WO2011097853A1 - 混凝土泵用分配阀、混凝土泵及其控制方法和混凝土泵车 - Google Patents

混凝土泵用分配阀、混凝土泵及其控制方法和混凝土泵车 Download PDF

Info

Publication number
WO2011097853A1
WO2011097853A1 PCT/CN2010/073795 CN2010073795W WO2011097853A1 WO 2011097853 A1 WO2011097853 A1 WO 2011097853A1 CN 2010073795 W CN2010073795 W CN 2010073795W WO 2011097853 A1 WO2011097853 A1 WO 2011097853A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
concrete
pipe
concrete pump
tube
Prior art date
Application number
PCT/CN2010/073795
Other languages
English (en)
French (fr)
Inventor
易秀明
张春光
柳桂锋
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司 filed Critical 湖南三一智能控制设备有限公司
Priority to EP20100845525 priority Critical patent/EP2436927B1/en
Publication of WO2011097853A1 publication Critical patent/WO2011097853A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • F04B15/023Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous supply of fluid to the pump by gravity through a hopper, e.g. without intake valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/32Conveying concrete, e.g. for distributing same at building sites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/52Adaptations of pipes or tubes
    • B65G53/56Switches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0084Component parts or details specially adapted therefor
    • F04B7/0088Sealing arrangements between the distribution members and the housing
    • F04B7/0096Sealing arrangements between the distribution members and the housing for pipe-type distribution members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit

Definitions

  • the present invention relates to a concrete pump technology, and more particularly to a concrete pump dispensing valve, and to a concrete pump having the same, a control method therefor, and a concrete pump truck. Background technique
  • Concrete pumps are one of the most widely used concrete machines.
  • Concrete pumps generally include hoppers, transfer cylinders, distribution pipes and ducts.
  • the hopper is used for storing concrete mud
  • the conveying cylinder is telescopically driven by the hydraulic cylinder
  • the distribution valve is used for communicating the conveying cylinder with the hopper in a predetermined first time, so that the conveying cylinder absorbs the material and inhales an appropriate amount of concrete slurry
  • the conveying cylinder is connected with the conveying pipe, so that the conveying cylinder pumps the material, and the sucked concrete mud is pressed into the conveying pipe, so that the concrete slurry reaches the predetermined position under the action of the conveying rainbow pressure.
  • the ram type distribution valve mainly passes the up and down movement of the two rams in the distribution valve, and connects the delivery cylinder and the output port of the hopper in a predetermined first time, so that the delivery cylinder sucks, at a predetermined second time.
  • the conveying cylinder is communicated with the conveying pipe through a Y-shaped pipe to pump the conveying cylinder.
  • the advantage of the ram type distribution valve is that the output port is located at the bottom of the hopper.
  • the self-flow performance of the concrete slurry can be fully utilized, so that the conveying cylinder can better absorb the concrete slurry, and the concrete pump has better suction performance; Only the mixing blade and the higher volume ratio of the hopper can improve the pumping efficiency of the concrete pump; especially for the coarse aggregate concrete, the above advantages are more obvious.
  • the ram type distribution valve Only the mixing blade and the higher volume ratio of the hopper can improve the pumping efficiency of the concrete pump; especially for the coarse aggregate concrete, the above advantages are more obvious.
  • the ram type distribution valve there is also a shortage of the ram type distribution valve.
  • the state between the conveying cylinder and the conveying pipe is realized by switching the position of the ram, during the pumping process of the conveying cylinder, the pressure of the concrete slurry in the conveying pipe is limited by the state of the surrounding of the ram;
  • the need to switch the position of the gate and the reason for the work scene of conveying the concrete slurry, the state of cooperation around the gate makes the gate distribution valve unable to withstand the large working pressure (generally In this way, the ram-type distribution valve can not meet the needs of high-pressure pumping of concrete slurry, and it is impossible to pump the concrete slurry to a higher predetermined position; thereby adversely affecting the pumping efficiency of the concrete pump, limiting the concrete Pump applications.
  • FIG. 1 is a structural view of a prior art with an S-type distribution valve.
  • the hopper 110 is shown by a two-dot chain line in the figure.
  • the S-type distribution valve 120 includes an S-shaped elbow 121, a cutting ring 122 and an eyeglass plate 123; the S-shaped elbow 121 is mounted in the hopper 110, and its output end is rotatably mounted on the side wall of the hopper 100, and is located
  • the conveying pipe outside the hopper 110 communicates with the cutting ring 122 installed at the input end of the S-shaped elbow 121; the target mirror plate 123 is fixed on the other side wall of the hopper 110, and the two conveying holes are respectively transported by two The cylinders 140 are in communication.
  • the input end of the S-bend 121 and the cutting ring 122 can be laterally oscillated in the hopper 110 under the driving of the driving mechanism 130, and the two conveying cylinders 140 are sequentially connected through the corresponding conveying holes on the spectacle plate 123. Therefore, the two conveying rainbows
  • the 140 can sequentially pump concrete slurry through the S-bend 120 to the delivery tube.
  • the advantage of the S-type distribution valve is that the high pressure generated when the pump is pumped mainly acts on the inner wall of the S-bend 121, and the entire S-bend 121 having a circular cross section produces a uniform tensile stress, which makes the S-shaped distribution.
  • the valve can withstand a large pressure; moreover, the cutting ring 122 is mounted on the input end of the S-bend 121 by a rubber spring or other elastic member, and the eyeglass plate 123 and the cutting ring 122 adopt a floating sealing structure to make the cutting ring 122 and the glasses plate
  • the predetermined pressing force can be maintained between 123, and the sealing performance is maintained; and the deformation of the elastic member such as the rubber spring can automatically compensate the gap due to the wear; this also makes the S-type distribution valve 120 have a large working pressure.
  • the working pressure can reach 16Mpa or even larger; therefore, with the S-type distribution valve 120, the concrete pump can pump the concrete mud a long distance or pump it to a higher position, thus meeting more needs. .
  • the disadvantage of the S-type distribution valve 120 is that the S-shaped elbow 121 of the S-type distribution valve 120 is located in the hopper 110, occupies a part of the volume of the hopper 110, and adversely affects the flow of the concrete slurry, thereby affecting the concrete pump.
  • the two pumping cylinders need to pass through the S-bend 121, which also makes the S-bend 121 wear fast, thereby shortening the service life of the S-bend 121.
  • the third aspect of the present invention aims to provide a control method of a concrete pump
  • the distribution valve for a concrete pump comprises a valve body and a wear plate, the valve body comprising a first suction pipe and a first pump pipe, the first suction pipe And a front end of the first pump tube respectively has a cutting ring that cooperates with the wear plate, a rear end of the first suction tube communicates with an output port of the hopper, and a rear end of the first pump tube and a concrete pump
  • the conveying pipe is rotatably connected, and the wear plate has a conveying hole;
  • the gorge is driven between a first state and a second state by a driving mechanism, and in the first state, the hole of the cutting ring of the first suction pipe communicates with the feeding hole, In the second state, the hole of the cutting ring of the first pump tube communicates with the feed hole.
  • the wear plate has two delivery holes;
  • the mesh body further includes a second pump tube, the front end of the second pump tube has a cutting ring that cooperates with the wear plate, and the rear end and the delivery tube Rotatable phase connection;
  • the holes of the first suction tube and the second pump tube cutting ring are respectively communicated with the two feeding holes, and in the second state, the first suction material
  • the tubes and the holes of the first pump tube cutting ring are in communication with the two of the feed holes, respectively.
  • the valve body further comprises a universal joint, one end of the universal joint is rotatably connected to the rear end of the first suction pipe, and the other end is connected to the output port of the hopper.
  • the first suction pipe, the first pumping pipe and the second pumping pipe are synchronously oscillated under the driving of the driving mechanism.
  • the rear end of the first pump tube and the rear end of the second pump tube meet to form an output end rotatably communicated with the delivery tube; the first pump tube and the second pump tube Rotating around the center line of the output by the drive mechanism.
  • the valve body further includes a universal joint, and one end of the universal joint is rotatable with the rear end of the first suction pipe
  • the first pump tube is relatively fixed to the first suction tube.
  • the first pump tube and the second pump tube are symmetrically arranged with respect to the first suction tube.
  • the wear plate has two feed holes;
  • the valve body further includes a second suction pipe, the front end of the second suction pipe has a cutting ring that cooperates with the wear plate, and the rear end is The output ports of the hopper are connected;
  • the holes of the cutting ring of the first suction pipe and the first pump tube are respectively communicated with the two feeding holes
  • the first pump The holes of the cutting ring of the feeding tube and the second suction tube are respectively communicated with the two conveying holes.
  • the first suction tube, the first pump tube and the second suction tube are synchronously oscillated under the driving of the driving mechanism.
  • the rear end of the first suction pipe and the rear end of the second suction pipe meet to form a suction passage connected to the output port of the hopper.
  • the valve body further comprises a universal joint, and one end of the universal joint is rotatably connected to the rear end of the suction passage.
  • the first suction pipe and the second suction pipe are symmetrically arranged with respect to the first pump pipe.
  • the concrete pump provided by the present invention comprises a hopper, a conveying cylinder, a conveying pipe and a driving mechanism, and further comprises a distribution pipe for any of the above concrete pumps, and the conveying of the conveying cylinder and the wear plate The holes are connected.
  • the concrete pump truck provided by the present invention comprises a chassis and a boom system, and further comprises the above concrete pump, the concrete pump being mounted on a chassis, the duct being connected to a conveying pipe of the boom system.
  • the present invention provides a control method for a concrete pump, wherein the concrete pump comprises two conveying cylinders and the concrete pump of any one of the above second to seventh types is widely distributed, and two conveyings are provided.
  • the cylinders are respectively a first conveying cylinder and a second conveying cylinder, the method comprising the steps of: S110, causing the first conveying cylinder to suck concrete mud from the hopper through the first suction pipe, and the second conveying cylinder passes through the Said second pump tube pumping concrete mud;
  • the present invention further provides a control method for a concrete pump, the concrete pump comprising two conveying cylinders and a distribution valve for a concrete pump according to any one of the above 8th to 12th, wherein the two conveying cylinders are respectively a first conveying cylinder And a second delivery cylinder, the method comprising the steps of:
  • the first conveying cylinder is sucked into the concrete slurry from the hopper through the first suction pipe, and the second conveying cylinder pumps the concrete slurry through the first pumping pipe;
  • the distribution valve for a concrete pump provided by the present invention is located at a predetermined position outside the hopper, and the valve body of the distribution valve includes at least two pipes, wherein one pipe, that is, the first suction pipe communicates with the hopper and conveys a cylinder for sucking the concrete slurry into the conveying cylinder, and the other pipe, that is, the first pumping pipe, for connecting the conveying cylinder and the conveying pipe to pump the concrete slurry, and the concrete pump can be scheduled by the conversion of the first state and the second state The way to pump concrete mud out.
  • the concrete pump can make full use of the self-flow performance of the concrete slurry, so that the concrete slurry can smoothly enter the conveying cylinder and improve the suction performance of the concrete pump; meanwhile, pumping concrete In the mud, the concrete slurry is pumped outward through the first pump tube, and the high pressure of the concrete slurry mainly acts on the inner wall of the first pump tube, and the first pump tube uniformly receives the force; thus, the distribution valve has a comparative
  • the high pressure bearing capacity can make the concrete mud have a large pressure by conveying the rainbow to meet the needs of high-pressure pumping concrete mud.
  • a second pump tube is provided in communication with the delivery tube; in the first state, the holes of the cutting ring at the front end of the first suction tube and the second pump tube are respectively The two feed holes are in communication. At this time, one transfer cylinder can pump concrete mud through the second pump feed pipe, and the other transfer cylinder can suck concrete mud through the first suction pipe. In the second state, the holes of the cutting ring of the first suction pipe and the front end of the first pump pipe are respectively communicated with the two conveying holes, and at this time, one conveying cylinder can pass the first suction material The tube draws in the concrete slurry, and the other pump cylinder pumps the concrete slurry through the first pump tube.
  • the dispensing valve provided by the technical solution can circulate the concrete slurry through the first pump tube and the second pump tube, which can reduce the wear rate of the valve body and prolong the service life and maintenance period of the valve body.
  • the rear end of the first pump tube is connected to the outlet of the hopper.
  • the technical solution can improve the sealing performance of the distribution valve while preventing the transition of the state of the distribution valve, and prevent the concrete slurry from leaking at the joint between the rear end of the first suction pipe and the hopper.
  • the first pump tube and the rear end of the first pump tube form an output end to form a "Y" type structure; the structure can reduce the pumping of the concrete slurry. Pumping resistance, improving the performance of the concrete pump; making the output end rotatably communicate with the conveying pipe, and driving the "Y" type structure body with a driving mechanism, thereby facilitating the distribution valve between the first state and the second state Make the conversion.
  • the rear end of the first suction pipe and the output port of the hopper are further connected to the universal joint, and the universal joint is rotatably connected with the rear end of the first suction pipe, and at this time, the first suction is made.
  • the material tube is fixed relative to the first pump tube, that is, fixed to the "Y" type structure, so that the state of the distribution valve can be converted by a driving mechanism.
  • a second suction pipe connected to the hopper is disposed; in the first state, the holes of the cutting ring at the front end of the first suction pipe and the first pump pipe are respectively opposite to the two conveying holes
  • One conveying cylinder can suck the concrete slurry through the first suction pipe, and the other conveying cylinder can pump the concrete slurry through the first pumping pipe.
  • the holes of the cutting ring at the front end of the first pump tube and the second suction tube are respectively communicated with the two feeding holes.
  • one conveying cylinder can pump the concrete through the first pump tube.
  • another delivery cylinder can draw concrete mud through the second suction tube.
  • the concrete pump provided with the distribution valve also has a corresponding technical effect.
  • the outlet port faces downward, which makes the concrete slurry in the hopper smoother.
  • the ground enters the corresponding conveying cylinder to further improve the suction performance of the concrete pump; the concrete pump truck based on the concrete pump also has corresponding technical effects.
  • the control method of the concrete pump provided can make full use of the characteristics of the above-mentioned distribution valve, improve the concrete pump suction performance, meet the needs of high-pressure pumping concrete mud, improve the working efficiency of the concrete pump, and reduce the distribution valve.
  • FIG. 1 is a structural view of an S-type dispensing valve in the prior art
  • FIG. 2 is a schematic structural view of a distribution valve for a concrete pump according to a first embodiment of the present invention, At the same time, the principle of the distribution valve pumping material is shown;
  • FIG. 2-1 is a schematic structural view of the concrete pump distribution valve shown in Figure 2 in a first state
  • Figure 2-2 is a schematic structural view of the concrete pump distribution valve shown in Figure 2 in a second state
  • FIG. 3-1 is a schematic structural view of a distribution valve for a concrete pump shown in FIG. 3
  • FIG. 3-1 is a structural schematic view of a distribution valve for a concrete pump shown in FIG. 3 in a first state
  • FIG. 3-2 is a concrete pump shown in FIG. Schematic diagram of the structure when the distribution valve is in the second state
  • FIG. 3-3 is a schematic diagram of the suction principle of the distribution valve for the concrete pump shown in FIG.
  • Figure 5 is a schematic view showing the structure of a concrete pump distribution valve according to a third embodiment of the present invention
  • Figure 6 is a flow chart showing another control method of the concrete pump provided by the present invention.
  • Figure 7-1 is a schematic view showing the movement principle of the concrete pump distribution valve provided in the first state according to the fourth embodiment of the present invention.
  • Fig. 7-2 is a schematic view showing the principle of movement of the concrete pump dispensing valve according to the fourth embodiment of the present invention in the second state. detailed description
  • FIG. 2 is a schematic structural view of a distribution valve for a concrete pump according to a first embodiment of the present invention, which also shows the principle of the distribution valve pump; 1 is a schematic structural view of the distribution valve for the concrete pump shown in Fig. 2 in the first state, and Fig. 2-2 is a structural schematic view of the distribution valve for the concrete pump shown in Fig. 2 in the second state.
  • the outline of the hopper 400 is shown by a two-dot chain line, and in Fig. 2-1 and Fig. 2-2, in order to clearly show the relationship between the cutting ring and the wear plate. The outline of the wear plate is shown in dashed lines.
  • the distribution valve for a concrete pump provided in the first embodiment includes a valve body 200 and a wear plate 300.
  • the valve body 200 includes a first suction tube 210 and a first pump tube 220, and the front ends of the first suction tube 210 and the first pump tube 220 respectively have a cutting ring 211 and a cutting ring 221, a cutting ring 211 and a cutting
  • the ring 221 is used in combination with the wear plate 300; the wear plate 300 can have the same material and performance as the lens plate of the prior art.
  • the cutting ring 213 and the cutting ring 214 slide along the working surface P of the wear plate 220 on the predetermined road section, respectively, so that the holes of the cutting ring 213 and the cutting ring 214 are respectively associated with the wear plate at a certain period.
  • the feed holes 310 on the 300 are in communication.
  • the rear end of the first suction pipe 210 is preferably movably connected to the output port 401 of the hopper 400.
  • the movable connection means that the first suction pipe 210 can be oscillated correspondingly while the holding hopper 400 is fixed, and the conveying cylinder is ensured. The material is smoothly sucked from the hopper 400 to accommodate the need for distribution valve state transitions.
  • the active connection can be realized by a soft structure or by a hinge mechanism.
  • the rear end of the first pump tube 220 is rotatably connected to a concrete pump (not shown) to maintain the first pump tube 220 in communication with the delivery tube when the dispensing valve is in a state transition.
  • the first suction tube 210 and the first pump tube 220 are relatively fixed, and the cutting ring 211 and the cutting ring 220 are also integrated; the two can be rotated about the axis X by the driving mechanism 500, and are rotated by the rotation mechanism.
  • the distribution valve performs switching between the first state and the second state, which will be described later.
  • the valve body 200 further includes a universal joint 201 connected between the rear end of the first suction pipe 210 and the outlet 401 of the hopper 400; the universal joint 201 is a hollow structure to form a corresponding passage for the concrete
  • the mud can smoothly enter the predetermined delivery cylinder through the first suction tube 210.
  • the upper end of the universal joint 201 is connected to the output port 401 of the hopper 400 through a flange, and the lower end has a convex surface that cooperates with the concave circular surface at the rear end of the first suction pipe 210 to form an articulated joint, so that the universal joint 201 can be opposed to
  • the first suction tube 210 rotates. This facilitates the transition of the dispensing valve state while ensuring the tightness of the joint between the rear end of the first suction pipe 210 and the hopper 400, preventing the concrete slurry from leaking from the joint.
  • the valve body 200 is located in the right position under the driving of the driving mechanism 500.
  • the hole of the cutting ring 211 is opposed to the feeding hole 310.
  • the transfer cylinder opposed to the feed hole 310 can smoothly suck the concrete slurry from the hopper 400 through the first suction pipe 210.
  • the valve body 200 is driven in the left position by the driving mechanism 500, and when the second state is maintained, the hole of the cutting ring 221 is opposite to the feeding hole 310, and at this time, with the feeding hole 310.
  • the opposite conveying cylinder can press the concrete slurry sucked in the first state into the conveying pipe through the first pumping pipe 220, as shown by the arrow in Fig. 2, pumping the concrete slurry outward.
  • the distribution valve is located below the hopper 400, the self-flow performance of the concrete slurry can be fully utilized, so that the conveying cylinder can more easily absorb the concrete slurry and improve the suction performance of the concrete pump; meanwhile, when pumping the concrete slurry, the first A pumping pipe 220 pumps the concrete slurry outward.
  • the distribution valve Since the high pressure of the concrete slurry mainly acts on the inner wall of the first pumping pipe 220, the distribution valve has a high pressure bearing capacity; in addition, the cutting ring and the corresponding pipe may also be It is connected by rubber springs or other elastic mechanisms to maintain the pressing force between the cutting ring and the wear plate 300, improve the sealing performance of the joints, and automatically compensate the gap caused by the wear, and improve the pressure bearing capacity of the distribution valve. Furthermore, the concrete mud can be made to have a large pressure through the conveying cylinder, meet the needs of the high-pressure pumping concrete mud, improve the efficiency of the concrete pump, and expand the applicable occasion of the concrete pump.
  • the core idea of the present invention is to separately provide a pipe connecting the hopper 400 and the conveying cylinder while maintaining the corresponding pipe subjected to high pressure, thereby improving the concrete pump while meeting the needs of the high-pressure pumping concrete slurry. Suction performance.
  • the pump material and the suction material are realized by different pipes, which can reduce the wear speed of the valve body 200, thereby prolonging the service life and maintenance cycle of the distribution valve.
  • the structure of the first pump tube 220 is the same as that of the S-shaped elbow in the prior art, and the working surface of the wear plate 300 is a vertical surface, and the end faces of the front end and the rear end of the first pump tube 220 are also vertical.
  • Such a structure can be matched with the conveying cylinder of the existing concrete pump; in addition, the first pumping pipe 220 can also select a suitable structure according to the actual operation or the structure of the concrete pump, for example, a C-shaped pipe, etc. Wait.
  • the first suction tube 210 is an L-shaped tube including a vertical portion and a lateral portion that are connected, the horizontal portion is provided with a cutting ring 211, and the vertical portion is upwardly extended to be movably connected to the output port 401 at the lower portion of the hopper 400.
  • the outlet port 401 at the bottom of the hopper 400, or the lowest point of the hopper 400, and to open the outlet 401 downward; such a structure can facilitate the suction cylinder to suck the concrete slurry on the one hand; On the other hand, the cleaning of the hopper can be facilitated; likewise, the first suction pipe 210 is not limited to an L-shaped pipe, and other suitable structures and shapes can be selected according to the actual situation and the specific structure of the concrete pump.
  • FIG. 3 is a concrete pump according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural view of the distribution valve of the concrete pump shown in FIG. 3 in a first state
  • FIG. 3-2 is a second state in the distribution valve of the concrete pump shown in FIG.
  • Figure 3-3 is a schematic diagram of the suction principle of the distribution valve for the concrete pump shown in Figure 3.
  • the distribution valve for the concrete pump provided in the second embodiment further includes a second pump tube 230; the wear plate 300 has two feed holes, and for the convenience of description, the two feed holes are respectively named
  • the first delivery aperture 311 and the second delivery aperture 312 can be identical to prior art optical aperture panels.
  • the second pump tube 230 is also an S-shaped elbow, and the second pump tube 230 is symmetric with the first pump tube 220 relative to the first suction tube 210, and the first pump tube 220 is The rear end and the rear end of the second pump tube 230 merge to form an output end 202 to form a "Y" type structure.
  • the output end 202 is rotatably connected to the delivery tube, and the center line of the output end 202 coincides with the axis X, so that the output end 202 can be kept in communication with the delivery tube while the drive mechanism 500 drives the valve body 200 to perform state transition. Therefore, it is possible to maintain the performance of the concrete pump while reducing the resistance of the pump material.
  • the front end of the second pump tube 230 also has a cutting ring 231 for use with the wear plate 300. The state in which the distribution valve is located is different, and the cutting rings 211, 221, 231 have different mating states with the wear plate 300, respectively.
  • the hole of the cutting ring 211 and the hole of the cutting ring 231 communicate with the first delivery hole 311 and the second delivery hole 312, respectively, and the cutting ring 221
  • the hole is opposite to the working surface of the wear plate 300, the front end of the first pump tube 220 is in a closed state; in the second state, the holes of the cutting ring 211 and the cutting ring 221 are respectively the second feed hole 312 and the first input The hole 311 is in communication.
  • the hole of the cutting ring 231 is opposed to the working surface of the wear plate 300, and the front end of the second pump tube 230 is closed.
  • FIG. 4 is a flow chart of a method for controlling a concrete pump provided by the present invention.
  • the transfer cylinder opposed to the first feed hole 311 is referred to as a first transfer cylinder
  • the transfer cylinder opposed to the second transfer hole 312 is referred to as a second transfer cylinder.
  • the concrete pump control method may include the following steps: S110, the first conveying cylinder sucks the concrete slurry from the hopper 400 through the first suction pipe 210, and the second conveying cylinder pumps the concrete slurry outward through the second pumping pipe 230.
  • the hole of the cutting ring 211 and the hole of the cutting ring 231 are respectively communicated with the first conveying hole 311 and the second conveying hole 312, and the first conveying cylinder opposite to the first conveying hole 311 may be from the hopper In the 400, a predetermined amount of concrete slurry is sucked.
  • the suction principle please refer to FIG. 3-3.
  • the second conveying cylinder opposite to the second conveying hole 312 can pump the concrete slurry to the conveying pipe through the second pumping pipe 230.
  • the commutation is performed.
  • the distribution valve is switched to the state in which the drive mechanism 500 drives the distribution valve body to rotate by a predetermined angle to switch to the second state shown in FIG. 3-2.
  • the first conveying cylinder pumps the concrete slurry outward through the first pumping pipe 220, and the second conveying cylinder sucks the concrete slurry from the hopper 400 through the first suction pipe 210.
  • the holes of the cutting ring 211 and the cutting ring 221 are respectively communicated with the second conveying hole 312 and the first conveying hole 311.
  • the first conveying cylinder and the second conveying cylinder respectively move in opposite directions, and
  • the second conveying cylinder corresponding to the second conveying hole 312 sucks the concrete slurry through the first suction pipe 210, and the first conveying cylinder corresponding to the first conveying hole 311 is pumped to the conveying pipe through the first pumping pipe 220. Concrete mud.
  • the distribution valve is switched to the state, and then switched to the first state shown in FIG. 3-1, and the process returns to step S100, and the above process is continuously performed to continuously pump the concrete slurry to the predetermined position.
  • the three pipes of the distribution valve valve body 200 provided in the second embodiment are relatively fixed, and can be integrally rotatably driven by the driving mechanism 500 to switch from one state to another state, and the structure has the advantages of simple structure and convenient control. specialty.
  • Embodiment 3 of the present invention provides a distribution valve for a concrete pump of another structure.
  • FIG. 5 is a structural schematic diagram of a distribution valve for a concrete pump according to a third embodiment of the present invention.
  • the valve body 200 of the concrete pump distribution valve includes a second suction pipe 230, and a second suction pipe 230.
  • the front end is provided with a cutting ring, and the rear end communicates with the hopper 400, so that the corresponding conveying cylinder can pass the second suction material.
  • Tube 230 is used for suction.
  • the first suction pipe 210 and the second suction pipe 230 are symmetrically arranged and meet at the upper end to form a suction passage communicating with the outlet 401 of the hopper 400, and the suction passage can also pass through a suction passage.
  • the universal joint communicates with the hopper 400; other parts
  • the structure of the distribution valve for a concrete pump can be the same as that of the second embodiment.
  • the rear end of the first pump tube 220 is rotatably connected to the delivery tube, and the center line of the rear end coincides with the axis X; when the drive mechanism 500 drives the valve body 200 to perform state transition, the rear end can be kept in communication with the delivery tube.
  • the first delivery cylinder can communicate with the first suction pipe 210, and the second delivery cylinder can communicate with the first pumping pipe 220 through the corresponding delivery hole and the cutting ring;
  • the first delivery cylinder may be in communication with the first pump tube 220, and the second delivery cylinder may be in communication with the second suction tube 230'.
  • FIG. 6 is a flow chart of another method for controlling a concrete pump provided by the present invention, which may include the following steps:
  • the first conveying cylinder sucks the concrete slurry from the hopper 400 through the first suction pipe 210, and the second conveying rainbow pumps the concrete slurry outward through the first pumping pipe 220.
  • the first delivery cylinder and the second delivery cylinder reach a predetermined position, the commutation is performed.
  • the distribution valve is switched to the state, that is, the driving mechanism 500 drives the distribution body to rotate a predetermined angle to switch to the second state.
  • step S240 the distribution valve is switched to the state, and the process returns to step S210 to cycle the above process, and the concrete slurry is continuously pumped to the predetermined position.
  • the fourth pipe may be provided on the basis of the three pipes; based on the distribution valve for the concrete pump provided in the second embodiment, the first suction pipe 210 may be made.
  • the fourth pipe is respectively connected with the hopper 400, so that the first pump tube 220 and the second pump tube 230 are respectively connected to the conveying pipe, and in one state, one conveying cylinder is pumped through the second pumping pipe 230.
  • the other conveying cylinder is sucked through the first suction pipe 210; in another state, one conveying cylinder is sucked through the fourth pipe, and the other conveying cylinder is pumped through the first pumping pipe 220;
  • the distribution valve for the concrete pump provided in the third embodiment is
  • the foundation stone can connect the first suction pipe 210 and the second suction pipe 230 to the hopper 400 respectively, so that the second pump pipe 230 and the fourth pipe are respectively connected with the conveying pipe, and in one state, one conveying is performed.
  • the cylinder is pumped through the second pump tube 230, and the other pump cylinder is sucked through the first suction tube 210; in another state, one pump cylinder is pumped through the fourth pipeline, and the other transport cylinder is passed through.
  • the second suction tube 230 performs suction, and the like.
  • valve body 200 is not limited to being a unitary structure, but may be a separate structure and synchronized by a drive mechanism, so that the object of the present invention can also be achieved.
  • FIG. 7-1 is a schematic diagram showing the motion principle of the concrete pump dispensing valve according to the fourth embodiment of the present invention in a first state
  • FIG. 7-2 is a schematic diagram of the fourth embodiment of the present invention. Schematic diagram of the principle of motion of the distribution valve of the concrete pump in the second state; only the principle of relative movement of the three cutting rings and the wear plate is shown. Implementing the first suction tube of the dispensing valve provided by four
  • first pump tube 220 and second pump tube 230 are rotatably coupled to respective portions of the delivery tube, the three being relatively independent.
  • the hole of the cutting ring 211 and the hole of the cutting ring 231 are respectively combined with the first conveying hole 311 and the second conveying hole 312.
  • the holes of the cutting ring 211 and the cutting ring 221 communicate with the second delivery hole 312 and the first delivery hole 311, respectively.
  • the working principle and the working process are the same as those in the second embodiment, and are not described here.
  • the present invention further provides a concrete pump including a hopper 400, a conveying cylinder, a conveying pipe and a driving mechanism 500, and a distribution valve for any of the above concrete pumps,
  • the conveying cylinder communicates with the conveying hole of the wear plate 300, and performs a telescopic movement under the driving of the hydraulic cylinder.
  • the concrete pump provided by the present invention also has corresponding technical effects and technical features, and will not be described herein.
  • a concrete pump truck comprising a chassis and a boom system, further comprising the above concrete pump;
  • the chassis is a mobile chassis, the boom system comprising a plurality of sequentially articulated arm segments, and
  • the concrete slurry is conveyed to a conveying pipe at a predetermined position;
  • the concrete pump is mounted on the chassis, and the conveying pipe of the concrete pump is in communication with the conveying pipe of the boom system.
  • the above description is only a preferred embodiment of the present invention, and it should be noted that those skilled in the art can make several improvements, retouching or changes without departing from the principles of the present invention, for example, cutting.
  • the ring can be part of the corresponding pipe or it can be set separately Parts having higher wear resistance; such improvements, finishes or variations are also considered to be within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Description

混凝土泵用分配阀、 混凝土泵及其控制方法和混凝土泵车 本申请要求于 2010 年 02 月 09 日提交中国专利局、 申请号为 201010114510.3、 发明名称为"混凝土泵用分配阀、 混凝土泵及其控制方法 和混凝土泵车"的中国专利申请的优先权,其全部内容通过 ]用结合在本申 请中。 技术领域
本发明涉及一种混凝土泵技术, 特别涉及一种混凝土泵用分配阀, 还 涉及到具有该分配阀的混凝土泵及其控制方法和混凝土泵车。 背景技术
混凝土泵是当前应用广泛的混凝土机械之一,混凝土泵一般包括料斗, 输送缸, 分配岡和输送管。 料斗用于存放混凝土泥浆, 输送缸在液压缸驱 动下进行伸缩运动,分配阀用于在预定的第一时间内使输送缸与料斗相通, 使输送缸吸料, 吸入适量的混凝土泥浆; 在预定的第二时间内使输送缸与 输送管相通, 使输送缸泵料, 将吸入的混凝土泥浆压入输送管中, 使混凝 土泥浆在输送虹压力作用下到达预定位置。
目前, 在国内外市场上, 混凝土泵的分配阀主要有两种: 闸板型分配 阀和 S型分配阀。
闸板型分配阀主要是通过分配阀内的两块闸板的上下运动, 在预定的 第一时间内, 使输送缸与料斗的输出口相通, 使输送缸吸料, 在预定的第 二时间内, 使输送缸通过一个 Y字形管与输送管相通, 使输送缸泵料。 闸 板型分配阀的优点在于: 输出口位于料斗的底部, 因此, 能够充分利用混 凝土泥浆的自流性能, 使输送缸更好地吸入混凝土泥浆, 混凝土泵具有较 好的吸料性能; 且料斗内只有搅拌叶片, 料斗的容积率较高, 可以提高混 凝土泵的泵料效率; 尤其对于粗骨料的混凝土, 上述优势更加明显。 但闸 板型分配阀也存在不足, 由于输送缸与输送管之间状态通过切换闸板位置 实现, 在输送缸泵料过程中, 输送管内混凝土泥浆的压力受到闸板周边配 合状态的限制; 鉴于切换闸板位置的需要和输送混凝土泥浆工作场景的原 因, 闸板周边的配合状态使闸板分配阀无法承受较大的工作压力 (一般在 8Mpa左右); 这样, 闸板型分配阀就无法满足高压泵送混凝土泥浆的需要, 无法将混凝土泥浆泵送到更高的预定位置; 进而对混凝土泵的泵送效率造 成不利影响, 限制了混凝土泵的应用场合。
请参考图 1 , 图 1是现有技术中一种具有 S型分配阀的结构图。 图中 用双点划线示出了料斗 110。 S型分配阀 120包括一个 S形弯管 121、 切割 环 122和眼镜板 123; S形弯管 121装在料斗 110内, 其输出端可旋转在安 装在料斗 100—侧壁上, 并与位于料斗 110外的输送管相通, 切割环 122 安装在 S形弯管 121的输入端;目艮镜板 123固定在料斗 110的另一侧壁上, 且其两个输料孔分别与两个输送缸 140相连通。 S形弯管 121输入端和切 割环 122能够在驱动机构 130驱动下在料斗 110内横向摆动, 依次通过眼 镜板 123上相应的输料孔接通两个输送缸 140, 因此, 两个输送虹 140能 够依次通过 S形弯管 120向输送管泵送混凝土泥浆。 S型分配阀的优点在 于, 输送缸泵料时产生的高压主要作用在 S形弯管 121内壁上, 截面为圆 形的整个 S形弯管 121产生均匀的拉应力, 这就使 S型分配阀可以承受较 大的压力; 而且, 切割环 122通过橡胶弹簧或其他弹性部件安装在 S形弯 管 121的输入端, 眼镜板 123与切割环 122采用浮动密封结构, 使切割环 122与眼镜板 123之间能够保持预定的挤压力, 保持较好的密封性能; 且 橡胶弹簧等弹性部件的变形能够自动补偿由于磨损产生的间隙; 这也使得 S型分配阀 120具有较大的工作压力, 其工作压力可达到 16Mpa, 甚至更 大; 因此, 利用 S型分配阀 120, 混凝土泵可以将混凝土泥浆泵送更远的 距离, 或者泵送到更高的位置, 从而能够满足更多方面的需要。 S 型分配 阀 120的不足之处在于: S型分配阀 120的 S形弯管 121位于料斗 110内, 占据了料斗 110的一部分容积, 并会对混凝土泥浆的流动造成不利影响, 从而影响混凝土泵的吸料性能; 另外, 两个输送缸泵料都需要通过 S形弯 管 121进行,这也使 S形弯管 121磨损速度很快,进而缩短了 S形弯管 121 的使用寿命。
面对上述两种分配阀存在的不足, 如何在提高混凝土泵吸料性能的同 时, 满足高压泵送混凝土泥浆的需要是现有技术难以解决的技术问题。 发明内容 针对上述技术问题, 本发明的第一方面的目的在于, 提供一种即能提 高混凝土泵的吸料性能, 又能够满足高压泵送混凝土泥浆需要的混凝土泵 用分配阀。
在提供上述分配阀的基础上, 本发明的第二方面的目的在于提供一种 具有上述分配阀的混凝土泵及一种混凝土泵车。
另外, 基于上述混凝土泵用分配阀, 本发明第三个方面的目的在于提 供了一种混凝土泵的控制方法,
为了实现上述第一方面的目的, 本发明提供的混凝土泵用分配阀包括 阀体和耐磨板, 所述阀体包括第一吸料管和第一泵料管, 所述第一吸料管 和第一泵料管的前端分别具有与所述耐磨板配合的切割环, 所述第一吸料 管的后端与料斗的输出口相通, 所述第一泵料管后端与混凝土泵的输送管 可旋转相连通, 所述耐磨板具有输料孔;
所述岡体在一个驱动机构驱动下在第一状态与第二状态之间转换, 在 所述第一状态时, 所述第一吸料管的切割环的孔与输料孔相通, 在所述第 二状态时, 所述第一泵料管的切割环的孔与输料孔相通。
优选的, 所述耐磨板具有两个输料孔; 网体还包括第二泵料管, 所述 第二泵料管前端具有与耐磨板配合的切割环, 后端与所述输送管可旋转相 连通;
在所述第一状态时, 所述第一吸料管和第二泵料管切割环的孔分别与 两个所述输料孔相通, 在所述第二状态时, 所述第一吸料管和第一泵料管 切割环的孔分别与两个所述输料孔相通。
优选的, 阀体还包括万向节, 所述万向节一端与第一吸料管后端可旋 转相连, 另一端与所述料斗的输出口相连。
可选的, 所述第一吸料管、 第一泵料管和第二泵料管分别在驱动机构 驱动下进行同步摆动。
可选的, 所述第一泵料管的后端与第二泵料管的后端交汇成一个与输 送管可旋转相连通的输出端; 所述第一泵料管与第二泵料管由所述驱动机 构驱动绕所述输出端中线旋转。
优选的, 阀体还包括万向节, 所述万向节一端与第一吸料管后端可旋 转相连; 所述第一泵料管与第一吸料管相对固定。
优选的, 所述第一泵料管与第二泵料管相对于第一吸料管对称布置。 优选的, 所述耐磨板具有两个输料孔; 阀体还包括第二吸料管, 所述 第二吸料管前端具有与所述耐磨板配合的切割环, 后端与所述料斗的输出 口相连通;
在所述第一状态时, 所述第一吸料管和第一泵料管的切割环的孔分别 与两个所述输料孔相通, 在所述第二状态时, 所述第一泵料管和第二吸料 管的切割环的孔分别与两个所述输料孔相通。
可选的, 所述第一吸料管、 第一泵料管和第二吸料管分别在驱动机构 驱动下进行同步摆动。
可选的, 所述第一吸料管的后端与第二吸料管的后端交汇成一个与所 述料斗的输出口相连的吸料通道。
优选的, 阀体还包括万向节, 所述万向节一端与所述吸料通道后端可 旋转相连。
优选的, 所述第一吸料管与第二吸料管相对于第一泵料管对称布置。 为了实现上述第二方面的目的, 本发明提供的混凝土泵包括料斗、 输 送缸、 输送管和驱动机构, 还包括上述任一种混凝土泵用分配岡, 所述输 送缸与耐磨板的输料孔相通。
本发明提供的混凝土泵车包括底盘、 臂架系统, 还包括上述的混凝土 泵, 所述混凝土泵安装在底盘上, 所述输送管与臂架系统的输送管道相连 通。
为了实现上述第二方面的目的, 本发明提供的一种混凝土泵的控制方 法, 所述混凝土泵包括两个输送缸和上述第 2至第 7中任一种混凝土泵用 分配阔, 两个输送缸分别为第一输送缸和第二输送缸, 该方法包括步骤: S110, 使所述第一输送缸通过所述第一吸料管从料斗中吸入混凝土泥 浆, 所述第二输送缸通过所述第二泵料管泵送混凝土泥浆;
S 120 , 使分配阀体转换到另一状态;
S130, 使所述第一输送缸通过所述第一泵料管泵送混凝土泥浆, 所述 第二输送缸通过所述第一吸料管从料斗中吸入混凝土泥浆。 本发明还提供的另一种混凝土泵的控制方法, 所述混凝土泵包括两个 输送缸和上述第 8至第 12中任一种混凝土泵用分配阀,两个输送缸分别为 第一输送缸和第二输送缸, 该方法包括步骤:
S210, 使所述第一输送缸通过所述第一吸料管从料斗中吸入混凝土泥 浆, 所述第二输送缸通过所述第一泵料管泵送混凝土泥浆;
S220 , 使分配岡体转换到另一状态;
S230 , 使所述第一输送缸通过所述第一泵料管泵送混凝土泥浆, 所述 第二输送缸通过所述第二吸料管从料斗中吸入混凝土泥浆。
与现有技术相比, 本发明提供的混凝土泵用分配阀位于料斗之外的预 定位置, 分配阀的阀体至少包括两个管道, 其中, 一个管道, 即第一吸料 管连通料斗与输送缸, 以便于输送缸吸入混凝土泥浆, 另一个管道即第一 泵料管用于连通输送缸与输送管, 以泵送混凝土泥浆, 通过第一状态和第 二状态的转换, 可以使混凝土泵以预定的方式向外泵送混凝土泥浆。 由于 分配阀位于料斗之外, 优选位于料斗下方, 因此, 混凝土泵可以充分利用 混凝土泥浆的自流性能, 使混凝土泥浆顺利地进入输送缸中, 提高混凝土 泵的吸料性能; 同时, 在泵送混凝土泥浆时, 通过第一泵料管向外泵送混 凝土泥浆, 混凝土泥浆的高压主要作用在第一泵料管的内壁上, 第一泵料 管均匀承受作用力; 这样, 分配阀就具有了较高的压力承受能力, 可以通 过输送虹使混凝土泥浆具有较大的压力 ,满足高压泵送混凝土泥浆的需要。
在进一步的优选技术方案中, 设置与输送管相连通的第二泵料管; 在 所述第一状态时, 所述第一吸料管和第二泵料管前端的切割环的孔分别与 两个输料孔相通, 此时,一个输送缸可以通过第二泵料管泵送混凝土泥浆, 另一个输送缸可以通过第一吸料管吸入混凝土泥浆。 在所述第二状态时, 所述第一吸料管和第一泵料管前端的切割环的孔分别与两个所述输料孔相 通, 此时, 一个输送缸可以通过第一吸料管吸入混凝土泥浆, 另一个输送 缸可以通过第一泵料管泵送混凝土泥浆。 该技术方案提供的分配阀可以循 环通过第一泵料管与第二泵料管向外泵送混凝土泥浆, 可以降低阀体的磨 损速度, 延长阀体的使用寿命和维护周期。
在进一步的技术方案中, 第一泵料管后端与料斗的输出口之间还连接 在万向节, 该技术方案在方便分配阀状态的转换的同时, 能够提高分配阀 的密封性能,防止混凝土泥浆在第一吸料管后端与料斗之间的连接处泄漏。
在进一步的优选技术方案中, 所述第一泵料管与第一泵料管后端交汇 形成一个输出端, 形成一个 "Y" 型结构体; 该结构体能够减小泵送混凝 土泥浆时的泵送阻力, 提高混凝土泵的使用性能; 使输出端与输送管可旋 转相连通, 可以用一个驱动机构驱动 "Y" 型结构体运动, 进而方便分配 阀在第一状态与第二状态之间进行转换。 在进一步的技术方案中, 第一吸 料管后端与料斗的输出口之间还连接在万向节, 万向节与第一吸料管后端 可旋转相连, 此时, 使第一吸料管与第一泵料管相对固定, 即与 "Y" 型 结构体固定, 这样用一个驱动机构就可以实现分配阀状态的转换。
在可选技术方案中,设置与料斗相连通的第二吸料管; 在第一状态时, 第一吸料管和第一泵料管前端的切割环的孔分别与两个输料孔相对; 一个 输送缸可以通过第一吸料管吸入混凝土泥浆, 另一个输送缸可以通过第一 泵料管泵送混凝土泥浆。 在第二状态时, 所述第一泵料管和第二吸料管前 端的切割环的孔分别与两个输料孔相通, 此时, 一个输送缸可以通过第一 泵料管泵送混凝土泥浆, 另一个输送缸可以通过第二吸料管吸入混凝土泥 浆。 该技术方案提供的分配阀在实现本发明的目的的同时, 可以与现有的 混凝土泵的双输送缸结构相对应。
在提供上述分配阀的基础上, 提供的具有该分配阀的混凝土泵也具有 相对应的技术效果, 在优选的技术方案中, 所述输出口朝向下方, 这样可 以使料斗内的混凝土泥浆更顺畅地进入相应的输送缸中, 更进一步地提高 混凝土泵的吸料性能; 基于混凝土泵提供的混凝土泵车也具有相应的技术 效果。
基于上述分配阀, 提供的混凝土泵的控制方法可以充分利用上述分配 阀的特点, 在提高混凝土泵吸料性能的同时, 满足高压泵送混凝土泥浆的 需要, 提高混凝土泵的工作效率, 降低分配阀的磨损速度。 附图说明
图 1是现有技术中一种 S型分配阀的结构图;
图 2是本发明实施例一提供的混凝土泵用分配阀的结构示意图, 该图 同时示出了分配阀泵料原理;
图 2-1是图 2所示混凝土泵用分配阀处于第一状态时的结构示意图; 图 2-2是图 2所示混凝土泵用分配阀处于第二状态时的结构示意图; 图 3是本发明实施例二提供的混凝土泵用分配阀的立体结构示意图; 图 3-1是图 3所示混凝土泵用分配阀处于第一状态时的结构示意图; 图 3-2是图 3所示混凝土泵用分配阀处于第二状态时的结构示意图; 图 3-3是图 3所示混凝土泵用分配阀吸料原理示意图;
图 4是本发明提供的一种混凝土泵的控制方法的流程图;
图 5是本发明实施例三提供的混凝土泵用分配阀的结构示意图; 图 6是本发明提供的另一种混凝土泵的控制方法的流程图
图 7-1是本发明实施例四提供的混凝土泵用分配阀处于第一状态时的 运动原理示意图;
图 7-2是本发明实施例四提供的混凝土泵用分配阀处于第二状态时的 运动原理示意图。 具体实施方式
下面结合附图对本发明进行详细描述, 本部分的描述仅是示范性和解 释性, 不应对本发明的保护范围有任何的限制作用。 应当说明的是, 虽然 本发明提供的技术方案以泵送混凝土的混凝土泵为例进行描述, 但也可以 用于泵送泥浆或其他与混凝土泥浆具有相同性能的粘稠物的其他泵送设备 或机构。
为了更清楚地描述本发明提供的技术方案, 以下结合混凝土泵的结构 对混凝土泵用分配阀进行描述。
请参考图 2、 图 2-1和图 2-2, 图 2是本发明实施例一提供的混凝土泵 用分配阀的结构示意图, 该图同时示出意了分配阀泵料原理; 图 2-1是图 2所示混凝土泵用分配阀处于第一状态时的结构示意图, 图 2-2是图 2所 示混凝土泵用分配阀处于第二状态时的结构示意图。 图中, 为了清楚地示 意分配阀的结构, 用双点划线示出了料斗 400的轮廓, 图 2- 1和图 2-2中, 为了清楚地示意切割环与耐磨板之间的关系,用虚线示出了耐磨板的轮廓。
以下描述, 以图 2中工作面 P为参照, 工作 P左侧为前, 右侧为后。 实施例一提供的混凝土泵用分配阀包括阀体 200和耐磨板 300。 所述 阀体 200包括第一吸料管 210和第一泵料管 220, 第一吸料管 210和第一 泵料管 220的前端分别具有切割环 211和切割环 221, 切割环 211和切割 环 221与耐磨板 300配合使用; 耐磨板 300可以与现有技术中的眼镜板具 有相同的材质及性能。在分配阀进行状态转换时,切割环 213和切割环 214 分别沿耐磨板 220的工作面 P在预定路段上滑动, 使切割环 213和切割环 214的孔以一定的周期分别与耐磨板 300上的输料孔 310相通。
第一吸料管 210的后端与料斗 400的输出口 401优选活动相连, 所述 活动连接是指在保持料斗 400固定时, 可以使第一吸料管 210进行相应摆 动的同时, 保证输送缸从料斗 400中顺利吸料, 以适应分配阀状态转换的 需要。 活动连接可以通过软性结构实现, 也可以通过铰接机构实现。 第一 泵料管 220后端与混凝土泵的输送管 (图中未示出) 可旋转相连, 以在分 配阀进行状态转换时, 使第一泵料管 220与输送管保持连通状态。
本例中, 第一吸料管 210和第一泵料管 220相对固定, 切割环 211和 切割环 220也为一体结构;二者可以在驱动机构 500驱动下绕轴线 X旋转, 通过旋转运动使分配阀在后述的第一状态和第二状态之间进行转换。
阀体 200还包括万向节 201 , 万向节 201连接在第一吸料管 210的后 端与料斗 400输出口 401之间; 万向节 201为中空结构, 以形成相应的通 道, 使混凝土泥浆能够顺利地通过第一吸料管 210进入预定的输送缸中。 万向节 201上端通过法兰与料斗 400的输出口 401相连, 下端具有与第一 吸料管 210后端的凹圓面配合的凸圓面, 以形成铰接配合, 使万向节 201 可以相对于第一吸料管 210旋转。这样可以为分配阀状态的转换提供方便, 同时保证第一吸料管 210后端与料斗 400结合处的密封性, 防止混凝土泥 浆从二者配合处泄漏。
如图 2-1所示, 阀体 200在驱动机构 500驱动下位于右位, 保持在第 一状态时,切割环 211的孔与输料孔 310相对并相通。此时, 与输料孔 310 相对的输送缸可以顺利地通过第一吸料管 210从料斗 400中吸入混凝土泥 浆。 如图 2-2所示, 阀体 200在驱动机构 500驱下位于左位, 保持在第二 状态时, 切割环 221的孔与输料孔 310相对并相通, 此时, 与输料孔 310 相对的输送缸可以通过第一泵料管 220将在第一状态下吸入的混凝土泥浆 压入输送管, 如图 2箭头所示, 向外泵送混凝土泥浆。
本例中, 由于分配阀位于料斗 400下方, 可以充分利用混凝土泥浆的 自流性能,使输送缸更容易地吸入混凝土泥浆,提高混凝土泵的吸料性能; 同时, 在泵送混凝土泥浆时, 通过第一泵料管 220向外泵送混凝土泥浆, 由于混凝土泥浆的高压主要作用第一泵料管 220的内壁上, 分配阀具有较 高的压力承受能力; 另外, 切割环与相应管道之间也可以通过橡胶弹簧或 其他弹性机构相连, 以保持切割环与耐磨板 300之间的挤压力, 提高二者 配合处的密封性能, 并自动补偿由于磨损产生的间隙, 提高分配阀的压力 承受能力; 进而可以通过输送缸使混凝土泥浆具有较大的压力, 满足高压 泵送混凝土泥浆的需要,提高混凝土泵的效率,扩大混凝土泵的适用场合。
根据上述描述可能确定, 本发明的核心思想在于在保持承受高压的相 应管道的同时, 再单独设置连通料斗 400与输送缸的管道, 从而在满足高 压泵送混凝土泥浆需要的同时, 改善混凝土泵的吸料性能。 另外, 在混凝 土泵进行泵送作业时,泵料和吸料通过不同的管道实现,可以降低阀体 200 的磨损速度, 从而能够延长分配阀的使用寿命和维护周期。
本例中, 第一泵料管 220的结构与现有技术中的 S形弯管相同, 耐磨 板 300的工作面为垂面, 第一泵料管 220前端与后端的端面也为垂面, 这 样的结构可以与现有的混凝土泵的输送缸相配合; 另外, 第一泵料管 220 也可以根据实际作业或混凝土泵结构的不同, 选择合适的结构, 比如说可 以为 C型管等等。
本例中,第一吸料管 210为 L形管, 包括相接的竖向部分和横向部分, 横向部分安装切割环 211 , 竖向部分向上伸出, 与料斗 400下部的输出口 401活动相连; 为了充分利用混凝土泥浆的自流动性能,优选将输出口 401 设置在料斗 400底部, 或料斗 400的最低处, 并使输出口 401开口朝下; 这样的结构一方面可以方便输送缸吸入混凝土泥浆, 另一方面可以方便料 斗的清洗; 同样, 第一吸料管 210不限于为 L形管, 也可以根据实际情况 及混凝土泵的具体结构, 选用其他合适的结构和形状。
请参考图 3、 图 3-1和图 3-2, 图 3是本发明实施例二提供的混凝土泵 用分配阀的立体结构示意图, 图 3-1是图 3所示混凝土泵用分配阀处于第 一状态时的结构示意图, 图 3-2是图 3所示混凝土泵用分配阀处于第二状 态时的结构示意图, 图 3-3是图 3所示混凝土泵用分配阀吸料原理示意图。
与实施例一相比, 实施例二提供的混凝土泵用分配阀还包括第二泵料 管 230; 耐磨板 300具有两个输料孔, 为了描述的方便, 两个输料孔分别 命名为第一输料孔 311和第二输料孔 312, 该耐磨板可以与现有技术中的 眼镜板相同。 本例中, 第二泵料管 230也为 S型弯管, 相对于第一吸料管 210, 第二泵料管 230与第一泵料管 220对称, 所述第一泵料管 220的后端 与第二泵料管 230的后端交汇成一个输出端 202,形成一个 "Y"型结构体。 输出端 202与输送管可旋转相连通,输出端 202的中线与上述轴线 X重合, 这样,在所述驱动机构 500驱动阀体 200进行状态转换的同时,输出端 202 能够与输送管保持相连通, 从而能够在减小泵料阻力的同时, 保持混凝土 泵的使用性能。 同样, 第二泵料管 230前端也具有与耐磨板 300配合使用 的切割环 231。 居分配阀所处的状态不同, 切割环 211、 221、 231分别 与耐磨板 300具有不同的配合状态。
如图 3-1、 3-2所示, 在第一状态时, 切割环 211的孔和切割环 231的 孔分别与第一输料孔 311和第二输料孔 312相通, 切割环 221的孔与耐磨 板 300的工作面相对, 第一泵料管 220前端处于封闭状态; 在所述第二状 态时,切割环 211和切割环 221的孔分别第二输料孔 312和第一输料孔 311 相通, 此时, 切割环 231的孔与耐磨板 300的工作面相对, 第二泵料管 230 前端处于封闭状态。
以下结合混凝土泵的两个输送缸 (图中未示出)对实施例二提供的分 配阀的工作原理进行描述; 同时对本发明提供的混凝土泵的控制方法进行 描述, 对该方法不再单独描述。 请参考图 4, 该图是本发明提供的一种混 凝土泵的控制方法的流程图。 为了描述的方便, 将与第一输料孔 311相对 的输送缸称为第一输送缸, 与第二输料孔 312相对的输送缸称为第二输送 缸。
以图 3-1所示的第一状态为起点, 混凝土泵的控制方法可以包括以下 步骤: S110, 使第一输送缸通过第一吸料管 210从料斗 400中吸入混凝土泥 浆, 第二输送缸通过第二泵料管 230向外泵送混凝土泥浆。在第一状态时, 切割环 211的孔和切割环 231的孔分别与第一输料孔 311和第二输料孔 312 相通, 与第一输料孔 311相对的第一输送缸可以从料斗 400中吸入预定量 的混凝土泥浆, 吸料原理请参考图 3-3; 同时, 与第二输料孔 312相对的 第二输送缸可以通过第二泵料管 230向输送管泵送混凝土泥浆。 在第一输 送缸和第二输送缸到达预定位置时, 进行换向。
S120, 使分配阀转换状态, 即通过驱动机构 500驱动分配阀体旋转预 定的角度, 转换到图 3-2所示的第二状态。
S130, 使第一输送缸通过第一泵料管 220向外泵送混凝土泥浆, 第二 输送缸通过第一吸料管 210从料斗 400中吸入混凝土泥浆。在第二状态时, 切割环 211和切割环 221的孔分别与第二输料孔 312和第一输料孔 311相 通, 此时, 第一输送缸和第二输送缸分别反向运动, 与第二输料孔 312相 对应的第二输送缸通过第一吸料管 210吸入混凝土泥浆,与第一输料孔 311 相对应的第一输送缸通过第一泵料管 220向输送管泵送混凝土泥浆。 第一 输送缸和第二输送缸到达预定位置时, 分別进行换向。
S140, 使分配阀转换状态, 再转换到图 3-1所示的第一状态, 返回步 骤 S100, 循环上述过程, 持续地将混凝土泥浆泵送到预定位置。
实施例二提供的分配阀阀体 200的三个管道相对固定, 并能够在驱动 机构 500驱动下一体进行旋转式摆动, 从一种状态转换到另一种状态, 该 结构具有结构简单, 控制方便的特点。
根据上述的本发明的核心思想, 还可以采用其他方式实现本发明的目 的。 本发明实施例三就提供了另一种结构的混凝土泵用分配阀。
请参考图 5 , 该图是本发明实施例三提供的混凝土泵用分配阀的结构 示意图。 该混凝土泵用分配阀的阀体 200包括第二吸料管 230,, 第二吸料 管 230,前端设置切割环, 后端与料斗 400相通, 以使相应的输送缸可以通 过第二吸料管 230,进行吸料。 本例中, 优选第一吸料管 210和第二吸料管 230,对称布置, 且在上端交汇, 形成一个与料斗 400的输出口 401相通的 吸料通道, 该吸料通道还可以通过一个万向节与料斗 400相通; 其他部分 可以与实施例二提供混凝土泵用分配阀的结构相同。 第一泵料管 220的后 端与输送管可旋转相连通,后端的中线与上述轴线 X重合;在驱动机构 500 驱动阀体 200进行状态转换时, 后端能够与输送管保持相连通。
这样, 通过相应的输料孔和切割环, 在第一状态下, 第一输送缸可以 与第一吸料管 210相通, 第二输送缸可以与第一泵料管 220相通; 在第二 状态下, 第一输送缸可以与第一泵料管 220相通, 第二输送缸可以与第二 吸料管 230'相通。
以下结合混凝土泵的两个输送缸 (图中未示出)对实施例三提供的分 配阀的工作原理进行描述; 同时对本发明提供的另一种混凝土泵的控制方 法进行描述。
请参考图 6, 该图是本发明提供的另一种混凝土泵的控制方法的流程 图, 该方法可以包括以下步骤:
S210, 使第一输送缸通过第一吸料管 210从料斗 400中吸入混凝土泥 浆, 第二输送虹通过第一泵料管 220向外泵送混凝土泥浆。 在第一输送缸 和第二输送缸到达预定位置时, 进行换向。
S220, 使分配阀转换状态, 即通过驱动机构 500驱动分配岡体旋转预 定的角度, 转换到第二状态。
S230, 使第一输送缸通过第一泵料管 220向外泵送混凝土泥浆, 第二 输送缸通过第二吸料管 230'从料斗 400中吸入混凝土泥浆。 第一输送缸和 第二输送缸到达预定位置时, 分别进行换向。
S240, 使分配阀转换状态, 返回步骤 S210, 循环上述过程, 持续地将 混凝土泥浆泵送到预定位置。
根据上述描述, 为了使各管道具有相同的磨损速度, 还可以在三个管 道的基础上设置第四管道; 以实施例二提供的混凝土泵用分配阀为基础, 可以使第一吸料管 210、 第四管道分别与料斗 400相连通, 使第一泵料管 220和第二泵料管 230分别与输送管相连通, 在一个状态下, 使一个输送 缸通过第二泵料管 230进行泵料, 另一个输送缸通过第一吸料管 210进行 吸料; 在另一状态下, 使一个输送缸通过第四管道进行吸料, 另一个输送 缸通过第一泵料管 220进行泵料; 以实施例三提供的混凝土泵用分配阀为 基石 可以使第一吸料管 210、 第二吸料管 230,分别与料斗 400相连通, 使第二泵料管 230和第四管道分别与输送管相连通, 在一个状态下, 使一 个输送缸通过第二泵料管 230进行泵料,另一个输送缸通过第一吸料管 210 进行吸料; 在另一状态下, 使一个输送缸通过第四管道进行泵料, 另一个 输送缸通过第二吸料管 230,进行吸料, 等等。
可以理解, 阀体 200的三个管道不限于为一体结构, 也可以为分体结 构, 并通过驱动机构进行同步动作, 这样也能够实现本发明的目的。
请参考图 7-1和 7-2, 图 7-1是本发明实施例四提供的混凝土泵用分配 阀处于第一状态时的运动原理示意图, 图 7-2是本发明实施例四提供的混 凝土泵用分配阀处于第二状态时的运动原理示意图; 图中仅示出了三个切 割环与耐磨板的相对运动原理示意。 实施四提供的分配阀的第一吸料管
210与料斗 400可旋转相连, 第一泵料管 220和第二泵料管 230分别与输 送管的适当部分可旋转相连, 该三者相对独立。 如图 7-1所示, 在第一状 态时, 与实施例二的第一状态相同, 切割环 211的孔和切割环 231的孔分 别与第一输料孔 311和第二输料孔 312相通; 在所述第二状态时, 切割环 211和切割环 221的孔分別与第二输料孔 312和第一输料孔 311相通。 其 工作原理与工作过程与实施例二相同, 在此不再赘述。
在提供上述分配阀的基础上, 本发明还提供了一种混凝土泵, 该混凝 土泵包括料斗 400、 输送缸、 输送管和驱动机构 500, 还包括上述任一种混 凝土泵用分配阀, 所述输送缸与耐磨板 300的输料孔相通, 并在液压缸的 驱动下进行伸缩运动。 与上述分配阀相对应, 本发明提供的混凝土泵也具 有相应的技术效果和技术特点, 在此不再赘述。 基于上述混凝土泵, 还提 供了一种混凝土泵车, 该混凝土泵车包括底盘、 臂架系统, 还包括上述混 凝土泵; 底盘为移动式底盘, 臂架系统包括多个顺序铰接的臂段, 和将混 凝土泥浆输送到预定位置的输送管道; 上述混凝土泵安装在底盘上, 混凝 土泵的输送管与臂架系统的输送管道相连通。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的 普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进、 润饰或变化, 比如, 切割环可以是相应管道的一部分, 也可以是单独设置 的具有较高耐磨性能的部件; 这些改进、 润饰或变化也应视为本发明的保 护范围。

Claims

权 利 要 求
1、 一种混凝土泵用分配阀, 其特征在于, 包括阀体 (200)和耐磨板 (300), 所述阀体(200) 包括第一吸料管 (210) 和第一泵料管 (220), 所述第一吸料管 (210)和第一泵料管 (220) 的前端分别具有与所述耐磨 板(300)配合的切割环, 所述第一吸料管(210)的后端与料斗(400)的 输出口 (401 )相通, 所述第一泵料管 (220)后端与混凝土泵的输送管可 旋转相连通, 所述耐磨板(300) 具有输料孔;
所述岡体(200)在一个驱动机构 (500)驱动下在第一状态与第二状 态之间转换, 在所述第一状态时, 所述第一吸料管(210)的切割环的孔与 输料孔相通, 在所述第二状态时, 所述第一泵料管(220)的切割环的孔与 输料孔相通。
2、 根据权利要求 1所述的混凝土泵用分配阀, 其特征在于, 所述耐磨 板(300) 具有两个输料孔; 阀体(200)还包括第二泵料管 (230), 所述 第二泵料管 (230)前端具有与耐磨板(300) 配合的切割环, 后端与所述 输送管可旋转相连通;
在所述第一状态时, 所述第一吸料管 (210)和第二泵料管 (230)切 割环的孔分别与两个所述输料孔相通, 在所述第二状态时, 所述第一吸料 管 (210) 和第一泵料管 (220)切割环的孔分别与两个所述输料孔相通。
3、根据权利要求 2所述的混凝土泵用分配阀 ,其特征在于,阀体( 200 ) 还包括万向节 (201), 所述万向节 (201 ) —端与第一吸料管 (210)后端 可旋转相连, 另一端与所述料斗 (400) 的输出口 (401)相连。
4、 根据权利要求 2所述的混凝土泵用分配阀, 其特征在于, 所述第一 吸料管 (210)、 第一泵料管 (220) 和第二泵料管 (230) 分别在驱动机构
( 500 )驱动下进行同步摆动。
5、 根据权利要求 2所述的混凝土泵用分配阀, 其特征在于, 所述第一 泵料管 (220) 的后端与第二泵料管 (230) 的后端交汇成一个与输送管可 旋转相连通的输出端(202); 所述第一泵料管(220)与第二泵料管(230) 由所述驱动机构 (500)驱动绕所述输出端 (202) 中线旋转。
6、根据权利要求 5所述的混凝土泵用分配阀,其特征在于,阀体( 200 ) 还包括万向节 (201), 所述万向节 (201) —端与第一吸料管 (210)后端 可旋转相连; 所述第一泵料管 (220) 与第一吸料管 (210)相对固定。
7、 根据权利要求 2-6任一项所述的混凝土泵用分配阀, 其特征在于, 所述第一泵料管(220)与第二泵料管(230)相对于第一吸料管(210)对 称布置。
8、 根据权利要求 1所述的混凝土泵用分配阀, 其特征在于, 所述耐磨 板(300)具有两个输料孔; 岡体(200)还包括第二吸料管 (230,), 所述 第二吸料管(230,)前端具有与所述耐磨板(300)配合的切割环, 后端与 所述料斗的输出口 (401 )相连通;
在所述第一状态时, 所述第一吸料管 (210)和第一泵料管 (220) 的 切割环的孔分別与两个所述输料孔相通, 在所述第二状态时, 所述第一泵 料管(220)和第二吸料管(230')的切割环的孔分别与两个所述输料孔相 通。
9、 根据权利要求 8所述的混凝土泵用分配阀, 其特征在于, 所述第一 吸料管 ( 210 )、 第一泵料管( 220 )和第二吸料管 ( 230, )分别在驱动机构
(500)驱动下进行同步摆动。
10、 根据权利要求 8所述的混凝土泵用分配阀, 其特征在于, 所述第 一吸料管(210)的后端与第二吸料管(230,)的后端交汇成一个与所述料 斗 (400) 的输出口 (401)相连的吸料通道。
11、 根据权利要求 10 所述的混凝土泵用分配阀, 其特征在于, 阀体
(200)还包括万向节, 所述万向节一端与所述吸料通道后端可旋转相连。
12、根据权利要求 8-10任一项所述的混凝土泵用分配阀,其特征在于, 所述第一吸料管 (210) 与第二吸料管 (230,)相对于第一泵料管 (220) 对称布置。
13、一种混凝土泵,包括料斗( 400 )、输送缸、输送管和驱动机构( 500 ), 其特征在于, 还包括权利要求 1-12任一项所述的混凝土泵用分配阀, 所述 输送缸与耐磨板 (300) 的输料孔相通。
14、 一种混凝土泵车, 包括底盘、 臂架系统, 其特征在于, 还包括权 利要求 13所述的混凝土泵, 所述混凝土泵安装在底盘上, 所述输送管与臂 架系统的输送管道相连通。
15、 一种混凝土泵的控制方法, 所述混凝土泵包括两个输送缸和权利 要求 2-7 中任一项所述的混凝土泵用分配阔, 两个输送缸分别为第一输送 缸和第二输送虹, 其特征在于, 该方法包括步骤:
S110, 使所述第一输送缸通过所述第一吸料管 (210 )从料斗 (400 ) 中吸入混凝土泥浆, 所述第二输送缸通过所述第二泵料管(230 )泵送混凝 土泥浆;
S 120, 使分配阀体( 200 )转换到另一状态;
S130,使所述第一输送缸通过所述第一泵料管( 220 )泵送混凝土泥浆, 所述第二输送虹通过所述第一吸料管 (210 )从料斗 (400 ) 中吸入混凝土 泥浆。
16、 一种混凝土泵的控制方法, 所述混凝土泵包括两个输送缸和权利 要求 8- 12中任一项所述的混凝土泵用分配阀, 两个输送缸分别为第一输送 缸和第二输送虹, 其特征在于, 该方法包括步骤:
S210, 使所述第一输送缸通过所述第一吸料管 (210 )从料斗 (400 ) 中吸入混凝土泥浆, 所述第二输送缸通过所述第一泵料管(220 )泵送混凝 土泥浆;
S220, 使分配阀体( 200 )转换到另一状态;
S230,使所述第一输送缸通过所述第一泵料管( 220 )泵送混凝土泥浆, 所述第二输送虹通过所述第二吸料管( 230, )从料斗( 400 ) 中吸入混凝土 泥浆。
PCT/CN2010/073795 2010-02-09 2010-06-11 混凝土泵用分配阀、混凝土泵及其控制方法和混凝土泵车 WO2011097853A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20100845525 EP2436927B1 (en) 2010-02-09 2010-06-11 Distributing valve for concrete pump, concrete pump and control method thereof and concrete pump vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010114510.3 2010-02-09
CN2010101145103A CN101787973B (zh) 2010-02-09 2010-02-09 混凝土泵用分配阀、混凝土泵及其控制方法和混凝土泵车

Publications (1)

Publication Number Publication Date
WO2011097853A1 true WO2011097853A1 (zh) 2011-08-18

Family

ID=42531310

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2010/073795 WO2011097853A1 (zh) 2010-02-09 2010-06-11 混凝土泵用分配阀、混凝土泵及其控制方法和混凝土泵车
PCT/CN2011/070782 WO2011098003A1 (zh) 2010-02-09 2011-01-28 混凝土泵用分配阀、混凝土泵及其控制方法和混凝土泵车

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070782 WO2011098003A1 (zh) 2010-02-09 2011-01-28 混凝土泵用分配阀、混凝土泵及其控制方法和混凝土泵车

Country Status (7)

Country Link
US (1) US20120318390A1 (zh)
EP (2) EP2436927B1 (zh)
JP (1) JP2013519026A (zh)
KR (1) KR20120125277A (zh)
CN (1) CN101787973B (zh)
BR (1) BR112012019747A2 (zh)
WO (2) WO2011097853A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109184218A (zh) * 2018-09-20 2019-01-11 中联重科股份有限公司 混凝土泵送装置及混凝土泵送设备

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101787973B (zh) * 2010-02-09 2011-11-09 三一重工股份有限公司 混凝土泵用分配阀、混凝土泵及其控制方法和混凝土泵车
CN101922429B (zh) * 2010-08-25 2012-07-25 三一重工股份有限公司 混凝土泵车及其控制方法、泵送系统及其分配机构
CN102032173B (zh) * 2010-12-10 2012-05-23 三一重工股份有限公司 一种混凝土机械及其泵送装置和泵送装置的分配阀
CN102094799B (zh) * 2010-12-28 2012-03-07 长沙中联重工科技发展股份有限公司 控制混凝土泵在停机后再次泵送和反泵的方法
CN102287054B (zh) * 2011-06-17 2012-11-07 河南锦源建设有限公司 吊挂式级配混凝土转换器
CN103161314B (zh) * 2011-12-12 2015-10-07 三一汽车制造有限公司 一种摇摆机构及泵送系统、混凝土设备
CN102588268B (zh) * 2012-03-06 2014-07-23 韩国民 混凝土输送泵分配阀
CN102588243A (zh) * 2012-03-15 2012-07-18 三一重工股份有限公司 一种工程机械、物料泵送系统及其泵送方法
CN102619719B (zh) * 2012-04-25 2014-12-10 中联重科股份有限公司 泵送分配机构、泵送装置及其控制方法、混凝土泵车
CN102619718B (zh) * 2012-04-25 2014-08-27 中联重科股份有限公司 泵送分配机构、泵送装置及其控制方法、混凝土泵车
DE102012107933B4 (de) * 2012-08-28 2017-09-21 Götz Hudelmaier Dickstoffpumpe zur Erzeugung eines kontinuierlichen Dickstoffstroms sowie Verfahren zum Betrieb einer Dickstoffpumpe zur Erzeugung eines kontinuierlichen Dickstoffstroms
FI124335B (fi) * 2012-09-26 2014-07-15 Maricap Oy Laite virtaustien vaihtamiseksi ja materiaalin keräily- ja siirtojärjestelmä
CN102913440B (zh) * 2012-09-28 2015-09-02 山推楚天工程机械有限公司 混凝土泵s管阀自动补偿磨损间隙装置
CN103061512B (zh) * 2013-01-14 2016-01-20 三一汽车制造有限公司 一种输送管道、臂架系统及作业设备
CN103277296B (zh) * 2013-03-22 2016-08-31 三一汽车制造有限公司 混凝土泵的耐磨部件及混凝土泵送设备
CA2911130C (en) * 2014-12-03 2020-02-11 Cnh Industrial Canada, Ltd. Selective fan shaped material distributor
USD788883S1 (en) * 2015-04-16 2017-06-06 Robert A Drake Pressure relief valve for use with concrete pumping system
CN105507591B (zh) * 2015-12-08 2018-01-19 湖南三一路面机械有限公司 一种输送管切换装置及物料输送系统
KR101659797B1 (ko) 2015-12-15 2016-09-26 하이파워유압 주식회사 유압실린더
CN106168203A (zh) * 2016-08-19 2016-11-30 北汽福田汽车股份有限公司 一种泵送系统及工程机械
US10001114B1 (en) * 2017-03-28 2018-06-19 Jessop Initiatives LLC Continuous flow pumping system
US10694660B2 (en) * 2018-06-20 2020-06-30 Deere & Company Commodity delivery system for work vehicle with rotary manifold regulator
CN108584437A (zh) * 2018-06-25 2018-09-28 北京拓威能效技术有限公司 管道物流中转站发送装置
CN109113762B (zh) * 2018-07-24 2019-09-24 山东科技大学 一种无脉冲湿喷机
CN109113763B (zh) * 2018-07-24 2019-09-24 山东科技大学 无脉冲湿喷机
US11305951B2 (en) 2020-03-25 2022-04-19 Deere & Company Coordinated control of commodity container pressure selection with run selection in a commodity delivery system of a work vehicle
CN112211277B (zh) * 2020-09-02 2022-06-10 长沙鼎知智能科技有限公司 一种轮换式吸污输送装置
US20230204111A1 (en) 2020-12-21 2023-06-29 Alberto KURYLO Valve for minimum waste concreting pump
CN113802848A (zh) * 2021-09-18 2021-12-17 四川鼎鸿智电装备科技有限公司 一种混凝土输送装置以及混凝土泵车
CN114017308B (zh) * 2021-11-10 2023-03-10 江苏徐工工程机械研究院有限公司 混凝土泵车用眼镜板、制备方法及混凝土泵车
CN114516544B (zh) * 2022-03-14 2024-03-15 南华大学 气力输送物料供给方法和供给系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2242982Y (zh) * 1995-11-15 1996-12-18 高进炎 混凝土泵车的泵阀门
CN2421085Y (zh) * 2000-05-22 2001-02-28 河南科明机电技术发展有限公司 湿式泵送混凝土喷射设备
JP2003343429A (ja) * 2002-05-30 2003-12-03 Furukawa Co Ltd ピストンポンプの逆流防止装置の摺動部潤滑機構
CN2598949Y (zh) * 2003-01-13 2004-01-14 孙梓华 混凝土输送泵用分配阀
CN2627243Y (zh) * 2003-07-18 2004-07-21 上海鸿得利机械制造有限公司 车载式混凝土输送泵
CN1198055C (zh) * 2003-01-13 2005-04-20 孙梓华 混凝土输送泵用分配阀
CN1256511C (zh) * 2003-07-18 2006-05-17 上海鸿得利机械制造有限公司 车载式混凝土输送泵
WO2009003784A2 (de) * 2007-07-04 2009-01-08 Putzmeister Concrete Pumps Gmbh Verschleissring für den einsatz in betonpumpen
WO2009003785A2 (de) * 2007-07-04 2009-01-08 Putzmeister Concrete Pumps Gmbh Rohrweiche für zweizylinder-dickstoffpumpen
CN201354515Y (zh) * 2009-01-20 2009-12-02 徐州重型机械有限公司 混凝土泵车及其输送缸与料斗连接机构
CN101718265A (zh) * 2009-12-16 2010-06-02 三一重工股份有限公司 泵送设备的密封组件、分配阀总成、泵送设备及控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1098338A (en) * 1966-04-20 1968-01-10 Eugene Lee Sherrod Reciprocating pump for semi-liquid materials
DE2415276C2 (de) * 1974-03-29 1976-11-11 Friedrich Schwing Pumpe zum Fördern von Dickstoffen, insbesondere Beton
DE8017445U1 (de) * 1980-06-26 1980-11-13 Stetter Gmbh, 8940 Memmingen Steuereinrichtung des foerderstromes im massenaufgabebehaelter einer 2-zylinder-kolbenpumpe fuer breiige massen, insbesondere beton unter verwendung eines schwenkbaren hosenrohres
JPS59117888U (ja) * 1983-01-31 1984-08-09 石川島播磨重工業株式会社 コンクリ−トポンプの吐出系構造
JPS6049276U (ja) * 1983-09-13 1985-04-06 平本 佐一 生コンクリ−トポンプ扇型バルブ
JPS6255474A (ja) * 1985-09-02 1987-03-11 Mitsubishi Heavy Ind Ltd コンクリ−トポンプ
JPS62153575A (ja) * 1985-12-26 1987-07-08 Mitsubishi Heavy Ind Ltd スイングバルブ
JPS6421275U (zh) * 1987-07-28 1989-02-02
DE4015674A1 (de) * 1990-05-16 1991-11-21 Werner Berwald Schiebereinrichtung fuer dickstoffpumpen
JP2988299B2 (ja) * 1995-01-13 1999-12-13 株式会社新潟鉄工所 コンクリートポンプ
JPH10205434A (ja) * 1997-01-20 1998-08-04 Furukawa Co Ltd スラリー圧送装置
DE19735091B4 (de) * 1997-08-13 2006-03-02 Schwing Gmbh Zweizylinder-Dickstoffpumpe
CN101787973B (zh) * 2010-02-09 2011-11-09 三一重工股份有限公司 混凝土泵用分配阀、混凝土泵及其控制方法和混凝土泵车

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2242982Y (zh) * 1995-11-15 1996-12-18 高进炎 混凝土泵车的泵阀门
CN2421085Y (zh) * 2000-05-22 2001-02-28 河南科明机电技术发展有限公司 湿式泵送混凝土喷射设备
JP2003343429A (ja) * 2002-05-30 2003-12-03 Furukawa Co Ltd ピストンポンプの逆流防止装置の摺動部潤滑機構
CN2598949Y (zh) * 2003-01-13 2004-01-14 孙梓华 混凝土输送泵用分配阀
CN1198055C (zh) * 2003-01-13 2005-04-20 孙梓华 混凝土输送泵用分配阀
CN2627243Y (zh) * 2003-07-18 2004-07-21 上海鸿得利机械制造有限公司 车载式混凝土输送泵
CN1256511C (zh) * 2003-07-18 2006-05-17 上海鸿得利机械制造有限公司 车载式混凝土输送泵
WO2009003784A2 (de) * 2007-07-04 2009-01-08 Putzmeister Concrete Pumps Gmbh Verschleissring für den einsatz in betonpumpen
WO2009003785A2 (de) * 2007-07-04 2009-01-08 Putzmeister Concrete Pumps Gmbh Rohrweiche für zweizylinder-dickstoffpumpen
CN201354515Y (zh) * 2009-01-20 2009-12-02 徐州重型机械有限公司 混凝土泵车及其输送缸与料斗连接机构
CN101718265A (zh) * 2009-12-16 2010-06-02 三一重工股份有限公司 泵送设备的密封组件、分配阀总成、泵送设备及控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109184218A (zh) * 2018-09-20 2019-01-11 中联重科股份有限公司 混凝土泵送装置及混凝土泵送设备
CN109184218B (zh) * 2018-09-20 2023-08-08 中联重科股份有限公司 混凝土泵送装置及混凝土泵送设备

Also Published As

Publication number Publication date
EP2436927B1 (en) 2013-08-07
CN101787973A (zh) 2010-07-28
KR20120125277A (ko) 2012-11-14
EP2535588A1 (en) 2012-12-19
EP2436927A1 (en) 2012-04-04
EP2436927A4 (en) 2012-05-02
BR112012019747A2 (pt) 2016-05-10
CN101787973B (zh) 2011-11-09
JP2013519026A (ja) 2013-05-23
US20120318390A1 (en) 2012-12-20
WO2011098003A1 (zh) 2011-08-18

Similar Documents

Publication Publication Date Title
WO2011097853A1 (zh) 混凝土泵用分配阀、混凝土泵及其控制方法和混凝土泵车
CN101245866B (zh) 一种混凝土分配阀及混凝土泵送机构
WO2011127842A1 (zh) 混凝土泵用分配阀及混凝土泵
WO2013104158A1 (zh) 一种泵送机构及包括该泵送机构的物料泵送设备
CN102606472A (zh) 一种泵送系统的分配阀、泵送系统及工程机械
CN217829691U (zh) 一种用于肝素钠的提取机构
CN210061543U (zh) 一种流水线模台预制构件生产的混凝土输送和布料设备
CN202182001U (zh) 一种多功能混凝土输送泵
CN101354087A (zh) 三通换向料浆阀
CN209779737U (zh) 一种左右摆动绞吸机构
CN104153988B (zh) 分配阀、泵送机构及混凝土泵
WO2021135811A1 (zh) 分配阀及泵送机械
CN212079611U (zh) 一种分配阀及泵送机械
CN206216924U (zh) 一种混凝土搅拌站卸料斗
WO2019201041A1 (zh) 封闭式无受料斗的混凝土泵送机构
CN209212480U (zh) 一种用于eps骨料和发泡水泥混合料的泵送装置
CN217205380U (zh) 一种混凝土施工架
CN109403990A (zh) 泥水盾构泥浆冲刷系统的改造方法及系统
JPS5917613Y2 (ja) ポンプ付きコンクリ−トミキサ−車
CN218914230U (zh) 一种真空供水泵
CN211777967U (zh) 一种新型混凝土泵分配阀
CN215762079U (zh) 转管阀输送泵
CN2752480Y (zh) 混凝土泵
CN201246496Y (zh) 三通换向料浆阀
CN113565721A (zh) 转管阀输送泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845525

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010845525

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE