WO2011090039A1 - 面状発光装置 - Google Patents

面状発光装置 Download PDF

Info

Publication number
WO2011090039A1
WO2011090039A1 PCT/JP2011/050805 JP2011050805W WO2011090039A1 WO 2011090039 A1 WO2011090039 A1 WO 2011090039A1 JP 2011050805 W JP2011050805 W JP 2011050805W WO 2011090039 A1 WO2011090039 A1 WO 2011090039A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
light
substrate
emitting device
light emitting
Prior art date
Application number
PCT/JP2011/050805
Other languages
English (en)
French (fr)
Inventor
和幸 山江
木村 均
井出 伸弘
博也 辻
真太郎 林
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to KR1020127021116A priority Critical patent/KR101471501B1/ko
Priority to CN201180006217.8A priority patent/CN102714894B/zh
Priority to DE112011100278T priority patent/DE112011100278T5/de
Priority to US13/522,445 priority patent/US8716736B2/en
Publication of WO2011090039A1 publication Critical patent/WO2011090039A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/872Containers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to a planar light emitting device.
  • organic electroluminescence elements planar light emitting devices using organic electroluminescence elements (hereinafter abbreviated as organic EL elements) have been researched and developed in various places.
  • an organic EL element for example, a transparent electrode serving as an anode, a hole transport layer, a light emitting layer (organic light emitting layer), an electron injecting layer, and an electrode serving as a cathode are laminated on one surface side of a translucent substrate (transparent substrate). Those with a structure are known. In this type of organic EL element, light emitted from the light emitting layer by applying a voltage between the anode and the cathode is taken out through the transparent electrode and the translucent substrate.
  • the organic EL element is a self-luminous light emitting element, has a relatively high efficiency of light emission characteristics, and can emit light in various colors. For this reason, the organic EL element is expected to be applied as a display device (for example, a light emitter such as a flat panel display) or a light source (for example, a backlight or an illumination light source of a liquid crystal display device). Then it has already been put to practical use.
  • a display device for example, a light emitter such as a flat panel display
  • a light source for example, a backlight or an illumination light source of a liquid crystal display device.
  • the light extraction efficiency of organic EL elements is generally said to be about 20 to 30% (this value varies somewhat depending on the light emission pattern and the layer structure between the anode and the cathode).
  • the light extraction efficiency depends on the total reflection at the interface between the materials with different refractive indexes and the light generated by the materials because the materials that make up the light generating part and the surrounding parts have characteristics such as high refractive index and light absorption. It is considered that the above value is low because light cannot be effectively propagated to the outside world on the side where light emission is observed due to absorption of light.
  • the light extraction efficiency of 20 to 30% means that light that cannot be effectively used as so-called light emission accounts for 70 to 80% of the total light emission amount, and the efficiency of the organic EL element is improved by improving the light extraction efficiency.
  • the expected value of improvement is very large.
  • the refractive index of the light emitting layer is about 1.7
  • the refractive index of ITO generally used as a transparent electrode is about 1.8 to 2.0
  • a general glass substrate as a translucent substrate (Soda lime glass substrate, non-alkali glass substrate, etc.) has a refractive index of about 1.5, so even if the transparent electrode has a refractive index of 1.7, it occurs at the interface between the transparent electrode and the translucent substrate.
  • the total reflection loss reaches about 50% of the total reflected light. Note that this value of about 50% is a value obtained by approximating a point light source, and is a value obtained in consideration of the fact that light emission is an integration of three-dimensional radiation from organic molecules.
  • the organic EL element it is possible to greatly improve the light extraction efficiency by reducing the total reflection loss between the light emitting layer and the translucent substrate.
  • the simplest and most effective approach to reduce the total reflection loss between the light emitting layer and the translucent substrate is to reduce the refractive index difference at the interface existing between the light emitting layer and the translucent substrate. It is. In such an approach, an attempt to lower the refractive index of the light emitting layer and an attempt to increase the refractive index of the translucent substrate are conceivable. With regard to the former attempt, the current situation is difficult because there are large restrictions on materials, and in some cases, the light emission efficiency and the life are greatly deteriorated. On the other hand, regarding the latter attempt, for example, it is known that the light extraction efficiency is improved by using a high refractive index glass substrate having a refractive index of 1.85 as a translucent substrate for forming an organic EL element.
  • the laminated structure of the anode, the light emitting layer, and the cathode formed on the barrier layer on the one surface side of the plastic substrate is made of an epoxy resin through a medium made of a dielectric layer. It is covered with a protective part, and light is emitted from the other surface of the plastic substrate.
  • an organic EL element having an effect of preventing element deterioration caused by gas such as water vapor
  • a laminated body in which a transparent anode layer, a light emitting medium layer, and a cathode layer are sequentially laminated on a plastic base material is combined with a glass substrate and moisture resistance.
  • a film sealed with a conductive film has been proposed (see Document 4 (Japanese Published Patent Publication No. 2002-373777)).
  • the moisture content of the plastic substrate is 0.2% or less by weight fraction.
  • element deterioration prevention is achieved by forming a gas barrier layer on one surface side (surface side in contact with the transparent anode layer) of the plastic substrate, or on the one surface side and the other surface side. It is described that the effect can be further enhanced.
  • the high refractive index glass substrate is expensive and the industrial applicability is low at present.
  • high refractive index glass substrates generally contain various impurities such as heavy metals, many of them become brittle or have insufficient weather resistance.
  • the present invention has been made in view of the above-mentioned reasons, and an object thereof is to provide a planar light emitting device that can improve light extraction efficiency and can improve weather resistance and waterproofness.
  • a first form of the planar light emitting device has one surface and another surface opposite to the one surface, and emits light from the one surface, and is emitted from the organic EL device.
  • a protective substrate having a light-transmitting property, arranged to face the one surface of the organic EL element, and having a surface facing the one surface of the organic EL element, and the organic EL element A protective part that is disposed so as to face the other surface and that houses the organic EL element together with the protective substrate so as to protect it from water, and between the one surface of the organic EL element and the protective substrate
  • a light extraction structure that is interposed and suppresses reflection of light emitted from the organic EL element on at least one of the one surface of the organic EL element and the one surface of the protective substrate.
  • the organic EL element has a light emitting layer that emits light and a light transmitting property to the light emitted from the light emitting layer.
  • the light emitting layer is formed on one surface of the formation substrate, and the one surface of the organic EL element is the other surface opposite to the one surface of the formation substrate,
  • the formation substrate has a higher refractive index than the protective substrate.
  • the protective substrate has higher weather resistance and waterproofness than the formation substrate.
  • the formation substrate is a plastic substrate
  • the protective substrate is a glass substrate
  • the light extraction structure is an uneven structure formed on the one surface of the organic EL element
  • the protective substrate is The space is disposed between the concavo-convex structure portion and the protective substrate, and has a higher refractive index than the medium of the space.
  • the concavo-convex structure portion has a refractive index higher than that of the formation substrate.
  • the concavo-convex structure portion has a concavo-convex structure having periodicity, and the period of the concavo-convex structure is the organic It is not less than 1/4 and not more than 10 times the wavelength of light emitted from the EL element.
  • the uneven structure portion is formed so as to be in surface contact with the one surface of the protective substrate. ing.
  • the planar light emitting device has a recess formed on the one surface of the protective substrate and accommodating the uneven structure portion.
  • the space is a space between the inner surface of the concave portion and the surface of the concavo-convex structure portion.
  • the tenth aspect of the present invention has a translucency for the light emitted from the organic EL element and a refractive index equal to or lower than the protective substrate.
  • the light extraction structure is an uneven structure provided on the one surface of the organic EL element, and the light transmitting part is interposed between the uneven structure and the protective substrate. Yes.
  • the light extraction structure portion includes a base material disposed so as to contact the one surface of the organic EL element, and the base material.
  • the light diffuser is a fine particle.
  • the light extraction structure portion includes a base material disposed so as to contact the one surface of the organic EL element, and the base.
  • a hole formed in the material, and the base material has a refractive index different from that of the hole medium at or above a portion in contact with the base material in the organic EL element.
  • the light-emitting device has translucency with respect to the light emitted from the organic EL element and has a refractive index higher than that of the formation substrate.
  • the light extraction structure is an uneven structure provided on the one surface of the protective substrate, and the transparent part is interposed between the formation substrate and the uneven structure.
  • the concavo-convex structure portion has a refractive index equal to or lower than that of the protective substrate.
  • the concavo-convex structure portion has a concavo-convex structure having periodicity, and the period of the concavo-convex structure is the organic EL. It is 1/4 or more and 10 times or less of the wavelength of light emitted from the element.
  • the heat generated in the organic EL element is interposed between the other surface of the organic EL element and the protective part.
  • a heat radiating member for transmitting to the protection part is provided, and the organic EL element is fixed to the protection part so as not to contact the protection substrate.
  • the one surface of the protective substrate and a surface opposite to the one surface of the protective substrate is provided with an anti-reflection coating.
  • the one surface of the protective substrate and a surface opposite to the one surface of the protective substrate in any one of the first to seventeenth aspects, the one surface of the protective substrate and a surface opposite to the one surface of the protective substrate.
  • a moth-eye structure is formed on at least one of the above.
  • the plurality of organic EL elements includes the plurality of organic EL elements, and the plurality of organic EL elements includes the protective substrate. Are arranged in a plane parallel to the one surface.
  • the protective portion has an inner surface facing the other surface of the organic EL element, A light reflecting portion that reflects light emitted from the organic EL element is provided on the inner surface of the protection portion.
  • the protection unit is transparent to light emitted from the organic EL element.
  • the protective portion has an inner surface facing the other surface of the organic EL element and an outer surface opposite to the inner surface, and the outer surface of the protective portion is radiated from the organic EL element.
  • a light reflecting part for reflecting the reflected light is provided.
  • a heat transfer section having a higher thermal conductivity than the protection section is provided,
  • the organic EL element has an inner surface facing the other surface and an outer surface opposite to the inner surface, and the heat transfer section is provided on the outer surface of the protection section.
  • FIG. 1 shows a planar light emitting device of Embodiment 1, wherein (a) is a schematic cross-sectional view, (b) is a schematic plan view, and (c) is a main part schematic plan view.
  • FIG. It is principal part explanatory drawing of the planar light-emitting device of the said Embodiment 1.
  • FIG. It is explanatory drawing of the formation method of the light extraction structure part of the planar light-emitting device of the said Embodiment 1.
  • FIG. It is explanatory drawing of the said light extraction structure part. It is explanatory drawing of the said light extraction structure part. It is explanatory drawing of the said light extraction structure part. It is principal part explanatory drawing of the planar light-emitting device of the said Embodiment 1.
  • FIG. It is principal part explanatory drawing of the planar light-emitting device of the said Embodiment 1.
  • FIG. It is operation
  • FIG. It is principal part explanatory drawing of the planar light-emitting device of the said Embodiment 1.
  • FIG. It is principal part explanatory drawing of the planar light-emitting device of the said Embodiment 1.
  • FIG. It is principal part explanatory drawing of the planar light-emitting device of the said Embodiment 1.
  • FIG. It is a schematic sectional drawing of a moth eye structure. It is explanatory drawing of the reflectance of the light in a visible light region. It is a schematic sectional drawing of the planar light-emitting device of Embodiment 2.
  • FIG. 6 It is a principal part schematic plan view of the planar light-emitting device of the said Embodiment 6.
  • FIG. It is a principal part schematic plan view of the other structural example of the planar light-emitting device of the said Embodiment 6.
  • FIG. It is explanatory drawing of the manufacturing method of the other structural example of the planar light-emitting device of the said Embodiment 6.
  • FIG. It is a schematic sectional drawing of the planar light-emitting device of Embodiment 7. It is explanatory drawing of the organic EL element in the planar light-emitting device of the said Embodiment 7. It is principal part explanatory drawing of the planar light-emitting device of the said Embodiment 7.
  • FIG. 16 is a schematic sectional view of a planar light emitting device according to a fifteenth embodiment.
  • the planar light-emitting device of this embodiment is an organic EL element 10 in which an organic EL layer 13 including a light-emitting layer is formed on one surface side of a first light-transmissive substrate 11 and emits light from one surface side in the thickness direction.
  • a second translucent substrate 21, a protective unit 30 that covers the other surface side of the organic EL element 10 in the thickness direction and prevents the moisture from reaching the organic EL element 10 together with the second translucent substrate 21, and organic A light extraction structure 50 is provided between the one surface of the EL element 10 and the second light-transmissive substrate 21 and suppresses reflection of the light emitted from the light emitting layer on the one surface.
  • the organic EL layer 13 interposed between the anode 12 and the cathode 14 includes a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the anode 12 side.
  • the anode 12 is laminated on the one surface side of the first light-transmitting substrate 11, and the cathode 12 is on the opposite side of the anode 12 from the first light-transmitting substrate 11 side. 14 faces the anode 12.
  • the anode 12 is composed of a transparent electrode
  • the cathode 14 is composed of an electrode that reflects light from the light emitting layer
  • the other surface of the first translucent substrate 11 is formed. It is the one side.
  • the laminated structure of the organic EL layer 13 is not limited to the above-described example.
  • a single-layer structure of a light emitting layer a laminated structure of a hole transport layer, a light emitting layer, and an electron transport layer, or a hole transport layer and a light emitting layer.
  • a hole injection layer may be interposed between the anode 12 and the hole transport layer.
  • the light emitting layer may have a single layer structure or a multilayer structure. For example, when the desired light emission color is white, the light emission layer may be doped with three types of dopant dyes of red, green, and blue.
  • a laminated structure of a blue hole transporting light emitting layer, a green electron transporting light emitting layer and a red electron transporting light emitting layer may be adopted, or a blue electron transporting light emitting layer and a green electron transporting light emitting layer may be employed.
  • a laminated structure with a red electron transporting light emitting layer may be adopted.
  • the organic EL layer 13 having a function of emitting light when sandwiched between the anode 12 and the cathode 14 is applied as one light-emitting unit, and a plurality of light-emitting units are interposed through a light-transmitting and conductive intermediate layer.
  • a multi-unit structure that is stacked and electrically connected in series that is, a structure including a plurality of light emitting units that overlap in the thickness direction between one anode 12 and one cathode 14) may be employed.
  • a reflective film made of an Al film or the like is provided on the other surface of the first translucent substrate 11, and the cathode 14 is a transparent electrode.
  • the light extraction structure 50 may be provided on the surface side of the cathode 14.
  • the planar view shape of the first translucent substrate 11 is a rectangular shape, but is not limited to a rectangular shape, and may be, for example, a circular shape, a triangular shape, a pentagonal shape, a hexagonal shape, or the like.
  • the anode 12 is an electrode for injecting holes into the light emitting layer, and it is preferable to use an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a large work function. It is preferable to use one having a work function of 4 eV or more and 6 eV or less so that the difference between the position and the HOMO (Highest Occupied Molecular Orbital) level does not become too large.
  • the electrode material of the anode 12 include ITO, tin oxide, zinc oxide, IZO, copper iodide, conductive polymers such as PEDOT and polyaniline, and conductive polymers doped with any acceptor, carbon nanotubes, and the like.
  • the conductive light transmissive material can be exemplified.
  • the anode 12 may be formed as a thin film on the one surface side of the first light-transmitting substrate 11 by a sputtering method, a vacuum evaporation method, a coating method, or the like.
  • the sheet resistance of the anode 12 is preferably several hundred ⁇ / ⁇ or less, and particularly preferably 100 ⁇ / ⁇ or less.
  • the film thickness of the anode 12 varies depending on the light transmittance of the anode 12, the sheet resistance, and the like, but is preferably set to 500 nm or less, preferably in the range of 10 nm to 200 nm.
  • the cathode 14 is an electrode for injecting electrons into the light emitting layer, and it is preferable to use an electrode material made of a metal, an alloy, an electrically conductive compound and a mixture thereof having a low work function. It is preferable to use a work function of 1.9 eV or more and 5 eV or less so that the difference between the level and the LUMO (Lowest (Unoccupied Molecular Orbital) level does not become too large.
  • the electrode material for the cathode 14 include aluminum, silver, magnesium and the like, and alloys thereof with other metals, such as a magnesium-silver mixture, a magnesium-indium mixture, and an aluminum-lithium alloy.
  • a metal conductive material, a metal oxide, etc., and a mixture of these and other metals for example, an ultrathin film made of aluminum oxide (here, a thin film of 1 nm or less capable of flowing electrons by tunnel injection)
  • a laminated film with a thin film made of aluminum can also be used.
  • ITO, IZO, etc. should just be employ
  • any material known as a material for an organic electroluminescence element can be used.
  • a mixture of light emitting materials selected from these compounds is also preferable to use as appropriate.
  • a compound that emits fluorescence typified by the above compound, but also a material system that emits light from a spin multiplet, for example, a phosphorescent material that emits phosphorescence, and a part thereof are included in a part of the molecule.
  • a compound can also be used suitably.
  • the light emitting layer made of these materials may be formed by a dry process such as vapor deposition or transfer, or by a wet process such as spin coating, spray coating, die coating, or gravure printing. You may do.
  • the material used for the hole injection layer can be formed using a hole injection organic material, a metal oxide, a so-called acceptor organic material or inorganic material, a p-doped layer, or the like.
  • the hole injecting organic material include a material having a hole transport property, a work function of about 5.0 to 6.0 eV, and a strong adhesion to the anode 12, for example. Examples thereof include CuPc and starburst amine.
  • the hole-injecting metal oxide is a metal oxide containing any of molybdenum, rhenium, tungsten, vanadium, zinc, indium, tin, gallium, titanium, and aluminum, for example.
  • an oxide of a plurality of metals containing any one of the above metals such as indium and tin, indium and zinc, aluminum and gallium, gallium and zinc, titanium and niobium, etc. It may be.
  • the hole injection layer made of these materials may be formed by a dry process such as vapor deposition or transfer, or by a wet process such as spin coating, spray coating, die coating, or gravure printing. It may be a film.
  • the material used for the hole transport layer can be selected from a group of compounds having hole transport properties, for example.
  • this type of compound include 4,4′-bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), N, N′-bis (3-methylphenyl)-(1 , 1′-biphenyl) -4,4′-diamine (TPD), 2-TNATA, 4,4 ′, 4 ′′ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (MTDATA) 4,4′-N, N′-dicarbazole biphenyl (CBP), spiro-NPD, spiro-TPD, spiro-TAD, TNB and the like, arylamine compounds, amine compounds containing carbazole groups, An amine compound containing a fluorene derivative can be exemplified, and any generally known hole transporting material can be used.
  • the material used for the electron transport layer can be selected from the group of compounds having electron transport properties.
  • this type of compound include metal complexes known as electron transporting materials such as Alq 3 and compounds having a heterocyclic ring such as phenanthroline derivatives, pyridine derivatives, tetrazine derivatives, and oxadiazole derivatives. Instead, any generally known electron transport material can be used.
  • the material of the electron injection layer is, for example, a metal fluoride such as lithium fluoride or magnesium fluoride, a metal halide such as sodium chloride or magnesium chloride, aluminum, cobalt, zirconium, Titanium, vanadium, niobium, chromium, tantalum, tungsten, manganese, molybdenum, ruthenium, iron, nickel, copper, gallium, zinc, silicon, and other metal oxides, nitrides, carbides, oxynitrides, etc., for example, aluminum oxide , Magnesium oxide, iron oxide, aluminum nitride, silicon nitride, silicon carbide, silicon oxynitride, boron nitride and other insulating materials, silicon compounds such as SiO 2 and SiO, carbon compounds, etc. Can be used. These materials can be formed into a thin film by being formed by a vacuum deposition method or a sputtering method.
  • the first light-transmitting substrate 11 is a kind of plastic substrate that is less expensive than an inexpensive glass substrate such as an alkali-free glass substrate or a soda lime glass substrate and has a higher refractive index than the glass substrate.
  • a polyethylene terephthalate (PET) substrate is used.
  • PET polyethylene terephthalate
  • the plastic material of the plastic substrate is not limited to PET, and for example, polyethylene naphthalate (PEN), polyethersulfone (PES), polycarbonate (PC), and the like may be adopted. What is necessary is just to select suitably according to heat-resistant temperature etc. Table 1 below shows physical property values and the like of typical plastic materials.
  • PET is a very inexpensive and highly safe plastic material.
  • PEN has a higher refractive index and better heat resistance than PET, but is expensive.
  • the unevenness on the one surface of the first light transmissive substrate 11 may cause a leak current of the organic EL element 10. (It may cause deterioration of the organic EL element 10).
  • a glass substrate is used as the first translucent substrate 11, it is necessary to prepare a glass substrate for forming an element that is polished with high accuracy so that the surface roughness of the one surface is reduced. The cost will be high.
  • the arithmetic average roughness Ra specified in JIS B 0601-2001 (ISO 4287-1997) should be several nm or less. Is preferred.
  • the plastic substrate is used as the first translucent substrate 11
  • the arithmetic average roughness Ra of the one surface is several nm even without performing highly accurate polishing. The following can be obtained at low cost.
  • substrate which is a cheap glass substrate compared with a high refractive index glass board
  • the glass substrate used in the second translucent substrate 21 is not for forming the organic EL element 10, and therefore a glass substrate having an arithmetic average roughness Ra of several hundred nm or more can be used. Cost reduction can be achieved as compared with a planar light emitting device in which an organic EL element is formed using a glass substrate for formation.
  • the organic EL element 10 in the present embodiment is joined to the second light transmissive substrate 21 over the entire circumference of the first light transmissive substrate 11.
  • the bonding portion 29 for bonding the organic EL element 10 and the second light transmitting substrate 21 is, for example, an adhesive film, a thermosetting resin, an ultraviolet curable resin, an adhesive (for example, an epoxy resin, an acrylic resin, (Such as silicone resin).
  • an adhesive for example, an epoxy resin, an acrylic resin, (Such as silicone resin).
  • the protection unit 30 is formed using a glass substrate (for example, an inexpensive glass substrate such as a soda lime glass substrate or a non-alkali glass substrate).
  • a storage recess 31 for storing the organic EL element 10 is formed on the surface facing the second translucent substrate 21, and the peripheral part of the storage recess 31 on the facing surface Is bonded to the second light-transmitting substrate 21 over the entire circumference.
  • the organic EL element 10 is housed in an airtight space surrounded by the second light-transmitting substrate 21 and the protection unit 30.
  • connection electrodes 22 and 24 for feeding that are electrically connected to the anode 12 and the cathode 14 of the organic EL element 10 are provided, A part of the peripheral portion of the protection unit 30 is joined to the external connection electrodes 22 and 24.
  • the anode 12 and the cathode 14 and the external connection electrodes 22 and 24 are electrically connected via connection portions 62 and 64 made of conductive paste (for example, silver paste).
  • the connection parts 62 and 64 are not limited to the conductive paste, and may be formed of, for example, a bonding wire or a metal film.
  • the joint part 39 that joins the protection part 30 and the second translucent substrate 21 is, for example, a low melting glass, an adhesive film, a thermosetting resin, an ultraviolet curable resin, an adhesive (for example, an epoxy resin, an acrylic resin, (Such as silicone resin).
  • the external connection electrodes 22 and 24 may be composed of, for example, an Au film, an Al film, an ITO film, or the like. However, the material and the layer structure are not particularly limited, and the external connection electrodes 22 and 24 are electrically connected to the base or electrically connected. What is necessary is just to set suitably considering the contact resistance etc. of a site
  • the protection unit 30 has a water absorbing material 40 adsorbing moisture adhering to the inner bottom surface of the storage recess 31.
  • a water absorbing material 40 for example, a calcium oxide type desiccant (getter kneaded with calcium oxide) may be used.
  • the protection unit 30 may be made of an epoxy resin or a silicone resin that seals the organic EL element 10.
  • the light extraction structure 50 described above is configured by a concavo-convex structure portion 51 provided on the one surface side of the organic EL element 10, and the concavo-convex structure portion 51 and the second light transmission structure.
  • a space 70 exists between the conductive substrate 21 and the conductive substrate 21. Therefore, in the planar light emitting device of the present embodiment, it is possible to reduce the reflection loss of the light emitted from the light emitting layer and reaching the second light transmitting substrate 21, and to improve the light extraction efficiency.
  • the planar light-emitting device of this embodiment has the recessed part 21a in which the uneven structure part 51 is accommodated in the organic EL element 10 side in the 2nd translucent board
  • the space 70 is formed between the surface 51 and the surface. Therefore, in the planar light emitting device of this embodiment, the space 70 is formed between the concavo-convex structure portion 51 and the second translucent substrate 21 only by providing the second translucent substrate 21 with the recess 21a. In addition, the concavo-convex structure 51 can be protected.
  • the refractive index of each of the light emitting layer of the organic EL element 10 and the first translucent substrate 11 is larger than the refractive index of air that is an external atmosphere from which light is extracted. Therefore, when the above-described light extraction structure portion 50 is not provided and the space between the first light-transmissive substrate 11 and the second light-transmissive substrate 21 is an air atmosphere, Total reflection occurs at the interface between the first medium composed of the translucent substrate 11 and the second medium composed of air, and light incident on the interface is reflected at an angle greater than the total reflection angle. Then, the light reflected at the interface between the first medium and the second medium is reflected multiple times inside the organic EL layer 13 or the first translucent substrate 11 and attenuates without being extracted outside. Efficiency is reduced. Also, light extraction efficiency is further reduced because Fresnel reflection occurs for light incident on the interface between the first medium and the second medium at an angle less than the total reflection angle.
  • the organic EL element 10 since the light extraction structure 50 described above is provided on the one surface side of the organic EL element 10 (the other surface side of the first light-transmissive substrate 11), the organic EL element The light extraction efficiency of 10 can be improved.
  • the concavo-convex structure portion 51 constituting the light extraction structure portion 50 has a two-dimensional periodic structure.
  • the period P of the two-dimensional periodic structure indicates that the wavelength in the medium is ⁇ (in vacuum) when the wavelength of light emitted from the light emitting layer is in the range of 300 to 800 nm. If the wavelength is a value obtained by dividing the wavelength by the refractive index of the medium, it is desirable to set it appropriately within a range of 1/4 to 10 times the wavelength ⁇ .
  • the light extraction efficiency is improved by the geometric optical effect, that is, by increasing the surface area where the incident angle is less than the total reflection angle.
  • the period P is set in the range of ⁇ to 5 ⁇ , for example, the light extraction efficiency is improved by the action of extracting light having a total reflection angle or more by diffracted light.
  • the period P is set in the range of ⁇ / 4 to ⁇ , the effective refractive index near the concavo-convex structure portion 51 gradually increases as the distance from the one surface of the first translucent substrate 11 increases.
  • a thin film layer having an intermediate refractive index between the refractive index of the medium of the concavo-convex structure portion 51 and the refractive index of the medium of the space 70 is interposed between the first translucent substrate 11 and the space 70.
  • the Fresnel reflection can be reduced.
  • the period P is set in the range of ⁇ / 4 to 10 ⁇ , reflection (total reflection or Fresnel reflection) can be suppressed, and the light extraction efficiency of the organic EL element 10 is improved.
  • the upper limit of the period P for improving the light extraction efficiency by the geometric optical effect is applicable up to 1000 ⁇ .
  • the concavo-convex structure portion 51 does not necessarily have a periodic structure such as a two-dimensional periodic structure, and the light extraction efficiency can be improved even in a concavo-convex structure having a random concavo-convex size or a concavo-convex structure having no periodicity.
  • uneven structures of different sizes for example, an uneven structure having a period P of 1 ⁇ and an uneven structure of 5 ⁇ or more coexist
  • the unevenness having the largest occupation ratio in the uneven structure portion 51 among them The light extraction effect of the structure becomes dominant.
  • the concavo-convex structure portion 51 of the light extraction structure portion 50 is configured by a prism sheet (for example, a light diffusion film such as LIGHTUP (registered trademark) GM3 manufactured by Kimoto Co., Ltd.), but is not limited thereto. .
  • the concavo-convex structure portion 51 may be formed on the other surface of the first light-transmitting substrate 11 by an imprint method (nanoimprint method), or the first light-transmitting substrate 11 may be formed by injection molding.
  • the concavo-convex structure portion 51 may be directly formed on the first translucent substrate 11 using an appropriate mold.
  • the material used for the prism sheet is usually a resin having a refractive index of about 1.4 to 1.6 (that is, a general resin having a refractive index close to that of the glass substrate).
  • the refractive index is not a high refractive index resin compared to a general resin. Therefore, as in the present embodiment, a plastic substrate having a higher refractive index than the glass substrate is used as the first light transmissive substrate 11, and the refractive index of the concavo-convex structure portion 51 is the first light transmissive substrate.
  • the first translucent substrate 11 is made of a plastic substrate having a higher refractive index than the glass substrate, but the refractive index of the concavo-convex structure portion 51 is changed to the first translucent substrate.
  • the refractive index of the concavo-convex structure portion 51 By setting the refractive index to be equal to or higher than the refractive index of the conductive substrate 11 (so that the refractive index of the concavo-convex structure portion 51 does not fall below the refractive index of the first light-transmissive substrate 11), an arrow is shown in FIG. Like the locus of the light rays, it is possible to prevent total reflection at the interface between the first translucent substrate 11 and the concavo-convex structure portion 51, and to improve the light extraction efficiency.
  • Table 2 for four examples in which the combination of the refractive index of the first translucent substrate 11 and the refractive index of the concavo-convex structure portion 51 is different, the ray trajectory of light from the light emitting layer is simulated by the ray tracing method. The light extraction efficiency obtained from the results is shown.
  • the refractive index of the concavo-convex structure portion 51 is changed in the range of 1.5 to 2.0 when the refractive index of the first translucent substrate 11 is the same 1.75. It can be seen that the refractive index of the glass tends to saturate at 1.75 or more. Therefore, in the planar light emitting device of the present embodiment, the first translucent substrate 11 and the concavo-convex structure portion 51 are formed by setting the refractive index of the concavo-convex structure portion 51 to be equal to or higher than the refractive index of the first translucent substrate 11. Therefore, it is possible to reduce the total reflection loss at the interface with the light source and improve the light extraction efficiency.
  • the above-described imprint method is given as a method for obtaining the concavo-convex structure portion 51 having a higher refractive index than that of the first translucent substrate 11. It is done.
  • a transparent material 151a having a high refractive index serving as a basis for the concavo-convex structure portion 51 are mixed.
  • a transfer layer 151 (see FIG. 3B) made of a thermosetting resin) is formed using a spin coating method. Specifically, the transparent material 151a (see FIG. 3A) is applied onto the other surface of the first light-transmitting substrate 11 by a spin coating method (the arrow in FIG. The transfer layer 151 is formed by performing pre-baking. Next, the transfer layer 151 is deformed by pressing the mold 141 (see FIG. 3B and FIG.
  • the concavo-convex structure portion 51 (see FIG. 3 (d1)) is formed by curing (for example, thermosetting), and the mold 141 is separated from the concavo-convex structure portion 51 (see FIG. 3 (d1)).
  • a wavy line with an arrow in FIG. 3C1 indicates the direction of heat transfer as a whole, and an arrow in the transfer layer 151 in FIG. 3C1 schematically indicates a flow direction of a part of the transfer layer 151. It shows.
  • fine projections having a period of 2 ⁇ m and a height of 1 ⁇ m are two-dimensional arrays.
  • a Ni mold or Si mold patterned in the shape may be used.
  • the imprint method is not limited to the thermal imprint method (thermal nanoimprint method) using the thermosetting resin as the transparent material 151a of the transfer layer 151 as described above, and light using a photocurable resin as the material of the transfer layer 151.
  • An imprint method (photo nanoimprint method) may be adopted.
  • the transfer layer 151 made of a low-viscosity photocurable resin layer is deformed by the mold 141, and thereafter the photocurable resin is cured by irradiating with ultraviolet rays so that the mold 141 is separated from the transfer layer 151. You can do it.
  • the imprint method if the mold 140 for the mold 141 (see FIG.
  • the mold 140 constitutes a master mold
  • the mold 141 constitutes an inverted mold.
  • An upward arrow F1 in FIG. 3C3 indicates the irradiation direction of ultraviolet rays from the first light-transmitting substrate 11 side
  • an arrow in the transfer layer 151 in FIG. 3C3 indicates the transfer layer 151.
  • the flow direction of a part of is schematically shown.
  • the mold 141 is formed of, for example, a transparent resin that transmits ultraviolet rays (for example, PDMS (polydimethylsiloxane)). What is necessary is just to make it irradiate an ultraviolet-ray from the mold 141 side using the resin-made mold.
  • a downward arrow F2 in FIG. 3C3 indicates the irradiation direction of the ultraviolet rays from the mold 141 side.
  • the mold 141 is directly pressed against the other surface side of the first translucent substrate 11 to apply heat, thereby providing the first translucency.
  • the substrate 11 may be deformed to form the concavo-convex structure portion 51 (see FIG. 3D2), and the mold 141 may be separated from the concavo-convex structure portion 51 (see FIG. 3D2).
  • the wavy line with an arrow in FIG. 3 (c2) indicates the direction of heat transfer as a whole, and the arrow in the first light-transmitting substrate 11 in FIG. 3 (c2) indicates the first light-transmitting substrate. 11 schematically shows part of the flow direction.
  • the space 70 is secured between the surface of the concavo-convex structure portion 51 and the second light transmissive substrate 21 by providing the second light transmissive substrate 21 with the concave portion 21a.
  • the thickness dimension of the joint portion 29 for joining the organic EL element 10 and the second translucent substrate 20 is appropriately set without providing the recess 21a in the second translucent substrate 21.
  • a hard coat is applied to prevent the surface of the concavo-convex structure portion 51 from being scratched, or a prism sheet having a sufficiently high hardness is used, or the hardness after curing is sufficient.
  • TYZ series manufactured by Toyo Ink ([searched on December 22, 2009], Internet ⁇ URL: http://www.toyoink.co.jp/products/ lioduras / index.html>) and other high refractive index type (refractive index of about 1.63 to 1.74) hard coating agents can be employed.
  • the TYZ series is an ultraviolet curable hard coat agent in which zirconium oxide is mixed as a filler in an epoxy resin or the like.
  • the planar light emitting device of this embodiment it is possible to reduce the total reflection loss by keeping a part of the concavo-convex structure portion 51 and the second translucent substrate 21 in surface contact. It becomes possible to improve the light extraction efficiency.
  • the shape of the concavo-convex structure portion 51 results of studying six types of shapes as shown in FIG. 4 will be described.
  • the concavo-convex structure portion 51 has a large number of convex portions 51a, and the shape of the convex portions 51a is a quadrangular pyramid, a hemisphere, and a cylinder in order from the left side.
  • the concavo-convex structure portion 51 has a large number of concave portions 51 b, and the concave portion 51 b has a quadrangular pyramid shape, a hemispherical shape, and a cylindrical shape in order from the left side.
  • the concavo-convex structure portion 51 having a large number of quadrangular pyramid convex portions 51 a and the concavo-convex structure portion 51 having a large number of hemispherical convex portions 51 a, the concavo-convex structure portion 51 is in point contact with the second translucent substrate 21.
  • the concavo-convex structure portion 51 has a region in surface contact with the second translucent substrate 21.
  • the shape of the concavo-convex structure portion 51 that is in surface contact with the second light-transmitting substrate 21 is not limited to the above-described four shape examples.
  • the shape of the convex portion 51a is a hexagonal column and the shape of the concave portion 51b is a hexagonal shape. Columnar shape may be sufficient, and the uneven structure part 51 may be a diffraction grating type shape.
  • each convex part 51a or each concave part 51b was made into unit shape, and area occupation rate Ao (%) was prescribed
  • Dm is the maximum dimension between two points intersecting a straight line passing through the center in plan view of the unit shape
  • Dc is the center-to-center distance of the unit shape.
  • the unit shape center-to-center distance Dc which is the denominator of the equation (1) for obtaining the area occupancy, is the unit shape pitch P (see FIGS. 5B and 5C), and there is no unit shape. Was considered infinite.
  • the maximum dimension Dm which is a numerator of the formula for calculating the area occupancy, is the diameter of a circle if the unit shape is a cylinder, and the length of one diagonal line on the bottom of the quadrangular pyramid if the unit shape is a quadrangular pyramid.
  • the area occupies if a large number of convex portions 51a are arranged in contact with the adjacent convex portions 51a as shown in FIG.
  • the rate is 100%.
  • the pitch P of the convex portions 51a is twice the diameter, the area occupancy is 50%, and the convex portions 51a exist as shown in FIG. Otherwise, the area occupancy is 0%.
  • a concavo-convex structure portion having a high effect of increasing the magnification of light extraction efficiency by a light distribution pattern obtained by light interference in a thin film composed of the organic EL layer 13 and the anode 12 and a simulation by a ray tracing method. It is possible to design 51 shapes (uneven patterns).
  • the light distribution pattern described above is substantially equal to the light distribution characteristic incident on the first light-transmissive substrate 11. As shown in FIG. 7A, this incident light distribution characteristic is obtained by arranging a hemispherical lens 210 having a diameter sufficiently larger than the light emitting surface on the side opposite to the anode 12 side in the first light transmitting substrate 11. It can be obtained by measuring the angle dependency (light distribution pattern) of the emitted light intensity.
  • a PEN substrate having a refractive index of 1.77 is used as the first light transmissive substrate 11
  • a high refractive index glass lens having a refractive index of 1.77 is used as the hemispherical lens 210
  • the first light transmissive substrate is used.
  • 11 and the hemispherical lens 210 may be provided with matching oil having a refractive index of 1.77.
  • the incident light distribution characteristic can be obtained with high accuracy.
  • the directivity is high as in the light distribution pattern indicated by the one-dot chain line in FIG. 8A, and when the directivity is low as in the light distribution pattern indicated by the one-dot chain line in FIG. Therefore, it is possible to design an appropriate shape of the uneven structure portion 51.
  • the inventors of the present application have inferred a model as shown in FIG. 9B regarding the cause of improving the light extraction efficiency by bringing the concavo-convex structure portion 51 and the second translucent substrate 21 into surface contact.
  • the model of FIG. 9B since the combined thickness of the anode 12 and the organic EL layer 13 is small compared to the thickness of the first translucent substrate 11, the light emission position in the thickness direction is An example of the traveling path of the light beam from the light emitting position is shown by a solid line with an arrow, assuming that it is substantially the same position as the surface of the anode 14 also serving as the reflective electrode on the second light transmitting substrate 21 side. Further, in the model of FIG.
  • the rugged structure portion 51 as the refractive index of the first light-transmitting substrate 11, an anode 12 and organic EL layer 13, are the same n 3, it is not shown for each interface It is. 9B, the refractive index of the medium (air) in the space 70 is n 1 , the refractive index of the second light transmissive substrate 21 is n 2 , and the light of the second light transmissive substrate 21 is used.
  • the refractive index of the external air in contact with the second translucent substrate 21 on the extraction side is defined as n 1 (n 1 ⁇ n 2 ⁇ n 3 ). Further, FIG.
  • FIG. 9A shows an example of a traveling path of a light beam from a light emitting position with respect to a model in a case where the concavo-convex structure portion 51 and the second translucent substrate 21 are not in contact with each other. It is shown by.
  • a mode in which total reflection at the interface between the concavo-convex structure portion 51 and the space 70 and reflection by the cathode 14 are repeated (waveguide mode) is finally absorbed by the cathode 14.
  • waveguide mode total reflection at the interface between the concavo-convex structure portion 51 and the space 70 and reflection by the cathode 14 are repeated
  • this component further increases when the interface between the space 70 and the first translucent substrate 11 is flat without providing the concavo-convex structure portion 51.
  • the critical angle of total reflection increases at the interface between the concavo-convex structure portion 51 and the second translucent substrate 21 according to Snell's law. Therefore, in the model of FIG. 9B, a part of the light beam that falls into the above-described mode in the model of FIG. 9A is the interface between the concavo-convex structure portion 51 and the second translucent substrate 21. Thus, the second light-transmitting substrate 21 is transmitted without being totally reflected.
  • the light extraction structure 50 has a space 70 between the surface of the concavo-convex structure 51 and the second translucent substrate 21. If it is assumed that the surface of the concavo-convex structure portion 51 is an interface between the concavo-convex structure portion 51 and the second translucent substrate 21, the refraction of the second translucent substrate 21 and the outside air will be described. Since the refractive index interface exists, total reflection occurs again at the refractive index interface. On the other hand, in the planar light emitting device of the present embodiment, since the light of the organic EL element 10 can be once extracted into the space 70, the interface between the air in the space 70 and the second translucent substrate 21, Total reflection loss does not occur at the interface between the second translucent substrate 21 and external air.
  • the first light-transmitting substrate 11 is a PET substrate having a refractive index of 1.65 and the second light-transmitting substrate 21 is a glass substrate having a refractive index of 1.5
  • each medium is introduced into each medium.
  • the result of calculating the light extraction efficiency is as shown on the right side of FIG.
  • the first light-transmitting substrate 11 is a glass substrate having a refractive index of 1.5 and the second light-transmitting substrate 21 is not provided, the light-emitting region of the light-emitting layer is sufficiently small.
  • the result calculated by the point light source approximation that is regarded as a point light source is as shown on the right side of FIG.
  • the light extraction efficiency is calculated by setting the refractive index of the light emitting layer to 1.7, and the refractive index of a portion (hole transport layer, anode 12 or the like) interposed between the light emitting layer and the first light transmitting substrate 11.
  • a simple model in which the light emitting layer and the first light-transmitting substrate 11 are in contact with each other was performed.
  • “N” described in FIGS. 10A and 10B is a refractive index.
  • the intensity of transmitted light in the direction of the normal line standing on the boundary surface with the first translucent substrate 11 is I 0
  • the intensity per unit solid angle of the transmitted light in the direction of ⁇ the angle formed with the normal line is As 2 ⁇ I 0 sin ⁇
  • the probability ⁇ of light transmitted from the light emitting layer to the first light-transmitting substrate 11 was defined as the light extraction efficiency.
  • the light extraction efficiency was calculated on the assumption that the probability that light is emitted from the concavo-convex structure portion 51 into the air is 60%.
  • the light extraction efficiency was calculated by setting the Fresnel loss when light is transmitted from the second translucent substrate 21 to the air as 8%.
  • the light extraction efficiency is about 1.3 times that of the reference example in FIG. It turns out that it improves.
  • a space 70 exists between the surface of the concavo-convex structure portion 51 constituting the light extraction structure portion 50 and the second translucent substrate 211.
  • a translucent portion made of a translucent material having a refractive index equal to or lower than the refractive index of the second translucent substrate 21 is provided between the concave-convex structure portion 51 and the second translucent substrate 21. If so, the total reflection loss can be reduced and the light extraction efficiency can be improved.
  • Low refractive index materials that are as small as are particularly preferred. That is, the planar light emitting device of the present embodiment includes a light transmitting part that has a light transmitting property with respect to the light emitted from the organic EL element 10 and has a refractive index equal to or lower than that of the second light transmitting substrate 21. May be.
  • the light extraction structure portion 50 is a concavo-convex structure portion 51 provided on the one surface of the organic EL element 10, and the translucent portion is between the concavo-convex structure portion 51 and the second translucent substrate 21. Intervened in.
  • the planar light emitting device of this embodiment has one surface (one surface in the thickness direction, the bottom surface in FIG. 1A) and the other surface opposite to the one surface (the other surface in the thickness direction, FIG. 1). (The upper surface in (a)), the organic EL element 10 that emits light from the one surface, and a light-transmitting property with respect to the light emitted from the organic EL element 10.
  • a second translucent substrate (protective substrate) 21 having one surface (upper surface in FIG. 1A) that is disposed so as to oppose the one surface of the organic EL element 10 and the organic EL element 10 described above.
  • the protection part 30 which is disposed so as to face the other surface and houses the organic EL element 10 together with the second translucent substrate 21 so as to protect it from water, the one surface of the organic EL element 10 and the first surface Between the two translucent substrates 21 and organic It provided to suppress light extraction structure 50 reflecting the light emitted from the organic EL element 10 (total reflection) in the one side of the L element 10.
  • the organic EL element 10 includes the organic EL layer 13 including a light emitting layer that emits light and a first light-transmitting property with respect to light emitted from the light emitting layer.
  • the light emitting layer is formed on the one surface (upper surface in FIG. 1A) of the first light-transmissive substrate 11.
  • the one surface of the organic EL element 10 is the other surface (the lower surface in FIG. 1A) opposite to the one surface of the first translucent substrate 11.
  • the first light transmissive substrate 11 has a higher refractive index than the second light transmissive substrate 21.
  • the second light transmitting substrate 21 has higher weather resistance and waterproofness than the first light transmitting substrate 11.
  • the first translucent substrate 11 is a plastic substrate (for example, PET, PEN, PES, PC), and the second translucent substrate 21 is a glass substrate (non-alkali glass substrate, soda lime glass substrate). is there.
  • the light extraction structure portion 50 is the concavo-convex structure portion 51 formed on the one surface of the organic EL element 10.
  • the second light transmissive substrate 21 is disposed such that the space 70 exists between the concavo-convex structure portion 51 and the second light transmissive substrate 21, and has a higher refractive index than the medium of the space 70.
  • the concavo-convex structure portion 51 has a refractive index equal to or higher than that of the first translucent substrate 11.
  • the concavo-convex structure portion 51 has a concavo-convex structure having periodicity, and the period P of the concavo-convex structure is 1 / wavelength of the light emitted from the organic EL element 10. 4 or more and 10 times or less.
  • the concavo-convex structure portion 51 is formed so as to be in surface contact with the one surface of the second translucent substrate 21.
  • the concave portion 21 a that houses the concave-convex structure portion 51 is formed on the one surface of the second light-transmissive substrate 21.
  • the space 70 is a space between the inner surface of the recess 21 a and the surface of the uneven structure portion 51.
  • the planar light emitting device of the present embodiment described above includes the second light transmissive substrate 21 separately from the first light transmissive substrate 11 of the organic EL element 10, the first light transmissive property is obtained. Water resistance and weather resistance can be improved without using a high refractive index glass substrate or a plastic substrate provided with a barrier layer as the substrate 11.
  • the first light-transmitting substrate 11 having a refractive index higher than that of a general glass substrate such as a soda lime glass substrate or a non-alkali glass substrate is used. Therefore, the total reflection loss between the light emitting layer and the first translucent substrate 11 can be reduced.
  • planar light emitting device of this embodiment suppresses total reflection on the one surface of the light emitted from the light emitting layer provided between the one surface of the organic EL element 10 and the second translucent substrate 21. Since the light extraction structure portion 50 is provided, the light extraction efficiency can be improved. Therefore, according to the planar light emitting device of the present embodiment, it is possible to improve the light extraction efficiency and to improve the weather resistance and waterproofness.
  • a plastic substrate without a barrier layer is used as the first light transmissive substrate 11
  • a soda lime glass substrate or a non-alkali glass substrate is used as the second light transmissive substrate 21. Therefore, the cost can be reduced and the long-term reliability of the organic EL element 10 can be prevented from being deteriorated due to ultraviolet rays from the outside.
  • Fresnel loss a plane including incident light and a normal line standing on a boundary surface (an interface between a medium having an absolute refractive index n 1 and a medium having an absolute refractive index n 2 ) is defined as an incident surface.
  • the incident light is considered by decomposing it into a p wave in the incident plane and an s wave perpendicular to the incident plane.
  • the incident angle which is the angle between the normal and the incident light
  • the refraction angle which is the angle between the normal and the refracted light (transmitted light)
  • the p-wave reflectivity r p
  • the transmittance t p , the s-wave reflectance r s, and the transmittance t s are obtained by the following equations (3) to (6) using the Fresnel equation.
  • p-wave p-polarization
  • s-wave s-deflection
  • the efficiency loss varies depending on the difference in the light distribution pattern, and becomes small for light having a strong directivity in the normal incidence direction such as a laser.
  • a constant current of 2 mA / cm 2 was passed from the constant current power source to the organic EL element 10, and a spectrometer (multichannel analyzer PMA-11 manufactured by Hamamatsu Photonics Co., Ltd.) was used. , Measured the emitted light intensity every 5 ° in the range of -85 ° to 85 °, and calculated values proportional to the total luminous flux (or external quantum efficiency) and front luminance taking into account the projected area. .
  • the reflectance r is about 4%. Further, in the case of incidence from the second light transmitting substrate 21 to the outside air, the reflectance r is about 4%, so that a total of 8% of light is reflected after all. Also in the actual measurement of the light emission characteristics of the organic EL element 10, when the second light-transmitting substrate 21 made of a glass substrate is passed and when it is not passed, the second light-transmitting substrate 21 is passed. However, the front brightness was reduced by about 8%.
  • an anti-reflection coat (hereinafter referred to as an AR film) made of a single-layer or multilayer dielectric film is formed on at least one surface in the thickness direction of the second translucent substrate 21. (Abbreviated) may be provided.
  • an AR film made of a single-layer or multilayer dielectric film is formed on at least one surface in the thickness direction of the second translucent substrate 21. (Abbreviated) may be provided.
  • the inner bottom surface of the recess 21a on the organic EL element 10 side in the second light transmissive substrate 21 and the organic EL element 10 side in the second light transmissive substrate 21 are the same.
  • an AR film on at least one surface with the opposite surface. That is, in the planar light emitting device of the present embodiment, the one surface (the upper surface in FIG. 1A) of the second light transmissive substrate 21 and the one surface of the second light transmissive substrate 21 opposite to the one surface.
  • An anti-reflection coating may be provided on at least one of the surface (the lower surface in FIG. 1A).
  • the AR film is formed of, for example, a magnesium fluoride film (MgF 2 film) having a refractive index n of 1.38
  • the AR film may be a stacked film (two-layer AR film) of a magnesium fluoride film having a thickness of 99.6 nm and an aluminum oxide film having a thickness of 87.0 nm. Note that a material other than magnesium fluoride or aluminum oxide may be adopted as the material of the dielectric film.
  • the AR film by providing the AR film on at least one surface, preferably both surfaces, in the thickness direction of the second light transmissive substrate 21, Fresnel loss can be reduced and light extraction efficiency can be improved.
  • the AR film made of a magnesium fluoride film was provided on both surfaces in the thickness direction of the second light transmissive substrate 21, the front luminance was improved by 8% and the external quantum efficiency was improved by 6%.
  • a moth-eye structure 80 as shown in FIG. 12 on at least one surface side in the thickness direction of the second translucent substrate 21. That is, in the planar light emitting device of the present embodiment, the one surface (the upper surface in FIG. 1A) of the second light transmissive substrate 21 and the one surface of the second light transmissive substrate 21 opposite to the one surface. A moth-eye structure may be formed on at least one of these surfaces (the lower surface in FIG. 1A).
  • the moth-eye structure 80 has a two-dimensional periodic structure in which tapered fine protrusions 81 are arranged in a two-dimensional array, and a medium (see FIG.
  • the anti-reflection portion 83 is constituted by the air 82.
  • the refractive index of the fine protrusions 81 is the same as the refractive index of the second translucent substrate 21.
  • the state in which the refractive index interface causing the Fresnel loss is eliminated is obtained in a pseudo manner. Therefore, in the moth-eye structure 80, the dependency on the wavelength and the incident angle can be reduced and the reflectance can be reduced as compared with the AR film.
  • the height of the fine protrusions 81 and the period P of the fine protrusions 81 in the moth-eye structure 80 are set to 200 nm and 100 nm, respectively, but these numerical values are examples and are not particularly limited.
  • the AR film made of the magnesium fluoride film when neither the AR film nor the moth-eye structure 80 is provided on one surface of the second translucent substrate 21, when the AR film made of the magnesium fluoride film is provided, the magnesium fluoride film and the aluminum oxide film are provided.
  • the results of simulating the reflectance in the visible light region are respectively shown in A1, A2, A3, and A4 in FIG.
  • the AR film reflectivity simulation is performed using the Fresnel coefficient analysis method, and the moth-eye structure 80 reflectivity simulation is performed using the rigorous coupled wave analysis method (also known as Rigorous Coupled Wave Analysis: RCWA method). I went.
  • the Fresnel loss can be reduced as compared with the case where the moth-eye structure 80 is provided (A4 in FIG. 13 and the AR film (A2, A3 in FIG. 13)).
  • the extraction efficiency can be improved, and the angle dependency and wavelength dependency of the reflectance can be reduced.
  • the moth-eye structure 80 described above can be formed by, for example, a nanoimprint method, but may be formed by a method other than the nanoprint method (for example, a laser processing technique). Further, the moth-eye structure 80 may be constituted by, for example, a moth-eye non-reflective film manufactured by Mitsubishi Rayon Co., Ltd.
  • Example 1 The organic EL element 10 in the planar light emitting device of this example has the same structure as that of the first embodiment shown in FIGS. 1A to 1C, in which the organic EL layer 13 between the anode 12 and the cathode 14 is a hole. It has a laminated structure of a transport layer, a light emitting layer, an electron transport layer, and an electron injection layer 1.
  • an ITO film having a film thickness of 100 nm is formed on one surface side of the first light-transmitting substrate 11 made of a PET substrate by a sputtering method. did.
  • baking was performed after a positive resist (OFPR800LB manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to the entire surface of the first translucent substrate 11 on the one surface side by a spin coat method.
  • ultraviolet exposure was performed using a separately prepared glass mask, and the resist was patterned by removing the exposed portion of the resist with a developer (NMD-W manufactured by Tokyo Ohka Kogyo Co., Ltd.).
  • a portion of the ITO film not covered with the resist was etched with an etching solution (ITO-06N manufactured by Kanto Chemical Co., Inc.) to form an anode 12 made of a patterned ITO film.
  • the resist was stripped with a resist stripper (stripping solution 106 manufactured by Tokyo Ohka Kogyo Co., Ltd.).
  • a resist stripper stripper
  • an ITO target was used as a target, and the film formation temperature was 100 ° C.
  • the first translucent substrate 11 on which the above-described anode 12 is formed is ultrasonically cleaned with a neutral detergent and pure water for 10 minutes each, and then in vacuum at a predetermined drying temperature (80 ° C.) at a predetermined temperature. Drying was performed for a drying time (2 hours), and then a surface cleaning treatment was performed for a predetermined time (10 minutes) with ultraviolet rays (UV) and ozone (O 3 ).
  • the first translucent substrate 11 was placed in a chamber of a vacuum evaporation apparatus, and ⁇ -NPD was formed as a hole transport layer with a thickness of 40 nm.
  • a light emitting layer having a thickness of 40 nm in which 5% rubrene was doped in aluminum-tris [8-hydroxyquinoline] (hereinafter abbreviated as Alq 3 ) was formed on the hole transport layer.
  • Alq 3 was formed as an electron transport layer with a thickness of 40 nm on the light emitting layer.
  • lithium fluoride (LiF) was formed as an electron injection layer with a thickness of 1 nm on the electron transport layer, and then aluminum was formed as a cathode 14 with a thickness of 80 nm.
  • the organic EL element 10 After manufacturing the organic EL element 10 described above, the organic EL element 10 was transported to a glove box in a dry nitrogen atmosphere having a dew point of ⁇ 86 ° C. or less without being exposed to the air. Thereafter, a light extraction structure 50 made of a prism sheet with a pressure-sensitive adhesive (the period of the concavo-convex structure was about 3 ⁇ m) was attached to the other surface of the first light-transmitting substrate 11 in advance by vacuum drying. Next, the first light-transmitting substrate 11 and the second light-transmitting substrate 21 were bonded through the bonding portion 29.
  • a protective part 30 made of a glass substrate in which a water absorbing material 40 made of getter kneaded with calcium oxide is attached to the inner bottom surface of the housing recess 31 is prepared, and the protective part 30 and the second translucent substrate 21 are prepared. Were joined through a joint 39.
  • Example 2 As Example 2, a planar light emitting device having the same configuration as that of Example 1 and using a PEN substrate as the first translucent substrate 11 was produced.
  • Example 3 As Example 3, a planar light emitting device having the same configuration as that of Example 1 and using a PES substrate as the first translucent substrate 11 was produced.
  • Comparative Example 1 As Comparative Example 1, a planar light emitting device having the same configuration as that of Example 1 and using a non-alkali glass substrate having a refractive index of 1.5 at a wavelength of 550 nm as the first light-transmitting substrate 11 is manufactured. did.
  • Embodiment 2 The basic configuration of the planar light emitting device of this embodiment shown in FIG. 14 is substantially the same as that of the first embodiment, and the structure of the light extraction structure portion 50 is different.
  • symbol is attached
  • the light extraction structure 50 in the present embodiment does not fall below the refractive index of the portion in contact with the light extraction structure 50 in the organic EL element 10 (in the example of FIG. 14, the refractive index of the first light-transmissive substrate 11).
  • a base material 52 made of a light-transmitting material having a refractive index in the example of FIG. 14, a refractive index higher than the refractive index of the first light-transmitting substrate 11
  • the base material 52 dispersed in the base material 52 is refracted. It is composed of a large number of light diffusers 53 with different rates.
  • the light extraction structure 50 includes the base material 52 disposed so as to contact the one surface of the organic EL element 10 and the light diffuser dispersed in the base material 52. 53.
  • the base material 52 has a refractive index that is equal to or higher than a portion of the organic EL element 10 that is in contact with the base material 52 (first translucent substrate 11 in the example of FIG. 14).
  • the light diffuser 53 has a refractive index different from that of the base material 52.
  • the light diffuser 53 may be any material that is different in refraction from the base material 52. In order to improve the diffusibility, a material having a large refractive index difference from the base material 52 is preferable and does not absorb light. Material is preferred.
  • the light diffuser 53 is a fine particle. Further, the light diffuser 53 may be fine particles or holes. That is, the light extraction structure 50 includes a base material 52 disposed so as to be in contact with the one surface of the organic EL element 10, and a hole (light diffuser 53) formed in the base material 52. Also good.
  • the base material 52 is a medium that is not less than a portion (first translucent substrate 11 in the example of FIG. 14) in contact with the base material in the organic EL element 10 and a hole (light diffuser 53). Preferably have a different refractive index.
  • the light diffuser 53 As the light extraction structure 50 satisfying such conditions, as the light diffuser 53, a structure in which a light diffuser 53 made of nano metal particles, titanium oxide (TiO 2 ) particles or the like is dispersed in a base material 52 made of resin. In addition, a structure in which the light diffuser 53 made of holes is dispersed in a base material 52 made of resin can be considered.
  • thermosetting or ultraviolet curable resin is used to bond the first translucent substrate 11 and the second translucent substrate 21 of the organic EL element 10 together. It is possible to have a function as an agent. Of course, the first translucent substrate 11 and the second translucent substrate 21 are bonded to each other with an adhesive different from the base material 52 without giving the base material 52 an adhesive function. Of course, it is also good.
  • the average size of the light diffuser 53 is preferably in the range of 0.5 ⁇ m to 50 ⁇ m, and preferably about 0.7 ⁇ m to 10 ⁇ m.
  • the average size of the light diffuser 53 is smaller than 0.5 ⁇ m, the interaction (refraction and interference) between the light and the light diffuser 53 does not occur, so the light traveling direction does not change.
  • the average size of the light diffuser 53 becomes too large, the total light transmittance of the light extraction structure portion 50 may decrease, and the light extraction efficiency may decrease.
  • an index called a haze value is generally used as a value quantitatively indicating the diffusibility.
  • the haze value is a percentage obtained by dividing the diffuse light transmittance of the test piece by the total light transmittance.
  • the haze value increases, the total light transmittance decreases, but it is desirable that both the haze value and the total light transmittance be high.
  • connection portion 64 that connects the cathode 14 of the organic EL element 10 and the external connection electrode 24 is formed of the same material as the cathode 14 at the same time as the cathode 14, but as in the first embodiment. Of course, it may be formed separately from the cathode 14.
  • the total reflection loss of light emitted from the light emitting layer of the organic EL layer 13 and reaching the second light transmitting substrate 21 can be reduced, and the light extraction efficiency can be improved.
  • the difference in refractive index between the base material 52 and the light diffuser 53 can be easily increased, the diffusion effect can be enhanced, and light absorption occurs. It is difficult to improve the light extraction efficiency.
  • the light diffuser 53 is composed of fine particles, a base material 52 in which the fine particles as the light diffuser 53 are dispersed is interposed between the organic EL element 10 and the second translucent substrate 21. Since the light extraction structure 50 can be formed by the above, the light extraction structure 50 can be easily formed.
  • the moth-eye structure 80 described in the first embodiment when the moth-eye structure 80 described in the first embodiment is formed on the surface of the second translucent substrate 21 opposite to the organic EL element 10 side by the nanoimprint method.
  • the front luminance and the external quantum efficiency were each improved by 4%.
  • the AR film described in the first embodiment may be provided on the surface of the second light transmitting substrate 21 opposite to the organic EL element 10 side.
  • the concavo-convex structure portion 51 of the light extraction structure portion 50 is an organic EL in the second translucent substrate 21.
  • a transparent portion 54 made of a material is provided on the side facing the element 10 and having a refractive index greater than or equal to the refractive index of the first translucent substrate 11 between the concavo-convex structure portion 51 and the first translucent substrate 11.
  • a transparent portion 54 made of a material is provided on the side facing the element 10 and having a refractive index greater than or equal to the refractive index of the first translucent substrate 11 between the concavo-convex structure portion 51 and the first translucent substrate 11.
  • a transparent portion 54 made of a material is provided on the side facing the element 10 and having a refractive index greater than or equal to the refractive index of the first translucent substrate 11 between the concavo-convex structure portion 51 and the first translucent substrate 11.
  • a transparent portion 54 made of a material is provided on the side facing the element 10 and having a refractive index greater than or equal to the
  • substrate 21 is comprised with the glass substrate, and the uneven structure part 51 processes the glass substrate which comprises the 2nd translucent board
  • the concavo-convex structure portion 51 is formed by the blast method, it has a ground glass shape.
  • the refractive index of the light emitting layer is 1.7
  • the refractive index of the portion (hole transport layer, anode 12 etc.) interposed between the light emitting layer and the first translucent substrate 11 is the same
  • the first When PET having a refractive index of 1.71 is adopted as the material of the transparent substrate 11, the transparent material of the transparent portion 54 is, for example, Mitsubishi Gas Chemical, which is a kind of ultraviolet curable high refractive index resin.
  • PEN having a refractive index of 1.75 is adopted as the material of the first light transmissive substrate 11, for example, a matching material having a refractive index of 1.75 or more is used as the light transmissive material of the transparent portion 54. Oil may be used.
  • the planar light emitting device of this embodiment has one surface (one surface in the thickness direction, the lower surface in FIG. 15) and the other surface opposite to the one surface (the other surface in the thickness direction, the upper surface in FIG. 15).
  • the organic EL element 10 that emits light from the one surface, and is transparent to the light emitted from the organic EL element 10, and is disposed so as to face the one surface of the organic EL element 10.
  • a second light-transmissive substrate (protective substrate) 21 having one surface (upper surface in FIG. 15) facing the one surface of the organic EL element 10 and the other surface of the organic EL element 10.
  • a protective portion 30 that forms a housing for storing the organic EL element 10 together with the second light-transmitting substrate 21 so as to protect it from water, and the one surface of the organic EL element 10 and the second light-transmitting substrate 21.
  • a second translucent substrate interposed therebetween It provided to suppress light extraction structure 50 the reflection of the emitted light (total reflection) from the organic EL element 10 in one of the one surface.
  • the organic EL element 10 includes the organic EL layer 13 including a light emitting layer that emits light and a first light-transmitting property with respect to light emitted from the light emitting layer.
  • the light emitting layer is formed on the one surface (the upper surface in FIG. 15) of the first light transmitting substrate 11.
  • the one surface of the organic EL element 10 is the other surface (the lower surface in FIG. 15) opposite to the one surface of the first translucent substrate 11.
  • the first light transmissive substrate 11 has a higher refractive index than the second light transmissive substrate 21.
  • the second light transmitting substrate 21 has higher weather resistance and waterproofness than the first light transmitting substrate 11.
  • the first translucent substrate 11 is a plastic substrate (for example, PET, PEN, PES, PC), and the second translucent substrate 21 is a glass substrate (non-alkali glass substrate, soda lime glass substrate). is there.
  • the planar light emitting device includes a transparent portion 54 that is transparent to the light emitted from the organic EL element 10 and has a refractive index higher than that of the first transparent substrate 11.
  • the light extraction structure portion 50 is a concavo-convex structure portion 51 provided on the one surface of the second translucent substrate 21.
  • the transparent part 54 is interposed between the first translucent substrate 11 and the concavo-convex structure part 51.
  • the concavo-convex structure portion 51 has a refractive index equal to or lower than that of the second translucent substrate 21.
  • the concavo-convex structure portion 51 has a concavo-convex structure having periodicity.
  • the period P of the concavo-convex structure is not less than 1 ⁇ 4 and not more than 10 times the wavelength of light emitted from the organic EL element 10.
  • the organic EL in the second light transmissive substrate 21 is compared with the case where the space 70 exists between the second light transmissive substrate 21 and the organic EL element 10. There is an advantage that the Fresnel loss on the element 10 side can be eliminated.
  • the AR film or the moth-eye structure 80 described in the first embodiment is formed on the surface of the second light transmissive substrate 21 opposite to the organic EL element 10 (see FIG. 12). If it is provided, the front luminance and the external quantum efficiency can be improved.
  • the basic configuration of the planar light emitting device of the present embodiment is substantially the same as that of the first embodiment.
  • the protection unit 30 is configured by a flat glass substrate, and the protection unit 30 and the second light transmitting device are formed.
  • the joining portion 39 for joining the conductive substrate 21 is formed of frit glass.
  • symbol is attached
  • the heat transfer section 34 that transfers the heat generated in the organic EL element 10 to the protection section 30 side is provided on the other surface side of the organic EL element 10. That is, the planar light emitting device of the present embodiment is interposed between the other surface of the organic EL element 10 and the protection unit 30 and dissipates heat generated in the organic EL element 10 to the protection unit 30 side ( (Radiating member) 34 is provided.
  • the heat transfer section 34 is formed so as to cover the exposed portions of the anode 12, the organic EL layer 13, and the cathode 14 on the one surface side of the first translucent substrate 11.
  • Such a heat transfer section 34 is, for example, a gel-like silicone resin, a gel-like fluorine-based resin, a heat-conducting grease, or the like having a higher thermal conductivity than that of an inert gas, or a heat-conducting property compared to an inert gas. What is necessary is just to form with a liquid (for example, silicone oil, paraffin oil, etc.) with a high rate.
  • a liquid for example, silicone oil, paraffin oil, etc.
  • the organic EL element 10 in the present embodiment has a planar layout as shown in FIG. 17A, and among the other surfaces of the first translucent substrate 11 (see FIG. 16), the anode 12 and the organic The region where the EL layer 13 (see FIG. 16) and the cathode 14 overlap is the light emitting surface.
  • the organic EL element 10 has a shape in which the anode 12 and the cathode 14 intersect each other in a plan view, and the anode 12 intersects the cathode 14 ( In the x-axis direction of the xy coordinate plane shown on the right side of FIG.
  • the light-transmitting substrate 11 is formed over the entire length, and the cathode 14 intersects the anode 12 (FIG. 17 ( The transparent substrate 11 is formed over the entire length in the y-axis direction of the xy coordinate plane shown on the right side of a).
  • the organic EL element 10 includes a large number of organic EL elements 10 on a plastic substrate (plastic film) 110 capable of obtaining a large number of first light-transmitting substrates 11. Is formed and then divided into individual organic EL elements 10.
  • the anodes 12 of the organic EL elements 10 adjacent in the x-axis direction are continuous, and the cathodes 14 of the organic EL elements adjacent in the y-axis direction are continuous.
  • a large number of organic EL elements 10 are arranged in a matrix on a plastic substrate 110 capable of obtaining a large number.
  • a large number can be obtained.
  • the material removal from the plastic substrate 110 that can be individually separated is improved, and the material yield can be improved.
  • the area of the light emitting surface can be increased while securing electrical connection portions to the anode 12 and the cathode 14 of the organic EL element 10, and the first translucent substrate 11 is exposed on the one surface side.
  • the area of the part to be performed can be reduced.
  • a disk-shaped blade may be used as a means for cutting the plastic substrate 110 on which a large number of organic EL elements 10 are formed.
  • the connecting portions 62 and 64 that electrically connect the anode 12 and the cathode 14 to the external connection electrodes 22 and 24 are configured by bonding wires. Therefore, there is no degassing from the connecting portions 62 and 64.
  • the heat transfer section 34 is provided between the organic EL element 10 and the protection section 30, the heat generated in the organic EL element 10 is efficiently radiated to the protection section 30 side. Accordingly, the lifetime of the organic EL element 10 can be extended and the luminance can be increased.
  • the joining part 39 that joins the protection part 30 and the second light-transmitting substrate 21 is formed of frit glass, so that outgas from the joining part 39 is prevented.
  • the moisture resistance can be increased and long-term reliability can be improved.
  • the bonding portion 39 is formed of a resin material such as a thermosetting resin, it is preferable to provide a sealing allowance of 3 mm or more in order to ensure airtightness. Since it is formed of frit glass, airtightness can be ensured while the sealing margin is about 1 mm. Therefore, the area of the non-light emitting part in the front view of the planar light emitting device of the present embodiment can be reduced.
  • an adhesive film, a thermosetting resin, an ultraviolet curable resin, an adhesive (for example, an epoxy resin) is formed on the one surface side of the second translucent substrate 21 in which the external connection electrodes 22 and 24 are formed on one surface side.
  • An acrylic resin, a silicone resin, etc. are arranged to obtain the structure shown in FIG.
  • the organic EL element 10 is aligned with the one surface side of the second light-transmitting substrate 21, and the organic EL element 10 is aligned as shown in FIG. 18 (c).
  • the anode 12 and the cathode 14 of the organic EL element 10 are respectively connected.
  • the external connection electrodes 22 and 24 are electrically connected by connection portions 62 and 64 made of bonding wires.
  • the structure shown in FIG. 18D is obtained by providing the heat transfer portion 34 made of a gel-like silicone resin or the like on the other surface side of the organic EL element 10.
  • a joint portion 39 made of glass frit is disposed on the one surface side of the second light transmissive substrate 21, and then the protection portion 30 is attached to the second light transmissive substrate 21. Positioning is performed while facing the one surface side (see FIG. 18E). Subsequently, the protective part 30 may be brought into contact with the joint part 39, and the joint part 39 may be heated with laser light or the like to join the second light-transmitting substrate 21 and the protective part 30, respectively.
  • an appropriate impurity may be added to the frit glass so that the frit glass is easily heated by the laser beam.
  • the heat transfer section 34 is made of liquid, for example, a liquid injection hole and an air vent hole are provided in the protection section 30 in advance, and the joint section 39 is connected to the second translucent substrate 21 and the protection section 30. After joining with each, the heat transfer part 34 may be provided by injecting liquid from the injection hole, and then the injection hole and the air vent hole may be sealed with an adhesive or the like.
  • the above-described joint portion 39 functions as a spacer between the second light-transmissive substrate 21 and the protection portion 30.
  • the joint portion 39 is not limited to being formed using only frit glass, for example, Alternatively, a frame member made of an alloy and a frit glass formed on a surface of the frame member facing each of the second translucent substrate 21 and the protection unit 30 may be used.
  • a frame member made of an alloy and a frit glass formed on a surface of the frame member facing each of the second translucent substrate 21 and the protection unit 30 may be used.
  • an alloy that is a material of the frame member Kovar having a thermal expansion coefficient close to that of the second light-transmitting substrate 21 and the protection unit 30 is preferably used, but is not limited to Kovar.
  • 42 alloy may be used.
  • Kovar is an alloy in which nickel and cobalt are blended with iron and has a low coefficient of thermal expansion near normal temperatures.
  • the coefficient of thermal expansion of alkali-free glass, blue soda glass, borosilicate glass, etc. It has a value close to.
  • An example of the component ratio of Kovar is wt%, nickel: 29 wt%, cobalt: 17 wt%, silicon: 0.2 wt%, manganese: 0.3 wt%, iron: 53.5 wt%.
  • the component ratio of Kovar is not particularly limited, and an appropriate component ratio may be employed so that the coefficient of thermal expansion of Kovar matches the coefficient of thermal expansion of the second light-transmitting substrate 21 and the protection unit 30. .
  • frit glass in this case, it is preferable to employ a material capable of aligning the thermal expansion coefficient with the thermal expansion coefficient of the alloy.
  • the alloy is Kovar
  • Kovar glass as the material of the frit glass.
  • frit glass is formed in a predetermined pattern (in this embodiment, a rectangular frame pattern) on both sides in the thickness direction of a plate material made of an alloy such as Kovar. After applying, drying, and firing, the joining portion 39 can be formed by performing a punching process.
  • the basic configuration of the planar light emitting device of the present embodiment is substantially the same as that of the first embodiment.
  • the protection unit 30 is a flat glass substrate, and between the organic EL element 10 and the protection unit 30.
  • a heat dissipating member 35 for dissipating the heat generated in the organic EL element 10 to the protective part 30 side is interposed (between the other surface of the organic EL element 10 and the protective part 30).
  • symbol is attached
  • a heat radiating sheet such as a heat radiating silicone film (for example, a gel-like Sarcon (registered trademark) sheet) or a carbon film, or heat conductive grease may be used.
  • the planar light emitting device of the present embodiment is electrically connected to the anode 12 and the cathode 14 of the organic EL element 10 on one surface side facing the second light-transmissive substrate 21 in the protection unit 30.
  • External connection electrodes 22 and 24 are provided, and the organic EL element 10 is fixed only to the protection unit 30. That is, the organic EL element 10 is fixed to the protection unit 30 via the heat radiating member 35 so as not to contact the second translucent substrate 21.
  • the cathode 14 is fixed to the protection unit 30 by the heat radiating member 35, and the anodes 12 and the cathodes 14 are connected portions 62 and 64 each made of a conductive paste (for example, silver paste).
  • a conductive paste for example, silver paste
  • the planar light emitting device of this embodiment includes a heat dissipation member 35 that is interposed between the other surface of the organic EL element 10 and the protection unit 30 and transmits heat generated in the organic EL element 10 to the protection unit 30.
  • the organic EL element 10 is fixed to the protection unit 30 so as not to contact the second light transmissive substrate 21.
  • an electric insulation such as a Sarcon (registered trademark) sheet is formed on the one surface side of the protective part 30 made of a glass substrate on which the external connection electrodes 22 and 24 are formed on one surface side. Alignment is performed with the heat dissipating member 35 made of a gel-like heat dissipating sheet having heat conductivity and facing each other.
  • the external connection electrodes 22 and 24 may be formed by, for example, a plating method, a sputtering method, a printing method, or the like.
  • the external connection electrodes 22 and 24 are formed by a plating method, as the material of the external connection electrodes 22 and 24, for example, PdNiAu or the like may be employed.
  • a conductive paste (silver paste or the like) to be the connection parts 62 and 64 is applied by the dispenser 100. Apply.
  • the other surface side of the first light-transmitting substrate 11 of the organic EL element 10 is adsorbed and held by the adsorption collet 90, and the organic EL element 10 is Positioning is performed facing one surface side.
  • the cathode 14 made of aluminum or the like is vapor-deposited using a mask during the manufacture of the organic EL element 10, two alignment marks (not shown) are provided with the first light-transmitting property.
  • the cathode 11 is formed simultaneously with both ends of one diagonal line on the one surface of the substrate 11.
  • an imaging device such as a CCD camera that images the organic EL element 10 from the other surface side of the first translucent substrate 11, and image processing for recognizing the alignment mark by image processing the image obtained from the imaging device
  • a mounting apparatus that includes an apparatus and a control device that includes a computer that controls a robot arm that includes a suction collet 90 at the tip based on the recognition result of the image processing apparatus may be used.
  • the computer of the control device may be loaded with an appropriate program for controlling the robot arm.
  • an adsorption hole (vacuum suction hole) 91 for adsorbing the organic EL element 10 is formed in the adsorption collet 90.
  • the adsorption collet 90 is made of resin (for example, wholly aromatic polyimide resin, polyamide resin, imide resin, or the like) in order to prevent the first translucent substrate 11 and the concavo-convex structure portion 51 from being damaged. Preferably it is formed.
  • the recessed part 92 which can accommodate the uneven structure part 51 is provided in the adsorption
  • a bonding portion 39 made of glass frit is disposed on the one surface side of the protection portion 30, and then the second light-transmitting substrate 21 is aligned with the one surface side of the protection portion 30 facing. Subsequently, the second light-transmitting substrate 21 may be brought into contact with the bonding portion 39, and the bonding portion 39 may be heated with laser light or the like and bonded to the protection portion 30 and the second light-transmitting substrate 21, respectively.
  • an appropriate impurity may be added to the frit glass so that the frit glass is easily heated by the laser beam.
  • the space 70 can be secured without the bonding portion 29 described in the first embodiment providing the concave portion 21a of the second light transmissive substrate 21.
  • the joint portion 29 (see FIG. 1A) can be seen in the front view and the appearance may be deteriorated, or between the joint portion 29 and the first light-transmissive substrate 11.
  • voids are formed at the interface or at the interface between the bonding portion 29 and the second light-transmitting substrate 21.
  • the joint portion 29 described in the first embodiment (see FIG. 1A) between the first light transmissive substrate 11 and the second light transmissive substrate 21. ), (C)) is unnecessary, the appearance in front view is improved, and there is no need to worry about voids, which facilitates appearance inspection during manufacturing.
  • the planar light emitting device of the present embodiment as described above, if the entire other surface side of the first translucent substrate 11 is adsorbed by the adsorption collet 90 at the time of manufacture, It becomes possible to reduce the warp of the translucent substrate 11.
  • the organic EL element 10 when the organic EL element 10 is handled by the adsorption collet 90 at the time of manufacture, the other surface side of the first translucent substrate 11 can be adsorbed and handled.
  • the possibility that the cathode 14 is peeled off or the cathode 14 is damaged can be reduced, and the production yield can be improved.
  • the AR film described in the first embodiment may be provided on at least one surface of the second light transmissive substrate 21 in the thickness direction, or the second light transmissive substrate 21 may be provided.
  • the moth-eye structure 80 (see FIG. 12) may be provided on at least one surface side in the thickness direction, and in either case, the front luminance and the external quantum efficiency can be improved.
  • the basic configuration of the planar light emitting device of this embodiment is substantially the same as that of the fourth embodiment.
  • the organic EL is included in the space surrounded by the second light-transmitting substrate 21 and the protection unit 30.
  • the difference is that a plurality of elements 10 are provided, and the plurality of organic EL elements 10 are arranged in a plane parallel to the second light-transmissive substrate 21.
  • symbol is attached
  • the planar light emitting device of this embodiment includes a plurality of organic EL elements 10, and the plurality of organic EL elements 10 are arranged in a plane parallel to the one surface of the second light-transmissive substrate 21. Yes.
  • the sheet resistance of the anode 12 is larger than the sheet resistance of the cathode 14 using a metal film.
  • the voltage gradient applied to the organic EL layer 13 between the anode 12 and the cathode 14 increases, resulting in increased brightness unevenness, a decrease in efficiency, and a shortened life.
  • the in-plane uniformity of the thickness of the anode 12, the organic EL layer 13, the cathode 14 and the like is lowered, and the utilization efficiency of the material is lowered.
  • a plurality of organic EL elements 10 are arranged side by side. Therefore, when a large light emitting area is ensured, the number of organic EL elements 10 is one. As compared with the above, since the area of the light emitting surface of each organic EL element 10 can be reduced, the luminance unevenness can be reduced, the efficiency can be improved, and the life can be extended.
  • 16 organic EL elements 10 are arranged in a 4 ⁇ 4 matrix as shown in FIG. 22, and the external connection electrodes 22 are formed in a comb shape.
  • a plurality of (four in the illustrated example) organic EL elements 10 are arranged in the extending direction of the comb teeth 22b between adjacent comb teeth 22b, and the comb teeth 22b and the anode 12 of each organic EL element 10 are connected.
  • the planar light emitting device that is electrically connected by the unit 62, current concentration of the organic EL element 10 can be suppressed. Further, in such a planar light emitting device, only a good organic EL element 10 can be arranged after a large number of organic EL elements 10 having a small area are formed, so that the cost can be reduced.
  • the planar light emitting device is not limited to the configuration of FIG. 22, and for example, as shown in FIG. 23, the organic EL element 10 includes the anode 12 along the longitudinal direction of the strip-shaped first translucent substrate 11. These comb teeth 22b and the anode 12 may be connected to the comb teeth 22b over substantially the entire length of the anode 12 in the longitudinal direction.
  • the number of organic EL elements 10 in the planar light emitting device is not particularly limited.
  • the planar light emitting device may be one in which four organic EL elements 10 are arranged in a 2 ⁇ 2 matrix.
  • a large number of organic EL elements 10 are formed on a plastic substrate 110 capable of obtaining a large number.
  • the plastic substrate 110 is cut by using a disk-shaped blade 120 to be separated into individual organic EL elements 10.
  • a second translucent substrate 21 having external connection electrodes 22 and 24 formed on one surface side is prepared.
  • each organic EL element 10 is mounted on the one surface side of the second translucent substrate 21.
  • the first light-transmitting substrate 11 of the organic EL element 10 is connected to the one surface side of the second light-transmitting substrate 21 via a joint (not shown). And join.
  • connection portions 62, 63 and 64 made of bonding wires as shown in FIG. Connect.
  • the connecting portions 62, 63, and 64 are not limited to bonding wires, and for example, conductive paste or conductive tape may be employed.
  • a bonding section 39 made of glass frit is disposed on the one surface side of the second light-transmissive substrate 21, and then the protection section 30 is provided. Is aligned with the second translucent substrate 21 facing the one surface side. Subsequently, the protective part 30 may be brought into contact with the joint part 39, and the joint part 39 may be heated with laser light or the like to join the second light-transmitting substrate 21 and the protective part 30, respectively.
  • an appropriate impurity may be added to the frit glass so that the frit glass is easily heated by the laser beam.
  • the heat transfer section 34 is made of liquid, for example, a liquid injection hole and an air vent hole are provided in the protection section 30 in advance, and the joint section 39 is connected to the second translucent substrate 21 and the protection section 30. After joining with each, the heat transfer part 34 may be provided by injecting liquid from the injection hole, and then the injection hole and the air vent hole may be sealed with an adhesive or the like.
  • the AR film described in the first embodiment may be provided on at least one surface of the second light transmissive substrate 21 in the thickness direction, or the second light transmissive substrate 21 may be provided.
  • the moth-eye structure 80 (see FIG. 12) may be provided on at least one surface side in the thickness direction, and in either case, the front luminance and the external quantum efficiency can be improved.
  • Embodiment 7 The basic configuration of the planar light emitting device of this embodiment is substantially the same as that of the fifth embodiment, and is different in that a plurality of organic EL elements 10 are fixed to the protection unit 30 as shown in FIG.
  • symbol is attached
  • the organic EL element 10 has a rectangular shape in plan view.
  • a part of the anode 12 is exposed at both ends in the short direction of the first light-transmitting substrate 11 at both ends in the longitudinal direction of the first light-transmitting substrate 11,
  • a part of the cathode 14 is provided in the center.
  • a part of the first translucent substrate 11 is exposed between the anode 12 and the cathode 14 in the short direction.
  • 26A1 and 26A2 are a plan view and a cross-sectional view, respectively, showing a state in which the anode 12 is formed on the one surface side of the first light-transmitting substrate 11, and FIGS. In b2), a plan view and a cross-sectional view of the state in which the anode 12 and the organic EL layer 13 are formed on the one surface side of the first translucent substrate 11 are shown.
  • double-sided conductive tapes 162 and 164 are bonded to the anode 12 and the cathode 14, respectively, and are fixed to the protective part 30 by these double-sided conductive tapes 162 and 164.
  • the double-sided conductive tapes 162 and 164 have conductivity in the thickness direction, and for example, a conductive baseless double-sided tape 7025 manufactured by Teraoka Seisakusho can be used.
  • the organic EL element 10 can be fixed and electrically connected to the protection unit 30 without using a conductive paste, and the mounting process of the organic EL element 10 can be performed at a low temperature.
  • the AR film described in the first embodiment may be provided on at least one surface of the second light transmissive substrate 21 in the thickness direction, or the second light transmissive substrate 21 may be provided.
  • the moth-eye structure 80 (see FIG. 12) may be provided on at least one surface side in the thickness direction, and in either case, the front luminance and the external quantum efficiency can be improved.
  • the basic configuration of the planar light emitting device of the present embodiment is substantially the same as that of the seventh embodiment, and as shown in FIGS. 28A and 28B, a part of the adjacent organic EL elements 10 is overlapped to form an anode. 12 is electrically connected by a double-sided conductive tape 162, and the cathodes 14 are electrically connected by a double-sided conductive tape 164.
  • symbol is attached
  • the area of the non-light emitting portion formed between the adjacent organic EL elements 10 can be reduced as compared with the seventh embodiment.
  • the AR film described in the first embodiment may be provided on at least one surface of the second light transmissive substrate 21 in the thickness direction, or the second light transmissive substrate 21 may be provided.
  • the moth-eye structure 80 (see FIG. 12) may be provided on at least one surface side in the thickness direction, and in either case, the front luminance and the external quantum efficiency can be improved.
  • the basic configuration of the planar light emitting device of the present embodiment is substantially the same as that of the first embodiment.
  • a plurality (four in the illustrated example) of organic EL elements 10 are provided.
  • the plurality of organic EL elements 10 are different from each other in that the first translucent substrate 11 is shared. Since other configurations are the same as those of the first embodiment, illustration and description thereof are omitted.
  • the present embodiment four organic EL elements 10 are arranged in a 2 ⁇ 2 matrix, and these four organic EL elements 10 are connected in series. Specifically, on the one surface side of the first translucent substrate 11, the cathode 14 of one organic EL element 10 and the anode 12 of the other organic EL element 10 among the adjacent organic EL elements 10 are connected. It is electrically connected by a conductive layer straddling both.
  • the area of the light emitting portion can be increased, and the area of the non-light emitting portion formed between the adjacent organic EL elements 10 can be reduced. .
  • the AR film described in the first embodiment may be provided on at least one surface of the second light transmissive substrate 21 in the thickness direction, or the second light transmissive substrate 21 may be provided.
  • the moth-eye structure 80 (see FIG. 12) may be provided on at least one surface side in the thickness direction, and in either case, the front luminance and the external quantum efficiency can be improved.
  • the basic configuration of the planar light emitting device of this embodiment is substantially the same as that of the fifth embodiment.
  • a plurality of organic EL elements 10 are arranged side by side on the one surface side of the protection unit 30 and adjacent to each other.
  • the matching organic EL elements 10 are connected in series by a connecting portion 63 made of a conductive paste.
  • symbol is attached
  • each of the organic EL elements 10 is compared with the case where there is one organic EL element 10. Since the area of the light emitting surface of the organic EL element 10 can be reduced, the luminance unevenness can be reduced, the efficiency can be improved, and the life can be extended.
  • the AR film described in the first embodiment may be provided on at least one surface of the second light transmissive substrate 21 in the thickness direction, or the second light transmissive substrate 21 may be provided.
  • the moth-eye structure 80 (see FIG. 12) may be provided on at least one surface side in the thickness direction, and in either case, the front luminance and the external quantum efficiency can be improved.
  • the basic configuration of the planar light emitting device of the present embodiment is substantially the same as that of the fifth embodiment, and as shown in FIG. 31, a plurality of organic EL elements 10 are provided, and the plurality of organic EL elements 10 are used for the first light transmission.
  • the difference is that the conductive substrate 11 is shared.
  • symbol is attached
  • each of the organic EL elements 10 is compared with the case where there is one organic EL element 10. Since the area of the light emitting surface of the organic EL element 10 can be reduced, the luminance unevenness can be reduced, the efficiency can be improved, and the life can be extended.
  • the cathode 14 of each organic EL element 10 when forming the cathode 14 of each organic EL element 10 simultaneously by a vapor deposition method, a part of cathode 14 of one organic EL element 10 of the adjacent organic EL elements 10 and the other organic Since the layout design is such that a part of the anode 12 of the EL element 10 overlaps and is electrically connected in the thickness direction of the first light-transmitting substrate 11, the area of the non-light emitting portion can be reduced. It becomes.
  • the AR film described in the first embodiment may be provided on at least one surface of the second light transmissive substrate 21 in the thickness direction, or the second light transmissive substrate 21 may be provided.
  • the moth-eye structure 80 (see FIG. 12) may be provided on at least one surface side in the thickness direction, and in either case, the front luminance and the external quantum efficiency can be improved.
  • Embodiment 12 The planar light emitting device of the present embodiment shown in FIG. 32 has substantially the same basic configuration as that of the sixth embodiment, and has a light reflecting portion 190 on one surface side of the protective portion 30, and the organic EL element 10 The number of is different.
  • symbol is attached
  • the protection unit 30 has an inner surface (lower surface in FIG. 32) that faces the other surface (upper surface in FIG. 32) of the organic EL element 10.
  • a light reflecting portion 190 that reflects light emitted from the organic EL element 10 is provided on the inner surface of the protection portion 30.
  • the material of the light reflecting portion 190 is not particularly limited as long as it is a material having a high reflectivity with respect to the light emitted from the organic EL element 10.
  • aluminum, silver, a silver alloy, or the like can be adopted. is there.
  • a part of the light transmitted through the first light transmitting substrate 11 is part of the interface between the second light transmitting substrate 21 and the space 70, the second light transmitting substrate 21 and the outside.
  • Fresnel reflection at the interface with the atmosphere When a glass substrate is used as the second translucent substrate 21, approximately 4% of light is reflected by Fresnel at each interface, so that a total of approximately 8% of light is lost in calculation. .
  • the Fresnel-reflected light is reflected again on the cathode 14 side in the organic EL layer 13 and extracted, so that the loss is less than 8%.
  • the light reflecting portion 190 is provided in the protective portion 30, so that the light extraction efficiency can be improved.
  • the light extraction efficiency is higher than when the light reflecting portion 190 is not provided. However, it improved by about 2%.
  • the AR film described in the first embodiment may be provided on at least one surface of the second light transmissive substrate 21 in the thickness direction, or the second light transmissive substrate 21 may be provided.
  • the moth-eye structure 80 (see FIG. 12) may be provided on at least one surface side in the thickness direction, and in either case, the front luminance and the external quantum efficiency can be improved.
  • the planar light emitting device of this embodiment shown in FIG. 33 has substantially the same basic configuration as that of the tenth embodiment, except that a light reflecting portion 190 is provided on one surface side of the protective portion 30.
  • a light reflecting portion 190 is provided on one surface side of the protective portion 30.
  • symbol is attached
  • the protection unit 30 has an inner surface (upper surface in FIG. 33) that faces the other surface (lower surface in FIG. 33) of the organic EL element 10.
  • a light reflecting portion 190 that reflects light emitted from the organic EL element 10 is provided on the inner surface of the protection portion 30.
  • the basic function of the light reflecting unit 190 that is, the function of reflecting light is the same as that of the twelfth embodiment, but the light reflecting unit 190 in the present embodiment is one of the adjacent organic EL elements 10.
  • the anode 12 of the organic EL element 10 and the cathode 14 of the other organic EL element 10 also serve as auxiliary electrodes that are electrically connected via connection portions 63 and 63, respectively.
  • the light reflecting portion 190 does not necessarily have to serve as an auxiliary electrode.
  • the light reflecting portion 190 is provided in the protection portion 30, it is possible to improve the light extraction efficiency compared to the case where the light reflecting portion 190 is not provided.
  • the AR film described in the first embodiment may be provided on at least one surface of the second light transmissive substrate 21 in the thickness direction, or the second light transmissive substrate 21 may be provided.
  • the moth-eye structure 80 (see FIG. 12) may be provided on at least one surface side in the thickness direction, and in either case, the front luminance and the external quantum efficiency can be improved.
  • the planar light emitting device of the present embodiment shown in FIG. 34 has substantially the same basic configuration as that of the twelfth embodiment, and the protection unit 30 is on one side of the protection unit 30 opposite to the light extraction structure unit 50 side.
  • the point which has the heat-transfer part 200 formed with the material with high heat conductivity compared with the other part of the protection part 30 differs.
  • symbol is attached
  • the protection unit 30 has a light-transmitting property with respect to the light emitted from the organic EL element 10.
  • the protection part 30 has the inner surface (lower surface in FIG. 34) which opposes the said other surface (upper surface in FIG. 34) of the organic EL element 10, and the outer surface (upper surface in FIG. 34) on the opposite side to the said inner surface.
  • a light reflection unit 190 that reflects light emitted from the organic EL element 10 is provided.
  • the planar light emitting device of this embodiment includes a heat transfer unit 200 having a higher thermal conductivity than the protection unit 30, and the heat transfer unit 200 is provided on the outer surface of the protection unit 30.
  • the heat transfer unit 200 is provided on the outer surface of the protection unit 30 so as to cover the light reflection unit 190.
  • the heat transfer unit 200 is made of copper foil, but is not limited thereto, and may be made of, for example, aluminum foil.
  • the material of the heat transfer unit 200 is not limited to copper or aluminum, and for example, gold, silver, silicon, or the like can be used.
  • the thermal conductivity is copper: 398 W / (m ⁇ K), aluminum 236 W / (m ⁇ K), gold: 320 W / (m ⁇ K), silver: 420 W / (m ⁇ K), silicon: 168 W / (M ⁇ K).
  • the luminance difference between the central portion and the end of the planar light emitting device increases, resulting in a distribution of energy consumption.
  • the resulting temperature distribution increases. Therefore, there is a possibility that luminance unevenness and color unevenness due to partial element deterioration (deterioration of the organic EL element 10) and efficiency variation of the planar light emitting device may appear.
  • the heat-transfer part 200 is provided in the one surface side opposite to the light extraction structure part 50 side in the protection part 30, uniform heat distribution is aimed at. Therefore, it is possible to suppress the deterioration of the organic EL element 10. Further, in the planar light emitting device of the present embodiment, when it is used by being attached to an instrument body, the heat transfer section 200 is thermally coupled by joining the instrument body or a radiator member of the instrument body, etc. Thus, it is possible to improve the service life.
  • the light extraction efficiency is improved by about 2% as with the twelfth embodiment by including the light reflecting section 190.
  • the protection unit 30 includes the light reflection unit 190, but the light reflection unit 190 is not necessarily provided.
  • the planar light emitting device of the present embodiment shown in FIG. 35 has substantially the same basic configuration as that of the thirteenth embodiment, and the protection unit 30 is on one side of the protection unit 30 opposite to the light extraction structure unit 50 side.
  • the point which has the heat-transfer part 200 formed with the material with high heat conductivity compared with the other part of the protection part 30 differs.
  • symbol is attached
  • the protection unit 30 includes an inner surface (upper surface in FIG. 35) facing the other surface (lower surface in FIG. 35) of the organic EL element 10 and a side opposite to the inner surface. And an outer surface (a lower surface in FIG. 35).
  • a light reflecting portion 190 that reflects light emitted from the organic EL element 10 is provided on the inner surface of the protection portion 32.
  • planar light emitting device of this embodiment includes a heat transfer unit 200 having a higher thermal conductivity than the protection unit 30, and the heat transfer unit 200 is provided on the outer surface of the protection unit 30.
  • the heat transfer section 200 is provided on the one surface side opposite to the light extraction structure section 50 side in the protection section 30, it becomes possible to achieve uniform heat distribution and organic Deterioration of the EL element 10 can be suppressed. Further, in the planar light emitting device of the present embodiment, when it is used by being attached to an instrument body, the heat transfer section 200 is thermally coupled by joining the instrument body or a radiator member of the instrument body, etc. Thus, it is possible to improve the service life.
  • the light extraction efficiency is improved by including the light reflecting portion 190.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

 面状発光装置は、一面および上記一面とは反対側の他面を有し、上記一面から光を放射する有機EL素子と、上記有機EL素子から放射された光に対して透光性を有し、上記有機EL素子の上記一面に対向するように配置され、上記有機EL素子の上記一面に対向する一表面を有する保護基板と、上記有機EL素子の上記他面に対向するように配置され、上記保護基板とともに上記有機EL素子を水から保護するように収納するハウジングを形成する保護部と、上記有機EL素子の上記一面と上記保護基板との間に介在され、上記有機EL素子の上記一面と上記保護基板の上記一表面との少なくとも一方における上記有機EL素子から放射された光の反射を抑制する光取り出し構造部と、を備える。

Description

面状発光装置
 本発明は、面状発光装置に関するものである。
 従来から、有機エレクトロルミネッセンス素子(以下、有機EL素子と略称する)を利用した面状発光装置が各所で研究開発されている。
 有機EL素子としては、例えば、透光性基板(透明基板)の一表面側に、陽極となる透明電極、ホール輸送層、発光層(有機発光層)、電子注入層、陰極となる電極の積層構造を備えたものが知られている。この種の有機EL素子では、陽極と陰極との間に電圧を印加することによって発光層で発光した光が、透明電極および透光性基板を通して取り出される。
 有機EL素子は、自発光型の発光素子であること、比較的高効率の発光特性を示すこと、各種の色調で発光可能であること、などの特徴を有するものである。このため、有機EL素子は、表示装置(例えば、フラットパネルディスプレイなどの発光体など)や、光源(例えば、液晶表示機器のバックライトや照明光源など)としての適用が期待されており、一部では既に実用化されている。
 しかしながら、近年では、これらの用途に有機EL素子を応用展開するために、より高効率・長寿命・高輝度の有機EL素子の開発が望まれている。
 有機EL素子の効率を支配する要因は、主として、電気-光変換効率、駆動電圧、光取り出し効率の3つである。
 電気-光変換効率については、発光層の材料として燐光発光材料を用いることにより、外部量子効率が20%を超えるものが報告されている。この外部量子効率が20%という値は、内部量子効率に換算すると略100%であると考えられ、電気-光変換効率の観点では、いわゆる限界値に到達した例が実験的に確認されたといえる。また、駆動電圧の観点では、発光層のエネルギーギャップに相当する電圧の10~20%増し程度の電圧で比較的高輝度の発光を示す有機EL素子が得られるようになってきている。したがって、これら2つの要因(電気-光変換効率、駆動電圧)の改善による有機EL素子の効率向上は、あまり期待できない。
 一方、有機EL素子の光取り出し効率は、一般的に20~30%程度と言われている(この値は、発光パターンや、陽極と陰極との間の層構造によって多少変化する)。光取り出し効率は、光を発生する部位およびその周辺部を構成する材料が、高屈折率、吸光性、などの特性を有するため、屈折率の異なる材料どうしの界面での全反射、材料による光の吸収などによって、発光を観測する側の外界へ光を有効に伝搬できないために、上述のような低い値になるものと考えられる。すなわち、光取り出し効率が20~30%ということは、いわゆる発光として有効に活用できない光が全発光量の70~80%を占める、ということであり、光取り出し効率の向上による有機EL素子の効率の向上の期待値は非常に大きい。
 上述の背景に伴い、有機EL素子の分野においては、有機EL素子の光取り出し効率を向上させるための研究開発が各所で行われており、特に、発光層から透光性基板へ到達する光を増やす試みが多くなされている。ここで、有機EL素子では、発光層の屈折率が1.7程度、透明電極として一般的なITOの屈折率が1.8~2.0程度、透光性基板として一般的なガラス基板(ソーダライムガラス基板、無アルカリガラス基板など)の屈折率が1.5程度であるため、仮に透明電極の屈折率が1.7であるとしても、透明電極と透光性基板との界面で発生する全反射ロスは、全反射光の約50%に達する。なお、この約50%という値は、点光源近似で得られる値であり、発光が有機分子からの3次元放射光の積算であることを考慮して求めた値である。
 したがって、有機EL素子においては、発光層-透光性基板間の全反射ロスを低減することにより、光取り出し効率を大きく改善することが可能である。
 ここにおいて、発光層-透光性基板間の全反射ロスを低減するための最もシンプルで効果的なアプローチは、発光層-透光性基板間に存在する界面での屈折率差を低減することである。このようなアプローチにおいては、発光層の屈折率を下げる試みと、透光性基板の屈折率を上げる試みとが考えられる。前者の試みに関しては、材料の制約が大きく、場合によっては発光効率や寿命が大きく劣化する原因となるため、難しいのが現状である。一方、後者の試みに関しては、例えば、有機EL素子を形成する透光性基板として屈折率が1.85の高屈折率ガラス基板を用いることにより、光取り出し効率が向上することが知られている(例えば、文献1(米国特許第7053547号明細書)参照)。また、透光性基板として、酸素、水分などの気体を透過させないガスバリア性を有するガスバリア層が設けられ一般的なガラス基板よりも屈折率の高いプラスチック基板を用いることも知られている(文献2(米国特許第5693956号明細書)および文献3(日本国公開特許公報2004-322489号)参照)。上記文献2,3に開示されたものでは、防水性の向上を図りつつ光取り出し効率を向上させることが可能となる。上記文献2に開示された発光装置は、プラスチック基板の一表面側のバリア層上に形成された陽極と発光層と陰極との積層構造が、誘電体層からなる媒質を介してエポキシ樹脂からなる保護部により覆われており、プラスチック基板の他表面から光が出射される。
 また、水蒸気などのガスに起因した素子劣化防止効果を高めた有機EL素子としては、プラスチック基材上に、透明陽極層、発光媒体層、陰極層を順次積層した積層体を、ガラス基板と耐湿性フィルムとで密閉したものが提案されている(文献4(日本国公開特許公報第2002-373777)参照)。上記文献4に開示された有機EL素子では、プラスチック基材の水分含有率を、重量分率で0.2%以下としている。また、上記文献4には、プラスチック基材の一表面側(透明陽極層に接する面側)、あるいは、上記一表面側および他表面側に、ガスバリア層を形成しておくことにより、素子劣化防止効果を更に高めることができる旨が記載されている。
 上記特許文献1に開示されたように高屈折率ガラス基板を用いた有機EL素子では、高屈折率ガラス基板が高価であり、産業上の利用可能性が低いのが現状である。また、高屈折率ガラス基板は、一般的に重金属などの様々な不純物が含まれているため、脆くなったり耐候性が不十分なものが多い。
 また、上記特許文献2,3のように、透光性基板としてバリア層が設けられたプラスチック基板を用いた有機EL素子では、高屈折率ガラス基板を用いる場合に比べて、低コスト化を図れる。しかしながら、上記特許文献2,3に開示された有機EL素子では、光取り出し面となるプラスチック基板の上記他表面に傷が付きやすい。また、有機材料は、ガラスに比べて耐候性が低く、紫外線に弱いので、例えば屋外で使用する場合などに、プラスチック基板および発光層の長期信頼性が低下してしまう懸念がある。また、バリア層が設けられたプラスチック基板は、バリア層を設けていない一般的なプラスチック基板に比べて高価であり、コスト面でのデメリットがある。
 また、上記特許文献4に開示された有機EL素子では、発光媒体層-大気(採光側の大気)間に存在する界面(屈折率界面)の数が増えるので、全反射ロスおよびフレネルロスが増えてしまい、光取り出し効率が低下してしまう。
 本発明は上記事由に鑑みて為されたものであり、その目的は、光取り出し効率を向上でき、且つ、耐候性および防水性を高めることが可能な面状発光装置を提供することにある。
 本発明に係る面状発光装置の第1の形態は、一面および上記一面とは反対側の他面を有し、上記一面から光を放射する有機EL素子と、上記有機EL素子から放射された光に対して透光性を有し、上記有機EL素子の上記一面に対向するように配置され、上記有機EL素子の上記一面に対向する一表面を有する保護基板と、上記有機EL素子の上記他面に対向するように配置され、上記保護基板とともに上記有機EL素子を水から保護するように収納するハウジングを形成する保護部と、上記有機EL素子の上記一面と上記保護基板との間に介在され、上記有機EL素子の上記一面と上記保護基板の上記一表面との少なくとも一方における上記有機EL素子から放射された光の反射を抑制する光取り出し構造部と、を備える。
 本発明に係る面状発光装置の第2の形態は、上記第1の形態において、上記有機EL素子は、光を放射する発光層と、上記発光層から放射される光に対して透光性を有する形成基板とを備え、上記発光層は、上記形成基板の一表面上に形成され、上記有機EL素子の上記一面は、上記形成基板の上記一表面とは反対側の他表面であり、上記形成基板は、上記保護基板よりも高い屈折率を有する。
 本発明に係る面状発光装置の第3の形態は、上記第2の形態において、上記保護基板は、上記形成基板よりも高い耐候性および防水性を有する。
 本発明に係る面状発光装置の第4の形態は、上記第3の形態において、上記形成基板は、プラスチック基板であり、上記保護基板は、ガラス基板である。
 本発明に係る面状発光装置の第5の形態は、上記第2の形態において、上記光取り出し構造部は、上記有機EL素子の上記一面に形成された凹凸構造部であり、上記保護基板は、上記凹凸構造部と上記保護基板との間に空間が存在するように配置され、上記空間の媒質よりも高い屈折率を有する。
 本発明に係る面状発光装置の第6の形態は、上記第5の形態において、上記凹凸構造部は、上記形成基板以上の屈折率を有する。
 本発明に係る面状発光装置の第7の形態は、上記第5または第6の形態において、上記凹凸構造部は、周期性を有する凹凸構造を有し、上記凹凸構造の周期は、上記有機EL素子から放射される光の波長の1/4以上10倍以下である。
 本発明に係る面状発光装置の第8の形態は、上記第5~第7のうちいずれか1つにおいて、上記凹凸構造部は、上記保護基板の上記一表面に面接触するように形成されている。
 本発明に係る面状発光装置の第9の形態は、上記第5~第8のうちいずれか1つにおいて、上記保護基板の上記一表面に形成され上記凹凸構造部を収納する凹部を有し、上記空間は、上記凹部の内面と上記凹凸構造部の表面との間の空間である。
 本発明に係る面状発光装置の第10の形態は、上記第1の形態において、上記有機EL素子から放射された光に対して透光性を有するとともに上記保護基板以下の屈折率を有する透光部を備え、上記光取り出し構造部は、上記有機EL素子の上記一面に設けられた凹凸構造部であり、上記透光部は、上記凹凸構造部と上記保護基板との間に介在されている。
 本発明に係る面状発光装置の第11の形態は、上記第1の形態において、上記光取り出し構造部は、上記有機EL素子の上記一面に接触するように配置される母材と、上記母材中に分散される光拡散体と、を備え、上記母材は、上記有機EL素子において上記母材と接触する部位以上の屈折率を有し、上記光拡散体は、上記母材とは異なる屈折率を有する。
 本発明に係る面状発光装置の第12の形態は、上記第11の形態において、上記光拡散体は微粒子である。
 本発明に係る面状発光装置の第13の形態は、上記第1の形態において、上記光取り出し構造部は、上記有機EL素子の上記一面に接触するように配置される母材と、上記母材中に形成された空孔とを備え、上記母材は、上記有機EL素子において上記母材と接触する部位以上、かつ、上記空孔の媒質とは異なる屈折率を有する。
 本発明に係る面状発光装置の第14の形態は、上記第2の形態において、上記有機EL素子から放射された光に対して透光性を有するとともに上記形成基板以上の屈折率を有する透明部を備え、上記光取り出し構造部は、上記保護基板の上記一表面に設けられた凹凸構造部であり、上記透明部は、上記形成基板と上記凹凸構造部との間に介在されている。
 本発明に係る面状発光装置の第15の形態は、上記第14の形態において、上記凹凸構造部は、上記保護基板以下の屈折率を有する。
 本発明に係る面状発光装置の第16の形態は、上記第14または15の形態において、上記凹凸構造部は、周期性を有する凹凸構造を有し、上記凹凸構造の周期は、上記有機EL素子から放射される光の波長の1/4以上10倍以下である。
 本発明に係る面状発光装置の第17の形態は、上記第1の形態において、上記有機EL素子の上記他面と上記保護部との間に介在され上記有機EL素子で発生した熱を上記保護部に伝える放熱部材を備え、上記有機EL素子は、上記保護基板に接触しないように上記保護部に固定されている。
 本発明に係る面状発光装置の第18の形態は、上記第1~第17のうちいずれか1つにおいて、上記保護基板の上記一表面と上記保護基板における上記一表面とは反対側の面との少なくとも一方にはアンチリフレクションコートが設けられている。
 本発明に係る面状発光装置の第19の形態は、上記第1~第17のうちいずれか1つにおいて、上記保護基板の上記一表面と上記保護基板における上記一表面とは反対側の面との少なくとも一方にはモスアイ構造が形成されている。
 本発明に係る面状発光装置の第20の形態は、上記第1~第19のうちいずれか1つにおいて、複数の上記有機EL素子を備え、上記複数の上記有機EL素子は、上記保護基板の上記一表面に平行な面内で並べられている。
 本発明に係る面状発光装置の第21の形態は、上記第1~第20のうちいずれか1つにおいて、上記保護部は、上記有機EL素子の上記他面と対向する内面を有し、上記保護部の上記内面には、上記有機EL素子から放射された光を反射する光反射部が設けられている。
 本発明に係る面状発光装置の第22の形態は、上記第1~第20のうちいずれか1つにおいて、上記保護部は、上記有機EL素子から放射された光に対して透光性を有し、上記保護部は、上記有機EL素子の上記他面と対向する内面と、上記内面とは反対側の外面とを有し、上記保護部の外面には、上記有機EL素子から放射された光を反射する光反射部が設けられている。
 本発明に係る面状発光装置の第23の形態は、上記第1~第22のうちいずれか1つにおいて、上記保護部よりも熱伝導率が高い伝熱部を有し、上記保護部は、上記有機EL素子の上記他面と対向する内面と、上記内面とは反対側の外面とを有し、上記伝熱部は、上記保護部の外面に設けられている。
実施形態1の面状発光装置を示し、(a)は概略断面図、(b)は概略平面図、(c)は要部概略平面図である。 上記実施形態1の面状発光装置の要部説明図である。 上記実施形態1の面状発光装置の光取出し構造部の形成方法の説明図である。 上記光取出し構造部の説明図である。 上記光取出し構造部の説明図である。 上記光取出し構造部の説明図である。 上記実施形態1の面状発光装置の要部説明図である。 上記実施形態1の面状発光装置の要部説明図である。 上記実施形態1の面状発光装置の動作説明図である。 上記実施形態1の面状発光装置の要部説明図である。 上記実施形態1の面状発光装置の要部説明図である。 モスアイ構造の概略断面図である。 可視光域における光の反射率の説明図である。 実施形態2の面状発光装置の概略断面図である。 実施形態3の面状発光装置の概略断面図である。 実施形態4の面状発光装置の概略断面図である。 上記実施形態4の面状発光装置における有機EL素子の説明図である。 上記実施形態4の面状発光装置の製造方法の説明図である。 実施形態5の面状発光装置の概略断面図である。 上記実施形態5の面状発光装置の製造方法の説明図である。 実施形態6の面状発光装置の概略断面図である。 上記実施形態6の面状発光装置の要部概略平面図である。 上記実施形態6の面状発光装置の他の構成例の要部概略平面図である。 上記実施形態6の面状発光装置の他の構成例の製造方法の説明図である。 実施形態7の面状発光装置の概略断面図である。 上記実施形態7の面状発光装置における有機EL素子の説明図である。 上記実施形態7の面状発光装置の要部説明図である。 実施形態8の面状発光装置に関し、(a)は概略断面図、(b)は要部概略平面図である。 実施形態9の面状発光装置に関し,(a)は要部の平面レイアウト図、(b)は(a)のA-A’概略断面図である。 実施形態10の面状発光装置の概略断面図である。 実施形態11の面状発光装置の概略断面図である。 実施形態12の面状発光装置の概略断面図である。 実施形態13の面状発光装置の概略断面図である。 実施形態14の面状発光装置の概略断面図である。 実施形態15の面状発光装置の概略断面図である。
 (実施形態1)
 以下、本実施形態の面状発光装置について、図1(a)~(c)に基づいて説明する。
 本実施形態の面状発光装置は、第1の透光性基板11の一表面側に発光層を含む有機EL層13が形成された有機EL素子10であって厚み方向の一面側から光を取り出す有機EL素子10と、有機EL素子10における上記一面側に配置され第1の透光性基板11よりも屈折率が低く且つ第1の透光性基板11よりも防水性および耐候性が高い第2の透光性基板21と、有機EL素子10の厚み方向の他面側を覆い第2の透光性基板21とともに有機EL素子10への水分の到達を阻止する保護部30と、有機EL素子10の上記一面と第2の透光性基板21との間に設けられ発光層から放射された光の上記一面での反射を抑制する光取出し構造部50とを備えている。
 有機EL素子10は、陽極12と陰極14との間に介在する有機EL層13が、陽極12側から順に、ホール輸送層、発光層、電子輸送層、電子注入層を備えている。ここにおいて、有機EL素子10は、陽極12を第1の透光性基板11の上記一表面側に積層してあり、陽極12における第1の透光性基板11側とは反対側で、陰極14が陽極12に対向している。
 本実施形態における有機EL素子10では、陽極12を透明電極により構成するとともに、陰極14を発光層からの光を反射する電極により構成してあり、第1の透光性基板11の他表面を上記一面としている。
 上述の有機EL層13の積層構造は、上述の例に限らず、例えば、発光層の単層構造や、ホール輸送層と発光層と電子輸送層との積層構造や、ホール輸送層と発光層との積層構造や、発光層と電子輸送層との積層構造などでもよい。また、陽極12とホール輸送層との間にホール注入層を介在させてもよい。また、発光層は、単層構造でも多層構造でもよく、例えば、所望の発光色が白色の場合には、発光層中に赤色、緑色、青色の3種類のドーパント色素をドーピングするようにしてもよいし、青色正孔輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造を採用してもよいし、青色電子輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造を採用してもよい。また、陽極12と陰極14とで挟んで電圧を印加すれば発光する機能を有する有機EL層13を1つの発光ユニットとして、複数の発光ユニットを光透過性および導電性を有する中間層を介して積層して電気的に直列接続したマルチユニット構造(つまり、1つの陽極12と1つの陰極14との間に、厚み方向に重なる複数の発光ユニットを備えた構造)を採用してもよい。
 また、有機EL素子10の厚み方向の他面側から光を出射させる場合には、第1の透光性基板11の上記他表面にAl膜などからなる反射膜を設け、陰極14を透明電極により構成し、陰極14の表面側に光取出し構造部50を設ければよい。
 また、第1の透光性基板11の平面視形状は、矩形状としてあるが、矩形状に限らず、例えば、円形状、三角形状、五角形状、六角形状などでもよい。
 陽極12は、発光層中にホールを注入するための電極であり、仕事関数の大きい金属、合金、電気伝導性化合物、あるいはこれらの混合物からなる電極材料を用いることが好ましく、陽極12のエネルギー準位とHOMO(Highest Occupied Molecular Orbital)準位との差が大きくなりすぎないように仕事関数が4eV以上6eV以下のものを用いるのが好ましい。陽極12の電極材料としては、例えば、ITO、酸化錫、酸化亜鉛、IZO、ヨウ化銅など、PEDOT、ポリアニリンなどの導電性高分子および任意のアクセプタなどでドープした導電性高分子、カーボンナノチューブなどの導電性光透過性材料を挙げることができる。ここにおいて、陽極12は、第1の透光性基板11の上記一表面側に、スパッタ法、真空蒸着法、塗布法などによって薄膜として形成すればよい。
 なお、陽極12のシート抵抗は数百Ω/□以下とすることが好ましく、特に好ましくは100Ω/□以下がよい。ここで、陽極12の膜厚は、陽極12の光透過率、シート抵抗などにより異なるが、500nm以下、好ましくは10nm~200nmの範囲で設定するのがよい。
 また、陰極14は、発光層中に電子を注入するための電極であり、仕事関数の小さい金属、合金、電気伝導性化合物およびこれらの混合物からなる電極材料を用いることが好ましく、陰極14のエネルギー準位とLUMO(Lowest Unoccupied Molecular Orbital)準位との差が大きくなりすぎないように仕事関数が1.9eV以上5eV以下のものを用いるのが好ましい。陰極14の電極材料としては、例えば、アルミニウム、銀、マグネシウムなど、およびこれらと他の金属との合金、例えばマグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金を例として挙げることができる。また、金属の導電材料、金属酸化物など、およびこれらと他の金属との混合物、例えば、酸化アルミニウムからなる極薄膜(ここでは、トンネル注入により電子を流すことが可能な1nm以下の薄膜)とアルミニウムからなる薄膜との積層膜なども使用可能である。また、陰極14側から光を取り出す場合には、例えば、ITO、IZOなどを採用すればよい。
 発光層の材料としては、有機エレクトロルミネッセンス素子用の材料として知られる任意の材料が使用可能である。例えばアントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ジスチリルアミン誘導体および各種蛍光色素など、上述の材料系およびその誘導体を始めとするものが挙げられるが、これらに限定するものではない。また、これらの化合物のうちから選択される発光材料を適宜混合して用いることも好ましい。また、上記化合物に代表される蛍光発光を生じる化合物のみならず、スピン多重項からの発光を示す材料系、例えば燐光発光を生じる燐光発光材料、およびそれらからなる部位を分子内の一部に有する化合物も好適に用いることができる。また、これらの材料からなる発光層は、蒸着法、転写法などの乾式プロセスによって成膜しても良いし、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法など、湿式プロセスによって成膜するものであってもよい。
 上述のホール注入層に用いられる材料は、ホール注入性の有機材料、金属酸化物、いわゆるアクセプタ系の有機材料あるいは無機材料、p-ドープ層などを用いて形成することができる。ホール注入性の有機材料とは、ホール輸送性を有し、また仕事関数が5.0~6.0eV程度であり、陽極12との強固な密着性を示す材料などがその例であり、例えば、CuPc、スターバーストアミンなどがその例である。また、ホール注入性の金属酸化物とは、例えば、モリブデン、レニウム、タングステン、バナジウム、亜鉛、インジウム、スズ、ガリウム、チタン、アルミニウムのいずれかを含有する金属酸化物である。また、1種の金属のみの酸化物ではなく、例えばインジウムとスズ、インジウムと亜鉛、アルミニウムとガリウム、ガリウムと亜鉛、チタンとニオブなど、上記のいずれかの金属を含有する複数の金属の酸化物であっても良い。また、これらの材料からなるホール注入層は、蒸着法、転写法などの乾式プロセスによって成膜しても良いし、スピンコート法、スプレーコート法、ダイコート法、グラビア印刷法などの湿式プロセスによって成膜するものであってもよい。
 また、ホール輸送層に用いる材料は、例えば、ホール輸送性を有する化合物の群から選定することができる。この種の化合物としては、例えば、4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)、2-TNATA、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(MTDATA)、4,4’-N,N’-ジカルバゾールビフェニル(CBP)、スピロ-NPD、スピロ-TPD、スピロ-TAD、TNBなどを代表例とする、アリールアミン系化合物、カルバゾール基を含むアミン化合物、フルオレン誘導体を含むアミン化合物などを挙げることができるが、一般に知られる任意のホール輸送材料を用いることが可能である。
 また、電子輸送層に用いる材料は、電子輸送性を有する化合物の群から選定することができる。この種の化合物としては、Alq3等の電子輸送性材料として知られる金属錯体や、フェナントロリン誘導体、ピリジン誘導体、テトラジン誘導体、オキサジアゾール誘導体などのヘテロ環を有する化合物などが挙げられるが、この限りではなく、一般に知られる任意の電子輸送材料を用いることが可能である。
 また、電子注入層の材料は、例えば、フッ化リチウムやフッ化マグネシウムなどの金属フッ化物、塩化ナトリウム、塩化マグネシウムなどに代表される金属塩化物などの金属ハロゲン化物や、アルミニウム、コバルト、ジルコニウム、チタン、バナジウム、ニオブ、クロム、タンタル、タングステン、マンガン、モリブデン、ルテニウム、鉄、ニッケル、銅、ガリウム、亜鉛、シリコンなどの各種金属の酸化物、窒化物、炭化物、酸化窒化物など、例えば酸化アルミニウム、酸化マグネシウム、酸化鉄、窒化アルミニウム、窒化シリコン、炭化シリコン、酸窒化シリコン、窒化ホウ素などの絶縁物となるものや、SiO2やSiOなどをはじめとする珪素化合物、炭素化合物などから任意に選択して用いることができる。これらの材料は、真空蒸着法やスパッタ法などにより形成することで薄膜状に形成することができる。
 第1の透光性基板11としては、無アルカリガラス基板やソーダライムガラス基板などの安価なガラス基板に比べて安価であり、且つ、当該ガラス基板よりも屈折率が大きなプラスチック基板の一種であるポリエチレンテレフタラート(PET)基板を用いている。プラスチック基板のプラスチック材料としては、PETに限らず、例えば、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリカーボネート(PC)などを採用してもよく、所望の用途や、屈折率、耐熱温度などに応じて適宜選択すればよい。下記表1に、代表的なプラスチック材料の物性値などを示す。なお、PETは、非常に安価で安全性の高いプラスチック材料である。また、PENは、PETと比べて、屈折率が高く耐熱性も良好であるが、高価である。
Figure JPOXMLDOC01-appb-T000001
 ところで、第1の透光性基板11としてガラス基板を用いる場合には、第1の透光性基板11の上記一表面の凹凸が有機EL素子10のリーク電流などの発生原因となることがある(有機EL素子10の劣化原因となることがある)。このため、第1の透光性基板11としてガラス基板を用いる場合には、上記一表面の表面粗さが小さくなるように高精度に研磨された素子形成用のガラス基板を用意する必要があり、コストが高くなってしまう。なお、第1の透光性基板11の上記一表面の表面粗さについては、JIS B 0601-2001(ISO 4287-1997)で規定されている算術平均粗さRaを、数nm以下にすることが好ましい。
 これに対して、本実施形態では、第1の透光性基板11としてプラスチック基板を用いているので、特に高精度な研磨を行わなくても、上記一表面の算術平均粗さRaが数nm以下のものを低コストで得ることができる。
 第2の透光性基板21としては、高屈折率ガラス基板に比べて安価なガラス基板である無アルカリガラス基板を用いているが、これに限らず、例えば、ソーダライムガラス基板を用いてもよい。また、第2の透光性基板21で用いるガラス基板については、有機EL素子10を形成するためのものではないので、算術平均粗さRaが数100nm以上のガラス基板を用いることができ、素子形成用のガラス基板を用いて有機EL素子を形成した面状発光装置に比べて低コスト化を図ることが可能となる。
 本実施形態における有機EL素子10は、第1の透光性基板11の周部を全周に亘って第2の透光性基板21と接合してある。ここにおいて、有機EL素子10と第2の透光性基板21とを接合する接合部29は、例えば、接着用フィルム、熱硬化樹脂、紫外線硬化樹脂、接着剤(例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂など)などにより構成すればよい。なお、有機EL素子10は、第1の透光性基板11の上記他表面のうち、平面視において陽極12、有機EL層13、陰極14の3つが重複する領域が発光面となる。
 保護部30は、ガラス基板(例えば、ソーダライムガラス基板、無アルカリガラス基板などの安価なガラス基板)を用いて形成してある。ここにおいて、保護部30は、第2の透光性基板21との対向面に、有機EL素子10を収納する収納凹所31が形成されており、上記対向面における収納凹所31の周部を全周に亘って第2の透光性基板21と接合してある。しかして、有機EL素子10は、第2の透光性基板21と保護部30とで囲まれた気密空間内に収納されることとなる。ただし、第2の透光性基板21の一表面側には、有機EL素子10の陽極12、陰極14それぞれと電気的に接続される給電用の外部接続電極22,24が設けられており、保護部30の上記周部の一部は各外部接続電極22,24に接合されている。陽極12、陰極14それぞれと外部接続電極22,24とは、導電性ペースト(例えば、銀ペーストなど)からなる接続部62,64を介して電気的に接続してある。接続部62,64は、導電性ペーストに限らず、例えば、ボンディングワイヤや、金属膜などにより構成してもよい。
 保護部30と第2の透光性基板21とを接合する接合部39は、例えば、低融点ガラス、接着用フィルム、熱硬化樹脂、紫外線硬化樹脂、接着剤(例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂など)などにより構成すればよい。外部接続電極22,24は、例えば、Au膜、Al膜やITO膜などにより構成すればよいが、材料や層構造は特に限定するものではなくて、下地との密着性や電気的に接続する部位の接触抵抗などを考慮して適宜設定すればよく、単層構造に限らず、多層構造でもよい。
 また、保護部30は、収納凹所31の内底面に、水分を吸着する吸水材40を貼り付けてある。なお、吸水材40としては、例えば、酸化カルシウム系の乾燥剤(酸化カルシウムを練り込んだゲッタ)などを用いればよい。
 また、保護部30は、有機EL素子10を封止するエポキシ樹脂やシリコーン樹脂などにより構成してもよい。
 本実施形態の面状発光装置は、上述の光取出し構造部50が、有機EL素子10の上記一面側に設けられた凹凸構造部51により構成され、当該凹凸構造部51と第2の透光性基板21との間に空間70が存在している。しかして、本実施形態の面状発光装置では、発光層から放射され第2の透光性基板21まで到達した光の反射ロスを低減でき、光取り出し効率の向上を図れる。また、本実施形態の面状発光装置では、第2の透光性基板21における有機EL素子10側に凹凸構造部51が収納される凹部21aを有し、当該凹部21aの内面と凹凸構造部51の表面との間が上述の空間70を構成している。しかして、本実施形態の面状発光装置では、第2の透光性基板21に凹部21aを設けるだけで、凹凸構造部51と第2の透光性基板21との間に空間70を形成することができるとともに、凹凸構造部51を保護することができる。
 ところで、有機EL素子10の発光層および第1の透光性基板11それぞれの屈折率は、光が取り出される外部雰囲気である空気の屈折率に比べて大きい。したがって、上述の光取出し構造部50が設けられずに第1の透光性基板11と第2の透光性基板21との間の空間が空気雰囲気となっている場合には、第1の透光性基板11からなる第1の媒質と空気からなる第2の媒質との界面で全反射が生じ、全反射角以上の角度で当該界面に入射する光は反射される。そして、第1の媒質と第2の媒質との界面で反射された光が有機EL層13または第1の透光性基板11内部において多重反射し、外部に取り出されずに減衰するので、光取出し効率が低下する。また、第1の媒質と第2の媒質との界面に全反射角未満の角度で入射した光についても、フレネル反射が発生するため、さらに光取り出し効率が低下する。
 これに対して、本実施形態では、有機EL素子10の上記一面側(第1の透光性基板11の上記他表面側)に上述の光取出し構造部50を設けてあるので、有機EL素子10の外部への光取り出し効率を向上させることができる。
 光取出し構造部50を構成する凹凸構造部51は、2次元周期構造を有している。ここで、当該2次元周期構造の周期P(図1(a)参照)は、発光層で発光する光の波長が300~800nmの範囲内にある場合、媒質内の波長をλ(真空中の波長を媒質の屈折率で除した値)とすれば、波長λの1/4~10倍の範囲で適宜設定することが望ましい。
 周期Pを例えば5λ~10λの範囲で設定した場合には、幾何光学的な効果、つまり、入射角が全反射角未満となる表面の広面積化により、光取り出し効率が向上する。また、周期Pを例えばλ~5λの範囲で設定した場合には、回折光による全反射角以上の光を取り出す作用により、光の取り出し効率が向上する。また、周期Pをλ/4~λの範囲で設定した場合には、凹凸構造部51付近の有効屈折率が第1の透光性基板11の上記一表面からの距離が大きくなるにつれて徐々に低下することとなり、第1の透光性基板11と空間70との間に、凹凸構造部51の媒質の屈折率と空間70の媒質の屈折率との中間の屈折率を有する薄膜層を介在させるのと同等となり、フレネル反射を低減させることが可能となる。要するに、周期Pをλ/4~10λの範囲で設定すれば、反射(全反射あるいはフレネル反射)を抑制することができ、有機EL素子10の光取り出し効率が向上する。ただし、幾何光学的な効果による光取り出し効率の向上を図る際の周期Pの上限としては、1000λまで適用可能である。また、凹凸構造部51は、必ずしも2次元周期構造などの周期構造を有している必要はなく、凹凸のサイズがランダムな凹凸構造や周期性のない凹凸構造でも光取り出し効率の向上を図れる。なお、異なるサイズの凹凸構造が混在する場合(例えば、周期Pが1λの凹凸構造と5λ以上の凹凸構造とが混在する場合)には、その中で最も凹凸構造部51における占有率の大きい凹凸構造の光取り出し効果が支配的になる。
 光取出し構造部50の凹凸構造部51は、プリズムシート(例えば、株式会社きもと製のライトアップ(登録商標)GM3のような光拡散フィルムなど)により構成してあるが、これに限るものではない。例えば、第1の透光性基板11の上記他表面に凹凸構造部51をインプリント法(ナノインプリント法)により形成してもよいし、第1の透光性基板11を射出成形により形成するようにし、適宜の金型を用いて第1の透光性基板11に凹凸構造部51を直接形成してもよい。上述のプリズムシートに用いられている素材は、通常、屈折率が1.4~1.6程度の樹脂である(つまり、屈折率がガラス基板の屈折率に近い一般的な樹脂である)場合が多く、屈折率が一般的な樹脂に比べて高い高屈折率の樹脂ではない。このため、本実施形態のように、第1の透光性基板11としてガラス基板に比べて屈折率の高いプラスチック基板を用いており、凹凸構造部51の屈折率が第1の透光性基板11の屈折率よりも低い場合、図2(b)中に矢印で示した光線の軌跡のように、第1の透光性基板11と凹凸構造部51との界面(屈折率界面)で全反射が発生し、光取り出しロスが生じる。そこで、本実施形態の面状発光装置では、第1の透光性基板11としてガラス基板に比べて屈折率の高いプラスチック基板を用いながらも、凹凸構造部51の屈折率を第1の透光性基板11の屈折率以上とする(凹凸構造部51の屈折率が、第1の透光性基板11の屈折率を下回らないようにする)ことにより、図2(a)中に矢印で示した光線の軌跡のように、第1の透光性基板11と凹凸構造部51との界面での全反射を防止することが可能となり、光取り出し効率の向上を図ることが可能となる。下記表2に、第1の透光性基板11の屈折率と凹凸構造部51の屈折率との組み合わせを異ならせた4つの例について、発光層からの光の光線軌跡を光線追跡法によりシミュレーションした結果から求めた光取り出し効率を示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、第1の透光性基板11の屈折率が同じ1.75の場合について、凹凸構造部51の屈折率を1.5~2.0の範囲で変化させると、凹凸構造部51の屈折率が1.75以上で飽和する傾向にあることが分かる。したがって、本実施形態の面状発光装置では、凹凸構造部51の屈折率を第1の透光性基板11の屈折率以上とすることにより、第1の透光性基板11と凹凸構造部51との界面での全反射ロスを低減することが可能となり、光取り出し効率の向上を図ることが可能となる。
 第1の透光性基板11の屈折率が例えば1.75の場合、第1の透光性基板11よりも屈折率の高い凹凸構造部51を得る方法としては、上述のインプリント法が挙げられる。
 ここで、インプリント法により、凹凸構造部51を形成する方法について図3に基づいて簡単に説明する。
 まず、PET基板、PEN基板などからなる第1の透光性基板11の上記他表面上に、凹凸構造部51の基礎となる高屈折率の透明材料151a(例えば、TiO2のナノ粒子を混入させた熱硬化性樹脂)からなる転写層151(図3(b)参照)を、スピンコート法を利用して形成する。具体的には、第1の透光性基板11の上記他表面上に上記透明材料151a(図3(a)参照)をスピンコート法により塗布し(図3(a)中の矢印は第1の透光性基板11の回転方向を示している)、プリベークを行うことにより転写層151を形成する。次に、凹凸構造部51の形状に応じてパターン設計した凹凸パターンを形成したモールド141(図3(B)、図3(c1)参照)を、転写層151に押し付けて当該転写層151を変形させ硬化させる(例えば、熱硬化させる)ことにより凹凸構造部51(図3(d1)参照)を形成し、モールド141を凹凸構造部51(図3(d1)参照)から離す。図3(c1)中の矢印付きの波線は、全体として熱伝達の方向を示しており、図3(c1)における転写層151中の矢印は、転写層151の一部の流動方向を模式的に示している。ここにおいて、モールド141としては、例えば、周期が2μm、高さが1μmの微細突起(例えば、錘状(四角錘状、円錐状など)、半球状、円柱状などの微細突起)が2次元アレイ状にパターニングされたNi製モールドやSi製モールドを用いればよい。
 インプリント法としては、上述のように熱硬化性樹脂を転写層151の透明材料151aとして用いる熱インプリント法(熱ナノインプリント法)に限らず、転写層151の材料として光硬化性樹脂を用いる光インプリント法(光ナノインプリント法)を採用してもよい。この場合には、粘度の低い光硬化性樹脂層からなる転写層151をモールド141により変形させて、その後に紫外線を照射して光硬化性樹脂を硬化させ、モールド141を転写層151から離すようにすればよい。インプリント法では、モールド141用の金型140(図3(A)参照)さえ1度作れば、凹凸構造部51を再現性良く形成することができ、低コスト化を図れる。ここで、金型140がマスターモールドを構成し、モールド141が反転モールドを構成する。図3(c3)中の上向きの矢印F1は、第1の透光性基板11側からの紫外線の照射方向を示しており、図3(c3)における転写層151中の矢印は、転写層151の一部の流動方向を模式的に示している。第1の透光性基板11がPEN基板のような紫外線を透過しないものである場合には、モールド141として、例えば、紫外線を透過する透明樹脂(例えば、PDMS(ポリジメチルシロキサン)など)で形成した樹脂製モールドを使用し、モールド141側から紫外線を照射するようにすればよい。図3(c3)中の下向きの矢印F2は、モールド141側からの紫外線の照射方向を示している。
 また、熱インプリント法では、図3(c2)に示すようにモールド141を直接、第1の透光性基板11の上記他表面側に押し付けて熱を加えることにより、第1の透光性基板11を変形させることで凹凸構造部51(図3(d2)参照)を形成し、モールド141を凹凸構造部51(図3(d2)参照)から離すようにしてもよい。図3(c2)中の矢印付きの波線は、全体として熱伝達の方向を示しており、図3(c2)における第1の透光性基板11中の矢印は、第1の透光性基板11の一部の流動方向を模式的に示している。
 また、本実施形態では、第2の透光性基板21に凹部21aを設けることで、凹凸構造部51の表面と第2の透光性基板21との間に空間70を確保している。これに対し、第2の透光性基板21に凹部21aを設けなくても、有機EL素子10と第2の透光性基板20とを接合する接合部29の厚み寸法などを適宜設定することにより、凹凸構造部51の表面と第2の透光性基板21との間に空間70を確保することも可能である。ただし、この場合には、凹凸構造部51の表面に傷が付くのを防止するためのハードコートを施すか、あるいは、硬度が十分に高いプリズムシートを用いるか、あるいは、硬化後の硬度が十分に高い透明材料を用いることが望ましい。ハードコートを施すためのハードコート剤としては、例えば、東洋インキ製のTYZシリーズ(〔平成21年12月22日検索〕、インターネット<URL:http://www.toyoink.co.jp/products/lioduras/index.html>)などの高屈折率タイプ(屈折率が1.63~1.74程度)のハードコート剤を採用することができる。なお、TYZシリーズは、エポキシ樹脂などにフィラーとして酸化ジルコニウムを混入させた紫外線硬化型のハードコート剤である。また、たとえ第2の透光性基板21と凹凸構造部51とが接触したとしても、第2の透光性基板21と凹凸構造部51との間に空間70があれば、光取り出し効率の向上を図れる。
 ここにおいて、本実施形態の面状発光装置では、凹凸構造部51の一部と第2の透光性基板21とを面接触させておくことにより、全反射ロスを低減することが可能となり、光取り出し効率の向上を図ることが可能となる。ここで、凹凸構造部51の形状の例として、図4に示すような6種類の形状について検討した結果を説明する。
 図4の上段は、凹凸構造部51が多数の凸部51aを有した形状の例であり、凸部51aの形状が、左側から順に、四角錐、半球、円柱となっている。また、図4の下段は、凹凸構造部51が多数の凹部51bを有した形状であり、凹部51bの形状が、左側から順に、四角錐状、半球状、円柱状となっている。したがって、多数の四角錐の凸部51aを有する凹凸構造部51、多数の半球の凸部51aを有する凹凸構造部51では、凹凸構造部51が第2の透光性基板21と点接触する箇所しかないのに対して、それ以外の凹凸構造部51では、凹凸構造部51が第2の透光性基板21と面接触する領域を有している。
 凹凸構造部51の一部と第2の透光性基板21とが接触するように凹凸構造部51と第2の透光性基板21とを近づけて配置した各構造について、凹凸構造部51の屈折率を1.7、第2の透光性基板21の屈折率を1.5、空間70中の媒質および大気の屈折率を1として、光線追跡法によるシミュレーションを行い光取り出し効率の計算を行った。その結果を下記表3に示す。ただし、下記表3では、後述の面積占有率を50%とした場合について、凹凸構造部51の一部と第2の透光性基板21とを接触させた構造での光取り出し効率の、凹凸構造部51の一部と第2の透光性基板21とを接触させていない構造での光取り出し効率に対する倍率を記載してある。なお、凹凸構造部51と第2の透光性基板21とを接触させない構造に関して、凹凸構造部51と第2の透光性基板21との距離は、光取り出し効率の計算値に影響しなかった。
Figure JPOXMLDOC01-appb-T000003
 表3から、本実施形態の面状発光装置では、凹凸構造部51の一部と第2の透光性基板21とを面接触させることにより、接触させない場合や、点接触させる場合に比べて、光取り出し効率の向上を図ることが可能となることが分かる。なお、第2の透光性基板21と面接触させる凹凸構造部51の形状は、上述の4つの形状の例に限らず、例えば、凸部51aの形状が六角柱、凹部51bの形状が六角柱状でもよいし、また、凹凸構造部51が回折格子型の形状でもよい。
 また、本願発明者らは、凹凸構造部51の一部と第2の透光性基板21とを接触させる構造に関して、面接触させる領域の面積が光取り出し効率に与える影響を調べるために、面積占有率という新規のパラメータを規定して、この面積占有率と光取り出し効率との関係を調べた。ここで、個々の凸部51aまたは個々の凹部51bを単位形状とし、面積占有率Ao(%)を下記(1)式で規定した。
Figure JPOXMLDOC01-appb-M000004
   (1)式
 ここで、Dmは、単位形状の平面視において中心を通る直線と交差する2点間の最大寸法であり、Dcは、単位形状の中心間距離である。面積占有率を求める(1)式の分母である単位形状の中心間距離Dcについては、単位形状のピッチP(図5(b),(c)参照)であり、単位形状が存在しない場合には無限大とみなした。また、面積占有率を求める式の分子である最大寸法Dmは、単位形状が円柱であれば円の直径、単位形状が四角錐であれば四角錐の底面における1つの対角線の長さとなる。ここで、例えば、単位形状を円柱の凸部51aとした場合には、図5(c)に示すように多数の凸部51aが隣り合う凸部51aと接して配置されていれば、面積占有率が100%となる。また、図5(b)に示すように、凸部51aのピッチPが直径の2倍であれば、面積占有率が50%となり、図5(a)のように、凸部51aが存在しなければ面積占有率が0%となる。
 ところで、上述の凹凸構造部51の6つの形状について検討した表3の結果からは、円柱の凸部51aを有する凹凸構造部51を採用した場合に、倍率が最も高くなっていることが分かる。ここにおいて、円柱の凸部51aを有する凹凸構造部51を採用した例について、面積占有率と光取り出し効率の倍率との関係は、図6のようになった。ただし、図6のA1は、凹凸構造部51と第2の透光性基板21とを接触させていない場合の倍率の計算値であり、図6のA2は、凹凸構造部51と第2の透光性基板21とを接触させていない場合の倍率の計算値である。
 図6から、凹凸構造部51と第2の透光性基板21との接触面積が大きければ大きいほど倍率が高くなるのではなく、最適な面積占有率が存在するものと考えられる。すなわち、図6から、円柱の凸部51aを有する凹凸構造部51を採用した場合には、面積占有率を100%ではなく、75%程度に設定することが好ましい。
 ここにおいて、有機EL層13と陽極12とで構成される薄膜内での光の干渉により得られる配光パターンと光線追跡法によるシミュレーションとによって、光取り出し効率の倍率を高める効果の高い凹凸構造部51の形状(凹凸パターン)を設計することが可能である。上述の配光パターンは、第1の透光性基板11への入射配光特性と略等しい。この入射配光特性は、図7(a)に示すように、発光面より十分大きな径の半球レンズ210を第1の透光性基板11における陽極12側とは反対側に配置した構成について、放射光強度の角度依存性(配光パターン)を測定することにより、求めることが可能である。第1の透光性基板11として屈折率が1.77のPEN基板を用いる場合には、半球レンズ210として屈折率が1.77の高屈折率ガラスレンズを用い、第1の透光性基板11と半球レンズ210との間に、屈折率が1.77のマッチングオイルを介在させればよい。このような半球レンズ210を配置しない場合には、図7(b)に示すように、第1の透光性基板11に到達した光が第1の透光性基板11と空気との界面で屈折して角度が変化したり、全反射により空気中へ取り出せない光が増加してしまうので、入射配光特性を測定することができない。これに対して、図7(a)に示す構成とすれば、有機EL層13の層構成が変化して入射配光特性が変化した場合でも、入射配光特性を精度良く得ることが可能となる。これにより、例えば、図8(a)に一点鎖線で示す配光パターンのように指向性が高い場合、図8(b)に一点鎖線で示す配光パターンのように指向性が低い場合、それぞれについて、適切な凹凸構造部51の形状を設計することが可能となる。
 また、凹凸構造部51と第2の透光性基板21とを面接触させることによって光取り出し効率が向上する原因について、本願発明者らは、図9(b)のようなモデルを推考した。図9(b)のモデルでは、第1の透光性基板11の厚みに比べて、陽極12と有機EL層13とを合わせた厚みが無視できる程度に小さいので、厚み方向における発光位置が、反射電極を兼ねる陽極14の第2の透光性基板21側の表面と略同じ位置となるものとして、発光位置からの光線の進行経路の一例を、矢印付きの実線で示してある。また、図9(b)のモデルでは、凹凸構造部51、第1の透光性基板11、陽極12、および有機EL層13の屈折率が同じn3であるとして、各界面の図示を省略してある。また、図9(b)のモデルでは、空間70の媒質(空気)の屈折率をn1、第2の透光性基板21の屈折率をn2、第2の透光性基板21の光取り出し側において第2の透光性基板21に接する外部の空気の屈折率をn1としてある(n1<n2<n3)。また、図9(a)には、凹凸構造部51と第2の透光性基板21とを接触させていない場合のモデルについて、発光位置からの光線の進行経路の一例を、矢印付きの実線で示してある。図9(a)のモデルでは、凹凸構造部51と空間70との界面での全反射と陰極14による反射とが繰り返されるモード(導波モード)に陥り、最終的に陰極14に吸収されてしまう光線が存在する。発明者らは、光線追跡法によるシミュレーションの結果、発光位置から放射される光線のうち、このようなモードで陰極14に吸収される成分が存在することを確認している。また、発明者らは、凹凸構造部51を設けずに空間70と第1の透光性基板11との界面がフラットになっている場合、この成分が更に増加することも確認している。一方、図9(b)のモデルでは、凹凸構造部51と第2の透光性基板21との界面について、スネルの法則により、全反射の臨界角が大きくなる。したがって、図9(b)のモデルでは、図9(a)のモデルにおいて上述のモードに陥ってしまうような光線の一部が、凹凸構造部51と第2の透光性基板21との界面で全反射せずに第2の透光性基板21を透過することとなる。また、スネルの法則によれば、第2の透光性基板21を透過する光線の一部は、第2の透光性基板21と外部の空気との界面で全反射されるが、図9(b)のモデルでは陰極14と凹凸構造部51の表面との間で光線が折り返される周期性がなくなっている。このため、図9(b)のモデルでは、第2の透光性基板21と第2の透光性基板21の外部の空気との界面で全反射された光線が陰極14で反射された場合でも、凹凸構造部51と空間70の媒質との界面に対して全反射の臨界角よりも小さな角度で入射し、結果的に第2の透光性基板21を透過して空気中へ取り出すことが可能となる。したがって、図9(b)のモデルでは、光取り出し効率が向上するものと考えられる。また、図9(b)のモデルでは、上述の図9(a)のモデルで説明したモードの光線に限らず、光線の陰極14での反射回数が減り、吸収ロスが低減することによっても、光取り出し効率が向上する。
 ところで、光取出し構造部50は、凹凸構造部51の表面と第2の透光性基板21との間に空間70が存在することが重要である。仮に、凹凸構造部51の表面が、当該凹凸構造部51と第2の透光性基板21との界面であるとした場合には、第2の透光性基板21と外部の空気との屈折率界面が存在するため、当該屈折率界面で再び全反射が生じる。これに対して、本実施形態の面状発光装置では、有機EL素子10の光を一旦、空間70へ取り出すことができるので、空間70の空気と第2の透光性基板21との界面、第2の透光性基板21と外部の空気との界面で全反射ロスが生じなくなる。
 ここにおいて、第1の透光性基板11を屈折率が1.65のPET基板とし、第2の透光性基板21を屈折率が1.5のガラス基板とした場合について、各媒質中へ光取り出し効率を計算した結果は、図10(a)の右側に示すようになった。また、参考例として、第1の透光性基板11を屈折率が1.5のガラス基板とし、第2の透光性基板21を備えていない場合について、発光層の発光領域が十分に小さな点光源であるとみなす点光源近似で計算した結果は、図10(b)の右側に示すようになった。
 この光取り出し効率の計算は、発光層の屈折率を1.7とし、発光層と第1の透光性基板11との間に介在する部位(ホール輸送層、陽極12など)との屈折率が同じであるものと仮定して、図10(a),(b)に示すように発光層と第1の透光性基板11とが接する簡単なモデルについて行った。図10(a),(b)中に記載の「n」は、屈折率である。また、上述の点光源近似では、相対的に屈折率が高い媒質(屈折率をn2とする)からなる発光層と相対的に屈折率が低い媒質(屈折率をn1とする)からなる第1の透光性基板11との境界面に立てた法線の方向の透過光の強度をI0、当該法線とのなす角度がθの方向における透過光の単位立体角当たりの強度を2πI0sinθとして、発光層から第1の透光性基板11へ透過する光の確率ηを光取り出し効率とした。ここで、確率ηは、臨界角をθc(=sin-1(n1/n2))として、下記(2)式により求めた。また、図10(a),(b)いずれのモデルについても、光取り出し効率は、凹凸構造部51から空気中へ光が出射する確率を60%と仮定して計算した。また、図10(a)のモデルについては、第2の透光性基板21から空気中へ光が透過する際のフレネルロスを8%として光取り出し効率を計算した。
Figure JPOXMLDOC01-appb-M000005
 図10(a),(b)から、図10(a)の例では、同図(b)の参考例に比べて、光取り出し効率が約1.3倍となっており、光取り出し効率が向上することが分かる。
 ただし、光取出し構造部50を構成する凹凸構造部51と第2の透光性基板21との間に空間70が存在しない場合には、第2の透光性基板21と空気との界面で全反射が発生する。
 したがって、光取出し構造部50を構成する凹凸構造部51の表面と第2の透光性基板211との間には、空間70が存在することが望ましい。しかしながら、面状発光装置の機械的強度や製造プロセスの簡易性を考慮して空間70を透光性材料により充実させた方が好ましい場合がある。この場合には、当該凹凸構造部51と第2の透光性基板21との間に、第2の透光性基板21の屈折率以下の屈折率の透光性材料からなる透光部を有するようにすれば、全反射ロスを低減でき、光取り出し効率の向上を図れる。ここにおいて、透光部の透光性材料としては、例えば、シリカエアロゲル(n=1.05)のような屈折率が極めて1に近いもの、つまり、屈折率が空気の屈折率と同等とみなせる程度に小さい低屈折率材料が特に好ましい。すなわち、本実施形態の面状発光装置は、有機EL素子10から放射された光に対して透光性を有するとともに第2の透光性基板21以下の屈折率を有する透光部を備えていてもよい。この場合、光取り出し構造部50は、有機EL素子10の上記一面に設けられた凹凸構造部51であり、上記透光部は、凹凸構造部51と第2の透光性基板21との間に介在される。
 以上述べたように、本実施形態の面状発光装置は、一面(厚み方向の一面、図1(a)における下面)および上記一面とは反対側の他面(厚み方向の他面、図1(a)における上面)を有し、上記一面から光を放射する有機EL素子10と、有機EL素子10から放射された光に対して透光性を有し、有機EL素子10の上記一面に対向するように配置され、有機EL素子10の上記一面に対向する一表面(図1(a)における上面)を有する第2の透光性基板(保護基板)21と、有機EL素子10の上記他面に対向するように配置され、第2の透光性基板21とともに有機EL素子10を水から保護するように収納するハウジングを形成する保護部30と、有機EL素子10の上記一面と第2の透光性基板21との間に介在され、有機EL素子10の上記一面における有機EL素子10から放射された光の反射(全反射)を抑制する光取り出し構造部50と、を備える。
 また、本実施形態の面状発光装置では、有機EL素子10は、光を放射する発光層を含む有機EL層13と、発光層から放射される光に対して透光性を有する第1の透光性基板(形成基板)11とを備える。上記発光層は、第1の透光性基板11の上記一表面(図1(a)における上面)上に形成される。有機EL素子10の上記一面は、第1の透光性基板11の上記一表面とは反対側の上記他表面(図1(a)における下面)である。第1の透光性基板11は、第2の透光性基板21よりも高い屈折率を有する。
 また、本実施形態の面状発光装置では、第2の透光性基板21は、第1の透光性基板11よりも高い耐候性および防水性を有する。
 例えば、第1の透光性基板11はプラスチック基板(例えば、PET、PEN、PES、PC)であり、第2の透光性基板21はガラス基板(無アルカリガラス基板、ソーダライムガラス基板)である。
 また、本実施形態の面状発光装置では、光取り出し構造部50は、有機EL素子10の上記一面に形成された凹凸構造部51である。第2の透光性基板21は、凹凸構造部51と第2の透光性基板21との間に空間70が存在するように配置され、空間70の媒質よりも高い屈折率を有する。
 また、本実施形態の面状発光装置では、凹凸構造部51は、第1の透光性基板11以上の屈折率を有する。
 また、本実施形態の面状発光装置では、凹凸構造部51は、周期性を有する凹凸構造を有し、当該凹凸構造の周期Pは、有機EL素子10から放射される光の波長の1/4以上10倍以下である。
 また、本実施形態の面状発光装置では、凹凸構造部51は、第2の透光性基板21の上記一表面に面接触するように形成されている。
 また、本実施形態の面状発光装置では、第2の透光性基板21の上記一表面に、凹凸構造部51を収納する凹部21aが形成される。空間70は、凹部21aの内面と凹凸構造部51の表面との間の空間である。
 以上説明した本実施形態の面状発光装置は、有機EL素子10の第1の透光性基板11とは別途に第2の透光性基板21を備えているので、第1の透光性基板11として高屈折率ガラス基板やバリア層が設けられたプラスチック基板を用いることなく防水性および耐候性を高めることが可能となる。また、本実施形態の面状発光装置は、第1の透光性基板11としてソーダライムガラス基板や無アルカリガラス基板のような一般的なガラス基板に比べて屈折率が高いものを用いることができるので、発光層-第1の透光性基板11間の全反射ロスを低減できる。また、本実施形態の面状発光装置は、有機EL素子10の上記一面と第2の透光性基板21との間に設けられ発光層から放射された光の上記一面での全反射を抑制する光取出し構造部50を備えているので、光取り出し効率の向上を図れる。しかして、本実施形態の面状発光装置によれば、光取り出し効率を向上でき、且つ、耐候性および防水性を高めることが可能となる。
 また、本実施形態の面状発光装置では、第1の透光性基板11として、バリア層なしのプラスチック基板を用い、第2の透光性基板21として、ソーダライムガラス基板や無アルカリガラス基板のようなガラス基板を用いているので、低コスト化を図れるとともに、外部からの紫外線による有機EL素子10の長期信頼性の低下を防止することができる。
 ところで、第2の透光性基板21を光が透過する際にフレネル反射による損失(フレネルロス)が生じる。ここで、図11に示すように、入射光と境界面(絶対屈折率がn1の媒質と絶対屈折率がn2の媒質との界面)に立てた法線とを含む面を入射面とし、入射光を、入射面内にあるp波と、入射面に垂直なs波とに分解して考える。また、法線と入射光との間の角度である入射角をα、法線と屈折光(透過光)との間の角度である屈折角をβとすれば、p波の反射率rpおよび透過率tp、s波の反射率rsおよび透過率tsそれぞれは、フレネルの式を用いて下記(3)~(6)式で求められる。
Figure JPOXMLDOC01-appb-M000006
 ここにおいて、空間70の空気中から第2の透光性基板21への入射を考えた場合には、有機EL層13から放射された光がランバーシャンの配光分布(放射光強度の放射角依存性がランバート(Lambert)型分布で近似される配光分布)であると仮定し、n1=1.51、n2=1としたとき、p偏向(p波)、s偏向(s波)のトータルの反射率は、それぞれ約3%、10%となる。さらに、第2の透光性基板21から外部の空気への入射でp偏向(p波)、s偏向(s波)のトータルの反射率は同じく約3%、10%となり、p偏向成分、s偏向成分が等しいとすれば、トータルで13%〔=(3+10)/2+(3+10)/2〕の光が反射する。有機EL素子10の発光特性の測定においては、ガラス基板からなる第2の透光性基板21を通したときと通さないときとで、第2の透光性基板21を通したときの方が、効率が約8~15%低下している。ただし、効率ロスは、配光パターンの違いによって変動し、レーザのように垂直入射方向への指向性が強い光では小さくなる。なお、有機EL素子10の発光特性の評価にあたっては、定電流電源から有機EL素子10に2mA/cm2の定電流を流して、分光器(浜松ホトニクス株式会社製のマルチチャネルアナライザPMA-11)により、放射光強度を-85°~85°の放射角の範囲で5°ごとに測定し、投影面積を考慮して全光束(または外部量子効率)および正面輝度それぞれに比例する値を算出した。
 一方、界面に垂直(つまり、入射角α=0)な入射光のみに着目すると、s偏向、p偏向とも反射率が等しくなり、反射率rは、下記(7)式で求められる。
Figure JPOXMLDOC01-appb-M000007
 ここで、空間70の空気中から第2の透光性基板21への入射を考えた場合、反射率rは約4%となる。さらに、第2の透光性基板21から外部の空気への入射の場合も、反射率rは約4%となるので、結局は、トータルで8%の光が反射する。実際の有機EL素子10の発光特性の測定においても、ガラス基板からなる第2の透光性基板21を通したときと通さないときとで、第2の透光性基板21を通したときの方が、正面輝度が約8%低下した。
 したがって、本実施形態の面状発光装置では、第2の透光性基板21を透過する際のフレネルロスを低減することが望ましい。フレネルロスを抑制する手段としては、例えば、第2の透光性基板21の厚み方向の少なくとも一面に、単層もしくは多層の誘電体膜からなるアンチリフレクションコート(anti-reflection coat:以下、AR膜と略称する)を設けることが考えられる。要するに、本実施形態の面状発光装置では、第2の透光性基板21における有機EL素子10側の凹部21aの内底面と、第2の透光性基板21における有機EL素子10側とは反対側の表面との少なくとも一面にAR膜を設けることが考えられる。すなわち、本実施形態の面状発光装置では、第2の透光性基板21の上記一表面(図1(a)における上面)と第2の透光性基板21における上記一表面とは反対側の面(図1(a)における下面)との少なくとも一方にアンチリフレクションコートが設けられていてもよい。ここにおいて、AR膜を例えば屈折率nが1.38のフッ化マグネシウム膜(MgF2膜)により構成する場合には、設計波長λ0を550nmとすれば、AR膜の厚さをλ0/4n=550/(4×1.38)=99.6nmとすればよい。同様に、AR膜を例えば屈折率nが1.58の酸化アルミニウム膜(Al23膜)により構成する場合には、設計波長λ0を550nmとすれば、AR膜の厚さをλ0/4n=550/(4×1.58)=87.0nmとすればよい。また、AR膜は、厚さが99.6nmのフッ化マグネシウム膜と厚さが87.0nmの酸化アルミニウム膜との積層膜(2層AR膜)としてもよい。なお、誘電体膜の材料は、フッ化マグネシウムや酸化アルミニウム以外の材料を採用してもよい。
 本実施形態の面状発光装置では、AR膜を第2の透光性基板21の厚み方向の少なくとも一面、好ましくは両面に設けることにより、フレネルロスを低減でき、光取り出し効率の向上を図れる。第2の透光性基板21の厚み方向の両面にフッ化マグネシウム膜からなるAR膜を設けた場合、正面輝度が8%、外部量子効率が6%、それぞれ向上した。
 また、フレネルロスを抑制する他の手段としては、第2の透光性基板21の厚み方向の少なくとも一面側に図12に示すようなモスアイ(蛾の目)構造80を設けることが考えられる。すなわち、本実施形態の面状発光装置では、第2の透光性基板21の上記一表面(図1(a)における上面)と第2の透光性基板21における上記一表面とは反対側の面(図1(a)における下面)との少なくとも一方にモスアイ構造が形成されていてもよい。モスアイ構造80は、先細り状の微細突起81が2次元アレイ状に配列されて2次元周期構造を有しており、多数の微細突起81と隣り合う微細突起81間に入り込んだ媒質(図12の例では、空気)82とで反射防止部83が構成されることとなる。ここにおいて、第2の透光性基板21をナノインプリント法により加工してモスアイ構造80を形成した場合には、微細突起81の屈折率が第2の透光性基板21の屈折率と同じとなる。この場合、反射防止部83の有効屈折率は、当該反射防止部83の厚さ方向において第2の透光性基板21の屈折率(=1.51)と媒質82の屈折率(=1)との間で連続的に変化し、フレネルロスの原因となる屈折率界面がなくなった状態が擬似的に得られる。したがって、モスアイ構造80では、AR膜に比べて、波長や入射角に対する依存性を小さくでき、かつ、反射率も小さくすることができる。
 モスアイ構造80における微細突起81の高さおよび微細突起81の周期Pは、それぞれ200nm、100nmに設定してあるが、これらの数値は一例であり、特に限定するものではない。
 ここで、第2の透光性基板21の一面に対して、AR膜もモスアイ構造80も設けない場合、フッ化マグネシウム膜からなるAR膜を設けた場合、フッ化マグネシウム膜と酸化アルミニウム膜との積層膜からなるAR膜を設けた場合、モスアイ構造80を設けた場合、それぞれについて可視光域での反射率をシミュレーションした結果を、それぞれ図13中のA1、A2、A3、A4に示す。なお、AR膜の反射率のシミュレーションは、フレネル係数解析法を利用して行い、モスアイ構造80の反射率のシミュレーションは、厳密結合波解析法(別名、Rigorous Coupled Wave Analysis:RCWA法)を利用して行った。
 図13からも、フレネルロスを抑制する手段として、モスアイ構造80を設けた場合(図13のA4、AR膜を設けた場合(図13のA2、A3)に比べて、フレネルロスを低減できて、光取り出し効率の向上を図れるとともに、反射率の角度依存性および波長依存性を小さくできる。
 上述のモスアイ構造80は、例えば、ナノインプリント法により形成することができるが、ナノプリント法以外の方法(例えば、レーザ加工技術)で形成してもよい。また、モスアイ構造80は、例えば、三菱レイヨン株式会社製のモスアイ型無反射フィルムにより構成してもよい。
 (実施例1)
 本実施例の面状発光装置における有機EL素子10は、図1(a)~(c)に示した実施形態1の構成において、陽極12と陰極14との間の有機EL層13が、ホール輸送層と発光層と電子輸送層と電子注入層1との積層構造を有している。
 本実施例の面状発光装置の有機EL素子10の製造にあたっては、まず、PET基板からなる第1の透光性基板11の一表面側に膜厚が100nmのITO膜をスパッタ法により成膜した。次に、第1の透光性基板11の上記一表面側の全面にポジ型のレジスト(東京応化工業株式会社製のOFPR800LB)をスピンコート法により塗布してからベーキングを行った。続いて、別途用意したガラスマスクを利用して紫外線露光を行い、レジストの露光部を現像液(東京応化製のNMD-W)で除去することにより、レジストのパターニングを行った。その後、レジストをマスクとして、ITO膜のうちレジストにより覆われていない部分をエッチング液(関東化学株式会社製のITO-06N)によりエッチングすることでパターニングされたITO膜からなる陽極12を形成した。続いて、レジスト剥離液(東京応化工業株式会社製の剥離液106)でレジストを剥離した。なお、スパッタ法によりITO膜の成膜条件としては、ターゲットとしてITOターゲットを用い、成膜温度を100℃とした。
 上述の陽極12が形成された第1の透光性基板11を、中性洗剤、純水で各10分間ずつ超音波洗浄し、その後、真空中において所定の乾燥温度(80℃)で所定の乾燥時間(2時間)の乾燥を行い、次に、紫外線(UV)とオゾン(O3)とによる所定時間(10分)の表面清浄化処理を施した。
 その後、第1の透光性基板11を真空蒸着装置のチャンバ内に配置し、α-NPDを40nmの膜厚でホール輸送層として成膜した。続いて、このホール輸送層上に、アルミニウム-トリス[8-ヒドロキシキノリン](以下、Alq3と略称する)に5%のルブレンをドーピングした40nmの膜厚の発光層を成膜した。続いて、この発光層上に、Alq3を40nmの膜厚で電子輸送層として成膜した。その後、電子輸送層上に、フッ化リチウム(LiF)を1nmの膜厚で電子注入層として成膜し、次に、アルミニウムを80nmの膜厚で陰極14として成膜した。
 上述の有機EL素子10を製造した後、有機EL素子10を、露点-86℃以下のドライ窒素雰囲気のグローブボックスに、大気に暴露することなく搬送した。その後、第1の透光性基板11の上記他表面に、あらかじめ真空乾燥しておいて粘着材付きのプリズムシート(凹凸構造の周期が約3μm)からなる光取出し構造部50を貼り付けた。次に、第1の透光性基板11と第2の透光性基板21とを接合部29を介して接合した。さらにその後、酸化カルシウムを練り込んだゲッタからなる吸水材40を収納凹所31の内底面に貼り付けたガラス基板からなる保護部30を用意し、保護部30と第2の透光性基板21とを接合部39を介して接合した。
 (実施例2)
 実施例2として、実施例1と同じ構成であり、第1の透光性基板11としてPEN基板を用いた面状発光装置を作製した。
 (実施例3)
 実施例3として、実施例1と同じ構成であり、第1の透光性基板11としてPES基板を用いた面状発光装置を作製した。
 (比較例1)
 比較例1として、実施例1と同じ構成であり、第1の透光性基板11として屈折率が波長550nmでの屈折率が1.5の無アルカリガラス基板を用いた面状発光装置を作製した。
 実施例1~3および比較例1それぞれで用いた有機EL素子10について、定電流電源から有機EL素子10に2mA/cm2の定電流を流して、発光特性を分光器(浜松ホトニクス株式会社製のマルチチャネルアナライザPMA-11)で測定し正面輝度および外部量子効率を求めた結果、下記表4に示す結果が得られた。なお、表4における正面輝度および外部量子効率それぞれは、第1の透光性基板11の基板材料が無アルカリガラスのもの(比較例1で用いた有機EL素子10)の値を1として規格化した値である。
Figure JPOXMLDOC01-appb-T000008
 表4から、実施例1~3それぞれで作製した有機EL素子10は、比較例1の有機EL素子10に比べて正面輝度および外部量子効率が向上していることが確認された。しかして、第1の透光性基板11の基板材料として無アルカリガラスに比べて屈折率の高いPET、PEN、PESを採用することにより、光取り出し効率が向上することが確認された。
 (実施形態2)
 図14に示す本実施形態の面状発光装置の基本構成は実施形態1と略同じであり、光取出し構造部50の構造などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
 本実施形態における光取出し構造部50は、有機EL素子10において当該光取出し構造部50に接する部位の屈折率(図14の例では、第1の透光性基板11の屈折率)を下回らない屈折率(図14の例では、第1の透光性基板11の屈折率以上の屈折率)を有する透光性材料からなる母材52と、母材52に分散され母材52とは屈折率の異なる多数の光拡散体53とで構成されている。すなわち、本実施形態の面状発光装置では、光取り出し構造部50は、有機EL素子10の上記一面に接触するように配置される母材52と、母材52中に分散される光拡散体53と、を備える。母材52は、有機EL素子10において母材52と接触する部位(図14の例では、第1の透光性基板11)以上の屈折率を有する。光拡散体53は、母材52とは異なる屈折率を有する。ここにおいて、光拡散体53は、母材52との屈折が異なる材料であればよく、拡散性を高める上では、母材52との屈折率差が大きな材料が好ましく、また、光を吸収しない材料が好ましい。例えば、光拡散体53は、微粒子である。また、光拡散体53は、微粒子でもよいし、空孔でもよい。すなわち、光取り出し構造部50は、有機EL素子10の上記一面に接触するように配置される母材52と、母材52中に形成された空孔(光拡散体53)とを備えていてもよい。この場合、母材52は、有機EL素子10において上記母材と接触する部位(図14の例では、第1の透光性基板11)以上、かつ、空孔(光拡散体53)の媒質とは異なる屈折率を有することが好ましい。このような条件を満たす光取り出し構造部50としては、光拡散体53として、ナノ金属粒子や酸化チタン(TiO2)粒子などからなる光拡散体53が樹脂からなる母材52に分散された構造や、空孔からなる光拡散体53が樹脂からなる母材52に分散された構造などが考えられる。
 また、母材52については、熱硬化型もしくは紫外線硬化型の樹脂を採用することにより、有機EL素子10の第1の透光性基板11と第2の透光性基板21とを接合する接着剤としての機能を持たせることが可能である。勿論、母材52に接着剤の機能を持たせることなく、母材52とは別の接着剤により第1の透光性基板11と第2の透光性基板21とを接合するようにしてもよいことは勿論である。
 上述の光拡散体53の平均サイズは、0.5μm~50μmの範囲内、好ましは0.7μm~10μm程度であることが望ましい。光拡散体53の平均サイズが0.5μmよりも小さい場合には、光と光拡散体53との相互作用(屈折、干渉)が起きないため、光の進行方向が変化しない。逆に光拡散体53の平均サイズが大きくなりすぎると、光取り出し構造部50の全光線透過率が低下して光取り出し効率が低下する可能性がある。拡散性を定量的に示す値としては、ヘイズ値という指標が一般的に用いられている。ヘイズ値は、試験片の拡散光透過率を全光線透過率で除した値を百分率で示したものである。一般的に、ヘイズ値が高くなると、全光線透過率が低くなるが、ヘイズ値、全光線透過率とも高いことが望ましい。例えば、母材52の樹脂として、紫外線硬化型の高屈折率樹脂の一種である三菱ガス化学株式会社製のLPB-1101(n=1.71)を用い、光拡散体53として平均粒径が2μmのTiO2粒子をフィラーとして分散させた場合、ヘイズ値は90%程度、全光線透過率は80~90%程度である。
 なお、本実施形態では、有機EL素子10の陰極14と外部接続電極24とを接続する接続部64が、陰極14と同じ材料で陰極14と同時に形成されているが、実施形態1と同様に、陰極14とは別に形成してもよいことは勿論である。
 以上説明した本実施形態の面状発光装置では、有機EL層13の発光層から放射され第2の透光性基板21まで到達した光の全反射ロスを低減でき、光取り出し効率の向上を図れる。ここにおいて、光拡散体53を空孔により構成した場合には、母材52と光拡散体53との屈折率差を大きくし易く、拡散効果を高めることができ、しかも、光の吸収が起こりにくく、光取り出し効率の向上を図れる。また、光拡散体53を微粒子により構成した場合には、光拡散体53である微粒子を分散させた母材52を有機EL素子10と第2の透光性基板21との間に介在させることにより光取出し構造部50を形成できるので、光取出し構造部50を容易に形成する可能となる。
 なお、本実施形態の面状発光装置において、第2の透光性基板21における有機EL素子10側とは反対側の表面に実施形態1にて説明したモスアイ構造80をナノインプリント法により形成した場合には、正面輝度および外部量子効率それぞれが4%向上した。また、本実施形態の面状発光装置では、第2の透光性基板21における有機EL素子10側とは反対側の表面に実施形態1にて説明したAR膜を設けてもよい。
 (実施形態3)
 本実施形態の面状発光装置の基本構成は実施形態1と略同じであり、図15に示すように、光取出し構造部50の凹凸構造部51が第2の透光性基板21における有機EL素子10と対向する側に設けられており、当該凹凸構造部51と第1の透光性基板11との間に、第1の透光性基板11の屈折率以上の屈折率の透光性材料からなる透明部54を有している点で相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
 ここにおいて、第2の透光性基板21は、ガラス基板により構成してあり、凹凸構造部51は、第2の透光性基板21を構成するガラス基板をインプリント法やブラスト法などによって加工することにより形成してある。ブラスト法により形成した場合の凹凸構造部51は、すりガラス状となる。
 発光層の屈折率を1.7とし、発光層と第1の透光性基板11との間に介在する部位(ホール輸送層、陽極12など)との屈折率が同じであるとし、第1の透光性基板11の材料として屈折率が1.71のPETを採用する場合、透明部54の透光性材料としては、例えば、紫外線硬化型の高屈折率樹脂の一種である三菱ガス化学株式会社製のLPB-1101(n=1.71)や、屈折率が1.7以上のマッチングオイルなどを用いればよい。また、第1の透光性基板11の材料として屈折率が1.75のPENを採用する場合には、透明部54の透光性材料としては、例えば、屈折率が1.75以上のマッチングオイルを用いればよい。
 以上述べたように、本実施形態の面状発光装置は、一面(厚み方向の一面、図15における下面)および上記一面とは反対側の他面(厚み方向の他面、図15における上面)を有し、上記一面から光を放射する有機EL素子10と、有機EL素子10から放射された光に対して透光性を有し、有機EL素子10の上記一面に対向するように配置され、有機EL素子10の上記一面に対向する一表面(図15における上面)を有する第2の透光性基板(保護基板)21と、有機EL素子10の上記他面に対向するように配置され、第2の透光性基板21とともに有機EL素子10を水から保護するように収納するハウジングを形成する保護部30と、有機EL素子10の上記一面と第2の透光性基板21との間に介在され、第2の透光性基板21の上記一表面における有機EL素子10から放射された光の反射(全反射)を抑制する光取り出し構造部50と、を備える。
 また、本実施形態の面状発光装置では、有機EL素子10は、光を放射する発光層を含む有機EL層13と、発光層から放射される光に対して透光性を有する第1の透光性基板(形成基板)11とを備える。上記発光層は、第1の透光性基板11の上記一表面(図15における上面)上に形成される。有機EL素子10の上記一面は、第1の透光性基板11の上記一表面とは反対側の上記他表面(図15における下面)である。第1の透光性基板11は、第2の透光性基板21よりも高い屈折率を有する。
 また、本実施形態の面状発光装置では、第2の透光性基板21は、第1の透光性基板11よりも高い耐候性および防水性を有する。
 例えば、第1の透光性基板11はプラスチック基板(例えば、PET、PEN、PES、PC)であり、第2の透光性基板21はガラス基板(無アルカリガラス基板、ソーダライムガラス基板)である。
 さらに、本実施形態の面状発光装置は、有機EL素子10から放射された光に対して透光性を有するとともに第1の透光性基板11以上の屈折率を有する透明部54を備える。光取り出し構造部50は、第2の透光性基板21の上記一表面に設けられた凹凸構造部51である。透明部54は、第1の透光性基板11と凹凸構造部51との間に介在されている。
 また、本実施形態の面状発光装置では、凹凸構造部51は、第2の透光性基板21以下の屈折率を有する。
 また、本実施形態の面状発光装置では、凹凸構造部51は、周期性を有する凹凸構造を有する。当該凹凸構造の周期Pは、有機EL素子10から放射される光の波長の1/4以上10倍以下である。
 しかして、本実施形態の面状発光装置においても、光取出し構造部50が設けられていることにより、発光層から放射された光の反射を抑制することができ、光取り出し効率の向上を図れる。また、本実施形態の面状発光装置では、第2の透光性基板21と有機EL素子10との間に空間70が存在する場合に比べて、第2の透光性基板21において有機EL素子10側でのフレネルロスをなくすことができるという利点がある。
 また、本実施形態の面状発光装置において、第2の透光性基板21における有機EL素子10側とは反対側の表面側に実施形態1にて説明したAR膜やモスアイ構造80(図12参照)を設ければ、正面輝度および外部量子効率それぞれを向上させることが可能となる。
 (実施形態4)
 本実施形態の面状発光装置の基本構成は実施形態1と略同じであり、図16に示すように、保護部30を平板状のガラス基板により構成し、保護部30と第2の透光性基板21とを接合する接合部39をフリットガラスにより形成してある点などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
 また、本実施形態の面状発光装置は、有機EL素子10の上記他面側に、有機EL素子10で発生した熱を保護部30側へ伝熱させる伝熱部34を設けてある。すなわち、本実施形態の面状発光装置は、有機EL素子10の上記他面と保護部30との間に介在し有機EL素子10で発生した熱を保護部30側へ放熱させる伝熱部(放熱部材)34を備える。ここにおいて、伝熱部34は、第1の透光性基板11の上記一表面側において陽極12、有機EL層13および陰極14それぞれの露出部位を覆うように形成してある。このような伝熱部34は、例えば、不活性ガスに比べて熱伝導率の高いゲル状のシリコーン樹脂やゲル状のフッ素系樹脂、熱伝導グリースなど、あるいは、不活性ガスに比べて熱伝導率の高い液体(例えば、シリコーンオイル、パラフィンオイルなど)により形成すればよい。
 本実施形態における有機EL素子10は、図17(a)に示すような平面レイアウトを有しており、第1の透光性基板11(図16参照)の上記他表面のうち陽極12、有機EL層13(図16参照)、陰極14の3つが重複する領域が発光面となる。ここで、有機EL素子10は、図17(a)に示すように、平面視で陽極12と陰極14とを互いに交差する形状とし、且つ、陽極12を、陰極14に対して交差する方向(図17(a)の右横に示したxy座標平面のx軸方向)において透光性基板11の全長に亘って形成するとともに、陰極14を、陽極12に対して交差する方向(図17(a)の右横に示したxy座標平面のy軸方向)において透光性基板11の全長に亘って形成してある。
 また、この有機EL素子10は、図17(b)に示すように、第1の透光性基板11の多数個取りが可能なプラスチック基板(プラスチックフィルム)110に、多数個の有機EL素子10を形成してから、個々の有機EL素子10に分割することによって形成してある。ここにおいて、図17(b)に示した例では、x軸方向において隣り合う有機EL素子10の陽極12同士が連続し、y軸方向において隣り合う有機EL素子の陰極14同士が連続するように、多数個取りが可能なプラスチック基板110に多数個の有機EL素子10をマトリクス配置してある。したがって、多数個の有機EL素子10を形成したプラスチック基板110を、隣り合う有機EL素子10同士の境界(図17(b)中に一点鎖線で示してある)に沿ってカットすることで、多数個取りが可能なプラスチック基板110からの材料取りが向上し、材料歩留まりの向上を図れる。また、有機EL素子10の陽極12、陰極14それぞれへの電気的な接続部位を確保しつつ発光面の面積の増大を図れるとともに、第1の透光性基板11のうち上記一表面側において露出する部位の面積を小さくすることができる。多数個の有機EL素子10が形成されたプラスチック基板110をカットする手段としては、例えば、円板状のブレードを用いればよい。
 なお、本実施形態では、陽極12、陰極14それぞれと外部接続電極22,24とを電気的に接続する接続部62,64を、ボンディングワイヤにより構成してある。しかして、接続部62,64からの脱ガスがない。
 本実施形態の面状発光装置では、有機EL素子10と保護部30との間に伝熱部34を設けてあるので、有機EL素子10で発生した熱を保護部30側へ効率良く放熱させることが可能となり、有機EL素子10の長寿命化を図れるとともに、高輝度化を図れる。
 また、本実施形態の面状発光装置では、保護部30と第2の透光性基板21とを接合する接合部39をフリットガラスにより形成してあるので、接合部39からの出ガスを防止することができるとともに耐湿性を高めることができ、長期的な信頼性を高めることが可能となる。また、接合部39を熱硬化性樹脂などの樹脂材料により形成する場合には、気密性を確保するために3mm以上の封止代を設けることが好ましいが、本実施形態では、接合部39をフリットガラスにより形成してあるので、封止代を1mm程度にしながらも気密性を確保することができる。したがって、本実施形態の面状発光装置の正面視における非発光部の面積を低減することができる。
 以下、本実施形態の面状発光装置の製造方法について図18(a)~(e)を参照しながら説明する。
 まず、外部接続電極22,24が一表面側に形成された第2の透光性基板21の上記一表面側に、接着用フィルム、熱硬化樹脂、紫外線硬化樹脂、接着剤(例えば、エポキシ樹脂、アクリル樹脂、シリコーン樹脂など)などからなる接合部29を配置することによって、図18(a)に示す構造を得る。
 その後、図18(b)に示すように、有機EL素子10を第2の透光性基板21の上記一表面側に対向させて位置合わせを行い、図18(c)に示すように、有機EL素子10の第1の透光性基板11を第2の透光性基板21の上記一表面側に接合部29を介して接合してから、有機EL素子10の陽極12、陰極14それぞれと外部接続電極22,24とを、ボンディングワイヤからなる接続部62,64により電気的に接続する。
 その後、有機EL素子10の上記他面側にゲル状のシリコーン樹脂などからなる伝熱部34を設けることによって、図18(d)に示す構造を得る。
 伝熱部34を設けた後、第2の透光性基板21の上記一表面側にガラスフリットからなる接合部39を配置し、続いて、保護部30を第2の透光性基板21の上記一表面側に対向させて位置合わせを行う(図18(e)参照)。続いて、保護部30を接合部39に接触させ、接合部39をレーザ光などにより加熱して第2の透光性基板21および保護部30それぞれと接合すればよい。この場合、フリットガラスがレーザ光により加熱されやすいように適宜の不純物をフリットガラスに添加しておいてもよい。なお、加熱は、レーザ光に限らず、例えば、赤外線により行ってもよい。また、伝熱部34を液体により構成する場合には、例えば、あらかじめ保護部30に液体の注入孔および空気抜き孔を設けておき、接合部39を第2の透光性基板21および保護部30それぞれと接合した後で、注入孔から液体を注入することで伝熱部34を設け、その後、注入孔および空気抜き孔を接着剤などにより封止すればよい。
 上述の接合部39は、第2の透光性基板21と保護部30との間のスペーサとして機能するものであり、接合部39は、フリットガラスのみを用いて形成する場合に限らず、例えば、合金からなる枠部材と、当該枠部材における第2の透光性基板21および保護部30それぞれとの対向面に形成されたフリットガラスとを用いて形成してもよい。ここにおいて、枠部材の材料である合金としては、熱膨張係数が第2の透光性基板21および保護部30の熱膨張係数に近いコバール(Kovar)を用いることが好ましいが、コバールに限らず、例えば、42合金などを用いてもよい。コバールは、鉄にニッケル、コバルトを配合した合金であり、常温付近での熱膨張係数が、金属の中で低いものの一つで、無アルカリガラス、青ソーダガラス、硼珪酸ガラスなどの熱膨張係数に近い値を有している。コバールの成分比の一例は、重量%で、ニッケル:29重量%、コバルト:17重量%、シリコン:0.2重量%、マンガン:0.3重量%、鉄:53.5重量%である。コバールの成分比は、特に限定するものではなく、コバールの熱膨張係数が、第2の透光性基板21および保護部30の熱膨張係数に揃うように適宜成分比のものを採用すればよい。また、この場合のフリットガラスとしては、熱膨張係数を合金の熱膨張係数に揃えることができる材料を採用することが好ましい。ここで、合金がコバールの場合には、フリットガラスの材料として、コバールガラスを用いることが好ましい。また、このような接合部39の形成にあたっては、例えば、コバールなどの合金からなる板材の厚み方向の両面に、フリットガラスを所定パターン(本実施形態では、矩形枠状のパターン)となるように塗布し、乾燥、焼成後、プレス抜き加工を行うことにより、接合部39を形成することができる。
 (実施形態5)
 本実施形態の面状発光装置の基本構成は実施形態1と略同じであり、図19に示すように、保護部30を平板状のガラス基板として、有機EL素子10と保護部30との間に(有機EL素子10の上記他面と保護部30との間に)、有機EL素子10で発生した熱を保護部30側へ放熱させる放熱部材35を介在させてある点などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
 放熱部材35としては、例えば、放熱用のシリコーンフィルム(例えば、ゲル状のサーコン(登録商標)シートなど)やカーボンフィルムなどの放熱シートや、熱伝導グリースなどを用いればよい。
 また、本実施形態の面状発光装置は、保護部30における第2の透光性基板21と対向する一表面側に、有機EL素子10の陽極12、陰極14それぞれと電気的に接続される外部接続電極22,24を設けてあり、有機EL素子10を保護部30のみに固定してある。すなわち、有機EL素子10は第2の透光性基板21に接触しないように放熱部材35を介して保護部30に固定されている。ここにおいて、有機EL素子10は、陰極14が放熱部材35により保護部30に固定されるとともに、陽極12、陰極14それぞれが、導電性ペースト(例えば、銀ペーストなど)からなる接続部62,64により、保護部30の外部接続電極22,24に固定されて電気的に接続されている。
 すなわち、本実施形態の面状発光装置は、有機EL素子10の上記他面と保護部30との間に介在され有機EL素子10で発生した熱を保護部30に伝える放熱部材35を備え、有機EL素子10は、第2の透光性基板21に接触しないように保護部30に固定されている。
 以下、本実施形態の面状発光装置の製造方法について図20(a)~(e)を参照しながら説明する。
 まず、図20(a)に示すように、外部接続電極22,24が一表面側に形成されたガラス基板からなる保護部30の上記一表面側に、サーコン(登録商標)シートなどの電気絶縁性を有し且つ熱伝導性を有するゲル状の放熱シートからなる放熱部材35を対向させて位置合わせを行う。なお、外部接続電極22,24は、例えば、めっき法や、スパッタ法や、印刷法などにより形成すればよい。ここで、外部接続電極22,24をめっき法により形成する場合、外部接続電極22,24の材料としては、例えば、PdNiAuなどを採用すればよい。また、スパッタ法により形成する場合、外部接続電極22,24の材料としては、例えば、MoAl、CrAg、AgPdCu(APC)などを採用すればよい。また、印刷法により形成する場合、外部接続電極22,24の材料としては、例えば、銀を採用すればよい。なお、外部接続電極22,24の材料が銀であり、印刷法により形成する場合には、銀ペースト(例えば、Henkel社製のQMI516Eなど)を利用すればよい。
 その後、図20(b)に示すように、放熱部材35を保護部30の上記一表面上に固定してから、ディスペンサ100により、接続部62,64となる導電性ペースト(銀ペーストなど)を塗布する。
 その後、図20(c)に示すように、有機EL素子10の第1の透光性基板11の上記他表面側を吸着コレット90により吸着保持して、有機EL素子10を保護部30の上記一表面側に対向させて位置合わせを行う。ここにおいて、本実施形態では、有機EL素子10の製造時に、アルミニウムなどからなる陰極14を、マスクを利用して蒸着する際に、2つのアライメントマーク(図示せず)を第1の透光性基板11の上記一表面における1本の対角線の両端部付近に、陰極14と同時に形成している。しかして、有機EL素子10を第1の透光性基板11の上記他表面側から撮像するCCDカメラなどの撮像装置と、撮像装置から得た画像を画像処理してアライメントマークを認識する画像処理装置と、画像処理装置の認識結果に基づいて、吸着コレット90を先端部に備えたロボットアームを制御するコンピュータなどからなる制御装置とを備えた実装装置を用いればよい。ここで、制御装置のコンピュータには、ロボットアームを制御するために適宜のプログラムを搭載すればよい。なお、吸着コレット90には、有機EL素子10を吸着するための吸着孔(真空吸引孔)91が形成されている。ここで、吸着コレット90は、第1の透光性基板11や凹凸構造部51に傷が付くのを抑制するために、樹脂(例えば、全芳香族ポリイミド樹脂、ポリアミド樹脂、イミド樹脂など)により形成してあることが好ましい。また、吸着コレット90における吸着面(図20(c)の下面)には、凹凸構造部51を収納可能な凹部92を設けてあるが、凹凸構造部51による凹凸の高低差は小さいので、必ずしも凹部92を設ける必要はなく、第1の透光性基板11の上記他表面側の全体を吸着するようにしてもよい。
 その後、有機EL素子10の陰極14と放熱部材35とを接触させるとともに、陽極12、陰極14それぞれを接続部62,64と接触させてから、導電性ペーストを硬化させ、続いて、真空中でのベークを行うことにより、図20(d)に示す構造を得る。
 その後、保護部30の上記一表面側にガラスフリットからなる接合部39を配置し、続いて、第2の透光性基板21を保護部30の上記一表面側に対向させて位置合わせを行い、続いて、第2の透光性基板21を接合部39に接触させ、接合部39をレーザ光などにより加熱して保護部30および第2の透光性基板21それぞれと接合すればよい。これによって、図20(e)に示す構造を得る。この場合、フリットガラスがレーザ光により加熱されやすいように適宜の不純物をフリットガラスに添加しておいてもよい。なお、加熱は、レーザ光に限らず、例えば、赤外線により行ってもよい。
 以上説明した本実施形態の面状発光装置では、実施形態1にて説明した接合部29が第2の透光性基板21の凹部21aを設けることなく、空間70を確保することができる。
 ところで、実施形態1の面状発光装置では、正面視において接合部29(図1(a)参照)が見えて見栄えが低下する懸念や、接合部29と第1の透光性基板11との界面や、接合部29と第2の透光性基板21との界面に、ボイドが形成される懸念がある。
 これに対して、本実施形態の面状発光装置では、第1の透光性基板11と第2の透光性基板21との間に実施形態1で説明した接合部29(図1(a),(c)参照)が不要なので、正面視による見栄えがよくなるとともに、ボイドの心配をする必要がなくて製造時の外観検査が容易になる。また、本実施形態の面状発光装置では、上述のように、製造時に、吸着コレット90により第1の透光性基板11の上記他表面側の全体を吸着するようにすれば、第1の透光性基板11の反りを低減することが可能となる。
 また、本実施形態の面状発光装置では、製造時に、有機EL素子10を吸着コレット90により取り扱う際に、第1の透光性基板11の上記他表面側を吸着して取り扱うことができるので、陰極14が剥離したり陰極14に傷が付く可能性を低減でき、製造歩留まりの向上を図ることが可能となる。
 また、本実施形態の面状発光装置において、第2の透光性基板21の厚み方向の少なくとも一面に実施形態1で説明したAR膜を設けてもよいし、第2の透光性基板21の厚み方向の少なくとも一面側にモスアイ構造80(図12参照)を設けてもよく、いずれの場合も、正面輝度および外部量子効率それぞれを向上させることが可能となる。
 (実施形態6)
 本実施形態の面状発光装置の基本構成は実施形態4と略同じであり、図21に示すように、第2の透光性基板21と保護部30とで囲まれる空間内に、有機EL素子10を複数個備え、これら複数個の有機EL素子10が第2の透光性基板21に平行な一平面内で並んで配置されている点などが相違する。なお、実施形態4と同様の構成要素には同一の符号を付して説明を適宜省略する。
 すなわち、本実施形態の面状発光装置は、複数の有機EL素子10を備え、複数の有機EL素子10は、第2の透光性基板21の上記一表面に平行な面内で並べられている。
 ところで、陽極12を透明導電膜により構成した有機EL素子10では、発光面の面積を大きくすると、陽極12のシート抵抗が金属膜を用いた陰極14のシート抵抗に比べて大きいため、陽極12での電位勾配が大きくなって、陽極12と陰極14との間の有機EL層13にかかる電圧が大きくなり、輝度むらが大きくなるとともに、効率の低下、短寿命化の原因となる。また、このような有機EL素子10では、陽極12と陰極14との間がショートするリスクが高くなる。また、有機EL素子10は、大面積化を図るほど、陽極12、有機EL層13、陰極14などの厚みの面内均一性が低下するとともに、材料の利用効率が低下する。
 これに対して、本実施形態の面状発光装置では、複数個の有機EL素子10を並べて配置してあるので、大面積の発光面積を確保する場合に、有機EL素子10が1個の場合に比べて、各有機EL素子10の発光面の面積を小さくすることができるから、輝度むらを低減できるとともに、効率の向上を図れ、また、長寿命化を図れる。
 ここにおいて、例えば、16個の有機EL素子10を図22に示すような4×4のマトリクス状に配置するとともに、外部接続電極22を櫛形状の形状とし、この櫛形状の外部接続電極22の隣り合う櫛歯22b間に、複数個(図示例では、4個)の有機EL素子10が櫛歯22bの延長方向に並ぶようにし、櫛歯22bと各有機EL素子10の陽極12とを接続部62により電気的に接続するようにした面状発光装置では、有機EL素子10の電流集中を抑制することが可能となる。また、このような面状発光装置では、面積の小さな有機EL素子10を多数形成した後で良品の有機EL素子10のみを配置することができるから、低コスト化を図れる。
 また、面状発光装置は、図22の構成に限らず、例えば、図23に示すように、有機EL素子10を、短冊状の第1の透光性基板11の長手方向に沿って陽極12の両端部が露出するようにし、各櫛歯22bと陽極12とを陽極12の長手方向の略全長に亘って櫛歯22bと接続するようにしてもよい。
 また、面状発光装置における有機EL素子10の個数は特に限定するものではない。例えば、面状発光装置は、4個の有機EL素子10を2×2のマトリクス状に配置したものでもよい。
 以下、この面状発光装置の製造方法について図24(a)~(g)を参照しながら説明する。
 まず、図24(a)に示すように、多数個取りが可能なプラスチック基板110に多数個の有機EL素子10を形成する。
 その後、図24(b)に示すように、このプラスチック基板110を円板状のブレード120を利用して切断することにより、個々の有機EL素子10に分離する。
 続いて、図24(c)に示すように、外部接続電極22,24が一表面側に形成された第2の透光性基板21を用意する。
 その後、図24(d)に示すように、第2の透光性基板21の上記一表面側に各有機EL素子10を実装する。なお、有機EL素子10を実装する際には、有機EL素子10の第1の透光性基板11を第2の透光性基板21の上記一表面側に接合部(図示せず)を介して接合する。
 その後、外部接続電極22,24から、複数個の有機EL素子10に給電できるように、図24(e)に示すように、ボンディングワイヤからなる接続部62,63,64により、適宜、電気的接続を行う。なお、接続部62,63,64は、ボンディングワイヤに限らず、例えば、導電性ペーストや導電性テープなどを採用してもよい。
 その後、各有機EL素子10の上記他面側にゲル状のシリコーン樹脂などからなる伝熱部34を設けることによって、図24(f)に示す構造を得る。
 伝熱部34を設けた後、図24(g)に示すように、第2の透光性基板21の上記一表面側にガラスフリットからなる接合部39を配置し、続いて、保護部30を第2の透光性基板21の上記一表面側に対向させて位置合わせを行う。続いて、保護部30を接合部39に接触させ、接合部39をレーザ光などにより加熱して第2の透光性基板21および保護部30それぞれと接合すればよい。この場合、フリットガラスがレーザ光により加熱されやすいように適宜の不純物をフリットガラスに添加しておいてもよい。なお、加熱は、レーザ光に限らず、例えば、赤外線により行ってもよい。また、伝熱部34を液体により構成する場合には、例えば、あらかじめ保護部30に液体の注入孔および空気抜き孔を設けておき、接合部39を第2の透光性基板21および保護部30それぞれと接合した後で、注入孔から液体を注入することで伝熱部34を設け、その後、注入孔および空気抜き孔を接着剤などにより封止すればよい。
 また、本実施形態の面状発光装置において、第2の透光性基板21の厚み方向の少なくとも一面に実施形態1で説明したAR膜を設けてもよいし、第2の透光性基板21の厚み方向の少なくとも一面側にモスアイ構造80(図12参照)を設けてもよく、いずれの場合も、正面輝度および外部量子効率それぞれを向上させることが可能となる。
 (実施形態7)
 本実施形態の面状発光装置の基本構成は実施形態5と略同じであり、図25に示すように、複数個の有機EL素子10を保護部30に固定してある点などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
 ここで、有機EL素子10は、図26(c1)に示した平面図、図26(c2)に示した断面図から分かるように、第1の透光性基板11の平面視形状を矩形状としてあり、第1の透光性基板11の長手方向の両端部それぞれにおいて、第1の透光性基板11の短手方向の両端部に陽極12の一部を露出させ、この短手方向の中央部に陰極14の一部を設けてある。また、この短手方向において陽極12と陰極14との間には、第1の透光性基板11の一部が露出している。なお、図26(a1),(a2)それぞれに、第1の透光性基板11の上記一表面側に陽極12を形成した状態の平面図、断面図を示し、図26(b1),(b2)に、第1の透光性基板11の上記一表面側に陽極12および有機EL層13を形成した状態の平面図、断面図を示す。
 本実施形態では、図27に示すように、陽極12、陰極14それぞれに両面導電テープ162,164を接着しており、これらの両面導電テープ162,164により保護部30に固定されている。なお、両面導電テープ162,164は、厚み方向に導電性を有するものであり、例えば、寺岡製作所製の導電性ベースレス両面テープ7025などを用いることができる。
 しかして、本実施形態では、導電性ペーストを用いることなく、有機EL素子10を保護部30に固定するとともに電気的に接続することができ、有機EL素子10の実装工程の低温化を図れる。
 また、本実施形態の面状発光装置において、第2の透光性基板21の厚み方向の少なくとも一面に実施形態1で説明したAR膜を設けてもよいし、第2の透光性基板21の厚み方向の少なくとも一面側にモスアイ構造80(図12参照)を設けてもよく、いずれの場合も、正面輝度および外部量子効率それぞれを向上させることが可能となる。
 (実施形態8)
 本実施形態の面状発光装置の基本構成は実施形態7と略同じであり、図28(a),(b)に示すように、隣り合う有機EL素子10の一部同士を重ねて、陽極12同士を両面導電テープ162により電気的に接続するとともに、陰極同士14を両面導電テープ164により電気的に接続している点が相違する。なお、実施形態7と同様の構成要素には同一の符号を付して説明を適宜省略する。
 しかして、本実施形態の面状発光装置では、実施形態7に比べて、隣り合う有機EL素子10間に形成される非発光部の面積を小さくすることが可能となる。
 また、本実施形態の面状発光装置において、第2の透光性基板21の厚み方向の少なくとも一面に実施形態1で説明したAR膜を設けてもよいし、第2の透光性基板21の厚み方向の少なくとも一面側にモスアイ構造80(図12参照)を設けてもよく、いずれの場合も、正面輝度および外部量子効率それぞれを向上させることが可能となる。
 (実施形態9)
 本実施形態の面状発光装置の基本構成は実施形態1と略同じであり、図29(a),(b)に示すように、複数(図示例では、4つ)の有機EL素子10を備え、これら複数の有機EL素子10で第1の透光性基板11を共有している点が相違する。なお、他の構成は実施形態1と同じなので、図示および説明を省略する。
 本実施形態では、4つの有機EL素子10が2×2のマトリクス状に配置され、これら4つの有機EL素子10を直列に接続してある。具体的には、第1の透光性基板11の上記一表面側において、隣り合う有機EL素子10のうちの一方の有機EL素子10の陰極14と他方の有機EL素子10の陽極12とを両者に跨る導電層により電気的に接続してある。しかして、本実施形態の面状発光装置では、発光部の大面積化を図ることができるとともに、隣り合う有機EL素子10間に形成される非発光部の面積を小さくすることが可能となる。また、有機EL素子10の輝度むらを低減できるとともに、電流集中に伴う発熱に起因した効率の低下や、短寿命化を抑制することが可能となる。
 また、本実施形態の面状発光装置において、第2の透光性基板21の厚み方向の少なくとも一面に実施形態1で説明したAR膜を設けてもよいし、第2の透光性基板21の厚み方向の少なくとも一面側にモスアイ構造80(図12参照)を設けてもよく、いずれの場合も、正面輝度および外部量子効率それぞれを向上させることが可能となる。
 (実施形態10)
 本実施形態の面状発光装置の基本構成は実施形態5と略同じであり、図30に示すように、保護部30の上記一表面側に複数個の有機EL素子10を並べて配置し、隣り合う有機EL素子10同士を導電性ペーストからなる接続部63により直列に接続してある点が相違する。なお、実施形態5と同様の構成要素には同一の符号を付して説明を適宜省略する。
 本実施形態の面状発光装置では、数個の有機EL素子10を並べて配置してあるので、大面積の発光面積を確保する場合に、有機EL素子10が1個の場合に比べて、各有機EL素子10の発光面の面積を小さくすることができるから、輝度むらを低減できるとともに、効率の向上を図れ、また、長寿命化を図れる。
 また、本実施形態の面状発光装置において、第2の透光性基板21の厚み方向の少なくとも一面に実施形態1で説明したAR膜を設けてもよいし、第2の透光性基板21の厚み方向の少なくとも一面側にモスアイ構造80(図12参照)を設けてもよく、いずれの場合も、正面輝度および外部量子効率それぞれを向上させることが可能となる。
 (実施形態11)
 本実施形態の面状発光装置の基本構成は実施形態5と略同じであり、図31に示すように、複数の有機EL素子10を備え、これら複数の有機EL素子10で第1の透光性基板11を共有している点が相違する。なお、実施形態5と同様の構成要素には同一の符号を付して説明を適宜省略する。
 本実施形態の面状発光装置では、数個の有機EL素子10を並べて配置してあるので、大面積の発光面積を確保する場合に、有機EL素子10が1個の場合に比べて、各有機EL素子10の発光面の面積を小さくすることができるから、輝度むらを低減できるとともに、効率の向上を図れ、また、長寿命化を図れる。
 また、本実施形態では、各有機EL素子10の陰極14を蒸着法により同時に形成する際に、隣り合う有機EL素子10のうちの一方の有機EL素子10の陰極14の一部と他方の有機EL素子10の陽極12の一部とが第1の透光性基板11の厚み方向において重なり電気的に接続されるようにレイアウト設計してあるので、非発光部の面積を低減することが可能となる。
 また、本実施形態の面状発光装置において、第2の透光性基板21の厚み方向の少なくとも一面に実施形態1で説明したAR膜を設けてもよいし、第2の透光性基板21の厚み方向の少なくとも一面側にモスアイ構造80(図12参照)を設けてもよく、いずれの場合も、正面輝度および外部量子効率それぞれを向上させることが可能となる。
 (実施形態12)
 図32に示す本実施形態の面状発光装置は、実施形態6と略同じ基本構成を有しており、保護部30の一面側に光反射部190を有している点、有機EL素子10の数などが相違する。なお、実施形態と同様の構成要素には同一の符号を付して説明を適宜省略する。
 すなわち、本実施形態の面状発光装置では、保護部30は、有機EL素子10の上記他面(図32における上面)と対向する内面(図32における下面)を有する。保護部30の上記内面には、有機EL素子10から放射された光を反射する光反射部190が設けられている。
 光反射部190の材料は、有機EL素子10から放射される光に対する反射率の高い材料であれば特に限定するものではないが、例えば、アルミニウム、銀、銀合金などを採用することが可能である。
 ところで、面状発光装置は、第1の透光性基板11を透過した光の一部が、第2の透光性基板21と空間70との界面、第2の透光性基板21と外部の大気との界面でフレネル反射する。第2の透光性基板21としてガラス基板を用いている場合には、各界面で約4%の光がフレネル反射するので、計算上は、合計で約8%の光がロスすることになる。ただし、実際には、フレネル反射した光は、有機EL層13における陰極14側で再び反射されて取り出されるので、8%よりも小さなロスとなる。
 しかしながら、陰極14で反射されずに保護部30を透過したり、保護部30で吸収される光はロスとなる。一方で、実施形態6の面状発光装置では、光取出し構造部50において光の角度を変換する作用があるため、光取出し構造部50で取り出されなかった光の中には、拡散反射光の成分が生じる。この拡散反射光の成分が陰極14に当たらずに保護部30へ到達しロスとなる光も僅かながら存在する。
 これに対して、本実施形態の面状発光装置では、保護部30に光反射部190を設けてあるので、光取り出し効率を向上させることが可能となる。図32のように、保護部30における有機EL素子10側の一面の略全域に亘って光反射部190を設けた場合には、光反射部190を設けていない場合に比べて、光取り出し効率が、約2%、向上した。なお、他の実施形態の面状発光装置において光反射部190を設けてもよい。
 また、本実施形態の面状発光装置において、第2の透光性基板21の厚み方向の少なくとも一面に実施形態1で説明したAR膜を設けてもよいし、第2の透光性基板21の厚み方向の少なくとも一面側にモスアイ構造80(図12参照)を設けてもよく、いずれの場合も、正面輝度および外部量子効率それぞれを向上させることが可能となる。
 (実施形態13)
 図33に示す本実施形態の面状発光装置は、実施形態10と略同じ基本構成を有しており、保護部30の一面側に光反射部190を有している点が相違する。なお、実施形態と同様の構成要素には同一の符号を付して説明を適宜省略する。
 すなわち、本実施形態の面状発光装置では、保護部30は、有機EL素子10の上記他面(図33における下面)と対向する内面(図33における上面)を有する。保護部30の上記内面には、有機EL素子10から放射された光を反射する光反射部190が設けられている。
 光反射部190の基本的な機能、つまり、光を反射する機能については、実施形態12と同様であるが、本実施形態における光反射部190は、隣り合う有機EL素子10のうちの一方の有機EL素子10の陽極12、他方の有機EL素子10の陰極14それぞれが接続部63,63を介して電気的に接続される補助電極を兼ねている。ただし、光反射部190は、必ずしも補助電極を兼ねる必要はない。
 本実施形態の面状発光装置では、保護部30に光反射部190を設けてあるので、光反射部190を設けていない場合に比べて、光取り出し効率を向上させることが可能となる。なお、他の実施形態の面状発光装置において光反射部190を設けてもよい。
 また、本実施形態の面状発光装置において、第2の透光性基板21の厚み方向の少なくとも一面に実施形態1で説明したAR膜を設けてもよいし、第2の透光性基板21の厚み方向の少なくとも一面側にモスアイ構造80(図12参照)を設けてもよく、いずれの場合も、正面輝度および外部量子効率それぞれを向上させることが可能となる。
 (実施形態14)
 図34に示す本実施形態の面状発光装置は、実施形態12と略同じ基本構成を有しており、保護部30が、保護部30において光取出し構造部50側とは反対の一面側に、保護部30の他の部分に比べて熱伝導率の高い材料により形成された伝熱部200を有する点などが相違する。なお、実施形態12と同様の構成要素には同一の符号を付して説明を適宜省略する。
 すなわち、本実施形態の面状発光装置では、保護部30は、有機EL素子10から放射された光に対して透光性を有する。また、保護部30は、有機EL素子10の上記他面(図34における上面)と対向する内面(図34における下面)と、上記内面とは反対側の外面(図34における上面)とを有する。保護部32の上記外面には、有機EL素子10から放射された光を反射する光反射部190が設けられている。
 さらに、本実施形態の面状発光装置は、保護部30よりも熱伝導率が高い伝熱部200を有し、伝熱部200は、保護部30の上記外面に設けられている。なお、図34に示す例では、伝熱部200は、光反射部190を覆うようにして保護部30の上記外面上に設けられている。
 伝熱部200は、銅箔により構成してあるが、これに限らず、例えば、アルミニウム箔などにより構成してもよい。
 伝熱部200の材料は、銅やアルミニウムに限らず、例えば、金、銀、シリコンなどを採用することも可能である。なお、熱伝導率は、銅:398W/(m・K)、アルミニウム236W/(m・K)、金:320W/(m・K)、銀:420W/(m・K)、シリコン:168W/(m・K)である。
 ところで、面状発光装置の大面積化を図ったり、高輝度化のために駆動電圧を大きくするほど、面状発光装置の中央部と端部とでの輝度差が大きくなり、消費エネルギ分布に起因する温度分布が大きくなる。そのため、面状発光装置の部分的な素子劣化(有機EL素子10の劣化)や効率変動に起因する輝度むら、色むらが現れる可能性がある。
 これに対して、本実施形態の面状発光装置では、保護部30における光取出し構造部50側とは反対の一面側に伝熱部200を備えているので、熱分布の均一化を図ることが可能となり、有機EL素子10の劣化を抑制することが可能となる。また、本実施形態の面状発光装置では、器具本体に取り付けて使用するような場合に、伝熱部200を器具本体あるいは器具本体の放熱部材と接合などして熱結合させることにより、放熱性を向上させることが可能となり、長寿命化を図ることが可能となる。
 また、本実施形態の面状発光装置においても、光反射部190を備えていることにより、実施形態12と同様に、光取り出し効率が、約2%、向上する。
 なお、他の実施形態の面状発光装置において伝熱部200を設けてもよい。また、本実施形態の面状発光装置では、保護部30が光反射部190を備えているが、光反射部190は必ずしも備えている必要はない。
 (実施形態15)
 図35に示す本実施形態の面状発光装置は、実施形態13と略同じ基本構成を有しており、保護部30が、保護部30において光取出し構造部50側とは反対の一面側に、保護部30の他の部分に比べて熱伝導率の高い材料により形成された伝熱部200を有する点などが相違する。なお、実施形態13と同様の構成要素には同一の符号を付して説明を適宜省略する。また、伝熱部200については、実施形態14と同様なので、説明を省略する。
 すなわち、本実施形態の面状発光装置では、保護部30は、有機EL素子10の上記他面(図35における下面)と対向する内面(図35における上面)と、上記内面とは反対側の外面(図35における下面)とを有する。保護部32の上記内面には、有機EL素子10から放射された光を反射する光反射部190が設けられている。
 さらに、本実施形態の面状発光装置は、保護部30よりも熱伝導率が高い伝熱部200を有し、伝熱部200は、保護部30の上記外面に設けられている。
 本実施形態の面状発光装置では、保護部30における光取出し構造部50側とは反対の一面側に伝熱部200を備えているので、熱分布の均一化を図ることが可能となり、有機EL素子10の劣化を抑制することが可能となる。また、本実施形態の面状発光装置では、器具本体に取り付けて使用するような場合に、伝熱部200を器具本体あるいは器具本体の放熱部材と接合などして熱結合させることにより、放熱性を向上させることが可能となり、長寿命化を図ることが可能となる。
 また、本実施形態の面状発光装置においても、光反射部190を備えていることにより、光取り出し効率が向上する。

Claims (23)

  1.  一面および上記一面とは反対側の他面を有し、上記一面から光を放射する有機EL素子と、
     上記有機EL素子から放射された光に対して透光性を有し、上記有機EL素子の上記一面に対向するように配置され、上記有機EL素子の上記一面に対向する一表面を有する保護基板と、
     上記有機EL素子の上記他面に対向するように配置され、上記保護基板とともに上記有機EL素子を水から保護するように収納するハウジングを形成する保護部と、
     上記有機EL素子の上記一面と上記保護基板との間に介在され、上記有機EL素子の上記一面と上記保護基板の上記一表面との少なくとも一方における上記有機EL素子から放射された光の反射を抑制する光取り出し構造部と、を備える
     ことを特徴とする面状発光装置。
  2.  上記有機EL素子は、光を放射する発光層と、上記発光層から放射される光に対して透光性を有する形成基板とを備え、
     上記発光層は、上記形成基板の一表面上に形成され、
     上記有機EL素子の上記一面は、上記形成基板の上記一表面とは反対側の他表面であり、
     上記形成基板は、上記保護基板よりも高い屈折率を有する
     ことを特徴とする請求項1記載の面状発光装置。
  3.  上記保護基板は、上記形成基板よりも高い耐候性および防水性を有する
     ことを特徴とする請求項2記載の面状発光装置。
  4.  上記形成基板は、プラスチック基板であり、
     上記保護基板は、ガラス基板である
     ことを特徴とする請求項3記載の面状発光装置。
  5.  上記光取り出し構造部は、上記有機EL素子の上記一面に形成された凹凸構造部であり、
     上記保護基板は、上記凹凸構造部と上記保護基板との間に空間が存在するように配置され、上記空間の媒質よりも高い屈折率を有する
     ことを特徴とする請求項2記載の面状発光装置。
  6.  上記凹凸構造部は、上記形成基板以上の屈折率を有する
     ことを特徴とする請求項5記載の面状発光装置。
  7.  上記凹凸構造部は、周期性を有する凹凸構造を有し、
     上記凹凸構造の周期は、上記有機EL素子から放射される光の波長の1/4以上10倍以下である
     ことを特徴とする請求項5または6記載の面状発光装置。
  8.  上記凹凸構造部は、上記保護基板の上記一表面に面接触するように形成されている
     ことを特徴とする請求項5~7のうちいずれか1項記載の面状発光装置。
  9.  上記保護基板の上記一表面には、上記凹凸構造部が収まる凹部が形成され、
     上記空間は、上記凹部の内面と上記凹凸構造部の表面との間の空間である
     ことを特徴とする請求項5~8のいずれか1項に記載の面状発光装置。
  10.  上記有機EL素子から放射された光に対して透光性を有するとともに上記保護基板以下の屈折率を有する透光部を備え、
     上記光取り出し構造部は、上記有機EL素子の上記一面に設けられた凹凸構造部であり、
     上記透光部は、上記凹凸構造部と上記保護基板との間に介在されている
     ことを特徴とする請求項1記載の面状発光装置。
  11.  上記光取り出し構造部は、上記有機EL素子の上記一面に接触するように配置される母材と、上記母材中に分散される光拡散体と、を備え、
     上記母材は、上記有機EL素子において上記母材と接触する部位以上の屈折率を有し、
     上記光拡散体は、上記母材とは異なる屈折率を有する
     ことを特徴とする請求項1記載の面状発光装置。
  12.  上記光拡散体は微粒子である
     ことを特徴とする請求項11記載の面状発光装置。
  13.  上記光取り出し構造部は、上記有機EL素子の上記一面に接触するように配置される母材と、上記母材中に形成された空孔とを備え、
     上記母材は、上記有機EL素子において上記母材と接触する部位以上、かつ、上記空孔の媒質とは異なる屈折率を有する
     ことを特徴とする請求項1記載の面状発光装置。
  14.  上記有機EL素子から放射された光に対して透光性を有するとともに上記形成基板以上の屈折率を有する透明部を備え、
     上記光取り出し構造部は、上記保護基板の上記一表面に設けられた凹凸構造部であり、
     上記透明部は、上記形成基板と上記凹凸構造部との間に介在されている
     ことを特徴とする請求項2記載の面状発光装置。
  15.  上記凹凸構造部は、上記保護基板以下の屈折率を有する
     ことを特徴とする請求項14記載の面状発光装置。
  16.  上記凹凸構造部は、周期性を有する凹凸構造を有し、
     上記凹凸構造の周期は、上記有機EL素子から放射される光の波長の1/4以上10倍以下である
     ことを特徴とする請求項14または15記載の面状発光装置。
  17.  上記有機EL素子の上記他面と上記保護部との間に介在され上記有機EL素子で発生した熱を上記保護部に伝える放熱部材を備え、
     上記有機EL素子は、上記保護基板に接触しないように上記保護部に固定されている
     ことを特徴とする請求項1記載の面状発光装置。
  18.  上記保護基板の上記一表面と上記保護基板における上記一表面とは反対側の面との少なくとも一方にはアンチリフレクションコートが設けられている
     ことを特徴とする請求項1~17のいずれか1項に記載の面状発光装置。
  19.  上記保護基板の上記一表面と上記保護基板における上記一表面とは反対側の面との少なくとも一方にはモスアイ構造が形成されている
     ことを特徴とする請求項1~17のいずれか1項に記載の面状発光装置。
  20.  複数の上記有機EL素子を備え、
     上記複数の上記有機EL素子は、上記保護基板の上記一表面に平行な面内で並べられている
     ことを特徴とする請求項1~19のいずれか1項に記載の面状発光装置。
  21.  上記保護部は、上記有機EL素子の上記他面と対向する内面を有し、
     上記保護部の上記内面には、上記有機EL素子から放射された光を反射する光反射部が設けられている
     ことを特徴とする請求項1~20のいずれか1項に記載の面状発光装置。
  22.  上記保護部は、上記有機EL素子から放射された光に対して透光性を有し、
     上記保護部は、上記有機EL素子の上記他面と対向する内面と、上記内面とは反対側の外面とを有し、
     上記保護部の外面には、上記有機EL素子から放射された光を反射する光反射部が設けられている
     ことを特徴とする請求項1~20のいずれか1項に記載の面状発光装置。
  23.  上記保護部よりも熱伝導率が高い伝熱部を有し、
     上記保護部は、上記有機EL素子の上記他面と対向する内面と、上記内面とは反対側の外面とを有し、
     上記伝熱部は、上記保護部の外面に設けられている
     ことを特徴とする請求項1~22のいずれか1項に記載の面状発光装置。
PCT/JP2011/050805 2010-01-19 2011-01-19 面状発光装置 WO2011090039A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127021116A KR101471501B1 (ko) 2010-01-19 2011-01-19 면상 발광 장치
CN201180006217.8A CN102714894B (zh) 2010-01-19 2011-01-19 面状发光装置
DE112011100278T DE112011100278T5 (de) 2010-01-19 2011-01-19 Flächige lichtemittierende Vorrichtung
US13/522,445 US8716736B2 (en) 2010-01-19 2011-01-19 Surface light emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-009400 2010-01-19
JP2010009400 2010-01-19
JP2010-079172 2010-03-30
JP2010079172 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011090039A1 true WO2011090039A1 (ja) 2011-07-28

Family

ID=44306841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050805 WO2011090039A1 (ja) 2010-01-19 2011-01-19 面状発光装置

Country Status (7)

Country Link
US (1) US8716736B2 (ja)
JP (1) JP5731830B2 (ja)
KR (1) KR101471501B1 (ja)
CN (1) CN102714894B (ja)
DE (1) DE112011100278T5 (ja)
TW (1) TWI452745B (ja)
WO (1) WO2011090039A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102194A1 (ja) * 2011-01-25 2012-08-02 パナソニック株式会社 面状発光装置
WO2013042784A1 (ja) * 2011-09-21 2013-03-28 パナソニック株式会社 発光装置
CN103311453A (zh) * 2012-03-06 2013-09-18 海洋王照明科技股份有限公司 一种电致发光器件及其制备方法
WO2015076060A1 (ja) * 2013-11-20 2015-05-28 シャープ株式会社 有機発光素子、有機発光素子の製造方法、照明装置、および、有機発光表示素子
JP2015133328A (ja) * 2015-03-06 2015-07-23 コニカミノルタ株式会社 面発光モジュール
CN105027671A (zh) * 2013-04-12 2015-11-04 松下知识产权经营株式会社 发光装置

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9269921B2 (en) * 2010-10-20 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Lighting device
WO2013073301A1 (ja) * 2011-11-14 2013-05-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、及び、面状発光体
WO2013094617A1 (ja) * 2011-12-19 2013-06-27 パナソニック株式会社 面状発光素子
US20130181241A1 (en) * 2012-01-18 2013-07-18 Moser Baer India Limited Method of molding structures in a plastic substrate
WO2013118508A1 (ja) 2012-02-07 2013-08-15 パナソニック株式会社 複合基板及びその製造方法、並びに、有機エレクトロルミネッセンス素子
US20150041783A1 (en) * 2012-02-13 2015-02-12 Panasonic Corporation Organic electroluminescence element
JP6226279B2 (ja) 2012-09-13 2017-11-08 パナソニックIpマネジメント株式会社 有機エレクトロルミネッセンス素子
JP6241757B2 (ja) 2012-10-11 2017-12-06 パナソニックIpマネジメント株式会社 有機エレクトロルミネッセンス素子及び照明装置
CN105191500B (zh) 2013-03-13 2017-06-23 松下电器产业株式会社 有机电致发光元件和使用所述有机电致发光元件的照明设备
WO2014188631A1 (ja) 2013-05-21 2014-11-27 パナソニックIpマネジメント株式会社 発光装置
US9196584B2 (en) 2013-07-12 2015-11-24 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device and lighting apparatus using the same
WO2015008431A1 (ja) * 2013-07-19 2015-01-22 パナソニックIpマネジメント株式会社 有機エレクトロルミネッセンス素子及び照明装置
US9397314B2 (en) * 2013-12-23 2016-07-19 Universal Display Corporation Thin-form light-enhanced substrate for OLED luminaire
JPWO2015097971A1 (ja) * 2013-12-27 2017-03-23 パナソニックIpマネジメント株式会社 発光装置
WO2015128909A1 (ja) 2014-02-28 2015-09-03 パナソニックIpマネジメント株式会社 発光素子および発光装置
JP2016034013A (ja) * 2014-02-28 2016-03-10 パナソニックIpマネジメント株式会社 発光素子および発光装置
JP6241903B2 (ja) * 2014-03-11 2017-12-06 株式会社Joled 蒸着装置及び蒸着装置を用いた蒸着方法、及びデバイスの製造方法
DE102014205747A1 (de) * 2014-03-27 2015-10-01 Tridonic Gmbh & Co Kg Leuchtmodul und Herstellungsverfahren für ein Leuchtmodul
KR20160140881A (ko) * 2014-04-02 2016-12-07 이섬 리서치 디벨러프먼트 컴파니 오브 더 히브루 유니버시티 오브 예루살렘 엘티디. 편광된 광원 디바이스
TWI574442B (zh) * 2014-04-10 2017-03-11 友達光電股份有限公司 顯示面板
DE102014214721A1 (de) * 2014-07-25 2016-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung zur orts- und wellenlängenaufgelösten Erfassung von Lichtstrahlung, die von mindestens einer OLED oder LED emittiert wird
US9570712B2 (en) 2014-07-31 2017-02-14 Industrial Technology Research Institute Organic light-emitting module
CN105322097B (zh) * 2014-07-31 2017-07-07 财团法人工业技术研究院 有机发光模块
US10031276B2 (en) 2015-03-13 2018-07-24 Panasonic Intellectual Property Management Co., Ltd. Display apparatus including photoluminescent layer
US10182702B2 (en) 2015-03-13 2019-01-22 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus including photoluminescent layer
JP6569856B2 (ja) 2015-03-13 2019-09-04 パナソニックIpマネジメント株式会社 発光装置および内視鏡
JP2016171228A (ja) 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 発光素子、発光装置および検知装置
DE102015105823A1 (de) * 2015-04-16 2016-10-20 Osram Oled Gmbh Optoelektronische Baugruppe und Verfahren zum Herstellen einer optoelektronischen Baugruppe
JP2017003697A (ja) 2015-06-08 2017-01-05 パナソニックIpマネジメント株式会社 発光素子および発光装置
JP6854240B2 (ja) * 2015-08-18 2021-04-07 株式会社ホタルクス 有機elデバイス、有機el照明パネル、有機el照明装置および有機elディスプレイ
US10359155B2 (en) 2015-08-20 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus
CN105280838B (zh) * 2015-09-22 2017-08-25 深圳市华星光电技术有限公司 一种oled发光器件及显示装置
CN105244453B (zh) * 2015-09-22 2017-08-25 深圳市华星光电技术有限公司 一种有机发光器件
CN105742328A (zh) * 2016-03-04 2016-07-06 京东方科技集团股份有限公司 一种显示基板、其制作方法及显示面板
JP6719094B2 (ja) 2016-03-30 2020-07-08 パナソニックIpマネジメント株式会社 発光素子
JP2018022781A (ja) 2016-08-03 2018-02-08 パナソニックIpマネジメント株式会社 光学機器
JP2018067414A (ja) * 2016-10-18 2018-04-26 OLED Material Solutions株式会社 電子デバイス用基板のマザー基板
JP6859714B2 (ja) * 2017-01-18 2021-04-14 大日本印刷株式会社 有機エレクトロルミネッセンス素子
US10725334B2 (en) * 2018-04-17 2020-07-28 Innolux Corporation Display device and manufacturing method thereof
JP6994647B2 (ja) * 2018-06-28 2022-02-04 パナソニックIpマネジメント株式会社 照明装置
US11349099B2 (en) * 2019-01-25 2022-05-31 The Regents Of The University Of Michigan Method of fabricating a light emitting device having a polymer film with a specified surface rouggness
WO2021131010A1 (ja) * 2019-12-27 2021-07-01 シャープ株式会社 表示装置
CN113130812A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
EP4372831A1 (en) * 2021-07-14 2024-05-22 Seoul Viosys Co., Ltd. Light-emitting package

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513484A (ja) * 2000-11-02 2004-04-30 スリーエム イノベイティブ プロパティズ カンパニー 放出型ディスプレイの輝度向上
JP2007207471A (ja) * 2006-01-31 2007-08-16 Konica Minolta Holdings Inc 面発光体及び表示装置
WO2008020514A1 (fr) * 2006-08-17 2008-02-21 Konica Minolta Holdings, Inc. Appareil émetteur de lumière en surface
JP2008210685A (ja) * 2007-02-27 2008-09-11 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2008538155A (ja) * 2005-02-24 2008-10-09 イーストマン コダック カンパニー 光出力が改善されたoledデバイス
JP2008542986A (ja) * 2005-05-25 2008-11-27 ケンブリッジ ディスプレイ テクノロジー リミテッド 電子発光装置
WO2009066561A1 (ja) * 2007-11-22 2009-05-28 Sumitomo Chemical Company, Limited 有機エレクトロルミネッセンス装置およびその製造方法
WO2009122909A1 (ja) * 2008-03-31 2009-10-08 住友化学株式会社 有機エレクトロルミネッセンス素子
WO2009131019A1 (ja) * 2008-04-22 2009-10-29 日本ゼオン株式会社 有機エレクトロルミネッセンス光源装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693956A (en) 1996-07-29 1997-12-02 Motorola Inverted oleds on hard plastic substrate
JPH10312882A (ja) * 1997-05-12 1998-11-24 Matsushita Electric Ind Co Ltd 有機電界発光素子
WO2002037568A1 (en) * 2000-11-02 2002-05-10 3M Innovative Properties Company Brightness and contrast enhancement of direct view emissive displays
JP4797285B2 (ja) 2001-06-18 2011-10-19 凸版印刷株式会社 有機エレクトロルミネッセンス素子およびその製造方法
US7053547B2 (en) 2001-11-29 2006-05-30 Universal Display Corporation Increased emission efficiency in organic light-emitting devices on high-index substrates
US6965197B2 (en) * 2002-10-01 2005-11-15 Eastman Kodak Company Organic light-emitting device having enhanced light extraction efficiency
JP2004322489A (ja) 2003-04-25 2004-11-18 Pioneer Electronic Corp ガスバリア基材およびその製造方法
DE102005057710B4 (de) 2005-12-02 2010-05-27 Audi Ag Wechselölfilter mit federbetätigtem Dorn für Ablauf
US8093017B2 (en) 2005-12-07 2012-01-10 Siemens Heathcare Diagnostics Inc. Detection of soluble adiponectin receptor peptides and use in diagnostics and therapeutics
JP2009260316A (ja) 2008-03-26 2009-11-05 Panasonic Electric Works Co Ltd 半導体発光素子およびそれを用いる照明装置
JP2009238694A (ja) * 2008-03-28 2009-10-15 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP5416914B2 (ja) * 2008-03-31 2014-02-12 ローム株式会社 有機el素子
US8563112B2 (en) * 2008-05-12 2013-10-22 Yamagata Promotional Organization For Industrial Technology Organic EL light-emitting device and method for manufacturing the organic EL light-emitting device
CN102440073B (zh) 2010-08-10 2014-10-08 松下电器产业株式会社 有机发光元件、有机发光装置、有机显示面板、有机显示装置以及有机发光元件的制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513484A (ja) * 2000-11-02 2004-04-30 スリーエム イノベイティブ プロパティズ カンパニー 放出型ディスプレイの輝度向上
JP2008538155A (ja) * 2005-02-24 2008-10-09 イーストマン コダック カンパニー 光出力が改善されたoledデバイス
JP2008542986A (ja) * 2005-05-25 2008-11-27 ケンブリッジ ディスプレイ テクノロジー リミテッド 電子発光装置
JP2007207471A (ja) * 2006-01-31 2007-08-16 Konica Minolta Holdings Inc 面発光体及び表示装置
WO2008020514A1 (fr) * 2006-08-17 2008-02-21 Konica Minolta Holdings, Inc. Appareil émetteur de lumière en surface
JP2008210685A (ja) * 2007-02-27 2008-09-11 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
WO2009066561A1 (ja) * 2007-11-22 2009-05-28 Sumitomo Chemical Company, Limited 有機エレクトロルミネッセンス装置およびその製造方法
WO2009122909A1 (ja) * 2008-03-31 2009-10-08 住友化学株式会社 有機エレクトロルミネッセンス素子
WO2009131019A1 (ja) * 2008-04-22 2009-10-29 日本ゼオン株式会社 有機エレクトロルミネッセンス光源装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102194A1 (ja) * 2011-01-25 2012-08-02 パナソニック株式会社 面状発光装置
US8890136B2 (en) 2011-01-25 2014-11-18 Panasonic Corporation Planar light emitting device
WO2013042784A1 (ja) * 2011-09-21 2013-03-28 パナソニック株式会社 発光装置
JPWO2013042784A1 (ja) * 2011-09-21 2015-03-26 パナソニック株式会社 発光装置
CN103311453A (zh) * 2012-03-06 2013-09-18 海洋王照明科技股份有限公司 一种电致发光器件及其制备方法
CN105027671A (zh) * 2013-04-12 2015-11-04 松下知识产权经营株式会社 发光装置
WO2015076060A1 (ja) * 2013-11-20 2015-05-28 シャープ株式会社 有機発光素子、有機発光素子の製造方法、照明装置、および、有機発光表示素子
JP2015133328A (ja) * 2015-03-06 2015-07-23 コニカミノルタ株式会社 面発光モジュール

Also Published As

Publication number Publication date
DE112011100278T5 (de) 2012-11-08
KR20120116477A (ko) 2012-10-22
TWI452745B (zh) 2014-09-11
US20120292652A1 (en) 2012-11-22
TW201214819A (en) 2012-04-01
US8716736B2 (en) 2014-05-06
KR101471501B1 (ko) 2014-12-10
CN102714894A (zh) 2012-10-03
JP2011228262A (ja) 2011-11-10
JP5731830B2 (ja) 2015-06-10
CN102714894B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5731830B2 (ja) 面状発光装置
JP5866552B2 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた照明装置
JP5706916B2 (ja) 面状発光装置
JP6286809B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5513917B2 (ja) 発光装置
JP5334888B2 (ja) 発光装置
JP2011048937A (ja) 有機el発光素子
JP5297399B2 (ja) 発光装置
US20140197403A1 (en) Light emission device
JP2011204645A (ja) 発光装置
TW201324894A (zh) 發光裝置及製造其之方法
JP5452691B2 (ja) 発光装置
JP5297400B2 (ja) 発光装置
JP5421843B2 (ja) 発光装置
WO2013042784A1 (ja) 発光装置
JPWO2015004811A1 (ja) 有機el素子及びそれを用いた有機el照明装置
JP2011216353A (ja) 発光装置
JP6151874B1 (ja) 有機エレクトロルミネッセント装置および照明装置
JP2010198974A (ja) 有機el発光素子
JP5452266B2 (ja) 発光装置
JP2011049234A (ja) 有機el発光素子
JP5543796B2 (ja) 発光装置
JP2011222448A (ja) 発光装置の製造方法
JP2013239456A (ja) 発光装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006217.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734645

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13522445

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111002785

Country of ref document: DE

Ref document number: 112011100278

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20127021116

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11734645

Country of ref document: EP

Kind code of ref document: A1