WO2011078091A1 - エポキシ化合物の製造方法 - Google Patents

エポキシ化合物の製造方法 Download PDF

Info

Publication number
WO2011078091A1
WO2011078091A1 PCT/JP2010/072801 JP2010072801W WO2011078091A1 WO 2011078091 A1 WO2011078091 A1 WO 2011078091A1 JP 2010072801 W JP2010072801 W JP 2010072801W WO 2011078091 A1 WO2011078091 A1 WO 2011078091A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetonitrile
reaction
carbon
epoxy compound
hydrogen peroxide
Prior art date
Application number
PCT/JP2010/072801
Other languages
English (en)
French (fr)
Inventor
内田 博
孝充 小林
直也 福本
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201080058515.7A priority Critical patent/CN102666519B/zh
Priority to EP10839321.6A priority patent/EP2518061B1/en
Priority to JP2011547522A priority patent/JP5787770B2/ja
Priority to US13/515,707 priority patent/US8993791B2/en
Priority to KR1020127009231A priority patent/KR101433066B1/ko
Publication of WO2011078091A1 publication Critical patent/WO2011078091A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/28Ethers with hydroxy compounds containing oxirane rings

Definitions

  • the present invention relates to a method for producing an epoxy compound. More specifically, the present invention is capable of epoxidizing the carbon-carbon double bond of an organic compound having a carbon-carbon double bond with high efficiency using hydrogen peroxide as an oxidizing agent in the presence of acetonitrile.
  • the present invention relates to a method for producing an epoxy compound.
  • Epoxy compounds are used in various applications by utilizing the oxirane ring opening of 1,2-epoxide.
  • bisphenol A-type epoxy resins and novolac-type epoxy resins are frequently used as semiconductor sealing materials because they are excellent in mass productivity, cost, heat resistance, water resistance, and the like.
  • peracids such as peracetic acid and perbenzoic acid have been used.
  • these methods generate an equivalent amount of acid derived from the oxidizing agent, there are problems such as corrosion of the apparatus.
  • hydrogen peroxide is inexpensive, non-corrosive, has no by-product after reaction, or is water, so it has a low environmental impact and is an excellent oxidizing agent for industrial use. It can be said.
  • Patent Document 1 discloses a method for producing an epoxy compound in which a polyallyl ether compound is reacted with hydrogen peroxide while adjusting the pH of the reaction system to 7.5 or higher in the presence of acetonitrile.
  • Patent Document 1 describes pH control of the reaction system and addition of hydrogen peroxide during the progress of the reaction, but does not describe controlling the concentration of acetonitrile.
  • Patent Document 2 discloses a method for producing tricyclopentadiene diepoxide in which tricyclopentadiene and hydrogen peroxide are reacted in an inorganic acid salt aqueous solution in the presence of a nitrile compound.
  • Patent Document 2 describes that the pH of the reaction system affects the yield and selectivity of tricyclopentadiene diepoxide, it is necessary to control the concentration of hydrogen peroxide and acetonitrile in the reaction system. Is not described.
  • Patent Document 3 discloses a method for producing an epoxy compound having an adamantane skeleton, in which an allyloxy compound having an adamantane skeleton, a nitrile compound, and a hydrogen peroxide solution are reacted in the presence of a basic compound.
  • Patent Document 3 describes adjusting the pH of the reaction solution, but does not describe controlling the concentrations of hydrogen peroxide and acetonitrile in the reaction system.
  • Non-Patent Document 1 discloses a method for producing ciscyclooctene oxide in which ciscyclooctene is reacted with a nitrile compound and hydrogen peroxide in the presence of potassium carbonate. However, Non-Patent Document 1 does not have a detailed description on controlling the concentration of each component of the reaction system during the reaction.
  • An object of the present invention is to provide a highly efficient method for producing an epoxy compound in which hydrogen peroxide and acetonitrile are reacted with a carbon-carbon double bond of an organic compound having a carbon-carbon double bond.
  • the organic compound having a carbon-carbon double bond can be obtained using hydrogen peroxide as an oxidizing agent in the presence of acetonitrile.
  • High efficiency by producing epoxy compounds that epoxidize carbon-carbon double bonds by controlling the concentration of acetonitrile in the reaction system within a predetermined concentration range using a solvent containing alcohol. As a result, it was found that an epoxy compound was produced, and the present invention was completed.
  • the present invention is as follows.
  • a method for producing an epoxy compound in which an organic compound having a carbon-carbon double bond is epoxidized using hydrogen peroxide as an oxidizing agent in the presence of acetonitrile the method including an alcohol
  • the ratio of the total amount of acetonitrile used (acetonitrile / hydrogen peroxide (molar ratio)) to the total amount of hydrogen peroxide used in the reaction is in the range of 0.6 to 2.
  • Ratio of the total amount of acetonitrile used to the total amount of organic compound having a carbon-carbon double bond used in the reaction is in the range of 1.2 to 5.
  • the organic compound having two or more allyl ether groups is at least one selected from the group consisting of bisphenol A type diallyl ether, bisphenol F type diallyl ether, tetramethylbiphenol diallyl ether, and aliphatic polyallyl ether.
  • the organic compound having a carbon-carbon double bond is bisphenol A diallyl ether and / or bisphenol F diallyl ether, and the acetonitrile concentration in the reaction system is in the range of 0.6 to 2 mol / L.
  • an epoxy compound can be produced safely, with high yield and at low cost by a simple operation from the reaction between an organic compound having a carbon-carbon double bond and hydrogen peroxide. . Therefore, the present invention has a great industrial effect.
  • the method for producing an epoxy compound according to the present invention uses the carbon of an organic compound having a carbon-carbon double bond (hereinafter sometimes referred to as “substrate”) using hydrogen peroxide as an oxidizing agent in the presence of acetonitrile.
  • substrate organic compound having a carbon-carbon double bond
  • hydrogen peroxide as an oxidizing agent
  • the reaction is allowed to proceed while controlling the concentration of acetonitrile in the reaction system within the range of 0.6 to 5 mol / L using a solvent containing alcohol. It is characterized by.
  • hydrogen peroxide is used as the oxidizing agent, but an aqueous hydrogen peroxide solution is preferably used as the hydrogen peroxide source.
  • concentration of the aqueous hydrogen peroxide solution is not particularly limited, but is generally selected from the range of 1 to 80% by mass, preferably 10 to 60% by mass. From the viewpoint of industrial productivity and the energy cost of separation, hydrogen peroxide is preferred to have a high concentration, but excessively high concentration and / or excessive hydrogen peroxide is not used. This is preferable from the viewpoints of economy and safety.
  • the hydrogen peroxide concentration in the reaction system decreases as the reaction proceeds. It is preferable to keep the hydrogen peroxide concentration in the reaction system within the range of 1 to 30% by mass, more preferably within the range of 2 to 10% by mass. If the amount is less than 1% by mass, the productivity is deteriorated. On the other hand, if it exceeds 30% by mass, the explosive property in the mixed composition of alcohol and water may be increased, which may be dangerous. In addition, if a large amount of hydrogen peroxide is charged into the reaction system at the beginning of the reaction, the reaction may proceed rapidly and may be dangerous. Therefore, it is preferable to slowly add hydrogen peroxide into the reaction system as described later.
  • the concentration of acetonitrile in the reaction system used in the method for producing an epoxy compound according to the present invention is controlled during the reaction so as to be in the range of 0.6 to 5 mol / L.
  • the theoretical required amount of acetonitrile in this reaction is equivalent to the amount of carbon-carbon double bond of the organic compound (equal mole), and the concentration of acetonitrile in the reaction system decreases as the reaction proceeds.
  • concentration in the reaction system is less than 0.6 mol / L, the yield decreases.
  • concentration exceeds 5 mol / L the epoxidation selectivity of hydrogen peroxide tends to decrease and the cost increases. Absent. Therefore, the initial concentration at the start of the reaction is set in the above concentration range, the concentration during the reaction is monitored, and the concentration is added by adding within the range not exceeding the upper limit before the concentration falls below the lower limit. It is preferable to control.
  • the concentration is preferably 0.7 mol / L or more, while it is preferably 2 mol / L or less.
  • alcohol is allowed to coexist in the reaction system as a solvent.
  • the alcohol functions as a solvent for the substrate (an organic compound having a carbon-carbon double bond), and also as a viscosity diluent for increasing the rate of transfer of hydrogen peroxide to the substrate when the viscosity of the substrate is high.
  • Alcohol uses an aqueous solution of hydrogen peroxide as the hydrogen peroxide source, and the substrate (organic compound having a carbon-carbon double bond) has low hydrophilicity, the organic layer containing the substrate and acetonitrile, and hydrogen peroxide. To increase the reaction rate.
  • the alcohol is preferably an alcohol having 1 to 4 carbon atoms, more preferably a primary alcohol having 1 to 4 carbon atoms, still more preferably methanol, ethanol or 1-propanol.
  • bisphenol A type diallyl ether and / or bisphenol F type diallyl ether is used as the organic compound having a carbon-carbon double bond, these are soluble in both alcohol and acetonitrile. However, if the amount of acetonitrile used is excessive, the cost is increased. Become high.
  • the amount of acetonitrile used in the reaction system can be reduced by relatively increasing the amount of inexpensive alcohol used, and the reaction system By controlling the concentration of acetonitrile in the range of 0.6 to 5 mol / L, a high conversion rate of the substrate can be obtained.
  • the total amount of acetonitrile used for the reaction is preferably 0.6 to 2 times (molar ratio), and 0.65 to 1.85 times the total amount of hydrogen peroxide used. Is more preferable.
  • the amount of acetonitrile charged at the start of the reaction is preferably in the range of 1.2 to 5 mole equivalents based on the number of double bonds of the organic compound having a carbon-carbon double bond, and preferably 1.5 to 3 moles. The equivalent is more preferable. When the amount is less than 1.2 molar equivalents, the yield decreases. On the other hand, when the amount exceeds 5 molar equivalents, the epoxidation selectivity of hydrogen peroxide tends to decrease and the cost increases.
  • the amount of acetonitrile charged at the start of the reaction must satisfy the concentration range of 0.6 to 5 mol / L in the reaction system during the above reaction.
  • the ratio of the total amount of acetonitrile used to the total amount of organic compound having carbon-carbon double bonds used in the reaction (the ratio of the organic compound having acetonitrile / carbon-carbon double bonds)
  • the carbon-carbon double bond (molar ratio)) also preferably satisfies the above range, that is, 1.2 to 5, more preferably 1.5 to 3.
  • the origin of acetonitrile used in the present invention is not particularly limited, and other than commercially available products, for example, crude acetonitrile obtained as a by-product during the production of acrylonitrile by the Sohio method may be used. The production cost can be reduced by using crude acetonitrile.
  • Sohio (gas phase catalytic ammoxidation) method is a gas phase catalytic oxidation method in which acrylonitrile is produced by reacting ammonia and oxygen with propylene or propane in the presence of a catalyst, separating and purifying the reaction gas,
  • propylene it is represented by the following reaction formula.
  • CH 3 -CH CH 2 + NH 3 + 1.5 O 2 ⁇
  • CH 2 CH-C ⁇ N + 3 H 2 O
  • crude acetonitrile is obtained as a by-product together with hydrogen cyanide (HCN), water, and other impurities (see, for example, JP-A Nos. 2004-10579 and 2009-102388).
  • the crude acetonitrile obtained as this by-product has numerous impurities, and the relative proportions of its components can vary widely depending on various conditions.
  • the composition of crude acetonitrile obtained from an acrylonitrile plant is, for example, 10% to 30% water and 25% to 85% acetonitrile on a mass basis, but is not limited to this range.
  • crude acetonitrile is about 81% acetonitrile, about 17% water, about 0.5% hydrogen cyanide, about 0.1% acrylonitrile and about 1.4% other organics on a weight basis. Contains impurities.
  • the pH of the reaction solution is preferably 9 to 11, more preferably 9.5 to 11, and still more preferably 10 to 11.
  • the pH is lower than 9, the reaction rate is lowered, and thus the productivity is deteriorated.
  • the pH is higher than 11, the reaction proceeds rapidly, which is dangerous and the yield is also lowered.
  • the yield and selectivity of diepoxide are affected by the pH of the reaction system. Within the range, the yield and selectivity of diepoxide are both high, which is preferable.
  • Examples of the basic salt compound used for pH adjustment in the reaction system include, for example, potassium carbonate, potassium hydrogen carbonate, potassium hydroxide, sodium hydroxide, cesium hydroxide and other inorganic basic salts, potassium methoxide, potassium ethoxide, Organic base salts such as sodium methoxide, sodium ethoxide, tetramethylammonium hydroxide and the like can be mentioned.
  • Potassium carbonate, potassium hydrogen carbonate, potassium hydroxide, sodium hydroxide, potassium methoxide, potassium ethoxide, sodium methoxide, and sodium ethoxide are preferable in terms of easy pH adjustment. Potassium hydroxide and sodium hydroxide are more preferred because of their high solubility in water and alcohol and good reactivity.
  • the aforementioned basic salt compound can be used as an aqueous solution or an alcohol solution.
  • the alcohol used as the solvent of the alcohol solution include methanol, ethanol, propanol, butanol and the like, and it is preferable to use the same reaction solvent as that described above.
  • the solution of the basic salt compound is preferably added so that the pH of the reaction solution does not fall below 9 with the addition of hydrogen peroxide.
  • the temperature of the reaction solution is preferably in the range of 20 to 100 ° C., more preferably It is preferable to add such that the range of 25 to 60 ° C. is maintained.
  • the reaction temperature is usually in the range of 20 to 100 ° C., preferably in the range of 25 to 60 ° C.
  • the reaction time depends on the reaction temperature and cannot be generally determined, but is usually in the range of 4 to 48 hours, preferably in the range of 4.5 to 32 hours.
  • the substrate to be epoxidized by the method for producing an epoxy compound according to the present invention is not particularly limited as long as it is an organic compound having a carbon-carbon double bond, but an organic compound having an allyl ether group is preferable.
  • the “allyl ether group” herein means a “C ⁇ C—C—O—” bond, that is, an allyloxy group.
  • the number of carbon-carbon double bonds contained in the compound may be one or two or more. Examples of the compound having one carbon-carbon double bond include phenyl allyl ether, cresol monoallyl ether, cyclooxene, and cyclooctene.
  • Examples of the compound having two or more carbon-carbon double bonds include 3,4-cyclohexenylmethyl-3 ′, 4′-cyclohexenecarboxylate, an allyl ether compound of a novolac-type phenolic resin, trimethylolpropane trioxide.
  • Examples include allyl ether and pentaerythritol tetraallyl ether.
  • the pH of the reaction solution within the range of 9 to 11, preferably 10 to 11, particularly two or more organic compounds having a plurality of carbon-carbon double bonds, for example, allyl ether groups.
  • the organic compound which has the corresponding polyepoxide can be obtained with a high yield and selectivity.
  • the following general formula having an aromatic ring and having two or more allyl ether groups ⁇ Wherein R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, a cycloalkyl group, such as a cyclohexane having 3 to 12 carbon atoms.
  • An alkyl group or an aryl group for example, an aryl group having 6 to 10 carbon atoms, or R 1 and R 2 together form an alkylidene group having 2 to 6 carbon atoms or a cycloalkylidene group having 3 to 12 carbon atoms. It may be formed.
  • R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, a cycloalkyl group, such as 3 to 12 carbon atoms.
  • an aryl group such as an aryl group having 6 to 10 carbon atoms, and n represents an integer of 0 or 1.
  • ⁇ Is preferably used. Here, when n is 0, it indicates that two benzene rings are directly bonded (forms a biphenyl skeleton).
  • organic compounds include bisphenol A type diallyl ethers such as bisphenol-A diallyl ether, 2,6,2 ′, 6′-tetramethylbisphenol-A diallyl ether, and 2,2′-diallyl.
  • Bisphenol-A diallyl ether, 2,2′-di-t-butylbisphenol-A diallyl ether, etc. bisphenol F type diallyl ether, such as bisphenol-F diallyl ether, 2,6,2 ′, 6′-tetramethylbiphenol Diallyl ether, 2,2′-diisopropylbiphenol diallyl ether, 4,4′-ethylidene bisphenol diallyl ether, 4,4′-cyclohexylidene bisphenol diallyl ether, 4,4 ′-(1- ⁇ -methylbenzylidene) bisphenol Luzia Lil ether, 4,4 '- (3,3,5-trimethyl-cyclohexylidene) bisphenol diallyl ether,
  • biphenol type diallyl ether having an aromatic ring and two allyl ether groups examples include 2,2'-biphenyl diallyl ether and tetramethylbiphenyl diallyl ether.
  • aliphatic polyallyl ether having two allyl ether groups include 1,5-pentanediol diallyl ether, 1,6-hexanediol diallyl ether, 1,9-nonanediol diallyl ether, 1,10 -Decanediol diallyl ether, neopentyl glycol diallyl ether, etc.
  • alicyclic polyallyl ether having two allyl ether groups include 1,4-cyclohexanedimethanol diallyl ether, tricyclo [5.2.1.0 2,6 ] decane dimethanol diallyl ether, and the like. Is mentioned.
  • the organic compound having two or more allyl ether groups is preferably selected from the group consisting of bisphenol A type diallyl ether, bisphenol F type diallyl ether, tetramethylbiphenol diallyl ether, and aliphatic polyallyl ether.
  • the concentration of the organic compound having a carbon-carbon double bond is usually in the range of 0.2 to 2 mol / L, preferably in the range of 0.3 to 1.5 mol / L. Adjust so that When the substrate concentration in the reaction system is less than 0.2 mol / L, the productivity is lowered, whereas when it exceeds 2 mol / L, the yield is lowered, which is not preferable.
  • the reaction solution is diluted with pure water or, if necessary, an acid such as sulfuric acid is added to the reaction solution to neutralize it and then diluted with pure water. Extract with an organic solvent such as ethyl acetate.
  • an organic solvent such as ethyl acetate.
  • Example 1 Bisphenol A diallyl ether (5.00 g, 16.2 mmol, Qinyang Tianyi Chemical Co., LTD), acetonitrile (2.67 g, 65.0 mmol, Junsei Chemical) in a 50 mL separable flask of a reaction calorimeter (Metler Toledo, MultiMax) Co., Ltd.) and ethanol (26.41 g, 573.4 mmol, Junsei Chemical Co., Ltd.) were charged.
  • potassium hydroxide manufactured by Wako Pure Chemical Industries, Ltd.
  • potassium hydroxide / ethanol solution so that the pH does not fall below 9.
  • the reaction was performed while monitoring the acetonitrile concentration in the system as needed.
  • the reaction solution was neutralized by adding a 15 mass% H 2 SO 4 aqueous solution, further diluted with pure water (10 g), and the solvent was distilled off under reduced pressure. The residue was extracted with ethyl acetate (10 g).
  • Table 1 when the obtained solution was measured by gas chromatography, the conversion rate of bisphenol A type diallyl ether as a substrate was 95.0%, and bisphenol A type diglycidyl as a diepoxy monomer. It was confirmed that the yield of ether was 49.9% and the yield of monoglycidyl ether was 38.6%.
  • the epoxidation selectivity of hydrogen peroxide was 46.3%.
  • the epoxidation selectivity indicates the ratio of the epoxidized double bond of the allyl ether group in the substrate to the consumption of hydrogen peroxide.
  • Hydrogen peroxide epoxidation selectivity (%) [ ⁇ (number of moles of diglycidyl ⁇ 2) + Number of moles of monoglycidyl ⁇ / number of moles of hydrogen peroxide consumed] ⁇ 100
  • the residual concentration of hydrogen peroxide was determined using a hydrogen peroxide counter HP-300 (manufactured by Hiranuma Sangyo Co., Ltd.) based on the iodine coulometric titration method (back titration method) as a measuring device.
  • Examples 2 to 5 Comparative Examples 1 to 3
  • the same operation was performed except that the amounts of acetonitrile, hydrogen peroxide and ethanol used in bisphenol A type diallyl ether in Example 1 were changed to the amounts shown in Table 1 below.
  • the results are shown in Table 1 below together with the results of Example 1.
  • Comparative Example 1 it can be seen that when the amount of acetonitrile in the system is less than 0.6 mol / L during the reaction, the yield of diepoxide, which is the final target product, is lowered.
  • Comparative Examples 2 and 3 no significant improvement in the yield of diepoxide was observed even when used so that the amount of acetonitrile in the system exceeded 5 mol / L during the reaction. It can be seen that the epoxidation selectivity of hydrogen is reduced.
  • the reaction was performed while monitoring the acetonitrile concentration in the system as needed.
  • the reaction solution was neutralized by adding a 15 mass% H 2 SO 4 aqueous solution, and further diluted by adding pure water (10 g), and the solvent was distilled off under reduced pressure. The residue was extracted with ethyl acetate (10 g). The obtained solution was measured by gas chromatography.
  • the conversion rate of bisphenol A type diallyl ether as a substrate was 85.6%, and the yield of bisphenol A type diglycidyl ether as a diepoxy monomer was obtained. It was confirmed that the rate was 33.9% and the yield of monoglycidyl ether was 45.5%.
  • the hydrogen peroxide analysis confirmed that the hydrogen peroxide epoxidation selectivity was 41.1%.
  • Examples 7 to 17, Comparative Example 4 The same operation was performed except that the amounts of acetonitrile, hydrogen peroxide and ethanol used for bisphenol A diallyl ether in Example 6, pH, base and temperature were changed to the values shown in Table 2 below.
  • potassium carbonate in Examples 8 and 14 and sodium hydroxide in Example 13 are manufactured by Junsei Co., Ltd.
  • cesium hydroxide in Example 15 is manufactured by Alfa Aesar, A Johonson Matthey Company, and tetramethyl in Examples 16 and 17.
  • Ammonium hydroxide (TMAH) manufactured by Sigma-Aldrich Japan KK was used.
  • Example 4 it is considered that the pH higher than 11 contributes to the low yield and the epoxidation selectivity of hydrogen peroxide.
  • the conversion rate and yield of Example 8 are lower than those of other Examples. This is a mild reaction condition with a low pH of 9, so side reactions can be suppressed (high epoxidation selectivity (hydrogen peroxide)).
  • the reaction rate is low, and the conversion rate is increased by increasing the reaction time. The yield is considered to be improved.
  • Example 18 to 20, Comparative Example 5 In Examples 18 to 20, the reaction was performed in the same manner as in Example 1 except that the solvent and base conditions in Example 1 were changed to the conditions shown in Table 3 below, and the amount of the solvent was unified to 67% by mass. .
  • the propanol and butanol in Examples 19 and 20 were 1-propanol and 1-butanol manufactured by Junsei Co., Ltd., respectively.
  • Comparative Example 5 the same operation was performed using acetonitrile as a solvent without using alcohol as a solvent. These results are shown in Table 3 together with the results of Example 1 using ethanol as a solvent. In Comparative Example 5 where no alcohol was used as a solvent, the yield of diepoxide was low.
  • Example 20 where butanol was used, the yield of diepoxide was low. This was due to the addition of 45% aqueous hydrogen peroxide and potassium hydroxide / butanol solution to the butanol layer of bisphenol A type diallyl ether as a substrate. This is thought to be due to a slight decrease in solubility.
  • KOH / H 2 O 110 mg / 100 mL
  • the reaction was performed while monitoring the acetonitrile concentration in the system as needed.
  • the reaction solution was diluted with pure water (100 g), and the solvent was distilled off under reduced pressure.
  • the residue was extracted with ethyl acetate (100 g), and pure water (100 g) was added again to carry out a liquid separation operation.
  • Table 4 when the obtained solution was measured by gas chromatography, the conversion rate of bisphenol A type diallyl ether as a substrate was 100%, and the bisphenol A type diglycidyl ether as a diepoxy monomer was converted. It was confirmed that the yield was 87.7% and the yield of monoglycidyl ether was 5.1%.
  • the hydrogen peroxide analysis confirmed that the hydrogen peroxide epoxidation selectivity was 23.9%.
  • Example 22 the amount charged in Example 1 was bisphenol A type diallyl ether (3.02 g, 9.8 mmol, manufactured by Qinyang Tianyi Chemical Co., LTD), acetonitrile (2.41 g, 58.7 mmol, manufactured by Junsei Chemical Co., Ltd.).
  • the reaction was conducted in the same manner as in Example 1 except that ethanol (24.13 g, 523.8 mmol, Junsei Chemical Co., Ltd.) and 45% hydrogen peroxide aqueous solution (6.50 g, 86.0 mmol, Nippon Peroxide Co., Ltd.) were used. It was.
  • Example 21 Although the reaction scale is different between Example 21 and Example 22, the total use ratio of acetonitrile and hydrogen peroxide to bisphenol A type diallyl ether is the same.
  • acetonitrile and hydrogen peroxide were added in two stages.
  • Example 22 it added at once. It can be seen that by adding acetonitrile and hydrogen peroxide, the yield of diepoxide, which is the final target product, is high, and there is an effect of the addition.
  • the method for producing an epoxy compound according to the present invention can produce an epoxy compound from a reaction between an organic compound having a carbon-carbon double bond and hydrogen peroxide in a safe manner, in a high yield, and at a low cost by a simple operation. , Industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Compounds (AREA)

Abstract

 過酸化水素とアセトニトリルを炭素-炭素二重結合を有する有機化合物の炭素-炭素二重結合と反応させる、高効率なエポキシ化合物の製造方法を提供すること。アセトニトリルの存在下、過酸化水素を酸化剤として用いて、炭素-炭素二重結合を有する有機化合物の該炭素-炭素二重結合をエポキシ化するエポキシ化合物の製造方法において、アルコールを含む溶媒を用いて反応系内のアセトニトリルの濃度を0.6~5mol/Lの範囲内に制御しながら反応を進行させることを特徴とするエポキシ化合物の製造方法。

Description

エポキシ化合物の製造方法
 本発明は、エポキシ化合物の製造方法に関する。さらに詳しくは、本発明は、アセトニトリルの存在下、過酸化水素を酸化剤として用いて、炭素-炭素二重結合を有する有機化合物の該炭素-炭素二重結合を高効率でエポキシ化することができるエポキシ化合物の製造方法に関する。
 エポキシ化合物は、1,2-エポキシドのオキシラン環の開環を利用して種々の用途に利用されている。特に、ビスフェノールA型エポキシ樹脂やノボラック型エポキシ樹脂は、半導体封止用材料として量産性、コスト面から、更には耐熱性、耐水性等に優れることから多用されている。
 従来知られているエポキシ化合物は、主に、フェノール性水酸基を有する化合物とエピハロヒドリンとを反応させることにより製造されているが、このようにして製造されたエポキシ化合物中には有機ハロゲンが含まれる。そのため、近年の高集積半導体用の封止材料としては信頼性の観点から適用が困難になっている。かかる背景から、原料としてエピハロヒドリンを使用しないハロゲンフリーのエポキシ化合物の製造方法の開発が盛んに行われており、その一つとしてオレフィンの炭素-炭素二重結合を酸化剤で酸化する方法が知られている。
 酸化剤としては、過酢酸や過安息香酸といった過酸が用いられてきたが、これらの手法では酸化剤由来の酸が当量生成するため、装置の腐食などの問題がある。これに反し過酸化水素は、安価で腐食性がなく、反応後の副生成物は皆無であるか又は水であるために環境負荷が低く、工業的に利用するには優れた酸化剤であるといえる。
 過酸化水素を酸化剤として用いてオレフィン類からエポキシ化合物を製造する方法の一つとして、アルカリ金属の炭酸塩、炭酸水素塩等の塩基性塩化合物の存在下に過酸化水素と有機ニトリル化合物を炭素-炭素二重結合と反応させる方法が知られている(以下、特許文献1~3、非特許文献1を参照のこと)。
 特許文献1には、ポリアリルエーテル化合物をアセトニトリルの存在下、反応系のpHを7.5以上に調節しながら過酸化水素と反応させるエポキシ化合物の製造方法が開示されている。しかしながら、特許文献1には、反応系のpH制御及び反応進行中に過酸化水素を追添することは記載されているが、アセトニトリルの濃度を制御することについては記載されていない。
 特許文献2には、トリシクロペンタジエンと過酸化水素を、ニトリル化合物の存在下、無機酸塩水溶液中で反応させるトリシクロペンタジエンジエポキシドの製造方法が開示されている。しかしながら、特許文献2には、トリシクロペンタジエンジエポキシドの収率と選択率に、反応系のpHが影響することは記載されているが、反応系の過酸化水素及びアセトニトリルの濃度を制御することについては記載されていない。
 特許文献3には、アダマンタン骨格を有するアリルオキシ化合物と、ニトリル化合物と、過酸化水素水とを、塩基性化合物の存在下で反応させるアダマンタン骨格を有するエポキシ化合物の製造方法が開示されている。しかしながら、特許文献3には、反応液のpHを調整することは記載されているが、反応系の過酸化水素及びアセトニトリルの濃度を制御することについては記載されていない。
 非特許文献1には、シスシクロオクテンに、ニトリル化合物と、過酸化水素水とを、炭酸カリウム存在下で反応させるシスシクロオクテンオキサイドの製造方法が開示されている。しかしながら、非特許文献1には、反応進行中の反応系の各成分の濃度を制御することについての詳細な記載はない。
 前記した上記先行技術文献のいずれも、反応開始時の各成分の仕込み量について記載しているものの、反応進行中の反応系のアセトニトリルの濃度を制御することについては何ら記載していない。
特開昭59-227872号公報 特開2004-99445号公報 特開2008-239579号公報
Organic Synthesis,第60巻63-66(1981)
 本発明は、過酸化水素とアセトニトリルを炭素-炭素二重結合を有する有機化合物の炭素-炭素二重結合と反応させる、高効率なエポキシ化合物の製造方法を提供することを課題とする。
 本発明者らは、前記課題を解決するために鋭意研究し、実験を重ねた結果、アセトニトリルの存在下、過酸化水素を酸化剤として用いて、炭素-炭素二重結合を有する有機化合物の該炭素-炭素二重結合をエポキシ化するエポキシ化合物の製造方法において、アルコールを含む溶媒を用いて反応系内のアセトニトリルの濃度を所定の濃度範囲内に制御しながら反応を進行させることにより、高効率でエポキシ化合物が生成することを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりのものである。
 [1]アセトニトリルの存在下、過酸化水素を酸化剤として用いて、炭素-炭素二重結合を有する有機化合物の該炭素-炭素二重結合をエポキシ化するエポキシ化合物の製造方法において、アルコールを含む溶媒を用いて反応系内のアセトニトリルの濃度を0.6~5mol/Lの範囲内に制御しながら反応を進行させることを特徴とするエポキシ化合物の製造方法。
 [2]前記反応に用いる過酸化水素の総使用量に対するアセトニトリルの総使用量の割合(アセトニトリル/過酸化水素(モル比))が0.6~2の範囲内である、前記[1]に記載のエポキシ化合物の製造方法。
 [3]前記反応に用いる炭素-炭素二重結合を有する有機化合物の総使用量に対するアセトニトリルの総使用量の割合(アセトニトリル/炭素-炭素二重結合を有する有機化合物の炭素-炭素二重結合(モル比))が1.2~5の範囲内である、前記[1]または[2]に記載のエポキシ化合物の製造方法。
 [4]前記反応進行中の反応液のpHが9~11の範囲内である、前記[1]~[3]のいずれか1項に記載のエポキシ化合物の製造方法。
 [5]前記アルコールが炭素数1~4のアルコールより選択される少なくとも一種である前記[1]~[4]のいずれか1項に記載のエポキシ化合物の製造方法。
 [6]反応液の温度を20~100℃の範囲に制御する、前記[1]~[5]のいずれか1項に記載のエポキシ化合物の製造方法。
 [7]前記反応の進行に伴い反応系内のアセトニトリルの濃度が0.6mol/L未満となる前に5mol/L以下の濃度となるようにアセトニトリルを追添する、前記[1]~[6]のいずれか1項に記載のエポキシ化合物の製造方法。
 [8]前記炭素-炭素二重結合を有する有機化合物がアリルエーテル基を二個以上有する有機化合物である、前記[1]~[7]のいずれか1項に記載のエポキシ化合物の製造方法。
 [9]前記アリルエーテル基を二個以上有する有機化合物が、ビスフェノールA型ジアリルエーテル、ビスフェノールF型ジアリルエーテル、テトラメチルビフェノールジアリルエーテル、及び脂肪族ポリアリルエーテルからなる群から選択される少なくとも一種である、前記[8]に記載のエポキシ化合物の製造方法。
 [10]前記炭素-炭素二重結合を有する有機化合物がビスフェノールA型ジアリルエーテルおよび/またはビスフェノールF型ジアリルエーテルであり、前記反応系内のアセトニトリルの濃度が0.6~2mol/Lの範囲内である、前記[1]に記載のエポキシ化合物の製造方法。
 [11]前記アセトニトリルが、ソハイオ法によるアクリロニトリル製造の副生成物として得られた粗製アセトニトリルである、前記[1]~[10]のいずれか1項に記載のエポキシ化合物の製造方法。
 本発明のエポキシ化合物の製造方法によれば、炭素-炭素二重結合を有する有機化合物と過酸化水素の反応から簡便な操作で安全に、高収率で、かつ低コストでエポキシ化合物を製造できる。従って、本発明は工業的に多大な効果をもたらす。
 以下、本発明を詳細に説明する。
 本発明に係るエポキシ化合物の製造方法は、アセトニトリルの存在下、過酸化水素を酸化剤として用いて、炭素-炭素二重結合を有する有機化合物(以下、「基質」ということがある)の該炭素-炭素二重結合をエポキシ化するエポキシ化合物の製造方法において、アルコールを含む溶媒を用いて反応系内のアセトニトリルの濃度を0.6~5mol/Lの範囲内に制御しながら反応を進行させることを特徴とする。
 本発明では、酸化剤として過酸化水素を用いるが、過酸化水素源としては過酸化水素水溶液が好適に用いられる。過酸化水素水溶液の濃度には特に制限はないが、一般的には1~80質量%、好ましくは10~60質量%の範囲から選ばれる。工業的な生産性の観点、及び分離の際のエネルギーコストの点からは過酸化水素は高濃度のほうが好ましいが、一方で過度に高濃度の、および/または過剰量の過酸化水素を用いないほうが経済性、安全性などの観点で好ましい。
 過酸化水素の使用量には特に制限はない。反応系内の過酸化水素濃度は反応の進行に伴い減少する。この減少に対し追添補充することにより反応系内の過酸化水素濃度を1~30質量%、より好ましくは2~10質量%の範囲内に保持することが好ましい。1質量%より少ないと生産性が悪くなり、一方、30質量%より多いとアルコールと水の混合組成中での爆発性が高まり危険となる場合がある。なお、反応初期に反応系内に多量の過酸化水素を仕込むと反応が急激に進行し危険な場合があるため、後述するように過酸化水素は反応系内にゆっくり添加することが好ましい。
 本発明に係るエポキシ化合物の製造方法に用いるアセトニトリルの反応系内の濃度は、0.6~5mol/Lの範囲内となるように、反応の進行中、制御される。アセトニトリルの存在下、過酸化水素を酸化剤として用いて、炭素-炭素二重結合を有する有機化合物の該炭素-炭素二重結合をエポキシ化するエポキシ化合物の製造方法においては、アセトニトリルと過酸化水素が反応して酸化活性種(過イミド酸)が生成し、この酸化活性種により炭素-炭素二重結合が酸化されると考えられる。したがって、この反応におけるアセトニトリルの理論必要量は、有機化合物の炭素-炭素二重結合量と当量(等モル)であり、反応の進行に伴い反応系内のアセトニトリルの濃度は低下する。反応系内の濃度が0.6mol/L未満となると収率が低下し、一方、5mol/Lを超えると過酸化水素のエポキシ化選択率が低下する傾向があり、またコスト高となるため好ましくない。そのため、反応を開始する際の初期濃度を上記濃度範囲に設定し、反応の進行中濃度をモニタリングし、濃度が上記下限値を下回る前に上限値を超えない範囲で追添することにより濃度を制御することが好ましい。該濃度は0.7mol/L以上であることが好ましく、一方で2mol/L以下であることが好ましい。
 また、本発明に係るエポキシ化合物の製造方法においては、反応系内にアルコールを溶媒として共存させる。アルコールは、基質(炭素-炭素二重結合を有する有機化合物)の溶媒として、さらには基質の粘度が高い場合に基質への過酸化水素の移動速度を高めるための粘度希釈剤として機能する。また、アルコールは、過酸化水素源として過酸化水素水溶液を用い、かつ基質(炭素-炭素二重結合を有する有機化合物)の親水性が低い場合に、基質およびアセトニトリルを含む有機層と過酸化水素を含む水層を均一系にして反応速度を高める。この場合、アルコールを共存させないあるいは使用量が不足すると反応系に二層分離が起こり、結果として過酸化水素のエポキシ化選択率が低下する。アルコールとしては、炭素数1~4のアルコールが好ましく、より好ましくは炭素数1~4の1級アルコール、さらに好ましくはメタノール、エタノール、1-プロパノールである。炭素-炭素二重結合を有する有機化合物としてビスフェノールA型ジアリルエーテルおよび/またはビスフェノールF型ジアリルエーテルを用いる場合、これらはアルコールおよびアセトニトリルのいずれにも溶解するが、アセトニトリルの使用量が過剰になるとコスト高となる。これに対して、本発明に係るエポキシ化合物の製造方法においては、安価なアルコールの使用量を相対的に多くすることで反応系に使用するアセトニトリルの量を少なくすることができ、また、反応系内のアセトニトリルの濃度を0.6~5mol/Lの範囲内に制御することで基質の高い転化率が得られる。また、前記反応に用いるアセトニトリルの総使用量は前記過酸化水素の総使用量に対して0.6~2倍(モル比)とすることが好ましく、0.65~1.85倍とすることがより好ましい。
 アセトニトリルの反応開始時の仕込み量は、炭素-炭素二重結合を有する有機化合物の二重結合数を基準として、1.2~5モル当量の範囲とすることが好ましく、1.5~3モル当量がより好ましい。1.2モル当量より少ないと収率が低下し、一方、5モル当量より多くしても、過酸化水素のエポキシ化選択率が低下する傾向があり、またコスト高となるため好ましくない。アセトニトリルの反応開始時の仕込み量は、上記反応進行中の反応系内の濃度範囲である0.6~5mol/Lを満たすものでなければならない。なお、反応中にアセトニトリルを追添する場合反応に用いる炭素-炭素二重結合を有する有機化合物の総使用量に対するアセトニトリルの総使用量の割合(アセトニトリル/炭素-炭素二重結合を有する有機化合物の炭素-炭素二重結合(モル比))も上記範囲、すなわち1.2~5を満たすことが好ましく、より好ましくは1.5~3である。本発明で使用するアセトニトリルの由来は特に制限はなく、市販品のほか、例えばソハイオ法によるアクリロニトリルの製造時に副生成物として得られる粗製アセトニトリル等を使用してもよい。粗製アセトニトリルを使用することにより製造コストの低減が図れる。
 ソハイオ(気相接触アンモ酸化反応)法とは、触媒の存在下、プロピレンあるいはプロパンにアンモニアと酸素を反応させ、反応ガスを分離、精製することでアクリロニトリルを製造する気相接触酸化方法であり、プロピレンを使用する場合には以下の反応式であらわされる。
      CH3-CH=CH2 + NH3 + 1.5 O2 → CH2=CH-C≡N + 3 H2O
 上記反応において、シアン化水素 (HCN)、水、その他の不純物とともに粗製アセトニトリルが副生成物として得られる(例えば、特開2004-10579号公報、特開2009-102388号公報参照)。この副生成物として得られた粗製アセトニトリルは数多くの不純物を有しており、その成分の相対的な割合は、種々の条件に依存して広範囲に変化し得る。通常、アクリロニトリルプラントから得られた粗製アセトニトリルの組成は、例えば質量基準で水10%~30%、アセトニトリル25%~85%であるが、この範囲に限定されるものではない。代表的には、粗製アセトニトリルは、質量基準で、約81%のアセトニトリル、約17%の水、約0.5%のシアン化水素、約0.1%のアクリロニトリルおよび約1.4%の他の有機不純物を含む。
 本発明に係るエポキシ化合物の製造方法において、反応液のpHを9~11とすることが好ましく、より好ましくは9.5~11、さらに好ましくは10~11の範囲である。pHが9より低いと反応速度が低下するため、生産性が悪くなり、一方、11より高い場合、反応が急激に進行し危険であり収率も低下するため好ましくない。炭素-炭素二重結合を有する有機化合物として炭素-炭素二重結合を二つ有する化合物を使用する場合、反応系のpHによりジエポキシドの収率と選択性が影響されるが、pHが10~11の範囲内であるとジエポキシドの収率と選択性がともに高くなるため好ましい。
 反応系内のpH調整に用いられる塩基性塩化合物としては、例えば、炭酸カリウム、炭酸水素カリウム、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等の無機塩基塩やカリウムメトキシド、カリウムエトキシド、ナトリウムメトキシド、ナトリウムエトキシド、水酸化テトラメチルアンモニウム等の有機塩基塩が挙げられる。炭酸カリウム、炭酸水素カリウム、水酸化カリウム、水酸化ナトリウム、カリウムメトキシド、カリウムエトキシド、ナトリウムメトキシド、ナトリウムエトキシドは、pH調整が容易である点で好ましい。水酸化カリウムや水酸化ナトリウムは水やアルコールへの溶解性が高く、反応性も良いためより好ましい。
 前記した塩基性塩化合物は、水溶液又はアルコール溶液として用いることができる。アルコール溶液の溶媒として用いられるアルコールには、メタノール、エタノール、プロパノール、ブタノール等が挙げられ、前述の反応溶媒と同一のものを使用することが好ましい。塩基性塩化合物の溶液は、反応液のpHが過酸化水素の添加に伴い9を下回らないように追加することが好ましく、このとき反応液の温度が20~100℃の範囲で、より好ましくは25~60℃の範囲を保持するように追加することが好ましい。
 本発明に係るエポキシ化合物の製造方法において、反応温度は、通常、20~100℃の範囲、好ましくは25~60℃の範囲で行われる。また、反応時間は、反応温度により左右され、一概に定めることはできないが、通常は4~48時間の範囲、好ましくは4.5~32時間の範囲で行われる。
 本発明に係るエポキシ化合物の製造方法によりエポキシ化される基質としては、炭素-炭素二重結合を持った有機化合物であれば特に制限はないが、アリルエーテル基を有する有機化合物が好ましい。ここでいう「アリルエーテル基」とは「C=C-C-O-」結合、すなわちアリルオキシ基を意味する。化合物中に含まれる炭素-炭素二重結合数は1つであってもよいし、2つ以上であってもよい。炭素-炭素二重結合数が1つの化合物としては、フェニルアリルエーテル、クレゾールモノアリルエーテル、シクロオキセン、シクロオクテン等が例示できる。また、炭素-炭素二重結合数が2つ以上の化合物としては、3,4-シクロヘキセニルメチル-3’,4’-シクロヘキセンカルボキシレート、ノボラック型フェノール系樹脂のアリルエーテル化合物、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル等が例示できる。
 前記したように、反応液のpHを9~11、好ましくは10~11の範囲内に制御することにより、特に複数の炭素-炭素二重結合を有する有機化合物、例えばアリルエーテル基を二個以上有する有機化合物を使用する場合に、対応するポリエポキシドを高い収率と選択性で得ることができる。特に、芳香環を有し、かつ、アリルエーテル基を二個以上有する以下の一般式:
Figure JPOXMLDOC01-appb-C000001
{式中、R1、及びR2は、各々独立して、水素原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、シクロアルキル基、例えば炭素数3~12のシクロアルキル基、又はアリール基、例えば炭素数6~10のアリール基であり、あるいは、R1とR2は一緒になって炭素数2~6のアルキリデン基又は炭素数3~12のシクロアルキリデン基を形成してもよい。R3、R4、R5、及びR6は、各々独立して、水素原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、シクロアルキル基、例えば炭素数3~12のシクロアルキル基、又はアリール基、例えば炭素数6~10のアリール基であり、そして、nは0又は1の整数を表す。}で表される化合物を使用することが好ましい。ここでnが0の場合は、2つのベンゼン環が直接結合している(ビフェニル骨格を形成している)ことを示す。
 このような有機化合物としては、具体的には、ビスフェノールA型ジアリルエーテル、例えばビスフェノール-Aジアリルエーテル、2,6,2’,6’-テトラメチルビスフェノール-Aジアリルエーテル、2,2’-ジアリルビスフェノール-Aジアリルエーテル、2,2’-ジ-t-ブチルビスフェノール-Aジアリルエーテルなど、ビスフェノールF型ジアリルエーテル、例えばビスフェノール-Fジアリルエーテルなど、2,6,2’,6’-テトラメチルビフェノールジアリルエーテル、2,2’-ジイソプロピルビフェノールジアリルエーテル、4,4’-エチリデンビスフェノールジアリルエーテル、4,4’-シクロヘキシリデンビスフェノールジアリルエーテル、4,4’-(1-α-メチルベンジリデン)ビスフェノールジアリルエーテル、4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビスフェノールジアリルエーテル、4,4’-(1-メチル-ベンジリデン)ビスフェノールジアリルエーテルなどが挙げられる。
 芳香環を有し、かつ、アリルエーテル基を二個有するビフェノール型ジアリルエーテルとしては、具体的には、2,2’-ビフェニルジアリルエーテル、テトラメチルビフェニルジアリルエーテルなどが挙げられる。
 アリルエーテル基を二個有する脂肪族ポリアリルエーテルとしては、具体的には、1,5-ペンタンジオールジアリルエーテル、1,6-ヘキサンジオールジアリルエーテル、1,9-ノナンジオールジアリルエーテル、1,10-デカンジオールジアリルエーテル、ネオペンチルグリコールジアリルエーテルなどが挙げられる。
 アリルエーテル基を二個有する脂環式ポリアリルエーテルとしては、具体的には、1,4-シクロヘキサンジメタノールジアリルエーテル、トリシクロ[5.2.1.02,6]デカンジメタノールジアリルエーテルなどが挙げられる。
 アリルエーテル基を二個以上有する有機化合物が、ビスフェノールA型ジアリルエーテル、ビスフェノールF型ジアリルエーテル、テトラメチルビフェノールジアリルエーテル、及び脂肪族ポリアリルエーテルからなる群から選択されることが好ましい。
 本発明に係るエポキシ化合物の製造方法においては、通常、炭素-炭素二重結合を有する有機化合物の濃度は0.2~2mol/Lの範囲、好ましくは0.3~1.5mol/Lの範囲になるように調整する。反応系内の基質濃度が0.2mol/L未満となると生産性が低下し、一方、2mol/Lを超えると収率が低下するため好ましくない。
 また、エポキシ化を行う方法としては工業的に安定に生産を行うことを考えると、アセトニトリルと基質を最初に反応器に仕込み、反応温度を極力一定に保ちつつ、過酸化水素については反応で消費されているのを確認しながら、徐々に加えることが好ましい。このような方法を採れば、反応器内で過酸化水素が異常分解して酸素ガスが発生したとしても、過酸化水素の蓄積量が少なく圧力上昇を最小限に留めることができる。過酸化水素は高アルカリ雰囲気下で分解が活発に起こるため、反応初期の段階ではpHを9~10程度とし、過酸化水素の添加とともに必要に応じて徐々に反応液のpHを10~11程度に制御することが好ましい。
 反応終了後、反応液を純水で希釈するか、又は反応液に必要に応じて硫酸等の酸を加えて中和後に純水で希釈するかした後に、溶媒を留去し、残分を酢酸エチル等の有機溶媒で抽出する。このようにして水層と分離した有機層を濃縮した後、蒸留、クロマト分離、再結晶や昇華等の通常の方法によって、得られたエポキシ化合物を取り出すことができる。
 以下、実施例により本発明を具体的に説明するが、本発明は以下の実施例に制限されるものではない。
[実施例1]
 反応熱量計 (メトラートレド製、MultiMax) の50mL セパラブルフラスコに、ビスフェノールA型ジアリルエーテル(5.00g、16.2mmol、Qin yang Tianyi Chemical Co., LTD製)、アセトニトリル(2.67g、65.0mmol、純正化学株式会社製)、及びエタノール (26.41g、573.4mmol、純正化学株式会社製) を仕込んだ。この段階での系内のアセトニトリル濃度は1.56mol/Lであり、pH=7.4であった。続いて水酸化カリウム(和光純薬工業株式会社製)/エタノール溶液 (KOH/EtOH = 250mg/mL)を加え pH=9 に到達させた後、pH が9を下回らないよう水酸化カリウム/エタノール溶液を滴下しながら、45%過酸化水素水溶液 (5.39g、71.3 mmol、日本パーオキサイド株式会社製) を 30 分かけて滴下した後(この段階での系内のアセトニトリル濃度 1.36mol/L、pH=9.3)、反応温度が30℃を超えないよう水酸化カリウム/エタノール溶液を滴下し、pHを過酸化水素水溶液滴下終了時点から2時間かけて10.5 に到達させ、さらにpH10.5に制御しながら2 時間攪拌(撹拌速度:1500rpm)して、反応を終了させた(反応終了時の系内のアセトニトリル濃度 0.72mol/L)。反応は系内のアセトニトリル濃度を随時モニタリングしながら行なった。反応液に、15質量%H2SO4 水溶液を加えて中和した後、さらに純水(10g) を加えて希釈し、減圧下、溶媒留去した。残渣を酢酸エチル(10g)により抽出した。以下の表1に示すように、得られた溶液をガスクロマトグラフィーにて測定したところ、基質であるビスフェノールA型ジアリルエーテルの転化率は 95.0%であり、ジエポキシモノマーであるビスフェノールA型ジグリシジルエーテルの収率は49.9%、モノグリシジルエーテルの収率は38.6%であったことを確認した。なお、塩基性条件下では過酸化水素は自己分解を伴うため、エポキシ化反応により消費された割合を確認するため系内の残存濃度の測定を行った。その結果、過酸化水素のエポキシ化選択率が46.3%であったことを確認した。ここでのエポキシ化選択率は、過酸化水素の消費量に対して基質中のアリルエーテル基の二重結合がエポキシ化された割合を示している。なお、反応液中のアセトニトリルの濃度の測定については、ガスクロマトグラフィーにて液中のアセトニトリルの定量(mol)を行い、次いで各成分の仕込み重量を比重により換算し体積(L)を求め、これらの値から各段階におけるアセトニトリル濃度(mol/L)を算出した。
 また、転化率、収率、過酸化水素のエポキシ化選択率もガスクロマトグラフィーにて分析した結果をもとに、以下の通り算出した。
   転化率(%)=(1-残存した基質のモル数/使用した基質のモル数)×100
   収率(%)=(目的化合物のモル数/使用した基質のモル数)×100
 収率は検量線により目的化合物の質量を求め、モル数に換算した。
   過酸化水素のエポキシ化選択率(%)=〔{(ジグリシジルのモル数×2)+
モノグリシジルのモル数}/消費された過酸化水素のモル数〕×100
 過酸化水素の残存濃度は、ヨウ素電量滴定法(逆滴定法)を原理とした過酸化水素カウンタ HP-300(平沼産業株式会社製)を測定装置として用いて求めた。
[実施例2~5、比較例1~3]
 実施例1におけるビスフェノールA型ジアリルエーテルに対するアセトニトリル、過酸化水素及びエタノールの使用量を、以下の表1に示す量に変更した以外、同様に操作を行った。実施例1の結果と合わせて結果を以下の表1に示す。比較例1に示すように、反応中に系内のアセトニトリルの量が0.6mol/Lより少なくなると最終目的物であるジエポキサイドの収率が低くなることが分かる。一方、比較例2と3に示すように、反応中に系内のアセトニトリルの量が5mol/Lより過剰となるように用いてもジエポキサイドの収率の顕著な向上は認められず、過酸化水素のエポキシ化選択率は低下していることが分かる。
Figure JPOXMLDOC01-appb-T000002
[実施例6]
 反応熱量計 (メトラートレド製、MultiMax) の 50mLセパラブルフラスコに、ビスフェノールA型ジアリルエーテル(5.01g、16.2mmol、Qin yang Tianyi Chemical Co., LTD製)、アセトニトリル(2.01g、49.0mmol、純正化学株式会社製)、及びエタノール (22.44g、487.1mmol、純正化学株式会社製) を仕込んだ。この段階での系内のアセトニトリル濃度は1.37mol/Lであり、pH=8.2であった。反応温度を 30℃ に保ち、水酸化カリウム(和光純薬工業株式会社製)/エタノール溶液 (KOH/EtOH = 250mg/mL) により pH を 10.5 に到達させた後、反応終了時まで水酸化カリウム/エタノール溶液を随時添加し pH を 10.5 に制御しながら45%過酸化水素水溶液(4.04g、53.5mmol、日本パーオキサイド株式会社製) を 30 分かけて滴下し(この段階での系内のアセトニトリル濃度 1.19mol/L)、その後4 時間攪拌(撹拌速度:1500rpm)して反応を終了させた(反応終了時の系内のアセトニトリル濃度 0.67mol/L)。反応は系内のアセトニトリル濃度を随時モニタリングしながら行なった。反応液に15質量%H2SO4水溶液を加えて中和した後、さらに純水(10g) を加えて希釈し、減圧下、溶媒を留去した。残渣を酢酸エチル(10g)により抽出した。得られた溶液をガスクロマトグラフィーにて測定したところ、表2に示すように基質であるビスフェノールA型ジアリルエーテルの転化率は85.6% であり、ジエポキシモノマーであるビスフェノールA型ジグリシジルエーテの収率は33.9%、モノグリシジルエーテルの収率は45.5% であることを確認した。また過酸化水素の分析により、過酸化水素のエポキシ化選択率が41.1%であったことを確認した。
[実施例7~17、比較例4]
 実施例6におけるビスフェノールA型ジアリルエーテルに対するアセトニトリル、過酸化水素及びエタノールの使用量、pH、塩基及び温度を、以下の表2に示す値に変更した以外、同様に操作を行った。なお、実施例8,14における炭酸カリウムおよび実施例13における水酸化ナトリウムは純正化学株式会社製、実施例15における水酸化セシウムはAlfa Aesar, A Johonson Matthey Company製、実施例16,17におけるテトラメチルアンモニウムヒドロキシド(TMAH)はSigma-Aldrich Japan K. K. 製のものを各々使用した。実施例6の結果と合わせてこれらの結果を以下の表2に示す。比較例4では、pHが11より高いことが収率及び過酸化水素のエポキシ化選択率が低い一因となっていると考えられる。なお、実施例8は他の実施例に比べて転化率、収率が低くなっている。これはpHが9と低く温和な反応条件であるため副反応は抑えられる(エポキシ化選択率(過酸化水素)が高い)反面反応速度が低下しており、反応時間を長くすることで転化率、収率が向上すると考えられる。
Figure JPOXMLDOC01-appb-T000003
[実施例18~20、比較例5]
 実施例18~20では、実施例1における溶媒と塩基条件を、以下の表3に示す条件に変更し、溶媒の量を67質量%に統一した以外、実施例1と同様に反応を行った。なお、実施例19および20におけるプロパノールおよびブタノールは、各々純正化学株式会社製の1-プロパノールおよび1-ブタノールを使用した。また、比較例5では、溶媒としてアルコールを使用せずアセトニトリルを溶媒として用いて同様の操作を行った。これらの結果を溶媒としてエタノールを使用した実施例1の結果と合わせて表3に示す。溶媒としてアルコールを使用しなかった比較例5ではジエポキサイドの収率が低かった。なお、ブタノールを使用した実施例20ではジエポキサイドの収率が低いが、これは、45%過酸化水素水溶液と水酸化カリウム/ブタノール溶液の滴下により基質であるビスフェノールA型ジアリルエーテルのブタノール層に対する溶解性がやや低下したためと考えられる。
Figure JPOXMLDOC01-appb-T000004
[実施例21]
 1L 4径ナス型フラスコに、ビスフェノールA型ジアリルエーテル (50.05g、162.3mmol Qin yang Tianyi Chemical Co., LTD製)、アセトニトリル (26.63g、648.7 mmol、純正化学株式会社製)、エタノール(265.1g、5754.2 mmol、純正化学株式会社製)を量りとった(この段階での系内のアセトニトリル濃度 1.55mol/L、pH=8.2)。その後、和工純薬工業株式会社製水酸化カリウムを用いて調製した飽和水酸化カリウム水溶液(KOH/H2O = 110mg/100mL)を加え pH を 9 に到達させた後、pH が 9を下回らないよう飽和水酸化カリウム水溶液を滴下しながら、45%過酸化水素水溶液(53.92g、713.5mmol、日本パーオキサイド株式会社製)を100mL 滴下漏斗により2時間かけて滴下した(この段階での系内のアセトニトリル濃度 1.18mol/L、pH=9.2)。反応温度が30℃を超えないように飽和水酸化カリウム水溶液を滴下し、pHを過酸化水素水滴下終了時点から2時間かけて10.5 に到達させ、さらにpHを10.5に制御しながら2時間攪拌した(この段階での系内のアセトニトリル濃度 0.61mol/L に低下)。続いて50mL 滴下漏斗にアセトニトリル (13.31g、324.2 mmol) を量りとり、2時間かけて滴下(追添)した(この段階での系内のアセトニトリル濃度0.91mol/L )。これと同時に45%過酸化水素水溶液 (53.92g、713.5 mmol) を100mL 滴下漏斗により4時間かけて滴下(追添)した後、pHを 10.5 に制御しながら、さらに4時間攪拌して反応を終了させた(反応終了時のアセトニトリル濃度 0.62mol/L)。反応は系内のアセトニトリル濃度を随時モニタリングしながら行なった。反応液に、純水 (100g) を加えて希釈し、減圧下、溶媒を留去した。残渣を酢酸エチル(100g) により抽出した後、再び純水 (100g) を加えて分液操作を行った。表4に示すように、得られた溶液をガスクロマトグラフィーにて測定したところ、基質であるビスフェノールA型ジアリルエーテルの転化率は 100 % であり、ジエポキシモノマーであるビスフェノールA型ジグリシジルエーテルの収率は87.7%、モノグリシジルエーテルの収率は5.1% であったことを確認した。また過酸化水素の分析により、過酸化水素のエポキシ化選択率は23.9%であることを確認した。
[実施例22]
 本実施例では、実施例1における仕込み量を、ビスフェノールA型ジアリルエーテル (3.02g、9.8mmol、Qin yang Tianyi Chemical Co., LTD製)、アセトニトリル(2.41g、58.7mmol、純正化学株式会社製)、エタノール(24.13g、523.8mmol、純正化学株式会社製)、45%過酸化水素水溶液 (6.50g、86.0mmol、日本パーオキサイド株式会社製)に変更した以外、実施例1と同様に反応を行った。この際、反応経過によるアセトニトリル濃度の変動については、初期:1.61mol/L、過酸化水素滴下後:1.36mol/L、反応終了時:0.60mol/Lであった。反応成績はガスクロマトグラフィーによる分析から、基質であるビスフェノールA型ジアリルエーテルの転化率は 99.8% であり、ジエポキシモノマーであるビスフェノールA型ジグリシジルエーテルの収率は70.4%、モノグリシジルエーテルの収率は19.2 %であったことを確認した。また過酸化水素の分析により、過酸化水素のエポキシ化選択率は20.8%であることを確認した。
 実施例21と実施例22の結果を合わせて、以下の表4に示す。
Figure JPOXMLDOC01-appb-T000005
 実施例21と実施例22では反応スケールは異なるが、ビスフェノールA型ジアリルエーテルに対するアセトニトリル及び過酸化水素の総使用割合は同じであり、実施例21ではアセトニトリル及び過酸化水素を2段階で添加したのに対し、実施例22では1回でまとめて添加した。アセトニトリル及び過酸化水素を追添することで最終目的物であるジエポキサイドの収率が高くなっており、追添の効果があることが分かる。
[実施例23]
 磁気攪拌子を備えた 500mL 3径ナス型フラスコに、シクロヘキサンジメタノールジアリルエーテル (100.0g、0.45 mol、旭化学工業株式会社製)、アセトニトリル (73.2g、1.78 mol、純正化学株式会社製)、メタノール(92.9g、2.90 mol、純正化学株式会社製)を量りとった(この段階での系内のアセトニトリル濃度 4.50 mol/L、pH=8.2)。水浴を用いて系内の温度を35℃に加温し、飽和水酸化カリウム水溶液(KOH/H2O = 110mg/100mL) により pH を 10.5 に到達させた。反応終了時まで、反応温度が40℃を超えないように飽和水酸化カリウム水溶液を随時添加し pH を 10.75~10.25 の範囲に制御した。45%過酸化水素水溶液(101.1g、1.34mol、日本パーオキサイド株式会社製)を300mL 滴下漏斗により16時間かけて滴下後(この段階での系内のアセトニトリル濃度 2.54mol/L)、さらに10時間攪拌して反応を終了させた(反応終了時のアセトニトリル濃度 2.14mol/L)。反応は系内のアセトニトリル濃度を随時モニタリングしながら行なった。反応液をガスクロマトグラフィーにて測定したところ、基質であるシクロヘキサンジメタノールジアリルエーテルの転化率は 100 % であり、ジエポキシであるシクロヘキサンジメタノールジグリシジルエーテルの収率は88.5%、モノグリシジルエーテルの収率は2.6% であることを確認した。また過酸化水素の分析により、過酸化水素のエポキシ化選択率は73.8%であることを確認した。
[実施例24]
 磁気攪拌子を備えた 300mL 3径ナス型フラスコに、シクロヘキサンジメタノールジアリルエーテル (50.0g、0.22 mol、旭化学工業株式会社製)、ソハイオ法によるアクリロニトリル製造の副生成物として得られた純度82%の粗製アセトニトリル (33.7g、0.67 mol)、メタノール(46.4g、2.90 mol、純正化学株式会社製)を量りとった(この段階での系内のアセトニトリル濃度 3.44 mol/L、pH=6.3)。水浴を用いて系内の温度を35℃に加温し、水酸化カリウム/メタノール溶液 (KOH/MeOH = 250mg/mL) により pH を 10.5 に到達させた。反応終了時まで、反応温度が40℃を超えないように水酸化カリウム/メタノール溶液を随時添加し pH を 10.75~10.25 の範囲に制御した。45%過酸化水素水溶液(50.5g、0.67mol、日本パーオキサイド株式会社製)を 100mL 滴下漏斗により16時間かけて滴下後(この段階での系内のアセトニトリル濃度 1.20 mol/L)、さらに14時間攪拌して反応を終了させた(反応終了時のアセトニトリル濃度 0.88mol/L)。反応は系内のアセトニトリル濃度を随時モニタリングしながら行なった。反応液をガスクロマトグラフィーにて測定したところ、基質であるシクロヘキサンジメタノールジアリルエーテルの転化率は 99.9 % であり、ジエポキシであるシクロヘキサンジメタノールジグリシジルエーテルの収率は79.8%、モノグリシジルエーテルの収率は2.9% であることを確認した。また過酸化水素の分析により、過酸化水素のエポキシ化選択率は65.4%であることを確認した。
 ビスフェノールA型ジアリルエーテルに比べシクロヘキサンジメタノールジアリルエーテルはアルコール溶媒に対する溶解度が高いため、必要なアルコールの量を減らすことが可能である。そのため、実施例1~22における、ビスフェノールA型ジアリルエーテルを基質とする反応に比べ、実施例23~24でのシクロヘキサンジメタノールジアリルエーテルを基質とする反応では、反応に適したアセトニトリル濃度の上限が高くなる。
 本発明に係るエポキシ化合物の製造方法は、炭素-炭素二重結合を有する有機化合物と過酸化水素の反応から簡便な操作で安全に、高収率で、かつ低コストでエポキシ化合物を製造できるため、工業的に有用である。

Claims (11)

  1.  アセトニトリルの存在下、過酸化水素を酸化剤として用いて、炭素-炭素二重結合を有する有機化合物の該炭素-炭素二重結合をエポキシ化するエポキシ化合物の製造方法において、アルコールを含む溶媒を用いて反応系内のアセトニトリルの濃度を0.6~5mol/Lの範囲内に制御しながら反応を進行させることを特徴とするエポキシ化合物の製造方法。
  2.  前記反応に用いる過酸化水素の総使用量に対するアセトニトリルの総使用量の割合(アセトニトリル/過酸化水素(モル比))が0.6~2の範囲内である、請求項1に記載のエポキシ化合物の製造方法。
  3.  前記反応に用いる炭素-炭素二重結合を有する有機化合物の総使用量に対するアセトニトリルの総使用量の割合(アセトニトリル/炭素-炭素二重結合を有する有機化合物の炭素-炭素二重結合(モル比))が1.2~5の範囲内である、請求項1または2に記載のエポキシ化合物の製造方法。
  4.  前記反応進行中の反応液のpHが9~11の範囲内である、請求項1~3のいずれか1項に記載のエポキシ化合物の製造方法。
  5.  前記アルコールが炭素数1~4のアルコールより選択される少なくとも一種である請求項1~4のいずれか1項に記載のエポキシ化合物の製造方法。
  6.  反応液の温度を20~100℃の範囲に制御する、請求項1~5のいずれか1項に記載のエポキシ化合物の製造方法。
  7.  前記反応の進行に伴い反応系内のアセトニトリルの濃度が0.6mol/L未満となる前に5mol/L以下の濃度となるようにアセトニトリルを追添する、請求項1~6のいずれか1項に記載のエポキシ化合物の製造方法。
  8.  前記炭素-炭素二重結合を有する有機化合物がアリルエーテル基を二個以上有する有機化合物である、請求項1~7のいずれか1項に記載のエポキシ化合物の製造方法。
  9.  前記アリルエーテル基を二個以上有する有機化合物が、ビスフェノールA型ジアリルエーテル、ビスフェノールF型ジアリルエーテル、テトラメチルビフェノールジアリルエーテル、及び脂肪族ポリアリルエーテルからなる群から選択される少なくとも一種である、請求項8に記載のエポキシ化合物の製造方法。
  10.  前記炭素-炭素二重結合を有する有機化合物がビスフェノールA型ジアリルエーテルおよび/またはビスフェノールF型ジアリルエーテルであり、前記反応系内のアセトニトリルの濃度が0.6~2mol/Lの範囲内である、請求項1に記載のエポキシ化合物の製造方法。
  11.  前記アセトニトリルが、ソハイオ法によるアクリロニトリル製造の副生成物として得られた粗製アセトニトリルである、請求項1~10のいずれか1項に記載のエポキシ化合物の製造方法。
PCT/JP2010/072801 2009-12-24 2010-12-17 エポキシ化合物の製造方法 WO2011078091A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080058515.7A CN102666519B (zh) 2009-12-24 2010-12-17 环氧化合物的制造方法
EP10839321.6A EP2518061B1 (en) 2009-12-24 2010-12-17 Process for production of epoxy compound
JP2011547522A JP5787770B2 (ja) 2009-12-24 2010-12-17 エポキシ化合物の製造方法
US13/515,707 US8993791B2 (en) 2009-12-24 2010-12-17 Process for producing epoxy compounds
KR1020127009231A KR101433066B1 (ko) 2009-12-24 2010-12-17 에폭시 화합물의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-292188 2009-12-24
JP2009292188 2009-12-24

Publications (1)

Publication Number Publication Date
WO2011078091A1 true WO2011078091A1 (ja) 2011-06-30

Family

ID=44195617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072801 WO2011078091A1 (ja) 2009-12-24 2010-12-17 エポキシ化合物の製造方法

Country Status (7)

Country Link
US (1) US8993791B2 (ja)
EP (1) EP2518061B1 (ja)
JP (1) JP5787770B2 (ja)
KR (1) KR101433066B1 (ja)
CN (1) CN102666519B (ja)
TW (1) TWI523846B (ja)
WO (1) WO2011078091A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034610A (ko) 2016-11-07 2019-04-02 쇼와 덴코 가부시키가이샤 다가 글리시딜 화합물의 제조 방법
US20220088504A1 (en) * 2019-12-25 2022-03-24 Changchun Institute Of Applied Chemistry, Chinese Academy Of Science Method for efficiently inducing phase separation of water-organic solvent mixed solution through inorganic salt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073939B (zh) 2013-04-02 2018-11-09 昭和电工株式会社 导电性粘合剂、各向异性导电膜以及使用它们的电子设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227872A (ja) 1983-06-08 1984-12-21 Sumitomo Chem Co Ltd エポキシ化合物の製造方法
JPS62114979A (ja) * 1985-11-13 1987-05-26 Sanyo Kokusaku Pulp Co Ltd オレフインのエポキシ化法
JPH0881402A (ja) * 1994-09-12 1996-03-26 Sumitomo Chem Co Ltd 3,4−カランジオールの製造法
JPH10212281A (ja) * 1996-11-26 1998-08-11 Sumitomo Chem Co Ltd 3−カランエポキシドの製造法
JP2004010579A (ja) 2002-06-11 2004-01-15 Asahi Kasei Corp アクリロニトリルの製造方法
JP2004508285A (ja) * 2000-03-10 2004-03-18 ソルヴェイ オキシラン化合物の製造方法
JP2004099445A (ja) 2002-09-04 2004-04-02 Maruzen Petrochem Co Ltd トリシクロペンタジエンジエポキシド
JP2004238331A (ja) * 2003-02-06 2004-08-26 Nippon Steel Chem Co Ltd 2−ナフチルエタノール及び2−ナフチルオキシランの製造方法
JP2006028057A (ja) * 2004-07-14 2006-02-02 Nippon Steel Chem Co Ltd 液状エポキシ化合物の製造方法
JP2008239579A (ja) 2007-03-28 2008-10-09 Tokuyama Corp エポキシ化合物の製造方法
JP2009102388A (ja) 1998-02-23 2009-05-14 Ineos Usa Llc アセトニトリルの改善された精製および回収

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3053856A (en) * 1958-10-29 1962-09-11 Shell Oil Co Epoxidation of ethylenic compounds with peroxycarboximidic acids
JPH07206835A (ja) * 1994-01-26 1995-08-08 Idemitsu Kosan Co Ltd スチレンオキシド誘導体の製造方法
TW297811B (ja) 1994-09-12 1997-02-11 Sumitomo Chemical Co
JP2002517387A (ja) * 1998-05-29 2002-06-18 ザ ダウ ケミカル カンパニー アリールアリルエーテルのエポキシ化法
CN1176082C (zh) * 2003-03-17 2004-11-17 中国科学院广州化学研究所 α-蒎烯的环氧化方法
JP4648691B2 (ja) * 2004-12-02 2011-03-09 長瀬産業株式会社 光学活性な化合物の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227872A (ja) 1983-06-08 1984-12-21 Sumitomo Chem Co Ltd エポキシ化合物の製造方法
JPS62114979A (ja) * 1985-11-13 1987-05-26 Sanyo Kokusaku Pulp Co Ltd オレフインのエポキシ化法
JPH0881402A (ja) * 1994-09-12 1996-03-26 Sumitomo Chem Co Ltd 3,4−カランジオールの製造法
JPH10212281A (ja) * 1996-11-26 1998-08-11 Sumitomo Chem Co Ltd 3−カランエポキシドの製造法
JP2009102388A (ja) 1998-02-23 2009-05-14 Ineos Usa Llc アセトニトリルの改善された精製および回収
JP2004508285A (ja) * 2000-03-10 2004-03-18 ソルヴェイ オキシラン化合物の製造方法
JP2004010579A (ja) 2002-06-11 2004-01-15 Asahi Kasei Corp アクリロニトリルの製造方法
JP2004099445A (ja) 2002-09-04 2004-04-02 Maruzen Petrochem Co Ltd トリシクロペンタジエンジエポキシド
JP2004238331A (ja) * 2003-02-06 2004-08-26 Nippon Steel Chem Co Ltd 2−ナフチルエタノール及び2−ナフチルオキシランの製造方法
JP2006028057A (ja) * 2004-07-14 2006-02-02 Nippon Steel Chem Co Ltd 液状エポキシ化合物の製造方法
JP2008239579A (ja) 2007-03-28 2008-10-09 Tokuyama Corp エポキシ化合物の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ORGANIC SYNTHESIS, vol. 60, 1981, pages 63 - 66
PAYNE, G.B. ET AL.: "Reactions of Hydrogen Peroxide. VII. Alkali-Catalyzed Epoxidation and Oxidation Using a Nitrile as C", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 26, no. 3, 1961, pages 659 - 663, XP008157149 *
See also references of EP2518061A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190034610A (ko) 2016-11-07 2019-04-02 쇼와 덴코 가부시키가이샤 다가 글리시딜 화합물의 제조 방법
US20220088504A1 (en) * 2019-12-25 2022-03-24 Changchun Institute Of Applied Chemistry, Chinese Academy Of Science Method for efficiently inducing phase separation of water-organic solvent mixed solution through inorganic salt

Also Published As

Publication number Publication date
EP2518061A1 (en) 2012-10-31
CN102666519B (zh) 2016-01-13
EP2518061B1 (en) 2017-02-15
CN102666519A (zh) 2012-09-12
TW201130807A (en) 2011-09-16
JP5787770B2 (ja) 2015-09-30
US20120302775A1 (en) 2012-11-29
KR20120065397A (ko) 2012-06-20
KR101433066B1 (ko) 2014-08-22
TWI523846B (zh) 2016-03-01
EP2518061A4 (en) 2014-04-02
JPWO2011078091A1 (ja) 2013-05-09
US8993791B2 (en) 2015-03-31

Similar Documents

Publication Publication Date Title
JP5606327B2 (ja) エポキシ化合物の製造方法
TWI461414B (zh) 環氧化合物的製造方法
JP5787770B2 (ja) エポキシ化合物の製造方法
WO2011078060A1 (ja) グリシジルエーテル化合物の製造方法及びモノアリルモノグリシジルエーテル化合物
JP5843584B2 (ja) 多価グリシジル化合物の製造方法
KR101451695B1 (ko) 에폭시 화합물의 제조방법
TWI679196B (zh) 多價縮水甘油化合物的製造方法
KR101807902B1 (ko) 산화법에 의한 에폭시 화합물의 제조 방법
JP6779057B2 (ja) 多価グリシジル化合物の製造方法
JP2013522317A (ja) ジビニルアレーンジオキシドの製造方法
JP2010155804A (ja) エポキシ化合物の精製方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058515.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839321

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011547522

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127009231

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010839321

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010839321

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13515707

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE