンジスルホン酸、ペンタデシルナフタレンジスルホン酸、3-アミノ-5-ヒドロキシ-2,7-ナフタレンジスルホン酸、1-アセトアミド-8-ヒドロキシ-3,6-ナフタレンジスルホン酸、2-アミノ-1,4-ベンゼンジスルホン酸、1-アミノ-3,8-ナフタレンジスルホン酸、3-アミノ-1,5-ナフタレンジスルホン酸、8-アミノ-1-ナフトール-3,6-ジスルホン酸、4-アミノ-5-ナフトール-2,7-ジスルホン酸、4-アセトアミド-4’-イソチオ-シアノトスチルベン-2,2’-ジスルホン酸、4-アセトアミド-4’-イソチオシアナトスチルベン-2,2’-ジスルホン酸、4-アセトアミド-4’-マレイミジルスチルベン-2,2’-ジスルホン酸、ナフタレントリスルホン酸、ジナフチルメタンジスルホン酸、アントラキノンジスルホン酸、アントラセンスルホン酸等が挙げられる。また、これらの金属塩も使用できる。
 (バインダ樹脂)
 本実施形態のキャパシタの固体電解質は、導電性複合体の製膜性を調整するために、バインダ樹脂を添加することができる。例えば:ポリエステル類、ポリウレタン類、アクリル類、エポキシ類、ポリアミド類、ポリアクリルアミド類、シランカップリング剤類等が挙げられる。
 [固体電解キャパシタ]
 次に、図1を参照して、本実施形態の固体電解キャパシタについて説明する。
 本実施形態の固体電解キャパシタの構成は、弁金属の多孔質体からなる陽極体としての陽極箔11と、陽極11の表面が酸化されて形成された誘電体層12と、陰極体としての陰極箔14と、陽極箔11と陰極箔14との間に介在しているセパレータ15と、セパレータに担持された固体電解質にてなる固体電解質層13を有して概略構成されている。
 <陽極>
 陽極箔11をなす弁金属としては、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモンなどが挙げられる。これらのうち、アルミニウム、タンタル、ニオブが好適である。
 陽極箔11の具体例としては、アルミニウム箔をエッチングして表面積を増加させた後、その表面を酸化処理したものや、タンタル粒子やニオブ粒子の焼結体表面を酸化処理してペレットにしたものが挙げられる。このように処理されたものは表面に凹凸が形成されている。
 <誘電体層>
 誘電体層12は、例えば、アジピン酸アンモニウム水溶液などの電解液中にて、陽極箔11の表面を陽極酸化することで形成されたものである。よって、図1に示すように、陽極箔11と同様に誘電体層12の表面にも凹凸が形成されている。
 <陰極>
 陰極は、セパレータ15に担持された固体電解質層13と、固体電解質層13上に形成されたアルミ箔などの陰極箔14とを具備する。
 <セパレータ>
 本実施形態の固体電解キャパシタに使用するセパレータ15としては、周知の天然系繊維、人工系繊維が好適に使用することができる。ここで特に限定しない。
 (固体電解質層)
 本実施形態の固体電解質は、少なくともカチオン化された導電性高分子及びポリマーアニオンとの導電性複合体(a)と4つ以上のヒドロキシ基を有する第1のヒドロキシ類化合物(b)とアミノ基と1つ以上のヒドロキシ基を有する第2のヒドロキシ類化合物(c)が含まれ、陽極体と陰極体との間に配置され、陽極体と接して形成されていることを特徴とする。
 本実施形態の固体電解質は、前記固体電解キャパシタ溶液より形成することができる。形成方法としては、塗布法、印刷法、ディップ法等の方法によって形成できる。本実施形態の固体電解質は、実質的に架橋又は固化によって固定される。
 (水分)
 本実施形態の固体電解質には、水分が含まれる。従来のインシツ(in-situ)重合法で固体電解質を形成させる場合には特許文献6に記されているように極力水分を除く必要があった。これに対し、本実施形態のキャパシタは、固体電解質が所定量の水分を含有することにより、キャパシタの機能が著しく向上されるものである。すなわち、本実施形態のキャパシタにおいては、適量の水分の存在によって、静電容量が向上すると共に、ESRを低くすることができる。これは、本実施形態の固体電解質が、ポリスチレンスルホン酸などのポリマーアニオンを多量に含んでいることに関係するものと推察される。水分の含有量は7質量%以下であれば、好適に使用することができる。好ましくは5質量%以下である。4質量%以下がより好ましい。水分の含有量が7質量%より多くなると固体電解質の膜質が弱くなる傾向があり、固体電解キャパシタの高温耐熱が悪くなり、長期耐久で静電容量とESRが劣化しやすくなる。また、水分が0.1質量%以下になると静電容量の低下が見られる。本発明では水分量が0.1~7質量%の範囲であれば、静電容量とESRが両立することが可能である。さらに、水分量が4質量%以下に調整することで、優れた長期耐久性が発現できる。
 固体電解質中の水分量の調整は、乾燥条件や乾燥雰囲気等によって制御することが可能である。例えば、乾燥温度を100~300℃の温度範囲において行うことが可能である。また、減圧雰囲気においても好適に水分の含有量調整が可能である。
 <電解液>
 本実施形態の固体電解キャパシタは、必要に応じて固体電解質層を形成した後に、電解液を浸漬し、電解液との兼用を用いてはより高い静電容量が得られることができる。電解液としては導電性が高ければ特に限定されず、周知の溶媒中に周知の電解質を溶解させたものである。
 電解液における溶媒としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4-ブタンジオール、グリセリン等のアルコール系溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等のラクトン系溶媒、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-メチルアセトアミド、N-メチルピロリジノン等のアミド系溶媒、アセトニトリル、3-メトキシプロピオニトリル等のニトリル系溶媒、水等が挙げられる。
 電解質としては、アジピン酸、グルタル酸、コハク酸、安息香酸、イソフタル酸、フタル酸、テレフタル酸、マレイン酸、トルイル酸、エナント酸、マロン酸、蟻酸、1,6-デカンジカルボン酸、5,6-デカンジカルボン酸等のデカンジカルボン酸、1,7-オクタンジカルボン酸等のオクタンジカルボン酸、アゼライン酸、セバシン酸等の有機酸、あるいは、硼酸、硼酸と多価アルコールより得られる硼酸の多価アルコール錯化合物、りん酸、炭酸、けい酸等の無機酸などをアニオン成分とし、一級アミン(メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン等)、二級アミン(ジメチルアミン、ジエチルアミン、ジプロピルアミン、メチルエチルアミン、ジフェニルアミン等)、三級アミン(トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリフェニルアミン、1,8-ジアザビシクロ(5,4,0)-ウンデセン-7等)、テトラアルキルアンモニウム(テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、メチルトリエチルアンモニウム、ジメチルジエチルアンモニウム等)などをカチオン成分とした電解質が挙げられる。
 [固体電解キャパシタの製造方法]
 次に、図2を参照して固体電解キャパシタの製造方法について説明する。
 本実施形態では、誘電体層が形成されてなる多孔質の陽極箔11と陰極箔14との間に、固体電解質13を担持してなるセパレータ15を介在し巻回してなる固体電解キャパシタ10において、該固体電解質層13は、固体電解キャパシタ用溶液を浸漬または塗布し、乾燥して形成される。固体電解キャパシタ用溶液の塗布方法としては、例えば、コーティング、含侵、スプレーなどの公知の手法が挙げられる。乾燥方法としては、熱風乾燥などの公知の手法が挙げられる。
(1)導電性高分子溶液の調製
(調製例1)導電性高分子溶液(MBI)の調製
 14.2gの3,4-エチレンジオキシチオフェンと、2,000mlのイオン交換水に42.6gのポリスチレンスルホン酸(質量平均分子量;約300,000)を溶かした溶液とを20℃で混合した。
 これにより得られた混合溶液を20℃に保ち、掻き混ぜながら、200mlのイオン交換水に溶かした29.64gの過硫酸アンモニウムと8.0gの硫酸第二鉄の酸化触媒溶液とを添加し、15時間攪拌して反応させた。
 得られた反応液を透析して不純イオンを除去した後、イオン交換し、約1.6質量%のポリスチレンスルホン酸とポリ(3,4-エチレンジオキシチオフェン)との導電性複合体を含む溶液(以下、PEDOT-PSS溶液という。)を得た。
 そして、このPEDOT-PSS溶液100gに、6.4gのペンタエリスリトール、6.4gのジエチレングリコールモノエチルエーテル(DEGEE)を添加し、分散して導電性高分子溶液(MBI)を得た。
 (調製例2)導電性高分子溶液(MBII)
 調製例1におけるPEDOT-PSS溶液100gに、4.8gのペンタエリスリトール、4.8gのヒドロキシエチルメタクリレート(HEMA)を混合し、分散して導電性高分子溶液(MBII)を得た。
 (調製例3)導電性高分子溶液(MBIII)
 調製例1におけるPEDOT-PSS溶液100gに、0.35gのメチルアミノエタノール、4.8gのペンタエリスリトール、4.8gのヒドロキシエチルメタクリレートを混合し、分散して導電性高分子溶液(MBIII)を得た。
 (調製例4)導電性高分子溶液(MBIV)
 調製例1におけるPEDOT-PSS溶液100gに、0.35gのメチルアミノエタノール、4.8gのヒドロキシエチルメタクリレートを混合し、分散して導電性高分子溶液(MBIV)を得た。
 (調製例5)導電性高分子溶液(MBV)
 調製例1におけるPEDOT-PSS溶液100gに、1.75gのメチルアミノエタノール、1.5gのペンタエリスリトールを混合し、分散して導電性高分子溶液(MBV)を得た。
 (2)固体電解キャパシタの製造
 エッチドアルミニウム箔(陽極箔)に陽極リード端子を接続した後、アジピン酸ジアンモニウム10質量%水溶液中で102Vの電圧を印加し、化成(酸化処理)したエッチドアルミニウム箔(陽極箔)とアルミニウム陰極箔を、セルロース製のセパレータを介して円筒状に巻き取ってキャパシタ素子を得た。
 (実施例1)
 調製例1で調製した導電性高分子溶液(MBI)に、其々、0.28gのアミノエタノール、0.35gのメチルアミノエタノール、0.42gのジメチルアミノエタノール、0.42gのエチルアミノエタノールを添加し、其々の導電性高分子溶液を得た。
 得られた導電性高分子溶液を減圧下でキャパシタ素子に浸漬した後、150℃の熱風乾燥機により30分乾燥した。さらに、其々の導電性高分子溶液への浸漬を2回繰り返して、誘電体層と陰極との間に、固体電解質層を形成させた。
 次いで、アルミニウム製のケースに、固体電解質層が形成されたキャパシタ素子を装填し、封口ゴムで封止した。
 次いで、150℃の雰囲気中にて、陽極と陰極との間に70Vの直流電圧を60分印加して、固体電解キャパシタを得た。
 作製したキャパシタについて、LCRメーター2345(エヌエフ回路設計ブロック社製)を用いて、120Hzでの静電容量、100kHzでのESRの初期値を測定した。それらの結果は表1に示す。なお、ESRはインピーダンスの指標となる。
 150℃の雰囲気中にて、陽極と陰極との間に50Vの直流電圧を500時間印加して、固体電解キャパシタの高温評価ESRを測定し、耐熱性評価を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (比較例1)
 実施例1と同様の方法を用い、導電性高分子溶液(MBI)に0.47gのジエチルアミンを添加して比較例1の固体電解キャパシタを作製した。実施例1と同様の評価方法を用いた評価結果を表1に示す。
 (実施例2)
 調製例2で調製した導電性高分子溶液(MBII)に、其々、0.42gのアミノエタノール、0.52gのメチルアミノエタノール、0.63gのジメチルアミノエタノール、0.63gのエチルアミノエタノール、0.63gのアミノプロパノール、1.0gのイミノジエタノール、1.4gのニトリロトリエタノールを添加し、其々の導電性高分子溶液を得た。
 実施例1と同様の方法を用い、其々の固体電解キャパシタを作製した。そして、実施例1と同様の評価方法を用いた評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 (比較例2、3)
 実施例1と同様の方法を用い、導電性高分子溶液(MBI)に其々、0.08gのアンモニア(比較例2)、0.48gのイミダゾール(比較例3)を添加し、其々、比較例2、比較例3の固体電解キャパシタを作製した。実施例1と同様の評価方法を用いた評価結果を表1に示す。
 (実施例3)
 調製例3で調製した導電性高分子溶液(MBIII)に、其々、0.8gのシランカップリング剤(KBM-403)、0.8gのポリエステルを添加し、其々の導電性高分子溶液を得た。
 実施例1と同様の方法を用い、其々の固体電解キャパシタを作製した。そして、実施例1と同様の評価方法を用いた評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 (比較例4)
 実施例1と同様の方法を用い、導電性高分子溶液(MBIV)を用いた比較例4の固体電解キャパシタを作製した。実施例1と同様の評価結果を表3に示す。
 (比較例5)
 実施例1と同様の方法を用い、導電性高分子溶液(MBV)を用いた比較例5の固体電解キャパシタを作製した。実施例1と同様の評価結果を表3に示す。
 実施例1~3は、導電性複合体(a)の含有量が、質量比で、第1のヒドロキシ類化合物(b)より少なく、且つ第2のヒドロキシ類化合物(c)より多いものであり、ESRと高温ESRの値によると、ESRが低く、温度安定性が高かった。これに対し、このような条件を満たさない比較例1~5は、ESRが高く、温度安定性が低かった。
 [その他の実施の形態]
 上記のように、本発明は実施の形態及び実施例によって記載したが、この開示の一部をなす論述および図面は例示的なものであり、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
 このように、本発明はここでは記載していない様々な実施の形態などを含む。
 本願に係る固体電解キャパシタの発明は、デジタル機器を含むさまざまな電子機器に利用することができる。また、本願に係る固体電解キャパシタ用溶液及び固体電解キャパシタの製造方法は、デジタル機器を含むさまざまな電子機器に適する固体電解キャパシタに利用することができる。
 10 キャパシタ
 11 陽極箔
 12 誘電体層
 13 固体電解質層
 14 陰極箔
 15 セパレータ

Claims (14)

  1.  多孔質の陽極体と陰極体との間に、誘電体層と、固体電解質層とを有する固体電解キャパシタにおいて、
     該固体電解質層は、少なくとも
     (1)カチオン化された導電性高分子及びポリマーアニオンとの導電性複合体(a)と、
     (2)4つ以上のヒドロキシ基を有する第1のヒドロキシ類化合物(b)と、
     (3)アミノ基と1つ以上のヒドロキシ基を有する第2のヒドロキシ類化合物(c)とを含み、
     該導電性複合体(a)の含有量は、質量比で、該第1のヒドロキシ類化合物(b)より少なく、且つ該第2のヒドロキシ類化合物(c)より多いことを特徴とする固体電解キャパシタ。
  2.  前記第2のヒドロキシ類化合物(c)は、アミノ基とヒドロキシ基との間にC1~C4のアルキレンを有することを特徴とする請求項1に記載の固体電解キャパシタ。
  3.  前記第2のヒドロキシ類化合物(c)は、アミノ基に一つ以上アルキル基を有することを特徴とする請求項1または2に記載の固体電解キャパシタ。
  4.  前記第2のヒドロキシ類化合物(c)は、エチルアミノエタノール、ジエチルアミノエタノール、メチルアミノエタノール、ジメチルアミノエタノールから選ばれる一つ以上含むことを特徴とする請求項1に記載の固体電解キャパシタ。
  5.  前記第2のヒドロキシ類化合物(c)は、ニトリロトリエタノールであることを特徴とする請求項1に記載の固体電解キャパシタ。
  6.  前記第1のヒドロキシ類化合物(b)は、ペンタエリスリトールであることを特徴とする請求項1~5のいずれかに記載の固体電解キャパシタ。
  7.  前記固体電解質層は、さらに1~3個のヒドロキシ基を有する第3のヒドロキシ類化合物(d)を含むことを特徴とする請求項1~6のいずれかに記載の固体電解キャパシタ。
  8.  第3のヒドロキシ類化合物(d)は、(メタ)アクリル類、(メタ)アクリルアミド類であることを特徴とする請求項7に記載の固体電解キャパシタ。
  9.  前記固体電解質層は、エーテル化合物、アミド基を有する化合物、イミド基を有する化合物、ラクタム化合物、グリシジル基を有する化合物、ポリエステル類、ポリウレタン類、エポキシ類、ポリアミド類、シランカップリング剤類から選ばれる1種以上を含むことを特徴とする請求項1~8のいずれかに記載の固体電解キャパシタ。
  10.  前記固体電解質層は、実質的に架橋又は固化によって固定されていることを特徴とする請求項1~8のいずれかに記載の固体電解キャパシタ。
  11.  前記固体電解質層に更に電解液を加えたことを特徴とする請求項1~8のいずれかに記載の固体電解キャパシタ。
  12.  固体電解キャパシタの固体電解質層を形成するために用いられる固体電解キャパシタ用溶液であって、
     該固体電解キャパシタ用溶液は、少なくとも
     (1)カチオン化された導電性高分子及びポリマーアニオンとの導電性複合体(a)と、
     (2)4つ以上のヒドロキシ基を有する第1のヒドロキシ類化合物(b)と、
     (3)アミノ基と1つ以上のヒドロキシ基を有する第2のヒドロキシ類化合物(c)と
     (4)溶媒(e)と
    を含み、
     該導電性複合体(a)の含有量は、1~2質量%であり、該第1のヒドロキシ類化合物(b)より少なく、且つ該第2のヒドロキシ類化合物(c)より多いことを特徴とする固体電解キャパシタ用溶液。
  13.  誘電体層が形成されてなる多孔質の陽極箔と陰極箔との間に、固体電解質を担持してなるセパレータを介在し巻回してなる固体電解キャパシタにおいて、
     該固体電解質は、前記固体電解キャパシタ用溶液を浸漬して形成されたことを特徴とする請求項12記載の固体電解キャパシタ。
  14.  誘電体層が形成されてなる多孔質の陽極箔と陰極箔との間に、固体電解質を担持してなるセパレータを介在し巻回してなる固体電解キャパシタの製造方法であって、
     該固体電解質層は、少なくとも
     (1)カチオン化された導電性高分子及びポリマーアニオンとの導電性複合体(a)と、
     (2)4つ以上のヒドロキシ基を有する第1のヒドロキシ類化合物(b)と、
     (3)アミノ基と1つ以上のヒドロキシ基を有する第2のヒドロキシ類化合物(c)と
     (4)溶媒(e)と
    を含み、
     該導電性複合体(a)の含有量が、該第1のヒドロキシ類化合物(b)より少なく、且つ該第2のヒドロキシ類化合物(c)より多い溶液を塗布し、乾燥することによって形成されたことを特徴とする固体電解キャパシタの製造方法。
PCT/JP2011/055779 2010-03-16 2011-03-11 固体電解キャパシタ及びその製造方法並びに固体電解キャパシタ用溶液 WO2011115011A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/635,263 US8773843B2 (en) 2010-03-16 2011-03-11 Solid electrolytic capacitor, method for producing the same and solution for solid electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-059690 2010-03-16
JP2010059690A JP5444057B2 (ja) 2010-03-16 2010-03-16 固体電解キャパシタ及びその製造方法並びに固体電解キャパシタ用溶液

Publications (1)

Publication Number Publication Date
WO2011115011A1 true WO2011115011A1 (ja) 2011-09-22

Family

ID=44649106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055779 WO2011115011A1 (ja) 2010-03-16 2011-03-11 固体電解キャパシタ及びその製造方法並びに固体電解キャパシタ用溶液

Country Status (3)

Country Link
US (1) US8773843B2 (ja)
JP (1) JP5444057B2 (ja)
WO (1) WO2011115011A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152882B1 (ja) * 2012-03-07 2013-02-27 Necトーキン株式会社 導電性高分子溶液、導電性高分子組成物、並びにそれを用いた固体電解コンデンサ及びその製造方法
CN104040658A (zh) * 2011-12-19 2014-09-10 帝化株式会社 电解电容器及其制造方法
JP2019522354A (ja) * 2016-05-19 2019-08-08 ケメット エレクトロニクス コーポレーション 固体電解コンデンサにおいて導電性ポリマーと共に使用するためのポリアニオンコポリマー

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6068021B2 (ja) * 2012-06-28 2017-01-25 カーリットホールディングス株式会社 固体電解コンデンサ製造用導電性高分子分散液及びそれを用いて作製した固体電解コンデンサ
JP5772763B2 (ja) * 2012-08-22 2015-09-02 株式会社村田製作所 固体電解コンデンサ
EP3349228B1 (en) * 2015-09-08 2022-03-09 Shin-Etsu Polymer Co., Ltd. Electroconductive-polymer solution, capacitor, and process for producing capacitor
JP6614927B2 (ja) * 2015-11-06 2019-12-04 信越ポリマー株式会社 キャパシタ及びその製造方法
JP6900329B2 (ja) * 2017-02-15 2021-07-07 信越ポリマー株式会社 キャパシタ及びその製造方法、並びに導電性高分子分散液
CN109251484A (zh) * 2017-07-12 2019-01-22 钰邦科技股份有限公司 高分子复合材料、电容器封装结构及其等的制造方法
TW201908363A (zh) * 2017-07-12 2019-03-01 鈺邦科技股份有限公司 用於固態電容器的高分子複合材料、使用高分子複合材料的電容器封裝結構以及其等的製造方法
CN114479078B (zh) * 2022-01-24 2023-04-25 郑州大学 萘酰亚胺类聚合物、其制备方法及在锂/钠电池中的应用
CN118299184B (zh) * 2024-05-14 2024-09-13 上海永铭电子股份有限公司 一种具备聚合物钽薄膜的电容器及其制备工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184317A (ja) * 2006-01-04 2007-07-19 Shin Etsu Polymer Co Ltd 固体電解コンデンサの製造方法
WO2007097364A1 (ja) * 2006-02-21 2007-08-30 Shin-Etsu Polymer Co., Ltd. コンデンサ及びコンデンサの製造方法
JP2009508342A (ja) * 2005-09-13 2009-02-26 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 高公称電圧を有する電解質キャパシタを製造する方法
WO2009128401A1 (ja) * 2008-04-16 2009-10-22 Necトーキン株式会社 導電性高分子懸濁液、導電性高分子組成物、ならびに固体電解コンデンサおよびその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831400B2 (ja) 1986-12-23 1996-03-27 日本カ−リット株式会社 固体電解コンデンサ
JPS63173313A (ja) 1987-01-13 1988-07-16 日本カーリット株式会社 固体電解コンデンサ
JPH07105718A (ja) 1992-03-19 1995-04-21 Ind Technol Res Inst 導電性ポリマーと高分子電解質とからなる分子錯体およびその製造方法
JP3711964B2 (ja) 1999-02-10 2005-11-02 松下電器産業株式会社 固体電解コンデンサの製造方法
JP4932174B2 (ja) 2004-08-30 2012-05-16 信越ポリマー株式会社 コンデンサの製造方法
JP4689222B2 (ja) * 2004-09-22 2011-05-25 信越ポリマー株式会社 導電性塗布膜およびその製造方法
JP4813158B2 (ja) 2005-03-08 2011-11-09 信越ポリマー株式会社 コンデンサ及びその製造方法
DE102005033839A1 (de) 2005-07-20 2007-01-25 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung
US8264819B2 (en) 2005-08-19 2012-09-11 Avx Corporation Polymer based solid state capacitors and a method of manufacturing them
JP4739148B2 (ja) 2005-08-29 2011-08-03 Necトーキン株式会社 固体電解コンデンサ
DE102005043828A1 (de) * 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
JP2007158203A (ja) * 2005-12-08 2007-06-21 Nichicon Corp 電解コンデンサ
TWI479509B (zh) 2006-02-09 2015-04-01 信越聚合物股份有限公司 導電性高分子溶液、導電性塗膜、電容器,以及電容器之製造方法
JP4716431B2 (ja) * 2006-06-13 2011-07-06 Necトーキン株式会社 固体電解コンデンサ
JP5058633B2 (ja) * 2006-09-27 2012-10-24 信越ポリマー株式会社 コンデンサ
JP5000330B2 (ja) 2006-09-27 2012-08-15 信越ポリマー株式会社 コンデンサの製造方法
JP5143446B2 (ja) * 2007-02-23 2013-02-13 信越ポリマー株式会社 導電性高分子溶液及び導電性塗膜
JP4448865B2 (ja) * 2007-03-19 2010-04-14 ニチコン株式会社 固体電解コンデンサの製造方法
JP2009009997A (ja) 2007-06-26 2009-01-15 Shin Etsu Polymer Co Ltd コンデンサ及びその製造方法
JP2009009999A (ja) 2007-06-26 2009-01-15 Shin Etsu Polymer Co Ltd コンデンサ及びその製造方法
JP5203673B2 (ja) * 2007-10-30 2013-06-05 Necトーキン株式会社 固体電解コンデンサとその製造方法
JP4931776B2 (ja) * 2007-11-21 2012-05-16 三洋電機株式会社 固体電解コンデンサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508342A (ja) * 2005-09-13 2009-02-26 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 高公称電圧を有する電解質キャパシタを製造する方法
JP2007184317A (ja) * 2006-01-04 2007-07-19 Shin Etsu Polymer Co Ltd 固体電解コンデンサの製造方法
WO2007097364A1 (ja) * 2006-02-21 2007-08-30 Shin-Etsu Polymer Co., Ltd. コンデンサ及びコンデンサの製造方法
WO2009128401A1 (ja) * 2008-04-16 2009-10-22 Necトーキン株式会社 導電性高分子懸濁液、導電性高分子組成物、ならびに固体電解コンデンサおよびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104040658A (zh) * 2011-12-19 2014-09-10 帝化株式会社 电解电容器及其制造方法
CN104040658B (zh) * 2011-12-19 2016-06-22 帝化株式会社 电解电容器及其制造方法
JP5152882B1 (ja) * 2012-03-07 2013-02-27 Necトーキン株式会社 導電性高分子溶液、導電性高分子組成物、並びにそれを用いた固体電解コンデンサ及びその製造方法
US20130236636A1 (en) * 2012-03-07 2013-09-12 Nec Tokin Corporation Electroconductive polymer solution, electroconductive polymer composition, and solid electrolytic capacitor therewith and method for producing same
CN103305000A (zh) * 2012-03-07 2013-09-18 Nec东金株式会社 导电高分子溶液、导电高分子组合物、和含有它们的固体电解电容器及其制备方法
JP2013185031A (ja) * 2012-03-07 2013-09-19 Nec Tokin Corp 導電性高分子溶液、導電性高分子組成物、並びにそれを用いた固体電解コンデンサ及びその製造方法
US8940191B2 (en) 2012-03-07 2015-01-27 Nec Tokin Corporation Electroconductive polymer solution, electroconductive polymer composition, and solid electrolytic capacitor therewith and method for producing same
JP2019522354A (ja) * 2016-05-19 2019-08-08 ケメット エレクトロニクス コーポレーション 固体電解コンデンサにおいて導電性ポリマーと共に使用するためのポリアニオンコポリマー

Also Published As

Publication number Publication date
US20130258554A1 (en) 2013-10-03
JP5444057B2 (ja) 2014-03-19
JP2011192924A (ja) 2011-09-29
US8773843B2 (en) 2014-07-08

Similar Documents

Publication Publication Date Title
WO2011115011A1 (ja) 固体電解キャパシタ及びその製造方法並びに固体電解キャパシタ用溶液
EP2172953B1 (en) Capacitor
JP5000330B2 (ja) コンデンサの製造方法
JP4987738B2 (ja) 導電性高分子溶液、導電性塗膜、コンデンサ及びコンデンサの製造方法
JP5058633B2 (ja) コンデンサ
JP5308982B2 (ja) 固体電解キャパシタ及びその製造方法並びに固体電解キャパシタ用溶液
EP2309523A1 (en) Solid conductive polymer electrolytic capacitor and method for producing same comprising a drying step
TWI413144B (zh) 電容器及其製造方法
JP4813158B2 (ja) コンデンサ及びその製造方法
WO2010038477A1 (ja) コンデンサの製造方法
JP4912914B2 (ja) コンデンサ及びその製造方法
JP5492595B2 (ja) キャパシタ及びその製造方法
JP2007103558A (ja) 固体電解質、電解コンデンサ及びにその製造方法
JP2011171674A (ja) キャパシタ及びその製造方法
TWI490902B (zh) 電容器及其製造方法
JP2014007422A (ja) 固体電解キャパシタ及びその製造方法
JP2012099868A (ja) コンデンサ及びその製造方法
JP2007180259A (ja) 固体電解コンデンサ及びその製造方法
JP2007103557A (ja) 固体電解質、電解コンデンサ及びにその製造方法
JP2009009999A (ja) コンデンサ及びその製造方法
TWI483276B (zh) 電容器及其製造方法
JP2009010000A (ja) コンデンサ及びその製造方法
JP2009009997A (ja) コンデンサ及びその製造方法
JP2007180258A (ja) 固体電解コンデンサ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756197

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13635263

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756197

Country of ref document: EP

Kind code of ref document: A1