WO2016113863A1 - 非水電解質電池及び電池パック - Google Patents

非水電解質電池及び電池パック Download PDF

Info

Publication number
WO2016113863A1
WO2016113863A1 PCT/JP2015/050795 JP2015050795W WO2016113863A1 WO 2016113863 A1 WO2016113863 A1 WO 2016113863A1 JP 2015050795 W JP2015050795 W JP 2015050795W WO 2016113863 A1 WO2016113863 A1 WO 2016113863A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
battery
negative electrode
electrode
bipolar
Prior art date
Application number
PCT/JP2015/050795
Other languages
English (en)
French (fr)
Inventor
一臣 吉間
康宏 原田
高見 則雄
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2015/050795 priority Critical patent/WO2016113863A1/ja
Priority to EP15877816.7A priority patent/EP3246984A4/en
Priority to CN201580041406.7A priority patent/CN106663839B/zh
Priority to JP2016510881A priority patent/JP6246901B2/ja
Priority to KR1020177004997A priority patent/KR20170032456A/ko
Publication of WO2016113863A1 publication Critical patent/WO2016113863A1/ja
Priority to US15/420,387 priority patent/US10305146B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/029Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments of the present invention relate to a nonaqueous electrolyte battery and a battery pack.
  • Non-aqueous electrolyte batteries such as lithium ion secondary batteries have been actively conducted as high energy density batteries.
  • Non-aqueous electrolyte batteries are expected as a power source for uninterruptible power supplies of hybrid vehicles, electric vehicles, and mobile phone base stations.
  • the voltage obtained from the unit cell is as low as about 3.7V. For this reason, in order to obtain a high output, it is necessary to extract a large current from the large unit cell, so that there is a problem that the entire apparatus is enlarged.
  • Bipolar batteries have a positive electrode active material layer formed on one plate surface of a current collector, and a plurality of layers stacked in series with a bipolar electrode and an electrolyte layer forming a negative electrode active material layer on the other plate surface It is a battery of the structure. Since this bipolar battery is stacked in series inside the unit cell, a high voltage can be obtained even in the unit cell. Therefore, when obtaining a high output, an output can be obtained with a high voltage constant current, and furthermore, the electric resistance of the battery connection portion can be greatly reduced.
  • a structure using a liquid electrolyte is used.
  • the structure using a liquid electrolyte of a lithium ion secondary battery cannot be applied to the bipolar battery. That is, the structure of the bipolar battery needs to have a structure in which the electrodes are made independent so that a short circuit (liquid junction) due to ion conduction does not occur when the electrolytes existing between the electrode layers touch each other.
  • bipolar batteries using polymer solid electrolytes that do not contain liquid electrolytes have been proposed.
  • this method since the liquid electrolyte is not included in the battery, the possibility of a short circuit (liquid junction) due to ion conduction between the electrode layers is reduced.
  • the ionic conductivity of a solid electrolyte is as low as about 1/10 to 1/100 of that of a liquid electrolyte. For this reason, since the problem that the output density of a battery becomes low arises, it has not been put to practical use.
  • the gel electrolyte is a gel electrolyte in which a polymer such as polyethylene oxide (PEO) or polyvinylidene fluoride (PVdF) is impregnated with an electrolytic solution.
  • PEO polyethylene oxide
  • PVdF polyvinylidene fluoride
  • the challenge remains to increase the size (high energy density) of bipolar batteries.
  • a method of increasing the energy density of a bipolar battery a method of increasing the electrode area of the positive and negative electrodes, a method of connecting small-area bipolar unit cells in parallel, and the like can be considered.
  • a lithium ion secondary battery having a conventional electrode structure positive and negative electrodes and a separator are wound in a spiral shape without a gap, and the battery exterior is filled with high density to achieve high energy density.
  • the positive electrode and the negative electrode are integrally formed because of the structure thereof, and thus the counter electrodes come into contact with each other by spiral winding. Therefore, there is a problem that a short circuit occurs unless an insulating layer such as a separator or a polymer is sandwiched between the bipolar electrode layers.
  • a bipolar battery in which a positive electrode active material layer is formed on one plate surface of a current collector and a negative electrode active material is formed on the other plate surface. It is an object to provide a nonaqueous electrolyte battery and a battery pack.
  • the non-aqueous electrolyte battery includes a bipolar electrode and a non-aqueous electrolyte.
  • the bipolar electrode includes a current collector, a positive electrode active material layer formed on one surface of the current collector, and a negative electrode active material layer formed on the other surface of the current collector.
  • the bipolar electrode is divided into a plurality of predetermined lengths in one direction, and the portions between the divided portions are sequentially folded and folded one after another.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of the nonaqueous electrolyte battery according to the first embodiment.
  • FIG. 2 is a perspective view showing a schematic configuration of the bipolar electrode of the nonaqueous electrolyte battery according to the first embodiment.
  • FIG. 3 is a longitudinal sectional view showing a schematic configuration of the bipolar electrode according to the first embodiment.
  • FIG. 4 is a longitudinal sectional view showing a schematic configuration of the electrode laminate of Example 2 of the bipolar electrode.
  • FIG. 5 is an enlarged cross-sectional view of a portion A in FIG.
  • FIG. 6 is an exploded perspective view showing a schematic configuration of the battery pack of the nonaqueous electrolyte battery according to the first embodiment.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration of the nonaqueous electrolyte battery according to the first embodiment.
  • FIG. 2 is a perspective view showing a schematic configuration of the bipolar electrode of the nonaqueous electrolyte battery according to the
  • FIG. 7 is a block diagram showing an electric circuit of the battery pack of FIG.
  • FIG. 8 is a side view of a main part showing a schematic configuration of a modification of the nonaqueous electrolyte battery according to the first embodiment.
  • FIG. 9 is a schematic configuration diagram illustrating an attached state of a current collecting tab of the nonaqueous electrolyte battery according to the first embodiment.
  • FIG. 10 is a schematic configuration diagram illustrating a modified example of the attached state of the current collecting tab of the nonaqueous electrolyte battery according to the first embodiment.
  • FIG. 11 is a longitudinal sectional view showing a schematic configuration of the nonaqueous electrolyte battery of FIG. FIG.
  • FIG. 12 is a diagram showing a resistance test result of the current collector in the nonaqueous electrolyte battery of FIGS. 9 and 10.
  • 13A is a longitudinal sectional view showing a schematic configuration of a double-sided positive electrode of Comparative Example 1.
  • FIG. 13B is a longitudinal sectional view showing a schematic configuration of a double-sided negative electrode of Comparative Example 1.
  • FIG. 13C is a longitudinal cross-sectional view illustrating a schematic configuration of the stacked battery of Comparative Example 1.
  • FIG. 1 is a schematic cross-sectional view of an example nonaqueous electrolyte battery 60 according to the first embodiment.
  • a nonaqueous electrolyte battery 60 shown in FIG. 1 includes a substantially box-shaped exterior member 61 and a zigzag-shaped bipolar electrode 11 housed in the exterior member 61.
  • the exterior member 61 is made of, for example, a laminate film in which a metal layer is interposed between two resin films.
  • FIG. 2 is a perspective view showing a schematic configuration of the bipolar electrode 11.
  • FIG. 3 shows the basic structure of the electrode body 2 of the bipolar electrode 1.
  • the electrode body 2 of the bipolar electrode 1 includes a current collector 3, a positive electrode active material layer 4 formed on one surface of the current collector 3, and a negative electrode formed on the other surface of the current collector 3. And an active material layer 5.
  • Aluminum was used as the material for the current collector 3, and the current collector 3 was formed into a square having a side of, for example, 5 cm.
  • Lithium manganese phosphate (hereinafter, LMP) was used for the positive electrode active material layer 4
  • lithium titanate (hereinafter, LTO) was used for the negative electrode active material layer 5.
  • the positive electrode active material layer 4 can occlude and release lithium.
  • the negative electrode active material layer 5 has a reaction potential in the vicinity of 1.5V.
  • LMP or LTO, a conductive additive, and a binder were mixed with 5 wt% carbon and 10 wt% polyvinylidene fluoride based on the total weight of the electrode body 2.
  • the bipolar electrode 1 according to Example 1 was produced by molding these mixtures.
  • Example 2 As shown in FIG. 4, the electrode body 2 of the bipolar electrode 1 described in Example 1 is used to form a laminated body 2X of the electrode body 2 laminated in three layers (electrode bodies 2A to 2C). There is an electrolyte layer 7 between the electrode bodies 2A to 2C of the laminate 2X so that the electrode bodies 2A to 2C do not touch each other. Further, in FIG. 4, a negative electrode member 2 t 1 is stacked via an electrolyte layer 7 on the upper side of the electrode body 2 A at the uppermost position. In FIG. 4, a positive electrode member 2 t 2 is laminated via an electrolyte layer 7 below the electrode body 2 C at the lowest position.
  • Example 3 One side (long side) of the current collector 3 was formed to 45 cm, for example, and the other side (short side) was formed to 5 cm, for example.
  • a bipolar electrode 1 was produced in the same manner as in Example 1 except that the obtained rectangular plate-shaped current collector 3 was used. That is, the positive electrode active material layer 4 is formed on one plate surface of the rectangular plate-shaped current collector 3, and the negative electrode active material layer 5 is formed on the other plate surface.
  • Example 4 A laminated body 2X of the electrode body 2 in which the electrode body 2 of the bipolar electrode 1 described in Example 3 is laminated in three layers (electrode bodies 2A to 2C), a negative electrode member 2t1, and a positive electrode member 2t2 are integrally laminated. A rectangular plate-shaped electrode laminate 6 is formed. And the bipolar battery of Example 4 was obtained by producing similarly to Example 2. Further, the rectangular plate-like electrode laminate 6 was folded in a zigzag shape and overlapped to obtain a zigzag bipolar electrode 11 (see FIG. 2) according to Example 4. At this time, as shown in FIG.
  • the electrode laminate 6 is divided into a plurality of plates with a predetermined length in one direction, and the sections 8 are sequentially bent alternately and folded in a zigzag manner. It is piled up with.
  • the bipolar electrode 11 is formed by folding each segmented portion 8 so as to be alternately folded at intervals of 5 cm. Note that a folded portion between adjacent divided portions 8 is referred to as a folded portion 12.
  • Example 5 (Modification of the first embodiment)
  • the length from the bottom in FIG. 8 to the folded portion 12 of each divided portion 8 is 5 cm, 6 cm, 5 cm, 4 cm, 5 cm, 6 cm, 5 cm, and 5 cm.
  • a bipolar electrode 11 shown in FIG. 8 was produced in the same manner as in Example 4 except that the sheets were folded in order. Accordingly, as shown in FIG. 8, when the bipolar electrode 11 is zigzag folded, folded portions 12 are alternately formed at the left and right ends of the divided portion 8.
  • the center point position O of the folded portion 12 on one end side of the divided portion 8 is bent in a state where adjacent portions with respect to the overlapping direction of the folded portion 12 are alternately shifted in a direction orthogonal to the overlapping direction.
  • one positive electrode current collecting tab 13a is formed in one of the folded portions 12 on one end side.
  • One of the folded portions 12 on the other end side is provided with one negative current collecting tab 13b.
  • the bipolar electrode 11 having the structure of Example 5 is housed in an exterior member (case) 61.
  • An insulating member 62 such as a nonwoven fabric or a resin material is disposed on the inner peripheral surface of the exterior member 61.
  • the positive current collecting tab 13a is connected to the current collector 3 of the positive electrode member 2t2, and the negative current collecting tab 13b is connected to the current collector 3 of the negative electrode member 2t1. It is connected.
  • the negative electrode current collecting tab 13b and the positive electrode current collecting tab 13a are extended to the outside from an opening (not shown) of the exterior member 61, and the negative electrode terminal 63 (see FIG. 6) and the positive electrode terminal 64 (see FIG. 6)).
  • the bipolar electrode 11 and the non-aqueous electrolyte are completely sealed by heat-sealing the opening of the exterior member 61 with the current collecting tab 13b for the negative electrode and the current collecting tab 13a for the positive electrode interposed therebetween.
  • FIG. 6 is an exploded perspective view showing a schematic configuration of the battery pack 90 of the nonaqueous electrolyte battery 60 according to the first embodiment.
  • FIG. 7 is a block diagram showing an electric circuit of the battery pack 90 of FIG.
  • the battery pack 90 shown in FIGS. 6 and 7 includes a plurality of unit cells 91.
  • the unit cell 91 is the nonaqueous electrolyte battery 60 described with reference to FIG.
  • the plurality of single cells 91 are stacked such that the negative electrode terminal 63 and the positive electrode terminal 64 extending to the outside are aligned in the same direction, and are fastened with an adhesive tape 65 to constitute an assembled battery 66. These unit cells 91 are electrically connected to each other in series as shown in FIG.
  • the printed wiring board 67 is disposed to face the side surface from which the negative electrode terminal 63 and the positive electrode terminal 64 of the unit cell 91 extend.
  • a thermistor 68, a protection circuit 69, and a terminal 70 for energizing external devices are mounted on the printed wiring board 67.
  • An insulating plate (not shown) is attached to the surface of the printed wiring board 67 facing the assembled battery 66 in order to avoid unnecessary wiring and wiring of the assembled battery 66.
  • the positive electrode side lead 71 is connected to a positive electrode terminal 64 located in the lowermost layer of the assembled battery 66, and the tip thereof is inserted into the positive electrode side connector 72 of the printed wiring board 67 and electrically connected thereto.
  • the negative electrode side lead 73 is connected to the negative electrode terminal 63 located on the uppermost layer of the assembled battery 66, and the tip thereof is inserted into the negative electrode side connector 74 of the printed wiring board 67 and electrically connected thereto.
  • These connectors 72 and 74 are connected to the protection circuit 69 through wirings 75 and 76 formed on the printed wiring board 67.
  • the thermistor 68 detects the temperature of the unit cell 91, and the detection signal is transmitted to the protection circuit 69.
  • the protection circuit 69 can cut off the plus side wiring 77a and the minus side wiring 77b between the protection circuit 69 and the terminal 70 for energization to an external device under a predetermined condition.
  • An example of the predetermined condition is, for example, when the temperature detected by the thermistor 68 is equal to or higher than a predetermined temperature.
  • Another example of the predetermined condition is when, for example, overcharge, overdischarge, overcurrent, or the like of the unit cell 91 is detected. This detection of overcharge or the like is performed on each individual cell 91 or the entire assembled battery 66.
  • the battery voltage When detecting the individual cells 91, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each unit cell 91. In the case of the battery pack 90 of FIGS. 6 and 7, a wiring 78 for voltage detection is connected to each unit cell 91. A detection signal is transmitted to the protection circuit 69 through these wirings 78.
  • Protective sheets 79 made of rubber or resin are disposed on the three side surfaces of the assembled battery 66 excluding the side surfaces from which the positive electrode terminal 64 and the negative electrode terminal 63 protrude.
  • the assembled battery 66 is stored in the storage container 80 together with each protective sheet 79 and the printed wiring board 67. That is, the protective sheet 79 is disposed on each of the inner side surface in the long side direction and the inner side surface in the short side direction of the storage container 80, and the printed wiring board 67 is disposed on the inner side surface on the opposite side in the short side direction.
  • the assembled battery 66 is located in a space surrounded by the protective sheet 79 and the printed wiring board 67.
  • the lid 81 is attached to the upper surface of the storage container 80.
  • a heat shrink tape may be used instead of the adhesive tape 65 for fixing the assembled battery 66.
  • the protective sheets 79 are arranged on both side surfaces of the assembled battery 66, the heat shrinkable tube is circulated, and then the heat shrinkable tube is thermally contracted to bind the assembled battery 66.
  • FIGS. 6 and 7 show the configuration in which the unit cells 91 are connected in series, but in order to increase the battery capacity, they may be connected in parallel.
  • the assembled battery pack 90 can also be connected in series and / or in parallel.
  • the mode of the battery pack 90 is appropriately changed depending on the use.
  • a use of the battery pack 90 one in which cycle characteristics with a large current characteristic are desired is preferable.
  • Specific applications include power supplies for digital cameras, and in-vehicle applications such as two-wheel to four-wheel hybrid electric vehicles, two-wheel to four-wheel electric vehicles, and assist bicycles.
  • the battery pack 90 is particularly suitable for in-vehicle use.
  • the electrode group can hold a non-aqueous electrolyte.
  • the nonaqueous electrolyte can also be stored in the main part of the exterior member 61 together with the electrode group.
  • the nonaqueous electrolyte battery 60 according to the first embodiment prevents leakage of the nonaqueous electrolyte through the opening provided in the lead holding portion, that is, leakage of the nonaqueous electrolyte from the inside of the battery to the outside of the battery. You can also.
  • the electrode lead whose heat is sealed at the periphery of the opening provided in the lead sandwiching portion exhibits high sealing performance. Therefore, leakage of the nonaqueous electrolyte from the inside of the battery to the outside of the battery can be further prevented.
  • the electrode group can include a positive electrode and a negative electrode. Further, the electrode group can include a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode can include a positive electrode current collector and a positive electrode material layer formed on the positive electrode current collector.
  • the positive electrode material layer may be formed on both sides of the positive electrode current collector, or may be formed only on one side. Further, the positive electrode current collector may include a positive electrode material layer unsupported portion in which the positive electrode material layer is not formed on any surface.
  • the positive electrode material layer can contain a positive electrode active material.
  • the positive electrode material layer can further include a conductive agent and a binder.
  • the conductive agent can be blended in order to improve current collection performance and suppress contact resistance between the positive electrode active material and the positive electrode current collector.
  • the binder can be blended to fill a gap between the dispersed positive electrode active materials and bind the positive electrode active material and the positive electrode current collector.
  • the positive electrode can be connected to the electrode lead, that is, the positive electrode lead, for example, via the positive electrode material layer unsupported portion of the positive electrode current collector.
  • the positive electrode and the positive electrode lead can be connected by, for example, welding.
  • the negative electrode can include a negative electrode current collector and a negative electrode material layer formed on the negative electrode current collector.
  • the negative electrode material layer may be formed on both sides of the negative electrode current collector, or may be formed only on one side.
  • the negative electrode current collector may include a negative electrode material layer unsupported portion in which the negative electrode material layer is not formed on any surface.
  • the negative electrode material layer can contain a negative electrode active material.
  • the negative electrode material layer can further include a conductive agent and a binder.
  • the conductive agent can be blended in order to enhance the current collecting performance and suppress the contact resistance between the negative electrode active material and the negative electrode current collector.
  • a binder can be mix
  • the negative electrode can be connected to the electrode lead, that is, the negative electrode lead, for example, via the negative electrode material layer unsupported portion of the negative electrode current collector.
  • the connection between the negative electrode and the negative electrode lead can be performed by welding, for example.
  • Negative electrode The negative electrode is produced, for example, by applying a negative electrode agent paste obtained by dispersing a negative electrode active material, a conductive agent and a binder in a suitable solvent to one or both sides of a negative electrode current collector and drying the paste. be able to. After drying, the negative electrode paste can be pressed.
  • Examples of the negative electrode active material include carbonaceous materials, metal oxides, metal sulfides, metal nitrides, alloys, and light metals that can occlude and release lithium ions.
  • Examples of the carbonaceous material that can occlude and release lithium ions include coke, carbon fiber, pyrolytic vapor phase carbonaceous material, graphite, resin fired body, mesophase pitch-based carbon fiber, or mesophase spherical carbon fired body. Can do. Among them, it is preferable to use mesophase pitch-based carbon fiber or mesophase spherical carbon graphitized at 2500 ° C. or higher because the electrode capacity can be increased.
  • the metal oxide examples include titanium-containing metal composite oxides, for example, tin-based oxides such as SnB 0.4 P 0.6 O 3.1 and SnSiO 3, and silicon-based oxides such as SiO, such as WO 3. And tungsten-based oxides.
  • titanium-containing metal composite oxides for example, tin-based oxides such as SnB 0.4 P 0.6 O 3.1 and SnSiO 3, and silicon-based oxides such as SiO, such as WO 3.
  • tungsten-based oxides examples include titanium-containing metal composite oxides, for example, tin-based oxides such as SnB 0.4 P 0.6 O 3.1 and SnSiO 3, and silicon-based oxides such as SiO, such as WO 3. And tungsten-based oxides.
  • titanium-containing metal composite oxides for example, tin-based oxides such as SnB 0.4 P 0.6 O 3.1 and SnSiO 3
  • silicon-based oxides such as SiO, such as WO 3.
  • titanium-containing metal composite oxides examples include titanium-based oxides that do not contain lithium during lithium oxide synthesis, lithium titanium oxides, and some of the constituent elements of lithium titanium oxides such as Nb, Mo, W, P, A lithium titanium composite oxide substituted with at least one kind of different element selected from the group consisting of V, Sn, Cu, Ni and Fe can be given.
  • lithium titanium oxide examples include lithium titanate having a spinel structure (for example, Li 4 + x Ti 5 O 12 (x can be changed within a range of 0 ⁇ x ⁇ 3 by charge / discharge)), bronze Titanium oxide having a structure (B) or anatase structure (for example, Li x TiO 2 (0 ⁇ x ⁇ 1), composition before charging is TiO 2 ), ramsteride type lithium titanate (for example, Li 2 + y Ti 3 O 7 ( y can be changed within a range of 0 ⁇ y ⁇ 3 by charging / discharging), and niobium titanium oxide (for example, Li x NbaTiO 7 (0 ⁇ x, more preferably 0 ⁇ x ⁇ 1) 1 ⁇ a ⁇ 4)).
  • a spinel structure for example, Li 4 + x Ti 5 O 12 (x can be changed within a range of 0 ⁇ x ⁇ 3 by charge / discharge)
  • titanium-based oxide examples include metal composite oxides containing TiO 2 , Ti, and at least one element selected from the group consisting of P, V, Sn, Cu, Ni, Co, and Fe.
  • TiO 2 is preferably anatase type and low crystalline having a heat treatment temperature of 300 to 500 ° C.
  • the metal composite oxide containing Ti and at least one element selected from the group consisting of P, V, Sn, Cu, Ni, Co, and Fe include TiO 2 —P 2 O 5 , TiO 2.
  • the metal composite oxide preferably has a microstructure in which a crystal phase and an amorphous phase coexist or exist alone. With such a microstructure, the cycle performance can be greatly improved.
  • a lithium titanium oxide, a metal composite oxide containing at least one element selected from the group consisting of Ti and P, V, Sn, Cu, Ni, Co, and Fe is preferable.
  • metal sulfide examples include lithium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 , Li x FeS 2 (where 0 ⁇ x ⁇ 1)).
  • metal sulfide examples include lithium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 , Li x FeS 2 (where 0 ⁇ x ⁇ 1)).
  • metal sulfide examples include lithium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 , Li x FeS 2 (where 0 ⁇ x ⁇ 1)).
  • lithium cobalt nitride Li x Co y N (where 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 0.5)
  • lithium titanate having a spinel structure is desirable to use as the negative electrode active material.
  • a carbon material can be used as the conductive agent.
  • the carbon material include acetylene black, carbon black, coke, carbon fiber, and graphite.
  • binder for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), carboxymethylcellulose (CMC), or the like is used.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene copolymer
  • SBR styrene-butadiene rubber
  • CMC carboxymethylcellulose
  • the negative electrode current collector various metal foils and the like can be used depending on the negative electrode potential.
  • examples thereof include aluminum foil, aluminum alloy foil, stainless steel foil, titanium foil, copper foil, and nickel foil.
  • the thickness of the foil at this time is preferably 8 ⁇ m or more and 25 ⁇ m or less.
  • the negative electrode potential can be nobler than 0.3 V with respect to metallic lithium, for example, when lithium titanium oxide is used as the negative electrode active material, the use of aluminum foil or aluminum alloy foil reduces the battery weight. Is preferable.
  • the average crystal grain size of the aluminum foil and the aluminum alloy foil is preferably 50 ⁇ m or less.
  • the aluminum foil or aluminum alloy foil having an average crystal particle size range of 50 ⁇ m or less is affected by many factors such as material composition, impurities, processing conditions, heat treatment history and annealing conditions, and the crystal The particle diameter (diameter) is adjusted by combining the above factors in the production process.
  • the thickness of the aluminum foil and the aluminum alloy foil is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the purity of the aluminum foil is preferably 99% or more.
  • As the aluminum alloy an alloy containing at least one element such as magnesium, zinc, or silicon is preferable.
  • the content of transition metals such as iron, copper, nickel and chromium is preferably 1% or less. In the case of in-vehicle use, it is particularly preferable to use an aluminum alloy foil.
  • the mixing ratio of the negative electrode active material, the conductive agent and the binder should be in the range of 80 to 95% by weight of the negative electrode active material, 3 to 20% by weight of the conductive agent, and 1.5 to 7% by weight of the binder. preferable.
  • Positive electrode The positive electrode is produced, for example, by applying a positive electrode agent paste obtained by dispersing a positive electrode active material, a conductive agent, and a binder in a suitable solvent to one or both sides of a positive electrode current collector and drying it. be able to. After drying, the positive electrode paste can be pressed.
  • a positive electrode agent paste obtained by dispersing a positive electrode active material, a conductive agent, and a binder in a suitable solvent to one or both sides of a positive electrode current collector and drying it. be able to. After drying, the positive electrode paste can be pressed.
  • the positive electrode active material examples include various oxides and sulfides.
  • LiMn y Co 1-y O 2 (where 0 ⁇ y ⁇ 1)
  • spinel type lithium manganese nickel composite oxide (Li x Mn 2-y Ni y O 4 (where 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ In a)
  • lithium phosphates having an olivine structure Li x FePO 4, Li x Fe 1-y Mn y PO 4, Li x MnPO 4, Li x Mn 1-y Fe y PO 4, Li x CoPO 4 (Where 0 ⁇ x ⁇ 1.2 and 0 ⁇ y ⁇ 1)
  • iron sulfate Fe 2 (SO 4 ) 3
  • vanadium oxide eg, V 2 O 5
  • examples of the positive electrode active material include conductive polymer materials such as polyaniline and polypyrrole, disulfide polymer materials, organic materials such as sulfur (S) and carbon fluoride, and inorganic materials.
  • More preferable positive electrode active materials are spinel-type manganese lithium (Li x Mn 2 O 4 (where 0 ⁇ x ⁇ 1.1)) and olivine-type lithium iron phosphate (Li x FePO 4 ) having high thermal stability.
  • olivine type lithium manganese phosphate Li x MnPO 4 (where 0 ⁇ x ⁇ 1)
  • olivine type lithium manganese iron phosphate Li x Mn 1-y Fe y PO 4 (where 0 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 0.5)).
  • acetylene black, carbon black, artificial graphite, natural graphite, conductive polymer, or the like can be used as the conductive agent.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), modified PVdF obtained by substituting at least one of hydrogen or fluorine of PVdF with another substituent, and vinylidene fluoride-6 fluoride.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • modified PVdF obtained by substituting at least one of hydrogen or fluorine of PVdF with another substituent
  • vinylidene fluoride-6 fluoride vinylidene fluoride-6 fluoride.
  • a copolymer of propylene fluoride, a terpolymer of polyvinylidene fluoride-tetrafluoroethylene-6propylene fluoride, or the like can be used.
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • Examples of the positive electrode current collector include aluminum foil, aluminum alloy foil, stainless steel foil, and titanium foil having a thickness of 8 to 25 ⁇ m.
  • the positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil.
  • the average crystal grain size of the aluminum foil or aluminum alloy foil is preferably 50 ⁇ m or less. More preferably, the average crystal grain size of the aluminum foil or aluminum alloy foil is 30 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the strength of the aluminum foil or the aluminum alloy foil can be dramatically increased, the positive electrode can be densified with a high press pressure, and the battery capacity can be increased. Can be increased.
  • Aluminum foil or aluminum alloy foil having an average crystal grain size in the range of 50 ⁇ m or less is affected by a number of factors such as material structure, impurities, processing conditions, heat treatment history, and annealing conditions, and the crystal grain size is It is adjusted by combining the above factors in the manufacturing process.
  • the thickness of the aluminum foil and the aluminum alloy foil is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the purity of the aluminum foil is preferably 99% or more.
  • As the aluminum alloy an alloy containing elements such as magnesium, zinc and silicon is preferable.
  • the content of transition metals such as iron, copper, nickel and chromium is preferably 1% or less.
  • the mixing ratio of the positive electrode active material, the conductive agent and the binder should be in the range of 80 to 95% by weight of the positive electrode active material, 3 to 20% by weight of the conductive agent, and 1.5 to 7% by weight of the binder. preferable.
  • a porous separator can be used as the separator.
  • the porous separator include a porous film containing polyethylene, polypropylene, cellulose, or polyvinylidene fluoride (PVdF), and a synthetic resin nonwoven fabric.
  • PVdF polyvinylidene fluoride
  • porous films made of polyethylene or polypropylene, or both are easy to add a shutdown function that closes the pores and significantly attenuates the charge / discharge current when the battery temperature rises. This is preferable because the property can be improved. From the viewpoint of cost reduction, it is preferable to use a cellulose separator.
  • Non-aqueous electrolytes include LiBF 4 , LiPF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Li (CF 3 SO 2 ) Examples thereof include organic electrolytes in which one or more lithium salts selected from 3 C, LiB [(OCO) 2 ] 2 and the like are dissolved in an organic solvent at a concentration in the range of 0.5 to 2 mol / L.
  • organic solvents examples include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC), and dimethoxy.
  • Chain ethers such as ethane (DME) and diethoxyethane (DEE), cyclic ethers such as tetrahydrofuran (THF) and dioxolane (DOX), ⁇ -butyrolactone (GBL), acetonitrile (AN), sulfolane (SL), etc. It is preferable to use a single solvent or a mixed solvent.
  • a room temperature molten salt (ionic melt) containing lithium ions can be used as the non-aqueous electrolyte.
  • a secondary battery having a wide operating temperature can be obtained by selecting an ionic melt composed of lithium ions, an organic cation and an anion, which is liquid at 100 ° C. or less, preferably at room temperature or less.
  • the thickness of the stainless steel member that can be used as the case is desirably 0.2 mm or less.
  • the stainless steel member is composed of a composite film material in which a metal foil made of stainless steel and a rigid organic resin film are laminated in this order on a heat-fusible resin film (thermoplastic resin film) located in the innermost layer. It is possible.
  • heat-fusible resin film for example, a polyethylene (PE) film, a polypropylene (PP) film, a polypropylene-polyethylene copolymer film, an ionomer film, an ethylene vinyl acetate (EVA) film, or the like can be used.
  • a polyethylene terephthalate (PET) film, a nylon film, etc. can be used, for example.
  • the case may be composed of a case main body having a concave portion that can be a main portion for accommodating the electrode group, and an outer portion outside the concave portion, and a lid.
  • the case main body and the lid may be an integrated member that is seamless and continuous.
  • Electrode lead As the electrode lead that can be electrically connected to the positive electrode, that is, the positive electrode lead, for example, aluminum, titanium, an alloy based on them, stainless steel, or the like can be used.
  • the negative electrode lead that can be electrically connected to the negative electrode that is, the negative electrode lead, for example, nickel, copper and alloys based on them can be used.
  • the negative electrode potential is nobler than 1 V with respect to metallic lithium, for example, when lithium titanate is used as the negative electrode active material, aluminum or an aluminum alloy can be used as the negative electrode lead material. In this case, it is preferable to use aluminum or an aluminum alloy for both the positive electrode lead and the negative electrode lead because the light weight and the electric resistance can be kept small.
  • the positive electrode lead and the negative electrode lead are not much higher than the strength of the positive electrode current collector or the negative electrode current collector connected to the positive electrode lead because stress concentration at the connection portion is reduced.
  • ultrasonic welding which is one of the preferred methods, is applied as means for connecting to the current collector, stronger welding can be easily performed when the Young's modulus of the positive electrode lead or the negative electrode lead is smaller.
  • annealed pure aluminum JIS 1000 series is preferable as a material for the positive electrode lead or the negative electrode lead.
  • the thickness of the positive electrode lead is desirably 0.1 to 1 mm, and a more preferable range is 0.2 to 0.5 mm.
  • the thickness of the negative electrode lead is desirably 0.1 to 1 mm, and a more preferable range is 0.2 to 0.5 mm.
  • the folded bipolar electrode 11 is housed in the exterior member 61.
  • the electrode body 2 of the bipolar electrode 1 is used to form a laminate 2X of the electrode body 2 laminated in three layers (electrode bodies 2A to 2C), and the laminate 2X of the electrode body 2 and the negative electrode
  • the electrode laminate 6 was formed by integrally laminating the member 2t1 and the positive electrode member 2t2. And this electrode laminated body 6 divides one plate body into a plurality of parts with a predetermined length in one direction, and sequentially folds the divided parts 8 alternately and folds them in a zigzag shape, 1, the zigzag bipolar electrode 11 shown in FIG. 2 is formed. Therefore, by folding the bipolar electrode 11 in a zigzag manner, the energy density can be improved with a small volume.
  • FIG. 8 shows a first modification of the nonaqueous electrolyte battery 60 of the first embodiment.
  • the bipolar electrode 11 is folded in a zigzag manner as shown in the fifth embodiment, the center point position O of the folded portion 12 on one side of the folded portion 12 adjacent to the overlapping direction of the folded portion 12 is The portions are bent in a state where the portions are alternately shifted in the direction orthogonal to the overlapping direction.
  • the current collection efficiency of the bipolar batteries according to Example 5 (see FIG. 9) and Example 6 (see FIG. 10) was measured. The measurement was performed by reading the resistance value when a current of 50 mA, 100 mA, and 500 mA was passed. The result is shown in FIG. In FIG. 12, the measurement value A is a measurement result when the current collecting tab is one place, and the measurement value B is a measurement result when the current collecting tab is five places. As is clear from FIG. 12, the resistance was reduced by about half by increasing the number of current collecting tabs to five compared to the case where the number of current collecting tabs was only one.
  • Example 2 the constant current charge / discharge test in Example 2 and Comparative Example 2 was performed.
  • the average operating voltage was calculated from the test results, and the obtained values are shown in Table 1.
  • the bipolar battery in which the positive electrode active material layer is formed on one plate surface of the current collector and the negative electrode active material is formed on the other plate surface is intended to increase the energy density and reduce the resistance.
  • a bipolar battery, a method of manufacturing the same, and a battery pack can be provided.

Abstract

実施の形態は、集電体の一方の板面に正極活物質層、同他方の板面に負極活物質をそれぞれ形成するバイポーラ型電池の高エネルギー密度化と低抵抗化を図ることができる非水電解質電池及び電池パックを提供することが課題である。 非水電解質電池60は、バイポーラ電極11と、非水電解質層7と、を具備する。バイポーラ電極11は、集電体3と、集電体3の一面に形成された正極活物質層4と、集電体3の他面に形成された負極活物質層5とを有する。バイポーラ電極11は、一方向に所定の長さで複数に区分けし、各区分け部分8間を順次、互い違いにそれぞれ折り曲げて折り畳んで重ねてある。

Description

非水電解質電池及び電池パック
 本発明の実施形態は、非水電解質電池及び電池パックに関する。
 近年、高エネルギー密度電池として、リチウムイオン二次電池のような非水電解質電池の研究開発が盛んに進められている。非水電解質電池は、ハイブリッド自動車や、電気自動車、携帯電話基地局の無停電電源用などの電源として期待されている。しかしながら、リチウムイオン二次電池の単電池を大型化しても単電池から得られる電圧は3.7V程度と低電圧である。そのため、高出力を得るためには、大型化した単電池から大電流を取り出す必要があるので、装置全体が大型化する問題がある。
 これらの問題を解決する電池として、バイポーラ型電池が提案されている。バイポーラ型電池は、集電体の一方の板面に正極活物質層を形成するとともに、同他方の板面に負極活物質層を形成するバイポーラ電極と電解質層とを挟んで複数枚直列に積層した構造の電池である。このバイポーラ型電池では、単電池内部で直列に積層するため、単電池においても高電圧を得ることができる。よって、高出力を得る際にも高電圧定電流で出力が得られ、さらには、電池接続部の電気抵抗を大幅に低減できる。
 リチウムイオン二次電池では、液状の電解質を用いた構造が用いられている。しかしながら、バイポーラ型電池は単電池中で正極と負極が繰り返されるため、リチウムイオン二次電池の液状の電解質を用いた構造をバイポーラ型電池に適応することはできない。すなわち、バイポーラ型電池の構造上、電極層間に存在する電解液が互いに触れることによりイオン伝導による短絡(液絡)が起きないように、各電極間を独立させた構造をとる必要がある。
 これまでに、液状の電解質を含まない高分子固体電解質を用いたバイポーラ型電池が提案されている。この方法を用いると電池内に液状の電解質を含まないことから、電極層間のイオン伝導による短絡(液絡)の可能性が低くなる。しかし、一般的に固体電解質のイオン伝導度は液状の電解質に比べて1/10から1/100程度と非常に低い。このため、電池の出力密度が低くなってしまう問題が生じるため、実用化にはいたっていない。
 これらの事情を鑑みて、液状の電解質を半固形化したゲル電解質を用いたバイポーラ型電池が提案されている。ゲル電解質は、ポリエチレンオキサイド(PEO)、ポリフッ化ビニリデン(PVdF)などの高分子に電解液を染み込ませたゲル状の電解質である。このゲル電解質は、イオン伝導度が高く、電池の出力密度も十分に得られることが期待される。
特表2012-521624号公報 特表2012-516542号公報
 バイポーラ型電池を大型化(高エネルギー密度化)するためには課題が残っている。バイポーラ型電池を高エネルギー密度化する方法として、正負極の電極面積を大きくする方法や、小面積のバイポーラ型単電池を並列に接続する方法などが考えられる。従来の電極構造を持つリチウムイオン二次電池は、正負極の電極とセパレータを隙間なく渦巻き状に巻き付けて、電池外装に高密度で充填することで高エネルギー密度化を図っている。しかし、バイポーラ型電池においては、その構造上、正極及び負極が一体となって形成されていることから、渦巻き状の巻き付けにより対極が互いに接触することになる。このため、バイポーラ電極層間にセパレータやポリマーなどの絶縁層を挟むなどしない限りは短絡してしまうという問題がある。
 しかしながら、この場合はセパレータやポリマーを挟むことにより電極体の厚みが増えて電極の充填率が下がる。そのため、この方法を用いて高エネルギー密度化することは従来困難である。また、渦巻き状の巻き付けによって電極面積を拡大した場合においても、電池の電流取り出し端子部に接続するための電極集電タブを複数個所から取り出すことが困難である。このことから、電極面積が大きくなる程に電池の内部抵抗が増大することがバイポーラ型電池における高出力化の妨げとなっている。したがって、バイポーラ型電池におけるこれらの問題を解決し、高出入力と高エネルギー密度を兼ね備えるための技術が必要とされている。
 本実施の形態は、集電体の一方の板面に正極活物質層、同他方の板面に負極活物質をそれぞれ形成するバイポーラ型電池の高エネルギー密度化と低抵抗化を図ることができる非水電解質電池及び電池パックを提供することを課題とする。
 実施形態によれば、非水電解質電池は、バイポーラ電極と、非水電解質と、を具備する。バイポーラ電極は、集電体と、前記集電体の一面に形成された正極活物質層と、前記集電体の他面に形成された負極活物質層とを有する。前記バイポーラ電極は、一方向に所定の長さで複数に区分けし、各区分け部分間を順次、互い違いにそれぞれ折り曲げて折り畳んで重ねてある。
図1は、第1の実施の形態の非水電解質電池の概略構成を示す縦断面図である。 図2は、第1の実施の形態の非水電解質電池のバイポーラ電極の概略構成を示す斜視図である。 図3は、バイポーラ電極の実施例1の概略構成を示す縦断面図である。 図4は、バイポーラ電極の実施例2の電極積層体の概略構成を示す縦断面図である。 図5は、図1のA部の拡大断面図である。 図6は、第1の実施の形態の非水電解質電池の電池パックの概略構成を示す分解斜視図である。 図7は、図6の電池パックの電気回路を示すブロック図である。 図8は、第1の実施の形態の非水電解質電池の変形例の概略構成を示す要部の側面図である。 図9は、第1の実施の形態の非水電解質電池の集電タブの取り付け状態を示す概略構成図である。 図10は、第1の実施の形態の非水電解質電池の集電タブの取り付け状態の変形例を示す概略構成図である。 図11は、図10の非水電解質電池の概略構成を示す縦断面図である。 図12は、図9および図10の非水電解質電池における集電体の抵抗試験結果を示す図である。 図13Aは、比較例1の両面正極の電極の概略構成を示す縦断面図である。 図13Bは、比較例1の両面負極の電極の概略構成を示す縦断面図である。 図13Cは、比較例1の積層型電池の概略構成を示す縦断面図である。
 以下に、第1の実施形態に係る非水電解質電池及び電池パックについて図面を参照して説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。
 (第1実施形態) 
 図1乃至図7は、第1の実施の形態を示す。図1は、第1の実施形態に係る一例の非水電解質電池60の概略断面図である。図1に示す非水電解質電池60は、ほぼ箱形の外装部材61と、この外装部材61内に収納されたつづら折り状のバイポーラ電極11とを有する。外装部材61は、例えば2枚の樹脂フィルムの間に金属層を介在したラミネートフィルムからなる。図2は、バイポーラ電極11の概略構成を示す斜視図である。
 [実施例1] 
 図3は、バイポーラ電極1の電極本体2の基本構造を示す。図3に示すようにバイポーラ電極1の電極本体2は、集電体3と、集電体3の一面に形成された正極活物質層4と、集電体3の他面に形成された負極活物質層5とを有する。集電体3の素材にはアルミニウムを用い、1辺が例えば5cmの正方形に成形した。正極活物質層4にはリン酸マンガンリチウム(以下LMP)、負極活物質層5にはチタン酸リチウム(以下LTO)を用いた。正極活物質層4は、リチウムを吸蔵及び放出可能である。負極活物質層5は、1.5V付近に反応電位が存在する。LMPもしくはLTOと導電助剤、粘結材をそれぞれ電極本体2の総重量に対してカーボンを5wt%、ポリフッ化ビニリデンを10wt%混合した。これらの混合物を成形することで、実施例1に係るバイポーラ電極1を作製した。
 [実施例2] 
 図4に示すように実施例1に記載のバイポーラ電極1の電極本体2を用いて3層(電極本体2A~2C)に積層した電極本体2の積層体2Xを形成する。この積層体2Xの各電極本体2A~2C間にはそれぞれ電解質層7があり、電極本体2A~2C同士が触れないようにする。さらに、図4中で、最上段の位置の電極本体2Aの上側には負極部材2t1が電解質層7を介して積層されている。図4中で、最下段の位置の電極本体2Cの下側には正極部材2t2が電解質層7を介して積層されている。ここで、負極部材2t1は、集電体3の下面側に負極活物質層5のみが形成されている。正極部材2t2は、集電体3の上面側に正極活物質層4のみが形成されている。これらの電極本体2の積層体2Xと、負極部材2t1と、正極部材2t2とが一体的に積層されて電極積層体6を形成し、バイポーラ電池を作製した。これにより、実施例2に係るバイポーラ電池を得た。
 [実施例3] 
 集電体3の1辺(長辺)を例えば45cmとし、もう1辺(短辺)を例えば5cmに成形した。得られた長方形の板状の集電体3を用いた以外は、実施例1と同様にバイポーラ電極1を作製した。すなわち、長方形の板状の集電体3の一方の板面に正極活物質層4を形成するとともに、同他方の板面に負極活物質層5を形成している。
 [実施例4] 
