WO2011080793A1 - 内燃機関の排気装置 - Google Patents

内燃機関の排気装置 Download PDF

Info

Publication number
WO2011080793A1
WO2011080793A1 PCT/JP2009/007324 JP2009007324W WO2011080793A1 WO 2011080793 A1 WO2011080793 A1 WO 2011080793A1 JP 2009007324 W JP2009007324 W JP 2009007324W WO 2011080793 A1 WO2011080793 A1 WO 2011080793A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
exhaust
downstream
upstream
resonance
Prior art date
Application number
PCT/JP2009/007324
Other languages
English (en)
French (fr)
Inventor
高垣仲矢
若月一稔
幸光秀之
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011547089A priority Critical patent/JP5472321B2/ja
Priority to CN2009801631906A priority patent/CN102686840A/zh
Priority to PCT/JP2009/007324 priority patent/WO2011080793A1/ja
Priority to US13/517,198 priority patent/US8607923B2/en
Priority to EP09852775.7A priority patent/EP2520775B1/en
Publication of WO2011080793A1 publication Critical patent/WO2011080793A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/084Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling the gases flowing through the silencer two or more times longitudinally in opposite directions, e.g. using parallel or concentric tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • F01N1/023Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/06Silencing apparatus characterised by method of silencing by using interference effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/089Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling using two or more expansion chambers in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2210/00Combination of methods of silencing
    • F01N2210/04Throttling-expansion and resonance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/02Tubes being perforated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • F01N2490/02Two or more expansion chambers in series connected by means of tubes

Definitions

  • the present invention relates to an exhaust system for an internal combustion engine, and more particularly to an exhaust system for an internal combustion engine that reduces exhaust noise due to air column resonance in an exhaust pipe provided at the most downstream in the exhaust direction of the exhaust flow.
  • FIG. 18 As an exhaust device for an internal combustion engine used in a vehicle such as an automobile, one as shown in FIG. 18 is known (for example, see Patent Document 1).
  • exhaust gas exhausted from the engine 1 as an internal combustion engine to the exhaust manifold 2 is purified by the catalytic converter 3 and then introduced into the exhaust device 4.
  • the exhaust device 4 includes a front pipe 5 connected to the catalytic converter 3, a center pipe 6 connected to the front pipe 5, a main muffler 7 as a silencer connected to the center pipe 6, a tail pipe 8 connected to the main muffler 7, and a tail.
  • the sub muffler 9 is interposed in the pipe 8.
  • the main muffler 7 includes an expansion chamber 7 a into which exhaust gas is expanded and introduced through a small hole 6 a of the center pipe 6, and a resonance chamber 7 b into which the downstream opening end 6 b of the center pipe 6 is inserted.
  • the exhaust gas introduced into the resonance chamber 7b from the downstream opening end 6b of the center pipe 6 is silenced by a Helmholtz resonance.
  • the resonance frequency fn is obtained by the following equation (1) based on Helmholtz resonance.
  • equation (1) or by increasing the volume V of the resonance chamber 7b, by increasing the length L 1 of the projecting portion of the center pipe 6, it is tuned to the resonant frequency to a low frequency side can, or reduce the volume V of the resonance chamber 7b, by shortening the length L 1 of the projecting portion of the center pipe 6, it is possible to tune the resonant frequency to the high frequency side.
  • the sub-muffler 9 is configured to suppress an increase in sound pressure due to the occurrence of air column resonance corresponding to the length of the tail pipe 8 in the tail pipe 8 due to exhaust pulsation during operation of the engine 1.
  • the air column of the basic vibration (primary component) is approximately twice the tube length L of the tail pipe 8
  • the secondary component air column resonance wavelength ⁇ 2 is approximately 1 time the tube length L.
  • the wavelength ⁇ 3 of air column resonance of the third order component is 2/3 times the tube length L.
  • the air column resonance frequency fc of the tail pipe 8 is expressed by the following equation (2).
  • fc (c / 2L) ⁇ n (2)
  • c sound velocity
  • L length of tail pipe n: order
  • the longer the length L of the tail pipe 8 the more the air column resonance frequency fc shifts to the lower frequency side.
  • the resonance frequency in the resonance chamber 7b of the main muffler 7 is reached. It can be considered that the air column resonance of the tail pipe 8 is silenced.
  • the Helmholtz resonance in the resonance chamber 7b does not effectively act on the air column resonance actually generated in the tail pipe 8, and the air column resonance cannot be sufficiently suppressed.
  • the present invention has been made in order to solve the above-described conventional problems, and can eliminate the conventionally used sub-muffler to reduce exhaust noise and reduce the weight of the exhaust device.
  • Another object of the present invention is to provide an exhaust device for an internal combustion engine that can reduce the manufacturing cost of the exhaust device.
  • the exhaust pipe component includes (1) a silencer having a resonance chamber that silences exhaust sound of a specific frequency, and the silencer connected to the silencer upstream in the exhaust direction of the exhaust flow.
  • An exhaust system for an internal combustion engine having an upstream opening end and an exhaust pipe having a downstream opening end for discharging an exhaust flow discharged from the silencer to the atmosphere at a downstream portion,
  • a hollow member is provided inside the pipe, and the hollow member has an open end at the downstream end, and the upstream end protrudes outward from the inside of the exhaust pipe to communicate with the resonance chamber. It is comprised from what is obstruct
  • a hollow member is provided inside the exhaust pipe, the downstream end of the hollow member forms an open end, and the upstream end of the hollow member projects outward from the interior of the exhaust pipe and communicates with the resonance chamber.
  • the wall of the silencer that defines the resonance chamber is blocked, so that the pressure energy of the exhaust flow in the exhaust pipe, that is, the pressure distribution of the pressure energy of the air is generated in the hollow member and the resonance chamber. Energy can be stored in the hollow member and the resonance chamber, and this pressure energy can be held in the hollow member and the resonance chamber so as not to be released to the outside during air column resonance.
  • Storing the pressure energy of air in the hollow member and the resonance chamber is performed by the pressure energy of the air in the exhaust pipe, and the pressure energy of the entire exhaust pipe does not change. Therefore, the pressure energy in the exhaust pipe can be dispersed into the pressure energy in the hollow member and the resonance chamber, and the pressure energy in the exhaust pipe excluding the hollow member and the resonance chamber, and the hollow member and the resonance chamber are excluded. Only the pressure energy in the exhaust pipe can be released to the outside.
  • the hollow member and the resonance chamber have a large capacity for storing pressure energy, the pressure energy released from the exhaust pipe can be greatly reduced. Therefore, the sound pressure level at the time of air column resonance can be lowered to reduce the sound pressure level, and the exhaust noise can be reduced.
  • a standing wave is generated by repeated reflection of the opening end of the sound wave due to the exhaust pulsation in the exhaust pipe.
  • the amplitude is significantly It becomes larger and air column resonance occurs.
  • a hollow member having a downstream opening end on the downstream side of the exhaust pipe and having an upstream end closed by the resonance chamber is provided inside the exhaust pipe. And the downstream open end of the hollow member can be positioned at the site where air column resonance occurs.
  • the hollow member and the resonance chamber can be a Helmholtz resonance chamber using air column resonance as a sound source, and if the resonance frequency of the resonance chamber matches the air column resonance frequency of the exhaust pipe, Can be suppressed.
  • the downstream portion of the hollow member can be positioned in the region where the air column resonance occurs, the air column resonance can be sufficiently suppressed even when the exhaust flow rate introduced into the silencer during deceleration is rapidly reduced. Can do.
  • the sound pressure itself can be reduced in this way, the sound pressure can be reduced over the operating region other than during the air column resonance and during the air column resonance, and in addition to the reduction of the sound pressure during the air column resonance.
  • air column resonance can be further suppressed using Helmholtz resonance. For this reason, exhaust noise can be greatly reduced.
  • the conventionally used sub-muffler can be abolished, and the silencer provided in the upstream portion of the exhaust pipe can be reduced in size, so that the weight of the exhaust device can be reduced and the exhaust device can be reduced.
  • the manufacturing cost can be reduced.
  • the axial length of the exhaust pipe and the axial direction length of the hollow member are set so that the air column resonance frequency generated in the exhaust pipe matches the specific frequency of the resonance chamber. Air column resonance can be further suppressed.
  • the resonance frequency of the resonance chamber can be tuned to the low frequency side by elongating the hollow member, the primary component and secondary component of the column resonance of the column resonance frequency in the normal rotation region of the internal combustion engine.
  • the sound pressure level can be reduced, and exhaust noise can be reduced to prevent the driver from feeling uncomfortable.
  • the downstream end of the hollow member is located upstream of the central portion of the length of the exhaust pipe in the axial direction, the position where the sound pressure of the air column resonance is high, for example, the standing of the air column resonance
  • the air column resonance can be further suppressed by the Helmholtz resonance.
  • the exhaust pipe is configured by a single tail pipe whose upstream portion is inserted into the silencer, and the upstream portion of the hollow member is the It is comprised from what is supported by the inner peripheral part of the wall part of a resonance chamber, and a part of the circumferential direction of a downstream part is supported by the inner peripheral part of the said exhaust pipe.
  • the exhaust pipe is composed of a single tail pipe whose upstream portion is inserted into the silencer, and the upstream outer peripheral portion of the hollow member is supported by the inner peripheral portion of the wall portion of the resonance chamber, and the downstream portion Is supported by the inner peripheral part of the exhaust pipe, so that the upstream part and the downstream part of the hollow member can be supported by the both ends of the resonance chamber wall and the tail pipe, respectively. Can be firmly attached to the tail pipe.
  • the exhaust pipe is connected to the outer pipe provided in the silencer and the outer pipe, and the silencer is connected to the outer pipe.
  • a tail pipe extending to the downstream side of the vessel, and the hollow member is constituted by an outlet pipe provided inside the outer pipe, and a downstream portion of the outlet pipe is disposed at an upstream portion of the tail pipe.
  • a hole that communicates the inside of the outlet pipe and the inside of the outer pipe is formed in the downstream portion of the outlet pipe.
  • a hollow member is constructed from an existing outlet pipe in a silencer, an outer pipe is attached to the outer peripheral portion of the outlet pipe, and the inside of the outlet pipe and the inside of the outer pipe are communicated with the downstream portion of the outlet pipe.
  • the exhaust gas can be discharged to the tail pipe through the hole of the outlet pipe from the passage defined between the inner peripheral part of the outer pipe and the outer peripheral part of the outlet pipe.
  • the sound pressure itself can be reduced by using the existing outlet pipe for the silencer, the sound pressure can be reduced over the operation region other than during the air column resonance and during the air column resonance.
  • the air column resonance can be further suppressed by utilizing Helmholtz resonance. For this reason, it can suppress that the manufacturing cost of a silencer increases, and can suppress that the manufacturing cost of an exhaust apparatus increases.
  • the outer pipe and the outlet pipe are configured to be bent in the silencer.
  • the outer pipe and the outlet pipe are curved in the silencer, the outer pipe and the outlet pipe can be lengthened in the silencer, and the axial length of the silencer is shortened to reduce the resonance chamber. Can be tuned to the low frequency side.
  • an internal combustion engine that can reduce the exhaust noise by eliminating the conventionally used sub-muffler, can reduce the weight of the exhaust device, and can reduce the manufacturing cost of the exhaust device.
  • An exhaust device can be provided.
  • FIG. 1 is a diagram showing a first embodiment of an exhaust device for an internal combustion engine according to the present invention, and is a configuration diagram of the exhaust device for the internal combustion engine.
  • FIG. It is a figure which shows 1st Embodiment of the exhaust apparatus of the internal combustion engine which concerns on this invention, and is a perspective sectional view of a muffler. It is a figure which shows 1st Embodiment of the exhaust apparatus of the internal combustion engine which concerns on this invention, and is sectional drawing of the muffler cut by the surface which crosses an inlet pipe and a tail pipe.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3.
  • FIG. 1 is a diagram showing a first embodiment of an exhaust device for an internal combustion engine according to the present invention, and a primary component and a secondary component of a standing wave of sound pressure distribution of air column resonance caused by reflection at an open end generated in a tail pipe.
  • FIG. It is a figure which shows 1st Embodiment of the exhaust apparatus of the internal combustion engine which concerns on this invention, and is a figure which shows the relationship between the sound pressure level which generate
  • FIG. 16 is a cross-sectional view taken along line BB in FIG. 15.
  • FIG. 16 shows 4th Embodiment of the exhaust apparatus of the internal combustion engine which concerns on this invention, and is sectional drawing of a muffler and a tail pipe.
  • FIGS. 1 to 13 are views showing a first embodiment of an exhaust device for an internal combustion engine according to the present invention. First, the configuration will be described.
  • an exhaust manifold 22 is connected to an engine 21 as an in-line four-cylinder internal combustion engine, and an exhaust device 23 is connected to the exhaust manifold 22.
  • the engine 21 is not limited to the in-line four cylinders, and may be in-line three cylinders or in-line five cylinders or more, or may be a V-type engine having three or more cylinders in each bank divided into left and right. Good.
  • the exhaust manifold 22 includes four exhaust branch pipes 22a, 22b, 22c, and 22d, and exhaust branch pipes 22a, 22b, 22c, and 22d connected to exhaust ports that respectively communicate with the first cylinder to the fourth cylinder of the engine 21.
  • the exhaust gas collecting pipe 22e collects the downstream side of the exhaust gas, and the exhaust gas as the exhaust flow exhausted from each cylinder of the engine 21 passes through the exhaust branch pipes 22a, 22b, 22c and 22d. To be introduced.
  • the exhaust device 23 includes a catalytic converter 24, a cylindrical front pipe 25, a cylindrical center pipe 26, a muffler 27 as a silencer, and a single tail pipe 40 as an exhaust pipe. It is installed on the downstream side in the exhaust direction of the exhaust gas of the engine 21 so as to be elastically suspended under the floor.
  • the upstream indicates the upstream in the exhaust direction of the exhaust gas
  • the downstream indicates the downstream in the exhaust direction of the exhaust gas.
  • the upstream end of the catalytic converter 24 is connected to the downstream end of the exhaust collecting pipe 22e, and the downstream end of the catalytic converter 24 is connected to the front pipe 25.
  • This catalytic converter 24 is composed of a honeycomb base or a granular activated alumina support to which a catalyst such as platinum or palladium is attached, which is housed in a main body case, and performs reduction of NOx and oxidation of CO and HC. To do.
  • the upstream end of the center pipe 26 is connected to the downstream end of the front pipe 25, and the downstream side of the center pipe 26 is connected to a muffler 27 that silences the exhaust sound.
  • the muffler 27 includes an outer shell 31 formed in a hollow cylindrical shape, and end plates 32 and 33 that close both ends of the outer shell 31.
  • Partition plates 34 and 35 are provided in the outer shell 31.
  • the partition plates 34 and 35 allow the interior of the outer shell 31 to expand and muffle the exhaust gas and to have a specific frequency due to Helmholtz resonance. It is divided into the resonance chamber 38 for muting the exhaust sound.
  • the end plate 32, the partition plate 34, and the partition plate 35 are formed with insertion holes 32a, 34a, 35a, respectively, and an inlet pipe 39 to which the downstream side of the center pipe 26 is connected is inserted into the insertion holes 32a, 34a, 35a. Is inserted.
  • the inlet pipe 39 is supported by the end plate 32 and the partition plates 34 and 35 so as to be accommodated in the expansion chambers 36 and 37 and the resonance chamber 38.
  • the inlet pipe 39 is formed with a plurality of communication holes 39b and 39c in the axial direction (exhaust direction of the exhaust flow) and the circumferential direction of the inlet pipe 39.
  • the interior of the inlet pipe 39 and the expansion chambers 36 and 37 are defined as follows.
  • the communication holes 39b and 39c communicate with each other.
  • a communication hole 35 b is formed in the partition plate 35, and the communication hole 35 b communicates the expansion chamber 36 and the expansion chamber 37.
  • the exhaust gas introduced into the muffler 27 from the center pipe 26 through the inlet pipe 39 is introduced into the expansion chambers 36 and 37 through the communication holes 39b and 39c.
  • through holes 34b, 35c and 33a are formed in the partition plates 34 and 35 and the end plate 33, respectively, and the upstream portion 40A of the tail pipe 40 is inserted into the through holes 35c and 33a.
  • An upstream opening end 40a is provided at the upstream end of the upstream portion 40A of the tail pipe 40, and the upstream portion 40A of the tail pipe 40 has insertion holes 35c, 33a so that the upstream opening end 40a opens into the expansion chamber 36. Is connected to the muffler 27 and supported by the partition plate 35 and the end plate 33.
  • a downstream opening end 40b is formed at the downstream end of the downstream portion 40B of the tail pipe 40, and the downstream opening end 40b communicates with the atmosphere. Therefore, the exhaust gas introduced from the expansion chambers 36 and 37 of the muffler 27 to the upstream opening end 40a of the tail pipe 40 is discharged to the atmosphere from the downstream opening end 40b through the tail pipe 40.
  • the tail pipe 40 of the present embodiment has an upstream opening end 40a connected to the muffler 27 on the upstream side in the exhaust direction of the exhaust gas discharged from the engine 21 in the upstream portion 40A, and the exhaust gas in the downstream portion 40B.
  • the upstream portion 40A and the downstream portion 40B of the tail pipe 40 indicate upstream and downstream portions of the tail pipe 40 having a predetermined length including the upstream opening end 40a and the downstream opening end 40b.
  • an inner pipe 41 as a hollow member is provided in the upstream portion 40A of the tail pipe 40 accommodated in the expansion chambers 36 and 37, and the inner pipe 41 is inward of the tail pipe 40 at the downstream end. It has an open end (hereinafter, the downstream end is referred to as a downstream open end 41b) and an open end (hereinafter, the upstream end is referred to as an upstream open end 41a).
  • the inner pipe 41 has an upstream opening end 41a projecting outward from the inside of the tail pipe 40 and communicating with the resonance chamber 38, and the upstream portion 41A penetrates the insertion hole 34b of the partition plate 34, thereby the upstream portion. 41A is supported by the partition plate. For this reason, the upstream open end 41 a of the inner pipe 41 is closed by the outer shell 31, the end plate 32, and the partition plate 34 that constitute the wall of the silencer that defines the resonance chamber 38.
  • the outer peripheral portion of the downstream portion 41B of the inner pipe 41 is supported by the tail pipe 40. That is, as shown in FIG. 4, protrusions 42a and 42b protruding toward the inner pipe 41 are formed at the upper and lower portions of the tail pipe 40, and the inner pipe 41 is connected to the tail pipe 40 by the protrusions 42a and 42b. Is supported by the inner periphery of the. For this reason, as for the inner pipe 41, the upstream part 41A and the downstream part 41B are both supported by the partition plate 34 and the tail pipe 40.
  • the protruding portions 42a and 42b are formed only above and below the tail pipe 40, the back pressure of the exhaust flow flowing through the passage 43 between the inner peripheral portion of the tail pipe 40 and the outer peripheral portion of the inner pipe 41 is reduced. The rise is suppressed.
  • resonance chamber 38 when L 2 the length of the inner pipe 41, the cross-sectional area of the inner pipe 41 S, the volume of the resonance chamber 38 V, the speed of sound in air is C, in the air resonance frequency fn Is obtained by the following equation (3) based on Helmholtz resonance. For this reason, the exhaust gas introduced into the resonance chamber 38 is silenced by a Helmholtz resonance.
  • the resonance chamber 38 or by increasing the volume of the resonance chamber 38, by increasing the length L 2 of the inner pipe 41 connected to the resonance chamber 38, the low-frequency resonance frequency of the resonance chamber 38 can tune to the side, or to reduce the volume of the resonance chamber 38, by shortening the length L 2 of the inner pipe 41, so that it is possible to tune the resonant frequency to the high frequency side.
  • the resonance frequency of the resonance chamber 38 is tuned to the low frequency side by making the inner pipe 41 longer.
  • the volume of the resonance chamber 38 can be reduced and the resonance frequency of the resonance chamber 38 can be tuned to the low frequency side. Miniaturization can be achieved.
  • the axial length of the tail pipe 40 and the axial length of the inner pipe 41 are set so that the resonance frequency of the resonance chamber 38 matches the air column resonance frequency generated in the tail pipe 40. Yes.
  • the tail pipe 40 becomes long, so that the resonance action is generated in the air column resonance generated in the tail pipe 40.
  • the resonance frequency of the resonance chamber 38 needs to be lowered.
  • Helmholtz resonance is related to the length of the inner pipe 41 and the volume of the resonance chamber 38.
  • the length of the inner pipe 41 is appropriately set so that the resonance frequency of the resonance chamber 38 matches the air column resonance frequency of the tail pipe 40.
  • the standing wave of the air column resonance generated in the tail pipe 40 has a significantly large amplitude when the tube length L 3 (see FIG. 3) of the tail pipe 40 and the wavelength ⁇ of the standing wave have a specific relationship, Air column resonance occurs.
  • the air column resonance has a basic frequency of the pipe length L 3 and a half wavelength of the tail pipe 40, the sound pressure air column resonance is generated natural number times the wavelength of the half wavelength increases.
  • each standing wave becomes a node of the sound pressure distribution at the upstream opening end 40 a and the downstream opening end 40 b of the tail pipe 40, and the sound pressure of air column resonance of the primary component is the tail pipe 40.
  • the center of the axial direction (1 / 2L 3 ) is maximum, and the sound pressure of air column resonance of the secondary component is maximized at a position shifted by 1 / 4L 3 from the center of the tail pipe 40 in the axial direction.
  • the downstream opening end 41b of the inner pipe 41 is positioned upstream of the central portion of the length in the axial direction of the tail pipe 40 so that the sound pressure of the air column resonance is high. Is located. Specifically, the downstream open end 41b of the inner pipe 41 is positioned at the antinode of the sound pressure of the secondary component f2 close to the primary component f1.
  • Exhaust gas exhausted from each cylinder of the engine 21 during operation of the engine 21 is introduced from the exhaust manifold 22 to the catalytic converter 24, where the catalytic converter 24 reduces NOx and oxidizes CO and HC.
  • Exhaust gas exhausted from the catalytic converter 24 is introduced into the muffler 27 through the front pipe 25 and the center pipe 26.
  • the exhaust gas introduced into the muffler 27 is introduced into the expansion chambers 36 and 37 through the communication holes 39 b and 39 c of the inlet pipe 39 and then introduced into the passage 43 through the upstream open end 40 a of the tail pipe 40.
  • the exhaust gas introduced into the passage 43 flows from the passage 43 to the downstream side of the tail pipe 40 and is discharged from the downstream opening end 40b of the tail pipe 40 to the atmosphere.
  • the exhaust sound of the exhaust gas introduced into the tail pipe 40 during operation of the engine 21 is an incident wave of exhaust pulsation that changes in accordance with the rotational speed of the engine 21, and this incident wave is determined by the rotational speed of the engine 21. As the frequency increases, the frequency increases.
  • the reason why the reflection at the opening end occurs is that the pressure of the exhaust gas flowing in the tail pipe 40 is high and the pressure outside the downstream opening end 40b of the tail pipe 40 is low. This is because the pressure of the exhaust gas in the end 40b is lowered, and the low pressure portion starts to advance through the tail pipe 40 toward the upstream opening end 40a.
  • the reflected wave has the same phase as the incident wave and reverse direction.
  • the reason why the reflected wave is generated on the upstream opening end 40a side is the same as the reason why the reflected wave is generated on the downstream opening end 40b.
  • the sound pressure at the upstream opening end 40a and the downstream opening end 40b of the tail pipe 40 is caused by the interference between the incident wave toward the downstream opening end 40b and the reflection opposite to the downstream opening end 40b.
  • a standing wave that minimizes can be generated.
  • the standing wave when the wavelength ⁇ of the pipe length L 3 and a standing wave of the tail pipe 40 is in a particular relationship, the amplitude becomes remarkably large, air column resonance occurs.
  • the air column resonance has a basic frequency of the pipe length L 3 and a half wavelength of the tail pipe 40, the sound pressure air column resonance is generated natural number times the wavelength of the half wavelength increases.
  • the frequency of the exhaust pulsation of the engine 21 increases as the rotational speed of the engine 21 increases, and is due to air column resonance corresponding to the rotational speed of the engine 21.
  • the sound pressure level (dB) of the exhaust sound is increased by the primary component f1 and the secondary component f2 of the exhaust sound.
  • the tail pipe 40 having a long pipe length for example, the pipe length of the tail pipe 40 is 1.5 m or more
  • air column resonance occurs in the normal rotation range (2000 rpm to 5000 rpm) where the rotation speed of the engine 21 is low. End up. For this reason, an unpleasant noise called a booming noise is generated in the normal rotation range, which causes deterioration of the exhaust noise and gives the driver an unpleasant feeling.
  • the present embodiment reduces the sound pressure level of air column resonance of the primary component f1 and the secondary component f2 of the air column resonance frequency in the normal rotation range of the engine 21, thereby reducing the exhaust noise and inconvenience to the driver. I tried to prevent giving pleasure.
  • FIG. 8 shows the sound pressure distribution of the primary component f1 of the standing wave of the air column resonance when air column resonance is generated in the tail pipe 40 where the inner pipe 41 is not provided. Since the opening end 40a and the downstream opening end 40b become nodes of the sound pressure distribution of the standing wave of air column resonance, the sound pressure of the standing wave of air column resonance is minimum at the upstream opening end 40a and the downstream opening end 40b. Become. Further, since the central part is the antinode of the sound pressure distribution of the standing wave of the air column resonance, the sound pressure of the standing wave of the air column resonance becomes the peak P1 in the central part.
  • an inner pipe 41 having an upstream opening end 41 a and a downstream opening end 41 b is provided inside the tail pipe 40, and the upstream opening end 41 a of the inner pipe 41 is protruded outward from the inside of the tail pipe 40.
  • the upstream open end 41 a is closed by the outer shell 31, the end plate 32, and the partition plate 34 of the muffler 27 that defines the resonance chamber 38, so that the pressure of the exhaust gas in the tail pipe 40 A pressure distribution A1 of energy, that is, pressure energy of air can be generated in the inner pipe 41 and the resonance chamber 38 (see FIG. 9).
  • this pressure energy can be stored in the inner pipe 41 and the resonance chamber 38, and this pressure energy is held in the inner pipe 41 and the resonance chamber 38 during air column resonance so as not to be released to the outside. Therefore, as shown in FIG. 9, the pressure energy in the tail pipe 40 is the pressure energy A1 corresponding to the pressure distribution in the inner pipe 41 and the resonance chamber 38, and the inner pipe 41 and the resonance chamber 38 are excluded.
  • the pressure energy A2 can be dispersed according to the pressure distribution of the tail pipe 40, and only the pressure energy of the tail pipe 40 excluding the inside of the inner pipe 41 and the resonance chamber 38 can be released to the outside.
  • the remaining pressure energy A2 (indicated by hatching) obtained by subtracting the pressure energy A1 (indicated by hatching) in the inner pipe 41 and the resonance chamber 38 from the pressure energy A in the tail pipe 40 is the tail. It is discharged from the pipe 40 to the outside.
  • the peak of the sound pressure is peaked from the peak P1 by reducing the pressure energy, that is, by setting the pressure energy of the tail pipe 40 to only the pressure energy A2.
  • the sound pressure level can be reduced to P2 (see FIGS. 8 and 9).
  • the inner pipe 41 and the resonance chamber 38 have a large capacity for storing pressure energy, the pressure energy released from the tail pipe 40 can be greatly reduced. Therefore, the sound pressure level at the time of air column resonance can be lowered to reduce the sound pressure level, and the exhaust noise can be reduced.
  • the sound wave (incident wave and reflected wave) due to the exhaust pulsation is repeatedly reflected at the opening end in the tail pipe 40 as described above to generate a standing wave, and the pipe length L 3 of the tail pipe 40 is
  • the wavelength ⁇ of the standing wave has a specific relationship, the amplitude becomes remarkably large, and air column resonance occurs.
  • the inner pipe 41 is provided in the tail pipe 40 so that the downstream opening end 41b is opened on the downstream side of the tail pipe 40 and the upstream opening end 41a is closed by the resonance chamber 38.
  • the inner pipe 41 and the resonance chamber 38 can be made to face each other in the propagation direction, and the downstream opening end 41b of the inner pipe 41 can be positioned at a location where air column resonance occurs.
  • the inner pipe 41 and the resonance chamber 38 can be made into a Helmholtz resonance chamber using air column resonance as a sound source. Therefore, air column resonance can be suppressed by making the resonance frequency of the resonance chamber 38 coincide with the air column resonance frequency of the tail pipe 40.
  • FIG. 11 shows the frequency of the exhaust pulsation and the sound pressure level (dB) of the exhaust sound when the speaker excitation test is performed using the tail pipe 40 having the inner pipe 41 whose upstream opening end 41a is closed by the resonance chamber 38. It is a figure which shows the measurement result.
  • the solid line shows the measurement result using the tail pipe 40 of the present embodiment having the inner pipe 41
  • the broken line shows the measurement result using the conventional tail pipe having no inner pipe. Yes.
  • the operating region other than the time of air column resonance and the time other than the time of air column resonance (the frequency and the rotation speed of the engine 21 correspond to each other. it is possible to reduce the sound pressure over), at the time of the air column resonance in addition to the reduction of the sound pressure, use to air column resonance Helmholtz resonance that depends on the length L 2 of the inner pipe 41 (primary component f1 , Secondary component f2, tertiary component f3) can be further suppressed. For this reason, exhaust noise can be greatly reduced.
  • the downstream open end 41b of the inner pipe 41 is positioned upstream of the central portion of the axial length of the tail pipe 40, so that the sound pressure of the standing wave of air column resonance is obtained.
  • it can be positioned at the antinode a2 of the sound pressure distribution of the secondary component f2 upstream of the antinode a1 of the sound pressure distribution of the primary component, and the air column resonance is further suppressed by Helmholtz resonance. can do.
  • downstream opening end 41b of the inner pipe 41 can be positioned in the region where the air column resonance occurs, even when the exhaust gas flow rate introduced into the muffler 27 at the time of deceleration suddenly decreases, Air column resonance can be sufficiently suppressed.
  • the conventionally used sub-muffler can be eliminated and the muffler 27 can be reduced in size, so that the weight of the muffler 27 can be reduced and the manufacturing cost of the muffler 27 can be reduced.
  • the inner pipe 41 is positioned in the muffler 27.
  • the downstream open end 41c which is the downstream end of the inner pipe 41, is tailed from the muffler 27.
  • the pipe 40 extends to the downstream opening end 40b side, and the downstream opening end 41c is positioned between the antinode a1 of the sound pressure distribution of the primary component f1 of the air column resonance and the antinode a2 of the sound pressure distribution of the secondary component f2. Also good.
  • the primary component f1 and the secondary component f2 of the air column resonance can be further reduced by the Helmholtz resonance, and the occurrence of a booming noise in the normal rotation region of the engine 21 can be further suppressed. it can.
  • the inner pipe 41 is positioned so that the downstream open end 41c of the inner pipe 41 is located between the antinode a1 of the sound pressure distribution of the primary component f1 of the air column resonance and the antinode a2 of the sound pressure distribution of the secondary component f2.
  • protrusions 42c and 42d are provided on the inner periphery of the tail pipe 40 located outside the muffler 27, and the inner pipe 41 is supported on the tail pipe 40 by the protrusions 42c and 42d. do it.
  • the length of the inner pipe 41 and the volume V of the resonance chamber 38 may be appropriately set so that the resonance frequency of the resonance chamber 38 matches the air column resonance frequency of the tail pipe 40.
  • the outer peripheral portion of the upstream portion 41A of the inner pipe 41 is supported by the inner peripheral portion of the partition plate 34 of the resonance chamber 38, and the downstream portion 41B that is a part of the downstream portion 41B in the circumferential direction is supported. Since the upper part and the lower part are supported by the inner peripheral part of the tail pipe 40 via the projecting parts 42a and 42b of the tail pipe 40, the upstream part 41A and the downstream part 41B of the inner pipe 41 are separated from each other by the partition plate of the resonance chamber 38. 34 and the tail pipe 40 can be supported by both ends, and the inner pipe 41 can be firmly attached to the tail pipe 40. Also, in the present embodiment, the single tail pipe 40 is attached to the muffler 27. The upstream portion of the tail pipe 40 can be used as an outlet pipe, and the number of parts of the exhaust device 23 can be reduced to reduce the manufacturing cost of the exhaust device 23. Can be further reduced.
  • FIG. 14 is a diagram showing a second embodiment of the exhaust system for an internal combustion engine according to the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • an outer pipe 51 is provided in the muffler 27, and the outer pipe 51 is inserted into the insertion holes 35 c and 33 a of the partition plate 35 and the end plate 33, and the partition plate 35 in the expansion chambers 36 and 37. And supported by an end plate 33.
  • the outer pipe 51 is provided with an outlet pipe 52.
  • the outlet pipe 52 is inserted into the partition plate 34 and the insertion holes 34a and 33a of the end plate 33, and the upstream portion 52A and the downstream portion 52B are connected to the partition plate 34. And it is supported by both ends by the end plate 33.
  • an upstream portion 53A of the tail pipe 53 is connected to the downstream portion 52B of the outlet pipe 52 as a hollow member by welding or the like, and the downstream opening end 52b of the outlet pipe 52 is more than the upstream opening end 53a of the tail pipe 53.
  • the downstream open end 52 b of the outlet pipe 52 communicates with the upstream portion 53 A of the tail pipe 53.
  • a hole 52 c is formed in the downstream portion 52 ⁇ / b> B of the outlet pipe 52, and the hole 52 c is a passage 54 defined by the inner peripheral portion of the outer pipe 51 and the outer peripheral portion of the outlet pipe 52 and the outlet pipe 52. It communicates with the inside of the.
  • the upstream open end 52a of the upstream portion 52A of the outlet pipe 52 protrudes outward from the inside of the outer pipe 51 and communicates with the resonance chamber 38, and the upstream open end 52a of the outlet pipe 52 passes through the resonance chamber 38. It is closed by an outer shell 31, an end plate 32, and a partition plate 34 that constitute the wall portion of the muffler that is defined.
  • Exhaust gas introduced into the muffler 27 is introduced into the expansion chambers 36 and 37 through the communication holes 39 b and 39 c of the inlet pipe 39, and then from the upstream opening end 51 a of the outer pipe 51 to the inner peripheral portion of the outer pipe 51. It is introduced into a passage 54 defined by the outer periphery of the outlet pipe 52.
  • the exhaust gas is introduced into the outlet pipe 52 through the hole 52c of the outlet pipe 52, and then discharged to the atmosphere through the tail pipe 53 from the downstream opening end 53b of the downstream portion 53B of the tail pipe 53.
  • the outer pipe 51 and the tail pipe 53 constitute an exhaust pipe that exhausts exhaust gas
  • the upstream part 51A of the outer pipe 51 constitutes the upstream part of the exhaust pipe
  • the outer pipe The upstream opening end 51a of 51 constitutes the upstream opening end of the exhaust pipe.
  • the downstream portion 53B of the tail pipe 53 constitutes the downstream portion of the exhaust pipe
  • the downstream opening end 53b of the tail pipe 53 constitutes the downstream opening end of the exhaust pipe.
  • an outlet pipe 52 having an upstream opening end 52 a and a downstream opening end 52 b is provided inside the outer pipe 51, and the upstream opening end 52 a of the outlet pipe 52 is protruded outward from the inside of the outer pipe 51.
  • the upstream open end 52 a is closed by the outer shell 31, the end plate 32, and the partition plate 34 of the muffler 27 that defines the resonance chamber 38.
  • a pressure distribution of the pressure energy of the air can be generated in the outlet pipe 52 and the resonance chamber 38, and the sound pressure itself can be reduced as in the first embodiment.
  • the outlet pipe 52 is provided in the outer pipe 51 so that the downstream opening end 52b is opened on the downstream side of the tail pipe 53 and the upstream opening end 52a is closed by the resonance chamber 38, the outlet pipe 52 is disposed in the sound wave propagation direction. Since the pipe 52 and the resonance chamber 38 can be opposed to each other, and the downstream open end 52b of the outlet pipe 52 can be positioned at a position where air column resonance occurs, the outlet pipe 52 and the resonance chamber 38 are allowed to perform air column resonance.
  • a Helmholtz resonance chamber can be used as a sound source. For this reason, air column resonance can be suppressed by making the resonance frequency of the resonance chamber 38 coincide with the air column resonance frequency of the outer pipe 51 and the tail pipe 53.
  • the portion of the outlet pipe 52 between the hole 52c and the upstream opening end 52a and the resonance chamber 38 constitute a Helmholtz resonance chamber. Will do. For this reason, the resonance frequency of the resonance chamber 38 can be tuned to the low frequency side by bringing the hole 52c closer to the downstream opening end 52b side of the outlet pipe 52.
  • the sound pressure itself can be reduced, the sound pressure is reduced over the operating region other than during air column resonance and during air column resonance, as in the first embodiment. It is possible to, at the time of air column resonance by utilizing the Helmholtz resonance that depends on the volume of length L 2 and the resonance chamber 38 of the outlet pipe 52 from the upstream open end 52a to the hole 52c in addition to the reduction of the sound pressure gas Column resonance can be further suppressed. For this reason, exhaust noise can be greatly reduced.
  • the downstream opening end 52b of the outlet pipe 52 can be positioned in the region where the air column resonance occurs, the air column resonance can be sufficiently performed even when the exhaust gas flow rate introduced into the muffler 27 is rapidly reduced during deceleration. Can be suppressed.
  • the conventionally used sub-muffler can be eliminated and the muffler 27 can be reduced in size, so that the weight of the muffler 27 can be reduced and the manufacturing cost of the muffler 27 can be reduced.
  • FIGS. 15 and 16 are views showing a third embodiment of the exhaust system for an internal combustion engine according to the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals and described. Omitted.
  • an outlet pipe 61 is provided in the muffler 27, and the outlet pipe 61 is inserted into the partition plates 34 and 35 and the insertion holes 34 b, 35 c and 33 a of the end plate 33, and the expansion chambers 36 and 37. Are supported by the partition plates 34 and 35 and the end plate 33.
  • the upstream portion 62A of the tail pipe 62 is connected to the downstream portion 61B of the outlet pipe 61 by welding or the like. Further, a hole 61a as an upstream opening end is formed in the upstream portion 61A of the outlet pipe 61, and the exhaust gas introduced into the muffler 27 is introduced into the outlet pipe 61 through the hole 61a.
  • a flat partition plate 63 is provided inside the outlet pipe 61, and the partition plate 63 extends from the outlet pipe 61 to the tail pipe 62 in the outlet pipe 61.
  • the exhaust pipe 65 is divided into an exhaust passage 65 for introducing exhaust gas into the tail pipe 62 through the upstream opening end 62 a and a resonance passage 66 communicating with the resonance chamber 38.
  • the exhaust passage 65 is constituted by a semicircular passage defined by the upper surface of the partition plate 63 and the inner peripheral surface of the semi-annular upper half ring portion 68 of the outlet pipe 61.
  • the semicircular passage is defined by the lower surface of the partition plate 63 and the inner peripheral surface of the semicircular lower semicircular portion 69 of the outlet pipe 61.
  • a closing plate 64 is provided at the upstream end of the outlet pipe 61, and the upstream end of the outlet pipe 61 is closed by the closing plate 64. For this reason, the exhaust passage 65 of the outlet pipe 61 and the resonance chamber 38 do not communicate with each other.
  • the upstream end 69 a of the lower half ring portion 69 of the outlet pipe 61 extends into the resonance chamber 38 together with the upstream end 63 a of the partition plate 63 and communicates with the resonance chamber 38, whereby the partition plate constituting the resonance passage 66. 63 and the lower half ring portion 69 are closed by the outer shell 31, the end plate 32, and the partition plate 34 that define the resonance chamber 38.
  • the partition plate 63 and the lower half ring portion 69 constitute a hollow member, and the upstream end 63a of the partition plate 63 and the upstream end 69a of the lower half ring portion 69 serve as an upstream end.
  • the opening end 70 is configured, and the downstream opening end 71 as the downstream end is configured by the downstream end 63b of the partition plate 63 and the portion of the lower half ring portion 69 immediately below the downstream end 63b of the partition plate 63.
  • the exhaust gas introduced into the muffler 27 is introduced into the expansion chambers 36 and 37 through the communication holes 39 b and 39 c of the inlet pipe 39 and then introduced into the exhaust passage 65 through the hole 61 a of the outlet pipe 61.
  • This exhaust gas is introduced into the tail pipe 62 from the exhaust passage 65 through the upstream opening end 62a of the tail pipe 62, and discharged from the downstream opening end 62b of the tail pipe 62 to the atmosphere.
  • the outlet pipe 61 and the tail pipe 62 constitute an exhaust pipe that exhausts exhaust gas
  • an upstream portion 61A of the outlet pipe 61 constitutes an upstream portion of the exhaust pipe
  • the outlet pipe 61 The hole 61a of the pipe 61 constitutes the upstream open end of the exhaust pipe.
  • the downstream portion 62B of the tail pipe 62 constitutes the downstream portion of the exhaust pipe
  • the downstream opening end 62b of the tail pipe 62 constitutes the downstream opening end of the exhaust pipe.
  • a partition plate 63 that constitutes the upstream opening end 70 and the downstream opening end 71 together with the lower half ring portion 69 of the outlet pipe 61 is provided inside the outlet pipe 61, and the upstream end 63 a and the lower portion of the partition plate 63 are provided.
  • the upstream end 63a of the partition plate 63 and the upstream end 69a of the lower half ring portion 69 define the resonance chamber 38, the end Since it is blocked by the plate 32 and the partition plate 34, the pressure distribution of the pressure energy of the air in the outlet pipe 61 and the tail pipe 62 can be generated in the resonance passage 66 and the resonance chamber 38, which is the first embodiment. As with, the sound pressure itself can be reduced.
  • the partition plate 63 since a partition plate 63 is provided inside the inlet pipe 61 so that the downstream opening end 71 is opened on the downstream side of the tail pipe 62 and the upstream opening end 70 is closed by the resonance chamber 38, the partition plate 63 resonates in the sound wave propagation direction.
  • the passage 66 and the resonance chamber 38 can be made to face each other, and the downstream opening end 71 can be positioned at a site where air column resonance occurs. Therefore, the resonance passage 66 and the resonance chamber 38 can be Helmholtz resonance chambers using air column resonance as a sound source. Therefore, by making the resonance frequency of the resonance chamber 38 coincide with the air column resonance frequency of the exhaust passage 65 and the tail pipe 62, that is, the exhaust pipe, the air column resonance can be suppressed.
  • the sound pressure itself can be reduced, the sound pressure is reduced over the operating region other than during air column resonance and during air column resonance, as in the first embodiment. It is possible to, in addition to the reduction of the sound pressure at the time of the air column resonance, use to air column resonance Helmholtz resonance that depends on the volume of length L 2 and the resonance chamber 38 of the lower half-ring portion 69 and the partition plate 63 Can be further suppressed. For this reason, exhaust noise can be greatly reduced.
  • downstream opening end 71 constituted by the downstream end 63b of the partition plate 63 and the lower half ring portion 69 of the outlet pipe 61 can be positioned in the region where the air column resonance occurs, it is introduced into the muffler 27 during deceleration. Even when the exhaust flow rate decreases rapidly, air column resonance can be sufficiently suppressed.
  • the conventionally used sub-muffler can be eliminated and the muffler 27 can be reduced in size, so that the weight of the muffler 27 can be reduced and the manufacturing cost of the muffler 27 can be reduced.
  • the outlet pipe 61 can be used as a hollow member to further suppress air column resonance. An increase in the manufacturing cost can be suppressed.
  • FIG. 17 is a diagram showing a fourth embodiment of the exhaust device for an internal combustion engine according to the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • a muffler 81 as a silencer includes an outer shell 82 formed in a hollow cylindrical shape, and end plates 83 and 84 that close both ends of the outer shell 82.
  • a partition plate 85 is provided in the outer shell 82, and the partition plate 85 silences the exhaust sound of a specific frequency in the outer shell 82 by expanding the exhaust gas and silencing it by Helmholtz resonance. It is partitioned into a resonance chamber 87 for the purpose.
  • through holes 83a and 85a are formed in the end plate 83 and the partition plate 85, respectively, and an inlet pipe 88 to which the downstream side of the center pipe 26 is connected is inserted into the through holes 83a and 85a.
  • the inlet pipe 88 is supported by the end plate 83 and the partition plate 85 so as to be accommodated in the expansion chamber 86, and the inlet pipe 88 is closed to the resonance chamber 87 with its downstream end closed. Yes.
  • the inlet pipe 88 is formed with a plurality of small holes 88a in the axial direction (exhaust direction of the exhaust flow) and the circumferential direction of the inlet pipe 88, and the inside of the inlet pipe 88 and the expansion chamber 86 are connected to the small holes 88a. It communicates through. Therefore, the exhaust gas introduced into the muffler 81 from the center pipe 26 through the inlet pipe 88 is introduced into the expansion chamber 86 through the small hole 88a.
  • the end plates 83 and 84 and the partition plate 85 have insertion holes 83b, 83c, 84a, 85b, and 85c, respectively.
  • the insertion holes 85b, 83b, 83c, 85c, and 84a have a curved hollow member.
  • the outlet pipe 89 is inserted, and the outlet pipe 89 is supported by the end plate 83 and the partition plate 85.
  • an outer pipe 90 having a curved shape is inserted into the insertion holes 83b, 83c, 85c, and 84a.
  • the outer pipe 90 accommodates an outlet pipe 89 therein, and includes end plates 83 and 84 and a partition plate 85. It is supported by.
  • the upstream portion 91A of the tail pipe 91 is connected to the downstream portion 89B of the outlet pipe 89 by welding or the like, and the downstream opening end 89b of the outlet pipe 89 is located downstream of the upstream opening end 91a of the tail pipe 91.
  • the downstream opening end 89 b of the outlet pipe 89 communicates with the upstream portion 91 ⁇ / b> A of the tail pipe 91.
  • a hole 89c is formed in the downstream part 89B of the outlet pipe 89, and the hole 89c is formed by a passage 92 and an outlet pipe 89 defined by the inner peripheral part of the outer pipe 90 and the outer peripheral part of the outlet pipe 89. It communicates with the inside of the.
  • an upstream open end 89a as an upstream end of the outlet pipe 89 protrudes outward from the inside of the outer pipe 90 and communicates with the resonance chamber 87.
  • the outlet pipe 89 has an upstream open end 89a at the resonance chamber 87. It is closed by an outer shell 82, an end plate 84, and a partition plate 85 that constitute the wall portion of the muffler that is defined.
  • the exhaust gas introduced into the muffler 81 is introduced into the expansion chamber 86 through the communication hole 88 a of the inlet pipe 88, and then the inner peripheral portion of the outer pipe 90 and the outlet pipe 89 from the upstream opening end 90 a of the outer pipe 90. It is introduced into a passage 92 defined by the outer periphery.
  • This exhaust gas is introduced into the outlet pipe 89 through the hole 89c of the outlet pipe 89, and then exhausted from the downstream opening end 91b of the tail pipe 91 to the atmosphere through the tail pipe 91.
  • the outer pipe 90 and the tail pipe 91 constitute an exhaust pipe that exhausts exhaust gas
  • an upstream portion 90A of the outer pipe 90 constitutes an upstream portion of the exhaust pipe
  • an outer pipe The upstream open end 90a of the pipe 90 constitutes the upstream open end of the exhaust pipe.
  • downstream portion 91B of the tail pipe 91 constitutes the downstream portion of the exhaust pipe
  • downstream opening end 91b of the tail pipe 91 constitutes the downstream opening end of the exhaust pipe.
  • an outlet pipe 89 having an upstream opening end 89 a and a downstream opening end 89 b as a downstream end is provided inside the outer pipe 90, and the upstream opening end 89 a of the outlet pipe 89 is outward from the inside of the outer pipe 90.
  • the upstream opening end 89a is closed by the outer shell 82, the end plate 83 and the partition plate 85 that define the resonance chamber 87, so that the inside of the outer pipe 90 and the tail pipe 91 is A pressure distribution of the pressure energy of the air can be generated in the outlet pipe 89 and the resonance chamber 87, and the sound pressure itself can be reduced as in the first embodiment.
  • the outlet pipe 89 having the downstream opening end 89b opened on the downstream side of the tail pipe 91 and the upstream opening end 89a closed by the resonance chamber 87 is provided inside the outer pipe 90, the outlet pipe 89 is disposed in the direction of sound wave propagation. Since the pipe 89 and the resonance chamber 87 can be opposed to each other, and the downstream opening end 89b of the outlet pipe 89 can be positioned at the site where the air column resonance occurs, the outlet pipe 89 and the resonance chamber 87 are allowed to perform air column resonance.
  • a Helmholtz resonance chamber can be used as a sound source. For this reason, air column resonance can be suppressed by making the resonance frequency of the resonance chamber 87 coincide with the air column resonance frequency of the outer pipe 90 and the tail pipe 91.
  • the portion of the outlet pipe 89 between the hole 89c and the upstream end 89a and the resonance chamber 87 constitute a Helmholtz resonance chamber. It will be. For this reason, the resonance frequency of the resonance chamber 87 can be tuned to the low frequency side by bringing the hole 89c closer to the downstream opening end 89b side of the outlet pipe 89.
  • the sound pressure itself can be reduced, the sound pressure is reduced over the operating region other than during air column resonance and during air column resonance, as in the first embodiment. It is possible to, at the time of the air column resonance in addition to the reduction of sound pressure, by utilizing the Helmholtz resonance that depends on the volume of length L 2 and the resonance chamber 87 of the outlet pipe 89 from the upstream end 89a to the hole 89c care Column resonance can be further suppressed. For this reason, exhaust noise can be greatly reduced.
  • the downstream opening end 89b of the outlet pipe 89 can be positioned in the region where the air column resonance occurs, the air column resonance can be sufficiently performed even when the exhaust flow rate introduced into the muffler 81 during the deceleration is suddenly reduced. Can be suppressed.
  • the conventionally used sub-muffler can be eliminated and the muffler 81 can be reduced in size, so that the weight of the muffler 81 can be reduced and the manufacturing cost of the muffler 81 can be reduced.
  • the outlet pipe 89 and the outer pipe 90 are curved, the outlet pipe 89 can be lengthened in the muffler 81, and the axial length of the muffler 81 can be shortened to reduce the resonance chamber 87. Can be tuned to the low frequency side.
  • the exhaust device for an internal combustion engine can reduce the exhaust noise by eliminating the conventionally used sub-muffler, and can reduce the weight of the exhaust device. It has the effect of reducing the manufacturing cost, and is useful as an exhaust system for an internal combustion engine that reduces exhaust noise due to air column resonance of an exhaust pipe provided at the most downstream in the exhaust direction of the exhaust flow. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

【課題】従来用いられていたサブマフラを廃止して排気騒音を低減することができ、排気装置の重量を低減することができるとともに、排気装置の製造コストを低減することができる内燃機関の排気装置を提供すること。 【解決手段】テールパイプ40の内部に上流開口端41aおよび下流開口端41bを有するインナーパイプ41を設け、インナーパイプ41の上流開口端41aをテールパイプ40の内部から外方に突出させて共鳴室38に連通させることにより、この上流開口端41aが共鳴室38を画成するマフラ27のアウタシェル31、エンドプレート32および仕切板34によって閉塞される。

Description

内燃機関の排気装置
 本発明は、内燃機関の排気装置に関し、特に、排気流の排気方向の最下流に設けられた排気管の気柱共鳴による排気騒音を低減するようにした内燃機関の排気装置に関する。
 自動車等の車両に用いられる内燃機関の排気装置としては、図18に示すようなものが知られている(例えば、特許文献1参照)。図18において、内燃機関としてのエンジン1から排気マニホールド2に排気される排気ガスは、触媒コンバータ3によって浄化された後に、排気装置4に導入される。
 排気装置4は、触媒コンバータ3に連結されたフロントパイプ5、フロントパイプ5に連結されたセンターパイプ6、センターパイプ6に連結された消音器としてのメインマフラ7、メインマフラ7に連結されたテールパイプ8およびテールパイプ8に介装されたサブマフラ9から構成されている。
 図19に示すように、メインマフラ7は、センターパイプ6の小孔6aから排気ガスが拡張されて導入される拡張室7aと、センターパイプ6の下流開口端6bが挿通される共鳴室7bとを備えており、センターパイプ6の下流開口端6bから共鳴室7bに導入される排気ガスは、ヘルムホルツ共鳴によって特定の周波数の排気音が消音される。
 ここで、小孔6aから共鳴室7bに突出するセンターパイプ6の長さをL、センターパイプ6の断面積をS、共鳴室7bの容積をV、空気中の音速をCとするとき、空気中の共鳴周波数fnはヘルムホルツ共鳴に基づいて下記の式(1)により求められる。
Figure JPOXMLDOC01-appb-M000001
 
 上記の式(1)から明らかなように、共鳴室7bの容積Vを大きくしたり、センターパイプ6の突出部分の長さLを長くすることにより、共鳴周波数を低周波数側にチューニングすることができ、共鳴室7bの容積Vを小さくしたり、センターパイプ6の突出部分の長さLを短くすることにより、共鳴周波数を高周波数側にチューニングすることができる。
 サブマフラ9は、エンジン1の運転時の排気脈動によってテールパイプ8内でテールパイプ8の管長に対応した気柱共鳴が発生することによって音圧が増大するのを抑制するようになっている。
 一般に、排気ガスの排気方向上流側および下流側にそれぞれ上流開口端および下流開口端を有するパイプは、エンジンの運転時の排気脈動による入射波がパイプの上流開口端および下流開口端で反射することにより、パイプの管長を半波長とした周波数の気柱共鳴を基本成分として、その半波長の自然数倍の波長の気柱共鳴が発生する。
 例えば、図18において、サブマフラ9が設けられていないテールパイプ8がメインマフラ7から後方に延在している場合を例にすると、図20に示すように、基本振動(一次成分)の気柱共鳴の波長λ1は、テールパイプ8の管長Lの略2倍となり、二次成分の気柱共鳴の波長λ2は、管長Lの略1倍となる。また、三次成分の気柱共鳴の波長λ3は、管長Lの2/3倍となる。このように、テールパイプ8内には上流開口端8aおよび下流開口端8bが音圧の節となるような定在波ができる。
 また、テールパイプ8の気柱共鳴周波数fcは、下記の式(2)で表される。
 fc=(c/2L)・n......(2)
 但し、c:音速、L:テールパイプの管長 n:次数
 上記の式(2)から明らかなように、テールパイプ8の管長Lが長い程、気柱共鳴周波数fcが低周波数側に移行して、エンジン1の低回転時に排気音が増大して騒音が悪化してしまい、運転者に不快感を与えてしまうことになる。
 特に、図21に示すように、気柱共鳴の一次成分f1および二次成分f2が常用回転域で発生すると、こもり音と呼ばれる不快な騒音が発生してしまい、排気騒音の悪化の原因となる。
 このため、テールパイプ8の管長が長い場合には、音圧レベルが高い定在波の腹の部分で、かつ、気柱共鳴による排気音の一次成分f1、二次成分f2のそれぞれの腹に対して最適な位置に、メインマフラ7より容量の小さなサブマフラ9を設けることにより、エンジン1の常用回転域において排気騒音を低減して、運転者に不快感を与えてしまうのを防止するようにしている。
 一方、排気装置4の製造コストや重量を低減するために、サブマフラ9を廃止することが考えられるが、サブマフラ9を廃止すると、テールパイプ8の管長が長くなって、テールパイプ8の気柱共鳴周波数が低周波側に移行してしまう。
 この場合には、テールパイプ8の上流開口端8aに接続されるメインマフラ7の共鳴室7bの共鳴周波数をテールパイプ8の気柱共鳴周波数に合わせることによって、メインマフラ7の共鳴室7b内においてテールパイプ8の気柱共鳴を消音することが考えられる。
 すなわち、式(1)に基づいて、共鳴室7bの容積Vを大きくしたり、センターパイプ6の突出部分の長さLを長くして共鳴室7bの共鳴周波数を低周波数側にチューニングすることで、テールパイプ8内で発生する気柱共鳴を共鳴室7bで予め消音することが考えられる。
特開2006-46121号公報
 しかしながら、共鳴室7bのヘルムホルツ共鳴を利用して排気音を消音するようにした場合には、共鳴室7bとテールパイプ8の上流開口端8aとが離隔しているため、共鳴室7bによって気柱共鳴を予め消音するようにしても、テールパイプ8内に発生する定在波の反射の繰り返しによって発生する音がテールパイプ8の下流開口端8bから吐出してしまう。したがって、共鳴室7bのヘルムホルツ共鳴が実際にテールパイプ8内で発生する気柱共鳴に効果的に作用し難く、気柱共鳴を充分に抑制することができない。
 また、車両の減速時にはアクセルペダルが解放されてスロットルバルブが閉じるため、エンジン1から排気装置4に排気される流量が急激に低減された排気流のみとなり、共鳴室7bに導入される空気圧が小さくなる。
 このため、共鳴室7bにおいてヘルムホルツ共鳴を行うのに充分な空気量を得ることができず、テールパイプ8の気柱共鳴を抑制することが困難となってしまう。車両の減速時にはエンジン1の回転数が急激に低下するため、例えば、2000rpm程度(気柱共鳴による排気音の一次成分f1)の低回転数で車室内にこもり音を生じさせてしまい、運転者に不快感を与えてしまうことになる。
 したがって、気柱共鳴を効果的に抑制するためには、テールパイプ8にサブマフラ9を設ける必要があり、結果的に、サブマフラ9を設ける分だけ排気装置4の重量が増大してしまうとともに、排気装置4の製造コストが増大してしまう。
 本発明は、上述のような従来の問題を解決するためになされたもので、従来用いられていたサブマフラを廃止して排気騒音を低減することができ、排気装置の重量を低減することができるとともに、排気装置の製造コストを低減することができる内燃機関の排気装置を提供することを目的とする。
 本発明に係る排気管部品は、上記目的を達成するため、(1)特定の周波数の排気音を消音する共鳴室を有する消音器と、排気流の排気方向の上流部に前記消音器に接続される上流開口端を有するとともに、下流部に前記消音器から排出される排気流を大気に排出するための下流開口端を有する排気管とを備えた内燃機関の排気装置であって、前記排気管の内部に中空部材を設け、前記中空部材は、下流端が開口端を構成し、上流端が前記排気管の内部から外方に突出して前記共鳴室に連通することにより、前記共鳴室を画成する前記消音器の壁部によって閉塞されるものから構成されている。
 この排気管は、排気管の内部に中空部材が設けられ、中空部材の下流端が開口端を構成するとともに、中空部材の上流端が排気管の内部から外方に突出して共鳴室に連通することにより、共鳴室を画成する消音器の壁部によって閉塞されるので、排気管内の排気流の圧力エネルギー、すなわち、空気の圧力エネルギーの圧力分布を中空部材および共鳴室内に発生させて、圧力エネルギーを中空部材および共鳴室に蓄積することができ、気柱共鳴時にこの圧力エネルギーを中空部材および共鳴室内に保持して外部に放出させないようにすることができる。
 この中空部材および共鳴室に空気の圧力エネルギーを蓄積することは、排気管内の空気が持つ圧力エネルギーによって行われ、排気管全体の圧力エネルギーに変化が生じない。したがって、排気管内の圧力エネルギーは、中空部材および共鳴室内の圧力エネルギーと、中空部材と共鳴室とを除いた排気管の圧力エネルギーとに分散することができ、中空部材と共鳴室とを除いた排気管内の圧力エネルギーのみを外部に放出することができる。
 また、中空部材および共鳴室は、圧力エネルギーを蓄積する容量が大きいため、排気管から放出される圧力エネルギーを大幅に低減することができる。
 したがって、気柱共鳴時の音圧のピークを下げて音圧レベルを低減することができ、排気騒音を低減することができる。
 また、気柱共鳴時には排気管内において排気脈動による音波が開口端反射を繰り返すことにより定在波が発生し、排気管の管長と定在波の波長とが特定の関係にあるとき、振幅が著しく大きくなり、気柱共鳴が生じる。
 本発明では、排気管の内部に、排気管の下流側に下流開口端が開口し、共鳴室によって閉塞される上流端を有する中空部材を設けたので、音波の伝搬方向に中空部材および共鳴室を対向させることができるとともに、気柱共鳴の発生部位に中空部材の下流開口端を位置させることができる。
 このため、中空部材および共鳴室を、気柱共鳴を音源とするヘルムホルツ共鳴室にすることができ、共鳴室の共鳴周波数を排気管の気柱共鳴周波数と一致させるようにすれば、気柱共鳴を抑制することができる。
 また、気柱共鳴の発生領域に中空部材の下流部を位置させることができるため、減速時に消音器に導入される排気流量が急減した場合であっても、気柱共鳴を充分に抑制することができる。
 このように音圧そのものを低減することができるため、気柱共鳴時および気柱共鳴時以外の運転領域に亘って音圧を低減することができるとともに、気柱共鳴時には音圧の低減に加えてヘルムホルツ共鳴を利用して気柱共鳴をより一層抑制することができる。このため、排気騒音を大幅に低減することができる。
 この結果、従来用いられていたサブマフラを廃止することができるとともに排気管の上流部に設けられた消音器を小型化することができるため、排気装置の重量を低減することができるとともに、排気装置の製造コストを低減することができる。
 上記(1)に記載の排気管部品において、(2)前記排気管内で発生する気柱共鳴周波数と前記共鳴室の前記特定の周波数を一致させるように、前記排気管の軸線方向長さと前記中空部材の軸線方向長さとが設定されるものから構成されている。
 この排気装置は、排気管内で発生する気柱共鳴周波数と共鳴室の特定の周波数を一致させるように排気管の軸線方向長さと中空部材の軸線方向長さとを設定しているため、ヘルムホルツ共鳴によって気柱共鳴をより一層抑制することができる。
 また、中空部材を長くすることにより、共鳴室の共鳴周波数を低周波数側にチューニングすることができるため、内燃機関の常用回転域において気柱共鳴周波数の一次成分および二次成分の気柱共鳴の音圧レベルを低減することができ、排気騒音を低減して運転者に不快感を与えるのを防止することができる。
 上記(1)または(2)に記載の排気管部品において、(3)前記中空部材の下流端が、前記排気管の軸線方向長さの中央部よりも上流側に位置するものから構成されている。
 この排気装置は、中空部材の下流端が排気管の軸線方向長さの中央部よりも上流側に位置しているので、気柱共鳴の音圧が高い位置、例えば、気柱共鳴の定在波の腹または、腹に近い位置に位置させることにより、ヘルムホルツ共鳴によって気柱共鳴をより一層抑制することができる。
 上記(1)ないし(3)に記載の排気管部品において、(4)前記排気管は、上流部が前記消音器に挿通された単体のテールパイプから構成され、前記中空部材の上流部が前記共鳴室の壁部の内周部に支持されるとともに、下流部の円周方向の一部分が前記排気管の内周部に支持されるものから構成されている。
 この排気装置は、排気管が、上流部が消音器に挿通された単体のテールパイプから構成され、中空部材の上流外周部が共鳴室の壁部の内周部に支持されるとともに、下流部の円周方向の一部分が排気管の内周部に支持されるので、中空部材の上流部と下流部とをそれぞれ共鳴室の壁部とテールパイプに両持ちで支持することができ、中空部材をテールパイプに強固に取付けることができる。
 上記(1)ないし(3)に記載の排気管部品において、(5)前記排気管は、前記消音器の内部に設けられたアウターパイプと、前記アウターパイプに接続され、前記アウターパイプから前記消音器の下流側に延在するテールパイプとから構成され、前記中空部材は、前記アウターパイプの内部に設けられたアウトレットパイプから構成され、前記アウトレットパイプの下流部は、前記テールパイプの上流部に接続されるとともに、前記アウトレットパイプの下流部に前記アウトレットパイプの内部と前記アウターパイプの内部とを連通する孔が形成されるものから構成されている。
 この排気装置は、中空部材を、消音器に既存のアウトレットパイプから構成し、このアウトレットパイプの外周部にアウターパイプを取付け、アウトレットパイプの下流部にアウトレットパイプの内部とアウターパイプの内部を連通する孔を形成することにより、アウターパイプの内周部とアウトレットパイプの外周部の間に画成される通路からアウトレットパイプの孔を介してテールパイプに排気ガスを排出することができる。
 また、消音器に既存のアウトレットパイプを利用することにより、音圧そのものを低減することができるため、気柱共鳴時および気柱共鳴時以外の運転領域に亘って音圧を低減することができるとともに、気柱共鳴時には音圧の低減に加えてヘルムホルツ共鳴を利用して気柱共鳴をより一層抑制することができる。このため、消音器の製造コストが増大するのを抑制することができ、排気装置の製造コストが増大するのを抑制することができる。
 上記(5)に記載の排気管部品において、(6)前記アウターパイプおよび前記アウトレットパイプが前記消音器内で湾曲されるものから構成されている。
 この排気装置は、アウターパイプおよびアウトレットパイプを消音器内で湾曲させているので、消音器内でアウターパイプおよびアウトレットパイプを長くすることができ、消音器の軸線方向長さを短くして共鳴室の共鳴周波数を低周波数側にチューニングすることができる。
 本発明によれば、従来用いられていたサブマフラを廃止して排気騒音を低減することができ、排気装置の重量を低減することができるとともに、排気装置の製造コストを低減することができる内燃機関の排気装置を提供することができる。
本発明に係る内燃機関の排気装置の第1の実施の形態を示す図であり、内燃機関の排気装置の構成図である。 本発明に係る内燃機関の排気装置の第1の実施の形態を示す図であり、マフラの斜視断面図である。 本発明に係る内燃機関の排気装置の第1の実施の形態を示す図であり、インレットパイプとテールパイプとを横切る面で切ったマフラの断面図である。 図3のA-A方向矢視断面図である。 本発明に係る内燃機関の排気装置の第1の実施の形態を示す図であり、テールパイプ内に発生する開口端反射による気柱共鳴の音圧分布の定在波を説明する図である。 本発明に係る内燃機関の排気装置の第1の実施の形態を示す図であり、テールパイプ内に発生する開口端反射による気柱共鳴の音圧分布の定在波の一次成分と二次成分を説明する図である。 本発明に係る内燃機関の排気装置の第1の実施の形態を示す図であり、テールパイプ内に発生する音圧レベルとエンジン回転数との関係を示す図である。 本発明に係る内燃機関の排気装置の第1の実施の形態を示す図であり、インナーパイプが設けられていないテールパイプ内に発生する気柱共鳴の音圧分布を示す図である。 本発明に係る内燃機関の排気装置の第1の実施の形態を示す図であり、テールパイプ内に発生する気柱共鳴の圧力エネルギーが分散された状態を示す図である。 本発明に係る内燃機関の排気装置の第1の実施の形態を示す図であり、テールパイプ内に発生する気柱共鳴の圧力エネルギーの分散と音圧の低減を説明するための図である。 本発明に係る内燃機関の排気装置の第1の実施の形態を示す図であり、本実施の形態のテールパイプとインナーパイプが設けられていない従来のテールパイプとによってスピーカ加振試験を行ったときの音圧レベルと周波数との関係を示す図である。 本発明に係る内燃機関の排気装置の第1の実施の形態を示す図であり、他の形状のインナーパイプが設けられたマフラおよびテールパイプの断面図である。 本発明に係る内燃機関の排気装置の第1の実施の形態を示す図であり、他の形状のインナーパイプが設けられたテールパイプ内に発生する気柱共鳴の音圧分布の定在波の一次成分および二次成分の音圧の腹とインナーパイプとの位置関係を説明する図である。 本発明に係る内燃機関の排気装置の第2の実施の形態を示す図であり、マフラおよびテールパイプの断面図である。 本発明に係る内燃機関の排気装置の第3の実施の形態を示す図であり、マフラおよびテールパイプの断面図である。 図15のB-B方向矢視断面図である。 本発明に係る内燃機関の排気装置の第4の実施の形態を示す図であり、マフラおよびテールパイプの断面図である。 従来の内燃機関の排気系の構成図である。 従来のマフラの断面図である。 従来のテールパイプ内に発生する開口端反射による気柱共鳴の音圧分布の定在波を説明する図である。 従来のテールパイプの音圧レベルとエンジン回転数との関係を示す図である。
 以下、本発明に係る内燃機関の排気装置の実施の形態について、図面を用いて説明する。
(第1の実施の形態) 
 図1~図13は、本発明に係る内燃機関の排気装置の第1の実施の形態を示す図である。
 まず、構成を説明する。
 図1において、例えば、直列4気筒の内燃機関としてのエンジン21には排気マニホールド22が接続されており、この排気マニホールド22には排気装置23が接続されている。
 なお、エンジン21は、直列4気筒に限らず、直列3気筒または直列5気筒以上であってもよく、左右に分割されたそれぞれのバンクに3気筒以上の気筒を有するV型エンジンであってもよい。
 排気マニホールド22は、エンジン21の第1気筒から第4気筒にそれぞれ連通する排気ポートにそれぞれ接続される4つの排気枝管22a、22b、22c、22dと、排気枝管22a、22b、22c、22dの下流側を集合させる排気集合管22eとから構成されており、エンジン21の各気筒から排気される排気流としての排気ガスが排気枝管22a、22b、22c、22dを介して排気集合管22eに導入されるようになっている。
 排気装置23は、触媒コンバータ24、円筒状のフロントパイプ25、円筒状のセンターパイプ26、消音器としてのマフラ27および排気管としての単体のテールパイプ40を備えており、この排気装置23は、車体の床下に弾性的に垂下されるようにしてエンジン21の排気ガスの排気方向下流側に設置されている。
 なお、上流とは排気ガスの排気方向の上流を示し、下流とは排気ガスの排気方向の下流を示すものである。
 触媒コンバータ24の上流端は、排気集合管22eの下流端に接続されており、触媒コンバータ24の下流端は、フロントパイプ25に接続されている。この触媒コンバータ24は、ハニカム基材または粒状の活性アルミナ製担体に白金、パラジウム等の触媒を付着させたものが本体ケースに収納されたものから構成され、NOxの還元やCO、HCの酸化を行うようになっている。
 また、フロントパイプ25の下流端にはセンターパイプ26の上流端が接続されており、センターパイプ26の下流側は、排気音の消音を行うマフラ27に接続されている。
 図2、図3において、マフラ27は、中空筒状に形成されたアウタシェル31と、アウタシェル31の両端を閉塞するエンドプレート32、33とを備えている。
 アウタシェル31内には仕切板34、35が設けられており、この仕切板34、35によってアウタシェル31内は、排気ガスを拡張して消音するための拡張室36、37およびヘルムホルツ共鳴によって特定の周波数の排気音を消音するための共鳴室38に区画されている。
 また、エンドプレート32、仕切板34および仕切板35にはそれぞれ挿通孔32a、34a、35aが形成されており、この挿通孔32a、34a、35aにはセンターパイプ26の下流側が接続されるインレットパイプ39が挿通されている。
 このインレットパイプ39は、拡張室36、37および共鳴室38に収納されるようにしてエンドプレート32および仕切板34、35に支持されている。
 また、インレットパイプ39にはインレットパイプ39の軸線方向(排気流の排気方向)および周方向に複数の連通孔39b、39cが形成されており、インレットパイプ39の内部と拡張室36、37とは、連通孔39b、39cを介して連通している。また、仕切板35には連通孔35bが形成されており、この連通孔35bは、拡張室36と拡張室37とを連通している。
 したがって、センターパイプ26からインレットパイプ39を通してマフラ27に導入される排気ガスは、連通孔39b、39cを介して拡張室36、37に導入されることになる。
 また、仕切板34、35およびエンドプレート33にはそれぞれ挿通孔34b、35c、33aが形成されており、挿通孔35c、33aにはテールパイプ40の上流部40Aが挿通されている。
 テールパイプ40の上流部40Aの上流端には上流開口端40aが設けられており、テールパイプ40の上流部40Aは、上流開口端40aが拡張室36に開口するようにして挿通孔35c、33aに挿通されることにより、マフラ27に接続されて仕切板35およびエンドプレート33に支持されている。
 また、テールパイプ40の下流部40Bの下流端には下流開口端40bが形成されており、この下流開口端40bは、大気に連通している。このため、マフラ27の拡張室36、37からテールパイプ40の上流開口端40aに導入された排気ガスは、テールパイプ40を通して下流開口端40bから大気に排出される。
 すなわち、本実施の形態のテールパイプ40は、上流部40Aにエンジン21から排出された排気ガスの排気方向上流側のマフラ27に接続される上流開口端40aを有するとともに、下流部40Bに排気ガスを大気に排出するための下流開口端40bを有している。
 ここで、テールパイプ40の上流部40Aおよび下流部40Bは、上流開口端40aおよび下流開口端40bを含んで所定の長さを有するテールパイプ40の上流側と下流側の部分を示す。
 また、拡張室36、37内に収納されるテールパイプ40の上流部40Aには中空部材としてのインナーパイプ41が設けられており、このインナーパイプ41は、下流端にテールパイプ40の内方に開口する開口端(以下、下流端を下流開口端41bという)を有するとともに、上流端に開口端(以下、上流端を上流開口端41aという)を有している。
 また、インナーパイプ41は、上流開口端41aがテールパイプ40の内部から外方に突出して共鳴室38に連通しており、上流部41Aが仕切板34の挿通孔34bに貫通することによって上流部41Aが仕切板34に支持されている。このため、インナーパイプ41の上流開口端41aは、共鳴室38を画成する消音器の壁部を構成するアウタシェル31、エンドプレート32および仕切板34によって閉塞されている。
 また、インナーパイプ41の下流部41Bの外周部はテールパイプ40によって支持されている。すなわち、図4に示すように、テールパイプ40の上部および下部にはインナーパイプ41側に突出する突出部42a、42bが形成されており、この突出部42a、42bによってインナーパイプ41がテールパイプ40の内周部に支持されている。このため、インナーパイプ41は、上流部41Aおよび下流部41Bが仕切板34およびテールパイプ40に両持ちに支持されている。
 また、突出部42a、42bは、テールパイプ40の上下にのみ形成されているため、テールパイプ40の内周部とインナーパイプ41の外周部の間の通路43を流通する排気流の背圧が上昇することが抑制される。
 一方、共鳴室38は、インナーパイプ41の長さをL、インナーパイプ41の断面積をS、共鳴室38の容積をV、空気中の音速をCとするとき、空気中の共鳴周波数fnはヘルムホルツ共鳴に基づいて下記の式(3)により求められる。
Figure JPOXMLDOC01-appb-M000002
 
 このため、共鳴室38に導入される排気ガスは、ヘルムホルツ共鳴によって特定の周波数の排気音が消音される。具体的には、共鳴室38は、共鳴室38の容積を大きくしたり、共鳴室38に接続されるインナーパイプ41の長さLを長くすることにより、共鳴室38の共鳴周波数を低周波数側にチューニングすることができ、共鳴室38の容積を小さくしたり、インナーパイプ41の長さLを短くすることにより、共鳴周波数を高周波数側にチューニングすることができるようになっている。
 本実施の形態では、インナーパイプ41を長くすることにより、共鳴室38の共鳴周波数を低周波数側にチューニングしている。また、インナーパイプ41を長くすることにより、共鳴室38の容積を小さくして共鳴室38の共鳴周波数を低周波数側にチューニングすることができ、共鳴室38の容量を小さくして、マフラ27の小型化を図ることができる。
 また、本実施の形態では、共鳴室38の共鳴周波数をテールパイプ40で発生する気柱共鳴周波数と一致させるようにテールパイプ40の軸線方向長さとインナーパイプ41の軸線方向長さが設定されている。
 すなわち、エンジン21の気柱共鳴周波数が低い定常回転域で気柱共鳴が発生する場合には、テールパイプ40が長くなるため、テールパイプ40に発生する気柱共鳴に共鳴作用を発生させるために、共鳴室38の共鳴周波数を低くする必要がある。
 式(3)から明らかなように、ヘルムホルツ共鳴は、インナーパイプ41の長さと共鳴室38の容積とが関係しているが、本実施の形態では、共鳴室38の容積を小さくするために、インナーパイプ41の長さを適宜設定して共鳴室38の共鳴周波数とテールパイプ40の気柱共鳴周波数とを一致させるようにしている。
 ここで、気柱共鳴について説明を行う。
 テールパイプ40内に発生する気柱共鳴の定在波は、テールパイプ40の管長L(図3参照)と定在波の波長λとが特定の関係にあるとき、振幅が著しく大きくなり、気柱共鳴が生じる。この気柱共鳴は、テールパイプ40の管長Lを半波長とした周波数を基本として、その半波長の自然数倍の波長の気柱共鳴が発生して音圧が増大する。
 具体的には、図5にテールパイプ40内で発生する気柱共鳴の定在波の音圧分布を示すように、基本振動(一次成分)の気柱共鳴の波長λ1は、テールパイプ40の管長Lの略2倍となり、二次成分の気柱共鳴の波長λ2は、管長Lの略1倍となる。
 図5から明らかなように、それぞれの定在波は、テールパイプ40の上流開口端40aおよび下流開口端40bが音圧分布の節となり、一次成分の気柱共鳴の音圧は、テールパイプ40の軸線方向中心部(1/2L)が最大となり、二次成分の気柱共鳴の音圧は、テールパイプ40の軸線方向中心部から1/4Lずれた位置が最大となる。
 本実施の形態では、図6に示すように、インナーパイプ41の下流開口端41bをテールパイプ40の軸線方向長さの中央部よりも上流側に位置させて気柱共鳴の音圧の高い位置に位置させている。具体的には、インナーパイプ41の下流開口端41bを一次成分f1に近い二次成分f2の音圧の腹の位置に位置させている。
 次に、作用を説明する。
 エンジン21の運転時にエンジン21の各気筒から排気される排気ガスは、排気マニホールド22から触媒コンバータ24に導入され、触媒コンバータ24によってNOxの還元やCO、HCの酸化が行われる。
 触媒コンバータ24から排気される排気ガスは、フロントパイプ25およびセンターパイプ26を通してマフラ27に導入される。マフラ27に導入される排気ガスは、インレットパイプ39の連通孔39b、39cを介して拡張室36、37に導入された後、テールパイプ40の上流開口端40aを通して通路43に導入される。この通路43に導入された排気ガスは、通路43からテールパイプ40の下流側に流通してテールパイプ40の下流開口端40bから大気に排出される。
 また、エンジン21の運転時にテールパイプ40に導入される排気ガスの排気音は、エンジン21の回転数に応じて変化する排気脈動の入射波であり、この入射波は、エンジン21の回転数が増大するにつれて周波数が大きくなるものである。
 エンジン21の運転時の排気脈動による入射波がテールパイプ40に導入されると、この入射波がテールパイプ40の下流開口端40bで、所謂、開口端反射する。この反射波は、入射波と同じ位相で入射波と逆向きとなる。また、この反射波は、再び上流開口端40aでこの反射波と同位相で逆向きに開口端反射を行う。この反射波が今度は入射波となり、上流開口端40aで反射波となる。
 開口端反射が起こる理由としては、テールパイプ40内を流れる排気ガスの圧力が高く、テールパイプ40の下流開口端40bの外側は圧力が低いため、入射波が勢いよく大気に飛び出すことで下流開口端40b内の排気ガスの圧力が低くなり、この低圧部がテールパイプ40を上流開口端40aに向かって進行し始めるからである。
 したがって、反射波は、入射波と同位相で逆向きとなるのである。また、上流開口端40a側で反射波が発生する理由も下流開口端40bで反射波が発生する理由と同様である。
 そして、下流開口端40bに向かう入射波と下流開口端40bと逆向きの反射とが干渉することで、図5に示すように、テールパイプ40の上流開口端40aおよび下流開口端40bにおいて音圧が最小となるような定在波ができる。
 また、この定在波は、テールパイプ40の管長Lと定在波の波長λとが特定の関係にあるとき、振幅が著しく大きくなり、気柱共鳴が生じる。この気柱共鳴は、テールパイプ40の管長Lを半波長とした周波数を基本として、その半波長の自然数倍の波長の気柱共鳴が発生して音圧が増大する。
 ここで、音速をc、テールパイプ40の長さをL、次数をmとしたときのテールパイプ40の気柱共鳴周波数fmは、
 fm=(c/2L)・m............(4)
で表される。
 また、図7に示すように、エンジン21の排気脈動の周波数は、エンジン21の回転数が増大するのに伴って増大するようになっており、エンジン21の回転数に対応した気柱共鳴による排気音の一次成分f1と二次成分f2とで排気音の音圧レベル(dB)が高くなる。
 したがって、管長が長いテールパイプ40(例えば、テールパイプ40の管長が1.5m以上)を用いる場合には、エンジン21の回転数が低い常用回転域(2000rpm~5000rpm)で気柱共鳴が発生してしまう。このため、常用回転域でこもり音と呼ばれる不快な騒音が発生してしまい、排気騒音の悪化の原因となり、運転者に不快感を与えてしまうことになる。
 そこで、本実施の形態は、エンジン21の常用回転域において気柱共鳴周波数の一次成分f1および二次成分f2の気柱共鳴の音圧レベルを低減し、排気騒音を低減して運転者に不快感を与えるのを防止するようにしたのである。
 インナーパイプ41が設けられていないテールパイプ40内に気柱共鳴が発生しているときの気柱共鳴の定在波の一次成分f1の音圧分布を図8に示すと、テールパイプ40の上流開口端40aおよび下流開口端40bが気柱共鳴の定在波の音圧分布の節となるため、上流開口端40aおよび下流開口端40bにおいて、気柱共鳴の定在波の音圧が最小となる。また、中央部が気柱共鳴の定在波の音圧分布の腹となるため、中央部において、気柱共鳴の定在波の音圧がピークP1となる。
 本実施の形態では、テールパイプ40の内部に上流開口端41aおよび下流開口端41bを有するインナーパイプ41を設け、インナーパイプ41の上流開口端41aをテールパイプ40の内部から外方に突出させて共鳴室38に連通させることにより、この上流開口端41aが共鳴室38を画成するマフラ27のアウタシェル31、エンドプレート32および仕切板34によって閉塞されるので、テールパイプ40内の排気ガスの圧力エネルギー、すなわち、空気の圧力エネルギーの圧力分布A1をインナーパイプ41および共鳴室38内に発生させることができる(図9参照)。
 このため、この圧力エネルギーをインナーパイプ41および共鳴室38内に蓄積することができ、気柱共鳴時にこの圧力エネルギーをインナーパイプ41および共鳴室38内に保持して外部に放出させないようにすることができる
 したがって、図9に示すように、テールパイプ40内の圧力エネルギーは、インナーパイプ41および共鳴室38内の圧力分布に応じた圧力エネルギーA1と、インナーパイプ41と共鳴室38とを除いたテールパイプ40の圧力分布に応じて圧力エネルギーA2とに分散することができ、インナーパイプ41および共鳴室38内を除いたテールパイプ40の圧力エネルギーのみを外部に放出することができる。
 すなわち、図10に示すように、テールパイプ40内の圧力エネルギーAからインナーパイプ41および共鳴室38内の圧力エネルギーA1(ハッチングで示す)を差し引いた残りの圧力エネルギーA2(ハッチングで示す)がテールパイプ40から外部に放出される。
 気柱共鳴による音圧レベルは、圧力エネルギーによって決まるため、圧力エネルギーを少なくすることにより、すなわち、テールパイプ40の圧力エネルギーを圧力エネルギーA2のみとすることにより、音圧のピークをピークP1からピークP2(図8、図9参照)に下げて音圧レベルを低減することができる。
 また、インナーパイプ41および共鳴室38内は、圧力エネルギーを蓄積する容量が大きいため、テールパイプ40から放出される圧力エネルギーを大幅に低減することができる。したがって、気柱共鳴時の音圧のピークを下げて音圧レベルを低減することができ、排気騒音を低減することができる。
 一方、気柱共鳴時には、テールパイプ40内において上述したように排気脈動による音波(入射波と反射波)が開口端反射を繰り返すことにより定在波が発生し、テールパイプ40の管長Lと定在波の波長λとが特定の関係にあるとき、振幅が著しく大きくなり、気柱共鳴が生じる。
 本実施の形態では、テールパイプ40の内部に、テールパイプ40の下流側に下流開口端41bが開口し、共鳴室38によって上流開口端41aが閉塞されるインナーパイプ41を設けたので、音波の伝搬方向にインナーパイプ41および共鳴室38を対向させることができるとともに、気柱共鳴の発生部位にインナーパイプ41の下流開口端41bを位置させることができる。
 このため、インナーパイプ41および共鳴室38を、気柱共鳴を音源とするヘルムホルツ共鳴室にすることができる。したがって、共鳴室38の共鳴周波数をテールパイプ40の気柱共鳴周波数と一致させることにより、気柱共鳴を抑制することができる。
 図11は、共鳴室38によって上流開口端41aが閉塞されたインナーパイプ41を有するテールパイプ40を用いてスピーカ加振試験を行ったときの排気脈動の周波数と排気音の音圧レベル(dB)との測定結果を示す図である。
 図11において、実線は、インナーパイプ41を有する本実施の形態のテールパイプ40を用いた測定結果を示し、破線は、インナーパイプを有していない従来のテールパイプを用いた測定結果を示している。
 本実施の形態では、音圧そのものを低減することができるため、図11に示すように、気柱共鳴時および気柱共鳴時以外の運転領域(周波数とエンジン21の回転数は対応している)に亘って音圧を低減することができるとともに、気柱共鳴時には音圧の低減に加えて、インナーパイプ41の長さLに依存するヘルムホルツ共鳴を利用して気柱共鳴(一次成分f1、二次成分f2、三次成分f3)をより一層抑制することができる。このため、排気騒音を大幅に低減することができる。
 特に、図6に示すように、インナーパイプ41の下流開口端41bを、テールパイプ40の軸線方向長さの中央部よりも上流側に位置させることにより、気柱共鳴の定在波の音圧分布の高い位置、図6では、一次成分の音圧分布の腹a1の上流側の二次成分f2の音圧分布の腹a2に位置させることができ、ヘルムホルツ共鳴によって気柱共鳴をより一層抑制することができる。
 また、本実施の形態では、気柱共鳴の発生領域にインナーパイプ41の下流開口端41bを位置させることができるため、減速時にマフラ27に導入される排気流量が急減した場合であっても、気柱共鳴を充分に抑制することができる。
 この結果、従来用いられていたサブマフラを廃止することができるとともにマフラ27を小型化することができるため、マフラ27の重量を低減することができるとともに、マフラ27の製造コストを低減することができる。
 なお、本実施の形態では、インナーパイプ41をマフラ27内に位置させているが、図12、図13に示すように、インナーパイプ41の下流端である下流開口端41cをマフラ27内からテールパイプ40の下流開口端40b側に延在させ、下流開口端41cを気柱共鳴の一次成分f1の音圧分布の腹a1と二次成分f2の音圧分布の腹a2の中間に位置させてもよい。
 このようにすれば、気柱共鳴の一次成分f1と二次成分f2をヘルムホルツ共鳴によってより一層低減することができ、エンジン21の常用回転域でこもり音が発生するのをより一層抑制することができる。
 このようにインナーパイプ41の下流開口端41cが気柱共鳴の一次成分f1の音圧分布の腹a1と二次成分f2の音圧分布の腹a2の中間に位置するように、インナーパイプ41をテールパイプ40内に設ける場合には、マフラ27の外方に位置するテールパイプ40の内周部に突出部42c、42dを設け、この突出部42c、42dによってインナーパイプ41をテールパイプ40に支持すればよい。
 また、テールパイプ40の気柱共鳴周波数に共鳴室38の共鳴周波数を一致させるように、インナーパイプ41の長さと共鳴室38の容積Vを適宜設定すればよい。
 また、本実施の形態では、インナーパイプ41の上流部41Aの外周部を共鳴室38の仕切板34の内周部に支持するとともに、下流部41Bの円周方向の一部分である下流部41Bの上部および下部をテールパイプ40の突出部42a、42bを介してテールパイプ40の内周部に支持しているので、インナーパイプ41の上流部41Aと下流部41Bとをそれぞれ共鳴室38の仕切板34とテールパイプ40に両持ちで支持することができ、インナーパイプ41をテールパイプ40に強固に取付けることができる
 また、本実施の形態では、単体のテールパイプ40をマフラ27に取付けているため、テールパイプ40の上流部をアウトレットパイプとして利用することができ、排気装置23の部品点数を削減して排気装置23の製造コストをより一層低減することができる。
(第2の実施の形態)
 図14は、本発明に係る内燃機関の排気装置の第2の実施の形態を示す図であり、第1の実施の形態と同一の構成には同一の番号を付して説明を省略する。
 図14において、マフラ27内にはアウターパイプ51が設けられており、このアウターパイプ51は、仕切板35およびエンドプレート33の挿通孔35c、33aに挿通され、拡張室36、37において仕切板35およびエンドプレート33によって支持されている。
 また、アウターパイプ51にはアウトレットパイプ52が設けられており、このアウトレットパイプ52は、仕切板34およびエンドプレート33の挿通孔34a、33aに挿通され、上流部52Aおよび下流部52Bが仕切板34およびエンドプレート33によって両持ちで支持されている。
 また、中空部材としてのアウトレットパイプ52の下流部52Bにはテールパイプ53の上流部53Aが溶接等によって接続されており、アウトレットパイプ52の下流開口端52bがテールパイプ53の上流開口端53aよりも下流側に位置することにより、アウトレットパイプ52の下流開口端52bがテールパイプ53の上流部53Aに連通している。
 また、アウトレットパイプ52の下流部52Bには孔52cが形成されており、この孔52cは、アウターパイプ51の内周部とアウトレットパイプ52の外周部とによって画成される通路54とアウトレットパイプ52の内部とを連通している。
 また、アウトレットパイプ52の上流部52Aの上流開口端52aは、アウターパイプ51の内部から外方に突出して共鳴室38に連通しており、アウトレットパイプ52は、上流開口端52aが共鳴室38を画成する消音器の壁部を構成するアウタシェル31、エンドプレート32および仕切板34によって閉塞されている。
 次に、作用を説明する。
 マフラ27に導入される排気ガスは、インレットパイプ39の連通孔39b、39cを介して拡張室36、37に導入された後、アウターパイプ51の上流開口端51aからアウターパイプ51の内周部とアウトレットパイプ52の外周部とによって画成される通路54に導入される。
 この排気ガスは、アウトレットパイプ52の孔52cを通してアウトレットパイプ52に導入された後、テールパイプ53を通してテールパイプ53の下流部53Bの下流開口端53bから大気に排出される。
 本実施の形態では、アウターパイプ51とテールパイプ53が排気ガスを排出する排気管を構成するようになっており、アウターパイプ51の上流部51Aが排気管の上流部を構成するとともに、アウターパイプ51の上流開口端51aが排気管の上流開口端を構成している。また、テールパイプ53の下流部53Bが排気管の下流部を構成するとともに、テールパイプ53の下流開口端53bが排気管の下流開口端を構成している。
 そして、アウターパイプ51とテールパイプ53内にはアウターパイプ51とテールパイプ53の長さLを半波長とした周波数を基本として、その半波長の自然数倍の波長の気柱共鳴が発生することになる。
 本実施の形態では、アウターパイプ51の内部に上流開口端52aおよび下流開口端52bを有するアウトレットパイプ52を設け、アウトレットパイプ52の上流開口端52aをアウターパイプ51の内部から外方に突出させて共鳴室38に連通させることにより、この上流開口端52aが共鳴室38を画成するマフラ27のアウタシェル31、エンドプレート32および仕切板34によって閉塞されるので、アウターパイプ51およびテールパイプ53内の空気の圧力エネルギーの圧力分布をアウトレットパイプ52および共鳴室38内に発生させることができ、第1の実施の形態と同様に音圧そのものを低減することができる。
 また、アウターパイプ51の内部に、テールパイプ53の下流側に下流開口端52bが開口し、共鳴室38によって上流開口端52aが閉塞されるアウトレットパイプ52を設けたので、音波の伝搬方向にアウトレットパイプ52および共鳴室38を対向させることができるとともに、気柱共鳴の発生部位にアウトレットパイプ52の下流開口端52bを位置させることができるため、アウトレットパイプ52および共鳴室38を、気柱共鳴を音源とするヘルムホルツ共鳴室にすることができる。このため、共鳴室38の共鳴周波数をアウターパイプ51およびテールパイプ53の気柱共鳴周波数と一致させることにより、気柱共鳴を抑制することができる。
 なお、本実施の形態では、アウトレットパイプ52の下流部52Bに孔52cを有するので、この孔52cから上流開口端52aまでの間のアウトレットパイプ52の部位と共鳴室38とがヘルムホルツ共鳴室を構成することになる。このため、孔52cをアウトレットパイプ52の下流開口端52b側に近づけることにより、共鳴室38の共鳴周波数を低周波数側にチューニングすることができる。
 このように本実施の形態では、音圧そのものを低減することができるため、第1の実施の形態と同様に、気柱共鳴時および気柱共鳴時以外の運転領域に亘って音圧を低減することができるとともに、気柱共鳴時には音圧の低減に加えて上流開口端52aから孔52cまでのアウトレットパイプ52の長さLと共鳴室38の容積に依存するヘルムホルツ共鳴を利用して気柱共鳴をより一層抑制することができる。このため、排気騒音を大幅に低減することができる。
 また、気柱共鳴の発生領域にアウトレットパイプ52の下流開口端52bを位置させることができるため、減速時にマフラ27に導入される排気流量が急減した場合であっても、気柱共鳴を充分に抑制することができる。
 この結果、従来用いられていたサブマフラを廃止することができるとともにマフラ27を小型化することができるため、マフラ27の重量を低減することができるとともに、マフラ27の製造コストを低減することができる。
 また、本実施の形態では、マフラ27に既存のアウトレットパイプ52を中空部材として利用することにより、気柱共鳴をより一層抑制することができるため、マフラ27の製造コストが増大するのを抑制することができる。
(第3の実施の形態)
 図15、図16は、本発明に係る内燃機関の排気装置の第3の実施の形態を示す図であり、第1の実施の形態と同一の構成には同一の番号を付して説明を省略する。
 図16において、マフラ27内にはアウトレットパイプ61が設けられており、このアウトレットパイプ61は、仕切板34、35およびエンドプレート33の挿通孔34b、35c、33aに挿通され、拡張室36、37において仕切板34、35およびエンドプレート33によって支持されている。
 また、アウトレットパイプ61の下流部61Bにはテールパイプ62の上流部62Aが溶接等によって接続されている。また、アウトレットパイプ61の上流部61Aには上流開口端としての孔61aが形成されており、マフラ27に導入された排気ガスは、孔61aを通してアウトレットパイプ61に導入されるようになっている。
 また、図15、図16に示すように、アウトレットパイプ61の内部には平板状の仕切板63が設けられており、この仕切板63は、アウトレットパイプ61内をアウトレットパイプ61からテールパイプ62の上流開口端62aを通してテールパイプ62内に排気ガスを導入する排気通路65と、共鳴室38に連通する共鳴通路66とに区画している。
 すなわち、排気通路65は、仕切板63の上面とアウトレットパイプ61の半環形状の上部半環部68の内周面によって画成される半円状の通路から構成されており、共鳴通路66は、仕切板63の下面とアウトレットパイプ61の半環形状の下部半環部69の内周面によって画成される半円状の通路から構成されている。
 また、アウトレットパイプ61の上流端には閉止板64が設けられており、アウトレットパイプ61の上流端は、閉止板64によって閉止されている。このため、アウトレットパイプ61の排気通路65と共鳴室38とは連通しないようになっている。
 また、アウトレットパイプ61の下部半環部69の上流端69aは、仕切板63の上流端63aと共に共鳴室38内に延出して共鳴室38に連通することにより、共鳴通路66を構成する仕切板63および下部半環部69とが共鳴室38を画成するアウタシェル31、エンドプレート32および仕切板34によって閉塞されている。
 したがって、本実施の形態では、仕切板63と下部半環部69によって中空部材が構成されており、仕切板63の上流端63aと下部半環部69の上流端69aとによって上流端としての上流開口端70が構成され、仕切板63の下流端63bと仕切板63の下流端63bの直下の下部半環部69の部位とによって下流端としての下流開口端71が構成されることになる。
 次に、作用を説明する。
 マフラ27に導入される排気ガスは、インレットパイプ39の連通孔39b、39cを介して拡張室36、37に導入された後、アウトレットパイプ61の孔61aから排気通路65に導入される。
 この排気ガスは、排気通路65からテールパイプ62の上流開口端62aを通してテールパイプ62内に導入され、テールパイプ62の下流開口端62bから大気に排出される。
 本実施の形態では、アウトレットパイプ61とテールパイプ62とが排気ガスを排出する排気管を構成するようになっており、アウトレットパイプ61の上流部61Aが排気管の上流部を構成するとともに、アウトレットパイプ61の孔61aが排気管の上流開口端を構成している。
また、テールパイプ62の下流部62Bが排気管の下流部を構成するとともに、テールパイプ62の下流開口端62bが排気管の下流開口端を構成している。
 そして、アウトレットパイプ61とテールパイプ62内には孔61aからテールパイプ62の下流開口端62bの長さLを半波長とした周波数を基本として、その半波長の自然数倍の波長の気柱共鳴が発生することになる。
 本実施の形態では、アウトレットパイプ61の内部に、アウトレットパイプ61の下部半環部69と共に上流開口端70および下流開口端71を構成する仕切板63を設け、仕切板63の上流端63aと下部半環部69の上流端69aとを共鳴室38に連通させることにより、この仕切板63の上流端63aと下部半環部69の上流端69aとが共鳴室38を画成するアウタシェル31、エンドプレート32および仕切板34によって閉塞されるので、アウトレットパイプ61およびテールパイプ62内の空気の圧力エネルギーの圧力分布を共鳴通路66および共鳴室38内に発生させることができ、第1の実施の形態と同様に音圧そのものを低減することができる。
 また、インレットパイプ61の内部に、テールパイプ62の下流側に下流開口端71が開口し、共鳴室38によって上流開口端70が閉塞される仕切板63を設けたので、音波の伝搬方向に共鳴通路66および共鳴室38を対向させることができるとともに、気柱共鳴の発生部位に下流開口端71を位置させることができる。
 このため、共鳴通路66および共鳴室38を、気柱共鳴を音源とするヘルムホルツ共鳴室にすることができる。したがって、共鳴室38の共鳴周波数を排気通路65およびテールパイプ62、すなわち、排気管の気柱共鳴周波数と一致させることにより、気柱共鳴を抑制することができる。
 このように本実施の形態では、音圧そのものを低減することができるため、第1の実施の形態と同様に、気柱共鳴時および気柱共鳴時以外の運転領域に亘って音圧を低減することができるとともに、気柱共鳴時には音圧の低減に加えて、下部半環部69と仕切板63の長さLと共鳴室38の容積に依存するヘルムホルツ共鳴を利用して気柱共鳴をより一層抑制することができる。このため、排気騒音を大幅に低減することができる。
 また、気柱共鳴の発生領域に仕切板63の下流端63bとアウトレットパイプ61の下部半環部69とによって構成される下流開口端71を位置させることができるため、減速時にマフラ27に導入される排気流量が急減した場合であっても、気柱共鳴を充分に抑制することができる。
 この結果、従来用いられていたサブマフラを廃止することができるとともにマフラ27を小型化することができるため、マフラ27の重量を低減することができるとともに、マフラ27の製造コストを低減することができる。
 また、本実施の形態では、マフラ27に既存のアウトレットパイプ61に仕切板63を取付けることにより、アウトレットパイプ61を中空部材として利用して気柱共鳴をより一層抑制することができるため、マフラ27の製造コストが増大するのを抑制することができる。
(第4の実施の形態)
 図17は、本発明に係る内燃機関の排気装置の第4の実施の形態を示す図であり、第1の実施の形態と同一の構成には同一の番号を付して説明を省略する。
 図17において、消音器としてのマフラ81は、中空筒状に形成されたアウタシェル82と、アウタシェル82の両端を閉塞するエンドプレート83、84とを備えている。
 アウタシェル82内には仕切板85が設けられており、この仕切板85によってアウタシェル82内は、排気ガスを拡張して消音するための拡張室86およびヘルムホルツ共鳴によって特定の周波数の排気音を消音するための共鳴室87に区画されている。
 また、エンドプレート83および仕切板85にはそれぞれ挿通孔83a、85aが形成されており、この挿通孔83a、85aにはセンターパイプ26の下流側が接続されるインレットパイプ88が挿通されている。
 このインレットパイプ88は、拡張室86に収納されるようにしてエンドプレート83および仕切板85に支持されており、インレットパイプ88は、下流端が閉止されて共鳴室87と非連通状態となっている。
 また、インレットパイプ88にはインレットパイプ88の軸線方向(排気流の排気方向)および周方向に複数の小孔88aが形成されており、インレットパイプ88の内部と拡張室86とは、小孔88aを介して連通している。したがって、センターパイプ26からインレットパイプ88を通してマフラ81に導入される排気ガスは、小孔88aを介して拡張室86に導入されるようになっている。
 また、エンドプレート83、84および仕切板85にはそれぞれ挿通孔83b、83c、84a、85b、85cが形成されており、挿通孔85b、83b、83c、85c、84aには湾曲形状を有する中空部材としてのアウトレットパイプ89が挿通され、このアウトレットパイプ89は、エンドプレート83および仕切板85に支持されている。
 また、挿通孔83b、83c、85c、84aには湾曲形状を有するアウターパイプ90が挿通されており、このアウターパイプ90は、内部にアウトレットパイプ89が収納され、エンドプレート83、84および仕切板85に支持されている。
 アウトレットパイプ89の下流部89Bにはテールパイプ91の上流部91Aが溶接等によって接続されており、アウトレットパイプ89の下流開口端89bがテールパイプ91の上流開口端91aよりも下流側に位置することにより、アウトレットパイプ89の下流開口端89bがテールパイプ91の上流部91Aに連通している。
 また、アウトレットパイプ89の下流部89Bには孔89cが形成されており、この孔89cは、アウターパイプ90の内周部とアウトレットパイプ89の外周部とによって画成される通路92とアウトレットパイプ89の内部とを連通している。
 また、アウトレットパイプ89の上流端としての上流開口端89aは、アウターパイプ90の内部から外方に突出して共鳴室87に連通しており、アウトレットパイプ89は、上流開口端89aが共鳴室87を画成する消音器の壁部を構成するアウタシェル82、エンドプレート84および仕切板85によって閉塞されている。
 次に、作用を説明する。
 マフラ81に導入される排気ガスは、インレットパイプ88の連通孔88aを介して拡張室86に導入された後、アウターパイプ90の上流開口端90aからアウターパイプ90の内周部とアウトレットパイプ89の外周部とによって画成される通路92に導入される。
 この排気ガスは、アウトレットパイプ89の孔89cを通してアウトレットパイプ89に導入された後、テールパイプ91を通してテールパイプ91の下流開口端91bから大気に排出される。
 本実施の形態では、アウターパイプ90とテールパイプ91とが排気ガスを排出する排気管を構成するようになっており、アウターパイプ90の上流部90Aが排気管の上流部を構成するとともに、アウターパイプ90の上流開口端90aが排気管の上流開口端を構成している。
 また、テールパイプ91の下流部91Bが排気管の下流部を構成し、テールパイプ91の下流開口端91bが排気管の下流開口端を構成している。
 そして、アウターパイプ90とテールパイプ91内にはアウターパイプ90とテールパイプ91の長さLを半波長とした周波数を基本として、その半波長の自然数倍の波長の気柱共鳴が発生することになる。
 本実施の形態では、アウターパイプ90の内部に上流開口端89aおよび下流端としての下流開口端89bを有するアウトレットパイプ89を設け、アウトレットパイプ89の上流開口端89aをアウターパイプ90の内部から外方に突出させて共鳴室87に連通させることにより、上流開口端89aが共鳴室87を画成するアウタシェル82、エンドプレート83および仕切板85によって閉塞されるので、アウターパイプ90およびテールパイプ91内の空気の圧力エネルギーの圧力分布をアウトレットパイプ89および共鳴室87内に発生させることができ、第1の実施の形態と同様に音圧そのものを低減することができる。
 また、アウターパイプ90の内部に、テールパイプ91の下流側に下流開口端89bが開口し、共鳴室87によって上流開口端89aが閉塞されるアウトレットパイプ89を設けたので、音波の伝搬方向にアウトレットパイプ89および共鳴室87を対向させることができるとともに、気柱共鳴の発生部位にアウトレットパイプ89の下流開口端89bを位置させることができるため、アウトレットパイプ89および共鳴室87を、気柱共鳴を音源とするヘルムホルツ共鳴室にすることができる。
 このため、共鳴室87の共鳴周波数をアウターパイプ90およびテールパイプ91の気柱共鳴周波数と一致させることにより、気柱共鳴を抑制することができる。
 なお、本実施の形態では、アウトレットパイプ89が下流部89Bに孔89cを有するので、この孔89cから上流端89aまでの間のアウトレットパイプ89の部位と共鳴室87とがヘルムホルツ共鳴室を構成することになる。このため、孔89cをアウトレットパイプ89の下流開口端89b側に近づけることにより、共鳴室87の共鳴周波数を低周波数側にチューニングすることができる。
 このように本実施の形態では、音圧そのものを低減することができるため、第1の実施の形態と同様に、気柱共鳴時および気柱共鳴時以外の運転領域に亘って音圧を低減することができるとともに、気柱共鳴時には音圧の低減に加えて、上流端89aから孔89cまでのアウトレットパイプ89の長さLと共鳴室87の容積に依存するヘルムホルツ共鳴を利用して気柱共鳴をより一層抑制することができる。このため、排気騒音を大幅に低減することができる。
 また、気柱共鳴の発生領域にアウトレットパイプ89の下流開口端89bを位置させることができるため、減速時にマフラ81に導入される排気流量が急減した場合であっても、気柱共鳴を充分に抑制することができる。
 この結果、従来用いられていたサブマフラを廃止することができるとともにマフラ81を小型化することができるため、マフラ81の重量を低減することができるとともに、マフラ81の製造コストを低減することができる。
 また、本実施の形態では、アウトレットパイプ89およびアウターパイプ90を湾曲させているので、マフラ81内でアウトレットパイプ89を長くすることができ、マフラ81の軸線方向長さを短くして共鳴室87の共鳴周波数を低周波数側にチューニングすることができる。
 また、今回開示された実施の形態は、全ての点で例示であってこの実施の形態に制限されるものではない。本発明の範囲は、上記した実施の形態のみの説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 以上のように、本発明に係る内燃機関の排気装置は、従来用いられていたサブマフラを廃止して排気騒音を低減することができ、排気装置の重量を低減することができるとともに、排気装置の製造コストを低減することができるという効果を有し、排気流の排気方向の最下流に設けられた排気管の気柱共鳴による排気騒音を低減するようにした内燃機関の排気装置等として有用である。
 21 エンジン(内燃機関)
 23 排気装置
 27、81 マフラ(消音器)
 31、82 アウタシェル(消音器の壁部)
 32、84 エンドプレート(消音器の壁部)
 34、85 仕切板(消音器の壁部)
 38、87 共鳴室
 40 テールパイプ(排気管)
 40A 上流部
 40B 下流部
 40a 上流開口端
 40b 下流開口端
 41 インナーパイプ(中空部材)
 41A 上流部
 41B 下流部
 41a 上流開口端(上流端)
 41b、41c 下流開口端(下流端)
 41c 下流開口端(下流端)
 51 アウターパイプ(排気管)
 51a 上流開口端(排気管の上流開口端)
 52 アウトレットパイプ(中空部材)
 52A 上流部(排気管の上流部)
 52a 上流開口端(排気管の上流開口端)
 52a 上流開口端(上流端)
 52b 下流開口端(下流端)
 53 テールパイプ(排気管)
 53B 下流部(排気管の下流部)
 53b 下流開口端(排気管の下流開口端)
 61 アウトレットパイプ(排気管)
 61A 上流部(排気管の上流部)
 61a 孔(排気管の上流開口端)
 62 テールパイプ(排気管)
 62B 下流部(排気管の下流部)
 62b 下流開口端(排気管の下流開口端)
 63 仕切板(中空部材)
 69 下部半環部(中空部材)
 70 上流開口端(上流端)
 71 下流開口端(下流端)
 89 アウトレットパイプ(中空部材)
 89a 上流開口端(上流端)
 89b 下流開口端(下流端)
 90 アウターパイプ(排気管)
 90A 上流部(排気管の上流部)
 90a 上流開口端(排気管の上流開口端)
 91 テールパイプ(排気管)
 91B 下流部(排気管の下流部)
 91b 下流開口端(排気管の下流開口端)

Claims (6)

  1. 特定の周波数の排気音を消音する共鳴室を有する消音器と、排気流の排気方向の上流部に前記消音器に接続される上流開口端を有するとともに、下流部に前記消音器から排出される排気流を大気に排出するための下流開口端を有する排気管とを備えた内燃機関の排気装置であって、
     前記排気管の内部に中空部材を設け、前記中空部材は、下流端が開口端を構成し、上流端が前記排気管の内部から外方に突出して前記共鳴室に連通することにより、前記共鳴室を画成する前記消音器の壁部によって閉塞されることを構成することを特徴とする内燃機関の排気装置。
  2. 前記排気管内で発生する気柱共鳴周波数と前記共鳴室の前記特定の周波数を一致させるように、前記排気管の軸線方向長さと前記中空部材の軸線方向長さとが設定されることを特徴とする請求項1に記載の内燃機関の排気装置。
  3. 前記中空部材の下流端が、前記排気管の軸線方向長さの中央部よりも上流側に位置することを特徴とする請求項1または請求項2に記載の排気装置。
  4. 前記排気管は、上流部が前記消音器に挿通された単体のテールパイプから構成され、前記中空部材の上流部が前記共鳴室の壁部の内周部に支持されるとともに、下流部の円周方向の一部分が前記排気管の内周部に支持されることを特徴とする請求項1ないし請求項3のいずれか1の請求項に記載の内燃機関の排気装置。
  5. 前記排気管は、前記消音器の内部に設けられたアウターパイプと、前記アウターパイプに接続され、前記アウターパイプから前記消音器の下流側に延在するテールパイプとから構成され、前記中空部材は、前記アウターパイプの内部に設けられたアウトレットパイプから構成され、
     前記アウトレットパイプの下流部は、前記テールパイプの上流部に接続されるとともに、前記アウトレットパイプの下流部に前記アウトレットパイプの内部と前記アウターパイプの内部とを連通する孔が形成されることを特徴とする請求項1ないし請求項3のいずれか1の請求項に記載の内燃機関の排気装置。
  6. 前記アウターパイプおよび前記アウトレットパイプが前記消音器内で湾曲されることを特徴とする請求項5に記載の内燃機関の排気装置。
     
PCT/JP2009/007324 2009-12-28 2009-12-28 内燃機関の排気装置 WO2011080793A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011547089A JP5472321B2 (ja) 2009-12-28 2009-12-28 内燃機関の排気装置
CN2009801631906A CN102686840A (zh) 2009-12-28 2009-12-28 内燃机的排气装置
PCT/JP2009/007324 WO2011080793A1 (ja) 2009-12-28 2009-12-28 内燃機関の排気装置
US13/517,198 US8607923B2 (en) 2009-12-28 2009-12-28 Exhaust apparatus of internal combustion engine
EP09852775.7A EP2520775B1 (en) 2009-12-28 2009-12-28 Exhaust apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/007324 WO2011080793A1 (ja) 2009-12-28 2009-12-28 内燃機関の排気装置

Publications (1)

Publication Number Publication Date
WO2011080793A1 true WO2011080793A1 (ja) 2011-07-07

Family

ID=44226229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007324 WO2011080793A1 (ja) 2009-12-28 2009-12-28 内燃機関の排気装置

Country Status (5)

Country Link
US (1) US8607923B2 (ja)
EP (1) EP2520775B1 (ja)
JP (1) JP5472321B2 (ja)
CN (1) CN102686840A (ja)
WO (1) WO2011080793A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032132A (zh) * 2011-10-06 2013-04-10 川崎重工业株式会社 排气消声装置
WO2013125764A1 (ko) * 2012-02-24 2013-08-29 세종공업 주식회사 소음기용 테일파이프구조
US9523304B2 (en) 2013-03-11 2016-12-20 Futaba Industrial Co., Ltd. Exhaust pipe
JP2020118145A (ja) * 2019-01-28 2020-08-06 フタバ産業株式会社 消音器
JP7488790B2 (ja) 2021-05-18 2024-05-22 中央精機株式会社 車両用ホイール

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011101489B4 (de) * 2010-04-29 2017-02-23 Karma Automotive Llc Vorderseitige Auspuffanlage
JP6162407B2 (ja) * 2013-01-11 2017-07-12 フタバ産業株式会社 消音器
DE102014103054A1 (de) 2014-03-07 2015-09-10 Tenneco Gmbh Abgasschalldämpfer
US9890952B2 (en) * 2014-04-25 2018-02-13 Noritz Corporation Exhaust structure for combustion apparatus and construction method thereof
DE102014107907A1 (de) * 2014-06-04 2015-12-17 Eberspächer Exhaust Technology GmbH & Co. KG Schalldämpfer
CN104088686A (zh) * 2014-07-01 2014-10-08 居国文 一种微型消音器
CN104033226A (zh) * 2014-07-01 2014-09-10 居国文 一种消音器
US10596515B2 (en) * 2014-12-22 2020-03-24 Donaldson Filtration Deutschland Gmbh Device for attenuating an exhaust-gas noise, system comprising a device of said type, sorption dryer having a device of said type, and method for attenuating an exhaust-gas noise
JP5945018B1 (ja) * 2015-01-30 2016-07-05 本田技研工業株式会社 排気マフラー
JP6059749B2 (ja) * 2015-02-23 2017-01-11 本田技研工業株式会社 排気マフラー
DE102015223680A1 (de) * 2015-11-30 2017-06-01 Eberspächer Exhaust Technology GmbH & Co. KG Schalldämpfer
WO2017126083A1 (ja) 2016-01-21 2017-07-27 フタバ産業株式会社 消音器
US10513956B2 (en) * 2016-07-28 2019-12-24 Tarkan FAHRI Muffler assembly
IT201600110831A1 (it) * 2016-11-04 2018-05-04 Piaggio & C Spa Terminale di scarico per motoveicoli
CN106481422A (zh) * 2016-11-15 2017-03-08 安徽江淮汽车集团股份有限公司 排气消声器总成
DE102017109191A1 (de) * 2017-04-28 2018-10-31 Faurecia Emissions Control Technologies, Germany Gmbh Komponente einer Abgasanlage und Verfahren zur Herstellung einer solchen Komponente
CN107218105A (zh) * 2017-07-28 2017-09-29 安徽江淮汽车集团股份有限公司 一种消声器管路结构及消声器
US10900396B2 (en) * 2018-01-15 2021-01-26 Ford Global Technologies, Llc Exhaust orifice tube for vehicle mufflers
DE102019101418A1 (de) * 2018-01-26 2019-08-01 Futaba Industrial Co., Ltd. Schalldämpfer
JP6557372B1 (ja) * 2018-02-15 2019-08-07 本田技研工業株式会社 消音器ユニット
CN112567114B (zh) * 2018-08-10 2022-08-02 印度商宜诺摩托克普有限公司 排气系统
RU2697205C1 (ru) * 2018-10-15 2019-08-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Глушитель шума выхлопа двигателя внутреннего сгорания
RU2697207C1 (ru) * 2018-10-18 2019-08-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Глушитель шума выхлопа двигателя внутреннего сгорания
CN109209567B (zh) * 2018-11-06 2020-09-08 广州汽车集团股份有限公司 排气系统消声器及汽车
US11421569B2 (en) 2019-10-18 2022-08-23 Tenneco Automotive Operating Company Inc. Muffler
RU195483U1 (ru) * 2019-11-25 2020-01-29 Общество С Ограниченной Ответственностью "Феникс" Глушитель
JP2021116732A (ja) * 2020-01-24 2021-08-10 フタバ産業株式会社 消音装置
JP2022095467A (ja) * 2020-12-16 2022-06-28 フタバ産業株式会社 排気管

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143941U (ja) * 1978-03-30 1979-10-05
JPS5517956U (ja) * 1978-07-24 1980-02-05
JPS5932111U (ja) * 1982-08-25 1984-02-28 日産自動車株式会社 自動車用マフラ
JPS61142114U (ja) * 1985-02-25 1986-09-02
JPH0218260Y2 (ja) * 1984-02-08 1990-05-22
JPH0367012A (ja) * 1989-08-04 1991-03-22 Suzuki Motor Corp エンジンの排気消音装置
JP2005256736A (ja) * 2004-03-11 2005-09-22 Calsonic Kansei Corp 自動車用レゾネータ構造
JP2006046121A (ja) 2004-08-02 2006-02-16 Toyota Motor Corp 排気構造

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1044068B (it) * 1974-11-12 1980-03-20 Renault Silenziatore per motore a combustions
US4102430A (en) * 1977-08-11 1978-07-25 Tenneco, Inc. Peripheral return flow muffler
US4501341A (en) * 1981-03-12 1985-02-26 Jones Adrian D Low frequency muffler
JPS58193007U (ja) * 1982-06-21 1983-12-22 日産自動車株式会社 消音器
JPS60175718A (ja) * 1984-02-22 1985-09-09 Nippon Soken Inc 内燃機関用消音器
JPS61142114A (ja) 1985-05-09 1986-06-30 株式会社 フジパツクシステム 包装機における品物搬出装置
JPH09304084A (ja) 1996-05-09 1997-11-28 Matsushita Electric Ind Co Ltd 移動体の位置登録装置
JP3424471B2 (ja) 1996-05-16 2003-07-07 日産自動車株式会社 自動車用排気消音装置
KR100306339B1 (ko) * 1999-02-05 2001-09-13 이옥노 내연기관용 소음기
JP4392592B2 (ja) * 2003-12-12 2010-01-06 トヨタ自動車株式会社 排気消音装置
JP4577282B2 (ja) * 2006-08-11 2010-11-10 トヨタ自動車株式会社 エンジンの排気装置、その製造方法、マフラ及び車両
JP2009236040A (ja) 2008-03-27 2009-10-15 Toyota Motor Corp 排気消音装置
JP5205321B2 (ja) 2009-03-26 2013-06-05 本田技研工業株式会社 車両用空調装置
US8806859B2 (en) * 2009-08-28 2014-08-19 Toyota Jidosha Kabushiki Kaisha Exhaust gas apparatus of an internal combustion engine
US8356690B2 (en) * 2009-08-28 2013-01-22 Toyota Jidosha Kabushiki Kaisha Exhaust apparatus for an internal combustion engine
US8453791B2 (en) * 2009-09-24 2013-06-04 Toyota Jidosha Kabushiki Kaisha Exhaust pipe part and exhaust apparatus for internal combustion engine
WO2011055415A1 (ja) * 2009-11-09 2011-05-12 トヨタ自動車株式会社 内燃機関の排気装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143941U (ja) * 1978-03-30 1979-10-05
JPS5517956U (ja) * 1978-07-24 1980-02-05
JPS5932111U (ja) * 1982-08-25 1984-02-28 日産自動車株式会社 自動車用マフラ
JPH0218260Y2 (ja) * 1984-02-08 1990-05-22
JPS61142114U (ja) * 1985-02-25 1986-09-02
JPH0367012A (ja) * 1989-08-04 1991-03-22 Suzuki Motor Corp エンジンの排気消音装置
JP2005256736A (ja) * 2004-03-11 2005-09-22 Calsonic Kansei Corp 自動車用レゾネータ構造
JP2006046121A (ja) 2004-08-02 2006-02-16 Toyota Motor Corp 排気構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2520775A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032132A (zh) * 2011-10-06 2013-04-10 川崎重工业株式会社 排气消声装置
WO2013125764A1 (ko) * 2012-02-24 2013-08-29 세종공업 주식회사 소음기용 테일파이프구조
KR101315266B1 (ko) * 2012-02-24 2013-10-08 세종공업 주식회사 소음기용 테일파이프구조
US9523304B2 (en) 2013-03-11 2016-12-20 Futaba Industrial Co., Ltd. Exhaust pipe
JPWO2014141778A1 (ja) * 2013-03-11 2017-02-16 フタバ産業株式会社 排気管
JP2020118145A (ja) * 2019-01-28 2020-08-06 フタバ産業株式会社 消音器
US11480080B2 (en) 2019-01-28 2022-10-25 Futaba Industrial Co., Ltd. Muffler
JP7488790B2 (ja) 2021-05-18 2024-05-22 中央精機株式会社 車両用ホイール
US12090797B2 (en) 2021-05-18 2024-09-17 Central Motor Wheel Co., Ltd. Wheel for vehicle

Also Published As

Publication number Publication date
EP2520775A1 (en) 2012-11-07
JP5472321B2 (ja) 2014-04-16
EP2520775B1 (en) 2016-04-06
EP2520775A4 (en) 2014-11-12
US20120273302A1 (en) 2012-11-01
CN102686840A (zh) 2012-09-19
US8607923B2 (en) 2013-12-17
JPWO2011080793A1 (ja) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5472321B2 (ja) 内燃機関の排気装置
JP5257517B2 (ja) 内燃機関の排気装置
JP5298202B2 (ja) 内燃機関の排気装置
JP5229391B2 (ja) 内燃機関の排気装置
JP4866440B2 (ja) 消音器
JP5282825B2 (ja) 排気管部品および内燃機関の排気装置
JP2002054421A (ja) 低コストマフラ
US7942235B2 (en) Exhaust system for an internal combustion engine
JP2002235522A (ja) 排気消音装置
JP2011027038A (ja) マフラ
US12006854B2 (en) Vehicle exhaust system
JP2010031852A (ja) 自動二輪車
JP2011089487A (ja) 内燃機関の排気装置
JP4339070B2 (ja) 排気浄化装置
JP5119230B2 (ja) 内燃機関の排気装置
KR101693887B1 (ko) 다중 공명기 삽입 건설장비용 소음기
JP5009333B2 (ja) 排気消音装置
JP5067411B2 (ja) 内燃機関の排気装置
CN110552757A (zh) 用于内燃机的排气系统的消音器
JP2000227019A (ja) 排気消音装置および排気消音装置用連通管
JP5044631B2 (ja) 内燃機関の排気装置
JP2012087731A (ja) 排気装置
JP2009191618A (ja) 消音器
JP2004137951A (ja) 共鳴型消音器
JP2010255519A (ja) 消音器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980163190.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852775

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547089

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13517198

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009852775

Country of ref document: EP