WO2011096070A1 - 非水電解質二次電池用電極体、及び、非水電解質二次電池 - Google Patents

非水電解質二次電池用電極体、及び、非水電解質二次電池 Download PDF

Info

Publication number
WO2011096070A1
WO2011096070A1 PCT/JP2010/051718 JP2010051718W WO2011096070A1 WO 2011096070 A1 WO2011096070 A1 WO 2011096070A1 JP 2010051718 W JP2010051718 W JP 2010051718W WO 2011096070 A1 WO2011096070 A1 WO 2011096070A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
electrode plate
separator
width direction
Prior art date
Application number
PCT/JP2010/051718
Other languages
English (en)
French (fr)
Inventor
中野 智弘
藤田 秀明
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2010543341A priority Critical patent/JP5273159B2/ja
Priority to PCT/JP2010/051718 priority patent/WO2011096070A1/ja
Priority to CN201080004494.0A priority patent/CN102282716B/zh
Priority to KR1020117016369A priority patent/KR101321201B1/ko
Priority to US13/106,917 priority patent/US20110217590A1/en
Publication of WO2011096070A1 publication Critical patent/WO2011096070A1/ja
Priority to US14/551,853 priority patent/US20150079478A1/en
Priority to US15/833,567 priority patent/US10454140B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode body for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
  • Nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries are attracting attention as power sources for portable devices and as driving power sources for vehicles such as electric vehicles and hybrid vehicles.
  • a non-aqueous electrolyte secondary battery an electrode body having a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate, the positive electrode plate, the negative electrode plate, and the separator, Non-aqueous electrolyte secondary batteries having electrode bodies that overlap each other in the width direction are known (see, for example, Patent Documents 1 to 3).
  • the battery may generate heat due to overcharge or the like, resulting in a high temperature, which may cause the separator to thermally shrink in the width direction.
  • the separator is thermally contracted in the width direction, there is no possibility that the separator is interposed between the positive electrode plate and the negative electrode plate at the position in the width direction end, and the positive electrode plate and the negative electrode plate may come into contact with each other to cause a short circuit.
  • the internal short circuit may promote the heat generation of the battery.
  • Patent Document 1 discloses the following nonaqueous electrolyte secondary battery.
  • a positive electrode plate, a negative electrode plate, and a separator wider than these electrode plates the width direction end of the separator (the first end located on one end side in the width direction and the first end located on the other end side)
  • the wound electrode body is wound by winding the positive electrode plate, the negative electrode plate, and the separator so that the two end portions protrude outward from one end side (upper end side) and the other end side (lower end side) of the electrode body.
  • the excess ends (the first end and the second end of the separator) of the separator projecting outward from one end (upper end) and the other end (lower end) of the wound electrode body are heated.
  • Patent Document 2 discloses the following nonaqueous electrolyte secondary battery.
  • the battery includes a positive electrode plate coated with a positive electrode mixture layer on a surface of a positive electrode current collector (aluminum foil), a negative electrode plate coated with a negative electrode mixture layer on a surface of a negative electrode current collector (copper foil), A separator having a width wider than those of the electrode plates is used, and an end of the separator in the width direction (a first end located on one end side and a second end located on the other end side in the width direction) is an electrode body.
  • a wound electrode body is provided in which a positive electrode plate, a negative electrode plate, and a separator are wound so as to protrude outward from one end side and the other end side.
  • an insulating film in which powder (alumina or the like) having heat resistance of 500 ° C. or higher is bound with a binder resin is fixed to both ends in the width direction of the positive electrode plate. Furthermore, an insulating film in which a powder (alumina or the like) having heat resistance of 500 ° C. or higher is bound with a binder resin is also fixed to both ends in the width direction of the negative electrode plate.
  • the 1st end part (end part located in the one end side about the width direction) of a separator is made into the positive electrode one end part (width direction among positive electrode plates) about the width direction.
  • the second end of the separator (the end located on the other end side in the width direction) is arranged in the width direction with the other end of the negative electrode (negative electrode plate).
  • the winding electrode body is provided on the inner side of the other end portion in the width direction. In other words, in the width direction, one end of the positive electrode is disposed outside the first end of the separator, and the other end of the negative electrode is disposed outside the second end of the separator.
  • a rotating electrode body is provided.
  • One end of the positive electrode is constituted by a positive electrode uncoated part (part) of the positive electrode plate to which the positive electrode mixture layer is not coated, and the positive electrode one end is welded to the positive electrode terminal member.
  • the plate and the positive electrode terminal member are electrically connected.
  • the negative electrode other end portion is constituted by a negative electrode uncoated portion (part thereof) of the negative electrode plate to which the negative electrode mixture layer is not coated, and the negative electrode other end portion is welded to the negative electrode terminal member. And the negative electrode terminal member are electrically connected.
  • the present invention has been made in view of such a situation, and “the separator is thermally contracted in the width direction, so that the positive electrode plate and the negative electrode plate are short-circuited at the position of the end in the width direction.
  • An object of the present invention is to provide a non-aqueous electrolyte secondary battery electrode body and a non-aqueous electrolyte secondary battery capable of preventing “problems”.
  • One embodiment of the present invention includes a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate.
  • the positive electrode plate, the negative electrode plate, and the separator are respectively An electrode body for a non-aqueous electrolyte secondary battery that overlaps in the width direction, wherein the positive electrode plate has a positive electrode current collector and a positive electrode mixture layer coated on the surface thereof, and The negative electrode plate has a negative electrode current collecting member and a negative electrode mixture layer coated on the surface thereof, and the separator has a first end located on one end side and the other end in the width direction.
  • a second end portion located on the side, and an intermediate portion located between the first end portion and the second end portion, and the first end portion of the separator is Of the positive electrode plate, the positive electrode is located on the inner side of one end of the positive electrode located on one end side in the width direction.
  • the second end of the separator is positioned on the other end side in the width direction of the negative electrode plate in the width direction with respect to the width direction. It is located inside the end, located outside the other end of the positive electrode coating part, and located outside the other end of the negative electrode coating part, and is thicker than the thickness of the intermediate part.
  • the separator has a first end located on one end side, a second end located on the other end side, and a first end in the width direction. And an intermediate portion located between the second end portion.
  • the 1st end part of a separator is located inside the positive electrode one end part located in the one end side about the width direction among positive electrode plates about the width direction.
  • the one end of the positive electrode is located outside the first end of the separator in the width direction.
  • This one end of the positive electrode is constituted by, for example, a positive electrode uncoated portion (a part thereof) of the positive electrode plate to which the positive electrode mixture layer is not applied.
  • the positive electrode plate and the positive electrode terminal member can be electrically connected by welding one end of the positive electrode to the positive electrode terminal member.
  • the second end portion of the separator is located on the inner side of the other end portion of the negative electrode located on the other end side in the width direction of the negative electrode plate in the width direction.
  • the other end of the negative electrode is located outside the second end of the separator in the width direction.
  • the other end of the negative electrode is constituted by, for example, a negative electrode uncoated portion (a part thereof) of the negative electrode plate to which the negative electrode mixture layer is not applied.
  • the negative electrode plate and the negative electrode terminal member can be electrically connected by welding the other negative electrode end to the negative electrode terminal member.
  • the first end portion of the separator is located outside the one end of the positive electrode coating portion on which the positive electrode mixture layer is coated in the positive electrode plate in the width direction, and the negative electrode mixture in the negative electrode plate. It is located on the outer side of one end of the negative electrode coating portion to which the layer is applied (corresponding to one end of the negative electrode plate). Moreover, the first end portion of the separator is thicker than the thickness of the intermediate portion.
  • the second end portion of the separator is located outside the other end of the positive electrode coating portion (corresponding to the other end of the positive electrode plate) in the width direction and outside the other end of the negative electrode coating portion. Is located. Moreover, the second end portion of the separator is thicker than the thickness of the intermediate portion.
  • the positive electrode plate and the negative electrode plate are in contact at the position of the end in the width direction due to the thermal contraction of the separator in the width direction. Can be prevented.
  • the separator is thermally contracted in the width direction, the first end of the separator moves inward in the width direction (moves toward the other end), and the second end is inward in the width direction.
  • the first end of the separator is the positive electrode. It strikes at least one end face of one end of the coating part and one end of the negative electrode coating part, and cannot move further inward in the width direction (move to the other end side).
  • the second end portion of the separator hits at least one end face of the other end of the positive electrode coating portion and the other end of the negative electrode coating portion, and can move further inward in the width direction (move toward one end side). Disappear.
  • the state which interposed the separator between the positive electrode plate and the negative electrode plate is hold
  • first end portion and the second end portion of the separator are thicker than the thickness of the intermediate portion
  • first end portion and the second end portion of the separator are folded (for example, folded twice).
  • there is a form that is thicker than the thickness of the intermediate portion for example, twice the thickness of the intermediate portion.
  • Another aspect of the present invention includes a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate, wherein the positive electrode plate, the negative electrode plate, and the separator are respectively An electrode body for a non-aqueous electrolyte secondary battery that overlaps with each other in the width direction, wherein the positive electrode plate has a positive electrode current collecting member and a positive electrode mixture layer coated on the surface thereof,
  • the negative electrode plate includes a negative electrode current collecting member and a negative electrode mixture layer coated on a surface thereof, and the separator has a first end portion located on one end side in the width direction, and the other A second end portion located on the end side, and an intermediate portion located between the first end portion and the second end portion, the first end portion of the separator is about the width direction,
  • the positive electrode plate is located on the inner side of one end of the positive electrode located on one end side in the width direction, and the positive plate One of the negative electrode coated portions of the negative electrode plate that is located outside the one end of
  • the first end portion of the separator is located inside the positive electrode one end portion located on one end side in the width direction of the positive electrode plate in the width direction. .
  • the one end of the positive electrode is located outside the first end of the separator in the width direction.
  • This one end of the positive electrode is constituted by, for example, a positive electrode uncoated portion (a part thereof) of the positive electrode plate to which the positive electrode mixture layer is not applied.
  • the positive electrode plate and the positive electrode terminal member can be electrically connected by welding one end of the positive electrode to the positive electrode terminal member.
  • the second end portion of the separator is located on the inner side of the other end portion of the negative electrode located on the other end side in the width direction of the negative electrode plate in the width direction.
  • the other end of the negative electrode is located outside the second end of the separator in the width direction.
  • the other end of the negative electrode is constituted by, for example, a negative electrode uncoated portion (a part thereof) of the negative electrode plate to which the negative electrode mixture layer is not applied.
  • the negative electrode plate and the negative electrode terminal member can be electrically connected by welding the other negative electrode end to the negative electrode terminal member.
  • the first end portion of the separator is located outside the one end of the positive electrode coating portion on which the positive electrode mixture layer is coated in the positive electrode plate in the width direction, and the negative electrode mixture in the negative electrode plate. It is located on the outer side of one end of the negative electrode coating portion to which the layer is applied (corresponding to one end of the negative electrode plate). Moreover, the first end of the separator is previously heat-shrinked by heating (in the process of manufacturing the electrode body, the first end of the separator is heat-shrinked by heating).
  • the second end portion of the separator is located outside the other end of the positive electrode coating portion (corresponding to the other end of the positive electrode plate) in the width direction and outside the other end of the negative electrode coating portion. Is located.
  • the second end of the separator is previously heat-shrinked by heating (in the process of manufacturing the electrode body, the first end of the separator is heat-shrinked by heating).
  • the positive electrode plate and the negative electrode plate are in contact at the position of the end in the width direction due to the thermal contraction of the separator in the width direction. Can be prevented. Specifically, even if the temperature of the separator heat-shrinks in the width direction due to the heat generated by the battery, the first end and the second end of the separator are preliminarily heat-shrinked by heating. Does not heat shrink in the width direction. Thereby, about the width direction, the state which interposed the separator between the positive electrode plate and the negative electrode plate can be maintained, and the electrical insulation of a positive electrode plate and a negative electrode plate can be maintained.
  • another aspect of the present invention includes a positive electrode plate, a negative electrode plate, and a separator interposed between the positive electrode plate and the negative electrode plate, wherein the positive electrode plate, the negative electrode plate, and the separator are An electrode body for a non-aqueous electrolyte secondary battery that overlaps with each other in the width direction, and the positive electrode plate has a positive electrode current collector and a positive electrode mixture layer coated on the surface thereof.
  • the negative electrode plate includes a negative electrode current collecting member and a negative electrode mixture layer coated on a surface thereof, and the separator includes a first end portion located on one end side in the width direction.
  • the positive electrode plate With respect to the positive electrode plate, the positive electrode plate is located on the inner side of the positive electrode one end portion in the width direction.
  • the negative electrode coating part which is located outside one end of the positive electrode coating part to which the positive electrode mixture layer is coated in the positive electrode plate and to which the negative electrode mixture layer is coated in the negative electrode plate.
  • the second end portion of the separator is in the width direction with respect to the width direction of the positive electrode plate.
  • the second end portion of the separator is in the width direction with respect to the width direction of the negative electrode plate.
  • the first end portion of the separator is located inside the positive electrode one end portion located on one end side in the width direction of the positive electrode plate in the width direction. .
  • the one end of the positive electrode is located outside the first end of the separator in the width direction.
  • This one end of the positive electrode is constituted by, for example, a positive electrode uncoated portion (a part thereof) of the positive electrode plate to which the positive electrode mixture layer is not applied.
  • the positive electrode plate and the positive electrode terminal member can be electrically connected by welding one end of the positive electrode to the positive electrode terminal member.
  • the second end portion of the separator is located on the inner side of the other end portion of the negative electrode located on the other end side in the width direction of the negative electrode plate in the width direction.
  • the other end of the negative electrode is located outside the second end of the separator in the width direction.
  • the other end of the negative electrode is constituted by, for example, a negative electrode uncoated portion (a part thereof) of the negative electrode plate to which the negative electrode mixture layer is not applied.
  • the negative electrode plate and the negative electrode terminal member can be electrically connected by welding the other negative electrode end to the negative electrode terminal member.
  • the first end portion of the separator is located outside the one end of the positive electrode coating portion on which the positive electrode mixture layer is coated in the positive electrode plate in the width direction, and the negative electrode mixture in the negative electrode plate. It is located on the outer side of one end of the negative electrode coating portion to which the layer is applied (corresponding to one end of the negative electrode plate).
  • the first end of the separator is thermally welded to a portion of the positive electrode plate facing the separator in the thickness direction (in the process of manufacturing the electrode body, the first end of the separator is connected to the positive electrode plate). Of these, heat-welding is performed on the part facing the separator in the thickness direction).
  • the second end portion of the separator is located outside the other end of the positive electrode coating portion (corresponding to the other end of the positive electrode plate) in the width direction and outside the other end of the negative electrode coating portion. Is located. Moreover, the second end of the separator is thermally welded to a portion of the negative electrode plate facing the separator in the thickness direction (in the process of manufacturing the electrode body, the second end of the separator is attached to the negative electrode plate). Of these, heat-welding is performed on the part facing the separator in the thickness direction).
  • the positive electrode plate and the negative electrode plate are in contact at the position of the end in the width direction due to the thermal contraction of the separator in the width direction. Can be prevented.
  • the first end and the second end of the separator have already been heat-shrinked by heating during heat welding. Further, it is difficult to heat shrink in the width direction.
  • the first end and the second end of the separator are bonded (welded) to the opposing portions of the positive electrode plate and the negative electrode plate, the first end and the second end of the separator are widened by heat shrinkage. Even when trying to move inward in the direction, it is possible to prevent the first end and the second end of the separator from moving inward in the width direction. Thereby, about the width direction, the state which interposed the separator between the positive electrode plate and the negative electrode plate can be maintained, and the electrical insulation of a positive electrode plate and a negative electrode plate can be maintained.
  • the portion of the positive electrode plate where the first end of the separator is thermally welded is the positive electrode mixture layer of the positive electrode plate. It is at least part of the uncoated positive electrode uncoated portion, and the portion of the negative electrode plate where the second end of the separator is thermally welded is the negative electrode mixture layer of the negative electrode plate.
  • a non-aqueous electrolyte secondary battery electrode body that is at least a part of the uncoated negative electrode uncoated portion is preferable.
  • the portion of the positive electrode plate where the first end of the separator is thermally welded is not coated with the positive electrode mixture layer of the positive electrode plate. Part (part where the positive electrode current collecting member is exposed).
  • the first end portion of the separator is thermally welded to the positive electrode uncoated portion (at least a part thereof) of the positive electrode plate where the positive electrode mixture layer is not applied.
  • the 1st edge part of a separator can be appropriately adhere
  • the portion of the negative electrode plate where the second end of the separator is thermally welded is the negative electrode not coated with the negative electrode mixture layer of the negative electrode plate. It is at least a part of the coating part (part where the negative electrode current collecting member is exposed).
  • the second end portion of the separator is thermally welded to the negative electrode uncoated portion (at least a part thereof) of the negative electrode plate to which the negative electrode mixture layer is not applied. Thereby, the 2nd edge part of a separator can be appropriately adhere
  • another aspect of the present invention is a nonaqueous electrolyte secondary battery comprising any one of the above electrode bodies for a nonaqueous electrolyte secondary battery.
  • the non-aqueous electrolyte secondary battery described above includes any of the electrode bodies for non-aqueous electrolyte secondary batteries described above. For this reason, in the above-described nonaqueous electrolyte secondary battery, “the problem that the positive electrode plate and the negative electrode plate are short-circuited at the position of the end in the width direction due to the thermal contraction of the separator in the width direction”. Can be prevented.
  • FIG. 3 is a top view of a nonaqueous electrolyte secondary battery according to Examples 1 to 3.
  • FIG. It is a front view of the same nonaqueous electrolyte secondary battery.
  • FIG. 2 is a longitudinal sectional view of the same nonaqueous electrolyte secondary battery and corresponds to a sectional view taken along the line CC in FIG.
  • FIG. 2 is a longitudinal sectional view of the nonaqueous electrolyte secondary battery and corresponds to a sectional view taken along the line DD in FIG.
  • FIG. 3 is a cross-sectional view of the electrode body of Example 1, and corresponds to a cross-sectional view taken along the line EE in FIG.
  • FIG. 3 is a top view of a positive electrode plate according to Examples 1 to 3.
  • FIG. FIG. 8 is a cross-sectional view of the positive electrode plate and corresponds to a cross-sectional view taken along the line FF in FIG. 7.
  • 3 is a top view of a negative electrode plate according to Examples 1 to 3.
  • FIG. 10 is a cross-sectional view of the negative electrode plate and corresponds to a cross-sectional view taken along the line GG in FIG. 9.
  • 2 is a top view of the separator of Example 1.
  • FIG. FIG. 12 is a cross-sectional view of the separator, and corresponds to a cross-sectional view taken along line HH in FIG. 11.
  • FIG. 5 is a diagram illustrating a process for manufacturing the electrode body of Example 1.
  • FIG. 6 is a cross-sectional view of the electrode body of Example 2, and corresponds to a cross-sectional view taken along the line EE of FIG. 6 is a top view of a separator of Example 2.
  • FIG. 6 is a diagram illustrating a heat treatment process of Example 2.
  • FIG. It is a figure explaining the process of manufacturing the electrode body of Example 2.
  • FIG. 6 is a transverse cross-sectional view of an electrode body of Example 3, and corresponds to a cross-sectional view taken along the line EE in FIG. 6 is a diagram illustrating a process of manufacturing an electrode body of Example 3.
  • the nonaqueous electrolyte secondary battery 100 includes a rectangular sealed battery case 110 including a rectangular parallelepiped battery case 110, a positive electrode terminal member 120, and a negative electrode terminal member 130. It is a lithium ion secondary battery.
  • the battery case 110 is a hard case having a metal rectangular housing part 111 and a metal lid part 112 forming a rectangular parallelepiped housing space.
  • An electrode body 150 and the like are disposed inside the battery case 110 (the square housing part 111).
  • the rated capacity (nominal capacity) of the nonaqueous electrolyte secondary battery 100 is 5.5 Ah.
  • the electrode body 150 is an oblong cross section, and is a flat wound body in which the positive electrode plate 155, the negative electrode plate 156, and the separator 157 are wound into a flat shape (see FIGS. 4 to 13).
  • the positive electrode plate 155, the negative electrode plate 156, and the separator 157 are overlapped with each other in the same width direction (see FIGS. 6 and 13).
  • the longitudinal direction (direction orthogonal to the width direction) of the positive electrode plate 155, the negative electrode plate 156, and the separator 157 coincides with the winding direction. 6 and 13 coincide with the respective width directions of the positive electrode plate 155, the negative electrode plate 156, and the separator 157, and also coincide with the width direction of the electrode body 150.
  • the positive electrode plate 155 has a belt-like shape, and includes a positive electrode current collecting member 151 made of an aluminum foil, and a positive electrode mixture layer 152 (a mixture layer including the positive electrode active material 153) coated on the surface (both sides). (See FIGS. 7 and 8).
  • a positive electrode coating portion 155d in which the positive electrode mixture layer 152 is applied to the surface of the positive electrode current collector 151, and the positive electrode mixture layer 152 is not applied to the surface of the positive electrode current collector 151.
  • the positive electrode uncoated portion 155b is composed of only the positive electrode current collecting member 151, is located on one end side (the right end side in FIGS.
  • the negative electrode plate 156 has a strip shape and has a negative electrode current collecting member 158 made of copper foil and a negative electrode mixture layer 159 (a mixture layer containing the negative electrode active material 154) coated on the surface thereof (FIG. 9, see FIG.
  • the negative electrode plate 156 includes a negative electrode coating portion 156d in which a negative electrode mixture layer 159 is applied to the surface of the negative electrode current collector 158, and a negative electrode mixture layer 159 that is not applied to the surface of the negative electrode collector member 158.
  • the negative electrode uncoated portion 156b is composed of only the negative electrode current collecting member 158, and is located on the other end side (left end side in FIGS.
  • FIGS. 9 and 10 in the width direction of the negative electrode plate 156 and extends in the longitudinal direction of the negative electrode plate 156. Yes.
  • the horizontal direction in FIGS. 9 and 10 matches the width direction of the negative electrode plate 156.
  • 9 corresponds to the longitudinal direction of the negative electrode plate 156.
  • the vertical direction of FIG. 10 corresponds to the thickness direction of the negative electrode plate 156.
  • the separator 157 is made of a polypropylene / polyethylene / polypropylene three-layer composite porous sheet and has a strip shape (see FIGS. 11 and 12).
  • the separator 157 is interposed between the positive electrode plate 155 and the negative electrode plate 156 to electrically insulate between the two electrode plates (see FIG. 6).
  • the left-right direction in FIGS. 11 and 12 matches the width direction of the separator 157.
  • 9 corresponds to the longitudinal direction of the negative electrode plate 156.
  • the vertical direction of FIG. 10 corresponds to the thickness direction of the negative electrode plate 156.
  • the separator 157 has, in the width direction, a first end 157b located on one end side (right end side in FIGS. 11 and 12) and a second end located on the other end side (left end side in FIGS. 11 and 12). Part 157c, and intermediate part 157d located between first end part 157b and second end part 157c.
  • the first end 157b of the separator 157 has one end side in the width direction of the positive electrode plate 155 in the width direction (left-right direction in FIG. 6) ( It is located on the inner side (center side of the electrode body 150 in the width direction) than the positive electrode one end 155c located on the right end side in FIG. In other words, the positive electrode one end portion 155c is located outside the first end portion 157b of the separator 157 in the width direction (the side far from the center of the electrode body 150 in the width direction).
  • the positive electrode one end portion 155c is constituted by a positive electrode uncoated portion 155b (a part thereof) of the positive electrode plate 155. For this reason, as will be described later, the positive electrode plate 155 and the positive electrode terminal member 120 can be electrically connected by welding the positive electrode one end portion 155c to the positive electrode current collector 122 of the positive electrode terminal member 120 (FIG. 3).
  • the second end 157c of the separator 157 is from the other end 156c of the negative electrode located on the other end side (left end side in FIG. 6) in the width direction of the negative electrode plate 156 in the width direction (left-right direction in FIG. 6). Is also located on the inner side (center side of the electrode body 150 in the width direction). In other words, the other end 156c of the negative electrode is located outside the second end 157c of the separator 157 in the width direction (the side far from the center of the electrode body 150 in the width direction).
  • the other end 156c of the negative electrode is constituted by a negative electrode uncoated portion 156b (a part thereof) of the negative electrode plate 156. For this reason, as will be described later, the negative electrode plate 156 and the negative electrode terminal member 130 can be electrically connected by welding the negative electrode other end 156c to the negative electrode current collector 132 of the negative electrode terminal member 130 (FIG. 3).
  • the first end 157b of the separator 157 is in the width direction (left-right direction in FIG. 6) of the positive electrode coating portion 155d of the positive electrode plate 155. It is located outside the one end 155f (right side in FIG. 6) and outside the one end 156f (corresponding to one end of the negative electrode plate 156) of the negative electrode coating portion 156d of the negative electrode plate 156 (right side in FIG. 6). ). Moreover, the first end portion 157b of the separator 157 is thicker than the intermediate portion 157d (see FIGS. 6 and 12). Specifically, the first end 157b of the separator 157 is double-folded to be thicker than the intermediate portion 157d (twice as thick as the intermediate portion 157d).
  • the second end 157c of the separator 157 is outside the other end 155g of the positive electrode coating portion 155d of the positive electrode plate 155 (corresponding to the other end of the positive electrode plate 155) in the width direction (left-right direction in FIG. 6). (Left side in FIG. 6) and located outside (on the left side in FIG. 6) the other end 156 g of the negative electrode coating portion 156 d of the negative electrode plate 156.
  • the second end 157c of the separator 157 is thicker than the intermediate portion 157d (see FIGS. 6 and 12). Specifically, the second end portion 157c of the separator 157 is double-folded to be thicker than the intermediate portion 157d (twice as thick as the intermediate portion 157d).
  • the nonaqueous electrolyte secondary battery 100 of the first embodiment includes the electrode body 150 as described above, “because the separator 157 is thermally contracted in the width direction (left and right direction in FIG. 6), It is possible to prevent a problem that the positive electrode plate 155 and the negative electrode plate 156 come into contact with each other at a position in the width direction end portion (left and right end portions of the positive electrode coating portion 155d and the negative electrode coating portion 156d in FIG. 6). .
  • the resin separator 157 is thermally contracted in the width direction.
  • the first end 157b of the separator 157 attempts to move inward in the width direction (moves leftward in FIG. 6), and the second end 157c moves inward in the width direction (rightward in FIG. 6). Try to move).
  • the first end 157b and the second end 157c are thicker than the thickness of the intermediate portion 157d, so the first end 157b of the separator 157 is the positive electrode coating portion. It hits the end face of one end 155f of 155d or one end 156f of the negative electrode coating portion 156d and cannot move further inward in the width direction (left side in FIG. 6). As a result, “the first end portion 157b of the separator 157 enters between the positive electrode plate 155 (positive electrode coating portion 155d) and the negative electrode plate 156 (negative electrode coating portion 156d), and one end of the positive electrode coating portion 155d.
  • the second end 157c of the separator 157 abuts against the end surface of the other end 155g of the positive electrode coating portion 155d or the other end 156g of the negative electrode coating portion 156d and can move further inward in the width direction (right side in FIG. 6). Disappear.
  • the second end 157c of the separator 157 enters between the positive electrode plate 155 (positive electrode coating portion 155d) and the negative electrode plate 156 (negative electrode coating portion 156d), and the other end of the positive electrode coating portion 155d.
  • the 2nd end part 157c which folded the separator 157 twice is softened with heat
  • the width direction of the electrode body 150 (the left-right direction in FIG. 6).
  • the state in which the separator is interposed between the positive electrode plate 155 and the negative electrode plate 156 can be maintained, and the electrical insulation between the positive electrode plate 155 and the negative electrode plate 156 can be maintained.
  • a method for manufacturing the nonaqueous electrolyte secondary battery 100 will be described.
  • a positive electrode plate 155 in which a positive electrode mixture layer 152 is coated on the surface of a strip-shaped positive electrode current collecting member 151 is prepared.
  • a negative electrode plate 156 in which a negative electrode mixture layer 159 is coated on the surface of a strip-shaped negative electrode current collecting member 158 is prepared.
  • both end portions in the width direction are folded twice so as to be thicker than the thickness of the intermediate portion 157d (the intermediate portion 157d).
  • a separator 157 having a double thickness) is prepared.
  • the positive electrode plate 155, the negative electrode plate 156, and the separator 157 are overlapped and wound into a flat shape to form the electrode body 150 (see FIG. 5).
  • the first end 157b of the separator 157 is located on the inner side (left side in FIG. 13) of the positive electrode one end 155c of the positive electrode plate 155 in the width direction (left-right direction in FIG. 13), and the positive electrode of the positive electrode plate 155 It is located on the outer side (right side in FIG. 13) of one end 155f of the coating part 155d, and is located on the outer side (right side in FIG. 13) of one end 156f of the negative electrode coating part 156d of the negative electrode plate 156.
  • the second end 157c of the separator 157 is located on the inner side (right side in FIG. 13) of the negative electrode other end 156c of the negative electrode plate 156 in the width direction, and the other end 155g of the positive electrode coating portion 155d of the positive electrode plate 155. Is located on the outer side (left side in FIG. 13) and on the outer side (left side in FIG. 13) of the other end 156g of the negative electrode coating portion 156d of the negative electrode plate 156. As to positive electrode plate 155, the negative electrode plate 156, and wound by placing the separator 157.
  • the positive electrode current collector 122 of the positive electrode terminal member 120 is welded to the upper end of the positive electrode one end 155c of the electrode body 150 (see FIG. 3). Further, the negative electrode current collector 132 of the negative electrode terminal member 130 is welded to the upper end of the negative electrode other end 156 c of the electrode body 150. Thereafter, the electrode body 150 is accommodated in the rectangular accommodating portion 111 and the opening of the rectangular accommodating portion 111 is closed by the lid portion 112. Next, the lid portion 112 and the square housing portion 111 are welded.
  • a non-aqueous electrolyte is injected into the rectangular container 111 from a liquid injection port (not shown) formed in the lid 112 (at this time, the electrode body 150 is impregnated with the non-aqueous electrolyte). Thereafter, the liquid injection port is sealed, and the nonaqueous electrolyte secondary battery 100 of Example 1 is completed.
  • the nonaqueous electrolyte secondary battery 200 of the second embodiment is different from the nonaqueous electrolyte secondary battery 100 of the first embodiment only in the separator of the electrode body, and the other is the same. Therefore, here, the description will focus on the points different from the first embodiment, and the description of the same points will be omitted or simplified.
  • the separator 257 of Example 2 is made of a porous sheet of polypropylene / polyethylene / polypropylene three-layer structure, as in Example 1, and has a strip shape (see FIG. 15).
  • the separator 257 is positioned on the first end 257b (hatched portion in FIG. 15) located on one end side (right end side in FIG. 15) and on the other end side (left end side in FIG. 15) in the width direction. It has the 2nd end part 257c (the hatched part in FIG. 15), and the intermediate part 257d located between the 1st end part 257b and the 2nd end part 257c.
  • the left-right direction in FIG. 15 matches the width direction of the separator 157
  • the up-down direction in FIG. 15 matches the longitudinal direction of the separator 157.
  • the first end 257 b of the separator 257 has one end side in the width direction of the positive electrode plate 155 in the width direction (left-right direction in FIG. 14). It is located on the inner side (left side in FIG. 14) of the positive electrode one end 155c located on the right end side in FIG. In other words, the positive electrode one end 155c is located on the outer side (right side in FIG. 14) than the first end 257b of the separator 257 in the width direction.
  • the positive electrode one end portion 155c is constituted by a positive electrode uncoated portion 155b (a part thereof) of the positive electrode plate 155.
  • the positive electrode plate 155 and the positive electrode terminal member 120 can be electrically connected by welding the positive electrode one end part 155c to the positive electrode current collecting part 122 of the positive electrode terminal member 120 ( (See FIG. 3).
  • the second end portion 257c of the separator 257 is from the negative electrode other end portion 156c located on the other end side (left end side in FIG. 14) in the width direction of the negative electrode plate 156 in the width direction (left-right direction in FIG. 14). Is also located on the inner side (center side of the electrode body 250 in the width direction).
  • the other end 156c of the negative electrode is positioned outside the second end 257c of the separator 257 in the width direction (the side far from the center of the electrode body 250 in the width direction).
  • the other end 156c of the negative electrode is constituted by a negative electrode uncoated portion 156b (a part thereof) of the negative electrode plate 156.
  • the negative electrode plate 156 and the negative electrode terminal member 130 can be electrically connected by welding the negative electrode other end part 156c to the negative electrode current collecting part 132 of the negative electrode terminal member 130 ( (See FIG. 3).
  • the first end portion 257b of the separator 257 is in the width direction (left and right direction in FIG. 14) of the positive electrode coating portion 155d of the positive electrode plate 155. It is located outside the one end 155f (right side in FIG. 14) and outside the one end 156f (corresponding to one end of the negative electrode plate 156) of the negative electrode coating portion 156d of the negative electrode plate 156 (right side in FIG. 14). ).
  • the first end portion 257b of the separator 257 is thermally contracted by heating in advance. Specifically, as described later, in the process of manufacturing the electrode body 250 (heat treatment process), the first end portion 257b of the separator 250 is heated to 200 ° C. and thermally contracted.
  • the second end portion 257c of the separator 257 is outside the other end 155g of the positive electrode coating portion 155d of the positive electrode plate 155 (corresponding to the other end of the positive electrode plate 155) in the width direction (left-right direction in FIG. 14). 14 (on the left side in FIG. 14), and located outside the other end 156g of the negative electrode coating portion 156d of the negative electrode plate 156 (on the left side in FIG. 14).
  • the second end portion 257c of the separator 257 is thermally contracted by heating in advance. Specifically, as will be described later, in the process of manufacturing the electrode body 250 (heat treatment process), the second end portion 257c of the separator 250 is heated to 200 ° C. and thermally contracted.
  • the nonaqueous electrolyte secondary battery 200 of the second embodiment includes the electrode body 250 as described above, “because the separator 257 is thermally contracted in the width direction (left-right direction in FIG. 14), It is possible to prevent a problem that the positive electrode plate 155 and the negative electrode plate 156 come into contact with each other at the position of the width direction end portion (left and right end portions of the positive electrode coating portion 155d and the negative electrode coating portion 156d in FIG. 14). .
  • the first end 257b and the second end 257c of the separator 257 are Since it is heat shrunk by heating in advance, it does not heat shrink further in the width direction. Specifically, it is possible to prevent the first end portion 257b of the separator 257 from shrinking inward in the width direction (left side in FIG. 14). Furthermore, the second end portion 257c can be prevented from shrinking inward (right side in FIG. 14) in the width direction.
  • the first end portion 257b of the separator 257 enters between the positive electrode plate 155 (the positive electrode coating portion 155d) and the negative electrode plate 156 (the negative electrode coating portion 156d), and ends at one end of the positive electrode coating portion 155d. It is possible to prevent a problem that “155f and one end 156f of the negative electrode coating portion 156d contact”. Further, “the second end portion 257c of the separator 257 enters between the positive electrode plate 155 (positive electrode coating portion 155d) and the negative electrode plate 156 (negative electrode coating portion 156d), and the other end 155g of the positive electrode coating portion 155d. And the other end 156g of the negative electrode coating portion 156d can be prevented.
  • the width direction of the electrode body 250 (the left-right direction in FIG. 14).
  • the state in which the separator is interposed between the positive electrode plate 155 and the negative electrode plate 156 can be maintained, and the electrical insulation between the positive electrode plate 155 and the negative electrode plate 156 can be maintained.
  • the intermediate portion 257d of the separator 257 is pressed between the positive electrode plate 155 (positive electrode coating portion 155d) and the negative electrode plate 156 (negative electrode coating portion 156d), so that the temperature at which the separator 257 thermally contracts ( For example, even when the temperature rises to 150 ° C., it is difficult to shrink in the width direction.
  • a method for manufacturing the nonaqueous electrolyte secondary battery 200 will be described.
  • a positive electrode plate 155 in which a positive electrode mixture layer 152 is coated on the surface of a strip-shaped positive electrode current collecting member 151 is prepared.
  • a negative electrode plate 156 in which a negative electrode mixture layer 159 is coated on the surface of a strip-shaped negative electrode current collecting member 158 is prepared.
  • both end portions in the width direction of the separator 257 (the first end portion 257b and the second end portion 257c) are thermally contracted by heating.
  • the heat roller 11 and the heat roller 12 heated to 200 ° C. sandwich the first end portion 257b of the separator 257 in the thickness direction, and the heat roller heated to 200 ° C. 13 and the heat roller 14, the second end 257c of the separator 257 is sandwiched in the thickness direction, and the separator 257 is moved in the longitudinal direction while rotating the heat rollers 11-14.
  • the 1st end part 257b and the 2nd end part 257c of the separator 257 can be heat-shrinked.
  • the separator 257 in which the first end portion 257b and the second end portion 257c are thermally contracted can be manufactured.
  • the positive electrode plate 155, the negative electrode plate 156, and the separator 257 are overlapped, and these are wound into a flat shape to form the electrode body 150 (see FIG. 5).
  • the first end portion 257b of the separator 257 is located on the inner side (left side in FIG. 17) of the positive electrode one end portion 155c of the positive electrode plate 155 in the width direction (left and right direction in FIG. 17). It is located on the outer side (right side in FIG. 17) of one end 155f of the coating part 155d, and is located on the outer side (right side in FIG. 17) of one end 156f of the negative electrode coating part 156d of the negative electrode plate 156.
  • the second end portion 257c of the separator 257 is located on the inner side (right side in FIG. 17) of the negative electrode other end portion 156c of the negative electrode plate 156 in the width direction, and the other end 155g of the positive electrode coating portion 155d of the positive electrode plate 155. Is located on the outer side (left side in FIG. 17) and on the outer side (left side in FIG. 17) of the other end 156g of the negative electrode coating portion 156d of the negative electrode plate 156. As to positive electrode plate 155, the negative electrode plate 156, and wound by placing the separator 257.
  • the positive electrode current collector 122 of the positive electrode terminal member 120 is welded to the upper end of the positive electrode one end 155c of the electrode body 250 (see FIG. 3). Further, the negative electrode current collector 132 of the negative electrode terminal member 130 is welded to the upper end of the negative electrode other end 156 c of the electrode body 250. Thereafter, the electrode body 250 is accommodated in the rectangular accommodating portion 111 and the opening of the rectangular accommodating portion 111 is closed by the lid portion 112. Next, the lid portion 112 and the square housing portion 111 are welded.
  • a nonaqueous electrolytic solution is injected into the rectangular accommodating portion 111 from a liquid injection port (not shown) formed in the lid portion 112 (at this time, the electrode body 250 is impregnated with the nonaqueous electrolytic solution). Thereafter, the liquid injection port is sealed, and the nonaqueous electrolyte secondary battery 200 of Example 2 is completed.
  • the nonaqueous electrolyte secondary battery 300 of the third embodiment is different from the nonaqueous electrolyte secondary battery 100 of the first embodiment only in the electrode body, and the other is the same. Therefore, here, the description will focus on the points different from the first embodiment, and the description of the same points will be omitted or simplified.
  • the first end 357 b of the separator 357 has one end side in the width direction of the positive electrode plate 155 in the width direction (left-right direction in FIG. 18). It is located inside (on the left side in FIG. 18) the positive electrode one end 155c located on the right end side in FIG. In other words, the positive electrode one end 155c is located on the outer side (right side in FIG. 18) than the first end 357b of the separator 357 in the width direction.
  • the positive electrode one end portion 155c is constituted by a positive electrode uncoated portion 155b (a part thereof) of the positive electrode plate 155.
  • the positive electrode plate 155 and the positive electrode terminal member 120 can be electrically connected by welding the positive electrode one end part 155c to the positive electrode current collecting part 122 of the positive electrode terminal member 120 ( (See FIG. 3).
  • the second end portion 357c of the separator 357 is from the negative electrode other end portion 156c located on the other end side (left end side in FIG. 18) in the width direction of the negative electrode plate 156 in the width direction (left-right direction in FIG. 18). Is also located on the inner side (center side of the electrode body 350 in the width direction). In other words, the other end 156c of the negative electrode is located outside the second end 357c of the separator 357 in the width direction (the side far from the center of the electrode body 350 in the width direction).
  • the other end 156c of the negative electrode is constituted by a negative electrode uncoated portion 156b (a part thereof) of the negative electrode plate 156.
  • the negative electrode plate 156 and the negative electrode terminal member 130 can be electrically connected by welding the negative electrode other end part 156c to the negative electrode current collecting part 132 of the negative electrode terminal member 130 ( (See FIG. 3).
  • the first end portion 357 b of the separator 357 has a width direction (left and right direction in FIG. 18) of the positive electrode coating portion 155 d of the positive electrode plate 155. It is located outside the one end 155f (right side in FIG. 18) and outside the one end 156f (corresponding to one end of the negative electrode plate 156) of the negative electrode coating portion 156d of the negative electrode plate 156 (right side in FIG. 18). ).
  • the first end portion 357b of the separator 357 is thermally welded to a portion of the positive electrode plate 155 that faces the separator 357 in the thickness direction (downward in FIG. 18).
  • the first end portion 357b of the separator 357 is disposed on the portion of the positive electrode plate 155 facing the separator 357 in the thickness direction (positive electrode uncoated portion). 155b).
  • the separator 357 in contact with the upper surface of the negative electrode plate 156 (negative electrode coating portion 156d) has a first end portion 357b integrated with a first end portion 357b located below itself in FIG.
  • the separator 357 is thermally welded to the positive electrode uncoated portion 155b.
  • the 1st end part 357b of the separator 357 is heat-welded to the positive electrode uncoated part 155b (the part). Therefore, the first end portion 357b of the separator 357 can be appropriately bonded (welded) to the positive electrode plate 155.
  • the second end portion 357c of the separator 357 is outside the other end 155g of the positive electrode coating portion 155d of the positive electrode plate 155 (corresponding to the other end of the positive electrode plate 155) in the width direction (left-right direction in FIG. 18). (On the left side in FIG. 18) and on the outer side (left side in FIG. 18) of the other end 156g of the negative electrode coating portion 156d of the negative electrode plate 156.
  • the second end portion 357c of the separator 357 is thermally welded to a portion of the negative electrode plate 156 facing the separator 357 in the thickness direction (vertical direction in FIG. 18). Specifically, as will be described later, in the process of manufacturing the electrode body 350, the second end portion 357c of the separator 357 is disposed on the portion of the negative electrode plate 156 facing the separator 357 in the thickness direction (negative electrode uncoated portion). 156b). In Example 3, the second end portion 357c of the separator 357 is thermally welded to the negative electrode uncoated portion 156b (a part thereof). For this reason, the second end 357c of the separator 357 can be appropriately bonded (welded) to the negative electrode plate 156.
  • the nonaqueous electrolyte secondary battery 300 of the third embodiment includes the electrode body 350 as described above, “because the separator 357 is thermally contracted in the width direction (left and right direction in FIG. 18), It is possible to prevent a problem that the positive electrode plate 155 and the negative electrode plate 156 come into contact with each other at the position of the width direction end portion (left and right end portions of the positive electrode coating portion 155d and the negative electrode coating portion 156d in FIG. 18). .
  • the first end 357b and the second end 357c of the separator 357 Since heat shrinkage has already been caused by heating at the time of heat welding, heat shrinkage is further difficult in the width direction.
  • the first end portion 357b of the separator 357 is bonded (welded) to a portion of the positive electrode plate 155 that faces in the thickness direction, the first end portion 357b of the separator 357 is formed on the inner side in the width direction (see FIG. 18, the first end portion 357b of the separator 357 can be prevented from moving inward in the width direction.
  • the first end portion 357b of the separator 357 enters between the positive electrode plate 155 (the positive electrode coating portion 155d) and the negative electrode plate 156 (the negative electrode coating portion 156d), and ends at one end of the positive electrode coating portion 155d. It is possible to prevent a problem that “155f and one end 156f of the negative electrode coating portion 156d contact”.
  • the second end portion 357c of the separator 357 is bonded (welded) to a portion of the negative electrode plate 156 facing in the thickness direction, the second end portion 357c of the separator 357 is positioned inward in the width direction (see FIG. 18, the second end portion 357 c of the separator 357 can be prevented from moving inward in the width direction.
  • “the second end 357c of the separator 357 enters between the positive electrode plate 155 (positive electrode coating portion 155d) and the negative electrode plate 156 (negative electrode coating portion 156d), and the other end of the positive electrode coating portion 155d. 155g and the other end 156g of the negative electrode coating portion 156d are in contact with each other can be prevented.
  • the non-aqueous electrolyte secondary battery 300 of Example 3 is about the width direction (left and right direction in FIG. 18) of the electrode body 350 even when the temperature rises to a temperature at which the separator 357 is thermally contracted (for example, 150 ° C.).
  • a temperature at which the separator 357 is thermally contracted for example, 150 ° C.
  • a method for manufacturing the nonaqueous electrolyte secondary battery 300 will be described.
  • a positive electrode plate 155 in which a positive electrode mixture layer 152 is coated on the surface of a strip-shaped positive electrode current collecting member 151 is prepared.
  • a negative electrode plate 156 in which a negative electrode mixture layer 159 is coated on the surface of a strip-shaped negative electrode current collecting member 158 is prepared.
  • a strip-shaped separator 357 made of a polypropylene / polyethylene / polypropylene three-layer composite composite porous sheet is prepared.
  • the positive electrode plate 155, the negative electrode plate 156, and the separator 357 are overlaid.
  • the first end portion 357b of the separator 357 is located on the inner side (left side in FIG. 19) of the positive electrode one end portion 155c of the positive electrode plate 155 in the width direction (left and right direction in FIG. 19). It is located on the outer side (right side in FIG. 19) of one end 155f of the coating part 155d, and is located on the outer side (right side in FIG. 19) of one end 156f of the negative electrode coating part 156d of the negative electrode plate 156.
  • the second end portion 357c of the separator 357 is located on the inner side (right side in FIG.
  • the first end 357b of the separator 357 and the positive electrode of the positive electrode plate 155 are formed by the heat roller 11 and the heat roller 12 heated to 200 ° C. in a state where the positive electrode plate 155, the negative electrode plate 156, and the separator 357 are overlapped.
  • the uncoated portion 155b is sandwiched (press-contacted) in the thickness direction, and the second roller 357c of the separator 357 and the negative electrode uncoated portion of the negative electrode plate 156 with the heat roller 13 and the heat roller 14 heated to 200 ° C.
  • the positive electrode plate 155, the negative electrode plate 156, and the separator 357 are moved in the longitudinal direction (upward in FIG.
  • the heat roller 12 is located on the back side of the heat roller 11 in FIG. 19 (the back side when viewed in the direction orthogonal to the paper surface), and the heat roller 14 is the back side of the heat roller 13 in FIG. 19 (the direction orthogonal to the paper surface). It is located on the back side).
  • the first end portion 357b of the separator 350 can be thermally welded to a portion of the positive electrode plate 155 that faces the separator 357 in the thickness direction (positive electrode uncoated portion 155b).
  • the second end portion 357c of the separator 350 can be thermally welded to a portion of the negative electrode plate 156 that faces the separator 357 in the thickness direction (negative electrode uncoated portion 156b). Then, after heat welding, these (the positive electrode plate 155, the negative electrode plate 156, and the separator 357) are wound into a flat shape to form the electrode body 350 (see FIG. 5).
  • an adhesive for example, a polyolefin-based adhesive
  • a portion (positive electrode uncoated portion 155b) of the positive electrode plate 155 that faces the first end portion 357b of the separator 357 in the thickness direction.
  • an adhesive for example, a polyolefin-based adhesive
  • the positive electrode current collector 122 of the positive electrode terminal member 120 is welded to the upper end of the positive electrode one end 155c of the electrode body 350 (see FIG. 3).
  • the negative electrode current collector 132 of the negative electrode terminal member 130 is welded to the upper end of the negative electrode other end 156 c of the electrode body 350.
  • the electrode body 350 is accommodated in the rectangular accommodating portion 111 and the opening of the rectangular accommodating portion 111 is closed by the lid portion 112.
  • the lid portion 112 and the square housing portion 111 are welded.
  • a nonaqueous electrolytic solution is injected into the rectangular accommodating portion 111 from a liquid injection port (not shown) formed in the lid portion 112 (at this time, the electrode body 250 is impregnated with the nonaqueous electrolytic solution). Thereafter, the liquid injection port is sealed, and the nonaqueous electrolyte secondary battery 300 of Example 3 is completed.
  • the battery capacities of the batteries of Examples 1 to 3 and the comparative example were measured in a temperature environment of 25 ° C. Specifically, charging is performed at a constant current of 1 C (5.5 A) until the voltage of each battery reaches 4.2 V, and then the current value is 0.1 C while maintaining the battery voltage at 4.2 V. The battery was charged until it reached (0.55 A). As a result, the non-aqueous electrolyte secondary battery 100 was made 100% SOC.
  • the average capacity (average value of the battery capacity of five batteries) was 5.48 Ah. In the battery of Example 2, the average capacity was 5.50 Ah. In the battery of Example 3, the average capacity was 5.47 Ah. In the battery of the comparative example, the average capacity was 5.52 Ah.
  • each battery was subjected to a heating test. Specifically, first, each battery was adjusted to SOC 80% (battery voltage 3.8 V), and these were placed in a test chamber of a heating test apparatus. Then, the temperature in the test chamber was raised by 5 ° C. per minute, and the temperature in the test chamber was set to 160 ° C. Thereafter, the temperature in the test chamber was maintained at 160 ° C., and each battery was left in the test chamber at 160 ° C. for 30 minutes. Meanwhile, the battery temperature was measured for each battery, and the maximum temperature reached for each battery was detected. Note that 160 ° C. is a temperature at which the separator thermally shrinks.
  • the batteries of the comparative examples all had a battery voltage of 0 V by the heating test. Furthermore, the highest temperature reached in the heating test was 210 ° C., which was 50 ° C. higher than the temperature in the test chamber (160 ° C.). From this result, in the battery of the comparative example, due to the thermal contraction of the separator, the positive electrode plate and the negative electrode plate contact at the position of the width direction end portions (first end portion and second end portion) of the separator, and an internal short circuit occurs. Conceivable. The internal short circuit promotes heat generation of the battery, and it is considered that the battery temperature rises to 210 ° C.
  • the batteries of Examples 1 to 3 all maintained the battery voltage at 3.8V. Furthermore, the highest temperature reached in the heating test was 160 ° C., which was not different from the temperature in the test chamber (160 ° C.). As a result, in the batteries of Examples 1 to 3, the separator was interposed between the positive electrode plate and the negative electrode plate in the width direction of the electrode body even when the heating test (the test to heat the separator to heat shrinkage) was performed. It can be said that the interposed state was maintained and the electrical insulation between the positive electrode plate and the negative electrode plate could be maintained.
  • Electrode body (electrode body for nonaqueous electrolyte secondary battery) 155 Positive electrode plate 155b Positive electrode uncoated portion 155c Positive electrode one end portion 155d Positive electrode coated portion 151 Positive electrode current collecting member 152 Positive electrode mixture layer 156 Negative electrode plate 156b Negative electrode uncoated portion 156c Negative electrode other end portion 156d Negative electrode coated portion 158 Negative electrode Current collector 159 Negative electrode mixture layer 157, 257, 357 Separator 157b, 257b, 357b Separator first end 157c, 257c, 357c Separator second end 157d, 257d, 357d Separator intermediate part

Abstract

 非水電解質二次電池用電極体(150)では、セパレータ(157)の第1端部(157b)が、幅方向について、正極板(155)の正極一方端部(155c)よりも内側に位置し、正極板(155)の正極塗工部(155d)の一方端(155f)よりも外側に位置し、且つ、負極板(156)の負極塗工部(156d)の一方端(156f)よりも外側に位置している。セパレータ(157)の第1端部(157b)は、中間部(157d)の厚みよりも厚くされている。セパレータ(157)の第2端部(157c)は、幅方向について、負極板(156)の負極他方端部(156c)よりも内側に位置し、正極板(155)の正極塗工部(155d)の他方端(155g)よりも外側に位置し、且つ、負極板(156)の負極塗工部(156d)の他方端(156g)よりも外側に位置している。セパレータ(157)の第2端部(157c)は、中間部(157d)の厚みよりも厚くされている。

Description

非水電解質二次電池用電極体、及び、非水電解質二次電池
 本発明は、非水電解質二次電池用電極体、及び、これを用いた非水電解質二次電池に関する。
 リチウムイオン二次電池などの非水電解質二次電池は、携帯機器の電源として、また、電気自動車やハイブリッド自動車などの車両の駆動用電源として注目されている。例えば、非水電解質二次電池として、正極板、負極板、及び、正極板と負極板との間に介在するセパレータ、を有する電極体であって、正極板、負極板、及び、セパレータが、それぞれの幅方向を一致させて重なり合う電極体を備える非水電解質二次電池が知られている(例えば、特許文献1~3参照)。
特開平6-150900号公報 特開2004-95382号公報 特開2006-278245号公報
 ところで、上述のような非水電解質二次電池では、過充電などにより電池が発熱して高温となり、これによってセパレータが幅方向に熱収縮することがある。セパレータが幅方向に熱収縮すると、幅方向端部の位置で正極板と負極板との間にセパレータが介在しなくなり、正極板と負極板とが接触して短絡する虞があった。さらには、この内部短絡によって、電池の発熱が促進される虞があった。
 これに対し、特許文献1には次のような非水電解質二次電池が開示されている。正極板と、負極板と、これらの電極板よりも幅の広いセパレータとを用い、セパレータの幅方向端部(幅方向について一方端側に位置する第1端部及び他方端側に位置する第2端部)が、電極体の一方端側(上端側)及び他方端側(下端側)から外方に突出するようにして、正極板と負極板とセパレータとを捲回して捲回電極体を構成する。次いで、この捲回電極体の一方端側(上端側)及び他方端側(下端側)から外方に突出したセパレータの余剰端部(セパレータの第1端部と第2端部)を加熱して熱収縮させる。このように、セパレータの余剰端部を予め熱収縮させておくことで、電池の発熱時においてセパレータの余剰端部が熱収縮するのを抑制して、幅方向端部(上下端部)の位置で正極板と負極板とが接触するのを防止できると記載されている。
 また、特許文献2には、次のような非水電解質二次電池が開示されている。この電池は、正極集電部材(アルミニウム箔)の表面に正極合材層を塗工した正極板と、負極集電部材(銅箔)の表面に負極合材層を塗工した負極板と、これらの電極板よりも幅の広いセパレータとを用い、セパレータの幅方向端部(幅方向について一方端側に位置する第1端部及び他方端側に位置する第2端部)が、電極体の一方端側及び他方端側から外方に突出するようにして、正極板と負極板とセパレータとを捲回した捲回電極体を備えている。このうち、正極板の幅方向両端部には、500℃以上の耐熱性を有する粉体(アルミナなど)がバインダ樹脂で結着された絶縁性被膜を固定している。さらに、負極板の幅方向両端部にも、500℃以上の耐熱性を有する粉体(アルミナなど)がバインダ樹脂で結着された絶縁性被膜を固定している。これにより、電池の発熱によってセパレータが幅方向に熱収縮して、幅方向端部の位置で正極板と負極板との間にセパレータが介在しなくなった場合でも、正極板及び負極板の絶縁性被膜同士が接触するので、正負極間の内部短絡を防止できると記載されている。
 ところで、特許文献3の非水電解質二次電池では、セパレータの第1端部(幅方向について一方端側に位置する端部)を、幅方向について、正極一方端部(正極板のうち幅方向について一方端側に位置する端部)よりも内側に配置させると共に、セパレータの第2端部(幅方向について他方端側に位置する端部)を、幅方向について、負極他方端部(負極板のうち幅方向について他方端側に位置する端部)よりも内側に配置させた捲回電極体を備えている。換言すれば、幅方向について、正極一方端部をセパレータの第1端部よりも外側に配置すると共に、負極他方端部をセパレータの第2端部よりも外側に配置して、捲回した捲回電極体を備えている。正極一方端部は、正極板のうち正極合材層が塗工されていない正極未塗工部(その一部)により構成され、この正極一方端部を正極端子部材に溶接することで、正極板と正極端子部材とを電気的に接続している。負極他方端部は、負極板のうち負極合材層が塗工されていない負極未塗工部(その一部)により構成され、負極他方端部を負極端子部材に溶接することで、負極板と負極端子部材とを電気的に接続している。
 このような非水電解質二次電池でも、前述のように、電池の発熱等に伴ってセパレータが幅方向に熱収縮することに因って、幅方向端部の位置で正極板と負極板とが接触して短絡する虞がある。しかしながら、セパレータが捲回電極体の一方端側及び他方端側から外方に突出していない(セパレータの余剰端部が存在しない)ので、特許文献1のように、セパレータの余剰端部を加熱して熱収縮させることができなかった。また、特許文献2の手法は、絶縁性樹脂を作製し、その絶縁性樹脂を正極板及び負極板の幅方向両端部に塗布しなければならず、製造工程が複雑となり高コストになるため、採用できなかった。
 本発明は、かかる現状に鑑みてなされたものであって、「セパレータが幅方向に熱収縮することに因って、幅方向端部の位置で正極板と負極板とが接触して短絡する不具合」を防止することができる非水電解質二次電池用電極体、及び、非水電解質二次電池を提供することを目的とする。
 本発明の一態様は、正極板、負極板、及び、上記正極板と上記負極板との間に介在するセパレータ、を有し、上記正極板、上記負極板、及び、上記セパレータが、それぞれの幅方向を一致させて重なり合う非水電解質二次電池用の電極体であって、上記正極板は、正極集電部材と、その表面に塗工された正極合材層と、を有し、上記負極板は、負極集電部材と、その表面に塗工された負極合材層と、を有し、上記セパレータは、上記幅方向について、一方端側に位置する第1端部と、他方端側に位置する第2端部と、上記第1端部と上記第2端部との間に位置する中間部と、を有し、上記セパレータの第1端部は、上記幅方向について、上記正極板のうち上記幅方向について一方端側に位置する正極一方端部よりも内側に位置し、上記正極板のうち上記正極合材層が塗工された正極塗工部の一方端よりも外側に位置し、且つ、上記負極板のうち上記負極合材層が塗工された負極塗工部の一方端よりも外側に位置し、上記中間部の厚みよりも厚くされてなり、上記セパレータの第2端部は、上記幅方向について、上記負極板のうち上記幅方向について他方端側に位置する負極他方端部よりも内側に位置し、上記正極塗工部の他方端よりも外側に位置し、且つ、上記負極塗工部の他方端よりも外側に位置し、上記中間部の厚みよりも厚くされてなる非水電解質二次電池用電極体である。
 上述の非水電解質二次電池用電極体では、セパレータが、その幅方向について、一方端側に位置する第1端部と、他方端側に位置する第2端部と、第1端部と第2端部との間に位置する中間部とを有している。
 このうち、セパレータの第1端部は、幅方向について、正極板のうち幅方向について一方端側に位置する正極一方端部よりも内側に位置している。換言すれば、正極一方端部が、幅方向について、セパレータの第1端部よりも外側に位置している。この正極一方端部は、例えば、正極板のうち正極合材層が塗工されていない正極未塗工部(その一部)により構成される。この場合、この正極一方端部を正極端子部材に溶接することで、正極板と正極端子部材とを電気的に接続することができる。
 さらに、セパレータの第2端部は、幅方向について、負極板のうち幅方向について他方端側に位置する負極他方端部よりも内側に位置している。換言すれば、負極他方端部が、幅方向について、セパレータの第2端部よりも外側に位置している。この負極他方端部は、例えば、負極板のうち負極合材層が塗工されていない負極未塗工部(その一部)により構成される。この場合、この負極他方端部を負極端子部材に溶接することで、負極板と負極端子部材とを電気的に接続することができる。
 さらに、セパレータの第1端部は、幅方向について、正極板のうち正極合材層が塗工された正極塗工部の一方端よりも外側に位置し、且つ、負極板のうち負極合材層が塗工された負極塗工部の一方端(負極板の一方端に一致する)よりも外側に位置している。しかも、セパレータの第1端部は、中間部の厚みよりも厚くされている。
 さらに、セパレータの第2端部は、幅方向について、正極塗工部の他方端(正極板の他方端に一致する)よりも外側に位置し、且つ、負極塗工部の他方端よりも外側に位置している。しかも、セパレータの第2端部は、中間部の厚みよりも厚くされている。
 このため、上述の電極体を非水電解質二次電池に用いることで、「セパレータが幅方向に熱収縮することに因って、幅方向端部の位置で正極板と負極板とが接触して短絡する不具合」を防止することができる。
 具体的には、例えば、セパレータが幅方向に熱収縮し、セパレータの第1端部が幅方向について内側に移動(他方端側に移動)してゆくと共に、第2端部が幅方向について内側に移動(一方端側に移動)してゆくような場合でも、セパレータの第1端部及び第2端部は中間部の厚みよりも厚くされているので、セパレータの第1端部は、正極塗工部の一方端及び負極塗工部の一方端の少なくともいずれか一方の端面に突き当たり、それ以上幅方向内側に移動(他方端側に移動)できなくなる。さらに、セパレータの第2端部は、正極塗工部の他方端及び負極塗工部の他方端の少なくともいずれか一方の端面に突き当たり、それ以上幅方向内側に移動(一方端側に移動)できなくなる。これにより、幅方向について、正極板と負極板との間にセパレータを介在させた状態を保持し、正極板と負極板との電気的絶縁を保つことができる。
 なお、セパレータの第1端部及び第2端部を、中間部の厚みよりも厚くした形態としては、例えば、セパレータの第1端部及び第2端部を折り重ね(例えば、2重に折り重ね)て、中間部の厚みよりも厚く(例えば、中間部の2倍の厚みに)した形態が挙げられる。
 本発明の他の態様は、正極板、負極板、及び、上記正極板と上記負極板との間に介在するセパレータ、を有し、上記正極板、上記負極板、及び、上記セパレータが、それぞれの幅方向を一致させて重なり合う非水電解質二次電池用の電極体であって、上記正極板は、正極集電部材と、その表面に塗工された正極合材層と、を有し、上記負極板は、負極集電部材と、その表面に塗工された負極合材層と、を有し、上記セパレータは、上記幅方向について、一方端側に位置する第1端部と、他方端側に位置する第2端部と、上記第1端部と上記第2端部との間に位置する中間部と、を有し、上記セパレータの第1端部は、上記幅方向について、上記正極板のうち上記幅方向について一方端側に位置する正極一方端部よりも内側に位置し、上記正極板のうち上記正極合材層が塗工された正極塗工部の一方端よりも外側に位置し、且つ、上記負極板のうち上記負極合材層が塗工された負極塗工部の一方端よりも外側に位置し、上記セパレータの第1端部を、予め、加熱により熱収縮させてなり、上記セパレータの第2端部は、上記幅方向について、上記負極板のうち上記幅方向について他方端側に位置する負極他方端部よりも内側に位置し、上記正極塗工部の他方端よりも外側に位置し、且つ、上記負極塗工部の他方端よりも外側に位置し、上記セパレータの第2端部を、予め、加熱により熱収縮させてなる非水電解質二次電池用電極体である。
 上述の非水電解質二次電池用電極体では、セパレータの第1端部が、幅方向について、正極板のうち幅方向について一方端側に位置する正極一方端部よりも内側に位置している。換言すれば、正極一方端部が、幅方向について、セパレータの第1端部よりも外側に位置している。この正極一方端部は、例えば、正極板のうち正極合材層が塗工されていない正極未塗工部(その一部)により構成される。この場合、この正極一方端部を正極端子部材に溶接することで、正極板と正極端子部材とを電気的に接続することができる。
 さらに、セパレータの第2端部は、幅方向について、負極板のうち幅方向について他方端側に位置する負極他方端部よりも内側に位置している。換言すれば、負極他方端部が、幅方向について、セパレータの第2端部よりも外側に位置している。この負極他方端部は、例えば、負極板のうち負極合材層が塗工されていない負極未塗工部(その一部)により構成される。この場合、この負極他方端部を負極端子部材に溶接することで、負極板と負極端子部材とを電気的に接続することができる。
 さらに、セパレータの第1端部は、幅方向について、正極板のうち正極合材層が塗工された正極塗工部の一方端よりも外側に位置し、且つ、負極板のうち負極合材層が塗工された負極塗工部の一方端(負極板の一方端に一致する)よりも外側に位置している。しかも、セパレータの第1端部を、予め、加熱により熱収縮させている(電極体を製造する過程で、セパレータの第1端部を、加熱により熱収縮させている)。
 さらに、セパレータの第2端部は、幅方向について、正極塗工部の他方端(正極板の他方端に一致する)よりも外側に位置し、且つ、負極塗工部の他方端よりも外側に位置している。しかも、セパレータの第2端部を、予め、加熱により熱収縮させている(電極体を製造する過程で、セパレータの第1端部を、加熱により熱収縮させている)。
 このため、上述の電極体を非水電解質二次電池に用いることで、「セパレータが幅方向に熱収縮することに因って、幅方向端部の位置で正極板と負極板とが接触して短絡する不具合」を防止することができる。
 具体的には、電池の発熱によりセパレータが幅方向に熱収縮する温度になったとしても、セパレータの第1端部及び第2端部は、予め、加熱により熱収縮させているので、それ以上幅方向に熱収縮しない。これにより、幅方向について、正極板と負極板との間にセパレータを介在させた状態を維持し、正極板と負極板との電気的絶縁を保つことができる。
 さらに、本発明の他の態様は、正極板、負極板、及び、上記正極板と上記負極板との間に介在するセパレータ、を有し、上記正極板、上記負極板、及び、上記セパレータが、それぞれの幅方向を一致させて重なり合う非水電解質二次電池用の電極体であって、上記正極板は、正極集電部材と、その表面に塗工された正極合材層と、を有し、上記負極板は、負極集電部材と、その表面に塗工された負極合材層と、を有し、上記セパレータは、上記幅方向について、一方端側に位置する第1端部と、他方端側に位置する第2端部と、上記第1端部と上記第2端部との間に位置する中間部と、を有し、上記セパレータの第1端部は、上記幅方向について、上記正極板のうち上記幅方向について一方端側に位置する正極一方端部よりも内側に位置し、上記正極板のうち上記正極合材層が塗工された正極塗工部の一方端よりも外側に位置し、且つ、上記負極板のうち上記負極合材層が塗工された負極塗工部の一方端よりも外側に位置し、上記正極板のうち上記セパレータとその厚み方向について対向する部位に、熱溶着してなり、上記セパレータの第2端部は、上記幅方向について、上記負極板のうち上記幅方向について他方端側に位置する負極他方端部よりも内側に位置し、上記正極塗工部の他方端よりも外側に位置し、且つ、上記負極塗工部の他方端よりも外側に位置し、上記負極板のうち上記セパレータとその厚み方向について対向する部位に、熱溶着してなる非水電解質二次電池用電極体である。
 上述の非水電解質二次電池用電極体では、セパレータの第1端部が、幅方向について、正極板のうち幅方向について一方端側に位置する正極一方端部よりも内側に位置している。換言すれば、正極一方端部が、幅方向について、セパレータの第1端部よりも外側に位置している。この正極一方端部は、例えば、正極板のうち正極合材層が塗工されていない正極未塗工部(その一部)により構成される。この場合、この正極一方端部を正極端子部材に溶接することで、正極板と正極端子部材とを電気的に接続することができる。
 さらに、セパレータの第2端部は、幅方向について、負極板のうち幅方向について他方端側に位置する負極他方端部よりも内側に位置している。換言すれば、負極他方端部が、幅方向について、セパレータの第2端部よりも外側に位置している。この負極他方端部は、例えば、負極板のうち負極合材層が塗工されていない負極未塗工部(その一部)により構成される。この場合、この負極他方端部を負極端子部材に溶接することで、負極板と負極端子部材とを電気的に接続することができる。
 さらに、セパレータの第1端部は、幅方向について、正極板のうち正極合材層が塗工された正極塗工部の一方端よりも外側に位置し、且つ、負極板のうち負極合材層が塗工された負極塗工部の一方端(負極板の一方端に一致する)よりも外側に位置している。しかも、セパレータの第1端部を、正極板のうちセパレータとその厚み方向について対向する部位に、熱溶着している(電極体を製造する過程で、セパレータの第1端部を、正極板のうちセパレータとその厚み方向について対向する部位に、熱溶着している)。
 さらに、セパレータの第2端部は、幅方向について、正極塗工部の他方端(正極板の他方端に一致する)よりも外側に位置し、且つ、負極塗工部の他方端よりも外側に位置している。しかも、セパレータの第2端部を、負極板のうちセパレータとその厚み方向について対向する部位に、熱溶着している(電極体を製造する過程で、セパレータの第2端部を、負極板のうちセパレータとその厚み方向について対向する部位に、熱溶着している)。
 このため、上述の電極体を非水電解質二次電池に用いることで、「セパレータが幅方向に熱収縮することに因って、幅方向端部の位置で正極板と負極板とが接触して短絡する不具合」を防止することができる。
 具体的には、電池の発熱によりセパレータが幅方向に熱収縮する温度になったとしても、セパレータの第1端部及び第2端部は、熱溶着時の加熱により既に熱収縮しているので、それ以上幅方向に熱収縮し難くなっている。しかも、セパレータの第1端部及び第2端部を、正極板及び負極板の対向する部位に接着(溶着)しているので、熱収縮によってセパレータの第1端部及び第2端部が幅方向内側に移動しようとしても、セパレータの第1端部及び第2端部が幅方向内側に移動することを防止できる。これにより、幅方向について、正極板と負極板との間にセパレータを介在させた状態を維持し、正極板と負極板との電気的絶縁を保つことができる。
 さらに、上記の非水電解質二次電池用電極体であって、前記正極板のうち前記セパレータの前記第1端部が熱溶着されている部位は、上記正極板のうち前記正極合材層が塗工されていない正極未塗工部の少なくとも一部であり、前記負極板のうち上記セパレータの前記第2端部が熱溶着されている部位は、上記負極板のうち前記負極合材層が塗工されていない負極未塗工部の少なくとも一部である非水電解質二次電池用電極体とすると良い。
 上述の非水電解質二次電池用電極体では、正極板のうちセパレータの第1端部が熱溶着されている部位が、正極板のうち正極合材層が塗工されていない正極未塗工部(正極集電部材が露出する部位)の少なくとも一部である。換言すれば、正極板のうち正極合材層が塗工されていない正極未塗工部(その少なくとも一部)に、セパレータの第1端部を熱溶着している。これにより、セパレータの第1端部を、正極板に対し、適切に接着(溶着)することができる。
 さらに、上述の非水電解質二次電池用電極体では、負極板のうちセパレータの第2端部が熱溶着されている部位が、負極板のうち負極合材層が塗工されていない負極未塗工部(負極集電部材が露出する部位)の少なくとも一部である。換言すれば、負極板のうち負極合材層が塗工されていない負極未塗工部(その少なくとも一部)に、セパレータの第2端部を熱溶着している。これにより、セパレータの第2端部を、負極板に対し、適切に接着(溶着)することができる。
 さらに、本発明の他の態様は、上記いずれかの非水電解質二次電池用電極体、を備える非水電解質二次電池である。
 上述の非水電解質二次電池は、前述したいずれかの非水電解質二次電池用電極体を備えている。このため、上述の非水電解質二次電池では、「セパレータが幅方向に熱収縮することに因って、幅方向端部の位置で正極板と負極板とが接触して短絡する不具合」を防止することができる。
実施例1~3にかかる非水電解質二次電池の上面図である。 同非水電解質二次電池の正面図である。 同非水電解質二次電池の縦断面図であり、図1のC-C矢視断面図に相当する。 同非水電解質二次電池の縦断面図であり、図1のD-D矢視断面図に相当する。 同非水電解質二次電池の電極体の斜視図である。 実施例1の電極体の横断面図であり、図3のE-E矢視断面図に相当する。 実施例1~3にかかる正極板の上面図である。 同正極板の断面図であり、図7のF-F矢視断面図に相当する。 実施例1~3にかかる負極板の上面図である。 同負極板の断面図であり、図9のG-G矢視断面図に相当する。 実施例1のセパレータの上面図である。 同セパレータの断面図であり、図11のH-H矢視断面図に相当する。 実施例1の電極体を製造する工程を説明する図である。 実施例2の電極体の横断面図であり、図3のE-E矢視断面図に相当する。 実施例2のセパレータの上面図である。 実施例2の熱処理工程を説明する図である。 実施例2の電極体を製造する工程を説明する図である。 実施例3の電極体の横断面図であり、図3のE-E矢視断面図に相当する。 実施例3の電極体を製造する工程を説明する図である。
(実施例1)
 次に、本発明の実施例1について、図面を参照しつつ説明する。
 本実施例1の非水電解質二次電池100は、図1~図4に示すように、直方体形状の電池ケース110と、正極端子部材120と、負極端子部材130とを備える、角形密閉式のリチウムイオン二次電池である。このうち、電池ケース110は、直方体形状の収容空間をなす金属製の角形収容部111と金属製の蓋部112とを有するハードケースである。電池ケース110(角形収容部111)の内部には、電極体150などが配置されている。なお、非水電解質二次電池100の定格容量(公称容量)は5.5Ahである。
 電極体150は、断面長円状をなし、正極板155、負極板156、及びセパレータ157を扁平形状に捲回した扁平型の捲回体である(図4~図13参照)。正極板155、負極板156、及びセパレータ157は、それぞれの幅方向を一致させて重なり合っている(図6、図13参照)。なお、正極板155、負極板156、及びセパレータ157の長手方向(幅方向に直交する方向)が、捲回方向に一致している。また、図6及び図13の左右方向が、正極板155、負極板156、及びセパレータ157のそれぞれの幅方向に一致し、電極体150の幅方向にも一致する。
 正極板155は、帯状をなし、アルミニウム箔からなる正極集電部材151と、その表面(両面)に塗工された正極合材層152(正極活物質153を含む合材層)を有している(図7、図8参照)。この正極板155は、正極集電部材151の表面に正極合材層152が塗工された正極塗工部155dと、正極集電部材151の表面に正極合材層152が塗工されていない正極未塗工部155bとを有している。正極未塗工部155bは、正極集電部材151のみからなり、正極板155の幅方向について一方端側(図7及び図8において右端側)に位置し、正極板155の長手方向に延びている。なお、図7及び図8の左右方向が、正極板155の幅方向に一致している。また、図7の上下方向が、正極板155の長手方向に一致している。また、図8の上下方向が、正極板155の厚み方向に一致している。
 負極板156は、帯状をなし、銅箔からなる負極集電部材158と、その表面に塗工された負極合材層159(負極活物質154を含む合材層)を有している(図9、図10参照)。この負極板156は、負極集電部材158の表面に負極合材層159が塗工された負極塗工部156dと、負極集電部材158の表面に負極合材層159が塗工されていない負極未塗工部156bとを有している。負極未塗工部156bは、負極集電部材158のみからなり、負極板156の幅方向について他方端側(図9及び図10において左端側)に位置し、負極板156の長手方向に延びている。なお、図9及び図10の左右方向が、負極板156の幅方向に一致している。また、図9の上下方向が、負極板156の長手方向に一致している。また、図10の上下方向が、負極板156の厚み方向に一致している。
 セパレータ157は、ポリプロピレン/ポリエチレン/ポリプロピレン3層構造複合体多孔質シートからなり、帯状をなしている(図11、図12参照)。このセパレータ157は、正極板155と負極板156との間に介在して、両電極板間を電気的に絶縁している(図6参照)。なお、図11及び図12の左右方向が、セパレータ157の幅方向に一致している。また、図9の上下方向が、負極板156の長手方向に一致している。また、図10の上下方向が、負極板156の厚み方向に一致している。
 セパレータ157は、幅方向について、一方端側(図11及び図12において右端側)に位置する第1端部157bと、他方端側(図11及び図12において左端側)に位置する第2端部157cと、第1端部157bと第2端部157cとの間に位置する中間部157dとを有している。
 本実施例1の電極体150では、図6に示すように、セパレータ157の第1端部157bが、幅方向(図6において左右方向)について、正極板155のうち幅方向について一方端側(図6において右端側)に位置する正極一方端部155cよりも内側(幅方向について電極体150の中心側)に位置している。換言すれば、正極一方端部155cが、幅方向について、セパレータ157の第1端部157bよりも外側(幅方向について電極体150の中心から遠い側)に位置している。この正極一方端部155cは、正極板155の正極未塗工部155b(その一部)により構成されている。このため、後述するように、正極一方端部155cを正極端子部材120の正極集電部122に溶接することで、正極板155と正極端子部材120とを電気的に接続することができる(図3参照)。
 さらに、セパレータ157の第2端部157cは、幅方向(図6において左右方向)について、負極板156のうち幅方向について他方端側(図6において左端側)に位置する負極他方端部156cよりも内側(幅方向について電極体150の中心側)に位置している。換言すれば、負極他方端部156cが、幅方向について、セパレータ157の第2端部157cよりも外側(幅方向について電極体150の中心から遠い側)に位置している。この負極他方端部156cは、負極板156の負極未塗工部156b(その一部)により構成される。このため、後述するように、負極他方端部156cを負極端子部材130の負極集電部132に溶接することで、負極板156と負極端子部材130とを電気的に接続することができる(図3参照)。
 さらに、本実施例1の電極体150では、図6に示すように、セパレータ157の第1端部157bが、幅方向(図6において左右方向)について、正極板155の正極塗工部155dの一方端155fよりも外側(図6において右側)に位置し、且つ、負極板156の負極塗工部156dの一方端156f(負極板156の一方端に一致する)よりも外側(図6において右側)に位置している。しかも、セパレータ157の第1端部157bは、中間部157dの厚みよりも厚くされている(図6、図12参照)。詳細には、セパレータ157の第1端部157bを2重に折り重ねて、中間部157dの厚みよりも厚く(中間部157dの2倍の厚み)している。
 さらに、セパレータ157の第2端部157cは、幅方向(図6において左右方向)について、正極板155の正極塗工部155dの他方端155g(正極板155の他方端に一致する)よりも外側(図6において左側)に位置し、且つ、負極板156の負極塗工部156dの他方端156gよりも外側(図6において左側)に位置している。しかも、セパレータ157の第2端部157cは、中間部157dの厚みよりも厚くされている(図6、図12参照)。詳細には、セパレータ157の第2端部157cを2重に折り重ねて、中間部157dの厚みよりも厚く(中間部157dの2倍の厚み)している。
 本実施例1の非水電解質二次電池100では、上述のような電極体150を備えているため、「セパレータ157が幅方向(図6において左右方向)に熱収縮することに因って、幅方向端部(図6において、正極塗工部155d及び負極塗工部156dの左右端部)の位置で正極板155と負極板156とが接触して短絡する不具合」を防止することができる。
 具体的には、例えば、何らかの原因で非水電解質二次電池100が高温になると、樹脂からなるセパレータ157が幅方向に熱収縮する。このとき、セパレータ157の第1端部157bが、幅方向について内側に移動(図6において左側に移動)しようとする共に、第2端部157cが、幅方向について内側に移動(図6において右側に移動)しようとする。
 しかしながら、本実施例1のセパレータ157では、第1端部157b及び第2端部157cが中間部157dの厚みよりも厚くされているので、セパレータ157の第1端部157bは、正極塗工部155dの一方端155fまたは負極塗工部156dの一方端156fの端面に突き当たり、それ以上幅方向内側(図6において左側)に移動できなくなる。これにより、「セパレータ157の第1端部157bが、正極板155(正極塗工部155d)と負極板156(負極塗工部156d)との間に入り込んで、正極塗工部155dの一方端155fと負極塗工部156dの一方端156fとが接触する」不具合を防止できる。なお、セパレータ157を2重に折り重ねた第1端部157bは、熱により軟化して一体(塊)となる。
 さらに、セパレータ157の第2端部157cは、正極塗工部155dの他方端155gまたは負極塗工部156dの他方端156gの端面に突き当たり、それ以上幅方向内側(図6において右側)に移動できなくなる。これにより、「セパレータ157の第2端部157cが、正極板155(正極塗工部155d)と負極板156(負極塗工部156d)との間に入り込んで、正極塗工部155dの他方端155gと負極塗工部156dの他方端156gとが接触する」不具合を防止できる。なお、セパレータ157を2重に折り重ねた第2端部157cは、熱により軟化して一体(塊)となる。
 従って、本実施例1の非水電解質二次電池100は、セパレータ157が熱収縮する温度(例えば、150℃)にまで上昇した場合でも、電極体150の幅方向(図6において左右方向)について、正極板155と負極板156との間にセパレータを介在させた状態を維持し、正極板155と負極板156との電気的絶縁を保つことができる。
 次に、非水電解質二次電池100の製造方法について説明する。
 まず、図7及び図8に示すように、帯状の正極集電部材151の表面に正極合材層152が塗工された正極板155を用意する。さらに、図9及び図10に示すように、帯状の負極集電部材158の表面に負極合材層159が塗工された負極板156を用意する。さらに、図11及び図12に示すように、幅方向両端部(第1端部157b及び第2端部157c)を2重に折り重ねて、中間部157dの厚みよりも厚く(中間部157dの2倍の厚み)したセパレータ157を用意する。
 次に、図13に示すように、正極板155、負極板156、及びセパレータ157が重なるようにして、これらを扁平形状に捲回して、電極体150を形成する(図5参照)。但し、セパレータ157の第1端部157bが、幅方向(図13において左右方向)について、正極板155の正極一方端部155cよりも内側(図13において左側)に位置し、正極板155の正極塗工部155dの一方端155fよりも外側(図13において右側)に位置し、且つ、負極板156の負極塗工部156dの一方端156fよりも外側(図13において右側)に位置し、さらに、セパレータ157の第2端部157cが、幅方向について、負極板156の負極他方端部156cよりも内側(図13において右側)に位置し、正極板155の正極塗工部155dの他方端155gよりも外側(図13において左側)に位置し、且つ、負極板156の負極塗工部156dの他方端156gよりも外側(図13において左側)に位置するように、正極板155、負極板156、及びセパレータ157を配置して捲回する。
 次いで、電極体150の正極一方端部155cの上端部に、正極端子部材120の正極集電部122を溶接する(図3参照)。また、電極体150の負極他方端部156cの上端部に、負極端子部材130の負極集電部132を溶接する。その後、この電極体150を、角形収容部111内に収容すると共に、蓋部112で角形収容部111の開口を閉塞する。次いで、蓋部112と角形収容部111とを溶接する。次いで、蓋部112に形成されている図示しない注液口から、角形収容部111内に非水電解液を注入する(このとき、電極体150内に非水電解液を含浸させる)。その後、注液口を封止して、本実施例1の非水電解質二次電池100が完成する。
(実施例2)
 本実施例2の非水電解質二次電池200は、実施例1の非水電解質二次電池100と比較して、電極体のセパレータのみが異なり、その他については同様である。従って、ここでは、実施例1と異なる点を中心に説明し、同様な点については説明を省略または簡略化する。
 本実施例2のセパレータ257は、実施例1と同様に、ポリプロピレン/ポリエチレン/ポリプロピレン3層構造複合体多孔質シートからなり、帯状をなしている(図15参照)。このセパレータ257は、幅方向について、一方端側(図15において右端側)に位置する第1端部257b(図15においてハッチングした部分)と、他方端側(図15において左端側)に位置する第2端部257c(図15においてハッチングした部分)と、第1端部257bと第2端部257cとの間に位置する中間部257dとを有している。なお、図15の左右方向が、セパレータ157の幅方向に一致し、図15の上下方向が、セパレータ157の長手方向に一致している。
 本実施例2の電極体250では、図14に示すように、セパレータ257の第1端部257bが、幅方向(図14において左右方向)について、正極板155のうち幅方向について一方端側(図14において右端側)に位置する正極一方端部155cよりも内側(図14において左側)に位置している。換言すれば、正極一方端部155cが、幅方向について、セパレータ257の第1端部257bよりも外側(図14において右側)に位置している。この正極一方端部155cは、正極板155の正極未塗工部155b(その一部)により構成されている。このため、本実施例2でも、正極一方端部155cを正極端子部材120の正極集電部122に溶接することで、正極板155と正極端子部材120とを電気的に接続することができる(図3参照)。
 さらに、セパレータ257の第2端部257cは、幅方向(図14において左右方向)について、負極板156のうち幅方向について他方端側(図14において左端側)に位置する負極他方端部156cよりも内側(幅方向について電極体250の中心側)に位置している。換言すれば、負極他方端部156cが、幅方向について、セパレータ257の第2端部257cよりも外側(幅方向について電極体250の中心から遠い側)に位置している。この負極他方端部156cは、負極板156の負極未塗工部156b(その一部)により構成される。このため、本実施例2でも、負極他方端部156cを負極端子部材130の負極集電部132に溶接することで、負極板156と負極端子部材130とを電気的に接続することができる(図3参照)。
 さらに、本実施例2の電極体250では、図14に示すように、セパレータ257の第1端部257bが、幅方向(図14において左右方向)について、正極板155の正極塗工部155dの一方端155fよりも外側(図14において右側)に位置し、且つ、負極板156の負極塗工部156dの一方端156f(負極板156の一方端に一致する)よりも外側(図14において右側)に位置している。
 しかも、本実施例2では、セパレータ257の第1端部257bを、予め、加熱により熱収縮させている。具体的には、後述するように、電極体250を製造する過程(熱処理工程)で、セパレータ250の第1端部257bを200℃に加熱し、熱収縮させている。
 さらに、セパレータ257の第2端部257cは、幅方向(図14において左右方向)について、正極板155の正極塗工部155dの他方端155g(正極板155の他方端に一致する)よりも外側(図14において左側)に位置し、且つ、負極板156の負極塗工部156dの他方端156gよりも外側(図14において左側)に位置している。
 しかも、本実施例2では、セパレータ257の第2端部257cを、予め、加熱により熱収縮させている。具体的には、後述するように、電極体250を製造する過程(熱処理工程)で、セパレータ250の第2端部257cを200℃に加熱し、熱収縮させている。
 本実施例2の非水電解質二次電池200では、上述のような電極体250を備えているため、「セパレータ257が幅方向(図14において左右方向)に熱収縮することに因って、幅方向端部(図14において、正極塗工部155d及び負極塗工部156dの左右端部)の位置で正極板155と負極板156とが接触して短絡する不具合」を防止することができる。
 具体的には、非水電解質二次電池200の温度が、セパレータ257が熱収縮する温度(例えば、150℃)に上昇したとしても、セパレータ257の第1端部257b及び第2端部257cは、予め、加熱により熱収縮させているので、それ以上幅方向に熱収縮しない。詳細には、セパレータ257の第1端部257bが、幅方向について内側(図14において左側)に縮んでゆくのを防止できる。さらに、第2端部257cが、幅方向について内側(図14において右側)に縮んでゆくのを防止できる。
 これにより、「セパレータ257の第1端部257bが、正極板155(正極塗工部155d)と負極板156(負極塗工部156d)との間に入り込んで、正極塗工部155dの一方端155fと負極塗工部156dの一方端156fとが接触する」不具合を防止できる。さらに、「セパレータ257の第2端部257cが、正極板155(正極塗工部155d)と負極板156(負極塗工部156d)との間に入り込んで、正極塗工部155dの他方端155gと負極塗工部156dの他方端156gとが接触する」不具合を防止できる。
 従って、本実施例2の非水電解質二次電池200は、セパレータ257が熱収縮する温度(例えば、150℃)にまで上昇した場合でも、電極体250の幅方向(図14において左右方向)について、正極板155と負極板156との間にセパレータを介在させた状態を維持し、正極板155と負極板156との電気的絶縁を保つことができる。なお、セパレータ257の中間部257dは、正極板155(正極塗工部155d)と負極板156(負極塗工部156d)とに挟まれて押圧されているので、セパレータ257が熱収縮する温度(例えば、150℃)にまで上昇した場合でも、幅方向に収縮し難くなっている。
 次に、非水電解質二次電池200の製造方法について説明する。
 まず、図7及び図8に示すように、帯状の正極集電部材151の表面に正極合材層152が塗工された正極板155を用意する。さらに、図9及び図10に示すように、帯状の負極集電部材158の表面に負極合材層159が塗工された負極板156を用意する。
 また、熱処理工程において、セパレータ257の幅方向両端部(第1端部257b及び第2端部257c)を、加熱により熱収縮させる。
 具体的には、図16に示すように、200℃に加熱した熱ローラ11と熱ローラ12とで、セパレータ257の第1端部257bをその厚み方向に挟むと共に、200℃に加熱した熱ローラ13と熱ローラ14とで、セパレータ257の第2端部257cをその厚み方向に挟み、熱ローラ11~14を回転させながらセパレータ257をその長手方向に移動させてゆく。これにより、セパレータ257の第1端部257b及び第2端部257cを熱収縮させることができる。このようにして、第1端部257b及び第2端部257cが熱収縮したセパレータ257を製造することができる。
 次に、図17に示すように、正極板155、負極板156、及びセパレータ257が重なるようにして、これらを扁平形状に捲回して、電極体150を形成する(図5参照)。但し、セパレータ257の第1端部257bが、幅方向(図17において左右方向)について、正極板155の正極一方端部155cよりも内側(図17において左側)に位置し、正極板155の正極塗工部155dの一方端155fよりも外側(図17において右側)に位置し、且つ、負極板156の負極塗工部156dの一方端156fよりも外側(図17において右側)に位置し、さらに、セパレータ257の第2端部257cが、幅方向について、負極板156の負極他方端部156cよりも内側(図17において右側)に位置し、正極板155の正極塗工部155dの他方端155gよりも外側(図17において左側)に位置し、且つ、負極板156の負極塗工部156dの他方端156gよりも外側(図17において左側)に位置するように、正極板155、負極板156、及びセパレータ257を配置して捲回する。
 次いで、電極体250の正極一方端部155cの上端部に、正極端子部材120の正極集電部122を溶接する(図3参照)。また、電極体250の負極他方端部156cの上端部に、負極端子部材130の負極集電部132を溶接する。その後、この電極体250を、角形収容部111内に収容すると共に、蓋部112で角形収容部111の開口を閉塞する。次いで、蓋部112と角形収容部111とを溶接する。次いで、蓋部112に形成されている図示しない注液口から、角形収容部111内に非水電解液を注入する(このとき、電極体250内に非水電解液を含浸させる)。その後、注液口を封止して、本実施例2の非水電解質二次電池200が完成する。
(実施例3)
 本実施例3の非水電解質二次電池300は、実施例1の非水電解質二次電池100と比較して、電極体のみが異なり、その他については同様である。従って、ここでは、実施例1と異なる点を中心に説明し、同様な点については説明を省略または簡略化する。
 本実施例3の電極体350では、図18に示すように、セパレータ357の第1端部357bが、幅方向(図18において左右方向)について、正極板155のうち幅方向について一方端側(図18において右端側)に位置する正極一方端部155cよりも内側(図18において左側)に位置している。換言すれば、正極一方端部155cが、幅方向について、セパレータ357の第1端部357bよりも外側(図18において右側)に位置している。この正極一方端部155cは、正極板155の正極未塗工部155b(その一部)により構成されている。このため、本実施例3でも、正極一方端部155cを正極端子部材120の正極集電部122に溶接することで、正極板155と正極端子部材120とを電気的に接続することができる(図3参照)。
 さらに、セパレータ357の第2端部357cは、幅方向(図18において左右方向)について、負極板156のうち幅方向について他方端側(図18において左端側)に位置する負極他方端部156cよりも内側(幅方向について電極体350の中心側)に位置している。換言すれば、負極他方端部156cが、幅方向について、セパレータ357の第2端部357cよりも外側(幅方向について電極体350の中心から遠い側)に位置している。この負極他方端部156cは、負極板156の負極未塗工部156b(その一部)により構成される。このため、本実施例3でも、負極他方端部156cを負極端子部材130の負極集電部132に溶接することで、負極板156と負極端子部材130とを電気的に接続することができる(図3参照)。
 さらに、本実施例3の電極体350では、図18に示すように、セパレータ357の第1端部357bが、幅方向(図18において左右方向)について、正極板155の正極塗工部155dの一方端155fよりも外側(図18において右側)に位置し、且つ、負極板156の負極塗工部156dの一方端156f(負極板156の一方端に一致する)よりも外側(図18において右側)に位置している。
 しかも、本実施例3では、セパレータ357の第1端部357bを、正極板155のうちセパレータ357とその厚み方向(図18において下方)について対向する部位に、熱溶着している。具体的には、後述するように、電極体350を製造する過程で、セパレータ357の第1端部357bを、正極板155のうちセパレータ357とその厚み方向について対向する部位(正極未塗工部155b)に、熱溶着している。なお、図18において負極板156(負極塗工部156d)の上面と接触するセパレータ357は、その第1端部357bが、図18において自身の下方に位置する第1端部357bと一体となって、正極未塗工部155bに熱溶着している。
 また、本実施例3では、セパレータ357の第1端部357bを、正極未塗工部155b(その一部)に、熱溶着している。このため、セパレータ357の第1端部357bを、正極板155に対し、適切に接着(溶着)することができる。
 さらに、セパレータ357の第2端部357cは、幅方向(図18において左右方向)について、正極板155の正極塗工部155dの他方端155g(正極板155の他方端に一致する)よりも外側(図18において左側)に位置し、且つ、負極板156の負極塗工部156dの他方端156gよりも外側(図18において左側)に位置している。
 しかも、本実施例3では、セパレータ357の第2端部357cを、負極板156のうちセパレータ357とその厚み方向(図18において上下方向)について対向する部位に、熱溶着している。具体的には、後述するように、電極体350を製造する過程で、セパレータ357の第2端部357cを、負極板156のうちセパレータ357とその厚み方向について対向する部位(負極未塗工部156b)に、熱溶着している。
 なお、本実施例3では、セパレータ357の第2端部357cを、負極未塗工部156b(その一部)に、熱溶着している。このため、セパレータ357の第2端部357cを、負極板156に対し、適切に接着(溶着)することができる。
 本実施例3の非水電解質二次電池300では、上述のような電極体350を備えているため、「セパレータ357が幅方向(図18において左右方向)に熱収縮することに因って、幅方向端部(図18において、正極塗工部155d及び負極塗工部156dの左右端部)の位置で正極板155と負極板156とが接触して短絡する不具合」を防止することができる。
 具体的には、非水電解質二次電池300の温度が、セパレータ357が熱収縮する温度(例えば、150℃)に上昇したとしても、セパレータ357の第1端部357b及び第2端部357cは、熱溶着時の加熱により既に熱収縮しているので、それ以上幅方向に熱収縮し難くなっている。
 しかも、セパレータ357の第1端部357bを、正極板155のうち厚み方向に対向する部位に接着(溶着)しているので、熱収縮によってセパレータ357の第1端部357bが幅方向内側(図18において左側)に移動しようとしても、セパレータ357の第1端部357bが幅方向内側に移動することを防止できる。これにより、「セパレータ357の第1端部357bが、正極板155(正極塗工部155d)と負極板156(負極塗工部156d)との間に入り込んで、正極塗工部155dの一方端155fと負極塗工部156dの一方端156fとが接触する」不具合を防止できる。
 さらに、セパレータ357の第2端部357cを、負極板156のうち厚み方向に対向する部位に接着(溶着)しているので、熱収縮によってセパレータ357の第2端部357cが幅方向内側(図18において右側)に移動しようとしても、セパレータ357の第2端部357cが幅方向内側に移動することを防止できる。これにより、「セパレータ357の第2端部357cが、正極板155(正極塗工部155d)と負極板156(負極塗工部156d)との間に入り込んで、正極塗工部155dの他方端155gと負極塗工部156dの他方端156gとが接触する」不具合を防止できる。
 従って、本実施例3の非水電解質二次電池300は、セパレータ357が熱収縮する温度(例えば、150℃)にまで上昇した場合でも、電極体350の幅方向(図18において左右方向)について、正極板155と負極板156との間にセパレータを介在させた状態を維持し、正極板155と負極板156との電気的絶縁を保つことができる。
 次に、非水電解質二次電池300の製造方法について説明する。
 まず、図7及び図8に示すように、帯状の正極集電部材151の表面に正極合材層152が塗工された正極板155を用意する。さらに、図9及び図10に示すように、帯状の負極集電部材158の表面に負極合材層159が塗工された負極板156を用意する。さらに、ポリプロピレン/ポリエチレン/ポリプロピレン3層構造複合体多孔質シートからなる帯状のセパレータ357を用意する。
 次に、図19に示すように、正極板155、負極板156、及びセパレータ357を重ね合わせる。但し、セパレータ357の第1端部357bが、幅方向(図19において左右方向)について、正極板155の正極一方端部155cよりも内側(図19において左側)に位置し、正極板155の正極塗工部155dの一方端155fよりも外側(図19において右側)に位置し、且つ、負極板156の負極塗工部156dの一方端156fよりも外側(図19において右側)に位置し、さらに、セパレータ357の第2端部357cが、幅方向について、負極板156の負極他方端部156cよりも内側(図19において右側)に位置し、正極板155の正極塗工部155dの他方端155gよりも外側(図19において左側)に位置し、且つ、負極板156の負極塗工部156dの他方端156gよりも外側(図19において左側)に位置するように、正極板155、負極板156、及びセパレータ357を配置する。
 このように、正極板155、負極板156、及びセパレータ357を重ね合わせ状態で、200℃に加熱した熱ローラ11と熱ローラ12とで、セパレータ357の第1端部357b及び正極板155の正極未塗工部155bをその厚み方向に挟む(圧接する)と共に、200℃に加熱した熱ローラ13と熱ローラ14とで、セパレータ357の第2端部357c及び負極板156の負極未塗工部156bをその厚み方向に挟み(圧接して)、熱ローラ11~14を回転させながら、正極板155、負極板156、及びセパレータ357をその長手方向(図19において上方)に移動させてゆく。なお、熱ローラ12は、図19において熱ローラ11の裏側(紙面に直交する方向に見て奥側)に位置し、熱ローラ14は、図19において熱ローラ13の裏側(紙面に直交する方向に見て奥側)に位置している。
 これにより、セパレータ350の第1端部357bを、正極板155のうちセパレータ357とその厚み方向について対向する部位(正極未塗工部155b)に、熱溶着することができる。さらには、セパレータ350の第2端部357cを、負極板156のうちセパレータ357とその厚み方向について対向する部位(負極未塗工部156b)に、熱溶着することができる。そして、熱溶着後、これら(正極板155、負極板156、及びセパレータ357)を扁平形状に捲回して、電極体350を形成する(図5参照)。
 なお、本実施例3では、正極板155のうちセパレータ357の第1端部357bと厚み方向について対向する部位(正極未塗工部155b)に、予め、接着剤(例えば、ポリオレフィン系接着剤)を塗布している。また、負極板156のうちセパレータ357の第2端部357cと厚み方向について対向する部位(負極未塗工部156b)にも、予め、接着剤(例えば、ポリオレフィン系接着剤)を塗布している。
 次いで、電極体350の正極一方端部155cの上端部に、正極端子部材120の正極集電部122を溶接する(図3参照)。また、電極体350の負極他方端部156cの上端部に、負極端子部材130の負極集電部132を溶接する。その後、この電極体350を、角形収容部111内に収容すると共に、蓋部112で角形収容部111の開口を閉塞する。次いで、蓋部112と角形収容部111とを溶接する。次いで、蓋部112に形成されている図示しない注液口から、角形収容部111内に非水電解液を注入する(このとき、電極体250内に非水電解液を含浸させる)。その後、注液口を封止して、本実施例3の非水電解質二次電池300が完成する。
(加熱試験)
 次に、実施例1~3の非水電解質二次電池100~300を、それぞれ5個ずつ用意した。また、比較例として、実施例2の非水電解質二次電池200と比較して、セパレータの第1端部及び第2端部を熱収縮させていない(熱処理工程を行っていない)点のみが異なる非水電解質二次電池を、5個用意した。そして、これらの電池(合計20個の電池)について、加熱試験を行い、内部短絡の発生を調査した。
 具体的には、まず、加熱試験を行う前に、実施例1~3及び比較例の電池(合計20個の電池)について、25℃の温度環境下で、電池容量を測定した。具体的には、各電池の電圧が4.2Vに達するまで、1C(5.5A)の定電流で充電を行い、引き続き、電池の電圧を4.2Vに保ちつつ、電流値が0.1C(0.55A)になるまで充電を行った。これにより、非水電解質二次電池100をSOC100%にした。
 なお、1Cは、定格容量値(公称容量値)の容量を有する電池を定電流放電して、1時間で放電終了となる電流値である。実施例1~3の非水電解質二次電池100~300、及び比較例の非水電解質二次電池は、いずれも、定格容量(公称容量)が5.5Ahであるので、1C=5.5Aとなる。
 また、SOCは、State Of Charge(充電状態、充電率)の略である。
 その後、各電池の電圧が2.5Vに達するまで、1C(5.5A)の定電流で放電を行った。これにより、各電池をSOC0%にした。このときの放電電気量を、各電池の電池容量として測定し、実施例及び比較例毎に、その平均値(平均容量)を算出した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、実施例1の電池では、平均容量(5個の電池の電池容量の平均値)が5.48Ahとなった。実施例2の電池では、平均容量が5.50Ahとなった。実施例3の電池では、平均容量が5.47Ahとなった。比較例の電池では、平均容量が5.52Ahとなった。
 次に、各電池について、加熱試験を行った。具体的には、まず、各電池をSOC80%(電池電圧3.8V)に調整し、これらを加熱試験装置の試験室内に配置した。そして、試験室内の温度を毎分5℃ずつ昇温させてゆき、試験室内の温度を160℃とした。その後、試験室内の温度を160℃に保ち、各電池を160℃の試験室内に30分間放置した。その間、各電池について電池温度を測定し、各電池の最高到達温度を検出した。なお、160℃は、セパレータが熱収縮する温度である。
 さらに、加熱試験の間、各電池について電池電圧を測定し、加熱試験後の電池電圧を検出した。ところで、内部短絡(セパレータの幅方向端部の位置で正極板と負極板とが接触)が発生した電池は、電池電圧が0Vにまで低下してしまう。従って、加熱試験により電池電圧が0Vとなった電池は、セパレータの熱収縮によって、セパレータの幅方向端部(第1端部及び第2端部)の位置で正極板と負極板とが接触し、内部短絡が発生したと考えることができる。これらの結果を表1に示す。
 表1に示すように、比較例の電池は、いずれも、加熱試験によって電池電圧が0Vとなった。さらに、加熱試験における最高到達温度が210℃となり、試験室内の温度(160℃)よりも50℃も高くなった。この結果より、比較例の電池では、セパレータの熱収縮によって、セパレータの幅方向端部(第1端部及び第2端部)の位置で正極板と負極板とが接触し、内部短絡が発生した考えられる。そして、この内部短絡によって、電池の発熱が促進されて、電池温度が210℃まで上昇したと考えられる。
 これに対し、実施例1~3の電池は、いずれも、電池電圧が3.8Vに保たれた。さらに、加熱試験における最高到達温度が160℃となり、試験室内の温度(160℃)と変わらなかった。この結果より、実施例1~3の電池では、加熱試験(セパレータが熱収縮する温度まで加熱する試験)を行っても、電極体の幅方向について、正極板と負極板との間にセパレータを介在させた状態を維持し、正極板と負極板との電気的絶縁を保つことができたといえる。すなわち、「セパレータが幅方向に熱収縮することに因って、幅方向端部の位置で正極板と負極板とが接触して内部短絡する不具合」を防止することができたといえる。その理由は、各実施例において説明した通りである。
 以上において、本発明を実施例1~3に即して説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
100,200,300 非水電解質二次電池
110 電池ケース
150,250,350 電極体(非水電解質二次電池用電極体)
155 正極板
155b 正極未塗工部
155c 正極一方端部
155d 正極塗工部
151 正極集電部材
152 正極合材層
156 負極板
156b 負極未塗工部
156c 負極他方端部
156d 負極塗工部
158 負極集電部材
159 負極合材層
157,257,357 セパレータ
157b,257b,357b セパレータの第1端部
157c,257c,357c セパレータの第2端部
157d,257d,357d セパレータの中間部

Claims (5)

  1.  正極板、負極板、及び、上記正極板と上記負極板との間に介在するセパレータ、を有し、上記正極板、上記負極板、及び、上記セパレータが、それぞれの幅方向を一致させて重なり合う
    非水電解質二次電池用の電極体であって、
     上記正極板は、正極集電部材と、その表面に塗工された正極合材層と、を有し、
     上記負極板は、負極集電部材と、その表面に塗工された負極合材層と、を有し、
     上記セパレータは、上記幅方向について、一方端側に位置する第1端部と、他方端側に位置する第2端部と、上記第1端部と上記第2端部との間に位置する中間部と、を有し、
     上記セパレータの第1端部は、
      上記幅方向について、上記正極板のうち上記幅方向について一方端側に位置する正極一方端部よりも内側に位置し、上記正極板のうち上記正極合材層が塗工された正極塗工部の一方端よりも外側に位置し、且つ、上記負極板のうち上記負極合材層が塗工された負極塗工部の一方端よりも外側に位置し、
      上記中間部の厚みよりも厚くされてなり、
     上記セパレータの第2端部は、
      上記幅方向について、上記負極板のうち上記幅方向について他方端側に位置する負極他方端部よりも内側に位置し、上記正極塗工部の他方端よりも外側に位置し、且つ、上記負極塗工部の他方端よりも外側に位置し、
      上記中間部の厚みよりも厚くされてなる
    非水電解質二次電池用電極体。
  2.  正極板、負極板、及び、上記正極板と上記負極板との間に介在するセパレータ、を有し、上記正極板、上記負極板、及び、上記セパレータが、それぞれの幅方向を一致させて重なり合う
    非水電解質二次電池用の電極体であって、
     上記正極板は、正極集電部材と、その表面に塗工された正極合材層と、を有し、
     上記負極板は、負極集電部材と、その表面に塗工された負極合材層と、を有し、
     上記セパレータは、上記幅方向について、一方端側に位置する第1端部と、他方端側に位置する第2端部と、上記第1端部と上記第2端部との間に位置する中間部と、を有し、
     上記セパレータの第1端部は、
      上記幅方向について、上記正極板のうち上記幅方向について一方端側に位置する正極一方端部よりも内側に位置し、上記正極板のうち上記正極合材層が塗工された正極塗工部の一方端よりも外側に位置し、且つ、上記負極板のうち上記負極合材層が塗工された負極塗工部の一方端よりも外側に位置し、
     上記セパレータの第1端部を、予め、加熱により熱収縮させてなり、
     上記セパレータの第2端部は、
      上記幅方向について、上記負極板のうち上記幅方向について他方端側に位置する負極他方端部よりも内側に位置し、上記正極塗工部の他方端よりも外側に位置し、且つ、上記負極塗工部の他方端よりも外側に位置し、
     上記セパレータの第2端部を、予め、加熱により熱収縮させてなる
    非水電解質二次電池用電極体。
  3.  正極板、負極板、及び、上記正極板と上記負極板との間に介在するセパレータ、を有し、上記正極板、上記負極板、及び、上記セパレータが、それぞれの幅方向を一致させて重なり合う
    非水電解質二次電池用の電極体であって、
     上記正極板は、正極集電部材と、その表面に塗工された正極合材層と、を有し、
     上記負極板は、負極集電部材と、その表面に塗工された負極合材層と、を有し、
     上記セパレータは、上記幅方向について、一方端側に位置する第1端部と、他方端側に位置する第2端部と、上記第1端部と上記第2端部との間に位置する中間部と、を有し、
     上記セパレータの第1端部は、
      上記幅方向について、上記正極板のうち上記幅方向について一方端側に位置する正極一方端部よりも内側に位置し、上記正極板のうち上記正極合材層が塗工された正極塗工部の一方端よりも外側に位置し、且つ、上記負極板のうち上記負極合材層が塗工された負極塗工部の一方端よりも外側に位置し、
      上記正極板のうち上記セパレータとその厚み方向について対向する部位に、熱溶着してなり、
     上記セパレータの第2端部は、
      上記幅方向について、上記負極板のうち上記幅方向について他方端側に位置する負極他方端部よりも内側に位置し、上記正極塗工部の他方端よりも外側に位置し、且つ、上記負極塗工部の他方端よりも外側に位置し、
      上記負極板のうち上記セパレータとその厚み方向について対向する部位に、熱溶着してなる
    非水電解質二次電池用電極体。
  4. 請求項3に記載の非水電解質二次電池用電極体であって、
     前記正極板のうち前記セパレータの前記第1端部が熱溶着されている部位は、上記正極板のうち前記正極合材層が塗工されていない正極未塗工部の少なくとも一部であり、
     前記負極板のうち上記セパレータの前記第2端部が熱溶着されている部位は、上記負極板のうち前記負極合材層が塗工されていない負極未塗工部の少なくとも一部である
    非水電解質二次電池用電極体。
  5.  請求項1~請求項4のいずれか一項に記載の非水電解質二次電池用電極体、を備える
    非水電解質二次電池。
PCT/JP2010/051718 2010-02-05 2010-02-05 非水電解質二次電池用電極体、及び、非水電解質二次電池 WO2011096070A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010543341A JP5273159B2 (ja) 2010-02-05 2010-02-05 非水電解質二次電池用電極体、及び、非水電解質二次電池
PCT/JP2010/051718 WO2011096070A1 (ja) 2010-02-05 2010-02-05 非水電解質二次電池用電極体、及び、非水電解質二次電池
CN201080004494.0A CN102282716B (zh) 2010-02-05 2010-02-05 非水电解质二次电池用电极体和非水电解质二次电池
KR1020117016369A KR101321201B1 (ko) 2010-02-05 2010-02-05 비수전해질 2차 전지용 전극체 및 비수전해질 2차 전지
US13/106,917 US20110217590A1 (en) 2010-02-05 2011-05-13 Electrode body for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US14/551,853 US20150079478A1 (en) 2010-02-05 2014-11-24 Eelectrode body for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US15/833,567 US10454140B2 (en) 2010-02-05 2017-12-06 Electrode body for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/051718 WO2011096070A1 (ja) 2010-02-05 2010-02-05 非水電解質二次電池用電極体、及び、非水電解質二次電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/106,917 Continuation US20110217590A1 (en) 2010-02-05 2011-05-13 Electrode body for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2011096070A1 true WO2011096070A1 (ja) 2011-08-11

Family

ID=44355097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051718 WO2011096070A1 (ja) 2010-02-05 2010-02-05 非水電解質二次電池用電極体、及び、非水電解質二次電池

Country Status (5)

Country Link
US (3) US20110217590A1 (ja)
JP (1) JP5273159B2 (ja)
KR (1) KR101321201B1 (ja)
CN (1) CN102282716B (ja)
WO (1) WO2011096070A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073761A (ja) * 2011-09-27 2013-04-22 Gs Yuasa Corp 蓄電素子
JP2013196894A (ja) * 2012-03-19 2013-09-30 Toyota Industries Corp 蓄電装置、車両、電極体の製造方法
JP2014007104A (ja) * 2012-06-26 2014-01-16 Toyota Industries Corp 蓄電装置
JP2014049419A (ja) * 2012-09-04 2014-03-17 Toyota Industries Corp 蓄電装置、及び蓄電装置の製造方法
JP2015088247A (ja) * 2013-10-28 2015-05-07 日立オートモティブシステムズ株式会社 二次電池
JP2017059326A (ja) * 2015-09-14 2017-03-23 日立オートモティブシステムズ株式会社 二次電池
US9698397B2 (en) 2011-11-10 2017-07-04 Toyota Jidosha Kabushiki Kaisha Battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101315672B1 (ko) * 2012-07-06 2013-10-08 (주)오렌지파워 전극 조립체, 이를 포함하는 전지 및 이의 제조 방법
KR102067004B1 (ko) * 2015-05-27 2020-03-02 주식회사 엘지화학 열수축된 분리막을 포함하는 전지셀
JP6566265B2 (ja) 2016-09-09 2019-08-28 トヨタ自動車株式会社 密閉型二次電池
JP6659609B2 (ja) 2017-03-21 2020-03-04 株式会社東芝 電極構造体、二次電池、電池パック及び車両
JP7211246B2 (ja) * 2019-04-22 2023-01-24 トヨタ自動車株式会社 電池の製造方法および電池
KR20220010792A (ko) 2020-07-20 2022-01-27 주식회사 엘지에너지솔루션 유동방지부를 포함하는 파우치형 이차전지 및 이의 제조방법
CN214254487U (zh) * 2020-12-17 2021-09-21 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池以及用电装置
CN114447406B (zh) * 2022-01-28 2023-05-05 蜂巢能源科技(无锡)有限公司 全固态电芯及其制备方法和全固态电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242955A (ja) * 2002-02-15 2003-08-29 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2005190913A (ja) * 2003-12-26 2005-07-14 Matsushita Electric Ind Co Ltd リチウム二次電池
JP2007053055A (ja) * 2005-08-19 2007-03-01 Toyota Motor Corp 電池
JP2007141482A (ja) * 2005-11-15 2007-06-07 Matsushita Electric Ind Co Ltd 非水電解質捲回型二次電池
JP2009054480A (ja) * 2007-08-28 2009-03-12 Toshiba Corp 非水電解質電池および電池パック

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122574A (ja) 1987-11-06 1989-05-15 Matsushita Electric Ind Co Ltd 円筒形リチウム二次電池
JPH06150900A (ja) * 1992-11-10 1994-05-31 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造法
JPH09306513A (ja) 1996-05-08 1997-11-28 Ship & Ocean Zaidan スパイラル形リチウム電池
JPH10255818A (ja) * 1997-03-14 1998-09-25 Nitto Denko Corp 捲回型電池
JP4366783B2 (ja) * 1998-11-16 2009-11-18 株式会社デンソー 積層型電池及びその電極の製造方法
JP2000277062A (ja) 1999-03-29 2000-10-06 Sanyo Electric Co Ltd 薄型電池
JP2001185120A (ja) * 1999-12-27 2001-07-06 Sanyo Electric Co Ltd 二次電池
JP4142921B2 (ja) 2002-08-30 2008-09-03 株式会社東芝 リチウムイオン二次電池
KR100515830B1 (ko) * 2003-03-12 2005-09-21 삼성에스디아이 주식회사 전극조립체와 이를 이용한 이차전지
JP2006278245A (ja) 2005-03-30 2006-10-12 Toyota Motor Corp 電池及びその製造方法
KR100853619B1 (ko) * 2006-01-04 2008-08-25 주식회사 엘지화학 분리막 상단이 밀봉되어 있는 전극조립체 및 이를 포함하는이차전지
JP2008027867A (ja) 2006-07-25 2008-02-07 Sony Corp 巻回電池
JP5070784B2 (ja) 2006-09-26 2012-11-14 ソニー株式会社 円筒型非水電解質電池の製造方法
KR100823193B1 (ko) * 2006-11-02 2008-04-18 삼성에스디아이 주식회사 이차 전지
JP2009032408A (ja) * 2007-07-24 2009-02-12 Toyota Motor Corp 二次電池用セパレータ
JP5526488B2 (ja) 2008-03-26 2014-06-18 Tdk株式会社 電気化学デバイス
JP4659861B2 (ja) * 2008-07-09 2011-03-30 シャープ株式会社 扁平型二次電池およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242955A (ja) * 2002-02-15 2003-08-29 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2005190913A (ja) * 2003-12-26 2005-07-14 Matsushita Electric Ind Co Ltd リチウム二次電池
JP2007053055A (ja) * 2005-08-19 2007-03-01 Toyota Motor Corp 電池
JP2007141482A (ja) * 2005-11-15 2007-06-07 Matsushita Electric Ind Co Ltd 非水電解質捲回型二次電池
JP2009054480A (ja) * 2007-08-28 2009-03-12 Toshiba Corp 非水電解質電池および電池パック

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073761A (ja) * 2011-09-27 2013-04-22 Gs Yuasa Corp 蓄電素子
US9698397B2 (en) 2011-11-10 2017-07-04 Toyota Jidosha Kabushiki Kaisha Battery
JP2013196894A (ja) * 2012-03-19 2013-09-30 Toyota Industries Corp 蓄電装置、車両、電極体の製造方法
JP2014007104A (ja) * 2012-06-26 2014-01-16 Toyota Industries Corp 蓄電装置
JP2014049419A (ja) * 2012-09-04 2014-03-17 Toyota Industries Corp 蓄電装置、及び蓄電装置の製造方法
JP2015088247A (ja) * 2013-10-28 2015-05-07 日立オートモティブシステムズ株式会社 二次電池
JP2017059326A (ja) * 2015-09-14 2017-03-23 日立オートモティブシステムズ株式会社 二次電池

Also Published As

Publication number Publication date
US10454140B2 (en) 2019-10-22
JPWO2011096070A1 (ja) 2013-06-10
CN102282716A (zh) 2011-12-14
CN102282716B (zh) 2014-07-23
KR20110114573A (ko) 2011-10-19
KR101321201B1 (ko) 2013-10-23
JP5273159B2 (ja) 2013-08-28
US20110217590A1 (en) 2011-09-08
US20150079478A1 (en) 2015-03-19
US20180097254A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP5273159B2 (ja) 非水電解質二次電池用電極体、及び、非水電解質二次電池
US11437683B2 (en) Battery cell of venting structure using taping
EP2293367B1 (en) Rechargeable secondary battery having improved safety against puncture and collapse
US10490795B2 (en) Electricity storage device
JP6788107B2 (ja) 電池セルのための電極ユニットの製造方法、及び、電極ユニット
US9887404B2 (en) Secondary battery
JP6863710B2 (ja) 二次電池
JP6137556B2 (ja) 非水電解液二次電池およびその製造方法
US9997768B2 (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
WO2016113863A1 (ja) 非水電解質電池及び電池パック
KR20130105578A (ko) 절연물질이 코팅된 파우치형 2차전지
JP2008097991A (ja) 蓄電デバイス
JP2019053862A (ja) 積層電極体及び蓄電素子
CN113287222B (zh) 二次电池
JP5119652B2 (ja) 双極型電池の製造方法
JP2012204179A (ja) 非水電解液二次電池
JP6454504B2 (ja) 蓄電デバイス及び積層化蓄電デバイス
JP2004319210A (ja) バイポーラ電池、バイポーラ電池の製造方法、組電池および車両
JP2014203885A (ja) 蓄電装置の封止構造および電気二重層キャパシタ
KR101546002B1 (ko) 전기화학 에너지 저장 장치
JP2008244378A (ja) 蓄電デバイス
JP2011222909A (ja) リチウムイオンキャパシタ、蓄電デバイス、及びその製法方法
JP6681017B2 (ja) 電極体を有する二次電池
JP7249991B2 (ja) 二次電池
JP2004158306A (ja) バイポーラ電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004494.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010543341

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117016369

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845206

Country of ref document: EP

Kind code of ref document: A1