WO2011111228A1 - 電極活物質及び電極活物質の製造方法 - Google Patents

電極活物質及び電極活物質の製造方法 Download PDF

Info

Publication number
WO2011111228A1
WO2011111228A1 PCT/JP2010/054243 JP2010054243W WO2011111228A1 WO 2011111228 A1 WO2011111228 A1 WO 2011111228A1 JP 2010054243 W JP2010054243 W JP 2010054243W WO 2011111228 A1 WO2011111228 A1 WO 2011111228A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
electrode active
transition metal
fluorine
Prior art date
Application number
PCT/JP2010/054243
Other languages
English (en)
French (fr)
Inventor
栄幹 大木
敏弘 瀬口
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/054243 priority Critical patent/WO2011111228A1/ja
Priority to JP2012504253A priority patent/JP5494792B2/ja
Priority to US13/634,123 priority patent/US8852740B2/en
Priority to CN201080065356.3A priority patent/CN102792495B/zh
Publication of WO2011111228A1 publication Critical patent/WO2011111228A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1207Permanganates ([MnO]4-) or manganates ([MnO4]2-)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1235Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]2-, e.g. Li2Mn2O4, Li2[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • the present invention relates to an electrode active material and a method for producing the electrode active material.
  • a typical lithium secondary battery includes a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a negative electrode active material, and an electrolyte interposed between the positive electrode active material layer and the negative electrode active material layer. And having a layer. More specifically, for example, a lithium secondary battery as shown in FIG. In FIG. 2, a lithium secondary battery 100 has a positive electrode active material layer 2 disposed in a positive electrode can 1. A negative electrode active material layer 4 is disposed on the positive electrode active material layer 2 with an electrolyte layer 3 interposed therebetween.
  • the negative electrode material layer 4 is filled in the negative electrode cap 5, and the battery structure of the positive electrode active material layer 2 -the electrolyte layer 3 -the negative electrode active material layer 4 is formed by fitting the negative electrode cap 5 into the positive electrode can 1. ing. The inside of the positive electrode can 1 and the negative electrode cap 5 is kept airtight by the gasket 6.
  • the electrode active material of the lithium secondary battery for example, LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , LiCoMnO 4 and the like as the positive electrode active material, and Li 4 Ti 5 O 12 and the like as the negative electrode active material Is used.
  • a conventionally used electrode active material has a problem of low electronic conductivity. Therefore, in general, for the purpose of ensuring the electron conductivity of the active material layer, a material having high electron conductivity such as acetylene black and graphite is used together with the electrode active material as an electron conduction auxiliary material.
  • a binder component may also be used to bind the electrode active material and the electron conduction auxiliary material.
  • these electron conduction auxiliary materials such as carbon materials and binder components do not contribute to the capacity of the battery, and thus are one of the factors that reduce the energy density of the battery.
  • Patent Document 1 a technique for improving the electron conductivity of the electrode active material has been proposed (for example, Patent Document 1).
  • Patent Document 1 an oxide having a resistivity of 1 ⁇ 10 4 ⁇ cm or higher is heated in a reducing atmosphere, and then the oxide is reacted with ammonia gas to form a composition formula: Li x MeO y N z (formula Wherein 0 ⁇ x ⁇ 2, 0.1 ⁇ y ⁇ 2.2, 0 ⁇ z ⁇ 1.4, Me is at least one selected from the group consisting of Ti, Co, Ni, Mn, Si, Ge and Sn
  • a method for producing an active material which is obtained by obtaining a nitrogen oxide having a resistivity of less than 1 ⁇ 10 4 ⁇ cm, which is represented by Species), is disclosed.
  • Patent Document 2 discloses an oxide having a specific surface area (for example, titanium oxide, zinc oxide, tin oxide, iron oxide, etc.) and a nitrogen compound (for example, urea) adsorbed on the oxide at room temperature.
  • a method for producing an inorganic oxynitride having photocatalytic activity by heating the mixture is disclosed.
  • the nitriding method using ammonia as disclosed in Patent Document 1 has a limit in improving the electron conductivity because the nitriding reaction does not proceed sufficiently.
  • nitrogen is introduced into an electrode active material made of a lithium-transition metal composite oxide, and oxygen in the electrode active material is replaced with nitrogen. It has been found that when the amount of nitrogen introduced is excessive, the crystal structure of the electrode active material is destroyed. When the crystallinity of the lithium-transition metal composite oxide is lowered, there is a risk that disadvantages such as a reversibility of lithium ion insertion / release and a decrease in electrode potential may occur. That is, there is a demand for an electrode active material that maintains stable crystal structure and has stable insertion and desorption characteristics of lithium ions and oxidation-reduction potential, and also exhibits excellent electronic conductivity.
  • the present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide an electrode active material excellent in electron conductivity while maintaining a crystal structure.
  • the electrode active material of the present invention is characterized in that it has a rock salt layer structure or a spinel structure and is composed of a lithium-transition metal composite oxide into which fluorine and nitrogen are introduced.
  • fluorine as a donor species is introduced into a lithium-transition metal composite oxide as a dopant together with nitrogen as an acceptor species.
  • lithium-transition metal composite oxide examples include at least one selected from LiCoO 2 , LiNiO 2 , Li (Ni, Mn) O 2 , Li (Ni, Mn, Co) O 2 , and LiMn 2 O 4. Is mentioned.
  • lithium-nitrogen transition metal composite oxide lithium cobaltate (LiCoO 2 ) is particularly suitable.
  • an electrode active material having an electron conductivity of 1.0 ⁇ 10 ⁇ 3 S / cm or more can be obtained.
  • the electrode active material preferably has an average particle size of 0.1 ⁇ m to 50 ⁇ m.
  • the electrode active material of the present invention is particularly useful as a positive electrode active material.
  • the method for producing an electrode active material of the present invention includes a lithium-transition metal composite oxide (a) into which fluorine is introduced, a nitriding agent (b) that is represented by the following formula (1) and is solid or liquid at room temperature:
  • a nitrogen introduction step of synthesizing a lithium-transition metal composite oxide (c) having a rock salt layered structure or a spinel structure and into which fluorine and nitrogen are introduced by firing a raw material composition containing It is characterized by.
  • R 1 , R 2 and R 3 are each independently a group having at least one of carbon (C), hydrogen (H), oxygen (O) and nitrogen (N). )
  • an electrode active material of the present invention it is possible to easily obtain an electrode active material having stable insertion and desorption characteristics of lithium ions and oxidation-reduction potential and excellent electronic conductivity.
  • lithium-transition metal composite oxide (a) introduced with fluorine examples include LiCoO 2 , LiNiO 2 , Li (Ni, Mn) O 2 , Li (Ni, Mn, Co) O 2 , and LiMn 2 O 4.
  • fluorine is introduced into at least one lithium-transition metal composite oxide selected from:
  • lithium cobalt oxide (LiCoO 2 ) into which fluorine has been introduced is particularly suitable.
  • a lithium-transition metal composite oxide (a) into which fluorine is introduced is obtained by firing a raw material containing a lithium element, a transition metal element, a fluorine element and an oxygen element. You may have a fluorine introduction process to synthesize.
  • the raw material for example, a raw material mixture containing at least a lithium compound, a fluorine compound, and a transition metal compound can be used.
  • the lithium compound include at least one selected from the group consisting of lithium carbonate, lithium hydroxide, lithium nitrate, lithium oxide, and lithium acetate.
  • lithium fluoride is mentioned as said fluorine compound.
  • the transition metal compound include at least one selected from the group consisting of cobalt oxide, cobalt carbonate, cobalt nitrate, cobalt acetate, and cobalt hydroxide.
  • nitriding agent examples include at least one selected from the group consisting of urea, methylamine, ethylamine, diethylamine, triethylamine, aniline, nicotine, and cyclohexylamine.
  • the firing temperature in the nitrogen introduction step is preferably 300 ° C. to 600 ° C.
  • the firing temperature in the fluorine introduction step is preferably 500 ° C. to 900 ° C.
  • the fluorine-nitrogen-introduced lithium-transition metal composite oxide (c) is heated to remove the remaining nitriding agent. It is preferable to further include a step.
  • the present invention it is possible to obtain an electrode active material having stable insertion and desorption characteristics of lithium ions and a redox potential and exhibiting excellent electronic conductivity. Therefore, by using the electrode active material of the present invention, the ratio of the electron conduction auxiliary material in the electrode active material layer constituting the battery can be reduced, and the energy density of the battery can be improved.
  • FIG. 1 It is a figure which shows one form of the manufacturing method of the electrode active material of this invention. It is a schematic cross section which shows the structural example of a lithium secondary battery. It is a graph which shows the result of the electronic conductivity of an Example and a comparative example.
  • the electrode active material of the present invention is characterized in that it has a rock salt layer structure or a spinel structure and is composed of a lithium-transition metal composite oxide into which fluorine and nitrogen are introduced.
  • the present inventors have determined that the lithium-transition metal composite oxidation.
  • nitrogen is introduced into the product and a part of oxygen (O) is replaced with nitrogen (N)
  • the amount of introduced nitrogen becomes excessive, the crystal structure of the lithium-transition metal composite oxide becomes unstable and collapses. I got the knowledge that.
  • the crystal structure is broken, problems such as reversibility of Li ion insertion / desorption and a decrease in electrode potential arise.
  • the present inventors maintain the crystal structure of the lithium-transition metal composite oxide by introducing -3 valent nitrogen, which is an acceptor species, and -1 valent fluorine, which is a donor species.
  • -3 valent nitrogen which is an acceptor species
  • -1 valent fluorine which is a donor species.
  • the electrode active material of the present application which has a rock salt layer structure or a spinel structure and is composed of a lithium-transition metal composite oxide into which fluorine and nitrogen are introduced, maintains the insertion / desorption characteristics of Li ions and the electrode potential. It has excellent electronic conductivity.
  • fluorine and nitrogen are introduced (doped) into a lithium-transition metal composite oxide having a rock salt layer structure or a spinel structure, that is, part of oxygen in the lithium-transition metal composite oxide is fluorine. It can be judged from the spectrum of N 1s and F 1s of the XPS measurement that it is substituted with nitrogen.
  • the crystal structure of the lithium-transition metal composite oxide can be determined by XPS measurement.
  • the crystal structure of the lithium-transition metal composite oxide (a) into which fluorine used as a raw material was introduced was confirmed, and the lithium-transition metal composite oxide (a) Is compared with the crystal structure (c) of a lithium-transition metal composite oxide into which fluorine and nitrogen have been introduced, so that the lithium-transition metal composite oxide in the lithium-transition metal composite oxide (c) is compared. It can also be confirmed whether the crystal structure of the product (a) is maintained.
  • an electrode active material excellent in electron conductivity having an electron conductivity of 1.0 ⁇ 10 ⁇ 3 S / cm or more, more preferably 5.0 ⁇ 10 ⁇ 2 S / cm or more.
  • the electronic conductivity of the electrode active material can be measured using, for example, a powder resistance measuring machine (for example, MCP-PD51 manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
  • a powder resistance measuring machine for example, MCP-PD51 manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • the lithium-transition metal composite oxide having a rock salt layered structure or a spinel structure is not particularly limited.
  • the lithium-transition metal composite oxide having a rock salt layered structure includes, for example, the following general formula ( The compound represented by 2) can be mentioned.
  • b is preferably 0.8 ⁇ b ⁇ 1.2, and more preferably 0.9 ⁇ b ⁇ 1.1.
  • c is preferably 1.4 ⁇ c ⁇ 2.3, and more preferably 1.6 ⁇ c ⁇ 2.1.
  • M in the general formula (2) is preferably, for example, at least one selected from the group consisting of Mn, Co, Ni, V, Cr and Ti, and particularly from the group consisting of Mn, Co and Ni. It is preferable that at least one type is selected, and among these, Co is preferable. This is because an electrode active material with better electronic conductivity can be obtained.
  • lithium-transition metal composite oxide having a rock salt layered structure examples include LiCoO 2 , LiNiO 2 , LiMnO 2 , Li (Ni, Mn) O 2 , LiCo 1/3 Ni 1/3 Mn 1/3. O 2 or the like of Li (Ni, Mn, Co) O 2, can be cited LiVO 2, LiCrO 2 and the like.
  • LiCoO 2 LiCoO 2 , LiNiO 2 , Li (Ni, Mn) O 2 , Li (Ni, Mn, Co) O 2 , and LiMnO 2 , more preferably LiCoO 2 , LiNiO 2 , It is at least one selected from Li (Ni, Mn) O 2 and Li (Ni, Mn, Co) O 2 , and LiCoO 2 is particularly preferable.
  • examples of the lithium-transition metal composite oxide having a spinel structure include a compound represented by the following general formula (3).
  • b is preferably 1.7 ⁇ b ⁇ 2.4, and more preferably 1.9 ⁇ b ⁇ 2.2.
  • c is preferably 3.5 ⁇ c ⁇ 4.5, and more preferably 3.2 ⁇ c ⁇ 4.2.
  • M in the general formula (3) is preferably, for example, at least one selected from the group consisting of Mn, Co, Ni, V, Cr and Ti, and in particular, from the group consisting of Mn, Co and Ni. It is preferable that at least one type is selected, and among these, Co is preferable. This is because an electrode active material with better electronic conductivity can be obtained.
  • Lithium having a spinel structure - transition metal composite oxide specifically, LiMn 2 O 4, LiCoMnO 4 , LiNi 0.5 Mn 1.5 O 4 and the like of Li (Ni x Mn y) O 4, LiCo 0.5 Mn 1.5 O 4, LiFe 0.5 Mn 1.5 O 4, LiCu 0.5 Mn 1.5 O 4 and the like can be mentioned, LiMn 2 O 4 can be mentioned as preferred.
  • the amount of fluorine and nitrogen introduced into the lithium-transition metal composite oxide having a rock salt layer structure or a spinel structure is not particularly limited, and the amount of nitrogen as an acceptor species and the amount of fluorine as a donor species is not limited. It only has to be different.
  • the electrode active material of the present invention may be in the form of particles (powder) or thin film, but is preferably in the form of particles. This is because when it is in the form of particles, it does not cause peeling or cracking as in the case of a thin film, and is excellent in durability.
  • the average particle diameter of the particulate electrode active material is preferably 100 nm or more, particularly 2 ⁇ m or more, particularly 4 ⁇ m or more, and on the other hand, 100 ⁇ m or less, particularly 50 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the average particle diameter of the electrode active material can be calculated with a laser diffraction particle size distribution meter.
  • the electrode active material of the present invention preferably has a specific surface area of 0.1 m 2 / g or more, more preferably 0.5 m 2 / g or more, while 300 m 2 / g or less, especially 100 m 2 / g or less. It is preferable that The specific surface area of the electrode active material can be calculated by the BET method (gas adsorption method).
  • the electrode active material of the present invention can be used as a positive electrode active material or a negative electrode active material in combination with a counter electrode active material, but is usually suitable as a positive electrode active material.
  • the lithium-transition metal composite oxide is represented by the above formula (2) or (3), when M is at least one selected from the group consisting of Mn, Co and Ni, When is Co, it is suitable as a positive electrode active material.
  • the electrode active material of the present invention described above can be synthesized by the method for producing the electrode active material of the present invention described below.
  • the electrode active material of the present invention may be manufactured by a method other than the following manufacturing method.
  • the method for producing an electrode active material of the present invention includes a lithium-transition metal composite oxide (a) into which fluorine is introduced, a nitriding agent (b) that is represented by the following formula (1) and is solid or liquid at room temperature:
  • a nitrogen introduction step of synthesizing a lithium-transition metal composite oxide (c) having a rock salt layered structure or a spinel structure and into which fluorine and nitrogen are introduced by firing a raw material composition containing It is characterized by.
  • R 1 , R 2 and R 3 are each independently a group having at least one of carbon (C), hydrogen (H), oxygen (O) and nitrogen (N). )
  • FIG. 1 is a diagram illustrating an example of a method for producing an electrode active material according to the present invention.
  • a raw material containing lithium carbonate (Li 2 CO 3 ), lithium fluoride (LiF), and cobalt oxide (Co 3 O 4 ) is baked, whereby lithium cobalt oxide into which fluorine is introduced [ A lithium-transition metal composite oxide (a)] into which fluorine is introduced is synthesized (fluorine introduction step).
  • the obtained raw material composition containing lithium cobalt oxide into which fluorine is introduced [lithium-transition metal composite oxide into which fluorine is introduced (a)] and urea [nitriding agent (b)] is fired.
  • lithium cobaltate [lithium-cobalt composite oxide (c) into which fluorine and nitrogen are introduced] having a rock salt layer structure or a spinel structure and into which fluorine and nitrogen are introduced is synthesized (nitrogen introduction step).
  • the remaining urea is removed by heating the lithium cobalt oxide into which fluorine and nitrogen are introduced, which is obtained in the nitrogen introduction step (nitriding agent removal step).
  • the nitrogen introduction step includes a raw material composition containing a lithium-transition metal composite oxide (a) into which fluorine has been introduced, and a nitriding agent (b) represented by the above formula (1) that is solid or liquid at room temperature. It is a step of synthesizing a lithium-transition metal composite oxide (c) having a rock salt layer structure or a spinel structure and into which fluorine and nitrogen are introduced by firing the product.
  • the lithium-transition metal composite oxide (a) into which fluorine has been introduced (hereinafter sometimes referred to as F-introduced lithium-transition metal composite oxide (a)) is a part of the oxygen of the lithium-transition metal composite oxide.
  • F-introduced lithium-transition metal composite oxide (a)) is a part of the oxygen of the lithium-transition metal composite oxide.
  • fluorine there is no particular limitation as long as it is substituted with fluorine.
  • transduced is mentioned.
  • a lithium-transition metal composite having at least one rock salt layered structure selected from LiCoO 2 , LiNiO 2 , Li (Ni, Mn) O 2 , Li (Ni, Mn, Co) O 2 , and LiMn 2 O 4
  • An oxide in which fluorine is introduced is preferable, and LiCoO 2 into which fluorine is introduced is particularly preferable.
  • the F-introduced lithium-transition metal complex oxide (a) may be in the form of particles (powder) or a thin film, but is preferably in the form of particles. This is because the particles do not cause peeling or cracking as in the case of a thin film, and are excellent in durability.
  • the average particle size of the particulate F-introduced lithium-transition metal composite oxide (a) is preferably 100 nm or more, especially 2 ⁇ m or more, particularly 4 ⁇ m or more, and on the other hand, 100 ⁇ m or less, particularly 50 ⁇ m or less, especially 20 ⁇ m or less. Preferably there is.
  • the average particle size of the F-introduced lithium-transition metal composite oxide (a) can be calculated by a laser diffraction particle size distribution meter.
  • the F-introduced lithium-transition metal composite oxide (a) has a specific surface area of 0.1 m 2 / g or more, preferably 0.5 m 2 / g or more, while 300 m 2 / g or less, Especially, it is preferable that it is 100 m ⁇ 2 > / g or less.
  • the specific surface area of the F-introduced lithium-transition metal composite oxide (a) can be calculated by the BET method (gas adsorption method).
  • the F-introduced lithium-transition metal composite oxide (a) can be synthesized, for example, by the following fluorine introduction step.
  • the fluorine introduction process will be described.
  • the fluorine introduction step is a step of synthesizing the F-introduced lithium-transition metal composite oxide (a) by firing a raw material containing lithium element, transition metal element, fluorine element and oxygen element.
  • the raw material in the fluorine introduction step is not particularly limited as long as it contains a lithium element, a transition metal element, a fluorine element and an oxygen element.
  • a raw material mixture containing at least a lithium compound, a transition metal compound and a fluorine compound ( Hereinafter, the raw material mixture (A-1) may be mentioned).
  • the oxygen element in the raw material in the fluorine introduction step may be supplied from the oxygen-containing compound using a compound containing oxygen element as at least one of the compounds constituting the raw material mixture, or the fluorine introduction step. You may supply from the oxygen in the reaction atmosphere in.
  • a compound containing oxygen is used as at least one of a lithium compound, a transition metal compound, and a fluorine compound constituting the raw material mixture (A-1).
  • the lithium compound is not particularly limited as long as it is a compound containing lithium element, but it contains oxygen element together with lithium element, and lithium element supply source and oxygen element supply source Are preferred.
  • Specific examples of the lithium compound include lithium carbonate, lithium nitrate, lithium acetate, lithium oxide, and lithium hydroxide.
  • the lithium hydroxide may be a hydrate or an anhydride.
  • the fluorine compound is not particularly limited as long as it is a compound containing a fluorine element, and specific fluorine compounds include, for example, lithium fluoride.
  • the transition metal compound is not particularly limited as long as it is a compound containing a transition metal element, but a compound containing an oxygen element together with a transition metal element and serving as both a transition metal element supply source and an oxygen element supply source is preferable.
  • the transition metal element include those exemplified as the transition metal constituting the lithium-transition metal composite oxide.
  • Specific examples of the transition metal compound include cobalt oxide, cobalt carbonate, cobalt nitrate, cobalt acetate, and cobalt hydroxide.
  • an oxygen compound containing an oxygen element may be used in addition to the above-described lithium compound, fluorine compound, and transition metal compound.
  • the lithium compound, the transition metal compound, and the fluorine compound may be separate compounds, or the lithium element, the transition metal element, and the fluorine element You may use the compound which has 2 or more types of elements of these.
  • the ratio of each compound in the raw material mixture may be appropriately selected according to the composition of the target F-introduced lithium-transition metal composite oxide (a).
  • the raw material in the fluorine introduction step can be prepared by mixing the compounds constituting the raw material mixture.
  • the mixing method in raw material preparation is not specifically limited, In this invention, the mechanical milling method is preferable. This is because, by employing the mechanical milling method, each component in the raw material can be pulverized and mixed simultaneously, and the contact area of each component can be increased.
  • the mechanical milling method may be a mechanical milling method involving a synthesis reaction or a mechanical milling method not involving a synthesis reaction.
  • the synthetic reaction here means the synthetic reaction which synthesize
  • the rotational speed is preferably in the range of, for example, 100 rpm to 11000 rpm, and more preferably in the range of 500 to 5000 rpm.
  • the processing time is not particularly limited and may be set as appropriate.
  • the firing conditions of the raw material are not particularly limited as long as the F-introduced lithium-transition metal composite oxide (a) can be synthesized.
  • the firing temperature is preferably equal to or higher than the decomposition temperature of each raw material, and may be appropriately set according to the decomposition temperature of the raw material to be used, but is usually 500 ° C. or higher, particularly 600 ° C. or higher. On the other hand, it is preferably 900 ° C. or lower, particularly preferably 800 ° C. or lower.
  • the firing time may be set as appropriate, but usually it is preferably 30 minutes or more, particularly preferably 60 minutes or more, while it is preferably 48 hours or less, particularly preferably 24 hours or less.
  • the atmosphere during firing is not particularly limited, and examples thereof include an air atmosphere; an inert atmosphere such as a nitrogen atmosphere and an argon atmosphere; a reducing atmosphere such as an ammonia atmosphere and a hydrogen atmosphere; a vacuum and the like.
  • an inert atmosphere, a reducing atmosphere, and a vacuum are preferable, and a reducing atmosphere is particularly preferable. This is because the oxidative deterioration of the F-introduced lithium-transition metal composite oxide (a) can be prevented.
  • the F-introduced lithium-transition metal composite oxide (a) is not limited to those synthesized in the above-described fluorine introduction step, and may be obtained by other synthesis methods.
  • the nitriding agent (b) used in the nitrogen introduction step is represented by the above formula (1).
  • R 1 , R 2 and R 3 may be the same as each other or different from each other. At least one of R 1 , R 2 and R 3 preferably has carbon (C).
  • the nitriding agent (b) is solid or liquid at normal temperature (25 ° C.). By being solid or liquid, a raw material composition in which the nitriding agent (b) and the F-introduced lithium-transition metal composite oxide (a) are in physical contact with each other efficiently can be prepared. Efficiency is improved.
  • the nitriding agent (b) include urea, methylamine, ethylamine, diethylamine, triethylamine, aniline, nicotine, cyclohexylamine, and urea is preferable.
  • two of R 1 to R 3 are H and the remaining one is —CONH 2 in the formula (1).
  • the ratio of the F-introduced lithium-transition metal composite oxide (a) and the nitriding agent (b) in the raw material composition is the target lithium-transition metal composite oxide into which fluorine and nitrogen are introduced ( c) (F and N-introduced lithium-transition metal composite oxide (c)) may be appropriately selected depending on the composition, but usually F-introduced lithium-transition metal composite oxide (a)
  • the amount of N contained in the nitriding agent (b) is preferably 10 to 100 parts by mole, and more preferably 30 to 60 parts by mole with respect to 100 parts by mole of lithium contained therein.
  • the F-introduced lithium-transition metal composite oxide (a) and the nitriding agent (b) are in sufficient contact before firing. Therefore, when the proportion of the nitriding agent (b) is too large, sufficient nitriding does not occur in the portion not in contact with the F-introduced lithium-transition metal composite oxide (a). May get worse.
  • the raw material composition in the nitrogen introduction step is prepared by mixing the F-introduced lithium-transition metal composite oxide (a) and the nitriding agent (b) constituting the raw material composition, and other components as necessary. Can do.
  • the mixing method in preparation of a raw material composition is not specifically limited, In this invention, the mechanical milling method is preferable. This is because by employing the mechanical milling method, each component in the raw material composition can be pulverized and mixed simultaneously, and the contact area of each component can be increased.
  • the mechanical milling method may be a mechanical milling method involving a synthesis reaction or a mechanical milling method not involving a synthesis reaction.
  • the rotational speed is preferably in the range of, for example, 100 rpm to 11000 rpm, and more preferably in the range of 500 to 5000 rpm.
  • the processing time is not particularly limited and may be set as appropriate.
  • the firing conditions of the raw material composition are not particularly limited as long as F and N introduced lithium-transition metal composite oxide (c) can be synthesized.
  • the firing temperature is preferably equal to or higher than the temperature at which the nitriding agent (b) is decomposed or dissolved. That is, the firing temperature may be appropriately set according to the nitriding agent (b) to be used, and is usually preferably 300 ° C. or higher, particularly preferably 400 ° C. or higher, and 600 ° C. or lower, particularly 500 ° C. or lower. It is preferable.
  • the firing time may be set as appropriate, but usually it is preferably 30 minutes or more, particularly preferably 60 minutes or more, while it is preferably 48 hours or less, particularly preferably 24 hours or less.
  • the atmosphere during firing is not particularly limited, and examples thereof include an air atmosphere; an inert atmosphere such as a nitrogen atmosphere and an argon atmosphere; a reducing atmosphere such as an ammonia atmosphere and a hydrogen atmosphere; a vacuum and the like.
  • an inert atmosphere, a reducing atmosphere, and a vacuum are preferable, and a reducing atmosphere is particularly preferable. This is because the oxidative deterioration of the F-introduced lithium-transition metal composite oxide (a) and the F- and N-introduced lithium-transition metal composite oxide (c) can be prevented.
  • the nitriding agent removal step is a step of removing the remaining nitriding agent (b) by heating the obtained F and N introduced lithium-transition metal composite oxide (c) after the nitrogen introducing step.
  • this nitriding agent removal step is not an essential step, but if excess nitriding agent (b) remains in F and N-introduced lithium-transition metal composite oxide (c), the electrolyte solution It is preferable to provide a nitriding agent removing step because there is a possibility that the nitriding agent (b) is dissolved in the battery and the battery characteristics deteriorate.
  • the heating conditions for the F and N introduced lithium-transition metal composite oxide (c) are not particularly limited as long as the nitriding agent (b) used in the nitrogen introducing step can be removed. Specifically, it is preferably higher than the decomposition temperature of the nitriding agent (b) used in the nitrogen introduction step. That is, the heating temperature may be appropriately set according to the nitriding agent (b) to be used, but is usually preferably 200 ° C. or higher, particularly preferably 300 ° C. or higher. On the other hand, from the viewpoint of preventing the introduction of introduced N and F, the heating temperature is preferably 800 ° C. or lower, particularly 600 ° C. or lower, and more preferably 500 ° C. or lower. The heating time may be set as appropriate, but usually it is preferably 30 minutes or more, particularly preferably 60 minutes or more, while it is preferably 48 hours or less, particularly preferably 24 hours or less.
  • the electrode active material provided by the present invention can be used as a positive electrode active material or a negative electrode active material as described above, and is particularly suitable as a positive electrode active material.
  • a battery using the electrode active material of the present invention will be described taking a lithium secondary battery using the electrode active material of the present invention as a positive electrode active material as an example.
  • Specific examples of the structure of the lithium secondary battery include a positive electrode active material layer containing a positive electrode active material, a negative electrode active material layer containing a negative electrode active material, the positive electrode active material layer, and the negative electrode active material layer.
  • a lithium secondary battery in which the positive electrode active material is the electrode active material of the present invention. More specifically, for example, a lithium secondary battery as shown in FIG. In FIG.
  • a lithium secondary battery 100 has a positive electrode active material layer 2 disposed in a positive electrode can 1.
  • a negative electrode active material layer 4 is disposed on the positive electrode active material layer 2 with an electrolyte layer 3 interposed therebetween.
  • the negative electrode material layer 4 is filled in the negative electrode cap 5, and the battery structure of the positive electrode active material layer 2 -the electrolyte layer 3 -the negative electrode active material layer 4 is formed by fitting the negative electrode cap 5 into the positive electrode can 1. ing.
  • the inside of the positive electrode can 1 and the negative electrode cap 5 is kept airtight by the gasket 6.
  • the amount of the electron conduction auxiliary material can be relatively reduced while maintaining lithium conductivity, and the capacity of the battery can be increased.
  • each layer constituting the lithium secondary battery will be described.
  • the positive electrode active material layer is a layer containing at least the electrode active material of the present invention as a positive electrode active material, and contains at least one of an electron conduction auxiliary material, a binder component, and a solid electrolyte material as necessary. Also good.
  • the positive electrode active material layer preferably contains a binder component. This is because sliding of the positive electrode active material from the positive electrode active material layer can be effectively suppressed.
  • the positive electrode active material layer preferably contains a solid electrolyte material. This is because the lithium ion conductivity in the positive electrode active material layer can be improved.
  • the electron conduction auxiliary material is not particularly limited as long as it has a desired conductivity.
  • an electron conduction auxiliary material made of a carbon material can be used.
  • Specific examples include acetylene black, carbon black, coke, carbon fiber, and graphite. More preferably, coke and graphite having a heat treatment temperature of 800 ° C. to 2000 ° C. and an average particle diameter of 10 ⁇ m or less, and carbon fiber having an average particle diameter of 1 ⁇ m or less are preferable.
  • the BET specific surface area by N 2 adsorption of the electron conduction auxiliary material is preferably 10 m 2 / g or more.
  • the binder component is preferably chemically and electrically stable.
  • the binder component is a fluorine-based binder component such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE), and styrene butadiene rubber.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • rubber-based binder components such as
  • the solid electrolyte material is not particularly limited as long as it has lithium ion conductivity, and examples thereof include oxide solid electrolyte materials and sulfide solid electrolyte materials. preferable. This is because a lithium ion conductivity is high and a high output battery can be obtained.
  • the solid electrolyte material will be described in detail in the description of the electrolyte layer described later.
  • the content of the positive electrode active material contained in the positive electrode active material layer is preferably larger from the viewpoint of capacity, for example, in the range of 60% by weight to 99% by weight, particularly in the range of 70% by weight to 95% by weight.
  • the content of the electron conduction auxiliary material is preferably smaller as long as the desired electron conductivity can be ensured, and is preferably in the range of 1% by weight to 30% by weight, for example.
  • the content of the binder component is preferably smaller as long as the positive electrode active material or the like can be stably fixed, and is preferably in the range of 1% by weight to 30% by weight, for example.
  • the content of the solid electrolyte material is preferably smaller as long as desired electronic conductivity can be ensured, and is preferably in the range of 1% by weight to 40% by weight, for example.
  • the thickness of the positive electrode active material layer varies greatly depending on the configuration of the lithium battery, but is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the negative electrode active material layer is a layer containing at least a negative electrode active material, and may contain at least one of an electron conduction auxiliary material, a binder component, and a solid electrolyte material as necessary.
  • Examples of the negative electrode active material include a metal active material and a carbon active material.
  • Examples of the metal active material include Li, In, Al, Si, and Sn.
  • examples of the carbon active material include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon.
  • the shape of the negative electrode active material may be, for example, a film shape or a particle shape. In the former case, the negative electrode active material itself is usually the negative electrode active material layer.
  • the average particle diameter of the particulate negative electrode active material is preferably in the range of 1 nm to 100 ⁇ m, for example, and more preferably in the range of 10 nm to 30 ⁇ m.
  • the specific surface area of the particulate negative electrode active material is preferably in the range of, for example, 0.1 m 2 / g to 10 m 2 / g.
  • the negative electrode active material layer contains at least one of an electron conduction auxiliary material, a binder component, and a solid electrolyte material, as necessary, in addition to the particulate negative electrode active material. May be.
  • the content of the negative electrode active material contained in the negative electrode active material layer is preferably larger from the viewpoint of capacity, for example, in the range of 60% by weight to 99% by weight, particularly 70% by weight to 95% by weight. It is preferable to be within the range.
  • the content of the electron conduction auxiliary material is preferably smaller as long as the desired electron conductivity can be ensured, and is preferably in the range of 1% by weight to 30% by weight, for example.
  • the content of the binder component is preferably smaller as long as the negative electrode active material and the like can be stably fixed, and is preferably in the range of 1% by weight to 30% by weight, for example.
  • the content of the solid electrolyte material is preferably smaller as long as desired electronic conductivity can be ensured, and is preferably in the range of 1% by weight to 40% by weight, for example.
  • the electron conduction auxiliary material, the binder component, and the solid electrolyte material used for the negative electrode active material layer are the same as those used for the positive electrode active material layer described above, and thus description thereof is omitted here.
  • the thickness of the negative electrode active material layer varies greatly depending on the configuration of the lithium battery, but is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, for example.
  • the electrolyte layer is a layer formed between the positive electrode active material layer and the negative electrode active material layer. Li ion conduction between the positive electrode active material and the negative electrode active material is performed via the electrolyte contained in the electrolyte layer.
  • the form of the electrolyte layer is not particularly limited, and examples thereof include a liquid electrolyte layer, a gel electrolyte layer, and a solid electrolyte layer.
  • the liquid electrolyte layer is usually a layer using a non-aqueous electrolyte.
  • the non-aqueous electrolyte of a lithium battery usually contains a lithium salt and a non-aqueous solvent.
  • the lithium salt include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4, and LiAsF 6 ; and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , An organic lithium salt such as LiC (CF 3 SO 2 ) 3 can be used.
  • non-aqueous solvent examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), butylene carbonate, ⁇ -butyrolactone, sulfolane, acetonitrile, Examples thereof include 1,2-dimethoxymethane, 1,3-dimethoxypropane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, and mixtures thereof.
  • concentration of the lithium salt in the non-aqueous electrolyte is, for example, in the range of 0.5 mol / L to 3 mol / L.
  • a low-volatile liquid such as an ionic liquid may be used as the nonaqueous electrolytic solution.
  • the gel electrolyte layer can be obtained, for example, by adding a polymer to the non-aqueous electrolyte and gelling. Specifically, gelation can be performed by adding a polymer such as polyethylene oxide (PEO), polyacrylonitrile (PAN), or polymethyl methacrylate (PMMA) to the non-aqueous electrolyte.
  • a polymer such as polyethylene oxide (PEO), polyacrylonitrile (PAN), or polymethyl methacrylate (PMMA)
  • the solid electrolyte layer is a layer made of a solid electrolyte material.
  • the solid electrolyte material include an oxide solid electrolyte material and a sulfide solid electrolyte material, and among them, a sulfide solid electrolyte material is preferable. This is because a high output battery with high Li ion conductivity can be obtained.
  • the sulfide solid electrolyte material is not particularly limited as long as it has Li and S and has Li ion conductivity. Examples thereof include those having Li, S and the third component A. Can do.
  • the third component A include at least one selected from the group consisting of P, Ge, B, Si, I, Al, Ga, and As.
  • a sulfide solid electrolyte material, and Li 2 S is preferably a compound with a sulfide MS other than Li 2 S.
  • Specific examples include a Li 2 S—P 2 S 5 compound, a Li 2 S—SiS 2 compound, a Li 2 S—GeS 2 compound, etc.
  • a Li 2 S—P 2 S 5 compound is preferable. This is because the Li ion conductivity is high.
  • the molar ratio between Li 2 S and sulfide MS is xLi 2 S- (100-x) MS, x preferably satisfies the relationship of 50 ⁇ x ⁇ 95, and 60 ⁇ x ⁇ 85 It is more preferable to satisfy the relationship.
  • the Li 2 S—P 2 S 5 compound means a sulfide solid electrolyte material using Li 2 S and P 2 S 5 . The same applies to other compounds.
  • an amorphous Li 2 S—P 2 S 5 compound can be obtained by performing a mechanical milling method or a melt quenching method using Li 2 S and P 2 S 5 .
  • the sulfide solid electrolyte material may be amorphous or crystalline.
  • the crystalline sulfide solid electrolyte material can be obtained, for example, by firing an amorphous sulfide solid electrolyte material.
  • it is preferable that the sulfide solid electrolyte material has bridging sulfur. This is because the sulfide solid electrolyte material has high Li ion conductivity.
  • Li 7 P 3 S 11 is particularly preferable.
  • the average particle diameter of the solid electrolyte material is, for example, preferably in the range of 1 nm to 100 ⁇ m, and more preferably in the range of 10 nm to 30 ⁇ m.
  • the thickness of the electrolyte layer varies greatly depending on the configuration of the lithium battery.
  • the thickness of the electrolyte layer is preferably in the range of 0.1 ⁇ m to 1000 ⁇ m, and more preferably in the range of 0.1 ⁇ m to 300 ⁇ m.
  • the lithium battery has at least the positive electrode active material layer, the electrolyte layer, and the negative electrode active material layer described above. Furthermore, it usually has a positive electrode current collector for collecting current of the positive electrode active material layer and a negative electrode current collector for collecting current of the negative electrode active material layer.
  • Examples of the material for the positive electrode current collector include SUS, aluminum, nickel, iron, titanium, and carbon. Among them, SUS is preferable.
  • examples of the material for the negative electrode current collector include SUS, copper, nickel, and carbon. Of these, SUS is preferable.
  • the thickness and shape of the positive electrode current collector and the negative electrode current collector are preferably appropriately selected according to the use of the lithium battery.
  • the lithium battery may have a separator between the positive electrode active material layer and the negative electrode active material layer.
  • the material for the separator include porous films such as polyethylene, polypropylene, cellulose, and polyvinylidene fluoride; and nonwoven fabrics such as a resin nonwoven fabric and a glass fiber nonwoven fabric.
  • the battery case which accommodates a lithium battery
  • the battery case of a general lithium battery can be used.
  • the battery case include a SUS battery case.
  • the power generating element may be formed inside the insulating ring.
  • ⁇ Nitrogen introduction process> 1 g of F-introduced lithium cobaltate (F-introduced LiCoO 2 ) and 1 g of urea (manufactured by Aldrich) synthesized in the above were mixed in a mortar to obtain a raw material composition.
  • the obtained raw material composition was fired in a vacuum vessel (held at 500 ° C. for 6 hours, heating rate 5 ° C./min) (synthesis of F and N-introduced LiCoO 2 ).
  • ⁇ Residual urea removal step> After the container was opened to the atmosphere, urea was removed again by holding at 750 ° C. for 6 hours (temperature increase rate 5 ° C./min).

Abstract

結晶構造を維持しつつ、電子伝導性に優れる電極活物質を提供する。 岩塩層状構造又はスピネル構造を有し、且つ、フッ素及び窒素が導入された、リチウム-遷移金属複合酸化物からなることを特徴とする電極活物質、並びに、フッ素が導入されたリチウム-遷移金属複合酸化物(a)と、式(1)で表され、常温で固体又は液体である窒化剤(b)と、を含有する原料組成物を焼成することによって、岩塩層状構造又はスピネル構造を有し且つフッ素及び窒素が導入されたリチウム-遷移金属複合酸化物(c)を合成する、窒素導入工程を有することを特徴とする電極活物質の製造方法。

Description

電極活物質及び電極活物質の製造方法
 本発明は、電極活物質及び電極活物質の製造方法に関する。
 近年、パソコン、ビデオカメラ、携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界においても、電気自動車やハイブリッド自動車用の高出力且つ高容量の電池の開発が進められている。各種電池の中でも、エネルギー密度と出力が高いことから、リチウム二次電池が注目されている。
 一般的なリチウム二次電池は、正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、これら正極活物質層と負極活物質層との間に介在する電解質層とを有する。より具体的には、例えば、図2に示すようなリチウム二次電池が挙げられる。図2において、リチウム二次電池100は、正極缶1内に正極活物質層2が配置されている。正極活物質層2の上には、電解質層3を介して、負極活物質層4が配置されている。負極物質層4は負極キャップ5内に充填されており、負極キャップ5を正極缶1内に嵌め込むことで、正極活物質層2-電解質層3-負極活物質層4の電池構造が形成されている。正極缶1と負極キャップ5の内部は、ガスケット6により気密性が保持されている。
 リチウム二次電池の電極活物質としては、例えば、正極活物質として、LiCoO2、LiMnO2、LiMn24、LiNiO2、LiCoMnO4等、また、負極活物質として、Li4Ti512等が用いられている。このような従来使用されている電極活物質は、電子伝導度が低いという問題がある。そのため、一般的には、活物質層の電子伝導度を確保することを目的として、電極活物質と共に、アセチレンブラックや黒鉛等の電子伝導性の高い材料が電子伝導補助材として併用されている。また、電極活物質と電子伝導補助材とを結着させるために、バインダー成分も使用されることがある。しかしながら、これら炭素材料等の電子伝導補助材やバインダー成分は、電池の容量に寄与しないため、電池のエネルギー密度を低下させる要因の1つとなっている。
 そこで、電極活物質の電子伝導性を向上させる技術が提案されている(例えば、特許文献1)。特許文献1には、抵抗率が1×10Ωcm以上の酸化物を還元性雰囲気下で加熱した後、前記酸化物をアンモニアガスと反応させて、組成式:LiMeO(式中、0≦x≦2、0.1<y<2.2、0<z<1.4、MeはTi、Co、Ni、Mn、Si、Ge及びSnよりなる群から選択される少なくとも1種)で表される、抵抗率が1×10Ωcm未満の窒素酸化物を得る活物質材料の製造方法が開示されている。
 また、電極活物質の製造方法ではないが、尿素等の窒素化合物を用いて酸化物を窒化する方法が知られている。例えば、特許文献2には、特定の比表面積を有する酸化物(例えば、酸化チタン、酸化亜鉛、酸化スズ、酸化鉄等)と、常温で前記酸化物に吸着する窒素化合物(例えば尿素)との混合物を加熱して、光触媒活性を有する無機系酸窒化物の製造方法が開示されている。
特開2006-032321号公報 特開2002-154823号公報
 しかしながら、特許文献1に開示されたような、アンモニアを用いた窒化方法は、窒化反応が充分に進みにくく、電子伝導性向上には限界がある。また、本発明者らが鋭意検討した結果、電子伝導性を向上させるべく、リチウム-遷移金属複合酸化物からなる電極活物質に窒素を導入し、電極活物質中の酸素を窒素に置換する場合、窒素導入量が過剰になると、電極活物質の結晶構造が崩れてしまうことが見出された。リチウム-遷移金属複合酸化物の結晶性が低下すると、リチウムイオンの挿入脱離の可逆性の低下や電極電位の低下等のデメリットが生じるおそれがある。すなわち、結晶構造を維持して安定したリチウムイオンの挿入脱離特性や酸化還元電位を有すると共に、優れた電子伝導性を示す電極活物質が求められている。
 本発明は上記実情を鑑みて成し遂げられたものであり、本発明の目的は、結晶構造を維持しつつ、電子伝導性に優れる電極活物質を提供することである。
 本発明の電極活物質は、岩塩層状構造又はスピネル構造を有し、且つ、フッ素及び窒素が導入された、リチウム-遷移金属複合酸化物からなることを特徴とするものである。
 本発明の電極活物質は、リチウム-遷移金属複合酸化物に、ドーパントとして、アクセプター種である窒素と共に、ドナー種であるフッ素が導入されている。このように、リチウム-遷移金属複合酸化物の酸素の一部を窒素及びフッ素で置換することによって、リチウム-遷移金属複合酸化物の酸素の一部を窒素のみで置換する場合と比較して、結晶構造を維持しつつ、多くの窒素を導入することができ、リチウム-遷移金属複合酸化物の電子伝導性を向上させることができる。
 前記リチウム-遷移金属複合酸化物としては、例えば、LiCoO2、LiNiO2、Li(Ni,Mn)O2、Li(Ni,Mn,Co)O2、及びLiMn24から選ばれる少なくとも1種が挙げられる。
 前記リチウム-窒素遷移金属複合酸化物としては、コバルト酸リチウム(LiCoO2)が特に好適である。
 本発明によれば、電子伝導度が1.0×10-3S/cm以上である電極活物質を得ることが可能である。
 本発明において、電極活物質は、平均粒径が0.1μm~50μmであることが好ましい。
 本発明の電極活物質は、特に正極活物質として有用である。
 本発明の電極活物質の製造方法は、フッ素が導入されたリチウム-遷移金属複合酸化物(a)と、下記式(1)で表され、常温で固体又は液体である窒化剤(b)と、を含有する原料組成物を焼成することによって、岩塩層状構造又はスピネル構造を有し且つフッ素及び窒素が導入されたリチウム-遷移金属複合酸化物(c)を合成する、窒素導入工程を有することを特徴とする。
Figure JPOXMLDOC01-appb-C000002
(式(1)において、R1、R2及びR3は、互いに独立に、炭素(C)、水素(H)、酸素(O)及び窒素(N)の少なくとも1つを有する基である。)
 本発明の電極活物質の製造方法によれば、安定したリチウムイオンの挿入脱離特性や酸化還元電位を有すると共に優れた電子伝導性を示す電極活物質を、簡便に得ることができる。
 前記フッ素が導入されたリチウム-遷移金属複合酸化物(a)としては、LiCoO2、LiNiO2、Li(Ni,Mn)O2、Li(Ni,Mn,Co)O2、及びLiMn24から選ばれる少なくとも1種のリチウム-遷移金属複合酸化物にフッ素が導入されたものが挙げられる。
 前記フッ素が導入されたリチウム-窒素遷移金属複合酸化物としては、特に、フッ素が導入されたコバルト酸リチウム(LiCoO2)が好適である。
 本発明の電極活物質の製造方法は、リチウム元素、遷移金属元素、フッ素元素及び酸素元素を含有する原料を焼成することによって、前記フッ素が導入されたリチウム-遷移金属複合酸化物(a)を合成する、フッ素導入工程を有していてもよい。
 このとき、前記原料として、例えば、少なくともリチウム化合物とフッ素化合物と遷移金属化合物とを含有する原料混合物を用いることができる。前記リチウム化合物としては、炭酸リチウム、水酸化リチウム、硝酸リチウム、酸化リチウム及び酢酸リチウムよりなる群から選ばれる少なくとも1種が挙げられる。また、前記フッ素化合物としては、フッ化リチウムが挙げられる。また、前記遷移金属化合物としては、酸化コバルト、炭酸コバルト、硝酸コバルト、酢酸コバルト、及び水酸化コバルトよりなる群から選ばれる少なくとも1種が挙げられる。
 前記窒化剤としては、尿素、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、アニリン、ニコチン、及びシクロヘキシルアミンよりなる群から選ばれる少なくとも1種が挙げられる。
 前記窒素導入工程における焼成温度は、300℃~600℃であることが好ましい。
 また、前記フッ素導入工程における焼成温度は、500℃~900℃であることが好ましい。
 本発明の電極活物質の製造方法は、前記窒素導入工程後、前記フッ素及び窒素が導入されたリチウム-遷移金属複合酸化物(c)を加熱し、残留した前記窒化剤を除去する窒化剤除去工程をさらに有することが好ましい。
 本発明によれば、安定したリチウムイオンの挿入脱離特性や酸化還元電位を有すると共に、優れた電子伝導性を示す電極活物質を得ることができる。従って、本発明の電極活物質を用いることによって、電池を構成する電極活物質層における電子伝導補助材の割合を低減することが可能であり、電池のエネルギー密度を向上させることができる。
本発明の電極活物質の製造方法の一形態を示す図である。 リチウム二次電池の構造例を示す模式断面図である。 実施例及び比較例の電子伝導度の結果を示すグラフである。
 本発明の電極活物質は、岩塩層状構造又はスピネル構造を有し、且つ、フッ素及び窒素が導入された、リチウム-遷移金属複合酸化物からなることを特徴とするものである。
 本発明者らは、電極活物質として用いられている、岩塩層状構造又はスピネル構造を有するリチウム-遷移金属複合酸化物の電子伝導性を向上させるべく鋭意検討した結果、該リチウム-遷移金属複合酸化物に窒素を導入し、一部の酸素(O)を窒素(N)に置換する場合、窒素導入量が過剰になると、リチウム-遷移金属複合酸化物の結晶構造が不安定になり、崩れてしまうという知見を得た。結晶構造が崩れてしまうと、Liイオンの挿入脱離の可逆性が低下したり、電極電位が低下するといった問題が生じる。過剰の窒素導入による結晶構造の崩れは、-2価の酸素イオンのサイトに、-3価の窒素を導入するために、価数のバランスが崩れるためである。
 そして、本発明者らは、アクセプター種である-3価の窒素を導入すると共に、ドナー種である-1価のフッ素を導入することで、リチウム-遷移金属複合酸化物の結晶構造を維持しつつ、多量の窒素導入が可能であることを見出した。すなわち、岩塩層状構造又はスピネル構造を有し且つフッ素及び窒素が導入されたリチウム-遷移金属複合酸化物からなる、本願の電極活物質は、Liイオンの挿入脱離特性及び電極電位を維持しつつ、優れた電子伝導性を有するものである。
 本発明において、岩塩層状構造又はスピネル構造を有するリチウム-遷移金属複合酸化物にフッ素及び窒素が導入(ドープ)されていること、すなわち、該リチウム-遷移金属複合酸化物の酸素の一部がフッ素及び窒素で置換されていることは、XPS測定のN1s及びF1sのスペクトルより判断することができる。
 また、リチウム-遷移金属複合酸化物の結晶構造は、XPS測定により判断することができる。後述する本発明の電極活物質の製造方法において、原料として用いられるフッ素が導入されたリチウム-遷移金属複合酸化物(a)の結晶構造を確認し、該リチウム-遷移金属複合酸化物(a)の結晶構造と、フッ素及び窒素が導入されたリチウム-遷移金属複合酸化物の結晶構造(c)を比較することで、該リチウム-遷移金属複合酸化物(c)において該リチウム-遷移金属複合酸化物(a)の結晶構造が維持されているかを確認することもできる。
 本発明によれば、電子伝導度が、1.0×10-3S/cm以上、さらには5.0×10-2S/cm以上の電子伝導性に優れた電極活物質を得ることが可能である。電極活物質の電子伝導度は、例えば、粉体抵抗測定機(例えば、三菱化学アナリテック社製、MCP-PD51等)を用いて測定することができる。
 このように電子伝導性に優れる本発明の電極活物質を用いることで、リチウム二次電池等の電池において、電極活物質層中の電子伝導補助材の量を低減すること、若しくは、電子伝導補助材を用いずに電極活物質層を形成することが可能となる。その結果、電極活物質層における電極活物質の割合を増加させることができ、電池のエネルギー密度を向上させることが可能である。
 本発明において、岩塩層状構造又はスピネル構造を有するリチウム-遷移金属複合酸化物としては、特に限定されないが、例えば、岩塩層状構造を有するリチウム-遷移金属複合酸化物としては、例えば、下記一般式(2)で表される化合物を挙げることができる。
 一般式(2):Li
(式中、Mは少なくとも一種の遷移金属元素であり、a~cは、0<a≦1.3、0.7≦b≦1.3、1.5≦c≦2.5を満たす)
 一般式(2)において、bは、0.8≦b≦1.2が好ましく、0.9≦b≦1.1がより好ましい。cは、1.4≦c≦2.3が好ましく、1.6≦c≦2.1がより好ましい。
 さらに、一般式(2)におけるMは、例えば、Mn、Co、Ni、V、Cr及びTiよりなる群から選ばれる少なくとも1種であることが好ましく、特に、Mn、Co及びNiからなる群から選択される少なくも一種であることが好ましく、中でも、Coが好ましい。電子伝導性がより良好な電極活物質を得ることができるからである。
 岩塩層状構造を有するリチウム-遷移金属複合酸化物としては、具体的には、LiCoO、LiNiO、LiMnO2、Li(Ni,Mn)O2、LiCo1/3Ni1/3Mn1/3等のLi(Ni,Mn,Co)O2、LiVO、LiCrO等を挙げることができる。好ましくは、LiCoO2、LiNiO2、Li(Ni,Mn)O2、Li(Ni,Mn,Co)O2、及びLiMnO2から選ばれる少なくとも1種であり、さらに好ましくはLiCoO2、LiNiO2、Li(Ni,Mn)O2、及びLi(Ni,Mn,Co)O2から選ばれる少なくとも1種であり、中でもLiCoOが好ましい。
 一方、スピネル構造を有するリチウム-遷移金属複合酸化物としては、例えば、下記一般式(3)で表される化合物を挙げることができる。
 一般式(3):Li
(式中、Mは少なくとも一種の遷移金属元素であり、a~cは、0<a≦2.0、1.5≦b≦2.5、3≦c≦5を満たす)
 一般式(3)において、bは、1.7≦b≦2.4が好ましく、1.9≦b≦2.2がより好ましい。cは、3.5≦c≦4.5が好ましく、3.2≦c≦4.2がより好ましい。さらに、一般式(3)におけるMは、例えば、Mn、Co、Ni、V、Cr及びTiよりなる群から選ばれる少なくとも1種であることが好ましく、特に、Mn、Co及びNiからなる群から選択される少なくも一種であることが好ましく、中でも、Coが好ましい。電子伝導性がより良好な電極活物質を得ることができるからである。
 スピネル構造を有するリチウム-遷移金属複合酸化物としては、具体的には、LiMn、LiCoMnO、LiNi0.5Mn1.5等のLi(NiMn)O4、LiCo0.5Mn1.5、LiFe0.5Mn1.5、LiCu0.5Mn1.5等を挙げることができ、好ましいものとしてLiMnが挙げられる。
 本発明において、岩塩層状構造又はスピネル構造を有するリチウム-遷移金属複合酸化物に導入されるフッ素及び窒素の量は、特に限定されず、アクセプター種である窒素と、ドナー種であるフッ素の量が異なればよい。
 本発明の電極活物質は、粒子状(粉末状)であっても、薄膜状であってもよいが、粒子状であることが好ましい。粒子状である場合、薄膜のように剥離やクラック等が生じず、耐久性に優れているからである。粒子状の電極活物質の平均粒径は、100nm以上、中でも2μm以上、特に4μm以上であることが好ましく、一方、100μm以下、特に50μm以下、中でも20μm以下であることが好ましい。なお、電極活物質の平均粒径は、レーザー回折式の粒度分布計により算出することができる。
 また、本発明の電極活物質は、比表面積が、0.1m/g以上、中でも0.5m/g以上であることが好ましく、一方、300m/g以下、中でも100m/g以下であることが好ましい。なお、電極活物質の比表面積は、BET法(気体吸着法)により算出することができる。
 本発明の電極活物質は、対極の電極活物質との組み合わせによって、正極活物質としても、又は、負極活物質としても利用することができるが、通常、正極活物質として好適である。特に、リチウム-遷移金属複合酸化物が、上記式(2)又は(3)で表される場合において、MがMn、Co及びNiからなる群から選択される少なくも一種である場合、中でもMがCoである場合、正極活物質として好適である。
 次に、本発明の電極活物質の製造方法について説明する。上記にて説明した本発明の電極活物質は、以下説明する本発明の電極活物質の製造方法によって合成することができる。但し、本発明の電極活物質は、以下の製造方法以外の方法で製造されていてもよい。
 本発明の電極活物質の製造方法は、フッ素が導入されたリチウム-遷移金属複合酸化物(a)と、下記式(1)で表され、常温で固体又は液体である窒化剤(b)と、を含有する原料組成物を焼成することによって、岩塩層状構造又はスピネル構造を有し且つフッ素及び窒素が導入されたリチウム-遷移金属複合酸化物(c)を合成する、窒素導入工程を有することを特徴とする。
Figure JPOXMLDOC01-appb-C000003
(式(1)において、R1、R2及びR3は、互いに独立に、炭素(C)、水素(H)、酸素(O)及び窒素(N)の少なくとも1つを有する基である。)
 本発明によれば、結晶構造を維持して安定したリチウムイオンの挿入脱離特性や酸化還元電位を有すると共に、多量の窒素が導入されたリチウム-遷移金属複合酸化物を、簡便に得ることができる。
 図1は、本発明の電極活物質の製造方法の一例を示す図である。図1においては、まず、炭酸リチウム(Li2CO3)とフッ化リチウム(LiF)と酸化コバルト(Co34)とを含む原料を焼成することにより、フッ素が導入されたコバルト酸リチウム[フッ素が導入されたリチウム-遷移金属複合酸化物(a)]を合成する(フッ素導入工程)。次に、得られたフッ素が導入されたコバルト酸リチウム[フッ素が導入されたリチウム-遷移金属複合酸化物(a)]と尿素[窒化剤(b)]とを含有する原料組成物を焼成することにより、岩塩層状構造又はスピネル構造を有し且つフッ素及び窒素が導入されたコバルト酸リチウム[フッ素及び窒素が導入されたリチウム-コバルト複合酸化物(c)]を合成する(窒素導入工程)。その後、窒素導入工程において得られた、フッ素及び窒素が導入されたコバルト酸リチウムを、加熱することによって、残留する尿素を除去する(窒化剤除去工程)。
 以下、本発明の電極活物質の製造方法の各工程について説明する。
 [窒素導入工程、フッ素導入工程]
 窒素導入工程は、フッ素が導入されたリチウム-遷移金属複合酸化物(a)と、上記式(1)で表され、常温で固体又は液体である窒化剤(b)と、を含有する原料組成物を焼成することによって、岩塩層状構造又はスピネル構造を有し且つフッ素及び窒素が導入されたリチウム-遷移金属複合酸化物(c)を合成する工程である。
 フッ素が導入されたリチウム-遷移金属複合酸化物(a)(以下、F導入リチウム-遷移金属複合酸化物(a)ということがある)は、リチウム-遷移金属複合酸化物の酸素の一部がフッ素で置換されたものであれば、特に限定されない。例えば、上記したような一般式(2)で表される岩塩層状構造を有するリチウム-遷移金属複合酸化物や一般式(3)で表されるスピネル構造を有するリチウム-遷移金属複合酸化物に、フッ素が導入されたものが挙げられる。
 中でも、LiCoO2、LiNiO2、Li(Ni,Mn)O2、Li(Ni,Mn,Co)O2、及びLiMnから選ばれる少なくとも1種の岩塩層状構造を有するリチウム-遷移金属複合酸化物にフッ素が導入されたものが好ましく、特にフッ素が導入されたLiCoOが好ましい。
 F導入リチウム-遷移金属複合酸化物(a)は、粒子状(粉末状)であっても、薄膜状であってもよいが、粒子状であることが好ましい。粒子状であることによって、薄膜のように剥離やクラック等が生じず、耐久性に優れているからである。粒子状のF導入リチウム-遷移金属複合酸化物(a)の平均粒径は、100nm以上、中でも2μm以上、特に4μm以上であることが好ましく、一方、100μm以下、特に50μm以下、中でも20μm以下であることが好ましい。尚、F導入リチウム-遷移金属複合酸化物(a)の平均粒径は、レーザー回折式の粒度分布計により算出することができる。
 また、F導入リチウム-遷移金属複合酸化物(a)は、比表面積が、0.1m/g以上、中でも0.5m/g以上であることが好ましく、一方、300m/g以下、中でも100m/g以下であることが好ましい。尚、F導入リチウム-遷移金属複合酸化物(a)比表面積は、BET法(気体吸着法)により算出することができる。
 尚、従来のスパッタリング法や蒸着法を用いて、F導入リチウム-遷移金属複合酸化物(a)の薄膜を形成し、この薄膜を削った場合、上記と同様の粒径を有する粒子状のF導入リチウム-遷移金属複合酸化物(a)が得られる可能性がある。しかしながら、このような粒子は、凹凸の少ない薄膜から形成されるものであるため、粒子の比表面積は小さくなる。これに対して、後述のフッ素導入工程に記載された方法で得られるF導入リチウム-遷移金属複合酸化物(a)は、通常、粒子の表面に凹凸を有するため、上記範囲のように比較的大きな比表面積を有する。
 F導入リチウム-遷移金属複合酸化物(a)は、例えば、以下のようなフッ素導入工程によって合成することができる。ここで、フッ素導入工程について説明する。
 <フッ素導入工程>
 フッ素導入工程は、リチウム元素、遷移金属元素、フッ素元素及び酸素元素を含有する原料を焼成することによって、F導入リチウム-遷移金属複合酸化物(a)を合成する工程である。
 フッ素導入工程における原料は、リチウム元素、遷移金属元素、フッ素元素及び酸素元素を含有するものであれば特に限定されず、例えば、少なくともリチウム化合物と遷移金属化合物とフッ素化合物とを含有する原料混合物(以下、原料混合物(A-1)ということがある)が挙げられる。
 尚、フッ素導入工程における原料中の酸素元素は、原料混合物を構成する化合物の少なくとも1つとして酸素元素を含有する化合物を用い、該酸素含有化合物から供給してもよいし、或いは、フッ素導入工程における反応雰囲気中の酸素から供給してもよい。通常、原料混合物を構成する化合物として、酸素含有化合物を用いることが好ましい。具体的には、例えば、上記原料混合物(A-1)を構成するリチウム化合物、遷移金属化合物及びフッ素化合物の少なくとも1つとして、酸素を含有する化合物を用いる。
 原料として原料混合物(A-1)を用いる場合、リチウム化合物としては、リチウム元素を含む化合物であれば、特に限定されないが、リチウム元素と共に酸素元素を含有し、リチウム元素供給源と酸素元素供給源とを兼ねる化合物が好ましい。具体的なリチウム化合物としては、例えば、炭酸リチウム、硝酸リチウム、酢酸リチウム、酸化リチウム、及び水酸化リチウム等が挙げられる。尚、水酸化リチウムは、水和物であっても、無水物であってもよい。
 また、フッ素化合物としては、フッ素元素を含む化合物であれば特に限定されず、具体的なフッ素化合物としては、例えば、フッ化リチウムが挙げられる。
 また、遷移金属化合物としては、遷移金属元素を含有する化合物であれば、特に限定されないが、遷移金属元素と共に酸素元素を含有し、遷移金属元素供給源と酸素元素供給源とを兼ねる化合物が好ましい。遷移金属元素としては、上記リチウム-遷移金属複合酸化物を構成する遷移金属として例示したものが挙げられる。具体的な遷移金属化合物としては、例えば、酸化コバルト、炭酸コバルト、硝酸コバルト、酢酸コバルト、水酸化コバルト等が挙げられる。
 原料として原料混合物(A-1)を用いる場合、上記したようなリチウム化合物、フッ素化合物及び遷移金属化合物の他、酸素元素を含有する酸素化合物を用いてもよい。
 尚、原料として原料混合物(A-1)を用いる場合、リチウム化合物、遷移金属化合物、及びフッ素化合物は、それぞれが別個の化合物であってもよいし、或いは、リチウム元素、遷移金属元素及びフッ素元素のうちの2種以上の元素を有する化合物を用いてもよい。
 フッ素導入工程において、原料混合物中の各化合物の割合は、目的とするF導入リチウム-遷移金属複合酸化物(a)の組成に応じて適宜選択すればよい。
 フッ素導入工程における原料は、原料混合物を構成する化合物を混合することで調製できる。原料調製における混合方法は特に限定されないが、本発明においては、メカニカルミリング法が好ましい。メカニカルミリング法を採用することによって、原料中の各成分の粉砕と混合を同時に行うことができ、各成分の接触面積を大きくすることができるからである。
 メカニカルミリング法は、合成反応を伴うメカニカルミリング法であってもよく、合成反応を伴わないメカニカルミリング法であってもよい。尚、ここでいう合成反応とは、原料化合物を合成する合成反応を意味する。そのため、合成反応を伴うメカニカルミリング法は、原料が原料混合物である場合に用いることができる。
 ボールミル法によりメカニカルミリングを行う場合、回転速度は、例えば、100rpm~11000rpmの範囲内であることが好ましく、特に500~5000rpmの範囲内であることが好ましい。また、処理時間は、特に限定されず、適宜設定すればよい。 
 フッ素導入工程において、原料の焼成条件は、F導入リチウム-遷移金属複合酸化物(a)が合成できれば特に限定されるものではない。具体的には、焼成温度は、各原料の分解温度以上であることが好ましく、使用する原料の分解温度に応じて適宜設定すればよいが、通常は、500℃以上、特に600℃以上であることが好ましく、一方、900℃以下、特に、800℃以下であることが好ましい。焼成時間は、適宜設定すればよいが、通常、30分以上、特に60分以上であることが好ましく、一方、48時間以下、特に24時間以下であることが好ましい。
 フッ素導入工程において、焼成時の雰囲気は、特に限定されるものではないが、例えば、大気雰囲気;窒素雰囲気及びアルゴン雰囲気等の不活性雰囲気;アンモニア雰囲気及び水素雰囲気等の還元雰囲気;真空等を挙げることができ、中でも不活性雰囲気、還元雰囲気、真空が好ましく、特に還元雰囲気が好ましい。F導入リチウム-遷移金属複合酸化物(a)の酸化劣化を防止することができるからである。
 尚、本発明において、F導入リチウム-遷移金属複合酸化物(a)は、上記フッ素導入工程において合成されるものに限定されず、その他合成方法によって入手されたものでもよい。
 次に、窒素導入工程において使用される窒化剤(b)について説明する。
 本発明において使用する窒化剤(b)は、上記式(1)で表されるものである。上記式(1)において、R1、R2及びR3は、互いに同じであってもよいし、互いに異なっていてもよい。R1、R2及びR3は、少なくとも1つが炭素(C)を有することが好ましい。
 窒化剤(b)は、常温(25℃)において、固体又は液体である。固体又は液体であることで、窒化剤(b)とF導入リチウム-遷移金属複合酸化物(a)とが効率良く物理的に接触した原料組成物を調製することができ、原料組成物の窒化効率が向上する。尚、アンモニア等の気体を窒化剤とした場合、窒化反応が生じにくく、腐食性が高く、設備が高コストになる可能性がある点に留意すべきである。
 具体的な窒化剤(b)としては、例えば、尿素、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、アニリン、ニコチン、シクロヘキシルアミン等を挙げることができ、中でも尿素が好ましい。尚、尿素は、式(1)において、R~Rのうちの2つがHであり、残りの1つが-CONH2である。
 窒素導入工程において、原料組成物におけるF導入リチウム-遷移金属複合酸化物(a)と窒化剤(b)の割合は、目的とする、フッ素及び窒素が導入されたリチウム-遷移金属複合酸化物(c)(以下、F及びN導入リチウム-遷移金属複合酸化物(c)ということがある)の組成に応じて適宜選択すればよいが、通常、F導入リチウム-遷移金属複合酸化物(a)中に含まれるリチウム100モル部に対して、窒化剤(b)中に含まれるNが10~100モル部であることが好ましく、特に30~60モル部であることが好ましい。
 尚、本発明においては、F導入リチウム-遷移金属複合酸化物(a)と窒化剤(b)とが焼成前に充分に接していることが重要である。そのため、窒化剤(b)の割合が多すぎる場合、F導入リチウム-遷移金属複合酸化物(a)に接していない部分では充分な窒化が生じないため、全体として窒化剤(b)の利用効率が悪くなる可能性がある。
 窒素導入工程における原料組成物は、原料組成物を構成するF導入リチウム-遷移金属複合酸化物(a)と窒化剤(b)、及び必要に応じてその他成分とを混合することで調製することができる。原料組成物調製における混合方法は特に限定されないが、本発明においては、メカニカルミリング法が好ましい。メカニカルミリング法を採用することによって、原料組成物中の各成分の粉砕と混合を同時に行うことができ、各成分の接触面積を大きくすることができるからである。
 メカニカルミリング法は、合成反応を伴うメカニカルミリング法であってもよく、合成反応を伴わないメカニカルミリング法であってもよい。
 ボールミル法によりメカニカルミリングを行う場合、回転速度は、例えば、100rpm~11000rpmの範囲内であることが好ましく、特に500~5000rpmの範囲内であることが好ましい。また、処理時間は、特に限定されず、適宜設定すればよい。
 窒素導入工程において、原料組成物の焼成条件は、F及びN導入リチウム-遷移金属複合酸化物(c)が合成できれば特に限定されるものではない。具体的には、焼成温度は、窒化剤(b)が分解又は溶解する温度以上であることが好ましい。すなわち、焼成温度は、用いる窒化剤(b)に応じて適宜設定すればよく、通常は、300℃以上、特に400℃以上であることが好ましく、一方、600℃以下、特に500℃以下であることが好ましい。焼成時間は、適宜設定すればよいが、通常、30分以上、特に60分以上であることが好ましく、一方、48時間以下、特に24時間以下であることが好ましい。
 窒素導入工程において、焼成時の雰囲気は、特に限定されるものではないが、例えば、大気雰囲気;窒素雰囲気及びアルゴン雰囲気等の不活性雰囲気;アンモニア雰囲気及び水素雰囲気等の還元雰囲気;真空等を挙げることができ、中でも不活性雰囲気、還元雰囲気、真空が好ましく、特に還元雰囲気が好ましい。F導入リチウム-遷移金属複合酸化物(a)及びF及びN導入リチウム-遷移金属複合酸化物(c)の酸化劣化を防止することができるからである。
 [窒化剤除去工程]
 窒化剤除去工程は、上記窒素導入工程の後、得られたF及びN導入リチウム-遷移金属複合酸化物(c)を加熱することによって、残留する窒化剤(b)を除去する工程である。本発明にかかる製造方法において、この窒化剤除去工程は必須の工程ではないが、過剰の窒化剤(b)がF及びN導入リチウム-遷移金属複合酸化物(c)内に残留すると、電解液に窒化剤(b)が溶解し、電池特性が劣化するという不具合が生じるおそれがあるため、窒化剤除去工程を設けることが好ましい。
 窒化剤除去工程において、F及びN導入リチウム-遷移金属複合酸化物(c)の加熱条件は、窒素導入工程において使用した窒化剤(b)を除去することができれば特に限定されない。具体的には、窒素導入工程において使用する窒化剤(b)の分解温度以上であることが好ましい。すなわち、加熱温度は、使用する窒化剤(b)に応じて適宜設定すればよいが、通常は、200℃以上であることが好ましく、特に300℃以上であることが好ましい。一方、導入したN及びFの抜け防止の観点から、加熱温度は、800℃以下であることが好ましく、特に600℃以下、さらに500℃以下であることが好ましい。尚、加熱時間は適宜設定すればよいが、通常、30分以上、特に60分以上であることが好ましく、一方、48時間以下、特に24時間以下であることが好ましい。
 本発明により提供される電極活物質は、上記したように正極活物質として又は負極活物質として利用することができ、特に正極活物質として好適である。以下、本発明の電極活物質を正極活物質として利用するリチウム二次電池を例に、本発明の電極活物質を用いた電池について説明する。
 具体的なリチウム二次電池の構造としては、例えば、正極活物質を含有する正極活物質層と、負極活物質を含有する負極活物質層と、上記正極活物質層及び上記負極活物質層の間に形成された電解質層と、を有するリチウム電池であって、上記正極活物質が、本発明の電極活物質であるリチウム二次電池が挙げられる。
 より具体的には、例えば、図2に示すようなリチウム二次電池が挙げられる。図2において、リチウム二次電池100は、正極缶1内に正極活物質層2が配置されている。正極活物質層2の上には、電解質層3を介して、負極活物質層4が配置されている。負極物質層4は負極キャップ5内に充填されており、負極キャップ5を正極缶1内に嵌め込むことで、正極活物質層2-電解質層3-負極活物質層4の電池構造が形成されている。正極缶1と負極キャップ5の内部は、ガスケット6により気密性が保持されている。
 本発明にかかる電子伝導性に優れた電極活物質を用いることによって、リチウム伝導性を保持しつつ、相対的に電子伝導補助材の使用量を低減でき、電池の高容量化を図ることができる。
 以下、リチウム二次電池を構成する各層について説明する。
 まず、正極活物質層について説明する。正極活物質層は、正極活物質として、本発明の電極活物質を少なくとも含有する層であり、必要に応じて、電子伝導補助材、バインダー成分及び固体電解質材料の少なくとも一つを含有していてもよい。特に、電解質層が液体電解質層である場合、正極活物質層はバインダー成分を含有することが好ましい。正極活物質層からの正極活物質の滑落を効果的に抑制することができるからである。また、電解質層が固体電解質層である場合、正極活物質層は固体電解質材料を含有することが好ましい。正極活物質層におけるリチウムイオン伝導性を向上させることができるからである。
 正極活物質として用いられる本発明の電極活物質については上述したため、ここでの説明は省略する。
 電子伝導補助材としては、所望の導電性を有するものであれば特に限定されるものではないが、例えば炭素材料からなる電子導電補助材を挙げることができる。具体的には、アセチレンブラック、カーボンブラック、コークス、炭素繊維、黒鉛等が挙げられる。より好ましくは、熱処理温度が800℃~2000℃の平均粒子径10μm以下のコークス、黒鉛、平均粒子径1μm以下の炭素繊維が好ましい。また、電子伝導補助材のN吸着によるBET比表面積は10m/g以上が好ましい。
 バインダー成分は、化学的、電気的に安定なものであることが好ましく、具体的には、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダー成分、及び、スチレンブタジエンゴム等のゴム系バインダー成分等を挙げることができる。
 固体電解質材料は、リチウムイオン伝導性を有するものであれば特に限定されるものではないが、例えば、酸化物固体電解質材料、硫化物固体電解質材料を挙げることができ、中でも硫化物固体電解質材料が好ましい。リチウムイオン伝導性が高く、高出力な電池を得ることができるからである。尚、固体電解質材料については、後述の電解質層の説明において詳細に説明する。
 正極活物質層に含まれる正極活物質の含有量は、容量の観点からはより多いことが好ましく、例えば60重量%~99重量%の範囲内、中でも70重量%~95重量%の範囲内であることが好ましい。また、電子伝導補助材の含有量は、所望の電子伝導性を確保できれば、より少ないことが好ましく、例えば1重量%~30重量%の範囲内であることが好ましい。また、バインダー成分の含有量は、正極活物質等を安定に固定化できれば、より少ないことが好ましく、例えば1重量%~30重量%の範囲内であることが好ましい。また、固体電解質材料の含有量は、所望の電子伝導性を確保できれば、より少ないことが好ましく、例えば1重量%~40重量%の範囲内であることが好ましい。
 また、正極活物質層の厚さは、リチウム電池の構成によって大きく異なるものであるが、例えば0.1μm~1000μmの範囲内であることが好ましい。
 次に、負極活物質層について説明する。負極活物質層は、負極活物質を少なくとも含有する層であり、必要に応じて、電子伝導補助材、バインダー成分および固体電解質材料の少なくとも一つを含有していても良い。
 負極活物質としては、例えば金属活物質およびカーボン活物質を挙げることができる。金属活物質としては、例えばLi、In、Al、Si及びSn等を挙げることができる。一方、カーボン活物質としては、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。また、負極活物質の形状は、例えば、膜状であっても良く、粒子状であっても良い。ここで前者の場合は、通常、負極活物質そのものが負極活物質層になる。また、粒子状の負極活物質の平均粒径は、例えば1nm~100μmの範囲内、中でも10nm~30μmの範囲内であることが好ましい。さらに、粒子状の負極活物質の比表面積は、例えば0.1m/g~10m/gの範囲内であることが好ましい。
 負極活物質が粒子状である場合、負極活物質層は、粒子状の負極活物質の他に、必要に応じて、電子伝導補助材、バインダー成分及び固体電解質材料の少なくとも一つを含有していても良い。
 この場合、負極活物質層に含まれる負極活物質の含有量は、容量の観点からはより多いことが好ましく、例えば60重量%~99重量%の範囲内、中でも70重量%~95重量%の範囲内であることが好ましい。また、電子伝導補助材の含有量は、所望の電子伝導性を確保できれば、より少ないことが好ましく、例えば1重量%~30重量%の範囲内であることが好ましい。また、バインダー成分の含有量は、負極活物質等を安定に固定化できれば、より少ないことが好ましく、例えば1重量%~30重量%の範囲内であることが好ましい。また、固体電解質材料の含有量は、所望の電子伝導性を確保できれば、より少ないことが好ましく、例えば1重量%~40重量%の範囲内であることが好ましい。
 尚、負極活物質層に用いられる、電子伝導補助材、バインダー成分及び固体電解質材料については、上述した正極活物質層に用いられるものと同様であるので、ここでの記載は省略する。
 また、負極活物質層の厚さは、リチウム電池の構成によって大きく異なるものであるが、例えば0.1μm~1000μmの範囲内であることが好ましい。
 次に、電解質層について説明する。電解質層は、上記正極活物質層および上記負極活物質層の間に形成される層である。電解質層に含まれる電解質を介して、正極活物質と負極活物質との間のLiイオン伝導が行われる。電解質層の形態は、特に限定されるものではなく、液体電解質層、ゲル電解質層、固体電解質層等を挙げることができる。
 液体電解質層は、通常、非水電解液を用いてなる層である。リチウム電池の非水電解液は、通常、リチウム塩及び非水溶媒を含有する。上記リチウム塩としては、例えばLiPF、LiBF、LiClO及びLiAsF等の無機リチウム塩;並びにLiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等の有機リチウム塩等を挙げることができる。上記非水溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート、γ-ブチロラクトン、スルホラン、アセトニトリル、1,2-ジメトキシメタン、1,3-ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン及びこれらの混合物等を挙げることができる。非水電解液におけるリチウム塩の濃度は、例えば0.5mol/L~3mol/Lの範囲内である。尚、本発明においては、非水電解液として、例えばイオン性液体等の低揮発性液体を用いてもよい。
 ゲル電解質層は、例えば、上記非水電解液にポリマーを添加してゲル化することで得ることができる。具体的には、上記非水電解液に、ポリエチレンオキシド(PEO)、ポリアクリルニトリル(PAN)またはポリメチルメタクリレート(PMMA)等のポリマーを添加することにより、ゲル化を行うことができる。
 固体電解質層は、固体電解質材料を用いてなる層である。固体電解質材料としては、例えば、酸化物固体電解質材料及び硫化物固体電解質材料を挙げることができ、中でも硫化物固体電解質材料が好ましい。Liイオン伝導性が高く、高出力な電池を得ることができるからである。
 硫化物固体電解質材料は、Li及びSを有し、Liイオン伝導性を有するものであれば特に限定されるものではないが、例えば、Li、Sおよび第三成分Aを有するもの等を挙げることができる。第三成分Aとしては、例えばP、Ge、B、Si、I、Al、GaおよびAsからなる群より選択される少なくとも一種を挙げることができる。
 中でも、硫化物固体電解質材料が、LiSと、LiS以外の硫化物MSとを用いた化合物であることが好ましい。具体的には、LiS-P化合物、LiS-SiS化合物、LiS-GeS化合物等を挙げることができ、中でもLiS-P化合物が好ましい。Liイオン伝導性が高いからである。さらに、LiSおよび硫化物MSとのモル比を、xLiS-(100-x)MSとした場合、xは、50≦x≦95の関係を満たすことが好ましく、60≦x≦85の関係を満たすことがより好ましい。
 尚、LiS-P化合物は、LiS及びPを用いた硫化物固体電解質材料を意味する。その他の化合物についても同様である。
 例えば、LiS及びPを用いて、メカニカルミリング法または溶融急冷法を行うことで、非晶質のLiS-P化合物を得ることができる。
 硫化物固体電解質材料は、非晶質であってもよく、結晶質であってもよい。結晶質の硫化物固体電解質材料は、例えば、非晶質の硫化物固体電解質材料を焼成することで得ることができる。また、硫化物固体電解質材料は、架橋硫黄を有することが好ましい。硫化物固体電解質材料のLiイオン伝導性が高いからである。
 硫化物固体電解質材料としては、特に、Li11が好ましい。Liイオン伝導性が高いからである。
 固体電解質材料の平均粒径は、例えば1nm~100μmの範囲内、中でも10nm~30μmの範囲内であることが好ましい。
 電解質層の厚さは、リチウム電池の構成によって大きく異なるものであるが、例えば0.1μm~1000μmの範囲内、中でも0.1μm~300μmの範囲内であることが好ましい。
 リチウム電池は、上述した正極活物質層、電解質層及び負極活物質層を少なくとも有するものである。さらに通常は、正極活物質層の集電を行う正極集電体、及び負極活物質層の集電を行う負極集電体を有する。正極集電体の材料としては、例えばSUS、アルミニウム、ニッケル、鉄、チタンおよびカーボン等を挙げることができ、中でもSUSが好ましい。一方、負極集電体の材料としては、例えばSUS、銅、ニッケルおよびカーボン等を挙げることができ、中でもSUSが好ましい。また、正極集電体および負極集電体の厚さや形状等については、リチウム電池の用途等に応じて適宜選択することが好ましい。
 また、リチウム電池は、正極活物質層及び負極活物質層の間に、セパレータを有していても良い。より安全性の高いリチウム電池を得ることができるからである。セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン、セルロース、ポリフッ化ビニリデン等の多孔膜;及び樹脂不織布、ガラス繊維不織布等の不織布等を挙げることができる。
 また、リチウム電池を収納する電池ケースとしては、一般的なリチウム電池の電池ケースを用いることができる。電池ケースとしては、例えばSUS製電池ケース等を挙げることができる。また、リチウム電池が全固体電池である場合、発電要素を絶縁リングの内部に形成しても良い。
 [実施例1]
 (F及びN導入コバルト酸リチウムの合成)
 図1に示す手順で、F及びN導入コバルト酸リチウムを合成した。
 <フッ素導入工程>
 Li2CO3(和光純薬工業製)7.565gと、LiF(和光純薬工業製)1.770gと、Co34(和光純薬工業製)20.868gとを、乳鉢で混合した。その後、得られた原料混合物を、大気中、容器内で、焼成(900℃で20時間保持、昇温速度5℃/min)した(F導入LiCoO2の合成)。
 <窒素導入工程>
 次に上記にて合成した、F導入コバルト酸リチウム(F導入LiCoO2)1gと、尿素(アルドリッチ社製)1gとを、乳鉢で混合し、原料組成物を得た。得られた原料組成物を、真空容器内で、焼成(500℃で6時間保持、昇温速度5℃/min)した(F及びN導入LiCoO2の合成)。
 <残留尿素除去工程>
 上記容器を大気開放した後、再び、750℃で6時間保持(昇温速度5℃/min)、尿素を除去した。
 (F及びN導入コバルト酸リチウムの評価)
 <結晶構造>
 上記にて得られたF導入コバルト酸リチウムと、F及びN導入コバルト酸リチウムの結晶構造を、XRD測定により確認したところ、共に、岩塩層状構造を有していた。
 <比表面積>
 得られたF及びN導入コバルト酸リチウムについて、BET法により比表面積を測定したところ、2.3m2/gだった。尚、比表面積の測定は、比表面積及び細孔分布全自動ガス吸着測定装置(オートソープ-1、湯浅アイオニクス社製)を用いた。
 <電子伝導度>
 得られたF及びN導入コバルト酸リチウムについて、4端子法(印加電圧90V)で電子伝導度を測定した。結果を図3に示す。尚、電子伝導度の測定には、粉体抵抗測定機(三菱化学アナリテック社製、MCP-PD51)を用いた。
 [比較例1]
 LiCoO2(戸田工業社製、平均粒径2.5μm)について、実施例1と同様にして、電子伝導度を測定した。結果を図3に示す。
 [比較例2]
 (N導入コバルト酸リチウムの合成)
 LiCoO2(戸田工業社製、平均粒径2.5μm)1gと、尿素(アルドリッチ製)とを、乳鉢で混合した。得られた混合物を、真空容器内で焼成(500℃で6時間保持、昇温速度5℃/min)した。
 続いて、上記容器を大気開放した後、再び、750℃で5時間保持(昇温速度5℃/min)し、尿素を除去した。
 (N導入コバルト酸リチウムの評価)
 得られた窒素を導入したコバルト酸リチウムについて、実施例1と同様にして電子伝導度を測定した。結果を図3に示す。
 [評価結果]
 図3に示すように、純粋なLiCoO2(比較例1)と比較して、窒素を導入したLiCoO2(比較例2)は、10倍の電子伝導度を示した。さらに、フッ素及び窒素を導入したLiCoO2(実施例1)は、比較例2と比べて、2倍以上の電子伝導度を示した。
 以上の結果から、コバルト酸リチウムに窒素と共にフッ素を導入することで、窒素のみを導入したコバルト酸リチウムと比較して、電子伝導度を大幅に向上できることが示された。これは、コバルト酸リチウムへのフッ素の導入により、コバルト酸リチウムの結晶構造を保持しつつ、大量の窒素を導入することができたためと考えられる。
 1…正極缶
 2…正極活物質層
 3…電解質層
 4…負極活物質層
 5…負極キャップ
 6…ガスケット
 100…リチウム二次電池

Claims (18)

  1.  岩塩層状構造又はスピネル構造を有し、且つ、フッ素及び窒素が導入された、リチウム-遷移金属複合酸化物からなることを特徴とする電極活物質。
  2.  前記リチウム-遷移金属複合酸化物が、LiCoO2、LiNiO2、Li(Ni,Mn)O2、Li(Ni,Mn,Co)O2、及びLiMnから選ばれる少なくとも1種である、請求の範囲第1項に記載の電極活物質。
  3.  前記リチウム-窒素遷移金属複合酸化物が、LiCoO2である、請求の範囲第1項又は第2項に記載の電極活物質。
  4.  電子伝導度が1.0×10-3S/cm以上である、請求の範囲第1項乃至第3項のいずれかに記載の電極活物質。
  5.  平均粒径が0.1~50μmである、請求の範囲第1項乃至第4項のいずれかに記載の電極活物質。
  6.  正極活物質である、請求の範囲第1項乃至第5項のいずれかに記載の電極活物質。
  7.  フッ素が導入されたリチウム-遷移金属複合酸化物(a)と、下記式(1)で表され、常温で固体又は液体である窒化剤(b)と、を含有する原料組成物を焼成することによって、岩塩層状構造又はスピネル構造を有し且つフッ素及び窒素が導入されたリチウム-遷移金属複合酸化物(c)を合成する、窒素導入工程を有することを特徴とする電極活物質の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、R1、R2及びR3は、互いに独立に、炭素(C)、水素(H)、酸素(O)及び窒素(N)の少なくとも1つを有する基である。)
  8.  前記フッ素が導入されたリチウム-遷移金属複合酸化物(a)が、LiCoO2、LiNiO2、Li(Ni,Mn)O2、Li(Ni,Mn,Co)O2、及びLiMnから選ばれる少なくとも1種のリチウム-遷移金属複合酸化物にフッ素が導入されたものである、請求の範囲第7項に記載の電極活物質の製造方法。
  9.  前記フッ素が導入されたリチウム-窒素遷移金属複合酸化物(a)が、フッ素が導入されたLiCoO2である、請求の範囲第7項又は第8項に記載の電極活物質の製造方法。
  10.  リチウム元素、遷移金属元素、フッ素元素及び酸素元素を含有する原料を焼成することによって、前記フッ素が導入されたリチウム-遷移金属複合酸化物(a)を合成する、フッ素導入工程を有する、請求の範囲第7項乃至第9項のいずれかに記載の電極活物質の製造方法。
  11.  前記原料が、少なくともリチウム化合物とフッ素化合物と遷移金属化合物とを含有する原料混合物である、請求の範囲第10項に記載の電極活物質の製造方法。
  12.  前記リチウム化合物が、炭酸リチウム、硝酸リチウム、酢酸リチウム、酸化リチウム、及び水酸化リチウムよりなる群から選ばれる少なくとも1種である、請求の範囲第11項に記載の電極活物質の製造方法。
  13.  前記フッ素化合物が、フッ化リチウムである、請求の範囲第11項又は第12項に記載の電極活物質の製造方法。
  14.  前記遷移金属化合物が、酸化コバルト、硝酸コバルト、酢酸コバルト、炭酸コバルト、及び水酸化コバルトよりなる群から選ばれる少なくとも1種である、請求の範囲第11項乃至第13項のいずれかに記載の電極活物質の製造方法。
  15.  前記窒化剤が、尿素、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、アニリン、ニコチン、及びシクロヘキシルアミンよりなる群から選ばれる少なくとも1種である、請求の範囲第7項乃至第14項のいずれかに記載の電極活物質の製造方法。
  16.  前記窒素導入工程における焼成温度が300~600℃である、請求の範囲第7項乃至第15項のいずれかに記載の電極活物質の製造方法。
  17.  前記フッ素導入工程における焼成温度が500~900℃である、請求の範囲第10項乃至第16項のいずれかに記載の電極活物質の製造方法。
  18.  前記窒素導入工程後、前記フッ素及び窒素が導入されたリチウム-遷移金属複合酸化物(c)を加熱し、残留した前記窒化剤を除去する窒化剤除去工程をさらに有する、請求の範囲第7項乃至第17項のいずれかに記載の電極活物質の製造方法。
PCT/JP2010/054243 2010-03-12 2010-03-12 電極活物質及び電極活物質の製造方法 WO2011111228A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2010/054243 WO2011111228A1 (ja) 2010-03-12 2010-03-12 電極活物質及び電極活物質の製造方法
JP2012504253A JP5494792B2 (ja) 2010-03-12 2010-03-12 電極活物質及び電極活物質の製造方法
US13/634,123 US8852740B2 (en) 2010-03-12 2010-03-12 Electrode active material and electrode active material production method
CN201080065356.3A CN102792495B (zh) 2010-03-12 2010-03-12 电极活性物质和电极活性物质的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/054243 WO2011111228A1 (ja) 2010-03-12 2010-03-12 電極活物質及び電極活物質の製造方法

Publications (1)

Publication Number Publication Date
WO2011111228A1 true WO2011111228A1 (ja) 2011-09-15

Family

ID=44563070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054243 WO2011111228A1 (ja) 2010-03-12 2010-03-12 電極活物質及び電極活物質の製造方法

Country Status (4)

Country Link
US (1) US8852740B2 (ja)
JP (1) JP5494792B2 (ja)
CN (1) CN102792495B (ja)
WO (1) WO2011111228A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018073624A (ja) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 正極活物質
JP2018513540A (ja) * 2015-04-23 2018-05-24 ユミコア リチウムイオン再充電可能電池のための陰極材料

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671831B2 (ja) * 2009-05-21 2015-02-18 トヨタ自動車株式会社 窒化リチウム−遷移金属複合酸化物の製造方法、窒化リチウム−遷移金属複合酸化物およびリチウム電池
CN102767898A (zh) * 2012-07-20 2012-11-07 法罗力热能设备(中国)有限公司 一种加热水箱
JP6107192B2 (ja) * 2013-02-08 2017-04-05 Tdk株式会社 硫化物固体電解質材料および電気化学素子
KR102165175B1 (ko) 2013-10-10 2020-10-13 삼성전자주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
JP6274533B2 (ja) * 2014-07-22 2018-02-07 トヨタ自動車株式会社 リチウム二次電池用正極活物質およびその利用
KR102473531B1 (ko) 2015-09-24 2022-12-05 삼성전자주식회사 복합 전극활물질, 이를 채용한 전극과 리튬전지, 및 복합 전극활물질 제조방법
JP6919458B2 (ja) * 2017-09-26 2021-08-18 オムロン株式会社 変位計測装置、計測システム、および変位計測方法
FR3107615B1 (fr) * 2020-02-21 2022-06-03 Accumulateurs Fixes Matériau d’électrode pour cathode d’élément électrochimique lithium-ion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250549A (ja) * 2000-03-03 2001-09-14 Nissan Motor Co Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2002087824A (ja) * 2000-09-12 2002-03-27 Tokuyama Corp フッ素置換遷移金属酸化物
JP2005522832A (ja) * 2002-04-08 2005-07-28 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ リチウム電池のカソード材料の製造プロセス
JP2006286240A (ja) * 2005-03-31 2006-10-19 Toyo Tanso Kk 正極活物質及びその製造方法
JP2007257885A (ja) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
JP2009110952A (ja) * 2007-10-11 2009-05-21 Univ Of Fukui 非水電解質二次電池用正極材料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3569169B2 (ja) * 1999-08-09 2004-09-22 株式会社東芝 非水電解質二次電池
JP3589177B2 (ja) 2000-11-10 2004-11-17 株式会社豊田中央研究所 無機系酸窒化物の製造方法
US6953566B2 (en) * 2002-03-29 2005-10-11 Council Of Scientific & Industrial Research Process for preparing cathode material for lithium batteries
FR2865576B1 (fr) * 2004-01-28 2006-04-28 Commissariat Energie Atomique Procede de preparation de materiaux composites comprenant un compose actif d'electrode et un compose conducteur electronique tel que le carbone notamment pour accumulateurs au lithium
CN100344019C (zh) 2004-06-16 2007-10-17 松下电器产业株式会社 活性物质材料、其制造方法及含该材料的非水电解质二次电池
JP2006032321A (ja) 2004-06-16 2006-02-02 Matsushita Electric Ind Co Ltd 活物質材料、その製造方法、およびそれを含む非水電解質二次電池
CA2506104A1 (en) * 2005-05-06 2006-11-06 Michel Gauthier Surface modified redox compounds and composite electrode obtain from them
JP4938286B2 (ja) * 2005-11-02 2012-05-23 東洋炭素株式会社 リチウムイオン二次電池
CN101409346B (zh) * 2007-10-12 2013-06-26 松下电器产业株式会社 锂离子电池用正极材料的制备方法
JP5671831B2 (ja) * 2009-05-21 2015-02-18 トヨタ自動車株式会社 窒化リチウム−遷移金属複合酸化物の製造方法、窒化リチウム−遷移金属複合酸化物およびリチウム電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250549A (ja) * 2000-03-03 2001-09-14 Nissan Motor Co Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2002087824A (ja) * 2000-09-12 2002-03-27 Tokuyama Corp フッ素置換遷移金属酸化物
JP2005522832A (ja) * 2002-04-08 2005-07-28 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ リチウム電池のカソード材料の製造プロセス
JP2006286240A (ja) * 2005-03-31 2006-10-19 Toyo Tanso Kk 正極活物質及びその製造方法
JP2007257885A (ja) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd 非水電解質リチウムイオン電池用正極材料およびこれを用いた電池
JP2009110952A (ja) * 2007-10-11 2009-05-21 Univ Of Fukui 非水電解質二次電池用正極材料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018513540A (ja) * 2015-04-23 2018-05-24 ユミコア リチウムイオン再充電可能電池のための陰極材料
US10910646B2 (en) 2015-04-23 2021-02-02 Umicore Cathode material for a lithium-ion rechargeable battery
JP2018073624A (ja) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 正極活物質

Also Published As

Publication number Publication date
JPWO2011111228A1 (ja) 2013-06-27
CN102792495B (zh) 2015-10-21
US20130022815A1 (en) 2013-01-24
CN102792495A (zh) 2012-11-21
JP5494792B2 (ja) 2014-05-21
US8852740B2 (en) 2014-10-07

Similar Documents

Publication Publication Date Title
JP7232353B2 (ja) 再充電可能なバッテリーセル
JP5494792B2 (ja) 電極活物質及び電極活物質の製造方法
JP5671831B2 (ja) 窒化リチウム−遷移金属複合酸化物の製造方法、窒化リチウム−遷移金属複合酸化物およびリチウム電池
JP7116314B2 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP5196118B2 (ja) 非水電解質二次電池及びその製造方法
WO2013015069A1 (ja) 非水電解質二次電池
WO2012060295A1 (ja) 複合金属酸化物、当該複合金属酸化物の製造方法、ナトリウム二次電池用正極活物質、ナトリウム二次電池用正極、及びナトリウム二次電池
JP2009224307A (ja) 非水電解質二次電池及びその製造方法
KR20190059115A (ko) 리튬 이차전지용 양극재에 포함되는 비가역 첨가제, 이의 제조방법, 및 이 및 포함하는 양극재
JP5044060B2 (ja) 非水電解質二次電池およびその製造方法
JP5472237B2 (ja) 電池用活物質、電池用活物質の製造方法、および電池
JP2011001254A (ja) 窒化Li−Ti複合酸化物の製造方法、窒化Li−Ti複合酸化物およびリチウム電池
WO2013038918A1 (ja) 非水電解質二次電池の正極活物質及び非水電解質二次電池
WO2011117992A1 (ja) 電池用活物質および電池
KR20190078991A (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN111048831B (zh) 用于二次电池的电解液以及包含电解液的锂二次电池
JP2022095988A (ja) 非水系電解質二次電池用正極活物質、および非水系電解質二次電池
WO2014073701A1 (ja) 正極活物質、リチウム電池および正極活物質の製造方法
JP4651279B2 (ja) 非水電解質二次電池
JP3734145B2 (ja) リチウム二次電池
WO2011111227A1 (ja) 電極活物質及び電極活物質の製造方法
AU2010349189B2 (en) Active material for battery, and battery
JPH10214626A (ja) リチウム二次電池およびリチウム二次電池用正極活物質
CN115119528A (zh) 锂过渡金属氧化物、锂二次电池用正极添加剂以及包含其的锂二次电池
JP5354091B2 (ja) 電池用活物質および電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065356.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504253

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13634123

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10847458

Country of ref document: EP

Kind code of ref document: A1