WO2011108526A1 - 固体電解質膜、燃料電池用セル及び燃料電池 - Google Patents

固体電解質膜、燃料電池用セル及び燃料電池 Download PDF

Info

Publication number
WO2011108526A1
WO2011108526A1 PCT/JP2011/054596 JP2011054596W WO2011108526A1 WO 2011108526 A1 WO2011108526 A1 WO 2011108526A1 JP 2011054596 W JP2011054596 W JP 2011054596W WO 2011108526 A1 WO2011108526 A1 WO 2011108526A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
slurry
fuel cell
electrolyte membrane
base material
Prior art date
Application number
PCT/JP2011/054596
Other languages
English (en)
French (fr)
Inventor
基史 松田
忠俊 室田
竜弥 竹口
渉 上田
Original Assignee
株式会社三徳
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三徳, 国立大学法人北海道大学 filed Critical 株式会社三徳
Priority to JP2012503181A priority Critical patent/JP5780656B2/ja
Priority to CN201180022131.4A priority patent/CN102870263B/zh
Priority to EP11750636.0A priority patent/EP2544284A4/en
Priority to US13/582,287 priority patent/US9318765B2/en
Priority to KR1020127025186A priority patent/KR101749961B1/ko
Publication of WO2011108526A1 publication Critical patent/WO2011108526A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte membrane, a fuel cell, and a method for producing them.
  • the present invention also relates to a fuel cell having a fuel cell.
  • Patent Document 1 describes an invention relating to a fuel cell using NaCo 2 O 4 which is a layered metal oxide as a solid electrolyte.
  • the object of the present invention is to obtain a high electromotive force even under low temperature conditions from about room temperature of about 20 to 80 ° C. without using deleterious substances or platinum.
  • Patent Document 1 describes that the strength of the solid electrolyte layer tends to be insufficient when the thickness of the solid electrolyte layer is less than 0.3 mm.
  • a fuel cell is configured using a sample in which a solid electrolyte layer is formed to a thickness of about 1 mm, and its electromotive force is evaluated. Referring to the current-voltage curve of FIG.
  • the open circuit voltage (OCV) at an operating temperature of 75 ° C. is about 0.68 V, and the current density is measured only up to 30 mA / cm 2 .
  • OCV open circuit voltage
  • the solid electrolyte layer thinner and reduce the internal resistance of the solid electrolyte layer as compared with the conventional fuel cell.
  • the solid electrolyte layer needs to have a denseness.
  • An object of the present invention is to provide a solid electrolyte membrane, a fuel cell using the same, and a method for producing the same, which are useful for obtaining high electromotive force and high current / voltage characteristics of the fuel cell.
  • Another object of the present invention is useful for obtaining high electromotive force and high current / voltage characteristics of a fuel cell, and in particular, a solid electrolyte membrane that suppresses voltage drop and has excellent load characteristics, and a fuel cell using the same And a manufacturing method thereof.
  • the present inventors diligently studied a technique for forming a film while maintaining the denseness of the solid electrolyte membrane.
  • the solid electrolyte membrane is maintained while maintaining its mechanical strength. It has been found that it can be made extremely thin compared to the prior art.
  • OCV open circuit voltage
  • a solid comprising a base material made of a sheet-like material and having a plurality of apertures penetrating in the thickness direction thereof, and a solid electrolyte layer provided on at least one surface of the base material.
  • An electrolyte membrane is provided.
  • the internal resistance of the solid electrolyte membrane can be kept low, and the mechanical strength of the solid electrolyte membrane having a denseness can be increased.
  • a method for producing a solid electrolyte membrane comprising a step of preparing a slurry containing a solid electrolyte powder, a binder and a solvent, and comprising a sheet-like material and penetrating in the thickness direction.
  • a method comprising a step of applying the slurry on at least one surface of a substrate having a plurality of apertures, and a step of drying and / or baking the substrate to which the slurry is applied.
  • the solid electrolyte membrane of the present invention and a catalyst layer containing a noble metal are provided, the solid electrolyte layer is provided on one surface of the substrate, and the catalyst layer is formed of the substrate.
  • a fuel cell cell in which the solid electrolyte layer and the catalyst layer are in contact with each other in the opening of the substrate.
  • the solid electrolyte membrane of the present invention described above and a catalyst layer containing a noble metal are provided, and the solid electrolyte layers are provided on both surfaces of the base material, respectively, and each solid electrolyte is provided in the opening. Is provided, and a fuel cell is provided on the solid electrolyte layer so that the catalyst layer is in direct contact with one of the solid electrolyte layers.
  • a method for producing a cell for a fuel cell the step of preparing a first slurry containing a solid electrolyte powder, a binder and a solvent, and a catalyst powder and solvent carrying a noble metal. And a step of applying the first slurry onto one surface of a substrate made of a sheet-like material and having a plurality of apertures penetrating in the thickness direction.
  • a step of drying and / or firing the base material coated with the first slurry to form a solid electrolyte layer on the one surface, and the solid electrolyte layer of the base material is not formed Applying the second slurry on the other surface, drying and / or firing the substrate coated with the second slurry to form a catalyst layer on the other surface, Is provided.
  • a method for producing a fuel cell the step of preparing a first slurry containing a solid electrolyte powder, a binder and a solvent, a catalyst powder carrying a noble metal, and A step of preparing a second slurry containing a solvent, a step of applying the first slurry on both surfaces of a base material made of a sheet-like material and having a plurality of apertures penetrating in the thickness direction thereof; A step of drying and / or firing the base material coated with the first slurry to form a solid electrolyte layer on both sides, and a side of the base material on which the solid electrolyte layer is formed.
  • the solid electrolyte layer includes NaCo 2 O 4 , LaFe 3 Sr 3 O 10 , Bi 4 Sr 14 Fe 24 O 56 , NaLaTiO 4 , RbLaNb 2 O 7 , KLaNb 2 O 7 and Sr 4 Co 1.6 Ti 1.4 O. It is preferable to contain a kind of metal oxide selected from the group consisting of 8 (OH) 2 xH 2 O. These metal oxides exhibit excellent conductivity of hydroxide ions when subjected to reduction / hydrolysis treatment. In this case, it is preferable that the catalyst layer also contains these metal oxides, and a noble metal is supported on the metal oxides. Since both the solid electrolyte layer and the catalyst layer contain the same kind of metal oxide, the interface between them can be made continuous. Thereby, the internal resistance of the laminated body of the solid electrolyte layer and the catalyst layer can be sufficiently lowered.
  • the solid electrolyte layer preferably contains yttria-stabilized zirconia from the viewpoint of heat resistance and oxygen ion conductivity at high temperature.
  • the solid electrolyte membrane can be made thinner than the conventional one while maintaining its mechanical strength.
  • the internal resistance of the fuel cell can be lowered, and the denseness can be maintained, so that a fuel cell producing a sufficiently high electromotive force can be manufactured.
  • FIG. 1 is a schematic cross section which shows 1st Embodiment of the solid electrolyte membrane which concerns on this invention
  • (b) is a schematic cross section which shows the cell for fuel cells provided with the solid electrolyte membrane shown in (a).
  • (A) is a schematic cross section which shows 2nd Embodiment of the solid electrolyte membrane which concerns on this invention
  • (b) is a schematic cross section which shows the cell for fuel cells provided with the solid electrolyte membrane shown to (a).
  • a solid electrolyte membrane 10A shown in FIG. 1 (a) is made of a sheet-like material and has a plurality of apertures 1a penetrating in the thickness direction thereof, on one surface F1 of the substrate 1 and on an open surface. And a solid electrolyte layer 3 filled in at least a part of the hole 1a. Further, the fuel cell 20A shown in FIG. 1B is obtained by providing the catalyst layer 4 on the surface F2 of the solid electrolyte membrane 10A on the side where the solid electrolyte layer 3 is not provided.
  • the base material 1 is made of a sheet-like material, and the strength of the solid electrolyte membrane 10A can be improved by using such a material.
  • the substrate 1 is preferably a metal substrate having a function of imparting mechanical strength.
  • the material of the substrate 1 include nickel, nickel-plated products, nickel-based heat-resistant alloys, nickel-chromium alloys, stainless steel, iron-chromium alloys, and aluminum. These can be appropriately selected depending on the use temperature. For example, if heat resistance is required, a material having high heat resistance can be selected.
  • a synthetic resin such as plastic can be used in addition to a conductive material such as a metal base material.
  • the base material 1 has a plurality of apertures 1a penetrating in the thickness direction.
  • a plurality of apertures 1a it can be regarded as a parallel fuel cell in which the contact portion between the solid electrolyte layer 3 and the catalyst layer 4 in each aperture 1a functions independently as a fuel cell ( (See FIG. 1 (b)).
  • a metal base material such as a punching metal, a metal mesh, or an expanded metal can be used (see FIGS. 5 and 6). From the viewpoint that the solid electrolyte density can be more easily densified, Use is particularly preferred.
  • the punching metal opening shape includes round holes, square holes, and long holes, but is not particularly limited, and various mesh opening shapes exist, but are not particularly limited.
  • the average pore diameter of the plurality of apertures 1a is preferably 5 to 80 ⁇ m, more preferably 10 to 70 ⁇ m, and still more preferably 25 to 60 ⁇ m.
  • the average pore diameter is smaller than 5 ⁇ m, the conduction path of hydroxide ions is reduced, the solid electrolyte is not easily filled in the apertures, the number of contact points with the catalyst layer is reduced, and the power generation performance tends to be insufficient.
  • it if it is larger than 80 ⁇ m, the mechanical strength of the solid electrolyte membrane 10A tends to be insufficient, and problems such as easy separation of the solid electrolyte layer may occur.
  • the hole diameter here is the diameter of the hole in the case of a round hole, the long diameter of two diagonal lines connecting square vertices in the case of a square hole, and the long diameter value in the major axis direction if it is a long hole. is there.
  • the mesh it is the value of the major axis of the diagonal line connecting the vertices of the squares constituting the mesh.
  • the porosity of the substrate 1 before forming the solid electrolyte layer is preferably 20 to 75%, more preferably 25 to 60%, and further preferably 28 to 50%. If the open area ratio is less than 20%, the conduction path of hydroxide ions is reduced, the solid electrolyte is not easily filled in the open part, the number of contacts with the catalyst layer is reduced, and the power generation performance tends to be insufficient. On the other hand, if it exceeds 75%, the mechanical strength of the solid electrolyte membrane 10A tends to be insufficient, and problems such as easy separation of the solid electrolyte layer may occur.
  • the average thickness of the substrate 1 is preferably 18 to 80 ⁇ m, more preferably 20 to 75 ⁇ m, still more preferably 25 to 70 ⁇ m.
  • the solid electrolyte layer 3 is at least a part of the opening 1 a of the substrate 1 from the viewpoint of preventing separation of the solid electrolyte layer 3 and the catalyst layer 4 and securing a contact area. It is preferable that it is provided so as to be filled. Alternatively, the solid electrolyte layer 3 may be filled in the entire aperture 1a of the substrate 1, and the substrate 1 and the solid electrolyte layer 3 may be flush with each other on the surface F2 side.
  • the solid electrolyte layer 3 preferably contains a metal oxide.
  • the metal oxide applied as the electrolyte material is preferably one that exhibits conductivity of hydroxide ions by reduction / hydrolysis treatment.
  • these materials NaCo 2 O 4 , LaFe 3 Sr 3 O 10 , Bi 4 Sr 14 Fe 24 O 56 , NaLaTiO 4 , RbLaNb 2 O 7 , KLaNb 2 O 7 and KLaNb 2 O 7 and from the viewpoint of achieving a high electromotive force.
  • a metal oxide selected from the group consisting of Sr 4 Co 1.6 Ti 1.4 O 8 (OH) 2 .xH 2 O is preferred.
  • These materials can be prepared in layers by, for example, a solid phase reaction method.
  • the term “layered” as used herein means a crystal structure in which atoms or atomic groups are arranged on a plane to form a sheet structure and the sheet structure repeats in a direction perpendicular to the plane.
  • NaCo 2 O 4 can be obtained, for example, as follows. First, a solution in which sodium acetate and cobalt acetate tetrahydrate are dissolved in a predetermined ratio is dried, and the obtained sample is pulverized and temporarily fired. After the pre-baked sample is pulverized, it is fired again at a temperature of about 750 to 850 ° C. in a state of being formed into pellets. Thereafter, the pellets after firing are pulverized to obtain NaCo 2 O 4 having a layered crystal structure.
  • LaFe 3 Sr 3 O 10 is a perovskite type layered oxide.
  • a predetermined amount of lanthanum oxide, strontium carbonate, and iron oxide are put in a ball mill and LaFe 3 Sr 3 O 10 is processed until each component is sufficiently uniformly mixed.
  • the obtained sample is molded into pellets and fired at a temperature of about 1400 to 1500 ° C. Thereafter, the fired pellets are pulverized to obtain LaFe 3 Sr 3 O 10 having a layered crystal structure.
  • Bi 4 Sr 14 Fe 24 O 56 is treated, for example, by putting a predetermined amount of bismuth oxide, strontium oxide and iron oxide into a ball mill and mixing the components sufficiently uniformly.
  • the obtained sample is molded into pellets and fired at a temperature of about 1100 to 1200 ° C. Thereafter, the fired pellets are pulverized to obtain Bi 4 Sr 14 Fe 24 O 56 having a layered crystal structure.
  • NaLaTiO 4 is treated, for example, by putting a predetermined amount of lanthanum oxide, titanium oxide and sodium carbonate into a ball mill and mixing the components sufficiently uniformly.
  • the obtained sample is molded into pellets, fired at a temperature of about 700 to 750 ° C., and continuously fired at 900 to 950 ° C. Thereafter, the fired pellets are pulverized and washed with distilled water. By drying the washed sample at 120 ° C., NaLaTiO 4 having a layered crystal structure is obtained.
  • RbLaNb 2 O 7 is treated, for example, by putting a predetermined amount of lanthanum oxide, rubidium carbonate and niobium oxide into a ball mill and mixing the components sufficiently uniformly.
  • the obtained sample is molded into pellets and fired at a temperature of about 1100 to 1200 ° C. Thereafter, the fired pellets are pulverized and washed with distilled water. By drying the washed sample at 120 ° C., RbLaNb 2 O 7 having a layered crystal structure is obtained.
  • KLaNb 2 O 7 is processed, for example, by putting a predetermined amount of lanthanum oxide, potassium carbonate and niobium oxide into a ball mill and mixing the components sufficiently uniformly.
  • the obtained sample is molded into pellets and fired at a temperature of about 1100 to 1200 ° C. Thereafter, the fired pellets are pulverized and washed with distilled water. The washed sample is dried at 120 ° C. to obtain KLaNb 2 O 7 having a layered crystal structure.
  • Sr 4 Co 1.6 Ti 1.4 O 8 (OH) 2 .xH 2 O is treated, for example, by putting a predetermined amount of strontium carbonate, cobalt oxide and titanium oxide in a ball mill and mixing the components sufficiently uniformly.
  • the obtained sample is molded into pellets and then fired at a temperature of about 1275 to 1375 ° C. Thereafter, the fired pellets are pulverized to obtain Sr 4 Co 1.6 Ti 1.4 O 8 (OH) 2 .xH 2 O having a layered crystal structure.
  • a slurry is prepared using 2 ⁇ xH 2 O powder, and the solid electrolyte layer 3 can be formed using the slurry.
  • the solid electrolyte layer 3 has NaCo 2 O 4 , LaFe 3 Sr 3 O 10 , Bi 4 Sr 14 Fe 24 O 56 , NaLaTiO 4 , RbLaNb 2 O 7 , KLaNb 2 O 7 or Sr 4 Co 1.6 Ti 1.4 O 8 (OH) having a layered crystal structure )
  • a slurry is prepared using 2 ⁇ xH 2 O powder, and the solid electrolyte layer 3 can be formed using the slurry.
  • the solid electrolyte layer 3 has NaCo 2 O 4 , LaFe 3 Sr 3 O 10 , Bi 4 Sr 14 Fe 24 O 56 , NaLaTiO 4 , RbLaNb 2 O 7 , KLaNb 2 O 7 or Sr 4 Co 1.6 Ti 1.4 O.
  • the solid electrolyte membrane 10A can be manufactured by the following method. That is, a step of preparing a solid electrolyte layer forming slurry (first slurry) containing a solid electrolyte powder, a binder and a solvent, a step of applying this slurry onto the surface F1 of the substrate 1, And drying and / or firing the base material 1 coated with the slurry. Specifically, for example, an appropriate binder is mixed with the metal oxide powder, and a solvent in which the binder is dissolved is added and sufficiently stirred to form a slurry. If necessary, a homogenizer or the like may be used.
  • the slurry obtained by stirring is applied to the substrate 1 at 300 ⁇ m or less (including the thickness of the substrate) using a doctor blade and / or a spray. At this time, the application may be performed once or a plurality of times as long as a desired thickness can be obtained. By applying multiple times, the density of the solid electrolyte layer can be improved and the voltage drop can be suppressed.
  • the mixture is allowed to stand for 30 minutes or more and then dried in air at 60 to 100 ° C. for 1 minute to 20 hours. At this time, if the standing time is short or the drying temperature is too high, the solvent in the slurry may foam and a uniform thickness may not be obtained.
  • firing is performed in air.
  • the firing conditions are preferably a temperature of 500 to 700 ° C. and a holding time of 1 to 10 hours. Since the binder is almost evaporated by baking, it is considered that many fine voids exist in the film after baking. Therefore, it is preferable to press the solid electrolyte layer 3 containing the metal oxide and the base material 1 at 40 to 60 MPa for 1 to 30 minutes so that the solid electrolyte layer 3 is consolidated.
  • the thickness of the solid electrolyte membrane 10A (total thickness of the substrate 1 and the solid electrolyte layer 3) is preferably 30 to 200 ⁇ m, more preferably 30 to 150 ⁇ m, and particularly preferably 40 to 150 ⁇ m.
  • the film thickness is too thin, cross-leakage occurs in the solid electrolyte layer, and the OCV in the low current region may decrease.
  • the press is insufficient, water vapor supplied at the time of power generation is condensed in the voids inside the electrolyte, and moisture accumulates in the membrane, thereby inhibiting gas diffusion and reducing battery performance. Further, the noble metal catalyst on the fuel electrode may peel off, which may cause a problem that current density cannot be obtained.
  • the binder may be either organic or inorganic, and any binder may be used as long as it is dispersed or dissolved in a solvent together with the metal oxide powder, and the powder is fixed by removing the solvent.
  • a binder include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl acetate, polymethyl methacrylate, styrene-butadiene copolymer, acrylonitrile butadiene copolymer, carboxymethyl cellulose, polyvinyl alcohol, fluorine rubber, Examples thereof include ethylene-butadiene rubber.
  • solvent examples include N-methylpyrrolidinone, tetrahydrofuran, ethylene oxide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, dimethyltriamine, dimethylformamide, dimethylacetamide, and ethylene glycol.
  • CVD chemical vapor phase
  • PVD physical vapor deposition
  • coating methods such as the above-mentioned doctor blade method, spin coating method, sol-gel method and spray method, such as thermal CVD method, plasma CVD method, MOCVD method, etc., which can be formed into a film. If it does not specifically limit.
  • the solid electrolyte membrane 10B shown in FIG. 3A is different from the solid electrolyte membrane 10A according to the first embodiment in that the solid electrolyte layer 3 is also provided on the surface F2 of the substrate 1. As shown to Fig.3 (a), the opening part 1a of the base material 1 is filled with the solid electrolyte.
  • the solid electrolyte membrane 10B can be manufactured by the following method. That is, a step of preparing a solid electrolyte layer forming slurry (first slurry) containing a solid electrolyte powder, a binder and a solvent, and a step of applying this slurry on both surfaces F1 and F2 of the substrate 1 And a step of drying and / or firing the substrate 1 on which the slurry is applied.
  • firing is performed in air.
  • the firing conditions are preferably a temperature of 500 to 700 ° C. and a holding time of 1 to 10 hours.
  • the firing is performed on the upper and lower surfaces of the solid electrolyte membrane in order to prevent the evaporation of Na, suppress the formation of Co 3 O 4 , and maintain the denseness of the solid electrolyte layer.
  • Na 2 CO 3 is preferably applied. Since the binder is almost evaporated by baking, it is considered that many fine voids exist in the film after baking.
  • the solid electrolyte layer 3 containing the metal oxide and the substrate 1 it is preferable to press the solid electrolyte layer 3 containing the metal oxide and the substrate 1 at 40 to 60 MPa for 1 to 30 minutes so that the solid electrolyte layer 3 is consolidated.
  • the press is insufficient, water vapor supplied at the time of power generation is condensed in the voids inside the electrolyte, and moisture accumulates in the membrane, thereby inhibiting gas diffusion and reducing battery performance. Further, the noble metal catalyst on the fuel electrode may peel off, which may cause a problem that current density cannot be obtained.
  • the binder, the solvent, and the film manufacturing method used in the above steps are the same as those in the first embodiment.
  • a fuel cell 20A shown in FIG. 1B is obtained by providing a catalyst layer 4 on a surface F2 of the solid electrolyte membrane 10A on which the solid electrolyte layer 3 is not provided.
  • the solid electrolyte layer 3 and the catalyst layer 4 are in contact with each other in the opening 1 a of the base material 1.
  • the contact portion between the solid electrolyte layer 3 and the catalyst layer 4 in each opening 1a can be regarded as a parallel fuel cell in which the fuel cell functions independently. And even if the contact part in one opening part 1a stops showing battery performance for some reason, since the whole cell battery performance is maintained by many other contact parts, the dramatic improvement in durability is achieved. Figured.
  • a forming paste or slurry (second slurry) is prepared.
  • the catalyst powder can be prepared as follows.
  • As the noble metal Pt, Pd, Ru, Ag, or the like can be used.
  • Pd a Pd (NH 3 ) 2 (NO 2 ) 2 nitric acid solution is added to the metal oxide powder obtained above. Add. This is impregnated on a water bath and water is evaporated until it becomes powdery. The obtained sample is put in a firing furnace and fired in air.
  • the metal oxide may be NaCo 2 O 4 , LaFe 3 Sr 3 O 10 , Bi 4 Sr 14 Fe 24 O 56 , NaLaTiO 4 , RbLaNb 2 O 7 , KLaNb 2 O 7 or Sr 4 Co 1.6 Ti 1.4 O 8 (OH)
  • the firing conditions when 2 ⁇ xH 2 O is used are preferably a temperature of 500 to 700 ° C. and a holding time of 1 minute to 20 hours.
  • a Pd-supported metal oxide catalyst having a Pd support amount of 12 to 15% by mass based on the mass of the metal oxide can be obtained.
  • a binder is added to prepare a paste (slurry) containing these.
  • This paste is applied in a thickness of 10 to 30 ⁇ m on the surface opposite to the surface on which the solid electrolyte layer is formed on the substrate. After drying the base material to which the paste has been applied, it is fired in air to produce a fuel cell.
  • the metal oxide may be NaCo 2 O 4 , LaFe 3 Sr 3 O 10 , Bi 4 Sr 14 Fe 24 O 56 , NaLaTiO 4 , RbLaNb 2 O 7 , KLaNb 2 O 7 or Sr 4 Co 1.6 Ti 1.4 O 8 (OH )
  • the holding time is preferably 30 minutes to 5 hours.
  • the catalyst layer forming paste or slurry is applied onto the surface F2 of the solid electrolyte membrane 10A, and the solid electrolyte membrane 10A coated with the slurry is dried and / or baked to form the catalyst layer 4 on the surface F2.
  • the fuel cell 20A is obtained by forming (see FIG. 1B). At this time, the fuel cell 20A can be consolidated by pressing at 40 to 60 MPa for 1 to 30 minutes as necessary. However, only the press performed at the time of producing the solid electrolyte membrane 10A may be used.
  • a fuel cell 20B shown in FIG. 3B has a catalyst layer 5 formed on one surface of a solid electrolyte membrane 10B so that the solid electrolyte layer 3 and the catalyst layer 5 are in direct contact with each other.
  • the solid electrolyte membrane 10B shown in FIG. 3A and the catalyst layer forming paste or slurry (second slurry) as in the first embodiment are used.
  • the fuel cell 20B is obtained by applying the catalyst layer forming paste or slurry on one surface of the solid electrolyte membrane 10B, and drying and / or firing the solid electrolyte membrane 10B coated with the slurry.
  • the fuel cell 20B can be consolidated by pressing at 40 to 60 MPa for 1 to 30 minutes as necessary. However, only the press performed at the time of producing the solid electrolyte membrane 10B may be used.
  • the interface between the solid electrolyte layer 3 and the catalyst layer 5 and the contact portion between the noble metal catalyst and the solid electrolyte contribute to the reaction of the fuel cell.
  • a fuel cell is manufactured using the fuel cell 20B, it contributes to the fuel cell reaction over a wide range, and an improvement in power generation performance can be expected.
  • the fuel cell 30 shown in FIG. 2 has a first internal space defined by the fuel cell 20A having the above configuration, the anode 32 and the cathode 33 arranged so as to sandwich the fuel cell 20A, and the fuel cell 20A. And a main body 35 partitioned into a region R1 and a second region R2.
  • the anode 32 is provided on the first region R1 side of the fuel cell 20A.
  • the cathode 33 is provided on the second region R2 side of the fuel cell 20A.
  • the main body 35 accommodates the anode 32, the cathode 33, and the fuel cell 20 ⁇ / b> A, and the internal space is partitioned into the first region R ⁇ b> 1 and the second region R ⁇ b> 2 by the fuel cell 20 ⁇ / b> A.
  • the main body 35 has a gas supply port 35a for supplying hydrogen into the first region R1 and a gas discharge port 35b for discharging gas from the first region R1.
  • a pipe 36a and a pipe 36b are connected to the gas supply port 35a and the gas discharge port 35b, respectively.
  • a valve (not shown) for adjusting the amount of gas to be supplied is disposed in the middle of the pipe 36a.
  • the main body 35 has a gas supply port 35c for supplying oxygen together with moisture into the second region R2, and a gas discharge port 35d for discharging gas from the second region R2.
  • a pipe 36c and a pipe 36d are connected to the gas supply port 35c and the gas discharge port 35d, respectively.
  • a valve (not shown) for adjusting the amount of gas to be supplied is disposed in the middle of the pipe 36c.
  • Examples of the conductive wires connected to the anode 32 and the cathode 33 include copper wires, nichrome wires, platinum wires, and the like. It is not limited to these conducting wires, and may be appropriately selected according to operating conditions.
  • the treatment can be performed under the conditions of a hydrogen concentration of 10 to 100% by volume, a temperature of 80 to 270 ° C., a pressure of 0.1 to 1.0 MPa, a treatment time of 2 to 48 hours, a hydrogen concentration of 100% by volume, and a temperature of 250. It is particularly desirable that the temperature is 0.1 MPa, the pressure is 0.1 MPa, and the treatment time is 30 minutes after the temperature rises to 270 ° C. over 3 hours. Further, humidified hydrogen was supplied to the anode (catalyst surface) at 5 mL / min, and the part where the sample was mounted was heated at a temperature rise rate of about 1.4 K / min at 80 to 270 ° C. and then left overnight. Cool naturally. NaCo 2 O 4 + H 2 O ⁇ NaCo 2 O 4-2 ⁇ (OH) 2 ⁇ ⁇ (1- ⁇ ) H 2 O (1)
  • the fuel cell 30 configured as described above has a wide operating temperature range of 10 to 800 ° C. Therefore, the fuel cell 30 can sufficiently generate power at a relatively low temperature condition, for example, 20 to 80 ° C.
  • an alkaline fuel cell mainly using a metal oxide has been exemplified.
  • a solid electrolyte membrane is produced using yttria-stabilized zirconia (YSZ) or the like, and this is formed into a solid oxide form.
  • the electrolyte NaCo 2 O 4 was prepared according to the following procedures (1) to (5).
  • the calcined sample was pulverized well in an agate mortar, formed into pellets, and then baked in air at a temperature of 790 ° C. and a holding time of 3 hours.
  • the sample coarsely pulverized in an agate mortar was placed in a planetary ball mill (FRITSCH pulverisete) and pulverized under conditions of a rotation speed of 300 rpm and a processing time of 20 minutes.
  • Radiation source CuK ⁇ Wavelength ⁇ : 0.154056 nm, Tube voltage: 40 kV, Current: 20 mA Measurement range 2 ⁇ : 2-80 °, Scanning axis: 2 ⁇ / ⁇ , Scan step: 0.02 ° Scanning speed: 2 ° / min, Divergent slit: 1/2 ° Scattering slit: 1/2 °, Light receiving slit: 0.15 mm.
  • a slurry was prepared by mixing 1.2 g of NaCo 2 O 4 powder, 1.0 g of polyvinylidene fluoride (PVDF) as a binder and 1.3 ml of N-methylpyrrolidone (NMP) as a solvent.
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the obtained slurry was applied to one surface of the substrate 1 with a coating thickness of 120 ⁇ m or less (including the substrate thickness) using a doctor blade method. After coating, the mixture was allowed to stand for 30 minutes and then dried at 60 ° C. in a drying furnace. Here, if the standing time is short or the drying temperature is too high, the solvent in the slurry is foamed, and there is a possibility that a uniform thickness cannot be obtained. This operation is repeated as appropriate until a sufficiently uniform film is obtained. After drying, it was fired in air at a temperature of 600 ° C. and a holding time of 5 hours.
  • the solid electrolyte layer 3 after firing is considered to have many fine gaps inside. For this reason, the solid electrolyte layer 3 and the substrate 1 were pressed at a pressing pressure of 60 MPa for 10 minutes.
  • the press is insufficient, water vapor supplied at the time of power generation is condensed in the gaps inside the electrolyte, and moisture accumulates in the film, thereby inhibiting gas diffusion and reducing battery performance.
  • the catalyst on which the noble metal is supported on the fuel electrode is peeled off, which may cause a problem that the current density cannot be obtained.
  • ⁇ Power generation test> In order to evaluate the performance of the fuel cell, an evaluation device 50 having the configuration shown in FIG. 4 was produced, and a power generation test of the fuel cell was performed using this. As shown in FIG. 4, the fuel cell was sandwiched between Pt meshes 44a and 44b connected to the Pt conductors 43a and 43b, respectively. Note that carbon paper may be sandwiched between the Pt mesh 44a and the oxidant electrode (solid electrolyte layer) as necessary, and voltage drop can be suppressed by using the carbon paper. Moreover, the voltage drop in a low current area
  • the oxidant can be supplied to the oxidant electrode (solid electrolyte layer) through the supply pipe 45a, and the fuel can be supplied to the fuel electrode (catalyst layer) through the supply pipe 45b. That is, humidified oxygen can be supplied from above to the surface (cathode) not having the catalyst layer, and hydrogen can be supplied from below to the surface (anode) having the catalyst layer.
  • the reaction area of the gas supplied from the supply pipe 45b can be regarded as the same as the inner cylinder area of the pipe 46.
  • the outputs from the Pt conductors 43a and 43b were measured. The measurement was performed with a fuel supply process.
  • Example 1 A fuel cell was manufactured using a punching metal (thickness 26 ⁇ m, hole diameter ⁇ 60 ⁇ m, hole area ratio 32%) as a base material, and a power generation test was performed.
  • FIG. 5 shows an image of a punching metal scanning electron microscope (manufactured by JEOL, JSM-6300).
  • the thickness of the obtained solid electrolyte membrane (the total of the thickness of the electrolyte NaCo 2 O 4 and the thickness of the base material) was 47 ⁇ m.
  • the temperature of the portion where the sample was mounted at the time of measurement was kept at 75 ° C., and the open circuit voltage (OCV) was measured. The results are shown in Table 1. Moreover, the graph which shows the electric current and voltage in the temperature of 75 degreeC is shown in FIG.
  • Example 2 A fuel cell was prepared using the same base material as in Example 1 except that the thickness of the solid electrolyte membrane was 53 ⁇ m, and a power generation test was performed. The temperature of the portion where the sample was mounted at the time of measurement was kept at 75 ° C., and the open circuit voltage (OCV) was measured. The results are shown in Table 1.
  • Example 3 A metal mesh (thickness 45 ⁇ m, pore diameter ⁇ 25 ⁇ m, porosity 25%) was used as the base material, and the solid electrolyte membrane thickness (total of the thickness of the electrolyte NaCo 2 O 4 and the base material) was 51 ⁇ m. The same as in Example 1. The temperature of the portion where the sample was mounted at the time of measurement was kept at 75 ° C., and the open circuit voltage (OCV) was measured. The results are shown in Table 1.
  • Example 4 A metal mesh (with a thickness of 48 ⁇ m, a pore diameter of 38 ⁇ m, an aperture ratio of 33%) was used as the base material, and the thickness of the solid electrolyte membrane (the total of the thickness of the electrolyte NaCo 2 O 4 and the base material) was 78 ⁇ m. The same as in Example 1.
  • FIG. 6 shows an SEM image of the metal mesh. The temperature of the portion where the sample was mounted at the time of measurement was kept at 75 ° C., and the open circuit voltage (OCV) was measured. The results are shown in Table 1.
  • Example 5 A metal mesh (thickness 69 ⁇ m, pore diameter ⁇ 54 ⁇ m, open area ratio 32%) was used as the base material, and the solid electrolyte membrane thickness (total of the thickness of the electrolyte NaCo 2 O 4 and the base material) was 80 ⁇ m. The same as in Example 1. The temperature of the portion where the sample was mounted at the time of measurement was kept at 75 ° C., and the open circuit voltage (OCV) was measured. The results are shown in Table 1.
  • Example 6 instead of the electrolyte NaCo 2 O 4 , an electrolyte LaSr 3 Fe 3 O 10 was used, and the thickness of the solid electrolyte membrane (the total thickness of the electrolyte LaSr 3 Fe 3 O 10 and the thickness of the base material) was 69 ⁇ m
  • the temperature of the portion where the sample was mounted at the time of measurement was kept at 75 ° C., and the open circuit voltage (OCV) was measured. The results are shown in Table 1.
  • Comparative Example 1 The same procedure as in Example 1 was carried out except that NaCo 2 O 4 pellets (electrolyte thickness: 895 ⁇ m) prepared by the following method were used without using a membrane cell. The results of measuring the open circuit voltage (OCV) are shown in Table 1. Moreover, the graph which shows the electric current and voltage in the temperature of 75 degreeC is shown in FIG.
  • the NaCo 2 O 4 pellet was prepared by the following method. Incidentally, except that molded to the last pellet was carried out in the same manner as the preparation of the electrolyte NaCo 2 O 4 as described above (1) to (5).
  • the powder obtained by the above method was put into a tablet molding machine and molded into pellets (diameter 10 mm, thickness 1.7 to 12 mm). In addition, when the thickness of the pellet was 6 mm or less, it was molded under the conditions of a pressure of 30 MPa and a holding time of 5 minutes, and when the thickness of the pellet was about 12 mm, the pressure was 40 MPa and the holding time was 5 minutes.
  • the obtained molded body was put in a Muffle furnace and sintered in air at a temperature of 900 ° C. and a holding time of 32 hours to obtain a NaCo 2 O 4 sintered body.
  • Example 7 In the production of the fuel cell, the slurry was applied twice by the doctor blade method, and the thickness of the solid electrolyte membrane (the total thickness of the electrolyte NaCo 2 O 4 and the base material) was set to 102 ⁇ m. A fuel cell was produced using the same base material as in Example 1, and a power generation test was conducted. A graph showing current and voltage at a temperature of 75 ° C. is shown in FIG. For reference, a graph showing the current and voltage of the fuel cell produced in Example 1 shown in FIG. 7 is also shown in FIG. The density of the solid electrolyte layer produced in Example 7 and the solid electrolyte layer produced in Example 1 was measured according to the following formula.
  • Density (g ⁇ cm ⁇ 3 ) (Mass of the whole solid electrolyte membrane ⁇ Substrate mass) / (Volume of the whole solid electrolyte membrane ⁇ Substrate volume)
  • the density of the solid electrolyte layer of Example 1 was 3.1 g ⁇ cm ⁇ 3
  • the density of the solid electrolyte layer of Example 7 was 3.3 g ⁇ cm ⁇ 3.
  • the density difference of the solid electrolyte layer was improved.
  • the thickness of the solid electrolyte layer was increased, cross leakage was suppressed, and as a whole, the voltage drop in Example 7 was suppressed as shown in FIG.
  • Example 8 The slurry was further spray-coated on the solid electrolyte layer produced in Example 7, so that the total thickness of the electrolyte NaCo 2 O 4 and the substrate was 112 ⁇ m. Further, in the power generation test, carbon paper (AvCarb P50T, manufactured by Ballard Power Systems Inc) is laminated on the cathode-side solid electrolyte layer 3 shown in FIG. 4, and the thickness of the solid electrolyte membrane (the thickness of the electrolyte NaCo 2 O 4 ). A cell for a fuel cell was prepared using the same base material as in Example 1 except that the total thickness of the base material and the thickness of the base paper and the thickness of the carbon paper was 156 ⁇ m, and a power generation test was performed. A graph showing current and voltage at a temperature of 75 ° C. is shown in FIG. For reference, a graph showing the current and voltage of the fuel cell produced in Example 7 shown in FIG. 8 is also shown in FIG.
  • a graph showing current and voltage at a temperature of 75 ° C. is

Abstract

 燃料電池の高い起電力を達成するのに有用な固体電解質膜及びこれを用いた燃料電池用セルを提供する。該固体電解質膜は、シート状の材料からなり且つその厚み方向に貫通する複数の開孔部を有する基材と、前記基材の少なくとも一方の面上に設けられた固体電解質層とを備える。前記燃料電池用セルは、基材の一方の面上に固体電解質層が設けられた固体電解質膜と、貴金属を含有し、基材の他方の面上に設けられた触媒層とを備え、基材の開孔部内において固体電解質層と触媒層とが接触している。

Description

固体電解質膜、燃料電池用セル及び燃料電池
 本発明は、固体電解質膜及び燃料電池用セル並びにこれらの製造方法に関する。また、本発明は燃料電池用セルを備えた燃料電池に関する。
 特許文献1には、固体電解質として層状金属酸化物であるNaCo24を用いた燃料電池に関する発明が記載されている。当該発明は、劇物や白金を使用せず、20~80℃程度の室温程度からの低温条件下であっても高い起電力を得ることを目的とする。
 特許文献1には、固体電解質層の厚さが0.3mm未満であると、固体電解質層の強度が不十分となりやすいことが記載されている。当該文献の実施例においては、固体電解質層を厚み1mm程度に成形した試料を用いて燃料電池を構成し、その起電力の評価を行っている。当該文献の図6の電流-電圧曲線を参照すると、運転温度75℃における開回路電圧(OCV)は0.68V程度であり、また電流密度は30mA/cm2までしか測定されていない。
 上記のような固体電解質層を利用した燃料電池を実用化するには、従来と比較して固体電解質層をより薄くして固体電解質層の内部抵抗を小さくする必要がある。その一方で、燃料電池が性能を発揮するには固体電解質層が緻密性を有することが必要である。
国際公開第2010/007949号
 本発明の課題は、燃料電池の高い起電力及び高い電流・電圧特性を得るのに有用な、固体電解質膜、これを用いた燃料電池用セル及びこれらの製造方法を提供することにある。
 本発明の別の課題は、燃料電池の高い起電力及び高い電流・電圧特性を得るのに有用であり、特に、電圧降下を抑制し、負荷特性に優れる固体電解質膜、これを用いた燃料電池用セル及びこれらの製造方法を提供することにある。
 本発明者らは、固体電解質膜の緻密性を保ちながら、膜化する技術について鋭意検討したところ、特定の構成を有する基材を用いることによって、固体電解質膜をその機械的強度を保持しながら従来と比較して極めて薄くしうることを見出した。かかる構成の固体電解質膜を燃料電池に用いたところ、十分に高い開回路電圧(OCV)及び高い電流・電圧特性を得ることができ、発明を完成させた。
 本発明によれば、シート状の材料からなり且つその厚み方向に貫通する複数の開孔部を有する基材と、前記基材の少なくとも一方の面上に設けられた固体電解質層とを備える固体電解質膜が提供される。
 該基材を使用することで、固体電解質膜における内部抵抗を低く維持できるとともに、緻密性を有する固体電解質膜の機械的強度を高めることができる。
 また本発明によれば、固体電解質膜の製造方法であって、固体電解質の粉末、結着剤及び溶媒を含有するスラリーを調製する工程と、シート状の材料からなり且つその厚み方向に貫通する複数の開孔部を有する基材の少なくとも一方の面上に前記スラリーを塗布する工程と、前記スラリーが塗布された基材を乾燥及び/又は焼成する工程と、を含む方法が提供される。
 本発明によれば、上記本発明の固体電解質膜と、貴金属を含有する触媒層とを備え、前記固体電解質層が前記基材の一方の面上に設けられ、前記触媒層が前記基材の他方の面上に設けられ、前記基材の前記開孔部において前記固体電解質層と前記触媒層とが接触している燃料電池用セルが提供される。
 また本発明によれば、上記本発明の固体電解質膜と、貴金属を含有する触媒層とを備え、前記固体電解質層が前記基材の両面上にそれぞれ設けられ、前記開口部においてそれぞれの固体電解質が接触しており、前記触媒層が前記固体電解質層の一方に直接接するように当該固体電解質層上に積層されている燃料電池用セルが提供される。
 本発明によれば、燃料電池用セルの製造方法であって、固体電解質の粉末、結着剤及び溶媒を含有する第1のスラリーを調製する工程と、貴金属が担持された触媒の粉末及び溶媒を含有する第2のスラリーを調製する工程と、シート状の材料からなり且つその厚み方向に貫通する複数の開孔部を有する基材の一方の面上に前記第1のスラリーを塗布する工程と、前記第1のスラリーが塗布された前記基材を乾燥及び/又は焼成して前記一方の面上に固体電解質層を形成する工程と、前記基材の前記固体電解質層が形成されていない他方の面上に前記第2のスラリーを塗布する工程と、前記第2のスラリーが塗布された前記基材を乾燥及び/又は焼成して前記他方の面上に触媒層を形成する工程と、を含む方法が提供される。
 また本発明によれば、燃料電池用セルの製造方法であって、固体電解質の粉末、結着剤及び溶媒を含有する第1のスラリーを調製する工程と、貴金属が担持された触媒の粉末及び溶媒を含有する第2のスラリーを調製する工程と、シート状の材料からなり且つその厚み方向に貫通する複数の開孔部を有する基材の両面上に前記第1のスラリーを塗布する工程と、前記第1のスラリーが塗布された前記基材を乾燥及び/又は焼成して前記両面上に固体電解質層を形成する工程と、前記基材の前記固体電解質層が形成されている両面上のうち一方の表面上に前記第2のスラリーを塗布する工程と、前記第2のスラリーが塗布された前記基材を乾燥及び/又は焼成して前記基材の前記固体電解質層の表面上に触媒層を形成する工程と、を含む方法が提供される。
 更に本発明によれば、上記燃料電池用セルを備える燃料電池が提供される。
 本発明において、上記固体電解質層はNaCo24、LaFe3Sr310、Bi4Sr14Fe2456、NaLaTiO4、RbLaNb27、KLaNb27及びSr4Co1.6Ti1.48(OH)2・xH2Oからなる群より選択される一種の金属酸化物を含有することが好ましい。これらの金属酸化物は、還元・加水処理が施されることによって水酸化物イオンの優れた伝導性が発現する。この場合、触媒層もこれらの金属酸化物を含有し、当該金属酸化物に貴金属が担持されたものであることが好ましい。固体電解質層及び触媒層がいずれも同種の金属酸化物を含有することで、両者の界面を連続的なものとすることができる。これにより、固体電解質層と触媒層との積層体の内部抵抗を十分に低くできる。
 固体酸化物燃料電池(SOFC)を構成する場合にあっては、耐熱性及び高温での酸素イオン伝導性の観点から上記固体電解質層は、イットリア安定化ジルコニアを含有することが好ましい。
 本発明においては、固体電解質膜の構成部材として、複数の開口部を有する特定の基材を用いるので、固体電解質膜をその機械的強度を保持しながら従来と比較して薄くでき、固体電解質層の内部抵抗を低くすることができ、しかも緻密性を維持することも可能となり、十分に高い起電力を生じる燃料電池の製造が可能となる。
(a)は本発明に係る固体電解質膜の第1実施形態を示す模式断面図であり、(b)は(a)に示す固体電解質膜を備えた燃料電池用セルを示す模式断面図である。 図1(b)に示す燃料電池用セルを備えた燃料電池を示す模式断面図である。 (a)は本発明に係る固体電解質膜の第2実施形態を示す模式断面図であり、(b)は(a)に示す固体電解質膜を備えた燃料電池用セルを示す模式断面図である。 燃料電池用セルの評価装置を示す模式断面図である。 基材(パンチングメタル、厚み26μm、孔径φ60μm)のSEM画像である。 基材(金属メッシュ、厚み48μm、孔径φ38μm)のSEM画像である。 実施例1及び比較例1で作製した燃料電池用セルの電流・電圧特性の結果を示すグラフである。 実施例1及び7で作製した燃料電池用セルの電流・電圧特性の結果を示すグラフである。 実施例7及び8で作製した燃料電池用セルの電流・電圧特性の結果を示すグラフである。
 以下、場合により図面を参照しつつ本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。
(固体電解質膜)
<第1実施形態>
 図1(a)に示す固体電解質膜10Aは、シート状の材料からなり且つその厚み方向に貫通する複数の開孔部1aを有する基材1と、基材1の一方の面F1上及び開孔部1a内の少なくとも一部に充填された固体電解質層3とを備える。また、図1(b)に示す燃料電池用セル20Aは、上記固体電解質膜10Aの固体電解質層3が設けられていない側の面F2に触媒層4を設けたものである。
 基材1はシート状の材料からなり、このような材料を使用することで、固体電解質膜10Aの強度の向上が図られる。基材1は機械的強度を付与する機能を備えた金属基材であることが好ましい。
 基材1の材質としては、例えば、ニッケル、ニッケルめっき品、ニッケル系耐熱合金、ニッケル-クロム合金、ステンレス鋼、鉄-クロム合金、アルミが挙げられる。またこれらは使用温度により適宜選択することができ、例えば耐熱性が必要であれば耐熱性の高い材質を選択することができる。基材1としては、金属基材のような導電性を有するもの以外に、プラスチックなどの合成樹脂も使用することができる。
 基材1は、その厚み方向に貫通する複数の開孔部1aを有する。開孔部1aを複数設けることで、それぞれの開孔部1aにおける固体電解質層3と触媒層4との接触部が、独立して燃料電池として機能する、並列形燃料電池とみなすことができる(図1(b)参照)。
 基材1としては、パンチングメタル、金属メッシュ、エキスパンドメタルなどの金属製の基材を用いることができ(図5,6参照)、より固体電解質密度の緻密化が容易な点から、パンチングメタルの使用が特に好ましい。パンチングメタルの開孔形状は、丸孔、角孔、長孔などあるが、特に限定されず、メッシュの開孔形状も様々なものが存在するが、特に限定されない。
 複数の開孔部1aの平均孔径は、好ましくは5~80μm、より好ましくは10~70μm、さらに好ましくは25~60μmである。平均孔径が5μmより小さいと水酸化物イオンの伝導経路が少なくなることや開孔部に固体電解質が充填されにくくなり触媒層との接点が減少し、発電性能が不十分となりやすい。一方、80μmより大きいと固体電解質膜10Aの機械的強度が不十分となりやすく、固体電解質層が剥離しやすいなどの問題が生じるおそれがある。
 ここでいう孔径とは、丸孔であれば孔の直径を、角孔であれば角形の頂点同士を結んだ2本の対角線の長径を、長孔であれば長軸方向の長径の値である。またメッシュでは網目を構成する角形の頂点同士を結んだ対角線の長径の値である。
 固体電解質層を形成する前の基材1の開孔率は、好ましくは20~75%、より好ましくは25~60%、さらに好ましくは28~50%である。開孔率が20%より少ないと水酸化物イオンの伝導経路が少なくなることや開孔部に固体電解質が充填されにくくなり触媒層との接点が減少し、発電性能が不十分となりやすい。一方、75%より大きいと固体電解質膜10Aの機械的強度が不十分となりやすく、固体電解質層が剥離しやすいなどの問題が生じるおそれがある。
 ここでいう開孔率とは、基材1の一方面の面積(開孔部1aの開孔面積を含む)をAとし、複数の開孔部1aの開孔面積の合計をBとしたとき、下記式で算出される値である。
 開孔率(%)=B/A×100
 基材1の平均厚みは、好ましくは18~80μm、より好ましくは20~75μm、さらに好ましくは25~70μmである。このような基材1を用いて固体電解質膜10Aを膜化することで固体電解質内での抵抗が減少し、水酸化物イオンの伝導性能が向上する。基材1の平均厚みが18μmより薄いと固体電解質膜10Aの機械的強度が不十分となりやすく、80μmより厚いと固体電解質内での抵抗が増加する傾向にある。
 図1(a)及び(b)に示す通り、固体電解質層3と触媒層4の剥離防止及び接触面積を確保する観点から、固体電解質層3が基材1の開孔部1aの少なくとも一部に充填されるように設けられていることが好ましい。あるいは、固体電解質層3が基材1の開孔部1aの全体に充填されて、面F2側において基材1と固体電解質層3とが面一になっていてもよい。
 固体電解質層3は金属酸化物を含むことが好ましい。ここで、電解質材料として適用する金属酸化物は、還元・加水処理によって水酸化物イオンの伝導性が発現するものが好ましい。このような材料のうち、高い起電力を達成する観点から、NaCo24、LaFe3Sr310、Bi4Sr14Fe2456、NaLaTiO4、RbLaNb27、KLaNb27及びSr4Co1.6Ti1.48(OH)2・xH2Oからなる群より選択される金属酸化物が好ましい。これらの材料は、例えば、固相反応法によって層状に調製することができる。ここでいう層状とは、原子又は原子団が特に平面上に配列してシート構造をつくり、この平面に垂直な方向にシート構造の繰り返しが見られる結晶構造を意味する。
 NaCo24は、例えば、以下のようにして得ることができる。まず、酢酸ナトリウムと酢酸コバルト四水和物を所定の比率で溶解させた溶液を乾燥させ、得られた試料の粉砕・仮焼成を行う。仮焼成後の試料を粉砕した後、ペレットに成型した状態で750~850℃程度の温度で再度焼成を行う。その後、焼成後のペレットの粉砕を行い、層状の結晶構造を有するNaCo24が得られる。
 LaFe3Sr310はペロブスカイト型の層状酸化物である。LaFe3Sr310は、例えば、所定量の酸化ランタン、炭酸ストロンチウム及び酸化鉄をボールミルに入れ、各成分が十分に均一に混合するまで処理を行う。得られた試料をペレットに成型後、1400~1500℃程度の温度で焼成する。その後、焼成後のペレットの粉砕を行い、層状の結晶構造を有するLaFe3Sr310が得られる。
 Bi4Sr14Fe2456は、例えば、所定量の酸化ビスマス、酸化ストロンチウム及び酸化鉄をボールミルに入れ、各成分が十分に均一に混合するまで処理を行う。得られた試料をペレットに成型後、1100~1200℃程度の温度で焼成する。その後、焼成後のペレットの粉砕を行い、層状の結晶構造を有するBi4Sr14Fe2456が得られる。
 NaLaTiO4は、例えば、所定量の酸化ランタン、酸化チタン及び炭酸ナトリウムをボールミルに入れ、各成分が十分に均一に混合するまで処理を行う。得られた試料をペレットに成型後、700~750℃程度の温度で焼成し、連続して900~950℃で焼成する。その後、焼成後のペレットの粉砕を行い、蒸留水で洗浄する。洗浄した試料を120℃で乾燥させることで、層状の結晶構造を有するNaLaTiO4が得られる。
 RbLaNb27は、例えば、所定量の酸化ランタン、炭酸ルビジウム及び酸化ニオブをボールミルに入れ、各成分が十分に均一に混合するまで処理を行う。得られた試料をペレットに成型後、1100~1200℃程度の温度で焼成する。その後、焼成後のペレットの粉砕を行い、蒸留水で洗浄する。洗浄した試料を120℃で乾燥させることで、層状の結晶構造を有するRbLaNb27が得られる。
 KLaNb27は、例えば、所定量の酸化ランタン、炭酸カリウム及び酸化ニオブをボールミルに入れ、各成分が十分に均一に混合するまで処理を行う。得られた試料をペレットに成型後、1100~1200℃程度の温度で焼成する。その後、焼成後のペレットの粉砕を行い、蒸留水で洗浄する。洗浄した試料を120℃で乾燥させることで、層状の結晶構造を有するKLaNb27が得られる。
 Sr4Co1.6Ti1.48(OH)2・xH2Oは、例えば、所定量の炭酸ストロンチウム、酸化コバルト、酸化チタンをボールミルに入れ、各成分が十分に均一に混合するまで処理を行う。得られた試料をペレットに成型後、1275~1375℃程度の温度で焼成する。その後、焼成後のペレットの粉砕を行い、層状の結晶構造を有するSr4Co1.6Ti1.48(OH)2・xH2Oが得られる。
 層状の結晶構造を有するNaCo24、LaFe3Sr310、Bi4Sr14Fe2456、NaLaTiO4、RbLaNb27、KLaNb27又はSr4Co1.6Ti1.48(OH)2・xH2Oの粉末を用いてスラリーを調製し、これを用いて固体電解質層3を形成することができる。なお、固体電解質層3には、NaCo24、LaFe3Sr310、Bi4Sr14Fe2456、NaLaTiO4、RbLaNb27、KLaNb27又はSr4Co1.6Ti1.48(OH)2・xH2O以外の酸化物や不純物が、当該金属酸化物の機能発揮を阻害しない程度に含まれてもよい。
 固体電解質膜10Aは以下の方法によって製造することができる。すなわち、固体電解質の粉末、結着剤及び溶媒を含有する固体電解質層形成用のスラリー(第1のスラリー)を調製する工程と、このスラリーを基材1の面F1上に塗布する工程と、スラリーが塗布された基材1を乾燥及び/又は焼成する工程とを含む方法により得ることができる。具体的には、例えば、金属酸化物粉末に、適当な結着剤を混合し、結着剤が溶解する溶媒を加えて十分に撹拌させてスラリー状にする。必要であればホモジナイザー等を使用してもよい。撹拌し得られたスラリーをドクターブレード及び/又はスプレー等を用いて、基材1に、300μm以下(基材厚みを含む)で塗布する。この際、塗布は、所望の厚みとすることができれば、1回でも、複数回でも良い。複数回塗布により、固体電解質層の密度を向上させることができ、電圧降下を抑制することができる。
 塗布後、30分間以上静置した後、空気中で60~100℃、1分間~20時間乾燥する。このとき、静置時間が短い、あるいは乾燥温度が高すぎるとスラリー中の溶媒が発泡し、均一な厚みが得られない場合がある。
 その後、空気中で焼成を行う。例えば、NaCo24を用いた固体電解質を基材1に塗布した場合、焼成条件は温度500~700℃、保持時間1~10時間が好ましい。焼成により、結着剤はほとんど蒸発するため、焼成後の膜には多くの微細な空隙が存在すると考えられる。そこで、金属酸化物を含む固体電解質層3と基材1を、40~60MPaで1~30分間でプレスして、固体電解質層3を圧密化させることが好ましい。このときの固体電解質膜10Aの膜厚(基材1と固体電解質層3の合計の厚み)は30~200μmが好ましく、さらに好ましくは30~150μm、特に好ましくは40~150μmである。このとき、前記膜厚が薄すぎると固体電解質層におけるクロスリークが発生し、低電流領域におけるOCVが低下するおそれがある。また、プレスが不十分な場合、発電時に供給される水蒸気が電解質内部の空隙で結露し、膜内に水分が溜まることでガスの拡散を阻害し、電池性能を低下させるおそれがある。また、燃料極の貴金属触媒が剥離することにより、電流密度が得られないという問題が生じるおそれがある。
 上記結着剤は、有機質又は無機質のいずれでも良く、金属酸化物粉末と共に溶媒に分散あるいは溶解し、更に溶媒を除去することにより粉末同士を決着させるものであればどのようなものでもよい。このような結着剤として、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリ酢酸ビニル、ポリメチルメタクリレート、スチレン-ブタジエン共重合体、アクリロニトリルブタジエン共重合体、カルボキシメチルセルロース、ポリビニルアルコール、フッ素系ゴム、エチレン-ブタジエンゴム等が挙げられる。また前記溶媒としては、N-メチルピロリジノン、テトラヒドロフラン、エチレンオキシド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジメチルトリアミン、ジメチルホルムアミド、ジメチルアセトアミド、エチレングリコールが挙げられる。
 上記以外の膜の製造方法としては、気相法としてPVD(物理気相成長)法である真空蒸着法、スパッタリング法、イオンプレーティング法、PLD(レーザーアブレーション)法等、CVD法(化学気相成長)である熱CVD法、プラズマCVD法、MOCVD法等、上述したドクターブレード法、スピンコート法、ゾル・ゲル法やスプレー法などの塗布法が挙げられ、膜とすることが可能で有れば特に限定されない。
<第2実施形態>
 図3(a)に示す固体電解質膜10Bは、基材1の面F2上にも固体電解質層3が設けられている点において、第1実施形態に係る固体電解質膜10Aと相違する。図3(a)に示す通り、基材1の開孔部1aは固体電解質が充填されている。
 固体電解質膜10Bは以下の方法によって製造することができる。すなわち、固体電解質の粉末、結着剤及び溶媒を含有する固体電解質層形成用のスラリー(第1のスラリー)を調製する工程と、このスラリーを基材1の両面F1,F2上に塗布する工程と、スラリーが塗布された基材1を乾燥及び/又は焼成する工程とを含む方法により得ることができる。
 その後、空気中で焼成を行う。例えば、NaCo24を用いた固体電解質を基材1の両面に塗布した場合、焼成条件は温度500~700℃、保持時間1~10時間が好ましい。該焼成は、NaCo24を用いる場合、Naの蒸発を防止して、Co34の生成を抑制し、固体電解質層の緻密性を保持するために、固体電解質膜の上下面に例えば、Na2CO3を塗布することが好ましい。
 焼成により、結着剤はほとんど蒸発するため、焼成後の膜には多くの微細な空隙が存在すると考えられる。そこで、金属酸化物を含む固体電解質層3と基材1を40~60MPaで1~30分間でプレスして、固体電解質層3を圧密化させることが好ましい。このとき、プレスが不十分な場合、発電時に供給される水蒸気が電解質内部の空隙で結露し、膜内に水分が溜まることでガスの拡散を阻害し、電池性能を低下させるおそれがある。また、燃料極の貴金属触媒が剥離することにより、電流密度が得られないという問題が生じるおそれがある。
 なお、上記工程に用いた結着剤や溶媒及び膜製造方法は第1実施形態と同様である。
(燃料電池用セル)
<第1実施形態>
 図1(b)に示す燃料電池用セル20Aは、固体電解質膜10Aの固体電解質層3が設けられていない側の面F2に触媒層4を設けたものである。図1(b)に示す通り、基材1の開孔部1aにおいて固体電解質層3と触媒層4とが接触している。上述のように、それぞれの開孔部1aにおける固体電解質層3と触媒層4との接触部が、独立して燃料電池として機能する、並列形燃料電池とみなすことができる。そして、ひとつの開孔部1aにおける接触部がなんらかの理由により電池性能を示さなくなったとしても、その他の多くの接触部によりセル全体電池性能は維持されることから、耐久性の飛躍的な向上が図られる。
 燃料電池用セル20Aを製造するには、まず、図1(a)に示す固体電解質膜10A、並びに、貴金属が担持された触媒の粉末、溶媒及び必要に応じて結着剤を含有する触媒層形成用のペースト又はスラリー(第2のスラリー)を準備する。
 触媒の粉末は以下のように調製することができる。貴金属としては、Pt、Pd、Ru又はAgなどを用いることができるが、例えば、Pdを用いる場合には上記で得られた金属酸化物粉末にPd(NH32(NO22硝酸溶液を添加する。これを水浴上で含浸させ、粉状になるまで水分を蒸発させる。得られた試料を焼成炉内に入れ、空気中にて焼成する。例えば、金属酸化物にNaCo24、LaFe3Sr310、Bi4Sr14Fe2456、NaLaTiO4、RbLaNb27、KLaNb27又はSr4Co1.6Ti1.48(OH)2・xH2Oを用いる場合の焼成条件は、好ましくは温度500~700℃、保持時間1分間~20時間である。これにより金属酸化物の質量を基準としたPd担持量が12~15質量%であるPd担持金属酸化物触媒が得られる。
 次に、Pd担持金属酸化物と溶媒とをよく練り合わせ、必要に応じて結着剤を加えてこれらを含有するペースト(スラリー)を調製する。このペーストを、基材上に固体電解質層が形成された面の反対側の面上に10~30μmの厚みで塗布する。上記ペーストが塗布された基材を乾燥した後、空気中にて焼成して、燃料電池用セルを作製できる。例えば、金属酸化物にNaCo24、LaFe3Sr310、Bi4Sr14Fe2456、NaLaTiO4、RbLaNb27、KLaNb27又はSr4Co1.6Ti1.48(OH)2・xH2Oを用いた場合には、ペーストが塗布された基材の乾燥は、温度60~100℃、保持時間1分間~20時間で行うことが好ましく、焼成は温度300~500℃、保持時間30分間~5時間の条件で行うのが好ましい。
 上記のように、触媒層形成用のペースト又はスラリーを固体電解質膜10Aの面F2上に塗布し、スラリーが塗布された固体電解質膜10Aを乾燥及び/又は焼成して面F2上に触媒層4を形成することで燃料電池用セル20Aが得られる(図1(b)を参照)。
 このとき、必要に応じて該燃料電池用セル20Aを、40~60MPaで1~30分間でプレスして圧密化することができる。ただし、前記固体電解質膜10Aの作製時に行うプレスだけでもよい。
<第2実施形態>
 図3(b)に示す燃料電池用セル20Bは、固体電解質膜10Bの一方の面上に触媒層5を形成し、固体電解質層3と触媒層5とが直接接するようにしたものである。
 燃料電池用セル20Bを製造するには、まず、図3(a)に示す固体電解質膜10B、並びに、第1実施形態と同様にして触媒層形成用のペースト又はスラリー(第2のスラリー)を準備する。触媒層形成用のペースト又はスラリーを固体電解質膜10Bの一方の面上に塗布し、スラリーが塗布された固体電解質膜10Bを乾燥及び/又は焼成することによって燃料電池用セル20Bが得られる。このとき、必要に応じて該燃料電池用セル20Bを、40~60MPaで1~30分間でプレスして圧密化することができる。ただし、前記固体電解質膜10Bの作製時に行うプレスだけでもよい。この燃料電池用セル20Bでは、固体電解質層3と触媒層5との界面及び貴金属触媒と固体電解質との接触部が燃料電池の反応に寄与する。
 燃料電池用セル20Bを用いて燃料電池を製造すると、広い範囲にわたって燃料電池反応に寄与することとなり、発電性能の向上が期待できる。
(燃料電池)
 燃料電池用セル20Aを備えた燃料電池について説明するが、下記の内容は燃料電池セル20Bを用いた燃料電池にも適用可能である。ここでは、NaCo24を含有する固体電解質層3及びPd/NaCo24触媒を含有する触媒層4を備える燃料電池用セル20Aを用いて燃料電池を作製した場合を例示する。
 図2に示す燃料電池30は、上記構成の燃料電池用セル20Aと、燃料電池用セル20Aを挟むように配置されたアノード32及びカソード33と、燃料電池用セル20Aによって内部の空間が第1領域R1及び第2領域R2に仕切られた本体部35とを備える。
 アノード32は、燃料電池用セル20Aの第1領域R1側に設けられている。他方、カソード33は、燃料電池用セル20Aの第2領域R2側に設けられている。本体部35は、アノード32、カソード33及び燃料電池用セル20Aを収容するものであり、燃料電池用セル20Aによって内部の空間が第1領域R1及び第2領域R2に仕切られている。本体部35は、水素を第1領域R1内に供給するためのガス供給口35a及び第1領域R1からガスを排出するガス排出口35bを有する。ガス供給口35a及びガス排出口35bには、配管36a及び配管36bがそれぞれ接続されている。配管36aの途中には、供給するガス量を調節するバルブ(図示せず)等が配設されている。
 本体部35は、水分とともに酸素を第2領域R2内に供給するためのガス供給口35c及び第2領域R2からガスを排出するガス排出口35dを有する。ガス供給口35c及びガス排出口35dには、配管36c及び配管36dがそれぞれ接続されている。配管36cの途中には、供給するガス量を調節するバルブ(図示せず)等が配設されている。
 アノード32及びカソード33にそれぞれ接続する導線としては、銅線、ニクロム線、白金線などが挙げられる。これらの導線に限定されるものではなく、動作条件などに応じて適宜選択すればよい。
 (発電方法)
 次に、燃料電池30を用いた発電方法について説明する。下記は燃料電池用セル20Aを用いた説明であるが、燃料電池用セル20Bを用いた燃料電池にも適用可能である。燃料電池用セル20Aの水酸化物イオンの伝導性を発現させるためには、燃料電池30による発電を開始するに先立ち、固体電解質層3をなすNaCo24の還元・加水処理を行う必要がある。固体電解質層3を構成する金属酸化物を還元処理することにより、酸素欠陥が発生し、さらに加水処理を行うことにより、以下の式(1)のように、当該金属酸化物の酸素欠陥に水分子が水和する。これによって、水酸化物イオンの伝導性が発現する。その処理方法としては、水素濃度10~100体積%、温度80~270℃、圧力0.1~1.0MPa、処理時間2~48時間という条件で可能であり、水素濃度100体積%、温度250℃、圧力0.1MPa、処理時間として昇温に3時間かけて270℃に達してから30分保持、という条件が特に望ましい。さらにアノード(触媒面)に加湿した水素を5mL/分で供給し、試料が装着された部分を約1.4K/分の昇温レートで80~270℃で加熱した後、一晩放置して自然冷却するのがよい。
 NaCo24+H2O→NaCo24-2δ(OH)2δ・(1-δ)H2O (1)
 上記構成の燃料電池30は、動作温度が10~800℃と範囲が広い。したがって、燃料電池30によれば、比較的低い温度条件、例えば、20~80℃で発電を十分に行うことができる。
 以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されない。例えば、上記実施形態においては、主に金属酸化物を使用したアルカリ形燃料電池を例示したが、イットリア安定化ジルコニア(YSZ)などを使用して固体電解質膜を作製し、これを固体酸化物形燃料電池(SOFC)に適用してもよい。イットリア安定化ジルコニア(YSZ)を含有する固体電解質層を膜化することでSOFCの内部抵抗を低減でき、作動温度(通常1000℃付近)を低温化できると考えられる。
 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。また、ここでは以下の試薬を使用したが、他のものを適宜使用してもよい。
 酢酸ナトリウム(CH3COONa、関東化学 特級)
 酢酸コバルト四水和物((CH3COO)2Co・4H2O、和光純薬 特級)
 ジニトロジアンミンパラジウム硝酸溶液(Pd(NH32(NO22/HNO3、田中貴金属)
 エチレングリコール(HOCH2CH2OH、和光純薬 特級)
<電解質NaCo24の調製>
 電解質NaCo24の調製は以下の(1)~(5)の手順に従って調製した。なお、電解質NaCo24は、後述のとおり、焼成過程を経て作製されるものであり、このような高温条件にあっては、Naが蒸発する。したがって、理論量のモル比(Na:Co=1:2)で原料を調製すると、生成物中に不純物(Co34)が生じるため、ここでは、原料中のNaとCoのモル比を(Na:Co=1.6:2)とするとともに、最終的に得られる電解質NaCo24の構造解析を行った。
 (1)酢酸ナトリウム4.00g(48.76mmol)と酢酸コバルト四水和物15.11g(60.66mmol)を内容積200mLのテフロン(登録商標)製のビーカーに秤取し、蒸留水40gを用いて溶解した。
 (2)上記(1)で得た溶液を80℃で撹拌しながら水分を蒸発させ、乾燥機(温度条件:80℃)に入れて、一晩乾燥させた。
 (3)乾燥させた試料をメノウ乳鉢でよく粉砕し、これをアルミナるつぼに入れた。このるつぼをMuffle炉に入れ、試料を空気中にて温度750℃、保持時間5時間の条件で仮焼きした。
 (4)仮焼きした試料をメノウ乳鉢でよく粉砕し、ペレットに成型した後空気中にて温度790℃、保持時間3時間の条件で本焼きした。
 (5)本焼きした後、メノウ乳鉢で粗粉砕した試料を、遊星ボールミル(FRITSCH pulverisette)に収容し、回転数300rpm、処理時間20分の条件で粉砕した。
<NaCo24の構造解析)
 粉末X線回折装置(Rigaku、RINT-Ultima+)を用いて、NaCo24の構造解析を行った。測定条件は以下の通りである。構造解析の結果、調製した試料(NaCo24の粉末)からは不純物(Co34)は検出されなかった。
 線源:CuKα、
 波長λ:0.154056nm、
 管電圧:40kV、
 電流:20mA、
 測定範囲2θ:2~80°、
 走査軸:2θ/θ、
 スキャンステップ:0.02°、
 スキャンスピード:2°/分、
 発散スリット:1/2°、
 散乱スリット:1/2°、
 受光スリット:0.15mm。
<Pd/NaCo24触媒(Pd担持量15質量%)の調製>
 NaCo24粉末(S=1m2/g)1.0gを蒸発皿に秤量した後、Pd(NH32(NO22硝酸溶液(4.557質量%)3.87gを更に添加した。これを80℃の水浴上で含浸させ、粉状になるまで水分を蒸発させた。得られた試料をMuffle炉内に入れ、空気中にて温度600℃、保持時間2時間の条件で焼き、NaCo24(担体)の質量を基準としたPd担持量が15質量%であるPd/NaCo24触媒を得た。
<燃料電池用セルの作製>
 NaCo24粉末1.2gと結着剤としてのポリフッ化ビニリデン(PVDF)1.0gおよび溶媒としてのN-メチルピロリドン(NMP)1.3mlを混合し、スラリーを調製した。このとき、NMPが少ない場合、スラリー中にNaCo24とPVDFの凝集が生じやすく、均一な膜が作製できないおそれがある。
 得られたスラリーを基材1の片面にドクターブレード法を用いて、塗布厚120μm以下(基材厚みを含む)で塗布した。塗布後、30分間静置したのち乾燥炉にて60℃で乾燥した。ここで、静置時間が短い、あるいは乾燥温度が高すぎるとスラリー中の溶媒が発泡し、均一な厚みが得られないおそれがある。この操作は、十分に均一な膜が得られるまで適宜繰り返す。乾燥後、空気中にて温度600℃、保持時間5時間焼成した。
 バインダーとして用いたPVDFは、200℃付近で蒸発するため、焼成後の固体電解質層3は内部に微細な隙間が多く存在すると考えられる。このため、固体電解質層3と基材1をプレス圧60MPaで10分間プレスした。ここで、プレスが不十分な場合、発電時に供給される水蒸気が電解質内部の隙間で結露し、膜内に水分が溜まることでガスの拡散を阻害し、電池性能を低下させるおそれがある。さらに、燃料極の貴金属担持された触媒が剥離することにより、電流密度が得られないという問題が生じるおそれがある。
 次に、Pd/NaCo24触媒10mgとエチレングリコール4μLとをよく練り合わせ、これらを含有するスラリーを調製した。このスラリーをNaCo24を塗布した基材1の他方の面上に厚さ10~30μm程度塗布した。上記基材1を電気炉内に入れ、空気中にて温度400℃、保持時間2時間焼成した。ここで、焼成温度を制御することで、十分な強度が得られ、電池反応の接触部が減少する粒成長を抑制することができる。
<還元・加水処理>
 試料燃料電池用セルを評価装置に装着する前に、当該セルの還元・加水処理を行った。還元・加水処理は、加湿(3%加湿)した水素を5ml/分で流しながら、加熱温度270℃、保持時間30分間で行った後、一晩放置して自然冷却した。
<発電試験>
 燃料電池の性能を評価するため、図4に示す構成の評価装置50を作製し、これを用いて燃料電池用セルの発電試験を行った。
 図4に示すように、Pt導線43a,43bとそれぞれ接続されたPtメッシュ44a,44bで燃料電池用セルを挟むようにして保持した。なお、必要に応じてPtメッシュ44aと酸化剤極(固体電解質層)との間に、カーボンペーパーを挟み込んでも良く、該カーボンペーパーを用いることにより、電圧降下を抑制することができる。また、該カーボンペーパーとして、固体電解質層を塗布したカーボンペーパーを用いることにより、低電流領域における電圧降下を更に抑制することができる。
 供給管45aを通じて酸化剤極(固体電解質層)に酸化剤を供給でき、供給管45bを通じて燃料極(触媒層)に燃料を供給できるように構成した。すなわち、触媒層を有しない面(カソード)に対して上方から加湿した酸素を供給でき、触媒層を有する面(アノード)に対して下方から水素を供給できるようにした。なお、供給管45bから供給されるガスの反応面積は管46の内筒面積と同じとみなすことができる。Pt導線43a,43bからの出力を測定した。測定は燃料供給処理を施して行った。
<燃料供給処理>
 アノード(触媒面)に水素を20mL/分で供給するとともに、カソードに温度条件25℃にて加湿した酸素を10mL/分で供給した。試料が装着された部分の温度を一定にした時の開回路電圧(OCV)と負荷電流を5.4mA/cm2/secで増加させたときの電圧を測定した。
 実施例1
 基材としてパンチングメタル(厚み26μm、孔径φ60μm、開孔率32%)を用いて燃料電池用セルを作製し、発電試験を行った。図5にパンチングメタルの走査型電子顕微鏡(日本電子製、JSM-6300)の画像を示す。得られた固体電解質膜の膜厚(電解質NaCo24の厚みと基材の厚みとの合計)は47μmであった。測定時の試料が装着された部分の温度を75℃に保持し、開回路電圧(OCV)を測定した。結果を表1に示す。また温度75℃における電流・電圧を示すグラフを図7に示す。
 実施例2
 固体電解質膜の膜厚を53μmとした以外は実施例1と同様の基材を用いて燃料電池用セルを作製し、発電試験を行った。測定時の試料が装着された部分の温度を75℃に保持し、開回路電圧(OCV)を測定した。結果を表1に示す。
 実施例3
 基材として金属メッシュ(厚み45μm、孔径φ25μm、開孔率25%)を用い、固体電解質膜の膜厚(電解質NaCo24の厚みと基材の厚みとの合計)を51μmとした以外は、実施例1と同様とした。測定時の試料が装着された部分の温度を75℃に保持し、開回路電圧(OCV)を測定した。結果を表1に示す。
 実施例4
 基材として金属メッシュ(厚み48μm、孔径φ38μm、開孔率33%)を用い、固体電解質膜の膜厚(電解質NaCo24の厚みと基材の厚みとの合計)を78μmとした以外は、実施例1と同様とした。図6に金属メッシュのSEM画像を示す。測定時の試料が装着された部分の温度を75℃に保持し、開回路電圧(OCV)を測定した。結果を表1に示す。
 実施例5
 基材として金属メッシュ(厚み69μm、孔径φ54μm、開孔率32%)を用い、固体電解質膜の膜厚(電解質NaCo24の厚みと基材の厚みとの合計)を80μmとした以外は、実施例1と同様とした。測定時の試料が装着された部分の温度を75℃に保持し、開回路電圧(OCV)を測定した。結果を表1に示す。
 実施例6
 電解質NaCo24に代えて、電解質LaSr3Fe310を用い、その固体電解質膜の膜厚(電解質LaSr3Fe310の厚みと基材の厚みとの合計)を69μmとした以外は実施例1と同様の基材を用いて燃料電池用セルを作製し、発電試験を行った。測定時の試料が装着された部分の温度を75℃に保持し、開回路電圧(OCV)を測定した。結果を表1に示す。
 比較例1
 膜セルを用いずに、以下の方法で作製したNaCo24ペレット(電解質厚み895μm)を使用した以外は実施例1と同様とした。開回路電圧(OCV)を測定した結果を表1に示す。また温度75℃における電流・電圧を示すグラフを図7に示す。
<NaCo24ペレットの調製>
 NaCo24ペレットの調製は以下の方法で行った。なお、最後にペレットに成型する以外は上述した電解質NaCo24の調製(1)~(5)と同様に行った。上記方法で得られた粉体を錠剤成型器に入れてペレット(直径10mm、厚さ:1.7~12mm)に成型した。なお、ペレットの厚さが6mm以下の場合は、圧力30MPa、保持時間5分、ペレットの厚さが12mm程度の場合は、圧力40MPa、保持時間5分の条件で成型した。得られた成型体をMuffle炉内に入れ、空気中にて温度900℃、保持時間32時間の条件で焼結させ、NaCo24の焼結体を得た。
Figure JPOXMLDOC01-appb-T000001
 実施例7
 燃料電池用セルの作製において、ドクターブレード法によるスラリーの塗布を2回行って、固体電解質膜の膜厚(電解質NaCo24の厚みと基材の厚みとの合計)を102μmとした以外は実施例1と同様の基材を用いて燃料電池用セルを作製し、発電試験を行った。温度75℃における電流・電圧を示すグラフを図8に示す。なお、参考に、図7に示した実施例1で作製した燃料電池用セルの電流・電圧を示すグラフも図8に併記する。
 この実施例7で作製した固体電解質層、及び実施例1で作製した固体電解質層の密度を以下の式に従って測定した。
 密度(g・cm-3)=(固体電解質膜全体の質量-基材質量)/(固体電解質膜全体の体積-基材体積)
 その結果、実施例1の固体電解質層の密度は3.1g・cm-3、実施例7の固体電解質層の密度は3.3g・cm-3と、2回塗布の実施例7の方が、固体電解質層の緻密差が向上していた。また、固体電解質層の厚みが大きくなったことで、クロスリークが抑制され、全体として、図8に示すように実施例7の方が電圧降下が抑制された。
 実施例8
 実施例7で作製した固体電解質層に、更にスラリーをスプレー塗布して、電解質NaCo24の厚みと基材の厚みとの合計厚みを112μmとした。更に、発電試験において、図4に示すカソード側の固体電解質層3上に、カーボンペーパー(AvCarb P50T、Ballard Power Systems Inc製)を積層させ、固体電解質膜の膜厚(電解質NaCo24の厚みと基材の厚みとカーボンペーパーの厚みの合計厚み)を156μmとした以外は実施例1と同様の基材を用いて燃料電池用セルを作製し、発電試験を行った。温度75℃における電流・電圧を示すグラフを図9に示す。なお、参考に、図8に示した実施例7で作製した燃料電池用セルの電流・電圧を示すグラフも図9に併記する。
 1…基材、1a…開孔部、3…固体電解質層、4,5…触媒層、10A,10B…固体電解質膜、20A,20B…燃料電池用セル、30…燃料電池。

Claims (18)

  1.  シート状の材料からなり且つその厚み方向に貫通する複数の開孔部を有する基材と、前記基材の少なくとも一方の面上に固体電解質層とを備える固体電解質膜。
  2.  前記開孔部の少なくとも一部に前記固体電解質層が充填されている請求項1記載の固体電解質薄膜。
  3.  前記固体電解質層は、NaCo24、LaFe3Sr310、Bi4Sr14Fe2456、NaLaTiO4、RbLaNb27、KLaNb27及びSr4Co1.6Ti1.48(OH)2・xH2Oからなる群より選択される少なくとも一種の金属酸化物を含有する請求項1又は2記載の固体電解質膜。
  4.  前記固体電解質層は、イットリア安定化ジルコニアを含有する請求項1又は2記載の固体電解質膜。
  5.  前記開孔部の平均孔径が5~80μmである請求項1~4のいずれかに記載の固体電解質膜。
  6.  前記基材の平均厚みが18~80μmである請求項1~5のいずれかに記載の固体電解質膜。
  7.  前記基材は、パンチングメタル、金属メッシュ又はエキスパンドメタルである請求項1~6のいずれかに記載の固体電解質膜。
  8.  前記基材の開孔率が20~75%である請求項1~7のいずれかに記載の固体電解質膜。
  9.  膜厚が30~200μmである請求項1~8のいずれかに記載の固体電解質膜。
  10.  請求項1~9のいずれかに記載の固体電解質膜と、貴金属を含有する触媒層とを備え、
     前記固体電解質層が前記基材の一方の面上に設けられ、前記触媒層が前記基材の他方の面上に設けられ、前記基材の前記開孔部において前記固体電解質層と前記触媒層とが接触している燃料電池用セル。
  11.  請求項1~9のいずれかに記載の固体電解質膜と、貴金属を含有する触媒層とを備え、
     前記固体電解質層が前記基材の両面上にそれぞれ設けられ、前記開口部においてそれぞれの固体電解質が接触しており、
     前記触媒層が前記固体電解質層の一方に直接接するように当該固体電解質層上に積層されている燃料電池用セル。
  12.  前記触媒層は、NaCo24、LaFe3Sr310、Bi4Sr14Fe2456、NaLaTiO4、RbLaNb27、KLaNb27及びSr4Co1.6Ti1.48(OH)2・xH2Oからなる群より選択される少なくとも一種の金属酸化物を含有し、貴金属が担持されている、請求項10又は11記載の燃料電池用セル。
  13.  固体電解質膜の製造方法であって、
     固体電解質の粉末、結着剤及び溶媒を含有するスラリーを調製する工程と、
     シート状の材料からなり且つその厚み方向に貫通する複数の開孔部を有する基材の少なくとも一方の面上に前記スラリーを塗布する工程と、
     前記スラリーが塗布された基材を乾燥及び/又は焼成する工程と、
    を含む方法。
  14.  前記乾燥及び/又は焼成する工程の後、得られた固体電解質膜をプレスする工程を含む請求項13記載の方法。
  15.  燃料電池用セルの製造方法であって、
     固体電解質の粉末、結着剤及び溶媒を含有する第1のスラリーを調製する工程と、
     貴金属が担持された触媒の粉末及び溶媒を含有する第2のスラリーを調製する工程と、
     シート状の材料からなり且つその厚み方向に貫通する複数の開孔部を有する基材の一方の面上に前記第1のスラリーを塗布する工程と、
     前記第1のスラリーが塗布された前記基材を乾燥及び/又は焼成して前記一方の面上に固体電解質層を形成する工程と、
     前記基材の前記固体電解質層が形成されていない他方の面上に前記第2のスラリーを塗布する工程と、
     前記第2のスラリーが塗布された前記基材を乾燥及び/又は焼成して前記他方の面上に触媒層を形成する工程と、
    を含む方法。
  16.  燃料電池用セルの製造方法であって、
     固体電解質の粉末、結着剤及び溶媒を含有する第1のスラリーを調製する工程と、
     貴金属が担持された触媒の粉末及び溶媒を含有する第2のスラリーを調製する工程と、
     シート状の材料からなり且つその厚み方向に貫通する複数の開孔部を有する基材の両面上に前記第1のスラリーを塗布する工程と、
     前記第1のスラリーが塗布された前記基材を乾燥及び/又は焼成して前記両面上に固体電解質層を形成する工程と、
     前記基材の両面上にそれぞれ形成した前記固体電解質層のうちの一方の表面上に前記第2のスラリーを塗布する工程と、
     前記第2のスラリーが塗布された前記基材を乾燥及び/又は焼成して当該固体電解質層の表面上に触媒層を形成する工程と、
    を含む方法。
  17.  前記固体電解質層を形成する工程及び/又は触媒層を形成する工程の後に更にプレスする工程を含む請求項15又は16記載の方法。
  18.  請求項10~12のいずれかに記載の燃料電池用セルを備える燃料電池。
PCT/JP2011/054596 2010-03-02 2011-03-01 固体電解質膜、燃料電池用セル及び燃料電池 WO2011108526A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012503181A JP5780656B2 (ja) 2010-03-02 2011-03-01 固体電解質膜、燃料電池用セル及び燃料電池
CN201180022131.4A CN102870263B (zh) 2010-03-02 2011-03-01 固体电解质隔膜、燃料电池单元及燃料电池
EP11750636.0A EP2544284A4 (en) 2010-03-02 2011-03-01 SOLID ELECTROLYTE MEMBRANE, FUEL BATTERY ELEMENT, AND FUEL BATTERY
US13/582,287 US9318765B2 (en) 2010-03-02 2011-03-01 Solid electrolyte membrane, fuel battery cell, and fuel battery
KR1020127025186A KR101749961B1 (ko) 2010-03-02 2011-03-01 고체 전해질막, 연료전지용 셀 및 연료전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010045778 2010-03-02
JP2010-045778 2010-03-02

Publications (1)

Publication Number Publication Date
WO2011108526A1 true WO2011108526A1 (ja) 2011-09-09

Family

ID=44542177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054596 WO2011108526A1 (ja) 2010-03-02 2011-03-01 固体電解質膜、燃料電池用セル及び燃料電池

Country Status (6)

Country Link
US (1) US9318765B2 (ja)
EP (1) EP2544284A4 (ja)
JP (1) JP5780656B2 (ja)
KR (1) KR101749961B1 (ja)
CN (1) CN102870263B (ja)
WO (1) WO2011108526A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253627A (ja) * 2010-05-31 2011-12-15 National Institute For Materials Science 燃料電池用電極触媒およびその製造方法
JP2013178931A (ja) * 2012-02-28 2013-09-09 Fuji Electric Co Ltd 電解質板およびその製造方法
WO2013161516A1 (ja) 2012-04-26 2013-10-31 日本碍子株式会社 リチウム空気二次電池
JP2014002845A (ja) * 2012-06-15 2014-01-09 Fuji Electric Co Ltd 燃料電池発電装置およびその運転方法
JP2016025020A (ja) * 2014-07-23 2016-02-08 セイコーエプソン株式会社 電極複合体、リチウム電池および電極複合体の製造方法
JP2019220459A (ja) * 2018-06-15 2019-12-26 日本碍子株式会社 電気化学セル
US10601094B2 (en) 2014-07-09 2020-03-24 Ngk Insulators, Ltd. Separator-equipped air electrode for air-metal battery
US10892530B2 (en) 2014-03-28 2021-01-12 Ngk Insulators, Ltd. Air electrode for metal-air battery
JP2021082594A (ja) * 2021-01-21 2021-05-27 住友電気工業株式会社 プロトン伝導体、固体電解質層、セル構造体、およびそれを備える水蒸気電解セルならびに燃料電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078634B (zh) * 2014-06-30 2017-02-08 中国华能集团清洁能源技术研究院有限公司 一种高强度熔融碳酸盐燃料电池隔膜及其制备方法
JP6328575B2 (ja) * 2015-02-23 2018-05-23 東京エレクトロン株式会社 触媒層形成方法、触媒層形成システムおよび記憶媒体
WO2018169359A1 (ko) * 2017-03-16 2018-09-20 주식회사 엘지화학 전고체 전지용 전극 조립체 및 이를 제조하는 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054351A1 (fr) * 1999-03-08 2000-09-14 Center For Advanced Science And Technology Incubation, Ltd. Membrane electrolytique pour pile a combustible et son procede de fabrication, et pile a combustible et son procede de fabrication
JP2004185882A (ja) * 2002-11-29 2004-07-02 Sanyo Electric Co Ltd 固体高分子電解質膜およびそれを利用した燃料電池。
JP2005216769A (ja) * 2004-01-30 2005-08-11 Asahi Glass Co Ltd 固体高分子電解質膜、その製造方法、及び固体高分子電解質膜を有する膜電極接合体
JP2007005126A (ja) * 2005-06-23 2007-01-11 Nissan Motor Co Ltd 固体高分子型燃料電池スタック、および、これを用いた固体高分子型燃料電池
JP2007035435A (ja) * 2005-07-27 2007-02-08 Kansai Electric Power Co Inc:The 固体酸化物形燃料電池及びその製造方法
JP2009064777A (ja) * 2007-08-10 2009-03-26 Japan Gore Tex Inc 補強された固体高分子電解質複合膜、固体高分子形燃料電池用膜電極組立体および固体高分子形燃料電池
WO2010007949A1 (ja) 2008-07-15 2010-01-21 国立大学法人 北海道大学 燃料電池及びこれを用いた発電方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835488B2 (en) * 2000-05-08 2004-12-28 Honda Giken Kogyo Kabushiki Kaisha Fuel cell with patterned electrolyte/electrode interface
JP4702053B2 (ja) * 2003-04-17 2011-06-15 旭硝子株式会社 固体高分子電解質膜、固体高分子型燃料電池用膜電極接合体及び固体高分子電解質膜の製造方法
UA83400C2 (uk) * 2003-12-02 2008-07-10 Нанодайнемікс, Інк. Твердооксидні паливні елементи з керметним електролітом та спосіб їх одержання
JP5222503B2 (ja) * 2006-11-27 2013-06-26 日本碍子株式会社 セラミックス薄板体と金属薄板体とを備えるデバイス
JP2008218214A (ja) 2007-03-05 2008-09-18 Toyota Motor Corp 燃料電池用電極形成用の電極形成用ペーストの製造方法と固体高分子型燃料電池
US7914636B2 (en) 2007-09-11 2011-03-29 Institute Of Nuclear Energy Research Synergistic process and recipe for fabrication of a high integrity membrane electrode assembly of solid oxide fuel cell
JP2010015940A (ja) * 2008-07-07 2010-01-21 Fuji Electric Systems Co Ltd 電解質層の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054351A1 (fr) * 1999-03-08 2000-09-14 Center For Advanced Science And Technology Incubation, Ltd. Membrane electrolytique pour pile a combustible et son procede de fabrication, et pile a combustible et son procede de fabrication
JP2004185882A (ja) * 2002-11-29 2004-07-02 Sanyo Electric Co Ltd 固体高分子電解質膜およびそれを利用した燃料電池。
JP2005216769A (ja) * 2004-01-30 2005-08-11 Asahi Glass Co Ltd 固体高分子電解質膜、その製造方法、及び固体高分子電解質膜を有する膜電極接合体
JP2007005126A (ja) * 2005-06-23 2007-01-11 Nissan Motor Co Ltd 固体高分子型燃料電池スタック、および、これを用いた固体高分子型燃料電池
JP2007035435A (ja) * 2005-07-27 2007-02-08 Kansai Electric Power Co Inc:The 固体酸化物形燃料電池及びその製造方法
JP2009064777A (ja) * 2007-08-10 2009-03-26 Japan Gore Tex Inc 補強された固体高分子電解質複合膜、固体高分子形燃料電池用膜電極組立体および固体高分子形燃料電池
WO2010007949A1 (ja) 2008-07-15 2010-01-21 国立大学法人 北海道大学 燃料電池及びこれを用いた発電方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIROSHI WATANABE ET AL.: "So-jo Perovskite Fukugo Sankabutsu o Mochiita Shinki Nenryo Denchi Denkaishitsu no Tokusei Hyoka", THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 76 KAI TAIKAI KOEN YOSHISHU, 29 March 2009 (2009-03-29), pages 436, XP008168248 *
See also references of EP2544284A4 *
TATSUYA TAKEGUCHI ET AL.: "Anion Dendo So-jo Sankabutsu o Denkaishitsu to suru Nenryo Denchi no Hatsuden Tokusei", THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 76 KAI TAIKAI KOEN YOSHISHU, 29 March 2009 (2009-03-29), pages 457, XP008168247 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253627A (ja) * 2010-05-31 2011-12-15 National Institute For Materials Science 燃料電池用電極触媒およびその製造方法
JP2013178931A (ja) * 2012-02-28 2013-09-09 Fuji Electric Co Ltd 電解質板およびその製造方法
WO2013161516A1 (ja) 2012-04-26 2013-10-31 日本碍子株式会社 リチウム空気二次電池
JPWO2013161516A1 (ja) * 2012-04-26 2015-12-24 日本碍子株式会社 リチウム空気二次電池
US9391349B2 (en) 2012-04-26 2016-07-12 Ngk Insulators, Ltd. Lithium air secondary battery
JP2014002845A (ja) * 2012-06-15 2014-01-09 Fuji Electric Co Ltd 燃料電池発電装置およびその運転方法
US10892530B2 (en) 2014-03-28 2021-01-12 Ngk Insulators, Ltd. Air electrode for metal-air battery
US10601094B2 (en) 2014-07-09 2020-03-24 Ngk Insulators, Ltd. Separator-equipped air electrode for air-metal battery
JP2016025020A (ja) * 2014-07-23 2016-02-08 セイコーエプソン株式会社 電極複合体、リチウム電池および電極複合体の製造方法
JP2019220459A (ja) * 2018-06-15 2019-12-26 日本碍子株式会社 電気化学セル
JP2021082594A (ja) * 2021-01-21 2021-05-27 住友電気工業株式会社 プロトン伝導体、固体電解質層、セル構造体、およびそれを備える水蒸気電解セルならびに燃料電池
JP7038235B2 (ja) 2021-01-21 2022-03-17 住友電気工業株式会社 プロトン伝導体、固体電解質層、セル構造体、およびそれを備える水蒸気電解セルならびに燃料電池

Also Published As

Publication number Publication date
US20120328971A1 (en) 2012-12-27
JPWO2011108526A1 (ja) 2013-06-27
KR20120132526A (ko) 2012-12-05
JP5780656B2 (ja) 2015-09-16
US9318765B2 (en) 2016-04-19
CN102870263B (zh) 2016-08-03
EP2544284A4 (en) 2014-04-09
CN102870263A (zh) 2013-01-09
KR101749961B1 (ko) 2017-06-22
EP2544284A1 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5780656B2 (ja) 固体電解質膜、燃料電池用セル及び燃料電池
JP5591526B2 (ja) 固体酸化物セル及び固体酸化物セルスタック
JP5376605B2 (ja) 燃料電池及びこれを用いた発電方法
KR20090023255A (ko) 세리아 및 스테인리스 스틸 기재 전극
JP2019534145A (ja) 触媒
JP4534188B2 (ja) 燃料電池用電極材料及びこれを用いた固体酸化物形燃料電池
JP5116221B2 (ja) 酸化銅粒子を含有する電極材料及びそれを用いた固体酸化物形燃料電池の燃料極の製造方法
JP4706997B2 (ja) 固体酸化物形燃料電池用燃料極材料及び固体酸化物形燃料電池セル
KR101657242B1 (ko) 반응방지막을 포함하는 고온 고체산화물 셀, 이의 제조방법
JP6345663B2 (ja) 燃料電池用電極及びその製造方法、並びに膜電極接合体及び固体高分子形燃料電池
JP6043284B2 (ja) 固体電解質、固体電解質膜、燃料電池用セル及び燃料電池
JP2020532074A (ja) 固体酸化物燃料電池用連結材、その製造方法及び固体酸化物燃料電池
WO2018167889A1 (ja) 電気化学セル用酸素極および電気化学セル
JP2004355814A (ja) 固体酸化物形燃料電池用セル及びその製造方法
US20200119366A1 (en) Ceramic composite for fuel cell anode and method for preparing the same
KR101218602B1 (ko) 은 나노입자를 포함하는 저온 작동 고체산화물 연료전지 제조방법 및 이에 의해 제조된 고체산화물 연료전지
JP2012164608A (ja) Fe、Co及びNiを含む電極触媒及びその製造方法
JP5470281B2 (ja) 固体酸化物形燃料電池及びその製造方法
JP2010198801A (ja) 固体高分子型燃料電池用電極、固体高分子型燃料電池用焼成膜の製造方法、固体高分子型燃料電池用電極の使用方法、及び、固体高分子型燃料電池
JP6616599B2 (ja) 固体酸化物形燃料電池用の電極材料とこれを用いた固体酸化物形燃料電池
JP2023006322A (ja) プロトン伝導セラミックセル用電極、その製造方法、及びそれを用いたプロトン伝導セラミックセル
JP2005347050A (ja) 固体酸化物形燃料電池用セル及びその製造方法
Wang Processing and Characterisation of Tubular Solid Oxide Fuel Cell (SOFC) Cathodes using a Novel Manufacturing Technique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022131.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012503181

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13582287

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127025186

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011750636

Country of ref document: EP