WO2011089909A1 - 二重管及び二重管の製造方法並びに蒸気発生器 - Google Patents

二重管及び二重管の製造方法並びに蒸気発生器 Download PDF

Info

Publication number
WO2011089909A1
WO2011089909A1 PCT/JP2011/000288 JP2011000288W WO2011089909A1 WO 2011089909 A1 WO2011089909 A1 WO 2011089909A1 JP 2011000288 W JP2011000288 W JP 2011000288W WO 2011089909 A1 WO2011089909 A1 WO 2011089909A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
double
welding
double pipe
tube
Prior art date
Application number
PCT/JP2011/000288
Other languages
English (en)
French (fr)
Inventor
日野 武久
雅貴 田村
田中 義美
河野 渉
坂本 徹
敏憲 寺島
佐藤 勝彦
昇 神保
茂樹 丸山
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2011550860A priority Critical patent/JP5881421B2/ja
Priority to EP11734516.5A priority patent/EP2527076A4/en
Priority to KR1020127018273A priority patent/KR101386920B1/ko
Priority to CA2787558A priority patent/CA2787558C/en
Priority to CN201180006619.8A priority patent/CN102712061B/zh
Priority to RU2012135492/02A priority patent/RU2518654C2/ru
Publication of WO2011089909A1 publication Critical patent/WO2011089909A1/ja
Priority to US13/551,655 priority patent/US20130180472A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/26Seam welding of rectilinear seams
    • B23K26/262Seam welding of rectilinear seams of longitudinal seams of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B25/00Water-tube boilers built-up from sets of water tubes with internally-arranged flue tubes, or fire tubes, extending through the water tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • B23K26/282Seam welding of curved planar seams of tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/18Double-walled pipes; Multi-channel pipes or pipe assemblies
    • F16L9/19Multi-channel pipes or pipe assemblies
    • F16L9/20Pipe assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/06Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/06Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium
    • F22B1/063Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium for metal cooled nuclear reactors
    • F22B1/066Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium for metal cooled nuclear reactors with double-wall tubes having a third fluid between these walls, e.g. helium for leak detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/104Connection of tubes one with the other or with collectors, drums or distributors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a braided wire type double pipe and the like, which are planned to be used in a steam generator of a fast breeder reactor, a method for manufacturing the double pipe, and a steam generator.
  • the braided wire type double pipe is constituted by an inner pipe, an outer pipe, and a braided braided wire arranged so as to be sandwiched between gaps between the inner pipe and the outer pipe.
  • the gap (bridging line part) between the inner pipe and the outer pipe is filled with helium (He) gas.
  • He helium
  • the outer pipe of the braided wire double pipe is broken, helium gas flows into the liquid sodium (Na), so that the breakage of the outer pipe can be detected by detecting this helium gas.
  • a technique is provided in which a wide groove is provided on the outer tube side, the inner tube is welded by laser welding from the outside through the groove, and then the outer tube is multilayer-welded by TIG welding from the outside.
  • laser welding is possible for the inner tube through one pass, but the outer tube requires multi-layer overlay welding on the V-shaped groove, and it takes time to weld. There is a problem.
  • the welding position is the same place, when the radiation transmission test is performed, a portion where the welding position overlaps on the film appears, and there is a problem that it is difficult to determine the defect.
  • the interval between the outer tube and the inner tube is very narrow, for example, 0.4 mm, etc., so that the gap between the inner tube and the outer tube of the double tube is not filled during welding.
  • 6 (a) and 6 (b) when the groove shape of the double-pipe base material 2 is a V-shaped groove (a) and a U-shaped groove (b), A V-notch (V-shaped gap) 1 is easily formed between the back bead 3 and the double-pipe substrate 2.
  • V notch 1 stress concentration easily occurs in the portion, and there is a problem that the fatigue strength is reduced as compared with the smooth portion.
  • the present invention has been made in response to the above-described conventional circumstances, and an object of the present invention is to suppress the formation of a V-notch that causes a decrease in strength in a welded portion, and is shorter than the conventional case.
  • An object of the present invention is to provide a double pipe, a method of manufacturing the double pipe, and a steam generator that can be welded in time.
  • One aspect of the double pipe of the present invention is a double pipe in which a plurality of double pipe constituent members each having an inner pipe and an outer pipe are joined by welding at a welded portion at an axial end.
  • the welded portion of the heavy pipe constituent member is provided with a groove having an axial length of 1 ⁇ 2 or more of a back bead width generated by welding of the welded portion.
  • Another aspect of the double pipe of the present invention is a double pipe in which a plurality of double pipe constituent members having an inner pipe and an outer pipe are connected by welding at a welded portion at an axial end,
  • the welded portion of the double-pipe constituent member is provided with a groove having an axial length of 1 ⁇ 2 or more of a weld bead width generated by welding of the welded portion.
  • One aspect of the method for producing a double pipe according to the present invention is a method for producing a double pipe in which a plurality of double pipe constituent members each having an inner pipe and an outer pipe are connected by welding at a weld portion at an axial end.
  • the groove of the double pipe component member having an axial length of 1/2 or more of the back bead width generated by welding of the welded portion is provided in the welded portion of the double pipe constituting member. It welds from the inner side of an inner pipe, The said outer pipe is welded from the outer side of the said outer pipe
  • Another aspect of the method for manufacturing a double pipe according to the present invention is to manufacture a double pipe in which a plurality of double pipe constituent members having an inner pipe and an outer pipe are connected by welding at a welded portion at an axial end portion.
  • the welded portion of the double pipe component member is provided with a groove having an axial length of 1 ⁇ 2 or more of a weld bead width generated by welding of the welded portion, and the inner tube is It welds from the inner side of an inner pipe, The said outer pipe is welded from the outer side of the said outer pipe
  • the steam generator of the present invention is a steam generator comprising: a container in which liquid metal is circulated; and a heat transfer tube that is accommodated in the container and in which water and steam are circulated.
  • the heat pipe is a double pipe in which a plurality of double pipe constituent members having an inner pipe and an outer pipe are joined by welding at a weld portion at an end portion in the axial direction, and the weld portion of the double pipe constituent member Is characterized in that it is constituted by a double pipe provided with a groove having an axial length of 1 ⁇ 2 or more of the back bead width generated by welding of the welded portion.
  • the steam generator of the present invention is a steam generator comprising a container in which a liquid metal is circulated, and a heat transfer tube that is accommodated in the container and in which water and water vapor are circulated.
  • the heat transfer pipe is a double pipe in which a plurality of double pipe constituent members having an inner pipe and an outer pipe are connected by welding at a welded portion at an axial end, and the welding of the double pipe constituent member
  • the portion is formed of a double pipe provided with a groove having an axial length of 1 ⁇ 2 or more of a weld bead width generated by welding of the welded portion.
  • the figure for demonstrating the welding process of the double pipe which concerns on one Embodiment of this invention The figure which shows typically the principal part cross-section structure of the double pipe which concerns on one Embodiment of this invention. The figure which expands and shows typically the principal part cross-section structure of the double pipe which concerns on one Embodiment of this invention.
  • the figure for demonstrating the case where V notch is formed in the welding part of a double pipe The figure which shows typically the cross-sectional structure of the steam generator which concerns on one Embodiment of this invention.
  • FIG. 1 is a diagram for explaining a welding process for welding double pipe constituent members when manufacturing a double pipe 100 according to an embodiment of the present invention.
  • the double pipe constituent members 100a and 100b are composed of an inner tube 4 and an outer tube 5 and a braided wire 6 inserted so that the inner tube 4 and the outer tube 5 do not directly contact each other.
  • the portion where the braided wire 6 is disposed has a gap for flowing gas in the axial direction of the double pipe, and when the double pipe constituent member 100a and the double pipe constituent member 100b are welded together. In this gap, an inert gas such as argon gas or helium gas is allowed to flow as a back shield gas.
  • the welding head inserted inside the inner pipe 4 includes a casing 7 formed in a cylindrical shape.
  • a reflecting mirror 8 In the housing 7, a reflecting mirror 8, a condenser lens 9, and a collimating lens 10 are accommodated and supported by the housing 7.
  • the housing 7 is provided with an optical fiber 13 for supplying a laser beam to the welding head, and inert gas such as argon gas and helium gas in order to prevent the reflection mirror 8 and the condenser lens 9 from being contaminated by spatter and fume during welding.
  • a tube (for example, urethane tube) 12 for flowing gas is connected.
  • the O-ring 11 for sealing between these is arrange
  • the inner pipes 4 of the double pipe constituent member 100a and the double pipe constituent member 100b are welded together by laser welding using the welding head having the above configuration. Moreover, when welding the outer pipes 5 of the double pipe constituent member 100a and the double pipe constituent member 100b, welding is performed from the outside by laser welding.
  • FIG. 2 schematically shows an enlarged configuration of the welded portion at the axial end of the double-pipe component 100a and the double-pipe component 100b.
  • the inner pipe 4 of the double pipe constituent member 100a is longer than a predetermined length (L 1 ) outer pipe 5. It is structured long.
  • the other double-pipe constituent member 100b is configured such that the outer pipe 5 is longer than the inner pipe 4 by a predetermined length (L 1 ). Therefore, the welding position of the inner tube 4 and the welding position of the outer tube 5 are shifted by a predetermined length (L 1 ) along the axial direction.
  • a groove 20 is formed between the inner tube 4 and the outer tube 5 so that the distance between the inner tube 4 and the outer tube 5 is increased.
  • L 2 axial length of the groove 20 is 1/2 or more of the penetration bead width caused by welding.
  • the distance between the inner tube 4 and the outer tube 5 where the braided wire 6 is arranged is very narrow, for example, about 0.4 mm.
  • the interval between the inner tube 4 and the outer tube 5 in the groove 20 is, for example, about 0.8 mm, and the interval between the inner tube 4 and the outer tube 5 is increased.
  • the groove 20 can be formed, for example, by cutting the outer surface of the inner tube 4 and cutting the inner surface of the outer tube 5.
  • the groove 20 may be formed in one of them.
  • the back bead 3 is formed on the inner surface of the outer tube 5.
  • yen of the double pipe shown at the lower part is expanded and shown on the upper part.
  • the axial length L 2 of the groove 20 is as follows: (1/2 of backside bead 3 width (L 3 )) ⁇ (length of groove 20 in axial direction (L 2 )) And so that, the axial length L 2 of the groove 20 is set. This is due to the following reasons.
  • the axial length L 2 of the groove 20 is shorter than 1 ⁇ 2 (L 3 ) of the width of the back bead 3, the back bead 3 and the double tube (in the case of FIG. 4 the outer tube 5) substrate 2 and the angle theta 2 which forms is formed a V-notch becomes less than 90 degrees.
  • the axial length L 2 of the groove 20 is one half of the width of the penetration bead 3 formed (L 3) or by welding, whereby welding portions Thus, no V-notch that causes a decrease in strength is formed, and the reliability can be improved.
  • the width of the back bead 3 is actually about 2 mm or less, for example.
  • the axial length L 2 of the groove 20 may be the extent e.g. 1mm or more.
  • the back bead 3 is formed on the side opposite to the laser irradiation side (welding direction) when welding with a laser or the like. As shown in FIG. 3, the width of the back bead 3 does not exceed the width of the welding beat 30 formed on the laser irradiation side. Thus, the axial length L 2 of the groove 20, if 1/2 of the width of the weld bead 30 (L 4) above, that the V-notch that causes strength reduction in the welding portion is formed Can be prevented.
  • the degree than 5 mm it is possible to reliably prevent the back bead 3 of the welded portion of the inner tube 4 and the reverse bead 3 of the welded portion of the outer tube 5 from overlapping each other, and between the inner tube 4 and the outer tube 5. It is possible to reliably prevent the gaps of the plugs from being blocked.
  • a radiation transmitted image can be obtained so that the welded portion of the inner tube 4 and the welded portion of the outer tube 5 do not overlap.
  • the double pipe 100 in which the braided wire 6 is inserted so that the inner pipe 4 and the outer pipe 5 and the inner pipe 4 and the outer pipe 5 are not in direct contact is shown.
  • the spacer (not shown) is arranged between the inner tube 4 and the outer tube 5 so that the inner tube 4 and the outer tube 5 do not directly contact with each other, or between the inner tube 4 and the outer tube 5.
  • the present embodiment can also be applied to the double pipe in the case where the groove is formed over the entire length.
  • FIG. 5 is a diagram schematically showing a cross-sectional configuration of a steam generator 200 according to an embodiment of the present invention.
  • the steam generator 200 includes a container 201 formed in a substantially cylindrical shape.
  • a liquid flows from the top to the bottom. It is comprised so that the liquid sodium as a metal may be distribute
  • the container 201 is provided with a spiral heat transfer tube 210 made of the double tube 100 according to the above-described embodiment, and inside the heat transfer tube 210, as indicated by an arrow in the figure, Water and water vapor are circulated from the lower part to the upper part. As described above, helium gas is filled between the inner tube 4 and the outer tube 5 of the double tube 100 constituting the heat transfer tube 210, and damage to the inner tube 4 and the outer tube 5 can be detected. It is like that.
  • the steam generator 200 of the present embodiment it is possible to suppress the formation of a V notch that causes a decrease in strength in the welded portion of the heat transfer tube 210, so that the reliability can be improved. Moreover, since it can prevent that the space

Abstract

 内管と外管とを有する複数の二重管構成部材を、軸方向端部の溶接部で溶接して連結した二重管であって、二重管構成部材の溶接部には、軸方向の長さが、当該溶接部の溶接によって生ずる裏波ビード幅の1/2以上又は溶接ビード幅の1/2以上とされた溝が設けられている。

Description

二重管及び二重管の製造方法並びに蒸気発生器
 本発明は、高速増殖炉の蒸気発生器等に採用を予定している組網線型等の二重管及び二重管の製造方法並びに蒸気発生器に関する。
 高速増殖炉の蒸気発生器には、安全のため改良9Cr-1Mo鋼からなる二重管の適用が検討されている。また、このような二重管として、組網線型二重管の適用も検討されている。組網線型二重管は、内管、外管と、内管と外管の隙間に挟み込まれるように配置された網状の組網線によって構成されている。
 組網線型二重管を用いた高速増殖炉の蒸気発生器の場合、内管と外管との隙間(組網線部)には、ヘリウム(He)ガスが充填される。そして、組網線型二重管の外管が破損した場合には、液体ナトリウム(Na)中にヘリウムガスが流れ込むので、このヘリウムガスを検出することによって外管の破損を検出することができる。
 一方、内管が破損した場合には、組網線層を通じて水蒸気がヘリウムガス中に流れ込むので、この水蒸気を検出することによって内管の破損を検出することができる。このように、組網線型二重管を用いた高速増殖炉の蒸気発生器では、リアルタイムでの健全性の評価が可能となっている。
 上記構成の二重管を、高速増殖炉の蒸気発生器に使用する場合、必要とされる二重管の長さは非常に長くなる。このため、複数の二重管構成部材を、その軸方向端部で溶接し連結して必要な長さの二重管を構成する必要がある。この二重管を用いた高速増殖炉の蒸気発生器において、リアルタイムでの健全性評価を行うためには、溶接時に二重管の内管と外管との間の隙間が埋まることは許されない。このため、二重管同士を接続するための溶接方法についても各種の方法が提案されている。例えば、外管側に幅広の溝を設け、その溝を介して内管を外側からレーザー溶接にて溶接し、その後、外管を外側からTIG溶接にて多層溶接を行う技術が提案されている(例えば、特許文献1参照。)。
特開平10-034373号公報
 上記のように、外管側に幅広の溝を設け、その溝を介して内管を外側からレーザー溶接にて溶接し、その後、外管を外側からTIG溶接にて多層溶接を行う技術では、外側から溶接ヘッドをアクセスさせるため、内管は1パス貫通でレーザー溶接が可能であるが、外管はV型開先に対して多層の肉盛溶接を行う必要があり、溶接に時間がかかるという問題がある。また、溶接位置が同一場所となるため放射線透過試験を行った場合、フィルム上で溶接位置が重なる部分が出てきてしまい、欠陥の判別が難しい等の問題もある。
 さらに、一般に外管と内管との間隔は、例えば0.4mm等と非常に狭くなっており、溶接時に二重管の内管と外管との間の隙間が埋まってしまうことを避けるため、図6(a)、図6(b)示すように、二重管基材2の開先形状をV字溝(a)、U字溝(b)とすると、溶接した際に溶接部の裏波ビード3と二重管基材2との間にVノッチ(V字状の間隙)1が形成されやすい。そして、Vノッチ1が形成されると当該部には応力集中が生じやすく、平滑部に比べて疲労強度が低下するという問題がある。
 本発明は、上記従来の事情に対処してなされたもので、その目的は、溶接部に強度低下の原因となるVノッチが形成されることを抑制することができるとともに、従来に比べて短時間で溶接を行うことのできる二重管及び二重管の製造方法並びに蒸気発生器を提供することにある。
 本発明の二重管の一態様は、内管と外管とを有する複数の二重管構成部材を、軸方向端部の溶接部で溶接して連結した二重管であって、前記二重管構成部材の前記溶接部には、軸方向の長さが、当該溶接部の溶接によって生ずる裏波ビード幅の1/2以上とされた溝が設けられていることを特徴とする。
 本発明の二重管の他の態様は、内管と外管とを有する複数の二重管構成部材を、軸方向端部の溶接部で溶接して連結した二重管であって、前記二重管構成部材の前記溶接部には、軸方向の長さが、当該溶接部の溶接によって生ずる溶接ビード幅の1/2以上とされた溝が設けられていることを特徴とする。
 本発明の二重管の製造方法の一態様は、内管と外管とを有する複数の二重管構成部材を、軸方向端部の溶接部で溶接して連結した二重管の製造方法であって、前記二重管構成部材の前記溶接部に、軸方向の長さが、当該溶接部の溶接によって生ずる裏波ビード幅の1/2以上とした溝を設け、前記内管を当該内管の内側から溶接し、前記外管を当該外管の外側から溶接することを特徴とする。
 本発明の二重管の製造方法の他の態様は、内管と外管とを有する複数の二重管構成部材を、軸方向端部の溶接部で溶接して連結した二重管の製造方法であって、前記二重管構成部材の前記溶接部に、軸方向の長さが、当該溶接部の溶接によって生ずる溶接ビード幅の1/2以上とした溝を設け、前記内管を当該内管の内側から溶接し、前記外管を当該外管の外側から溶接することを特徴とする。
 本発明の蒸気発生器の一態様は、内部に液体金属が流通される容器と、前記容器内に収容され内部に水及び水蒸気が流通される伝熱管とを具備した蒸気発生器において、前記伝熱管は、内管と外管とを有する複数の二重管構成部材を、軸方向端部の溶接部で溶接して連結した二重管であって、前記二重管構成部材の前記溶接部には、軸方向の長さが、当該溶接部の溶接によって生ずる裏波ビード幅の1/2以上とされた溝が設けられている二重管から構成されていることを特徴とする。
 本発明の蒸気発生器の他の態様は、内部に液体金属が流通される容器と、前記容器内に収容され内部に水及び水蒸気が流通される伝熱管とを具備した蒸気発生器において、前記伝熱管は、内管と外管とを有する複数の二重管構成部材を、軸方向端部の溶接部で溶接して連結した二重管であって、前記二重管構成部材の前記溶接部には、軸方向の長さが、当該溶接部の溶接によって生ずる溶接ビード幅の1/2以上とされた溝が設けられている二重管から構成されていることを特徴とする。
本発明の一実施形態に係る二重管の溶接工程を説明するための図。 本発明の一実施形態に係る二重管の要部断面構成を模式的に示す図。 本発明の一実施形態に係る二重管の要部断面構成を拡大して模式的に示す図。 二重管の溶接部においてVノッチが形成される場合を説明するための図。 本発明の一実施形態に係る蒸気発生器の断面構成を模式的に示す図。 従来技術において溶接部にVノッチが形成されることを説明するための図。
 以下、本発明の二重管及び二重管の製造方法並びに蒸気発生器の詳細を、図面を参照して実施形態について説明する。
 図1は、本発明の一実施形態にかかる二重管100を製造する際に、二重管構成部材同士の溶接を行う溶接の工程を説明するための図である。二重管構成部材100a、100bは、内管4と外管5および内管4と外管5が直接接触しないように挿入された組網線6とから構成されている。この組網線6が配置された部分は、二重管の軸方向にガスを流すための間隙を有しており、二重管構成部材100aと二重管構成部材100bとを溶接する際には、この間隙にバックシールドガスとしてアルゴンガス、ヘリウムガスなどの不活性ガスを流す。
 二重管構成部材100a及び二重管構成部材100bの内管4同士を溶接するために、内管4の内側に挿入される溶接ヘッドは、円筒状に形成された筺体7を具備しており、筺体7内には、反射ミラー8、集光レンズ9、コリメートレンズ10が収容され、筺体7に支持されている。
 また、筺体7には、溶接ヘッドにレーザー光を供給する光ファイバー13と、溶接時に反射ミラー8および集光レンズ9のスパッタ、ヒューム等による汚れを防止するためにアルゴンガス、ヘリウムガスなどの不活性ガスを流すためのチュープ(例えばウレタンチューブ)12とが接続されている。なお、チューブ12と筺体7との間には、これらの間をシールするためのOリング11が配設されている。
 本実施形態では、上記構成の溶接ヘッドを用いて、二重管構成部材100a及び二重管構成部材100bの内管4同士をレーザー溶接により溶接する。また、二重管構成部材100a及び二重管構成部材100bの外管5同士を溶接する際は、これらの外側からレーザー溶接により溶接を行う。
 図2は、二重管構成部材100a及び二重管構成部材100bの軸方向端部の溶接部の構成を拡大して模式的に示すものである。同図に示すように、二重管構成部材100a及び二重管構成部材100bの一方、本実施形態では二重管構成部材100aの内管4が、所定長さ(L)外管5より長く構成されている。また、他方の二重管構成部材100bは、外管5が所定長さ(L)内管4より長く構成されている。したがって、内管4の溶接位置と、外管5の溶接位置は、軸方向に沿って所定長さ(L)ずれた位置となっている。
 さらに、内管4と外管5との間には、これらの内管4と外管5との間の間隔が拡がるように溝20が形成されている。この溝20の軸方向長さ(溝20を上から見たときの深さ)Lは、溶接によって生ずる裏波ビード幅の1/2以上とされている。一般に、組網線6が配置された部分の内管4と外管5との間隔は、非常に狭く、例えば0.4mm程度とされている。これに対して、溝20の部分における内管4と外管5との間隔は、例えば0.8mm程度等とされ、内管4と外管5との間の間隔が拡がった構成となっている。この溝20は、例えば、内管4の外側面を切削するとともに、外管5の内側面を切削することによって形成することができる。このように内管4及び外管5を切削することによって、これらの表面に形成された酸化被膜等を溶接前に除去することができ、酸化被膜等を溶接に悪影響を与えることを防止することができる。なお、上記溝20は内管4または外管5に所定の厚みがある場合は、その一方に形成しても良いのは勿論である。
 図3に示すように、例えば、二重管基材2である図3の場合の外管5同士を外側からレーザー溶接した際に、外管5の内側面に裏波ビード3が形成される。なお、図3では、下部に示した2重管の円で囲んだ領域の溶接状態を上部に拡大して示してある。本実施形態では、上記の裏波ビード3の幅の1/2(図3中に示すL)と、溝20の軸方向長さLとの関係が、
(裏波ビード3幅の1/2(L))≦(溝20の軸方向長さ(L))
となるように、溝20の軸方向長さLが設定されている。これは、以下のような理由による。
 すなわち、溝20の軸方向長さLを上記のように設定すると、図3に示すように、裏波ビード3と二重管基材2(図3の場合外管5)がなす角度θが90度以上となり、Vノッチとならない。一方、例えば、図4に示すように、上記の溝20の軸方向長さLが裏波ビード3の幅の1/2(L)よりも短いと、裏波ビード3と二重管基材2(図4の場合外管5)とがなす角度θが90度以下となりVノッチが形成される。
 以上の理由から、本実施形態では、溝20の軸方向長さLは、溶接によって形成される裏波ビード3の幅の1/2(L)以上とされており、これによって溶接部分に強度低下の原因となるVノッチが形成されることがなく、信頼性の向上を図ることができるようになっている。この裏波ビード3の幅は、実際には、例えば2mm以下程度となる。したがって、溝20の軸方向長さLは、例えば1mm以上程度とすればよい。
 裏波ビード3は、レーザー等によって溶接する際にレーザーを照射する側(溶接方向)とは反対側に形成される。図3に示すように、この裏波ビード3の幅は、レーザーを照射する側に形成される溶接ビート30の幅以上となることはない。したがって、上記の溝20の軸方向長さLを、溶接ビート30の幅の1/2(L)以上とすれば、溶接部分に強度低下の原因となるVノッチが形成されることを防止することができる。
 また、図2に示す内管4と外管5との長さの差(所定長さ)Lは、例えば5mm以上程度とすることが好ましい。これによって、内管4の溶接部の裏波ビード3と、外管5の溶接部の裏波ビード3とが重なることを確実に防止することができ、内管4と外管5との間の間隙が閉塞されてしまうことを確実に防止することができる。また、溶接後に溶接部の放射線透過試験を行う際に、内管4の溶接部と、外管5の溶接部とが重ならないように放射線透過画像を得ることができる。
 なお、上記実施の形態においては、内管4と外管5および内管4と外管5が直接接触しないように組網線6を挿入した二重管100の例で示したが、内管4と外管5および内管4と外管5が直接接触しないように内管4と外管5の間にスペーサ(図示せず)を配置する場合、または内管4と外管5の間に全長にわたって溝を形成した場合の二重管においてもその接続において本実施の形態を適用することができる。
 図5は、本発明の一実施形態に係る蒸気発生器200の断面構成を模式的に示す図である。同図に示すように、蒸気発生器200は、略円筒状に形成された容器201を具備しており、この容器201内には、図中矢印で示すように、上部から下部に向けて液体金属としての液体ナトリウムが流通されるように構成されている。
 容器201内には、前述した実施形態に係る二重管100から構成され、スパイラル状とされた伝熱管210が設けられており、この伝熱管210の内部に、図中矢印で示すように、下部から上部に向けて水及び水蒸気が流通されるようになっている。なお、伝熱管210を構成する二重管100の内管4と外管5との間には、前述したとおり、ヘリウムガスが充填されており、内管4及び外管5の破損を検出できるようになっている。
 本実施形態の蒸気発生器200では、伝熱管210の溶接部に強度低下の原因となるVノッチが形成されることを抑制することができるので、その信頼性の向上を図ることができる。また、内管4と外管5との間の間隔が溶接により閉塞されてしまうことを防止できるので、内管4及び外管5の破損を確実に検出することができる。さらに、従来に比べて短時間で溶接を行うことができる。
 本発明のいくつかの実施形態を説明したが,これらの実施形態は,例として提示したものであり,発明の範囲を限定することは意図していない。これら新規な実施形態は,その他の様々な形態で実施されることが可能であり,発明の要旨を逸脱しない範囲で,種々の省略,置き換え,変更を行うことができる。これら実施形態やその変形は,発明の範囲や要旨に含まれるとともに,特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (16)

  1.  内管と外管とを有する複数の二重管構成部材を、軸方向端部の溶接部で溶接して連結した二重管であって、
     前記二重管構成部材の前記溶接部には、軸方向の長さが、当該溶接部の溶接によって生ずる裏波ビード幅の1/2以上とされた溝が設けられている
     ことを特徴とする二重管。
  2.  内管と外管とを有する複数の二重管構成部材を、軸方向端部の溶接部で溶接して連結した二重管であって、
     前記二重管構成部材の前記溶接部には、軸方向の長さが、当該溶接部の溶接によって生ずる溶接ビード幅の1/2以上とされた溝が設けられている
     ことを特徴とする二重管。
  3.  請求項1又は2記載の二重管であって、
     前記二重管構成部材の前記溶接部は、一方の前記二重管構成部材の前記内管が軸方向に所定長さ前記外管より長く構成され、かつ、他方の二重管構成部材の前記外管が軸方向に前記所定長さ前記内管より長く構成され、
     前記内管同士の溶接位置と、前記外管同士の溶接位置が前記所定長さ軸方向にずれている
     ことを特徴とする二重管。
  4.  請求項1又は2記載の二重管であって、
     前記溝は、前記溶接部で溶接される2つの前記二重管構成部材の少なくとも一方に形成されている
     ことを特徴とする二重管。
  5.  請求項1又は2記載の二重管であって、
     前記二重管構成部材は、前記内管と、前記外管との間に組編線層を有する
     ことを特徴とする二重管。
  6.  内管と外管とを有する複数の二重管構成部材を、軸方向端部の溶接部で溶接して連結した二重管の製造方法であって、
     前記二重管構成部材の前記溶接部に、軸方向の長さが、当該溶接部の溶接によって生ずる裏波ビード幅の1/2以上とした溝を設け、
     前記内管を当該内管の内側から溶接し、前記外管を当該外管の外側から溶接する
     ことを特徴とする二重管の製造方法。
  7.  内管と外管とを有する複数の二重管構成部材を、軸方向端部の溶接部で溶接して連結した二重管の製造方法であって、
     前記二重管構成部材の前記溶接部に、軸方向の長さが、当該溶接部の溶接によって生ずる溶接ビード幅の1/2以上とした溝を設け、
     前記内管を当該内管の内側から溶接し、前記外管を当該外管の外側から溶接する
     ことを特徴とする二重管の製造方法。
  8.  請求項6又は7記載の二重管の製造方法であって、
     前記二重管構成部材の前記溶接部の一方の前記二重管構成部材の前記内管を軸方向に所定長さ前記外管より長く構成し、かつ、他方の二重管構成部材の前記外管を軸方向に前記所定長さ前記内管より長く構成して、
     前記内管同士の溶接位置と、前記外管同士の溶接位置を前記所定長さ軸方向にずらす
     ことを特徴とする二重管の製造方法。
  9.  請求項6又は7記載の二重管の製造方法であって、
     前記溝を、前記溶接部で溶接される2つの前記二重管構成部材の少なくとも一方に形成する
     ことを特徴とする二重管の製造方法。
  10.  請求項6又は7記載の二重管の製造方法であって、
     前記二重管構成部材は、前記内管と、前記外管との間に組編線層を有する
     ことを特徴とする二重管の製造方法。
  11.  請求項6又は7記載の二重管の製造方法であって、
     前記溶接を、レーザー溶接によって行う
     ことを特徴とする二重管の製造方法。
  12.  内部に液体金属が流通される容器と、前記容器内に収容され内部に水及び水蒸気が流通される伝熱管とを具備した蒸気発生器において、
     前記伝熱管は、
     内管と外管とを有する複数の二重管構成部材を、軸方向端部の溶接部で溶接して連結した二重管であって、
     前記二重管構成部材の前記溶接部には、軸方向の長さが、当該溶接部の溶接によって生ずる裏波ビード幅の1/2以上とされた溝が設けられている二重管から構成されている
     ことを特徴とする蒸気発生器。
  13.  内部に液体金属が流通される容器と、前記容器内に収容され内部に水及び水蒸気が流通される伝熱管とを具備した蒸気発生器において、
     前記伝熱管は、
     内管と外管とを有する複数の二重管構成部材を、軸方向端部の溶接部で溶接して連結した二重管であって、
     前記二重管構成部材の前記溶接部には、軸方向の長さが、当該溶接部の溶接によって生ずる溶接ビード幅の1/2以上とされた溝が設けられている二重管から構成されている
     ことを特徴とする蒸気発生器。
  14.  請求項12又は13記載の蒸気発生器であって、
     前記二重管構成部材の前記溶接部は、一方の前記二重管構成部材の前記内管が軸方向に所定長さ前記外管より長く構成され、かつ、他方の二重管構成部材の前記外管が軸方向に前記所定長さ前記内管より長く構成され、
     前記内管同士の溶接位置と、前記外管同士の溶接位置が前記所定長さ軸方向にずれている
     ことを特徴とする蒸気発生器。
  15.  請求項12又は13記載の蒸気発生器であって、
     前記溝は、前記溶接部で溶接される2つの前記二重管構成部材の少なくとも一方に形成されている
     ことを特徴とする蒸気発生器。
  16.  請求項12又は13記載の蒸気発生器であって、
     前記二重管構成部材は、前記内管と、前記外管との間に組編線層を有する
     ことを特徴とする蒸気発生器。
PCT/JP2011/000288 2010-01-20 2011-01-20 二重管及び二重管の製造方法並びに蒸気発生器 WO2011089909A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011550860A JP5881421B2 (ja) 2010-01-20 2011-01-20 二重管及び二重管の製造方法並びに蒸気発生器
EP11734516.5A EP2527076A4 (en) 2010-01-20 2011-01-20 Double-walled pipe, method for manufacturing double-walled pipe, and vapor generator
KR1020127018273A KR101386920B1 (ko) 2010-01-20 2011-01-20 이중관 및 이중관의 제조 방법 및 증기 발생기
CA2787558A CA2787558C (en) 2010-01-20 2011-01-20 Double-walled tube, method of manufacturing double-walled tube, and steam generator
CN201180006619.8A CN102712061B (zh) 2010-01-20 2011-01-20 二重管、二重管制造方法及蒸汽发生器
RU2012135492/02A RU2518654C2 (ru) 2010-01-20 2011-01-20 Труба с двойными стенками, способ изготовления трубы с двойными стенками и парогенератор
US13/551,655 US20130180472A1 (en) 2010-01-20 2012-07-18 Double-walled tube, method of manufacturing double-walled tube and steam generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010010485 2010-01-20
JP2010-010485 2010-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/551,655 Continuation US20130180472A1 (en) 2010-01-20 2012-07-18 Double-walled tube, method of manufacturing double-walled tube and steam generator

Publications (1)

Publication Number Publication Date
WO2011089909A1 true WO2011089909A1 (ja) 2011-07-28

Family

ID=44306712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000288 WO2011089909A1 (ja) 2010-01-20 2011-01-20 二重管及び二重管の製造方法並びに蒸気発生器

Country Status (8)

Country Link
US (1) US20130180472A1 (ja)
EP (1) EP2527076A4 (ja)
JP (1) JP5881421B2 (ja)
KR (1) KR101386920B1 (ja)
CN (1) CN102712061B (ja)
CA (1) CA2787558C (ja)
RU (1) RU2518654C2 (ja)
WO (1) WO2011089909A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150354904A1 (en) * 2013-02-28 2015-12-10 Mitsubishi Heavy Industries, Ltd. Heat exchanger and method for manufacturing heat exchanger
JP2017141725A (ja) * 2016-02-10 2017-08-17 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105916627B (zh) * 2014-01-17 2017-09-05 株式会社日立制作所 激光焊接方法以及焊接接头
JP6225037B2 (ja) * 2014-01-23 2017-11-01 三菱日立パワーシステムズ株式会社 管の製造方法及び管
KR101953168B1 (ko) * 2016-10-28 2019-02-28 김종필 세면기 팝업 밸브
CN115283873B (zh) * 2022-08-18 2023-07-14 江苏恒宇管业科技有限公司 蒸汽保温管内外管同轴心保持架与保持架的焊接工艺系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121493A (ja) * 1984-07-09 1986-01-30 株式会社東芝 冷却系配管構造
JPH08118042A (ja) * 1994-10-28 1996-05-14 Ishikawajima Harima Heavy Ind Co Ltd 二重管の拡散接合法
JP2009220179A (ja) * 2008-02-19 2009-10-01 Toshiba Corp 二重管の接合方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644906A (en) * 1985-05-09 1987-02-24 Stone & Webster Engineering Corp. Double tube helical coil steam generator
GB8701410D0 (en) * 1987-01-22 1987-02-25 Land & Marine Eng Ltd Pipe joints
JP2504458B2 (ja) * 1987-04-10 1996-06-05 バブコツク日立株式会社 二重構造管の溶接方法
JP2746970B2 (ja) * 1989-01-10 1998-05-06 バブコツク日立株式会社 二重壁伝熱管の溶接方法及び熱交換器
JPH03207575A (ja) * 1990-01-10 1991-09-10 Nippon Steel Corp 二重管の周継手溶接法
JP2971197B2 (ja) * 1991-06-27 1999-11-02 三菱重工業株式会社 管内裏波ビード成形方法
RU2068326C1 (ru) * 1993-11-09 1996-10-27 Василий Савельевич Юркин Способ производства многослойных металлических труб
JPH1034373A (ja) * 1996-07-18 1998-02-10 Mitsubishi Heavy Ind Ltd 2重管構造の溶接方法
NL1012676C2 (nl) * 1999-07-22 2001-01-23 Spiro Research Bv Werkwijze voor het vervaardigen van een dubbelwandige warmtewisselbuis met lekdetectie alsmede een dergelijke warmtewisselbuis.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121493A (ja) * 1984-07-09 1986-01-30 株式会社東芝 冷却系配管構造
JPH08118042A (ja) * 1994-10-28 1996-05-14 Ishikawajima Harima Heavy Ind Co Ltd 二重管の拡散接合法
JP2009220179A (ja) * 2008-02-19 2009-10-01 Toshiba Corp 二重管の接合方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2527076A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150354904A1 (en) * 2013-02-28 2015-12-10 Mitsubishi Heavy Industries, Ltd. Heat exchanger and method for manufacturing heat exchanger
JP2017141725A (ja) * 2016-02-10 2017-08-17 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ

Also Published As

Publication number Publication date
EP2527076A4 (en) 2017-06-28
EP2527076A1 (en) 2012-11-28
RU2012135492A (ru) 2014-03-10
JPWO2011089909A1 (ja) 2013-05-23
KR101386920B1 (ko) 2014-04-21
US20130180472A1 (en) 2013-07-18
CA2787558C (en) 2015-01-06
JP5881421B2 (ja) 2016-03-09
CA2787558A1 (en) 2011-07-28
RU2518654C2 (ru) 2014-06-10
KR20120101126A (ko) 2012-09-12
CN102712061B (zh) 2015-06-17
CN102712061A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5881421B2 (ja) 二重管及び二重管の製造方法並びに蒸気発生器
EP2786828B1 (en) Method for welding rotors for power generation
CN102639274B (zh) 通过内部焊接和外部焊接将管段焊接在一起的用于铺设管道的方法和焊接站
JP5953272B2 (ja) ボイラ用メンブレンパネルの溶接部の予防保全補修方法
JP5979665B2 (ja) 管体を管寄せに溶接する方法および管体が管寄せに溶接された溶接構造体
RU2740692C1 (ru) Элемент теплообменника и способ изготовления элемента теплообменника
US8891724B2 (en) Dual-cooled nuclear fuel rod having annular plugs and method of manufacturing the same
JP2008212945A (ja) 低合金鋼母材のクラッド溶接構造
JP2013230476A (ja) 熱交換器の管板と伝熱管との封止方法および熱交換器
JP5304392B2 (ja) 異材継手構造及びその製造方法
CA2847970C (en) Method for welding rotors for power generation
JP6200410B2 (ja) 補修溶接方法及び補修溶接用プラグ、並びに原子炉容器
JP5457939B2 (ja) 二重管の溶接部の検査方法
JP6132424B2 (ja) 二重管の継手方法
JP2014111274A (ja) 溶接継手の検査方法
JPH1034373A (ja) 2重管構造の溶接方法
JP6059107B2 (ja) 原子炉用制御棒の製造方法
JP4350490B2 (ja) 耐食性薄金属シートによる防食構造
JP2020099915A (ja) 溶接方法
JP2003333721A (ja) 金属管被覆ケーブルの接続構造
JP2007064608A (ja) ボイラ装置用メンブレンパネル及びこれを使用したボイラ装置
JP3544767B2 (ja) 燃料棒
JP3007243B2 (ja) レ形開先多層溶接における裏波溶接ビードの開先斜め側ルート止端部の折れ込み防止方法
JPH07229243A (ja) 角形鋼管部材の内ダイアフラム形成方法およびエレクトロスラグ溶接部の溶融金属漏れ止め方法
JPH01142392A (ja) 二重管式伝熱管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006619.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734516

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550860

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127018273

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2787558

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011734516

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012135492

Country of ref document: RU