 実施例3に記載のバイポーラ電極1の電極本体2を3層(電極本体2A~2C)に積層した電極本体2の積層体2Xと、負極部材2t1と、正極部材2t2とが一体的に積層された長方形の板状の電極積層体6を形成する。そして、実施例2と同様に作製することで、実施例4のバイポーラ電池を得た。さらに、この長方形の板状の電極積層体6をつづら折り状に折り畳んで重ねて実施例4に係るつづら折りバイポーラ電極11(図2参照)を得た。このとき、図2に示すように電極積層体6は、1つの板体を一方向に所定の長さで複数に区分けし、各区分け部分8間を順次、互い違いにそれぞれ折り曲げてつづら折り状に折り畳んで重ねてある。各区分け部分8は、例えば、5cm毎に順次、互い違いにそれぞれ折り返すようにつづら折りにすることでバイポーラ電極11が形成されている。なお、隣接する区分け部分8間の折り返し部分を折り返し部12と称する。
 [実施例5](第1の実施形態の変形例) 
 実施例4に記載のつづら折りバイポーラ電極11を作製するとき、各区分け部分8の折り返し部12までの長さを図8中の下から5cm、6cm、5cm、4cm、5cm、6cm、5cm、5cmの順につづら折りにした以外は、実施例4と同様に図8に示すバイポーラ電極11を作製した。これにより、図8に示すようにバイポーラ電極11は、つづら折りにするとき、区分け部分8の左右の両端に交互に折り返し部12が形成される。そして、区分け部分8の一端側の折り返し部12の中心点位置Oは、折り返し部12の重ね合わせ方向に対して隣接する部分が重ね合わせ方向と直交する方向に交互にずらした状態で折り曲げてある。ここでは、図9に示すように一端側の折り返し部12の1つに1つの正極用の集電用タブ13aが形成されている。他端側の折り返し部12の1つに1つの負極用の集電用タブ13bとが設けられている。
 [実施例6] 
 実施例5に記載のつづら折りバイポーラ電極11において、図10に示すように各折り返し地点に集電用タブを正負極の各5ヶ所、合計10ヶ所に溶接して設置した。図10中で、14aは、正極の集電用タブ、14bは、負極の集電用タブである。これ以外は、実施例5と同様につづら折りバイポーラ電極11を作製した。
 図1に示すように第1の実施形態に係る非水電解質電池60では、上記実施例5の構造のバイポーラ電極11が外装部材(ケース)61内に収納されている。外装部材61の内周面には、例えば不織布や、樹脂材料などの絶縁部材62が配設されている。
 バイポーラ電極11の外周端近傍において、正極用の集電用タブ13aは、正極部材2t2の集電体3に接続され、負極用の集電用タブ13bは、負極部材2t1の集電体3に接続されている。これらの負極用の集電用タブ13b及び正極用の集電用タブ13aは、外装部材61の図示しない開口部から外部に延出され、負極端子63(図6参照)及び正極端子64(図6参照)にそれぞれ接続されている。外装部材61の開口部を負極用の集電用タブ13b及び正極用の集電用タブ13aを挟んでヒートシールすることによりバイポーラ電極11及び非水電解質を完全密封している。
 また、図6は、第1の実施の形態の非水電解質電池60の電池パック90の概略構成を示す分解斜視図である。図7は、図6の電池パック90の電気回路を示すブロック図である。図6及び図7に示す電池パック90は、複数個の単電池91を備える。単電池91は、図1を参照しながら説明した非水電解質電池60である。
 複数の単電池91は、外部に延出した負極端子63及び正極端子64が同じ向きに揃えられるように積層され、粘着テープ65で締結することにより組電池66を構成している。これらの単電池91は、図7に示すように互いに電気的に直列に接続されている。
 プリント配線基板67は、単電池91の負極端子63及び正極端子64が延出する側面に対向して配置されている。プリント配線基板67には、図7に示すようにサーミスタ68、保護回路69及び外部機器への通電用端子70が搭載されている。なお、組電池66と対向するプリント配線基板67の面には組電池66の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
 正極側リード71は、組電池66の最下層に位置する正極端子64に接続され、その先端はプリント配線基板67の正極側コネクタ72に挿入されて電気的に接続されている。負極側リード73は、組電池66の最上層に位置する負極端子63に接続され、その先端はプリント配線基板67の負極側コネクタ74に挿入されて電気的に接続されている。これらのコネクタ72及び74は、プリント配線基板67に形成された配線75及び76を通して保護回路69に接続されている。
 サーミスタ68は、単電池91の温度を検出し、その検出信号は保護回路69に送信される。保護回路69は、所定の条件で保護回路69と外部機器への通電用端子70との間のプラス側配線77a及びマイナス側配線77bを遮断できる。所定の条件の一例とは、例えば、サーミスタ68の検出温度が所定温度以上になったときである。また、所定の条件の他の例とは、例えば、単電池91の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池91もしくは組電池66全体について行われる。
 個々の単電池91を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池91中に参照極として用いるリチウム電極が挿入される。図6及び図7の電池パック90の場合、単電池91それぞれに電圧検出のための配線78が接続されている。これら配線78を通して検出信号が保護回路69に送信される。
 正極端子64及び負極端子63が突出する側面を除く組電池66の三側面には、ゴムもしくは樹脂からなる保護シート79がそれぞれ配置されている。
 組電池66は、各保護シート79及びプリント配線基板67と共に収納容器80内に収納される。すなわち、収納容器80の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート79が配置され、短辺方向の反対側の内側面にプリント配線基板67が配置される。組電池66は、保護シート79及びプリント配線基板67で囲まれた空間内に位置する。蓋81は、収納容器80の上面に取り付けられている。
 なお、組電池66の固定には粘着テープ65に代えて、熱収縮テープを用いてもよい。この場合、組電池66の両側面に保護シート79を配置し、熱収縮チューブを周回させた後、熱収縮チューブを熱収縮させて組電池66を結束させる。
 図6及び図7では単電池91を直列接続した形態を示したが、電池容量を増大させるためには並列に接続してもよい。組み上がった電池パック90を直列及び/又は並列に接続することもできる。
 また、電池パック90の態様は用途により適宜変更される。電池パック90の用途としては、大電流特性でのサイクル特性が望まれるものが好ましい。具体的な用途としては、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。電池パック90は、特に、車載用が好適である。
 次に、第1の実施の形態に係る非水電解質電池60をより詳細に説明する。電極群は、非水電解質を保持することができる。非水電解質も、電極群と共に、外装部材61の主部に収納され得る。
 第1の実施の形態に係る非水電解質電池60は、リード挟持部に設けられた開口部を介しての非水電解質の漏出、すなわち、電池内部から電池外部への非水電解質の漏出を防ぐこともできる。特に、第1の実施の形態に係る非水電解質電池60のうち、電極リードがリード挟持部に設けられた開口部の周縁に熱シールされているものは、熱シールが高いシール性を示す。そのため、電池内部から電池外部への非水電解質の漏出を更に防ぐことができる。電極群は正極及び負極を含み得る。更に、電極群は、正極と負極との間に介在したセパレータを含むこともできる。
 正極は、正極集電体と正極集電体上に形成された正極材料層とを備えることができる。正極材料層は、正極集電体の両面上に形成されていてもよいし、又は片面のみに形成されていてもよい。また、正極集電体は、いずれの面上にも正極材料層が形成されていない正極材料層無担持部を含んでいてもよい。
 正極材料層は、正極活物質を含むことができる。正極材料層は、導電剤及び結着剤を更に含むことができる。導電剤は、集電性能を高め、且つ、正極活物質と正極集電体との間の接触抵抗を抑えるために配合することができる。結着剤は、分散された正極活物質の間隙を埋め、また、正極活物質と正極集電体とを結着させるために配合することができる。
 正極は、例えば正極集電体の正極材料層無担持部を介して、電極リード、すなわち正極リードに接続することができる。正極と正極リードとの接続は、例えば溶接によって行うことができる。
 負極は、負極集電体と負極集電体上に形成された負極材料層とを備えることができる。負極材料層は、負極集電体の両面上に形成されていてもよいし、又は片面のみに形成されていてもよい。また、負極集電体は、いずれの面上にも負極材料層が形成されていない負極材料層無担持部を含んでいてもよい。
 負極材料層は、負極活物質を含むことができる。負極材料層は、導電剤及び結着剤を更に含むことができる。導電剤は、集電性能を高め、且つ、負極活物質と負極集電体との間の接触抵抗を抑えるために配合することができる。結着剤は、分散された負極活物質の間隙を埋め、また、負極活物質と負極集電体とを結着させるために配合することができる。
 負極は、例えば負極集電体の負極材料層無担持部を介して、電極リード、すなわち負極リードに接続することができる。負極と負極リードとの接続は、例えば溶接によって行うことができる。
 以下、第1の実施の形態に係る非水電解質電池において用いることができる部材及び材料について説明する。
 [1]負極 
 負極は、例えば、負極活物質、導電剤及び結着剤を適当な溶媒に分散させて得られる負極剤ペーストを、負極集電体の片側又は両面に塗布し、これを乾燥させることにより作製することができる。乾燥後、負極剤ペーストを、プレスをすることもできる。
 負極活物質としては、例えばリチウムイオンを吸蔵及び放出することができる炭素質物、金属酸化物、金属硫化物、金属窒化物、合金、軽金属などを挙げることができる。
 リチウムイオンを吸蔵及び放出することができる炭素質物としては、例えばコークス、炭素繊維、熱分解気相炭素物、黒鉛、樹脂焼成体、メソフェーズピッチ系炭素繊維又はメソフェーズ球状カーボンの焼成体などを挙げることができる。中でも、2500℃以上で黒鉛化したメソフェーズピッチ系炭素繊維又はメソフェーズ球状カーボンを用いることが、電極容量を高くすることができるため好ましい。
 金属酸化物としては、例えば、チタン含有金属複合酸化物、例えばSnB0.40.63.1やSnSiOなどのスズ系酸化物、例えばSiOなどのケイ素系酸化物、例えばWOなどのタングステン系酸化物などが挙げられる。これら金属酸化物の中で、金属リチウムに対する電位が0.5Vよりも高い負極活物質、例えばチタン酸リチウムのようなチタン含有金属複合酸化物を用いることが、電池を急速に充電した場合でも負極上でのリチウムデンドライトの発生を抑えることができ、ひいては劣化を抑えることができるため、好ましい。
 チタン含有金属複合酸化物としては、例えば、酸化物合成時はリチウムを含まないチタン系酸化物、リチウムチタン酸化物、リチウムチタン酸化物の構成元素の一部を例えばNb、Mo,W,P、V、Sn、Cu、Ni及びFeよりなる群から選択される少なくとも1種類の異種元素で置換したリチウムチタン複合酸化物などを挙げることができる。リチウムチタン酸化物としては、例えば、スピネル構造を有するチタン酸リチウム(例えばLi4+xTi12(xは、充放電により0≦x≦3の範囲内で変化し得るものである))、ブロンズ構造(B)又はアナターゼ構造のチタン酸化物(例えばLiTiO(0≦x≦1)、充電前の組成はTiO)、ラムステライド型のチタン酸リチウム(例えばLi2+yTi(yは、充放電により0≦y≦3の範囲内で変化し得るものである)、で表されるニオブチタン酸化物(例えばLiNbaTiO(0≦x、より好ましい範囲は0≦x≦1、1≦a≦4))などを挙げることができる。
 チタン系酸化物としては、TiO、TiとP、V、Sn、Cu、Ni、Co及びFeよりなる群から選択される少なくとも1種類の元素とを含有する金属複合酸化物などが挙げられる。TiOはアナターゼ型で熱処理温度が300~500℃の低結晶性のものが好ましい。TiとP、V、Sn、Cu、Ni、Co及びFeよりなる群から選択される少なくとも1種類の元素とを含有する金属複合酸化物としては、例えば、TiO-P、TiO-V、TiO-P-SnO、TiO-P-MeO(MeはCu、Ni、Co及びFeよりなる群から選択される少なくとも1種類の元素)などを挙げることができる。この金属複合酸化物は、結晶相とアモルファス相とが共存もしくは、アモルファス相単独で存在したミクロ構造であることが好ましい。このようなミクロ構造であることによりサイクル性能が大幅に向上することができる。中でも、リチウムチタン酸化物、TiとP、V、Sn、Cu、Ni、Co及びFeよりなる群から選択される少なくとも1種類の元素を含有する金属複合酸化物が好ましい。
 金属硫化物として硫化リチウム(TiS)、硫化モリブデン(MoS)、硫化鉄(FeS、FeS、LiFeS(ここで、0<x≦1である)などが挙げられる。金属窒化物としては、リチウムコバルト窒化物(LiCoN(ここで、0<x<4、0<y<0.5である))などが挙げられる。
 負極活物質としては、スピネル構造を有するチタン酸リチウムを使用することが望ましい。
 導電剤としては、炭素材料を用いることができる。炭素材料としては、例えば、アセチレンブラック、カーボンブラック、コークス、炭素繊維、黒鉛等を挙げることができる。
 結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン-プロピレン-ジエン共重合体(EPDM)、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等を用いることができる。
 負極集電体としては、負極電位に応じて種々の金属箔等を用いることができるが、例えばアルミニウム箔、アルミニウム合金箔、ステンレス箔、チタン箔、銅箔、ニッケル箔などが挙げられる。このときの箔の厚さは、8μm以上25μm以下であることが好ましい。また、負極電位が金属リチウムに対して0.3Vよりも貴となり得る場合、例えば負極活物質としてリチウムチタン酸化物を使用する場合、アルミニウム箔やアルミニウム合金箔を用いることが、電池重量を抑えることができるため好ましい。
 アルミニウム箔及びアルミニウム合金箔の平均結晶粒径は、50μm以下であることが好ましい。これにより、負極集電体の強度を飛躍的に増大させることができるため、負極を高いプレス圧で高密度化することが可能となり、電池容量を増大させることができる。また、高温環境下(40℃以上)における過放電サイクルでの負極集電体の溶解及び腐食劣化を防ぐことができるため、負極インピーダンスの上昇を抑制することができる。更に、出力特性、急速充電、充放電サイクル特性も向上させることができる。平均結晶粒径のより好ましい範囲は30μm以下であり、更に好ましい範囲は5μm以下である。
 平均結晶粒径は次のようにして求められる。集電体表面の組織を光学顕微鏡で組織観察し、1mm×1mm内に存在する結晶粒の数nを求める。このnを用いてS=1x106/n(μm)から平均結晶粒子面積Sを求める。得られたSの値から下記(A)式により平均結晶粒子径d(μm)を算出することができる。 
    d=2(S/π)1/2       (A)
 平均結晶粒子径の範囲が50μm以下の範囲にあるアルミニウム箔又はアルミニウム合金箔は、材料組成、不純物、加工条件、熱処理履歴ならび焼なましの加熱条件など多くの因子に複雑に影響され、前記結晶粒子径(直径)は、製造工程の中で、前記諸因子を組み合わせて調整される。
 アルミニウム箔及びアルミニウム合金箔の厚さは、20μm以下であることが好ましく、より好ましくは15μm以下である。アルミニウム箔の純度は99%以上が好ましい。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素などの少なくとも1種の元素を含む合金が好ましい。一方、鉄、銅、ニッケル、クロムなどの遷移金属の含有量は1%以下にすることが好ましい。なお、車載用の場合、アルミニウム合金箔を用いることが特に好ましい。
 前記負極の活物質、導電剤及び結着剤の配合比は、負極活物質80~95重量%、導電剤3~20重量%、結着剤1.5~7重量%の範囲にすることが好ましい。
 [2]正極 
 正極は、例えば、正極活物質、導電剤及び結着剤を適当な溶媒に分散させて得られる正極剤ペーストを、正極集電体の片側又は両面に塗布し、これを乾燥させることにより作製することができる。乾燥後、正極剤ペーストは、プレスを行うこともできる。
 正極活物質としては、種々の酸化物、硫化物などが挙げられる。例えば、二酸化マンガン(MnO)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLiMn又はLiMnO(ここで、0≦x≦1.2である))、リチウムニッケル複合酸化物(例えばLiNiO(ここで、0≦x≦1.2である))、リチウムコバルト複合酸化物(LiCoO(ここで、0≦x≦1.2である))、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCo(ここで、0<y≦1である))、リチウムマンガンコバルト複合酸化物(例えばLiMnCo1-y(ここで、0<y≦1である))、スピネル型リチウムマンガンニッケル複合酸化物(LiMn2-yNi(ここで、0≦x≦1.2であり、0<y≦1である))、オリビン構造を有するリチウムリン酸化物(LiFePO、LiFe1-yMnPO、LiMnPO、LiMn1-yFePO、LiCoPOなど(ここで、0≦x≦1.2であり、0<y≦1である))、硫酸鉄(Fe(SO)、バナジウム酸化物(例えばV)などが挙げられる。
 また、正極活物質としては、ポリアニリンやポリピロールなどの導電性ポリマー材料、ジスルフィド系ポリマー材料、イオウ(S)、フッ化カーボンなどの有機材料及び無機材料も挙げることができる。
 より好ましい正極活物質は、熱安定性の高いスピネル型マンガンリチウム(LiMn(ここで、0≦x≦1.1である))、オリビン型リン酸鉄リチウム(LiFePO(ここで、0≦x≦1である))、オリビン型リン酸マンガンリチウム(LiMnPO(ここで、0≦x≦1である))、オリビン型リン酸マンガン鉄リチウム(LiMn1-yFePO(ここで、0≦x≦1であり、0<y≦0.5である))などが挙げられる。
 或いは、これらを二種以上混合したものも用いることができる。
 導電剤としては、例えばアセチレンブラック、カーボンブラック、人工黒鉛、天然黒鉛、導電性ポリマー等を用いることができる。
 結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、PVdFの水素もしくはフッ素のうち、少なくとも1つを他の置換基で置換した変性PVdF、フッ化ビニリデン-6フッ化プロピレンの共重合体、ポリフッ化ビニリデン-テトラフルオロエチレン-6フッ化プロピレンの3元共重合体等を用いることができる。
 結着剤を分散させるための有機溶媒としては、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)等が使用される。
 正極集電体としては、例えば厚さ8~25μmのアルミニウム箔、アルミニウム合金箔、ステンレス箔、チタン箔等を挙げることができる。
 正極集電体は、アルミニウム箔若しくはアルミニウム合金箔が好ましく、負極集電体と同様にアルミニウム箔若しくはアルミニウム合金箔の平均結晶粒径は50μm以下であることが好ましい。より好ましくは、アルミニウム箔若しくはアルミニウム合金箔の平均結晶粒径は30μm以下であり、更に好ましくは5μm以下である。前記平均結晶粒径が50μm以下であることにより、アルミニウム箔又はアルミニウム合金箔の強度を飛躍的に増大させることができ、正極を高いプレス圧で高密度化することが可能になり、電池容量を増大させることができる。
 平均結晶粒径の範囲が50μm以下の範囲にあるアルミニウム箔又はアルミニウム合金箔は、材料組織、不純物、加工条件、熱処理履歴、ならびに焼鈍条件など複数の因子に複雑に影響され、前記結晶粒径は製造工程の中で、前記諸因子を組合せて調整される。
 アルミニウム箔及びアルミニウム合金箔の厚さは、20μm以下であることが好ましく、より好ましくは15μm以下である。アルミニウム箔の純度は99%以上が好ましい。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素、などの元素を含む合金が好ましい。一方、鉄、銅、ニッケル、クロムなどの遷移金属の含有量は1%以下にすることが好ましい。
 前記正極の活物質、導電剤及び結着剤の配合比は、正極活物質80~95重量%、導電剤3~20重量%、結着剤1.5~7重量%の範囲にすることが好ましい。
 [3]セパレータ 
 セパレータとしては、例えば、多孔質セパレータを用いることができる。多孔質セパレータとしては、例えば、ポリエチレン、ポリプロピレン、セルロース、又はポリフッ化ビニリデン(PVdF)を含む多孔質フィルム、合成樹脂製不織布等を挙げることができる。中でも、ポリエチレンか、あるいはポリプロピレン、又は両者からなる多孔質フィルムは、電池温度が上昇した場合に細孔を閉塞して充放電電流を大幅に減衰させるシャットダウン機能を付加しやすく、二次電池の安全性を向上できるため、好ましい。低コスト化の観点からは、セルロース系のセパレータを用いることが好ましい。
 [4]非水電解質 
 非水電解質としては、LiBF、LiPF、LiAsF、LiClO、LiCFSO、LiN(CFSO、LiN(CSO、Li(CFSOC、LiB[(OCO)などから選ばれる一種以上のリチウム塩を0.5~2mol/Lの範囲内にある濃度で有機溶媒に溶解した有機電解液が挙げられる。
 有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状カーボネートや、ジエチレルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)などの鎖状カーボネートや、ジメトキシエタン(DME)、ジエトキシエタン(DEE)などの鎖状エーテルや、テトラヒドロフラン(THF)、ジオキソラン(DOX)などの環状エーテルや、γ-ブチロラクトン(GBL)、アセトニトリル(AN)、スルホラン(SL)などの単独もしくは混合溶媒を用いることが好ましい。
 また、非水電解質としては、リチウムイオンを含有した常温溶融塩(イオン性融体)を用いることもできる。リチウムイオンと有機物カチオンとアニオンから構成されるイオン性融体であり、100℃以下、好ましくは室温以下でも液状であるものを選択すると、広い動作温度の二次電池を得ることができる。
 [5]ケース 
 ケースとして使用され得るステンレス部材の厚さは、0.2mm以下にすることが望ましい。例えば、ステンレス部材は、最内層に位置する熱融着性樹脂フィルム(熱可塑性樹脂フィルム)の上にステンレスからなる金属箔及び剛性を有する有機樹脂フィルムをこの順序で積層した複合フィルム材から構成することが可能である。
 熱融着性樹脂フィルムとしては、例えばポリエチレン(PE)フィルム、ポリプロピレン(PP)フィルム、ポリプロピレン-ポリエチレン共重合体フィルム、アイオノマーフィルム、エチレンビニルアセテート(EVA)フィルム等を用いることができる。また、前記剛性を有する有機樹脂フィルムとしては、例えばポリエチレンテレフタレート(PET)フィルム、ナイロンフィルム等を用いることができる。
 ケースは、電極群を収納する主部となり得る凹部及びこの凹部の外側の外郭部を有するケース本体と、蓋体とから構成されていてもよい。この場合、ケース本体と蓋体とは、シームレスで連続している一体部材であってもよい。
 [6]電極リード 
 正極に電気的に接続され得る電極リード、すなわち正極リードとしては、例えばアルミニウム、チタン及びそれらをもとにした合金、ステンレスなどを用いることができる。
 負極に電気的に接続され得る電極リード、すなわち負極リードとしては、例えばニッケル、銅及びそれらをもとにした合金などを用いることができる。負極電位が金属リチウムに対し1Vよりも貴な場合、例えば負極活物質としてチタン酸リチウムを使用した場合などは、負極リードの材料としてアルミニウムあるいはアルミニウム合金を用いることができる。この場合、正極リード及び負極リード共に、アルミニウム又はアルミニウム合金を用いることが、軽量かつ電気抵抗を小さく抑えることができるため好ましい。
 正極リード及び負極リードは、機械的特性の観点では、それに接続される正極集電体又は負極集電体の強度を大きく超えて高強度でない方が、接続部分の応力集中が緩和されるため好ましい。集電体との接続手段として、好ましい方法の一つである超音波溶接を適用した場合、正極リードあるいは負極リードのヤング率が小さい方が、強固な溶接を容易に行うことが可能となる。
 例えば焼鈍処理した純アルミ(JIS1000番台)は、正極リード又は負極リードの材料として好ましい。
 正極リードの厚さは、0.1~1mmにすることが望ましく、より好ましい範囲は、0.2~0.5mmである。
 負極リードの厚さは、0.1~1mmにすることが望ましく、より好ましい範囲は、0.2~0.5mmである。
 上記構成の第1の実施形態に係る非水電解質電池60では、外装部材61内につづら折り状のバイポーラ電極11を収納した。本実施の形態では、バイポーラ電極1の電極本体2を用いて3層(電極本体2A~2C)に積層した電極本体2の積層体2Xを形成し、この電極本体2の積層体2Xと、負極部材2t1と、正極部材2t2とを一体的に積層させて電極積層体6を形成した。そして、この電極積層体6は、1つの板体を一方向に所定の長さで複数に区分けし、各区分け部分8間を順次、互い違いにそれぞれ折り曲げてつづら折り状に折り畳んで重ねることで、図1、図2に示すつづら折りバイポーラ電極11を形成している。そのため、バイポーラ電極11をつづら折りにすることで、小体積ながらエネルギー密度を向上させることができる。
 (第1実施形態の第1の変形例) 
 図8は、第1の実施の形態の非水電解質電池60の第1の変形例を示す。本変形例は、実施例5で示したようにバイポーラ電極11を、つづら折りにするとき、片側の折り返し部12の中心点位置Oが折り返し部12の重ね合わせ方向に対して隣接する折り返し部12の部分が重ね合わせ方向と直交する方向に交互にずらした状態で折り曲げたものである。
 本変形例では、電極積層体6をつづら折りに折り曲げる作業時に、曲げの内側の電極本体2の壁面と、曲げの外側の電極本体2の壁面とで発生する長手方向のずれを左右の両端の折り返し部12間で互いに打ち消しあう状態で、吸収させることができる。そのため、複数段に折り返し部12を設けた場合でも、電極積層体6の各段の電極本体2間の内部応力を低減することができる。
 (第1実施形態の第2の変形例) 
 図10および図11は、第1実施形態の非水電解質電池60の第2の変形例を示す。本変形例は、図10に示すようにバイポーラ電極11を、つづら折りにするとき、折り返し部12毎に集電タブ(正極の集電用タブ14aおよび負極の集電用タブ14b)を取り付ける構成にしたものである。
 本変形例では、さらに、集電効率を上げ、高出力化が期待できる。実施例5(図9参照)および実施例6(図10参照)に係るバイポーラ型電池の集電効率を測定した。測定は、電流を50mA、100mA、500mA流した時の抵抗値を読み取った。その結果を、図12に示す。図12中で、測定値Aが集電タブが1カ所、測定値Bが集電タブが5カ所の場合の測定結果である。この図12からも明らかなとおり、集電タブが1カ所のみのときに比べ、集電タブを5カ所に増やすことで抵抗が約半減した。
 [比較例1] 
 図13Aに示すように集電体21の両面に正極活物質層22を形成した。また、図13Bに示すように集電体21の両面に負極活物質層23を形成した。これにより、比較例1に係る第1電極24と第2電極25とを得た。
 [比較例2] 
 図13Cは、比較例1に記載の第1電極24と第2電極25とを用いて交互に5層に積層し、積層型電池26を作製した。電極間には電解質層27があり、電極同士が触れないようにする。これにより、比較例2に係る積層型電池26を得た。
 次に、上記実施例2および比較例2における定電流充放電試験を行った。その試験結果から平均作動電圧を算出し、得られた値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 この表1に示す通り、実施例2のようにバイポーラ電極の電極積層体6を用いることで、積層したバイポーラ型電池における作動電圧が比較例2の積層型電池26よりも高くなることが分かる。
 これらの実施形態によれば、集電体の一方の板面に正極活物質層、同他方の板面に負極活物質をそれぞれ形成するバイポーラ型電池の高エネルギー密度化と低抵抗化を図ることができるバイポーラ型電池とその製造方法及び電池パックを提供することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
  1…バイポーラ電極、2、2A~2C…電極本体、2X…積層体、2t1…負極部材、2t2…正極部材、3…集電体、4…正極活物質層、5…負極活物質層、6…電極積層体、7…電解質層、8…区分け部分、11…バイポーラ電極、12…折り返し部。

Claims (8)

  1. 集電体と、前記集電体の一面に形成された正極活物質層と、前記集電体の他面に形成された負極活物質層とを有するバイポーラ電極と、
     非水電解質と、を具備し、
     前記バイポーラ電極は、一方向に所定の長さで複数に区分けし、各区分け部分間を順次、互い違いにそれぞれ折り曲げて折り畳んで重ねてある非水電解質電池。
  2. 前記負極活物質層は、1.5V付近に反応電位が存在する請求項1に記載の非水電解質電池。
  3. 前記集電体は、アルミニウムを用いている請求項1に記載の非水電解質電池。
  4. 前記正極活物質層は、リチウムを吸蔵及び放出可能であり、
     前記負極活物質と、
     前記正極活物質層と、
     非水電解質と、を含むことを特徴とする請求項2に記載の非水電解質電池。
  5. 前記バイポーラ電極を複数積層させた積層体を設け、
     前記積層体は、前記バイポーラ電極を一方向に所定の長さで複数に区分けし、各区分け部分間を順次、互い違いにそれぞれ折り曲げて折り畳んで重ねてある請求項1に記載の非水電解質電池。
  6. 前記バイポーラ電極は、片側の折り返し部の中心点位置が前記折り返し部の重ね合わせ方向に対して隣接する部分が前記重ね合わせ方向と直交する方向に交互にずらした状態で折り曲げてある請求項5に記載の非水電解質電池。
  7. 前記バイポーラ電極は、前記折り返し部毎に集電タブを取り付けてある請求項6に記載の非水電解質電池。
  8. 請求項1または5のいずれかに記載の非水電解質電池と、
     前記非水電解質電池を収容する外装部材と、
     を有する非水電解質電池の電池パック。
PCT/JP2015/050795 2015-01-14 2015-01-14 非水電解質電池及び電池パック WO2016113863A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2015/050795 WO2016113863A1 (ja) 2015-01-14 2015-01-14 非水電解質電池及び電池パック
EP15877816.7A EP3246984A4 (en) 2015-01-14 2015-01-14 Nonaqueous electrolyte battery and battery pack
CN201580041406.7A CN106663839B (zh) 2015-01-14 2015-01-14 非水电解质电池和电池组
JP2016510881A JP6246901B2 (ja) 2015-01-14 2015-01-14 非水電解質電池及び電池パック
KR1020177004997A KR20170032456A (ko) 2015-01-14 2015-01-14 비수 전해질 전지 및 전지 팩
US15/420,387 US10305146B2 (en) 2015-01-14 2017-01-31 Non-aqueous electrolyte battery and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050795 WO2016113863A1 (ja) 2015-01-14 2015-01-14 非水電解質電池及び電池パック

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/420,387 Continuation US10305146B2 (en) 2015-01-14 2017-01-31 Non-aqueous electrolyte battery and battery pack

Publications (1)

Publication Number Publication Date
WO2016113863A1 true WO2016113863A1 (ja) 2016-07-21

Family

ID=56405426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050795 WO2016113863A1 (ja) 2015-01-14 2015-01-14 非水電解質電池及び電池パック

Country Status (6)

Country Link
US (1) US10305146B2 (ja)
EP (1) EP3246984A4 (ja)
JP (1) JP6246901B2 (ja)
KR (1) KR20170032456A (ja)
CN (1) CN106663839B (ja)
WO (1) WO2016113863A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3300142A1 (en) * 2016-09-21 2018-03-28 Kabushiki Kaisha Toshiba Assembled battery
US10388981B2 (en) 2016-03-17 2019-08-20 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery, non-aqueous electrolyte battery pack, and vehicle
US10559843B2 (en) 2016-03-15 2020-02-11 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery, non-aqueous electrolyte battery pack, and vehicle
JP7326067B2 (ja) 2019-08-22 2023-08-15 日産自動車株式会社 単位電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6992630B2 (ja) * 2018-03-20 2022-01-13 トヨタ自動車株式会社 電極板の製造方法および製造装置
KR20200058173A (ko) * 2018-11-19 2020-05-27 삼성에스디아이 주식회사 이차 전지
KR102405345B1 (ko) * 2019-02-22 2022-06-07 주식회사 엘지에너지솔루션 단위셀 및 그 제조방법
US11121408B2 (en) 2019-03-14 2021-09-14 Medtronic, Inc. Lithium-ion battery
CN112038708B (zh) * 2020-10-10 2022-06-10 合肥国轩高科动力能源有限公司 锂离子电池卷芯结构及其制造方法
CN114824154B (zh) * 2021-01-22 2024-01-26 中国科学院物理研究所 一种双极性电池及其制备方法和用途
EP4152434A1 (de) * 2021-09-17 2023-03-22 VARTA Microbattery GmbH Energiespeicherelement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116661A (ja) * 1989-09-29 1991-05-17 Shin Kobe Electric Mach Co Ltd 固体電解質集合電池
WO2012146589A1 (fr) * 2011-04-26 2012-11-01 Commissariat à l'énergie atomique et aux énergies alternatives Accumulateur electrochimique li-ion de type bipolaire a capacite augmentee
JP2013131463A (ja) * 2011-12-22 2013-07-04 Kaneka Corp 非水電解質二次電池用電極及びそれを用いた非水電解質二次電池

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116643B2 (ja) * 1992-09-11 2000-12-11 三菱電機株式会社 電気化学素子、及び組電池並びに電気化学素子の製造方法
JPH08138726A (ja) 1994-11-08 1996-05-31 Murata Mfg Co Ltd 積層型リチウム二次電池
JP2000100471A (ja) 1998-09-22 2000-04-07 Mitsubishi Cable Ind Ltd シート電池
JP2002075455A (ja) 2000-08-24 2002-03-15 Matsushita Electric Ind Co Ltd リチウム二次電池
JP2004247209A (ja) * 2003-02-14 2004-09-02 Nissan Motor Co Ltd 積層型電池
CN2691069Y (zh) * 2004-04-23 2005-04-06 刘昌国 一种用于锂离子二次电池中的极片组
JP5065014B2 (ja) * 2005-04-26 2012-10-31 パナソニック株式会社 電池
KR100907623B1 (ko) 2006-05-15 2009-07-15 주식회사 엘지화학 신규한 적층 구조의 이차전지용 전극조립체
EP2167497A2 (en) * 2007-06-29 2010-03-31 Sunesis Pharmaceuticals, Inc. Heterocyclic compounds useful as raf kinase inhibitors
JP5178111B2 (ja) * 2007-09-26 2013-04-10 株式会社東芝 非水電解質電池およびパック電池
CA2750164C (en) 2009-01-27 2015-06-30 G4 Synergetics, Inc. Variable volume containment for energy storage devices
FR2943854B1 (fr) 2009-03-26 2011-06-10 Commissariat Energie Atomique Batterie bipolaire a fonctionnement ameliore
KR101101008B1 (ko) * 2009-12-10 2011-12-29 삼성에스디아이 주식회사 전극조립체 제조장치 및 그를 이용한 전극조립체 제조방법
WO2011111200A1 (ja) 2010-03-11 2011-09-15 トヨタ自動車株式会社 集電体及びその製造方法並びに電池及びその製造方法
JP5691932B2 (ja) * 2011-08-15 2015-04-01 株式会社豊田自動織機 二次電池
SE537100C2 (sv) * 2011-09-12 2015-01-07 Stora Enso Oyj Förfarande för derivatisering av en kemisk komponent i trä
KR20130131843A (ko) * 2012-05-25 2013-12-04 주식회사 엘지화학 신규한 이차전지용 전극 분리막 조립체 및 이의 제조방법
KR20130136603A (ko) * 2012-06-05 2013-12-13 주식회사 엘지화학 스택-폴드형 전극조립체
JP2015128021A (ja) * 2013-12-27 2015-07-09 日産自動車株式会社 双極型二次電池
JP2015128019A (ja) * 2013-12-27 2015-07-09 日産自動車株式会社 双極型二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116661A (ja) * 1989-09-29 1991-05-17 Shin Kobe Electric Mach Co Ltd 固体電解質集合電池
WO2012146589A1 (fr) * 2011-04-26 2012-11-01 Commissariat à l'énergie atomique et aux énergies alternatives Accumulateur electrochimique li-ion de type bipolaire a capacite augmentee
JP2013131463A (ja) * 2011-12-22 2013-07-04 Kaneka Corp 非水電解質二次電池用電極及びそれを用いた非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3246984A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10559843B2 (en) 2016-03-15 2020-02-11 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery, non-aqueous electrolyte battery pack, and vehicle
US10388981B2 (en) 2016-03-17 2019-08-20 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery, non-aqueous electrolyte battery pack, and vehicle
EP3300142A1 (en) * 2016-09-21 2018-03-28 Kabushiki Kaisha Toshiba Assembled battery
US10847774B2 (en) 2016-09-21 2020-11-24 Kabushiki Kaisha Toshiba Assembled battery, battery pack and vehicle
JP7326067B2 (ja) 2019-08-22 2023-08-15 日産自動車株式会社 単位電池

Also Published As

Publication number Publication date
JP6246901B2 (ja) 2017-12-13
JPWO2016113863A1 (ja) 2017-04-27
EP3246984A4 (en) 2018-06-06
CN106663839A (zh) 2017-05-10
CN106663839B (zh) 2019-05-10
EP3246984A1 (en) 2017-11-22
US20170141433A1 (en) 2017-05-18
US10305146B2 (en) 2019-05-28
KR20170032456A (ko) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6246901B2 (ja) 非水電解質電池及び電池パック
JP6870914B2 (ja) 非水電解質電池、電池パック及び車両
US9515298B2 (en) Nonaqueous electrolyte battery and battery pack
JP5694221B2 (ja) 非水電解質電池及び電池パック
US10461314B2 (en) Nonaqueous electrolyte battery and battery pack
JP5710533B2 (ja) 非水電解質二次電池、該電池用電極、および電池パック
JP6122213B1 (ja) 非水電解質電池、電池パック及び自動車
JP6258082B2 (ja) 非水電解質電池及び電池パック
JP6178183B2 (ja) 非水電解質電池、組電池及び蓄電池装置
CN112335091B (zh) 锂离子二次电池
CN112335092B (zh) 锂离子二次电池
JP6479943B2 (ja) 非水電解質電池及び電池パック
JP2016085910A (ja) 電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016510881

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877816

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015877816

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015877816

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177004997

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE