WO2011077841A1 - 光スキャナ、光スキャナを用いた画像表示装置、及び光スキャナ駆動制御方法 - Google Patents

光スキャナ、光スキャナを用いた画像表示装置、及び光スキャナ駆動制御方法 Download PDF

Info

Publication number
WO2011077841A1
WO2011077841A1 PCT/JP2010/069686 JP2010069686W WO2011077841A1 WO 2011077841 A1 WO2011077841 A1 WO 2011077841A1 JP 2010069686 W JP2010069686 W JP 2010069686W WO 2011077841 A1 WO2011077841 A1 WO 2011077841A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
drive
value
frequency
voltage
Prior art date
Application number
PCT/JP2010/069686
Other languages
English (en)
French (fr)
Inventor
政敏 神山
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2011077841A1 publication Critical patent/WO2011077841A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/113Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04701Detection of scanning velocity or position
    • H04N2201/0471Detection of scanning velocity or position using dedicated detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04701Detection of scanning velocity or position
    • H04N2201/04744Detection of scanning velocity or position by detecting the scanned beam or a reference beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04753Control or error compensation of scanning position or velocity
    • H04N2201/04758Control or error compensation of scanning position or velocity by controlling the position of the scanned image area
    • H04N2201/04767Control or error compensation of scanning position or velocity by controlling the position of the scanned image area by controlling the timing of the signals, e.g. by controlling the frequency o phase of the pixel clock
    • H04N2201/04768Controlling the frequency of the signals

Definitions

  • the present invention relates to an optical scanner used in a laser printer, a projection display device, and the like, an image display device using the optical scanner, and a drive control method for the optical scanner.
  • optical scanners using MEMS (Micro-Electro-Mechanical Systems) mirrors have been used in laser printers and projection display devices.
  • MEMS Micro-Electro-Mechanical Systems
  • the angle of view of a display image increases as the optical deflection angle of the optical scanner increases. Accordingly, in order to display a large image or an image with a high resolution, it is desirable that the optical deflection angle of the optical scanner is large.
  • the drive frequency for driving the optical scanner may be equal to the resonance frequency of the optical scanner.
  • the optical deflection angle of the optical scanner changes greatly with respect to the amount of change in drive frequency.
  • the resonance frequency of the optical scanner changes depending on temperature change, aging change, and the like. Therefore, it is extremely difficult to stably drive an optical scanner having a high Q value at a resonance frequency.
  • the drive frequency of the optical scanner is reciprocally swept, and the resonance frequency is determined based on at least two frequencies at which the oscillation amplitude value obtained by the reciprocating sweep is maximized.
  • the driving method of the optical scanner disclosed in Patent Document 1 by driving the optical scanner at the determined resonance frequency, a large optical deflection angle of the optical scanner can be appropriately obtained even with an optical scanner having a high Q value. be able to.
  • the frequency at which the oscillation amplitude value during the forward sweep of the drive frequency becomes a maximum and the oscillation amplitude value during the backward sweep of the drive frequency are obtained.
  • the maximum frequency matches.
  • the oscillation amplitude value of the optical scanner corresponds to the optical deflection angle of the optical scanner. Therefore, the above-mentioned frequency coincides with the frequency at which the optical deflection angle of the optical scanner during the forward sweep of the driving frequency is maximized and the frequency at which the optical deflection angle during the backward sweep of the drive frequency is maximized.
  • the characteristic of the optical scanner in which the value of the frequency at which the optical deflection angle of the optical scanner is maximized regardless of whether the drive frequency is swept forward or backward is generally referred to as a linear characteristic. .
  • Patent Document 2 discloses an optical scanner having nonlinear characteristics.
  • An optical scanner having a non-linear characteristic exhibits two characteristic phenomena, a hysteresis phenomenon and a jump phenomenon.
  • the hysteresis phenomenon refers to a phenomenon in which the frequency at which the optical deflection angle of the optical scanner is maximized differs depending on whether the drive frequency is swept forward or backward.
  • the jump phenomenon is a phenomenon in which the optical deflection angle of the optical scanner changes with a small amount of change as the drive frequency is gradually changed. A phenomenon in which the deflection angle changes greatly.
  • the jump phenomenon usually occurs in the vicinity of the resonance frequency at which the optical deflection angle of the optical scanner is maximized.
  • An optical scanner having a linear characteristic does not show a hysteresis phenomenon and a jump phenomenon, and the hysteresis phenomenon and the jump phenomenon can be said to be a phenomenon peculiar to an optical scanner having a nonlinear characteristic.
  • FIG. 14 is a diagram illustrating the nonlinear characteristics of the optical scanner, with the vertical axis representing the optical deflection angle and the horizontal axis representing the drive frequency.
  • the optical deflection angle of the optical scanner gradually increases. Become bigger.
  • the optical deflection angle of the optical scanner becomes maximum when the drive frequency is equal to the resonance frequency Fb.
  • the optical scanner exhibits a jumping phenomenon, and the optical deflection angle of the optical scanner decreases rapidly as indicated by the broken line arrow.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to reduce the possibility of an optical scanner having nonlinear characteristics causing a jump phenomenon and to obtain a large optical deflection angle of the optical scanner. It is what.
  • the present invention is an optical scanner including an oscillating body having a mirror portion for reflecting an incident light beam, and driving the oscillating body to A drive unit that swings about a swing axis, a drive signal for driving the drive unit, a signal generation unit that supplies the drive signal to the drive unit, and the signal generation unit that generates the drive signal A voltage control unit that controls the signal generation unit so that a drive voltage value of a drive signal is changed; and the signal generation unit that changes a drive frequency value of the drive signal generated by the signal generation unit.
  • the signal generation unit is controlled so that the jumping phenomenon in which the swing angle greatly changes and the voltage control unit increases the drive voltage value of the drive signal, the resonance frequency value increases.
  • a shift phenomenon of shifting in a direction of decreasing, respectively, and the voltage control unit is configured such that the swing angle detected by the detection unit is less than the set angle.
  • the signal generation unit When determined by the first determination unit, the signal generation unit is controlled, and the frequency control unit detects that the swing angle detected by the detection unit is less than the set angle.
  • the drive frequency value of the drive signal is changed in the same direction as the direction in which the resonance frequency value shifts after the signal generator is controlled by the voltage control unit when determined by the disconnection unit. The signal generation unit is controlled.
  • the voltage control unit may determine that the swing angle detected by the detection unit is less than the set angle by the first determination unit. If determined, the signal generation unit is controlled so that the drive voltage value is sequentially changed by repeatedly executing a first setting step for setting the drive voltage value, and the frequency control unit.
  • the first determination unit determines that the swing angle detected by the unit is less than the set angle
  • the signal generation unit is controlled by the voltage control unit, and then the drive frequency value is set.
  • the signal generation unit is controlled such that the drive frequency value is sequentially changed by repeatedly executing the second setting step to be set.
  • a voltage change width of the drive voltage value that is changed by repeatedly executing the first setting step executed by the voltage control unit is stored in advance.
  • the voltage control unit is stored in the first storage unit when the first determination unit determines that the swing angle detected by the detection unit is less than the set angle.
  • the signal generator is controlled so that the drive voltage value is sequentially changed by a voltage change width, and the frequency controller detects that the swing angle detected by the detector is the set value.
  • the first determination unit determines that the frequency is less than the degree
  • after the signal generation unit is controlled by the voltage control unit the frequency change amount stored by the second storage unit
  • the signal generator is controlled so that the drive frequency value is sequentially changed.
  • the range storage unit that stores a predetermined angular range including the set angle in advance, and the swing angle detected by the detection unit are A second determination unit that determines whether the value is within the predetermined angle range stored in the range storage unit, wherein the voltage control unit and the frequency control unit are each the detection unit The swing angle detected by the first determination unit is determined to be less than the set angle, and the swing angle detected by the detection unit is stored in the range storage unit.
  • the control of the signal generation unit is stopped.
  • the signal generation unit when the signal generation unit is controlled by the voltage control unit so that a drive voltage value of the drive signal is increased by the voltage control unit.
  • the signal generator is controlled so that the drive frequency value of the drive signal becomes small after the signal generator is controlled by the voltage controller when determined by the controller. .
  • the signal generation unit when the signal generation unit is controlled by the voltage control unit so that a drive voltage value of the drive signal is increased by the voltage control unit.
  • the frequency control unit has a configuration in which the shift phenomenon that the resonance frequency value is increased occurs, and the frequency control unit determines that the swing angle detected by the detection unit is less than the set angle.
  • the signal generation unit is controlled so that the drive frequency value of the drive signal is increased after the signal control unit is controlled by the voltage control unit. .
  • the frequency control unit determines that the swing angle detected by the detection unit is greater than or equal to the set angle by the first determination unit.
  • the signal generator is controlled so that the drive frequency value of the drive signal is changed in a direction opposite to the direction in which the resonance frequency value shifts, and the voltage controller is controlled by the frequency controller.
  • the signal generator is controlled after the signal generator is controlled.
  • the frequency control unit causes the first determination unit to determine that the swing angle detected by the detection unit is greater than or equal to the set angle. If it is determined, the signal generator is controlled so that the drive frequency value is sequentially changed by repeatedly executing a third setting step of setting the drive frequency value, The voltage control unit controls the signal generation unit by the frequency control unit when the first determination unit determines that the swing angle detected by the detection unit is greater than or equal to the set angle. After that, the signal generating unit is controlled such that the drive voltage value is sequentially changed by repeatedly executing a fourth setting step for setting the drive voltage value.
  • the frequency change width of the drive frequency value that is changed by repeatedly executing the third setting step executed by the frequency control unit is stored in advance.
  • the frequency control unit is stored in the third storage unit when it is determined by the first determination unit that the swing angle detected by the detection unit is greater than or equal to the set angle.
  • the signal generation unit is controlled so that the drive frequency value is sequentially changed by the frequency change width, and the voltage control unit is detected by the detection unit by the first determination unit.
  • the voltage change width stored in the fourth storage unit after the signal generation unit is controlled by the frequency control unit when the determined swing angle is determined to be greater than or equal to the set angle.
  • the signal generator is controlled so that the drive voltage value is sequentially changed by the amount of.
  • a range storage unit that stores a predetermined angle range including the set angle in advance, and the swing angle detected by the detection unit are A second determination unit that determines whether the value is within the predetermined angle range stored in the range storage unit, wherein the voltage control unit and the frequency control unit are each the detection unit The swing angle detected by the first determination unit is determined to be greater than or equal to the set angle, and the swing angle detected by the detection unit is stored in the range storage unit. When the second determination unit determines that the value is within the angle range of Control of the signal generation unit is stopped.
  • the invention according to claim 11 is the invention according to claim 7, wherein in the optical scanner, the signal generation unit is controlled by the voltage control unit so that a drive voltage value of the drive signal is increased.
  • the frequency control unit is configured to generate the shift phenomenon that the resonance frequency value is small, and the frequency control unit determines that the swing angle detected by the detection unit is equal to or greater than the set angle. And the signal generation unit is controlled so that the drive frequency value of the drive signal is increased when the determination is made by the unit.
  • the optical scanner is configured such that the signal generation unit is controlled by the voltage control unit so that a drive voltage value of the drive signal is increased.
  • the signal generation unit is controlled so that the drive frequency value of the drive signal becomes smaller when determined by the unit.
  • the present invention described in claim 13 is an image display device, comprising: the optical scanner according to any one of claims 1 to 12; and a light source unit that supplies light to the optical scanner; And an optical system for guiding the scanning light scanned by the optical scanner to the eyes of the user.
  • the present invention as claimed in claim 14 is characterized in that an oscillating body having a mirror part for reflecting an incident light beam and an oscillating body are driven to oscillate the mirror part about an oscillating axis.
  • the signal generation unit is configured to change the drive voltage value of the drive signal when the first determination step determines that the swing angle detected by the detection step is less than the set angle.
  • the voltage generation step causes the signal generator to After being controlled, the frequency control for controlling the signal generation unit so that the drive frequency value of the drive signal is changed in the same direction as the shift direction of the resonance frequency value.
  • the drive frequency value is changed in the same direction. That is, the drive voltage value of the optical scanner having nonlinear characteristics is changed before the drive frequency value. Therefore, the drive frequency value can be changed by the amount that the resonance frequency is shifted by changing the drive voltage value. Therefore, the possibility of causing a jump phenomenon can be reduced. Then, after the drive voltage value is changed, the drive frequency value is changed in the direction in which the resonance frequency is shifted.
  • the increase of the optical deflection angle can be obtained by bringing the drive frequency close to the resonance frequency. Therefore, a large optical deflection angle of the optical scanner can be obtained.
  • both the drive voltage value and the drive frequency value are changed stepwise. Therefore, fine changes can be made, the possibility of the optical scanner causing a jump phenomenon can be reduced, and a large optical deflection angle of the optical scanner can be obtained.
  • the drive voltage value is changed stepwise by the change width stored in advance, and the drive frequency value is changed stepwise by the change width stored in advance. . Therefore, fine changes can be made, the possibility of the optical scanner causing a jump phenomenon can be reduced, and a large optical deflection angle of the optical scanner can be obtained.
  • the optical scanner of claim 4 when it is determined that the detected swing angle is a value within a predetermined angle range, the change of the drive voltage value and the drive frequency value is stopped. Therefore, since the change of the drive voltage value and the drive frequency value is stopped when the target swing angle is obtained, a large optical swing angle of the optical scanner can be obtained.
  • the drive frequency value of the drive signal is decreased when the phenomenon that the resonance frequency value is reduced occurs. Therefore, the drive frequency is brought close to the resonance frequency, and a large optical deflection angle of the optical scanner can be obtained.
  • the drive frequency value of the drive signal increases. Therefore, the drive frequency is brought close to the resonance frequency, and a large optical deflection angle of the optical scanner can be obtained.
  • the optical scanner of claim 7 there is an effect that the following problems can be solved.
  • the optical deflection angle When the optical deflection angle is set to a desired magnitude, it may be necessary to change the drive voltage value and the drive frequency value so that the optical deflection angle can be reduced. In this case, if the drive voltage value is changed before the drive frequency value, a jump phenomenon may occur.
  • FIG. 15 is an explanatory diagram for explaining a jump phenomenon that occurs when the drive voltage value is changed before the drive frequency value.
  • FIG. 15 is a diagram showing the characteristics of the optical scanner, with the vertical axis representing the optical deflection angle and the horizontal axis representing the drive frequency. In FIG. 15, for the sake of simplicity, only the characteristics of the optical scanner when the drive frequency is down-swept are shown. As shown in FIG. 15, under any drive voltage, when the drive frequency is swept down, a large optical deflection angle is gradually obtained, and the optical scanner exhibits a jump phenomenon at the boundary value of a certain drive frequency. Wake up. This boundary value is the resonance frequency value. Then, as shown in FIG. 15, the resonance frequency value is shifted in a direction of decreasing as the driving voltage value increases.
  • the optical deflection angle Ac is obtained under the conditions of the drive frequency Fc and the drive voltage of 13 volts. Thereafter, in order to obtain an optical deflection angle slightly smaller than the optical deflection angle Ac, it is assumed that the drive voltage value is changed before the drive frequency value.
  • the optical scanner causes a jump phenomenon as indicated by a solid line arrow shown in FIG. Then, the optical deflection angle of the optical scanner abruptly decreases from the optical deflection angle Ac shown in FIG. 15 to the optical deflection angle Af.
  • the drive frequency value when it is determined that the swing angle detected by the detection unit is equal to or larger than the set angle, the drive frequency value is in the same direction as the direction in which the resonance frequency value is shifted. After the change, the drive voltage value is changed. That is, the drive frequency value is changed before the drive voltage value. Therefore, when the drive voltage and the drive frequency are changed in order to reduce the optical shake angle to the target value of the optical shake angle, the possibility of the optical scanner jumping phenomenon can be reduced.
  • both the drive voltage value and the drive frequency value are changed stepwise. Therefore, fine changes can be made, the possibility of the optical scanner causing a jump phenomenon can be reduced, and the target optical deflection angle of the optical scanner can be obtained with high accuracy.
  • the drive voltage value is changed stepwise by the change width stored in advance, and the drive frequency value is changed stepwise by the change width stored in advance. . Therefore, fine changes can be made, the possibility of the optical scanner causing a jump phenomenon can be reduced, and the target optical deflection angle of the optical scanner can be obtained with high accuracy.
  • the optical scanner of the tenth aspect when it is determined that the detected swing angle is a value within a predetermined angle range, the change of the drive voltage value and the drive frequency value is stopped. Therefore, since the change of the drive voltage value and the drive frequency value is stopped when the target swing angle is obtained, the target optical shake angle of the optical scanner can be obtained with high accuracy.
  • the target optical deflection angle of the optical scanner can be obtained with high accuracy.
  • the target optical deflection angle of the optical scanner can be obtained with high accuracy.
  • the image display device of the thirteenth aspect since the optical scanner that can swing with a large optical deflection angle is provided, the angle of view of the display image is increased. Therefore, it is possible to display a large image or an image with high resolution. In addition, since the optical scanner having a reduced possibility of causing a jump phenomenon is provided, an image with a desired angle of view and resolution can be reliably displayed.
  • the resonance frequency value is shifted after the drive voltage value is changed.
  • the drive frequency value is changed in the same direction as the direction. Therefore, the drive voltage value of the optical scanner having nonlinear characteristics is changed before the drive frequency value. Therefore, the drive frequency value can be changed by the amount that the resonance frequency is shifted by changing the drive voltage value. Therefore, the possibility of causing a jump phenomenon can be reduced. Then, after the drive voltage value is changed, the drive frequency value is changed in the direction in which the resonance frequency is shifted.
  • the increase of the optical deflection angle can be obtained by bringing the drive frequency close to the resonance frequency. Therefore, a large optical deflection angle of the optical scanner can be obtained.
  • FIG. 1 is an external view showing an optical scanner 1 according to a first embodiment of the present invention.
  • 2 is a functional block diagram showing an electrical configuration of the optical scanner 1.
  • FIG. It is explanatory drawing for demonstrating the time change of the drive signal DS0 produced
  • 4 is a flowchart showing a series of processes when driving the optical scanner 1.
  • FIG. 2 is a functional block diagram showing an electrical configuration of the optical scanner 101.
  • FIG. 4 is a flowchart showing a series of processes when driving the optical scanner 101. It is a figure which shows the correlation of the drive frequency of the drive signal DS of the said optical scanner 101, and an optical deflection angle. It is a figure which shows the usage example in the retinal scanning display 201 of the said optical scanner 101.
  • FIG. 1 is an external view of the optical scanner 1 of the present embodiment.
  • the optical scanner 1 includes an oscillator 2, a drive control unit 20, a BD sensor 50, and a base table (not shown).
  • the oscillating body 2 is disposed on the base table.
  • the oscillator 2 includes a mirror unit 3, a torsion beam unit 4, a drive unit 5, and a movable plate 6.
  • the torsion beam portion 4 is connected to the mirror portion 3.
  • the drive unit 5 is provided on the movable plate 6.
  • the drive unit 5 is connected to the drive control unit 20 by a lead wire 15.
  • the mirror unit 3 can swing around the swing axis AX shown in FIG. 1, and reflects and scans the incident light beam.
  • the mirror unit 3 includes a reflecting surface 7 for reflecting an incident light beam.
  • the X axis is a direction parallel to the reflecting surface 7 and perpendicular to the rocking axis AX, and the rocking axis AX
  • the direction parallel to the Y axis is defined as the Y axis
  • the direction perpendicular to the reflecting surface 7 is defined as the Z axis.
  • the definitions of the directions of the X axis, the Y axis, and the Z axis are common to other drawings.
  • the driving unit 5 is a laminated body in which a thin plate-like piezoelectric body is sandwiched between an upper electrode and a lower electrode.
  • the piezoelectric body is, for example, a piezoelectric body of lead zirconate titanate (hereinafter referred to as “PZT”) that is deformed by applying a voltage.
  • PZT lead zirconate titanate
  • the upper electrode and the lower electrode of the drive unit 5 are connected to the drive control unit 20 by lead wires 15.
  • a drive signal is supplied from the drive control unit 20 to the drive unit 5 via the lead wire 15.
  • a drive voltage is applied between the upper electrode and the lower electrode.
  • the piezoelectric body of the drive unit 5 is expanded and contracted in the X-axis direction. Due to the expansion and contraction of the drive unit 5, the portion of the movable plate 6 near the drive unit 5 is bent upward or downward in the Z-axis direction. Whether the portion of the movable plate 6 near the drive unit 5 bends upward or downward is determined by the magnitude of the voltage applied between the upper electrode and the lower electrode.
  • the upper side and the lower side in the Z-axis direction are the positive region side and the negative region side of the Z-axis, respectively, and are not strictly limited to a direction parallel to the Z-axis direction.
  • a plate wave is generated in the movable plate 6 by bending the portion of the movable unit 6 near the drive unit 5.
  • the plate wave generated in the movable plate 6 generates a rotational moment in the mirror unit 3 and the torsion beam unit 4. Due to this rotational moment, the torsion beam portion 4 is torsionally vibrated. Further, due to this rotational moment, the mirror part 3 swings around the swing axis AX. As the mirror unit 3 swings, the light beam incident on the reflecting surface 7 of the mirror unit 3 shown in FIG. 1 is scanned.
  • FIG. 2 is an explanatory diagram showing an electrical configuration of the optical scanner 1 according to the present embodiment.
  • the drive control unit 20 includes a drive signal generation unit 21, a signal superimposing circuit 22, a DC voltage application unit 23, an angle determination unit 24, a determination unit 25, a voltage control unit 28, The frequency control unit 29, the set angle storage unit 30, the range storage unit 31, the first storage unit 32, the second storage unit 33, and the data storage unit 34 are provided.
  • the determination unit 25 includes a first determination unit 26 and a second determination unit 27.
  • the oscillator 2, the mirror unit 3, the drive unit 5, and the like are shown with a simplified configuration.
  • the drive control unit 20 is illustrated as being divided into a plurality of functional blocks for convenience of explanation, but is actually configured by a microcomputer including a CPU, ROM, flash ROM, RAM, and the like, an FPGA, and the like.
  • the microcomputer including a CPU, ROM, flash ROM, RAM, and the like, an FPGA, and the like.
  • the drive signal supplied to the drive unit 5 will be described in detail with reference to FIG. 3, FIG. 4, and FIG. 3, 4, and 5, the vertical axis represents the voltage Vt applied to the upper electrode and the lower electrode of the driving unit 5, and the horizontal axis represents the time Tm.
  • the drive signal generator 21 generates a drive signal DS0 for driving the drive unit 5 as shown in FIG. 3 and supplies the drive signal DS0 to the signal superimposing circuit 22. Further, the drive signal generation unit 21 supplies information on the amplitude Vh of the drive signal DS0 to the DC voltage application unit 23.
  • the DC voltage application unit 23 generates a DC voltage SH as shown in FIG. 4 based on the information on the amplitude Vh of the drive signal DS0. As shown in FIG. 4, the DC voltage SH has the same voltage value as the amplitude Vh of the drive signal DS0 at any time Tm.
  • the signal superimposing circuit 22 superimposes the driving signal DS0 supplied from the driving signal generating unit 21 and the DC voltage SH supplied from the DC voltage applying unit 23.
  • the drive signal DS0 and the DC voltage SH are superimposed by the signal superimposing circuit 22
  • the drive signal DS0 is driven in the positive direction of the voltage Vt so that the lower limit value of the voltage Vt is 0 volts. Shifted by the amplitude Vh.
  • the drive signal DS shown in FIG. 5 is generated by the shift of the drive signal DS0.
  • the signal superimposing circuit 22 supplies the driving signal DS to the driving unit 5 when the driving signal DS0 and the DC voltage SH are superimposed.
  • the driving unit 5 When the driving signal DS is supplied from the signal superimposing circuit 22 to the driving unit 5, the driving unit 5 is driven and the oscillator 2 is driven. By driving the oscillating body 2, the mirror unit 3 oscillates. As the mirror unit 3 swings, the reflection surface 7 of the mirror unit 3 reflects the light beam supplied to the mirror unit 3 from the light source LD provided outside the optical scanner 1.
  • the piezoelectric body of the drive unit 5 expands and contracts in the X-axis direction. That is, for example, during the times Tm1 to Tm2 indicated by broken lines and arrows in FIG. 5, the voltage Vt applied to the upper electrode and the lower electrode gradually increases. As the voltage gradually increases, the piezoelectric body contracts in the X-axis direction. In addition, during the time Tm3 to Tm4 indicated by the alternate long and short dash line and the arrow in FIG. 5, the voltage Vt applied to the upper electrode and the lower electrode gradually decreases.
  • the piezoelectric body As the voltage Vt gradually decreases, the piezoelectric body extends in the X-axis direction. Thus, the piezoelectric body expands and contracts in the X-axis direction, so that the portion in the vicinity of the drive unit 5 of the movable unit 6 is bent upward or downward in the Z-axis direction. Due to the periodicity of the drive signal DS shown in FIG. 5, the voltage Vt applied between the upper electrode and the lower electrode periodically changes. By periodically changing the voltage Vt applied between the upper electrode and the lower electrode, a portion in the vicinity of the drive unit 5 of the movable unit 6 is periodically bent upward or downward in the Z-axis direction.
  • a portion of the movable portion 6 near the drive portion 5 is periodically bent upward or downward in the Z-axis direction, so that the mirror portion 3 swings around the swing axis AX.
  • the light beam supplied from the light source LD to the reflecting surface 7 of the mirror unit 3 is scanned.
  • the oscillator 2 is driven based on the drive signal DS.
  • the BD sensor 50 is provided in a predetermined position with respect to the reflecting surface 7 in advance as shown in FIGS. 1 and 2.
  • the BD sensor 50 detects the reflected light that is reflected by the reflecting surface 7 of the mirror unit 3 and passes through the BD sensor 50.
  • the BD sensor 50 generates a timing signal indicating the timing at which the reflected light passes through the BD sensor 50 and supplies the timing signal to the angle determination unit 24 of the drive control unit 20.
  • the angle determination unit 24 determines the value of the optical deflection angle of the optical scanner 1 based on the timing signal supplied from the BD sensor 50. Note that the value of the optical deflection angle of the optical scanner 1 determined by the angle determination unit 24 is proportional to the value of the swing angle of the mirror unit 3 as is well known.
  • the optical deflection angle corresponds to the oscillation angle. Specific details of determining the optical deflection angle are described in, for example, Japanese Patent Application Laid-Open No. 2008-310301.
  • the angle determination unit 24 supplies the determined optical deflection angle value to the determination unit 25.
  • the determination unit 25 includes a first determination unit 26 and a second determination unit 27 as shown in FIG.
  • the first determination unit 26 determines whether or not the value of the optical deflection angle determined by the angle determination unit 24 is less than a predetermined setting angle value stored in the setting angle storage unit 30.
  • the second determination unit 27 determines whether or not the value of the optical deflection angle determined by the angle determination unit 24 is a value within a predetermined angle range stored in the range storage unit 31.
  • the determination unit 25 supplies the determination results of the first determination unit 26 and the second determination unit 27 to the voltage control unit 28 and the frequency control unit 29. Further, the determination unit 25 controls the voltage control unit 28 or the frequency control unit 29 based on the voltage value and the frequency value stored in the data storage unit 34.
  • the voltage control unit 28 controls the drive signal generation unit 21 so that the voltage value of the drive signal DS0 generated by the drive signal generation unit 21 is changed based on the determination result supplied from the determination unit 25. Specifically, the drive signal generation unit 21 is controlled so that the voltage value of the drive signal DS0 is changed by the change width stored in the first storage unit 32.
  • the frequency control unit 29 controls the drive signal generation unit 21 so that the frequency value of the drive signal DS0 generated by the drive signal generation unit 21 is changed based on the determination result supplied from the determination unit 25. Specifically, the drive signal generation unit 21 is controlled so that the frequency value of the drive signal DS0 is changed by the change width stored in the second storage unit 33.
  • the first storage unit 32 stores in advance the change range of the voltage value of the drive signal DS0.
  • the second storage unit 33 stores a change width of the frequency value of the drive signal DS0 in advance.
  • the drive signal generation unit 21 changes the voltage value and frequency value of the drive signal DS0 under the control of the voltage control unit 28 and the frequency control unit 29.
  • the drive signal generator 21 supplies the changed drive signal DS0 to the signal superimposing circuit 22.
  • the drive signal generation unit 21 supplies the changed voltage value and frequency value of the drive signal DS0 to the data storage unit 34.
  • the data storage unit 34 stores the changed voltage value and frequency value of the drive signal DS0.
  • the switch SW When the switch SW is pressed by the user of the optical scanner 1, the switch SW supplies a power ON / OFF command to the drive control unit 20.
  • the power ON command is supplied to the drive control unit 20, the operation of the optical scanner 1 starts.
  • the power OFF command is supplied, the operation ends.
  • the data storage unit 34 stores in advance a voltage value and a frequency value read by the drive signal generation unit 21 when the switch SW is pressed.
  • the drive signal generation unit 21 When the switch SW is pressed, the drive signal generation unit 21 generates a drive signal DS0 having a voltage value and a frequency value stored in advance by the data storage unit 34. Further, as described above, the data storage unit 34 can sequentially store the changed voltage value and frequency value of the drive signal DS0.
  • FIG. 6 is a flowchart showing a series of processing when the optical scanner 1 is driven. A series of processing is executed by the CPU provided in the drive control unit 20.
  • the voltage value and frequency value of the drive signal DS0 are increased or decreased by a certain value means that “the voltage value and frequency value of the drive signal DS are increased or decreased” by the same amount. means. Therefore, hereinafter, “the voltage value and the frequency value of the drive signal DS0 are increased or decreased” is expressed as “the voltage value and the frequency value of the drive signal DS are increased or decreased”.
  • a power-on command is supplied to the drive control unit 20, and the oscillator 2 is driven (step SA1, hereinafter referred to as SA1).
  • a drive signal DS0 having a voltage value and a frequency value stored in advance by the data storage unit 34 is generated by the drive signal generation unit 21.
  • the generated drive signal DS0 is supplied to the signal superimposing circuit 22.
  • the driving signal DS0 is supplied to the signal superimposing circuit 22
  • the signal superimposing circuit 22 generates the driving signal DS.
  • the generated drive signal DS is supplied to the drive unit 5.
  • the drive signal DS is supplied to the drive unit 5
  • the oscillating body 2 is driven by driving the drive unit 5.
  • the value of the optical deflection angle of the optical scanner 1 is determined (SA2). Specifically, the reflected light is detected by the BD sensor 50. Based on the timing signal supplied from the BD sensor 50 to the angle determination unit 24, the angle determination unit 24 determines the value of the optical deflection angle.
  • FIG. 7 shows the correlation between the frequency value of the drive signal DS of the optical scanner 1 according to the present embodiment and the value of the optical deflection angle.
  • FIG. 7 is a graph showing experimental results for the optical scanner 1 according to this embodiment. In FIG. 7, for the sake of simplicity, only the characteristics of the optical scanner 1 when the drive frequency is down-swept are shown. As shown in FIG. 7, the optical scanner 1 exhibits a jumping phenomenon. In addition, as shown in FIG. 7, when the drive signal generation unit 21 is controlled so that the voltage value Vt of the drive signal DS of the optical scanner 1 is increased, a phenomenon that the resonance frequency value is decreased occurs. . The resonance frequency value is equal to the drive frequency value when the optical deflection angle Ad takes the maximum value Ax shown in FIG.
  • the second determination unit 27 determines whether or not the determined optical deflection angle value is within a predetermined angle range stored in the range storage unit 31.
  • the predetermined angle range is stored in advance in the range storage unit 31 as a rough target range of the optical deflection angle including the set angle that is the target value of the optical deflection angle. Therefore, when it is determined that the value of the optical deflection angle is a value within a predetermined angle range (SA3: Yes), all the processes are finished. That is, thereafter, the drive unit 5 is driven by the current voltage value Vt and the drive signal DS having the frequency value.
  • the first determination unit 26 determines whether or not the determined value of the optical deflection angle is less than a predetermined setting angle value stored in the setting angle storage unit 30.
  • the set angle is stored in advance by the set angle storage unit 30 as a rough target value of the optical deflection angle. Accordingly, when it is determined that the value of the optical deflection angle is less than the set angle (SA4: Yes), the drive voltage value or the drive frequency value is changed so that the value of the optical deflection angle is increased in the subsequent processing. . When it is determined that the value of the optical deflection angle is equal to or greater than the set angle (SA4: No), the drive voltage value or the drive frequency value is changed so that the value of the optical deflection angle is reduced in the subsequent processing.
  • the voltage value Vt of the drive signal DS is increased by the voltage change width of 0.1 volts (SA5).
  • the drive signal generation unit 21 is controlled by the voltage control unit 28 so that the voltage value Vt of the drive signal DS is changed by an amount corresponding to a voltage change width of 0.1 volts stored in the first storage unit 32. Is done.
  • the data storage unit 34 stores the current voltage value that is the time immediately before SA6 is executed. Further, the data storage unit 34 stores in advance the first voltage value read by the drive signal generation unit 21 when the switch SW is pressed.
  • the determination unit 25 calculates the difference between the current voltage value and the first voltage value. The calculated difference is the total voltage change value up to now. The determination unit 25 determines whether or not the calculated difference exceeds 1 volt. If it is determined that the total voltage change value does not exceed 1 volt (SA6: No), the process returns to SA2 and the optical deflection angle is determined again.
  • the second determination unit 27 determines whether or not the value of the optical deflection angle determined by the angle determination unit 24 is a value within a predetermined angle range stored in the range storage unit 31.
  • the predetermined angle range is stored in advance in the range storage unit 31 as a rough target range of the optical deflection angle. Therefore, when it is determined that the value of the optical deflection angle is a value within a predetermined angle range (SA7: Yes), all the processes are finished.
  • the drive unit 5 is driven by the current voltage value Vt and the drive signal DS having the frequency value.
  • the voltage value at the time when SA6 is executed is stored in the data storage unit 34 as the first voltage value. Therefore, when the process of SA6 is executed next, the determination unit 25 calculates the difference between the current voltage value and the first voltage value that is the voltage value stored at this time.
  • the frequency value of the drive signal DS0 is decreased by the frequency change width of 1 Hz (SA8).
  • the drive signal generation unit 21 is controlled by the frequency control unit 29 so that the drive frequency value of the drive signal is decreased by the frequency change width of 1 Hz.
  • the frequency value of the drive signal DS is decreased by 1 Hz in the vicinity of 34.48 kHz.
  • the direction DL in which the drive frequency value is changed in SA8 is the same as the direction in which the resonance frequency Sf shifts when the voltage value Vt is increased.
  • the data storage unit 34 stores the current frequency value that is the time immediately before SA9 is executed. In addition, the data storage unit 34 stores in advance the first frequency value read by the drive signal generation unit 21 when the switch SW is pressed.
  • the determination unit 25 calculates the difference between the current frequency value and the first frequency value. The calculated difference is a total frequency change value. The determination unit 25 determines whether the calculated difference exceeds 30 Hz.
  • the process returns to SA7, and it is determined again whether or not the value of the optical deflection angle is within a predetermined angle range. . If it is determined that the total frequency change value exceeds 30 Hz (SA9: Yes), the process returns to SA5, and the voltage value Vt of the drive signal DS is increased again by the voltage change width of 0.1 volts.
  • the limit value 30 Hz of the total frequency change value is previously set as a frequency value for shifting the resonance frequency Sf when the voltage value Vt of the drive signal DS is increased by the limit value 1 volt of the total voltage value Vt. Is set.
  • the total frequency change value of the drive signal DS by determining whether or not the total frequency change value exceeds 30 Hz, it is possible to limit the magnitude of the frequency value of the drive signal DS. That is, it becomes possible to prevent the drive frequency from becoming excessively low as indicated by the one-dot chain line arrow DE in FIG. 7, and the optical scanner 1 unintentionally causes a jump phenomenon as indicated by the broken line arrow DH in FIG. Can be prevented. Further, when it is determined that the total frequency change value exceeds 30 Hz, the voltage value Vt of the drive signal DS is increased, so that the resonance frequency Sf is driven again as indicated by a two-dot chain line arrow DF in FIG. The frequency of the signal DS is shifted in the direction of decreasing.
  • the determination unit 25 calculates the difference between the current frequency value and the first frequency value that is the frequency value stored at this time.
  • the frequency value of the drive signal DS is increased by the frequency change width of 1 Hz (SA10).
  • the drive signal generation unit 21 is controlled by the frequency control unit 29, and the drive frequency value of the drive signal is increased by the frequency change width of 1 Hz.
  • the frequency value of the drive signal DS is increased by 1 Hz in the vicinity of 34.43 kHz.
  • the direction DR in which the drive frequency value is changed in SA10 is opposite to the direction in which the resonance frequency Sf shifts when the voltage value Vt is increased.
  • the data storage unit 34 stores the current frequency value that is the time immediately before SA11 is executed. In addition, the data storage unit 34 stores in advance the first frequency value read by the drive signal generation unit 21 when the switch SW is pressed.
  • the determination unit 25 calculates the difference between the current frequency value and the first frequency value. The calculated difference is a total frequency change value. The determination unit 25 determines whether the calculated difference exceeds 30 Hz. If it is determined that the total frequency change value does not exceed 30 Hz (SA11: No), the process returns to SA2, and the optical deflection angle is determined again.
  • the process proceeds to the voltage control process after SA12.
  • SA11: Yes If it is determined that the total frequency change value exceeds 30 Hz (SA11: Yes), the process proceeds to the voltage control process after SA12.
  • the frequency value at the time when SA11 is executed is stored in the data storage unit 34 as the first frequency value. Therefore, when the process of SA11 is executed next, the determination unit 25 calculates the difference between the current frequency value and the first frequency value that is the frequency value stored at this time.
  • the second determination unit 27 determines whether or not the value of the optical deflection angle determined by the angle determination unit 24 is a value within a predetermined angle range stored in the range storage unit 31.
  • the predetermined angle range is stored in advance in the range storage unit 31 as a rough target range of the optical deflection angle.
  • the predetermined angle range is determined in advance according to the target angle of view or resolution of the image display device or the like in which the optical scanner 1 is used.
  • the drive unit 5 is driven by the current voltage value Vt and the drive signal DS having the frequency value.
  • the voltage value Vt of the drive signal DS is decreased by the voltage change width of 0.1 volts (SA13).
  • the drive signal generation unit 21 is controlled by the voltage control unit 28 so that the voltage value Vt of the drive signal DS is decreased by the voltage change width of 0.1 volts stored in the first storage unit 32. Is done.
  • the data storage unit 34 stores the current voltage value that is the time immediately before SA14 is executed. Further, the data storage unit 34 stores in advance the first voltage value read by the drive signal generation unit 21 when the switch SW is pressed.
  • the determination unit 25 calculates the difference between the current voltage value and the first voltage value. The calculated difference is the total voltage change value. The determination unit 25 determines whether or not the calculated difference exceeds 1 volt. If it is determined that the total voltage change value does not exceed 1 volt (SA14: No), the process returns to SA12, and it is determined again whether the value of the optical deflection angle is within a predetermined angle range.
  • the process returns to SA10, and the frequency value of the drive signal DS is increased again by the frequency change width of 1 Hz. If it is determined that the total voltage change value exceeds 1 volt (SA14: Yes), the voltage value at the time when SA14 is executed is stored in the data storage unit 34 as the first voltage value. Therefore, when the process of SA14 is executed next, the determination unit 25 calculates the difference between the current voltage value and the first voltage value that is the voltage value stored at this time.
  • the optical scanner 1 is an optical scanner having a structure as shown in FIG.
  • the optical scanner 101 has a bifurcated structure as shown in FIG.
  • the same components as those in the first embodiment will be described with the same numbers.
  • FIG. 8 is an external view of the optical scanner 101 of this embodiment.
  • the optical scanner 101 includes an oscillating body 102, a drive control unit 120, a BD sensor 150, and a base table (not shown).
  • the rocking body 102 is disposed on the base table.
  • the oscillator 102 includes a mirror unit 103, torsion beam units 104a and 104b, drive units 105a and 105b, and a fixed unit 106.
  • the torsion beam portions 104 a and 104 b are connected to the mirror portion 103.
  • the drive units 105 a and 105 b are provided on the torsion beam portions 104 a and 104 b and the fixing unit 106 across the torsion beam units 104 a and 104 b and the fixing unit 106, respectively.
  • the drive units 105 a and 105 b are connected to the drive control unit 120 by lead wires 115.
  • the mirror unit 103 can swing around the swing axis AX, and reflects and scans the incident light beam.
  • the mirror unit 103 includes a reflecting surface 107 for reflecting an incident light beam.
  • the direction parallel to the reflecting surface 107 and perpendicular to the rocking axis AX is defined as the X axis
  • the rocking axis AX A direction parallel to the Y axis
  • a direction perpendicular to the reflecting surface 107 is defined as the Z axis.
  • the definitions of the directions of the X axis, the Y axis, and the Z axis are common to other drawings.
  • the structure of the drive units 105a and 105b will be described in detail.
  • the driving units 105a and 105b are laminated bodies in which a thin plate-like piezoelectric body is sandwiched between an upper electrode and a lower electrode.
  • the piezoelectric body is, for example, a piezoelectric body of lead zirconate titanate (hereinafter referred to as “PZT”) that is deformed by applying a voltage.
  • PZT lead zirconate titanate
  • the upper electrode and the lower electrode of each of the drive units 105 a and 105 b are connected to the drive control unit 120 by lead wires 115.
  • a drive signal having the same phase is supplied from the drive control unit 120 to the drive units 105 a and 105 b via the lead wire 115.
  • a voltage having the same polarity is applied between the upper electrode and the lower electrode of each of the drive units 105a and 105b. The By applying the voltage in this way, each of the piezoelectric bodies of the drive units 105a and 105b extends or contracts in the Y-axis direction.
  • the drive control unit 120 in this embodiment is an example of the drive control unit of the present invention.
  • FIG. 9 shows only the mirror part 103 and the torsion beam parts 104a and 104b for simplification.
  • the drive signal DS supplied to the drive units 105a and 105b in the second embodiment is the same signal as the drive signal DS in the first embodiment as shown in FIG. Therefore, the drive signal DS in the second embodiment will also be described with reference to FIG.
  • a rocking body 102 indicated by a two-dot chain line represents the rocking body 102 at rest.
  • the oscillating body 102 indicated by the solid line is the oscillating body 102 when the oscillating body 102 is driven and the mirror portion 103 reaches a certain oscillating angle value ⁇ .
  • the torsion beam portions 104a, 104b are shown with a simplified structure.
  • FIG. 5 is a diagram illustrating in-phase drive signals DS supplied from the drive control unit 120 to the drive units 105a and 105b.
  • the vertical axis represents the voltage Vt applied between the upper electrode and the lower electrode of each of the drive units 105a and 105b
  • the horizontal axis represents the time Tm.
  • the drive control unit 120 generates a drive signal DS for driving the drive units 105a and 105b, and supplies the drive signal DS to the drive units 105a and 105b.
  • the drive signal DS supplied to the drive unit 105a and the drive unit 105b only needs to have at least the same phase, but in this embodiment, the drive signal DS supplied to the drive unit 105a and the drive unit 105b is Have the same amplitude and the same phase. Due to the periodicity of the drive signal DS, the piezoelectric bodies of the drive units 105a and 105b both expand or contract in the Y-axis direction. That is, for example, during the times Tm1 to Tm2 indicated by broken lines and arrows in FIG. 5, the voltage Vt applied to the upper electrode and the lower electrode gradually increases. When the voltage Vt gradually increases, both the piezoelectric bodies contract in the Y-axis direction.
  • the voltage Vt applied to the upper electrode and the lower electrode gradually decreases.
  • both the piezoelectric bodies extend in the Y-axis direction.
  • the piezoelectric body extends or contracts in the Y-axis direction, so that the portions in the vicinity of the drive units 105a and 105b of the torsion beam portions 104a and 104b bend upward or downward in the Z-axis direction. Due to the periodicity of the in-phase drive signal DS shown in FIG. 5, the voltage applied between the upper electrode and the lower electrode changes periodically.
  • the portions in the vicinity of the drive units 105a and 105b of the torsion beam portions 104a and 104b are periodically moved upward or downward in the Z-axis direction. Bend to. Due to the periodic bending of the portions of the torsion beam portions 104a and 104b in the vicinity of the driving portions 105a and 105b, the torsion beam portions 104a and 104b are torsionally oscillated around the swing axis AX as shown in FIG. As the torsion beam portions 104a and 104b twist and vibrate around the swing axis AX, the mirror portion 103 swings around the swing axis AX as shown in FIG. The reflection surface 107 of the mirror unit 103 reflects the incident light beam while swinging around the swing axis AX. In this way, the light beam is reflected by the reflecting surface 107, whereby the light beam is scanned.
  • the optical scanner 101 has the same electrical configuration as that of the optical scanner 1 according to the first embodiment as shown in FIG. Therefore, detailed description of each component of the optical scanner 101 is omitted.
  • the drive control unit 120 includes a drive signal generation unit 121, a signal superimposing circuit 122, a DC voltage application unit 123, an angle determination unit 124, a determination unit 125, a voltage control unit 128, The frequency control unit 129, the set angle storage unit 130, the range storage unit 131, the first storage unit 132, the second storage unit 133, and the data storage unit 134 are provided.
  • the determination unit 125 includes a first determination unit 126 and a second determination unit 127.
  • the oscillator 102, the mirror unit 103, the drive units 105a and 105b, and the like are shown in a simplified configuration.
  • the drive control unit 120 is illustrated as being divided into a plurality of functional blocks for convenience of explanation, but is actually configured by a microcomputer including a CPU, ROM, flash ROM, RAM, and the like, an FPGA, and the like.
  • the in-phase drive signal DS supplied to the drive units 105a and 105b is the same as the drive signal DS supplied to the drive unit 5 shown in FIGS. 3, 4, and 5 in the first embodiment. Similar signal. Therefore, the description regarding the drive signal DS is omitted.
  • FIG. 11 is a flowchart showing a series of processing when the optical scanner 101 is driven. A series of processing is executed by the CPU provided in the drive control unit 120.
  • steps SB1 to SB7, step SB9, and steps SB11 to SB14 are respectively steps SA1 of the control of the optical scanner 1 in the first embodiment.
  • steps SB9, and SB11 to SB14 are omitted. Only steps SB8 and SB10 shown in FIG. 11 are different from steps SA8 and SA10 in the first embodiment in that the frequency value of the drive signal DS is increased or decreased. This point will be described below.
  • FIG. 12 shows the correlation between the frequency value of the drive signal DS of the optical scanner 101 according to this embodiment and the value of the optical deflection angle.
  • FIG. 12 is a graph showing experimental results for the optical scanner 101 according to the present embodiment. In FIG. 12, for the sake of simplicity, only the characteristics of the optical scanner 101 when the drive frequency is upswept are shown. As shown in FIG. 12, the optical scanner 101 exhibits a jumping phenomenon. In addition, as shown in FIG. 12, when the drive signal generator 121 is controlled so that the voltage value Vt of the drive signal DS of the optical scanner 1 is increased, a phenomenon that the resonance frequency value is increased occurs. . Note that, as shown in FIG.
  • the optical deflection angle Ad has a maximum value Ax as shown in FIG. It is equal to the frequency value of the drive signal DS at the time of taking.
  • SB4 it is determined that the value of the optical deflection angle is less than the set angle (SB4: Yes), and the value of the optical deflection angle is increased until it becomes a value within a predetermined angle range. 12, the frequency value of the drive signal DS needs to be increased.
  • the frequency value of the drive signal DS needs to be decreased as shown in FIG. Accordingly, when it is determined in SB7 that the value of the optical deflection angle is not within a predetermined angle range (SB7: No), the frequency value of the drive signal DS is increased by the frequency change width of 1 Hz (SB8).
  • the frequency value of the drive signal DS is increased by 1 Hz in the vicinity of 32.9 kHz.
  • the direction DR in which the frequency value of the drive signal DS is changed in SB8 is the same as the direction in which the resonance frequency Sf shifts when the voltage value Vt is increased.
  • the frequency value of the drive signal DS is decreased by the frequency change width of 1 Hz (SB10).
  • the frequency value of the drive signal DS is decreased by 1 Hz in the vicinity of 33.0 kHz.
  • the direction DL in which the drive frequency value is changed in SB10 is opposite to the direction in which the resonance frequency Sf shifts when the voltage value Vt is increased.
  • the target optical deflection angle of the optical scanner 101 can be accurately obtained by the control of the optical scanner 101 according to the present embodiment shown in FIG. Further, the possibility that the optical scanner 101 unintentionally causes a jump phenomenon can be reduced.
  • the optical deflection angle becomes extremely small as shown by the broken line arrow in FIG.
  • the drive frequency value can be brought close to the resonance frequency value as quickly as possible.
  • the optical scanner 1 according to the first embodiment also has an effect that the drive frequency value can be brought close to the resonance frequency value as quickly as possible because the possibility of causing a jump phenomenon is reduced. .
  • the retinal scanning display 201 is a form of a head-mounted display device (hereinafter referred to as “HMD”).
  • the retinal scanning display 201 is mounted on the wearer's head and in the vicinity thereof, guides image light to the wearer's eyes, and scans the wearer's retina in a two-dimensional direction so that an image corresponding to the image information is obtained. It is comprised so that it may be visually recognized by the wearer.
  • the optical scanner 101 according to the second embodiment is used in the resonant deflection element 261 shown in FIG. However, the drive control unit 120 corresponds to the horizontal scanning control circuit 262.
  • the retinal scanning display 201 includes a light beam generation unit 220, a horizontal scanning unit 260, and a vertical scanning unit 280.
  • the light beam generation unit 220 generates image light based on the image information S supplied from the outside, and supplies the generated image light to the horizontal scanning unit 260.
  • the horizontal scanning unit 260 scans the image light generated by the light beam generation unit 220 in the horizontal direction, and supplies the image light scanned in the horizontal direction to the vertical scanning unit 280 via the relay optical system 270.
  • the vertical scanning unit 280 scans the image light supplied from the horizontal scanning unit 260 in the vertical direction via the relay optical system 270, and the image light scanned in the vertical direction via the relay optical system 290. To the pupil Ea.
  • the light beam generation unit 220 includes a signal processing circuit 221, a light source unit 230, and a light combining unit 240.
  • the signal processing circuit 221 receives the image data S supplied from the outside. Based on the image data S, the signal processing circuit 221 generates a B video signal, an R video signal, and a G video signal, which are blue, red, and green image signals that are elements for synthesizing an image, and a light source unit 230. The signal processing circuit 221 supplies a horizontal synchronization signal for driving the horizontal scanning unit 260 to the horizontal scanning unit 260 and supplies a vertical synchronization signal for driving the vertical scanning unit 280 to the vertical scanning unit 280.
  • the light source unit 230 functions as an image light output unit that converts each of the B video signal, the R video signal, and the G video signal supplied from the signal processing circuit 221 into image light.
  • the light source unit 230 includes a B laser 234 that generates blue image light and a B laser driver 231 that drives the B laser 234, an R laser 235 that generates red image light, and an R laser driver 232 that drives the R laser 235.
  • a G laser 236 that generates green image light, and a G laser driver 233 that drives the G laser 236.
  • the light combining unit 240 is supplied with the three image lights output from the light source unit 230, and generates arbitrary image light by combining the three image lights into one image light.
  • the light combining unit 240 includes collimating optical systems 241, 242, and 243, dichroic mirrors 244, 245, and 246 for combining the collimated image light, and a coupling optical system 247 that guides the combined image light to the transmission cable 250. And. Laser beams emitted from the lasers 234, 235, and 236 are collimated by collimating optical systems 241, 242, and 243, respectively, and then incident on dichroic mirrors 244, 245, and 246.
  • the collimating optical system 251 converts the image light emitted through the transmission cable 250 into parallel light and guides it to the horizontal scanning unit 260.
  • the collimated image light is converted into two-dimensionally scanned image light by the horizontal scanning unit 260, the relay optical system 270, the vertical scanning unit 280, and the relay optical system 290.
  • the horizontal scanning unit 260 reciprocally scans the image light that has been collimated by the collimating optical system 251 in the horizontal direction for image display.
  • the relay optical system 270 is provided between the horizontal scanning unit 260 and the vertical scanning unit 280 and guides the image light scanned by the horizontal scanning unit 260 to the vertical scanning unit 280.
  • the vertical scanning unit 280 reciprocates in the vertical direction the image light scanned in the horizontal direction by the horizontal scanning unit 260.
  • the relay optical system 290 emits image light scanned (two-dimensionally scanned) in the horizontal direction and the vertical direction to the pupil Ea.
  • the horizontal scanning unit 260 includes a resonance type deflection element 261 and a horizontal scanning control circuit 262.
  • the optical scanner 101 according to the second embodiment is used for the resonance type deflection element 261.
  • the resonant deflection element 261 has a reflection surface for scanning the image light in the horizontal direction.
  • the horizontal scanning control circuit 262 resonates the resonance type deflection element 261 based on the horizontal synchronization signal supplied from the signal processing circuit 221.
  • the relay optical system 270 relays image light between the horizontal scanning unit 260 and the vertical scanning unit 280. The light scanned in the horizontal direction by the resonance type deflection element 261 is converged on the reflection surface of the deflection element 281 in the vertical scanning unit 280 by the relay optical system 270.
  • the vertical scanning unit 280 includes a deflection element 281 and a vertical scanning control circuit 282.
  • the deflection element 281 scans the image light guided by the relay optical system 270 in the vertical direction.
  • the vertical scanning control circuit 282 swings the deflection element 281 based on the vertical synchronization signal supplied from the signal processing circuit 221.
  • the image light scanned in the horizontal direction by the resonance type deflection element 261 and scanned in the vertical direction by the deflection element 281 is emitted to the relay optical system 290 as scanning image light scanned two-dimensionally.
  • the relay optical system 290 relays image light between the vertical scanning unit 280 and the pupil Ea of the wearer.
  • the image light scanned in the horizontal direction by the resonance type deflection element 261 and scanned in the vertical direction by the deflection element 281 is converged on the pupil Ea of the wearer by the relay optical system 290. In this way, the wearer can visually recognize an image corresponding to the image information.
  • the optical scanner 101 according to the second embodiment is used for the resonant deflection element 261 shown in FIG.
  • the optical scanner 1 according to the first embodiment may also be used for the resonant deflection element 261.
  • the drive control unit 20 corresponds to the horizontal scanning control circuit 262.
  • the optical scanners 1 and 101 include the BD sensors 50 and 150, respectively.
  • the present invention is not limited to this, and the optical scanner does not include the BD sensor, The scanner and the BD sensor may be separate devices.
  • the angle determination unit of the optical scanner needs to have a function as a signal receiving unit that receives a timing signal from a BD sensor provided outside the optical scanner.
  • the BD sensors 50 and 150 are given as an example of the detection unit of the present invention.
  • the present invention is not limited to this, and a detection element composed of a piezoelectric body and an electrode is used.
  • An optical deflection angle may be calculated from the output voltage of the detection element and detected.
  • the detection element for example, a known technique disclosed in Japanese Patent Application Laid-Open No. 2007-199682 is used. In this case, for example, in the case of the structure of the optical scanner in the second embodiment, detection is performed across the torsion beam portions 104a and 104b and the fixed portion 6 on the opposite side across the swing axis AX of the drive portions 105a and 105b. It is only necessary to provide an element for use.
  • the retinal scanning display 201 is shown, but the present invention is not limited to this, and it may be used for an electrophotographic compound machine, a laser printer, a barcode reader, or the like.
  • the determination unit 25 calculates the difference between the current voltage value and the first voltage value. Also, the calculated difference is the total voltage change value up to now. Then, the determination unit 25 determines whether or not the calculated difference exceeds 1 volt.
  • the present invention is not limited to this, and the total voltage change value may be determined by processing as described below. That is, the difference between the current voltage value and the first voltage value is not calculated, and only the changed voltage change width is sequentially added to the voltage change value stored in the change value storage unit. A value obtained by adding the voltage change width to the voltage change value is determined as the total voltage change value. In this case, when the total voltage change value exceeds 1 volt, the total voltage change value stored so far is set to 0 volt when the frequency control process is started.
  • the determination unit 25 calculates the difference between the current frequency value and the first frequency value. Further, the calculated difference is the total frequency change value up to now. Then, the determination unit 25 determines whether or not the calculated difference exceeds 30 Hz.
  • the present invention is not limited to this, and the total frequency change value may be determined by processing as described below. That is, the difference between the current frequency value and the first frequency value is not calculated, and only the changed frequency change width is sequentially added to the frequency change value stored in the change value storage unit. A value obtained by adding the frequency change width to the frequency change value is determined as the total frequency change value. In this case, when the total frequency change value exceeds 30 Hz, the total frequency change value stored so far is set to 0 Hz when the process proceeds to the voltage control process.
  • the voltage change width is 0.1 V
  • the total voltage change value limit value is 1 V
  • the frequency change width is 1 Hz
  • the total frequency change value limit value is 30 Hz.
  • the present invention is not limited to this.
  • the voltage change width is 0.05 V
  • the total voltage change value limit value is 0.5 V
  • the frequency change width is 0.5 Hz
  • the total frequency change value limit value is 15 Hz. There may be.

Abstract

 非線形特性を有する光スキャナが跳躍現象を起こす可能性を軽減し、尚且つ光スキャナの大きな光学振れ角を得る。光学振れ角の値が、所定の角度範囲内の値か否かが判断される(SA3)。光学振れ角の値が、所定の角度範囲内の値でないと判断されると(SA3:No)、光学振れ角の値が、所定の設定角度の値未満か否かが判断される(SA4)。光学振れ角の値が、設定角度未満であると判断されると(SA4:Yes)、駆動信号DSの電圧値Vtが電圧変更幅0.1ボルトの分だけ増大される(SA5)。その後、駆動信号DSの周波数値が周波数変更幅1Hzの分だけ減少される(SA8)。

Description

光スキャナ、光スキャナを用いた画像表示装置、及び光スキャナ駆動制御方法
 本発明は、レーザプリンタや投影型表示装置などに用いられる光スキャナ、光スキャナを用いた画像表示装置、及び光スキャナの駆動制御方法に関する。
 従来より、レーザプリンタや投影型表示装置等にMEMS(Micro-Electro-Mechanical Systems)ミラーを用いた光スキャナが使用されている。光スキャナが画像表示装置等に用いられる場合、光スキャナの光学振れ角が大きいほど、表示画像の画角が大きくなる。従って、大きな画像を表示したり、解像度の高い画像を表示するためには、光スキャナの光学振れ角は大きいほど望ましい。
 光スキャナの大きな光学振れ角を得る方法として、共振特性を示すQ値の高い光スキャナを共振周波数にて駆動することが挙げられる。一般に、光スキャナを共振周波数にて駆動するには、光スキャナを駆動するための駆動周波数を、光スキャナの共振周波数に等しくすればよい。しかし、Q値の高い光スキャナは、駆動周波数の変化量に対し、光スキャナの光学振れ角が大きく変化する。また、光スキャナの共振周波数は、温度変化や経年変化等に依存して変化する。従って、Q値の高い光スキャナを共振周波数にて安定的に駆動することは困難を極める。
 上記の問題に鑑み、特許文献1では、光スキャナの駆動周波数を往復掃引し、往復掃引により得られた揺動振幅値が極大となる少なくとも2つの周波数に基づいて共振周波数が決定されている。特許文献1に開示されている光スキャナの駆動方法によれば、決定された共振周波数にて光スキャナを駆動することで、Q値の高い光スキャナでも適切に光スキャナの大きな光学振れ角を得ることができる。
 特許文献1の光スキャナにおいては、周波数の変化を極めてゆっくりにすれば、駆動周波数の往路掃引の際の揺動振幅値が極大となる周波数と駆動周波数の復路掃引の際の揺動振幅値が極大となる周波数とが合致する。光スキャナの揺動振幅値は、光スキャナの光学振れ角に対応する。よって、上記の周波数の合致は、駆動周波数の往路掃引の際の光スキャナの光学振れ角が極大となる周波数と駆動周波数の復路掃引の際の光学振れ角が極大となる周波数とが合致することを意味する。このように、駆動周波数が往路掃引されているか、復路掃引されているかに関らず、光スキャナの光学振れ角が極大となる周波数の値が一意に決まる光スキャナの特性を一般に線形特性と言う。
 光スキャナの特性には、非線形特性と呼ばれるもう一つの特性がある。特許文献2に非線形特性を有する光スキャナが開示されている。非線形特性を有する光スキャナは、履歴現象と跳躍現象との2つの特徴的な現象を示す。履歴現象とは、駆動周波数を往路掃引しているか、復路掃引しているかによって、光スキャナの光学振れ角が極大となる周波数が異なる現象を指す。跳躍現象とは、駆動周波数を少しずつ段階的に変化させるに連れ、光スキャナの光学振れ角も小さな変化量で変化していたものが、駆動周波数の微小な変化に対して、光スキャナの光学振れ角が大きく変化する現象を指す。跳躍現象は、通常、光スキャナの光学振れ角が極大となる共振周波数の近傍において起きる。線形特性を有する光スキャナは、履歴現象、及び跳躍現象を示すことはなく、履歴現象、及び跳躍現象は非線形特性を有する光スキャナに特有な現象と言える。
 履歴現象、及び跳躍現象について、図14を用いて詳細に説明する。図14は、縦軸が光学振れ角を表し、横軸が駆動周波数を表し、光スキャナの非線形特性を示す図である。
[アップスイープ]
 図14において、実線矢印で示したように、周波数Faよりも低い周波数から駆動周波数を徐々に高くしていった場合、即ち、駆動周波数をアップスイープした場合、光スキャナの光学振れ角は、徐々に大きくなる。光スキャナの光学振れ角は、駆動周波数が共振周波数Fbと等しいときに最大となる。駆動周波数を共振周波数Fbよりも高くすると、光スキャナは跳躍現象を示し、破線矢印で示したように、光スキャナの光学振れ角は急激に小さくなる。
[ダウンスイープ]
 図14において、二点鎖線矢印で示したように、周波数Faよりも高い周波数から駆動周波数を徐々に低くしていった場合、即ち、駆動周波数をダウンスイープした場合、光スキャナの光学振れ角は、徐々に大きくなる。駆動周波数が周波数Fa近傍の値をとるようになると、光スキャナが跳躍現象を示し、光スキャナの光学振れ角は、急激に大きくなる。そして、駆動周波数が周波数Faと等しいときに光スキャナの光学振れ角は極大となる。
特開2008-310301号公報 特開2003-5123号公報
 図14に示したように、非線形特性を有する光スキャナの大きな光学振れ角を得るには、駆動周波数が共振周波数に近くなった時点で、駆動周波数のスイープを止め、共振周波数近傍で光スキャナを駆動することが望まれる。しかしながら、非線形特性を有する光スキャナは跳躍現象を示すため、単純に駆動周波数をスイープさせると意図せず跳躍現象を起こしてしまう可能性があった。光スキャナが跳躍現象を起こすと、図14に示したように光学振れ角が極めて小さくなってしまうなどの問題が生ずる。
 本発明は、上述した問題点を解決するためになされたものであり、非線形特性を有する光スキャナが跳躍現象を起こす可能性を軽減し、尚且つ光スキャナの大きな光学振れ角を得ることを目的とするものである。
 上記目的を達成するために、請求項1記載の本発明は、入射した光束を反射するミラー部を有する揺動体を備える光スキャナであって、前記揺動体を駆動することで、前記ミラー部を揺動軸線回りに揺動させる駆動部と、前記駆動部を駆動するための駆動信号を生成し、前記駆動信号を前記駆動部に供給する信号生成部と、前記信号生成部により生成される前記駆動信号の駆動電圧値が変更されるように前記信号生成部を制御する電圧制御部と、前記信号生成部により生成される前記駆動信号の駆動周波数値が変更されるように前記信号生成部を制御する周波数制御部と、前記ミラー部の前記揺動軸線回りの揺動角度を検知する検知部と、前記ミラー部の前記揺動角度としてあらかじめ設定された設定角度を記憶している設定角度記憶部と、前記検知部により検知された前記揺動角度が、前記設定角度未満か否かを判断する第1判断部と、を備え、前記光スキャナは、共振周波数値の近傍における前記駆動周波数値の変化に対して、前記揺動角度が大きく変化する跳躍現象と、前記電圧制御部により前記駆動信号の駆動電圧値が大きくなるように前記信号生成部が制御された場合に、前記共振周波数値が大きくなる方向、または小さくなる方向にシフトするというシフト現象と、がそれぞれ発生する構成を有し、前記電圧制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記信号生成部を制御し、前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記電圧制御部により前記信号生成部が制御された後、前記共振周波数値のシフトする方向と同じ方向に前記駆動信号の駆動周波数値が変更されるように前記信号生成部を制御することを特徴とするものである。
 請求項2記載の本発明は、請求項1に記載の発明において、前記電圧制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記駆動電圧値を設定する第1設定ステップを繰り返し実行することにより前記駆動電圧値が順次変更されるように前記信号生成部を制御し、前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記電圧制御部により前記信号生成部が制御された後、前記駆動周波数値を設定する第2設定ステップを繰り返し実行することにより前記駆動周波数値が順次変更されるように前記信号生成部を制御することを特徴とするものである。
 請求項3記載の本発明は、請求項1に記載の発明において、前記電圧制御部により実行される前記第1設定ステップの繰り返し実行により変更される前記駆動電圧値の電圧変更幅をあらかじめ記憶している第1記憶部と、前記周波数制御部により実行される前記第2設定ステップの繰り返し実行により変更される前記駆動周波数値の周波数変更幅をあらかじめ記憶している第2記憶部と、を備え、前記電圧制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記第1記憶部により記憶されている前記電圧変更幅の分だけ前記駆動電圧値が順次変更されるように前記信号生成部を制御し、前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記電圧制御部により前記信号生成部が制御された後、前記第2記憶部により記憶されている前記周波数変更幅の分だけ前記駆動周波数値が順次変更されるように前記信号生成部を制御することを特徴とするものである。
 請求項4記載の本発明は、請求項1に記載の発明において、前記設定角度を含む所定の角度範囲をあらかじめ記憶している範囲記憶部と、前記検知部により検知された前記揺動角度が、前記範囲記憶部に記憶されている前記所定の角度範囲内の値か否かを判断する第2判断部と、を備え、前記電圧制御部、及び前記周波数制御部は、各々、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断され、前記検知部により検知された前記揺動角度が、前記範囲記憶部に記憶されている前記所定の角度範囲内の値であると前記第2判断部により判断された場合に、前記信号生成部を制御することを停止することを特徴とするものである。
 請求項5記載の本発明は、請求項1に記載の発明において、前記光スキャナは、前記電圧制御部により前記駆動信号の駆動電圧値が大きくなるように前記信号生成部が制御された場合に、前記共振周波数値が小さくなるという前記シフト現象が発生す
る構成を有し、前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記電圧制御部により前記信号生成部が制御された後、前記駆動信号の駆動周波数値が小さくなるように前記信号生成部を制御することを特徴とするものである。
 請求項6記載の本発明は、請求項1に記載の発明において、前記光スキャナは、前記電圧制御部により前記駆動信号の駆動電圧値が大きくなるように前記信号生成部が制御された場合に、前記共振周波数値が大きくなるという前記シフト現象が発生する構成を有し、前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記電圧制御部により前記信号生成部が制御された後、前記駆動信号の駆動周波数値が大きくなるように前記信号生成部を制御することを特徴とするものである。
 請求項7記載の本発明は、請求項1に記載の発明において、前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度以上であると前記第1判断部により判断された場合に、前記共振周波数値のシフトする方向と逆方向に前記駆動信号の駆動周波数値が変更されるように前記信号生成部を制御し、前記電圧制御部は、前記周波数制御部により前記信号生成部が制御された後、前記信号生成部を制御することを特徴とするものである。
 請求項8記載の本発明は、請求項7に記載の発明において、前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度以上であると前記第1判断部により判断された場合に、前記駆動周波数値を設定する第3設定ステップを繰り返し実行することにより前記駆動周波数値が順次変更されるように前記信号生成部を制御し、
 前記電圧制御部は、前記検知部により検知された前記揺動角度が、前記設定角度以上であると前記第1判断部により判断された場合に、前記周波数制御部により前記信号生成部が制御された後、前記駆動電圧値を設定する第4設定ステップを繰り返し実行することにより前記駆動電圧値が順次変更されるように前記信号生成部を制御することを特徴とするものである。
 請求項9記載の本発明は、請求項7に記載の発明において、前記周波数制御部により実行される前記第3設定ステップの繰り返し実行により変更される前記駆動周波数値の周波数変更幅をあらかじめ記憶している第3記憶部と、前記電圧制御部により実行される前記第4設定ステップの繰り返し実行により変更される前記駆動周電圧の電圧値の電圧変更幅をあらかじめ記憶している第4記憶部と、を備え、前記周波数制御部は、前記第1判断部により前記検知部により検知された前記揺動角度が、前記設定角度以上であると判断された場合に、前記第3記憶部により記憶されている前記周波数変更幅の分だけ前記駆動周波数値が順次変更されるように前記信号生成部を制御し、前記電圧制御部は、前記第1判断部により前記検知部により検知された前記揺動角度が、前記設定角度以上であると判断された場合に、前記周波数制御部により前記信号生成部が制御された後、前記第4記憶部により記憶されている前記電圧変更幅の分だけ前記駆動電圧値が順次変更されるように前記信号生成部を制御することを特徴とするものである。
 請求項10記載の本発明は、請求項7に記載の発明において、前記設定角度を含む所定の角度範囲をあらかじめ記憶している範囲記憶部と、前記検知部により検知された前記揺動角度が、前記範囲記憶部に記憶されている前記所定の角度範囲内の値か否かを判断する第2判断部と、を備え、前記電圧制御部、及び前記周波数制御部は、各々、前記検知部により検知された前記揺動角度が、前記設定角度以上であると前記第1判断部により判断され、前記検知部により検知された前記揺動角度が、前記範囲記憶部に記憶されている前記所定の角度範囲内の値であると前記第2判断部により判断された場合に、
前記信号生成部を制御することを停止することを特徴とするものである。
 請求項11記載の本発明は、請求項7に記載の発明において、前記光スキャナは、前記電圧制御部により前記駆動信号の駆動電圧値が大きくなるように前記信号生成部が制御された場合に、前記共振周波数値が小さくなるという前記シフト現象が発生する構成を有し、前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度以上であると前記第1判断部により判断された場合に、前記駆動信号の駆動周波数値が大きくなるように前記信号生成部を制御することを特徴とするものである。
 請求項12記載の本発明は、請求項7に記載の発明において、前記光スキャナは、前記電圧制御部により前記駆動信号の駆動電圧値が大きくなるように前記信号生成部が制御された場合に、前記共振周波数値が大きくなるという前記シフト現象が発生する構成を有し、前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度以上であると前記第1判断部により判断された場合に、前記駆動信号の駆動周波数値が小さくなるように前記信号生成部を制御することを特徴とするものである。
 上記目的を達成するために、請求項13記載の本発明は、画像表示装置であって、請求項1~12のいずれかに記載の光スキャナと、前記光スキャナに光を供給する光源部と、前記光スキャナにより走査された走査光を使用者の目に導く光学系と、を備えることを特徴とするものである。
 上記目的を達成するために、請求項14記載の本発明は、入射した光束を反射するミラー部を有する揺動体と、前記揺動体を駆動することで、前記ミラー部を揺動軸線回りに揺動させる駆動部と、前記駆動部を駆動するための駆動信号を生成し、前記駆動信号を前記駆動部に供給する信号生成部とを備え、共振周波数値の近傍における前記駆動周波数値の変化に対して、前記揺動角度が大きく変化する跳躍現象と、前記駆動信号の駆動電圧値が大きくなる場合に、前記共振周波数値が大きくなる方向、または小さくなる方向にシフトするというシフト現象と、がそれぞれ発生する構成を有する光スキャナに使用される駆動制御方法であって、前記ミラー部の前記揺動角度としてあらかじめ設定された設定角度を記憶する設定角度記憶ステップと、前記ミラー部の前記揺動軸線回りの揺動角度を検知する検知ステップと、前記検知ステップにより検知された前記揺動角度が、前記設定角度未満か否かを判断する第1判断ステップと、前記検知ステップにより検知された前記揺動角度が、前記設定角度未満であると前記第1判断ステップにより判断された場合に、前記駆動信号の駆動電圧値が変更されるように前記信号生成部を制御する電圧制御ステップと、前記検知ステップにより検知された前記揺動角度が、前記設定角度未満であると前記第1判断ステップにより判断された場合に、前記電圧制御ステップにより前記信号生成部が制御された後、前記共振周波数値のシフトする方向と同じ方向に前記駆動信号の駆動周波数値が変更されるように前記信号生成部を制御する周波数制御ステップと、を備えることを特徴とするものである。
 請求項1記載の光スキャナによれば、検知部により検知された揺動角度が、設定角度未満であると判断された場合に、駆動電圧値が変更された後、共振周波数値のシフトする方向と同じ方向に駆動周波数値が変更される。つまり、非線形特性を有する光スキャナの駆動電圧値が駆動周波数値より先に変更される。よって、駆動電圧値の変更により共振周波数がシフトした分、駆動周波数値を変更することができる。従って、跳躍現象を起こす可能性を軽減できる。そして、駆動電圧値が変更された後、共振周波数がシフトした方向に駆動周波数値が変更される。よって、駆動電圧の変更による光学振れ角の増大に加えて、駆動周波数が共振周波数に近づけられることによる光学振れ角の増大が得られる。従って、光スキャナの大きな光学振れ角を得ることができる。
 請求項2記載の光スキャナによれば、駆動電圧値と駆動周波数値とがともに段階的に変更される。従って、細かな変更が可能となり、光スキャナが跳躍現象を起こす可能性を軽減し、尚且つ光スキャナの大きな光学振れ角を得ることができる。
 請求項3記載の光スキャナによれば、駆動電圧値があらかじめ記憶されている変更幅分段階的に変更され、尚且つ駆動周波数値があらかじめ記憶されている変更幅分、段階的に変更される。従って、細かな変更が可能となり、光スキャナが跳躍現象を起こす可能性を軽減し、尚且つ光スキャナの大きな光学振れ角を得ることができる。
 請求項4記載の光スキャナによれば、検知された揺動角度が、所定の角度範囲内の値であると判断された場合に、駆動電圧値、及び駆動周波数値の変更が停止される。従って、目標とする揺動角度が得られた際に、駆動電圧値、及び駆動周波数値の変更が停止されるため、光スキャナの大きな光学振れ角を得ることができる。
 請求項5記載の光スキャナによれば、駆動電圧値が増大されると、共振周波数値が小さくなるという現象が起きる場合に、駆動信号の駆動周波数値が減少される。従って、駆動周波数が共振周波数に近づけられ、光スキャナの大きな光学振れ角を得ることができる。
 請求項6記載の光スキャナによれば、駆動電圧値が増大されると、共振周波数値が大きくなるという現象が起きる場合に、駆動信号の駆動周波数値が増大される。従って、駆動周波数が共振周波数に近づけられ、光スキャナの大きな光学振れ角を得ることができる。
 請求項7記載の光スキャナによれば、以下に挙げる問題を解決できるという効果を奏する。光学振れ角を所望の大きさにする際、光学振れ角を小さくできるよう、駆動電圧値、及び駆動周波数値を変更する必要が生ずる場合がある。この場合、駆動周波数値よりも先に駆動電圧値を変更すると、跳躍現象が起きる可能性がある。
 図15は、駆動周波数値よりも先に駆動電圧値が変更されることにより起きる跳躍現象を説明するための説明図である。図15は、縦軸が光学振れ角を表し、横軸が駆動周波数を表し、光スキャナの特性を示す図である。図15において、簡略化のため、駆動周波数がダウンスイープされた際の光スキャナの特性のみが示されている。図15に示すように、いずれの駆動電圧下においても、駆動周波数がダウンスイープされると、徐々に大きな光学振れ角が得られ、ある駆動周波数の境界値を境に、光スキャナは跳躍現象を起こす。この境界値が共振周波数値である。そして、図15に示すように、共振周波数値は、駆動電圧値が大きくなるほど、小さくなる方向にシフトしている。
 図15に示すように、今、駆動周波数Fc、且つ駆動電圧13ボルトの条件下で光学振れ角Acが得られているものとする。この後、光学振れ角Acよりも僅かに小さい光学振れ角を得るために、駆動周波数値よりも先に駆動電圧値が変更されたとする。この場合、光スキャナは図15に示す実線矢印に示すように跳躍現象を起こす。そして、光スキャナの光学振れ角は、図15に示す光学振れ角Acから光学振れ角Afまで急激に小さくなってしまう。
 請求項7記載の光スキャナによれば、前記検知部により検知された揺動角度が、設定角度以上であると判断された場合に、共振周波数値のシフトする方向と同じ方向に駆動周波数値が変更された後、駆動電圧値が変更される。つまり、駆動電圧値より先に駆動周波数値が変更される。従って、光学振れ角を目標とする光学振れ角の値まで小さくするために駆動電圧、及び駆動周波数を変更する際に、光スキャナの跳躍現象が起きてしまう可能性を軽減できる。
 請求項8記載の光スキャナによれば、駆動電圧値と駆動周波数値とがともに段階的に変更される。従って、細かな変更が可能となり、光スキャナが跳躍現象を起こす可能性を軽減し、尚且つ目標とする光スキャナの光学振れ角を精度良く得ることができる。
 請求項9記載の光スキャナによれば、駆動電圧値があらかじめ記憶されている変更幅分段階的に変更され、尚且つ駆動周波数値があらかじめ記憶されている変更幅分、段階的に変更される。従って、細かな変更が可能となり、光スキャナが跳躍現象を起こす可能性を軽減し、尚且つ目標とする光スキャナの光学振れ角を精度良く得ることができる。
 請求項10記載の光スキャナによれば、検知された揺動角度が、所定の角度範囲内の値であると判断された場合に、駆動電圧値、及び駆動周波数値の変更が停止される。従って、目標とする揺動角度が得られた際に、駆動電圧値、及び駆動周波数値の変更が停止されるため、目標とする光スキャナの光学振れ角を精度良く得ることができる。
 請求項11記載の光スキャナによれば、駆動電圧値が増大されると、共振周波数値が小さくなるという現象が起きる場合に、駆動信号の駆動周波数値が増大される。従って、目標とする光スキャナの光学振れ角を精度良く得ることができる。
 請求項12記載の光スキャナによれば、駆動電圧値が増大されると、共振周波数値が大きくなるという現象が起きる場合に、駆動信号の駆動周波数値が減少される。従って、目標とする光スキャナの光学振れ角を精度良く得ることができる。
 請求項13記載の画像表示装置によれば、大きな光学振れ角で揺動可能な光スキャナを備えているので、表示画像の画角が大きくなる。従って、大きな画像を表示したり、解像度の高い画像を表示することができる。また、跳躍現象を起こす可能性が軽減された光スキャナを備えているため、所望の画角、及び解像度の画像を確実に表示することができる。
 請求項14記載の駆動制御方法によれば、検知ステップにより検知された揺動角度が、設定角度未満であると判断された場合に、駆動電圧値が変更された後、共振周波数値のシフトする方向と同じ方向に駆動周波数値が変更される。従って、非線形特性を有する光スキャナの駆動電圧値が駆動周波数値より先に変更される。よって、駆動電圧値の変更により共振周波数がシフトした分、駆動周波数値を変更することができる。従って、跳躍現象を起こす可能性を軽減できる。そして、駆動電圧値が変更された後、共振周波数がシフトした方向に駆動周波数値が変更される。よって、駆動電圧の変更による光学振れ角の増大に加えて、駆動周波数が共振周波数に近づけられることによる光学振れ角の増大が得られる。従って、光スキャナの大きな光学振れ角を得ることができる。
本発明の第1の実施形態に係る光スキャナ1を示す外観図である。 上記光スキャナ1の電気的構成を示す機能ブロック図である。 本発明の第1の実施形態における駆動信号生成部21により生成された駆動信号DS0の時間的変化を説明するための説明図である。 本発明の第1の実施形態における直流電圧印加部23から出力された直流電圧SHを説明するための説明図である。 本発明の第1の実施形態における信号重畳回路22から出力された駆動信号DSの時間的変化を説明するための説明図である。 上記光スキャナ1を駆動する際の一連の処理を示すフローチャートである。 上記駆動信号DSの駆動周波数と光学振れ角との相関関係を示す図である。 本発明の第2の実施形態に係る光スキャナ101を示す外観図である。 上記光スキャナ101の揺動体102の揺動を説明するための説明図である。 上記光スキャナ101の電気的構成を示す機能ブロック図である。 上記光スキャナ101を駆動する際の一連の処理を示すフローチャートである。 上記光スキャナ101の駆動信号DSの駆動周波数と光学振れ角との相関関係を示す図である。 上記光スキャナ101の網膜走査ディスプレイ201における使用例を示す図である。 非線形特性を有する光スキャナの駆動周波数と光学振れ角との相関関係を示す図である。 非線形特性を有する光スキャナにおいて駆動周波数値よりも先に駆動電圧値が変更されることにより起きる跳躍現象を説明するための説明図である。
(第1の実施形態)
 以下、本発明の第1の実施形態について、図面を参照して具体的に説明する。
[光スキャナ概観]
 図1は、本実施形態の光スキャナ1の外観図である。図1に示すように、光スキャナ1は、揺動体2と駆動制御部20とBDセンサ50と図示しないベース台とを備える。揺動体2はベース台上に配置される。揺動体2は、ミラー部3と、捻れ梁部4と、駆動部5と、可動板6とを備えている。捻れ梁部4は、ミラー部3に連結する。駆動部5は、可動板6の上に設けられる。駆動部5は、リード線15により、駆動制御部20に接続されている。
 ミラー部3は、図1に示す揺動軸線AXの回りに揺動可能で、入射した光束を反射して、走査する。ミラー部3は、入射した光束を反射するための反射面7を備える。以後、簡略化のため、図1に示すように、揺動体2の静止時の、反射面7に平行な面上で、且つ揺動軸線AXに垂直な方向をX軸とし、揺動軸線AXに平行な方向をY軸とし、反射面7に垂直な方向をZ軸として定義する。X軸、Y軸、Z軸の方向の定義は、他の図面においても共通のものとする。
 駆動部5は、薄板状の圧電体が上部電極と下部電極とに挟まれた積層体である。圧電体は、例えば、電圧印加により変形するチタン酸ジルコン酸鉛(以後、「PZT」と記す。)の圧電体である。
 駆動部5の上部電極と下部電極とは、リード線15により、駆動制御部20に接続されている。駆動制御部20から、リード線15を介して、駆動信号が駆動部5に供給される。駆動制御部20から、駆動部5に駆動信号が供給されることにより、上部電極と下部電極との間に駆動電圧が印加される。このように電圧が印加されることにより、駆動部5の圧電体がX軸方向に伸縮変形する。駆動部5の伸縮変形により、可動板6の駆動部5近傍の部分がZ軸方向の上側、または下側に屈曲する。可動板6の駆動部5近傍の部分が、上側に屈曲するか、下側に屈曲するかは、上部電極と下部電極との間に印加される電圧の大小によって決定される。なお、Z軸方向の上側、下側とは、各々、Z軸の正の領域側、負の領域側であり、厳密にZ軸方向に平行な方向に限定される意味ではない。
 可動部6の駆動部5近傍の部分が屈曲されることにより、可動板6に板波が発生される。可動板6に発生された板波は、ミラー部3、及び捻れ梁部4に回転モーメントを生じさせる。この回転モーメントにより、捻れ梁部4は捻れ振動する。また、この回転モーメントにより、ミラー部3は、揺動軸線AXの回りに揺動する。ミラー部3が揺動することにより、図1に示すミラー部3の反射面7に入射した光束は走査される。
[電気的構成]
 図2を用いて、本実施形態に係る光スキャナ1の電気的構成について詳細に説明する。図2は、本実施形態に係る光スキャナ1の電気的構成を示す説明図である。図2に示すように、駆動制御部20は、駆動信号生成部21と、信号重畳回路22と、直流電圧印加部23と、角度決定部24と、判断部25と、電圧制御部28と、周波数制御部29と、設定角度記憶部30と、範囲記憶部31と、第1記憶部32と、第2記憶部33と、データ記憶部34と、を備える。判断部25は、第1判断部26と、第2判断部27とを備える。図2において、揺動体2、ミラー部3、及び駆動部5等は、構成を簡略化して示されている。図2において、駆動制御部20は、説明の便宜上、複数の機能ブロックに分けて図示されているが、実際には、CPU、ROM、フラッシュROM、RAM等を含むマイコンや、FPGA等により構成される。
 図3、図4、及び図5を用いて、駆動部5に供給される駆動信号について詳細に説明する。図3、図4、及び図5において、縦軸は駆動部5の上部電極と下部電極とに印加される電圧Vtであり、横軸は時間Tmである。駆動信号生成部21は、図3に示すような、駆動部5を駆動するための駆動信号DS0を生成し、駆動信号DS0を信号重畳回路22に供給する。また、駆動信号生成部21は、駆動信号DS0の振幅Vhの情報を直流電圧印加部23に供給する。直流電圧印加部23は、駆動信号DS0の振幅Vhの情報に基づき、図4に示すような直流電圧SHを生成する。直流電圧SHは、図4に示すように、どの時間Tmにおいても駆動信号DS0の振幅Vhと同じ電圧値を有する。
 信号重畳回路22は、駆動信号生成部21から供給された駆動信号DS0と、直流電圧印加部23から供給される直流電圧SHとを重畳する。信号重畳回路22により、駆動信号DS0と、直流電圧SHとが重畳されると、駆動信号DS0は、電圧Vtの下限値が0ボルトになるように、電圧Vtの正の方向に駆動信号DS0の振幅Vh分シフトされる。この駆動信号DS0のシフトにより、図5に示す駆動信号DSが生成される。信号重畳回路22は、駆動信号DS0と、直流電圧SHとを重畳すると、駆動信号DSを駆動部5に供給する。
 信号重畳回路22から駆動部5に駆動信号DSが供給されると、駆動部5が駆動され、揺動体2が駆動される。揺動体2が駆動されることで、ミラー部3が揺動する。ミラー部3が揺動することで、ミラー部3の反射面7が、光スキャナ1の外部に設けられた光源LDからミラー部3に供給された光束を反射する。
 駆動信号DSに基づく揺動体2の駆動について詳細に説明する。図5に示す駆動信号DSの周期性により、駆動部5の圧電体は、X軸方向に伸縮変形する。即ち、例えば、図5において破線と矢印とで示した時間Tm1~Tm2においては、上部電極と下部電極とに印加される電圧Vtが徐々に大きくなる。電圧が徐々に大きくなると、圧電体は、X軸方向に縮む。また、図5において一点鎖線と矢印とで示した時間Tm3~Tm4においては、上部電極と下部電極とに印加される電圧Vtが徐々に小さくなる。電圧Vtが徐々に小さくなると、圧電体は、X軸方向に伸びる。このようにして圧電体がX軸方向に伸縮変形することにより、可動部6の駆動部5近傍の部分がZ軸方向の上側、または下側に屈曲する。図5に示す駆動信号DSの周期性により、上部電極と下部電極との間に印加される電圧Vtが周期的に変化する。上部電極と下部電極との間に印加される電圧Vtが周期的に変化することで、可動部6の駆動部5近傍の部分がZ軸方向の上側、または下側に周期的に屈曲する。可動部6の駆動部5近傍の部分がZ軸方向の上側、または下側に周期的に屈曲することで、ミラー部3が、揺動軸線AXの回りに揺動する。ミラー部3が揺動することで、光源LDからミラー部3の反射面7に供給された光束が走査される。以上のようにして、駆動信号DSに基づき揺動体2が駆動される。
 BDセンサ50は、図1、及び図2に示すように、予め反射面7に対し所定の位置で設けられている。BDセンサ50は、ミラー部3の反射面7により反射され、BDセンサ50を通過した反射光を検知する。BDセンサ50は、反射光がBDセンサ50を通過するタイミングを示すタイミング信号を生成し、駆動制御部20の角度決定部24に供給する。角度決定部24は、BDセンサ50から供給されたタイミング信号に基づき、光スキャナ1の光学振れ角の値を決定する。なお、角度決定部24により決定される光スキャナ1の光学振れ角の値は、周知のようにミラー部3の揺動角度の値と比例関係にある。そのため、光学振れ角は、揺動角度に対応している。光学振れ角の決定の具体的な詳細は、例えば特開2008-310301号公報などに記載されている。角度決定部24は、決定された光学振れ角の値を、判断部25に供給する。
 判断部25は、図2に示すように第1判断部26と第2判断部27とを備える。第1判断部26は、角度決定部24により決定された光学振れ角の値が、設定角度記憶部30により記憶されている所定の設定角度の値未満か否かを判断する。第2判断部27は、角度決定部24により決定された光学振れ角の値が、範囲記憶部31に記憶されている所定の角度範囲内の値か否かを判断する。判断部25は、第1判断部26、及び第2判断部27の判断結果を電圧制御部28、及び周波数制御部29に供給する。また、判断部25は、データ記憶部34により記憶されている電圧値、及び周波数値に基づき、電圧制御部28または周波数制御部29を制御する。
 電圧制御部28は、判断部25から供給された判断結果に基づき、駆動信号生成部21により生成される駆動信号DS0の電圧値が変更されるように駆動信号生成部21を制御する。具体的には、第1記憶部32により記憶されている変更幅の分だけ駆動信号DS0の電圧値が変更されるように駆動信号生成部21を制御する。
 周波数制御部29は、判断部25から供給された判断結果に基づき、駆動信号生成部21により生成される駆動信号DS0の周波数値が変更されるように駆動信号生成部21を制御する。具体的には、第2記憶部33により記憶されている変更幅の分だけ駆動信号DS0の周波数値が変更されるように駆動信号生成部21を制御する。
 第1記憶部32は、駆動信号DS0の電圧値の変更幅をあらかじめ記憶している。 第2記憶部33は、駆動信号DS0の周波数値の変更幅をあらかじめ記憶している。
 駆動信号生成部21は、電圧制御部28、及び周波数制御部29の制御により、駆動信号DS0の電圧値、及び周波数値を変更する。駆動信号生成部21は、変更された駆動信号DS0を、信号重畳回路22に供給する。駆動信号生成部21は、変更された駆動信号DS0の電圧値、及び周波数値をデータ記憶部34に供給する。データ記憶部34は、変更された駆動信号DS0の電圧値、及び周波数値を記憶する。
 スイッチSWは、光スキャナ1の使用者によって押されると、駆動制御部20に電源ON、または電源OFFの指令を供給する。駆動制御部20に電源ONの指令が供給されると、光スキャナ1の動作が始まり、電源OFFの指令が供給されると動作が終了する。
 データ記憶部34は、スイッチSWが押された際に駆動信号生成部21により読み出される電圧値、及び周波数値をあらかじめ記憶している。駆動信号生成部21は、スイッチSWが押されると、データ記憶部34によりあらかじめ記憶されている電圧値、及び周波数値の駆動信号DS0を生成する。また、前述の通り、データ記憶部34は、変更された駆動信号DS0の電圧値、及び周波数値を順次記憶できる。
[光スキャナの制御]
 図6を用いて、本実施形態に係る光スキャナ1の駆動制御について詳細に説明する。図6は、光スキャナ1を駆動する際の一連の処理を示すフローチャートである。一連の処理は、駆動制御部20が備えるCPUにより実行される。なお、ある値分「駆動信号DS0の電圧値、及び周波数値が増大または減少される」ということは、同じ分だけ「駆動信号DSの電圧値、及び周波数値が増大または減少される」ことを意味する。従って、以後、「駆動信号DS0の電圧値、及び周波数値が増大または減少される」ことを、「駆動信号DSの電圧値、及び周波数値が増大または減少される」と表記する。
 図6に示す処理では、先ず、駆動制御部20に電源ONの指令が供給され、揺動体2が駆動される(ステップSA1、以後SA1と記す)。具体的には、データ記憶部34によりあらかじめ記憶されている電圧値、及び周波数値の駆動信号DS0が、駆動信号生成部21により生成される。生成された駆動信号DS0は、信号重畳回路22に供給される。駆動信号DS0が信号重畳回路22に供給されると、信号重畳回路22により、駆動信号DSが生成される。生成された駆動信号DSは、駆動部5に供給される。駆動信号DSが駆動部5に供給されることで、駆動部5は、駆動される。駆動部5が駆動されることにより、揺動体2が駆動される。
 揺動体2が駆動されると、光スキャナ1の光学振れ角の値が決定される(SA2)具体的には、BDセンサ50により反射光が検知される。BDセンサ50から角度決定部24に供給されたタイミング信号に基づき、角度決定部24により光学振れ角の値が決定される。
 図7を用いて、本実施形態に係る光スキャナ1の駆動信号DSの周波数値と光学振れ角の値との相関関係を示す。図7は、本実施形態に係る光スキャナ1に対する実験結果を示すグラフを示す。図7において、簡略化のため、駆動周波数がダウンスイープされた際の光スキャナ1の特性のみが示されている。図7に示すように、光スキャナ1は、跳躍現象を示す。また、図7に示すように、光スキャナ1の駆動信号DSの電圧値Vtが大きくなるように駆動信号生成部21が制御された場合に、共振周波数値が小さくなるという現象が発生している。なお、共振周波数値は、光学振れ角Adが図7に示す極大値Axをとる際の駆動周波数値と等しい。
 光学振れ角の値が決定されると、決定された光学振れ角の値が、所定の角度範囲内の値か否かが判断される(SA3)。具体的には、決定された光学振れ角の値が、範囲記憶部31に記憶されている所定の角度範囲内の値か否かが第2判断部27により判断される。所定の角度範囲は、光学振れ角の目標値である設定角度を含む光学振れ角のおおまかな目標範囲として予め範囲記憶部31に記憶されている。従って、光学振れ角の値が、所定の角度範囲内の値であると判断されると(SA3:Yes)、全ての処理が終了する。即ち、以後、現在の電圧値Vt、及び周波数値の駆動信号DSにより駆動部5が駆動される。
 光学振れ角の値が、所定の角度範囲内の値でないと判断されると(SA3:No)、光学振れ角の値が、所定の設定角度の値未満か否かが判断される(SA4)。具体的には、決定された光学振れ角の値が、設定角度記憶部30により記憶されている所定の設定角度の値未満か否かが第1判断部26により判断される。設定角度は、光学振れ角のおおまかな目標値として予め設定角度記憶部30により記憶されている。従って、光学振れ角の値が、設定角度未満であると判断されると(SA4:Yes)、以後の処理で光学振れ角の値が大きくなるように駆動電圧値または駆動周波数値が変更される。光学振れ角の値が、設定角度以上であると判断されると(SA4:No)、以後の処理で光学振れ角の値が小さくなるように駆動電圧値または駆動周波数値が変更される。
 光学振れ角の値が、設定角度未満であると判断されると(SA4:Yes)、駆動信号DSの電圧値Vtが電圧変更幅0.1ボルトの分だけ増大される(SA5)。具体的には、第1記憶部32により記憶されている電圧変更幅0.1ボルトの分だけ駆動信号DSの電圧値Vtが変更されるように駆動信号生成部21が電圧制御部28により制御される。
 電圧値Vtが変更されると、現在までのトータルの電圧変更値が1ボルトを超えたか否かが判断される(SA6)。SA6の処理を具体的に説明する。データ記憶部34は、SA6が実行される直前の時点である現在の電圧値を記憶している。また、データ記憶部34は、スイッチSWが押された際に駆動信号生成部21により読み出される最初の電圧値をあらかじめ記憶している。判断部25により現在の電圧値と最初の電圧値との差分が算出される。算出された差分が、現在までのトータルの電圧変更値である。この算出された差分が1ボルトを超えているか否かが判断部25により判断される。トータルの電圧変更値が1ボルトを超えていないと判断されると(SA6:No)、処理がSA2に戻り、再び光学振れ角が決定される。トータルの電圧変更値が1ボルトを超えたと判断されると(SA6:Yes)、処理がSA7以降の周波数制御処理に移る。このように、トータルの電圧変更値が1ボルトを超えたか否かが判断されることにより、駆動信号DSの電圧値Vtの大きさに制限を設けることができる。即ち、過剰に駆動電圧が大きくなることを防ぐことが可能となり、光スキャナの効率的な駆動制御が可能となる。
 トータルの電圧変更値が1ボルトを超えたと判断されると(SA6:Yes)、光学振れ角の値が、所定の角度範囲内の値か否かが判断される(SA7)。具体的には、角度決定部24により決定された光学振れ角の値が、範囲記憶部31に記憶されている所定の角度範囲内の値か否かが第2判断部27により判断される。所定の角度範囲は、光学振れ角のおおまかな目標範囲として予め範囲記憶部31に記憶されている。従って、光学振れ角の値が、所定の角度範囲内の値であると判断されると(SA7:Yes)、全ての処理が終了する。即ち、以後、現在の電圧値Vt、及び周波数値の駆動信号DSにより駆動部5が駆動される。なお、トータルの電圧変更値が1ボルトを超えたと判断されると(SA6:Yes)、SA6が実行された時点の電圧値が最初の電圧値としてデータ記憶部34に記憶される。従って、次にSA6の処理が実行される際には、判断部25により現在の電圧値とこの時点に記憶された電圧値である最初の電圧値との差分が算出される。
 所定の角度範囲内の値でないと判断されると(SA7:No)、駆動信号DS0の周波数値が周波数変更幅1Hzの分だけ減少される(SA8)。具体的には、駆動信号の駆動周波数値が周波数変更幅1Hzの分だけ減少されるように周波数制御部29により駆動信号生成部21が制御される。今、図7において実線矢印により示したように、駆動信号DSの周波数値が34.48kHz近辺において1Hz減少された。このとき、図7に示すように、SA8において駆動周波数値が変更される方向DLは、電圧値Vtが増大された場合に共振周波数Sfのシフトする方向と同じ方向である。駆動周波数値が、方向DLに変更されることにより、図7に示すように光スキャナ1の大きな光学振れ角Adを得ることができる。
 駆動信号DSの周波数値が周波数変更幅1Hzの分だけ減少されると、現在までのトータルの周波数変更値が30Hzを超えたか否かが判断される(SA9)。SA9の処理を具体的に説明する。データ記憶部34は、SA9が実行される直前の時点である現在の周波数値を記憶している。また、データ記憶部34は、スイッチSWが押された際に駆動信号生成部21により読み出される最初の周波数値をあらかじめ記憶している。判断部25により現在の周波数値と最初の周波数値との差分が算出される。算出された差分が、トータルの周波数変更値である。この算出された差分が30Hzを超えているか否かが判断部25により判断される。トータルの周波数変更値が30Hzを超えていないと判断されると(SA9:No)、処理がSA7に戻り、再び光学振れ角の値が、所定の角度範囲内の値か否かが判断される。トータルの周波数変更値が30Hzを超えたと判断されると(SA9:Yes)、処理がSA5に戻り、再び駆動信号DSの電圧値Vtが電圧変更幅0.1ボルトの分だけ増大される。トータルの周波数変更値の制限値30Hzは、駆動信号DSの電圧値Vtがトータルの電圧値Vtの制限値1ボルトの分だけ増大された場合に、共振周波数Sfがシフトする分の周波数値として予め設定されている。このように、トータルの周波数変更値が30Hzを超えたか否かが判断されることにより、駆動信号DSの周波数値の大きさに制限を設けることができる。即ち、図7における一点鎖線矢印DEに示すように過剰に駆動周波数が小さくなることを防ぐことが可能となり、図7における破線矢印DHに示すように意図せず光スキャナ1が跳躍現象を起こしてしまうことを防ぐことができる。また、トータルの周波数変更値が30Hzを超えたと判断された場合に、駆動信号DSの電圧値Vtが増大されることにより、再び共振周波数Sfが図7における二点鎖線矢印DFに示すように駆動信号DSの周波数値が小さくなる方向にシフトする。従って、周波数値変更により跳躍現象が起きる可能性を更に軽減できる。なお、トータルの周波数変更値が30Hzを超えたと判断されると(SA9:Yes)、SA9が実行された時点の周波数値が最初の周波数値としてデータ記憶部34に記憶される。従って、次にSA9の処理が実行される際には、判断部25により現在の周波数値とこの時点に記憶された周波数値である最初の周波数値との差分が算出される。
 光学振れ角の値が、設定角度以上であると判断されると(SA4:No)、駆動信号DSの周波数値が周波数変更幅1Hzの分だけ増大される(SA10)。具体的には、周波数制御部29により駆動信号生成部21が制御され、駆動信号の駆動周波数値が周波数変更幅1Hzの分だけ増大される。今、図7において一点鎖線矢印により示したように、駆動信号DSの周波数値が34.43kHz近辺において1Hz増大された。このとき、図7に示すように、SA10において駆動周波数値が変更される方向DRは、電圧値Vtが増大された場合に共振周波数Sfのシフトする方向と逆方向である。駆動周波数値が、方向DRに変更されることにより、図7に示すように光スキャナ1の小さな光学振れ角Adを得ることができる。
 駆動信号DSの周波数値が周波数変更幅1Hzの分だけ増大されると、現在までのトータルの周波数変更値が30Hzを超えたか否かが判断される(SA11)。SA11の処理を具体的に説明する。データ記憶部34は、SA11が実行される直前の時点である現在の周波数値を記憶している。また、データ記憶部34は、スイッチSWが押された際に駆動信号生成部21により読み出される最初の周波数値をあらかじめ記憶している。判断部25により現在の周波数値と最初の周波数値との差分が算出される。算出された差分が、トータルの周波数変更値である。この算出された差分が30Hzを超えているか否かが判断部25により判断される。トータルの周波数変更値が30Hzを超えていないと判断されると(SA11:No)、処理がSA2に戻り、再び光学振れ角が決定される。トータルの周波数変更値が30Hzを超えたと判断されると(SA11:Yes)、処理がSA12以降の電圧制御処理に移る。このように、トータルの周波数変更値が30Hzを超えたか否かが判断されることにより、駆動信号DSの周波数変更値の大きさに制限を設けることができる。なお、トータルの周波数変更値が30Hzを超えたと判断されると(SA11:Yes)、SA11が実行された時点の周波数値が最初の周波数値としてデータ記憶部34に記憶される。従って、次にSA11の処理が実行される際には、判断部25により現在の周波数値とこの時点に記憶された周波数値である最初の周波数値との差分が算出される。
 トータルの周波数変更値が30Hzを超えたと判断されると(SA11:Yes)、光学振れ角の値が、所定の角度範囲内の値か否かが判断される(SA12)。具体的には、角度決定部24により決定された光学振れ角の値が、範囲記憶部31に記憶されている所定の角度範囲内の値か否かが第2判断部27により判断される。所定の角度範囲は、光学振れ角のおおまかな目標範囲として予め範囲記憶部31に記憶されている。所定の角度範囲は、光スキャナ1が使用される画像表示装置等の目標とする画角または解像度等に合わせてあらかじめ決定されている。従って、光学振れ角の値が、所定の角度範囲内の値であると判断されると(SA12:Yes)、全ての処理が終了する。即ち、以後、現在の電圧値Vt、及び周波数値の駆動信号DSにより駆動部5が駆動される。
 所定の角度範囲内の値でないと判断されると(SA12:No)、駆動信号DSの電圧値Vtが電圧変更幅0.1ボルトの分だけ減少される(SA13)。具体的には、第1記憶部32により記憶されている電圧変更幅0.1ボルトの分だけ駆動信号DSの電圧値Vtが減少されるように駆動信号生成部21が電圧制御部28により制御される。
 電圧値Vtが変更されると、現在までのトータルの電圧変更値が1ボルトを超えたか否かが判断される(SA14)。SA14の処理を具体的に説明する。データ記憶部34は、SA14が実行される直前の時点である現在の電圧値を記憶している。また、データ記憶部34は、スイッチSWが押された際に駆動信号生成部21により読み出される最初の電圧値をあらかじめ記憶している。判断部25により現在の電圧値と最初の電圧値との差分が算出される。算出された差分が、トータルの電圧変更値である。この算出された差分が1ボルトを超えているか否かが判断部25により判断される。トータルの電圧変更値が1ボルトを超えていないと判断されると(SA14:No)、処理がSA12に戻り、再び光学振れ角の値が、所定の角度範囲内の値か否かが判断される。トータルの電圧変更値が1ボルトを超えたと判断されると(SA14:Yes)、処理がSA10に戻り、再び駆動信号DSの周波数値が周波数変更幅1Hzの分だけ増大される。なお、トータルの電圧変更値が1ボルトを超えたと判断されると(SA14:Yes)、SA14が実行された時点の電圧値が最初の電圧値としてデータ記憶部34に記憶される。従って、次にSA14の処理が実行される際には、判断部25により現在の電圧値とこの時点に記憶された電圧値である最初の電圧値との差分が算出される。
 以上のように、SA4において、光学振れ角の値が、設定角度以上であると判断された場合に、駆動信号DSの周波数値が増大された後、駆動信号DSの電圧値Vtが減少される。従って、光学振れ角を目標とする光学振れ角の値まで小さくするために、駆動電圧、及び駆動周波数を変更する際に、図15を用いて先述したような光スキャナの跳躍現象が起きてしまう可能性を軽減できる。
(第2の実施形態)
 以下、本発明の第2の実施形態について、図面を参照して具体的に説明する。第1の実施形態においては、光スキャナ1は、図1に示したような構造をした光スキャナであった。しかし、本実施形態において、光スキャナ101は、図8に示すような二股形状の構造をしている。第2の実施形態において、第1の実施形態と同一の構成は、同一の番号を付して説明する。
[光スキャナ概観]
 図8は、本実施形態の光スキャナ101の外観図である。図8に示すように、光スキャナ101は、揺動体102と、駆動制御部120と、BDセンサ150と、図示しないベース台とを備える。揺動体102はベース台上に配置される。揺動体102は、ミラー部103と、捻れ梁部104a、104bと、駆動部105a、105bと、固定部106とを備えている。捻れ梁部104a、104bは、ミラー部103に連結する。駆動部105a、105bは、各々、捻れ梁部104a、104bと固定部106とに跨って、捻れ梁部104a、104bと固定部106との上に設けられる。駆動部105a、105bは、リード線115により、駆動制御部120に接続されている。
 ミラー部103は、揺動軸線AXの回りに揺動可能で、入射した光束を反射して、走査する。ミラー部103は、入射した光束を反射するための反射面107を備える。以後、簡略化のため、図8に示すように、揺動体102の静止時の、反射面107に平行な面上で、且つ揺動軸線AXに垂直な方向をX軸とし、揺動軸線AXに平行な方向をY軸とし、反射面107に垂直な方向をZ軸として定義する。X軸、Y軸、Z軸の方向の定義は、他の図面においても共通のものとする。
[駆動部の構造]
 駆動部105a、105bの構造について詳細に説明する。駆動部105a、105bは、薄板状の圧電体が、上部電極と下部電極とに挟まれた積層体である。圧電体は、例えば、電圧印加により変形するチタン酸ジルコン酸鉛(以後、「PZT」と記す。)の圧電体である。
 駆動部105a、105bの圧電体がY軸方向に伸縮変形することにより、捻れ梁部104a、104bの駆動部105a、105b近傍の部分がZ軸方向の上側、または下側に屈曲する。捻れ梁部104a、104bの駆動部105a、105b近傍の部分が、各々、上側に屈曲するか、下側に屈曲するかは、上部電極と下部電極との間の電圧の大小によって決定される。なお、Z軸方向の上側、下側とは、各々、Z軸の正の領域側、負の領域側であり、厳密にZ軸方向に平行な方向に限定される意味ではない。
 駆動部105a、105bの各々の上部電極と下部電極とは、リード線115により、駆動制御部120に接続されている。駆動制御部120から、リード線115を介して、同位相の駆動信号が駆動部105a、105bに供給される。駆動制御部120から、駆動部105a、105bに同位相の駆動信号が供給されることにより、駆動部105a、105bの各々の上部電極と下部電極との間に同じ極性を持った電圧が印加される。このように電圧が印加されることにより、駆動部105a、105bの各々の圧電体がY軸方向に共に伸び、または縮む。本実施形態における駆動制御部120が、本発明の駆動制御部の一例である。
[揺動体の駆動]
 図9、図5を用いて、揺動体102の駆動について説明する。図9は、簡略化のため、ミラー部103と捻れ梁部104a、104bとのみを示している。また、第2の実施形態における駆動部105a、105bに供給される駆動信号DSは、図5において示したような第1の実施形態における駆動信号DSと同様の信号である。従って、第2の実施形態における駆動信号DSも、図5を参照して説明する。図9において、二点鎖線により示した揺動体102は静止時の揺動体102を示す。また、実線により示された揺動体102は、揺動体102が駆動され、ミラー部103がある揺動角度の値Φに達した際の揺動体102である。捻れ梁部104a、104bは構造を簡略化し、示されている。
 図5は、駆動制御部120から駆動部105a、105bに供給される同位相の駆動信号DSを示す図である。図5において、縦軸は駆動部105a、105bの各々の上部電極と下部電極との間に印加される電圧Vtであり、横軸は時間Tmである。駆動制御部120は、駆動部105a、105bを駆動するための駆動信号DSを生成し、駆動信号DSを駆動部105a、105bに供給する。駆動部105aと駆動部105bとに供給される駆動信号DSは少なくとも同じ位相を有していればよいが、本実施形態においては、駆動部105aと駆動部105bとに供給される駆動信号DSは、同じ振幅と同じ位相とを有している。駆動信号DSの周期性により、駆動部105a、105bの各々の圧電体は、Y軸方向に共に伸び、または縮む。即ち、例えば、図5において破線と矢印とで示した時間Tm1~Tm2においては、上部電極と下部電極とに印加される電圧Vtが徐々に大きくなる。電圧Vtが徐々に大きくなると、圧電体は、共にY軸方向に縮む。また、図5において一点鎖線と矢印とで示した時間Tm3~Tm4においては、上部電極と下部電極とに印加される電圧Vtが徐々に小さくなる。電圧Vtが徐々に小さくなると、圧電体は、共にY軸方向に伸びる。このようにして圧電体がY軸方向に共に伸び、または縮むことにより、捻れ梁部104a、104bの駆動部105a、105b近傍の部分がZ軸方向の上側、または下側に屈曲する。図5に示した同位相の駆動信号DSの周期性により、上部電極と下部電極との間に印加される電圧が周期的に変化する。上部電極と下部電極との間に印加される電圧が周期的に変化することで、捻れ梁部104a、104bの駆動部105a、105b近傍の部分がZ軸方向の上側、または下側に周期的に屈曲する。この捻れ梁部104a、104bの駆動部105a、105b近傍の部分の周期的な屈曲により、捻れ梁部104a、104bが図9に示すように揺動軸線AXの回りに捻れ振動する。捻れ梁部104a、104bが揺動軸線AXの回りに捻れ振動することで、ミラー部103は、図9に示すように、揺動軸線AXの回りに揺動する。ミラー部103の反射面107は、揺動軸線AXの回りに揺動しながら、入射した光束を反射する。このように光束が反射面107により反射されることで、光束が走査される。
[電気的構成]
 本実施形態に係る光スキャナ101は、図2に示したような第1の実施形態に係る光スキャナ1の電気的構成と同様の電気的構成を有する。従って、光スキャナ101の各構成の詳細な説明は省略する。図10に示すように、駆動制御部120は、駆動信号生成部121と、信号重畳回路122と、直流電圧印加部123と、角度決定部124と、判断部125と、電圧制御部128と、周波数制御部129と、設定角度記憶部130と、範囲記憶部131と、第1記憶部132と、第2記憶部133と、データ記憶部134と、を備える。判断部125は、第1判断部126と、第2判断部127とを備える。図10において、揺動体102、ミラー部103、及び駆動部105a、105b等は、構成を簡略化して示されている。駆動制御部120は、説明の便宜上、複数の機能ブロックに分けて図示されているが、実際には、CPU、ROM、フラッシュROM、RAM等を含むマイコンや、FPGA等により構成される。なお、駆動部105a、105bに供給される同位相の駆動信号DSは、第1の実施形態において図3、図4、及び図5を用いて示した駆動部5に供給される駆動信号DSと同様の信号である。従って、駆動信号DSに関する説明は省略する。
[光スキャナの制御]
 図11を用いて、本実施形態に係る光スキャナ101の駆動制御について詳細に説明する。図11は、光スキャナ101を駆動する際の一連の処理を示すフローチャートである。一連の処理は、駆動制御部120が備えるCPUにより実行される。図11に示す本実施形態における光スキャナ101の制御の各ステップのうち、ステップSB1~SB7、ステップSB9、ステップSB11~ステップSB14は、各々、第1の実施形態における光スキャナ1の制御のステップSA1~SA7、ステップSA9、ステップSA11~ステップSA14と同様のステップである。従って、図11に示すステップSB1~SB7、ステップSB9、ステップSB11~ステップSB14の詳細な説明は省略する。図11に示すステップSB8、及びステップSB10のみ駆動信号DSの周波数値が増大されるか、減少されるかの点で第1の実施形態におけるステップSA8、及びSA10と異なる。この点について、以下説明する。
 図12を用いて、本実施形態に係る光スキャナ101の駆動信号DSの周波数値と光学振れ角の値との相関関係を示す。図12は、本実施形態に係る光スキャナ101に対する実験結果を示すグラフを示す。図12において、簡略化のため、駆動周波数がアップスイープされた際の光スキャナ101の特性のみが示されている。図12に示すように、光スキャナ101は、跳躍現象を示す。また、図12に示すように、光スキャナ1の駆動信号DSの電圧値Vtが大きくなるように駆動信号生成部121が制御された場合に、共振周波数値が大きくなるという現象が発生している。なお、共振周波数値は、図12に示すように、11ボルト、及び13ボルト各駆動電圧値の駆動信号DSが駆動信号生成部121により生成された場合に、光学振れ角Adが極大値Axをとる際の駆動信号DSの周波数値と等しい。
 従って、SB4において、光学振れ角の値が、設定角度未満であると判断され(SB4:Yes)、光学振れ角の値が所定の角度範囲内の値になるまで増大されるためには、図12に示すように駆動信号DSの周波数値が増大される必要がある。反対に、光学振れ角の値が所定の角度範囲内の値になるまで減少されるためには、図12に示すように駆動信号DSの周波数値が減少される必要がある。従って、SB7において光学振れ角の値が所定の角度範囲内の値でないと判断されると(SB7:No)、駆動信号DSの周波数値が周波数変更幅1Hzの分だけ増大される(SB8)。今、図12において一点鎖線矢印により示したように、駆動信号DSの周波数値が32.9kHz近辺において1Hz増大された。このとき、図12に示すように、SB8において駆動信号DSの周波数値が変更される方向DRは、電圧値Vtが増大された場合に共振周波数Sfのシフトする方向と同じ方向である。駆動周波数値が、方向DRに変更されることにより、図12に示すように光スキャナ101の大きな光学振れ角Adを得ることができる。
 また、SB4において光学振れ角の値が、設定角度以上であると判断されると(SB4:No)、駆動信号DSの周波数値が周波数変更幅1Hzの分だけ減少される(SB10)。今、図12において実線矢印により示したように、駆動信号DSの周波数値が33.0kHz近辺において1Hz減少された。このとき、図12に示すように、SB10において駆動周波数値が変更される方向DLは、電圧値Vtが増大された場合に共振周波数Sfのシフトする方向と逆方向である。駆動周波数値が、方向DLに変更されることにより、図12に示すように光スキャナ101の小さな光学振れ角Adを得ることができる。
 以上のように図11に示す本実施形態に係る光スキャナ101の制御により、目標とする光スキャナ101の光学振れ角を精度良く得ることができる。また、光スキャナ101が意図せず跳躍現象を起こす可能性を軽減できる。通常、非線形特性を有する光スキャナが跳躍現象を起こすと、図14における破線矢印に示したように光学振れ角が極めて小さくなる。小さくなった光学振れ角を再び大きくするには、駆動周波数値を駆動開始時の周波数値近傍に戻した後、再び共振周波数値近くまでスイープさせる必要がある。従って、光スキャナを駆動開始から共振周波数値近傍で駆動するまでの時間がかかってしまうなどの問題が生ずる。本実施形態に係る光スキャナ101は、跳躍現象を起こす可能性が軽減されているため、可及的速やかに駆動周波数値を共振周波数値に近づけることも可能となる。なお、第1の実施形態における光スキャナ1も、跳躍現象を起こす可能性が軽減されているため、可及的速やかに駆動周波数値を共振周波数値に近づけることができるという効果を奏することができる。
 [光スキャナ使用例]
 本発明の第2の実施形態に係る光スキャナ101の網膜走査ディスプレイ201における使用例について、図13を用いて説明する。網膜走査ディスプレイ201とは、ヘッドマウントディスプレイ装置(以後、「HMD」と記す。)の一形態である。網膜走査ディスプレイ201は、装着者の頭部およびその近辺に装着され、画像光を装着者の眼に導き、装着者の網膜上で2次元方向に走査することにより、画像情報に対応する画像が装着者により視認されるように構成されたものである。第2の実施形態に係る光スキャナ101は、図13に示した共振型偏向素子261に用いられる。ただし、駆動制御部120は、水平走査制御回路262に対応するものである。
 網膜走査ディスプレイ201は、光束生成部220と、水平走査部260と、垂直走査部280とを備えている。
 光束生成部220は、外部から供給される画像情報Sに基づいて画像光を生成し、生成された画像光を水平走査部260に供給する。水平走査部260は、光束生成部220により生成された画像光を水平方向に走査し、水平方向に走査された画像光をリレー光学系270を介して、垂直走査部280に供給する。垂直走査部280は、リレー光学系270を介して、水平走査部260から供給された画像光を垂直方向に走査し、垂直方向に走査された画像光をリレー光学系290を介して、装着者の瞳孔Eaに供給する。
 光束生成部220は、信号処理回路221と、光源部230と、光合成部240と、を備えている。
 信号処理回路221は、外部から供給された画像データSを受信する。信号処理回路221は、画像データSに基づいて、画像を合成するための要素となる青、赤、緑の各画像信号であるB映像信号、R映像信号、G映像信号を生成し、光源部230に供給する。信号処理回路221は、水平走査部260を駆動するための水平同期信号を水平走査部260に供給し、垂直走査部280を駆動するための垂直同期信号を垂直走査部280に供給する。
 光源部230は、信号処理回路221から供給されるB映像信号、R映像信号、G映像信号をそれぞれ画像光にする画像光出力部として機能する。光源部230は、青色の画像光を発生するBレーザ234及びBレーザ234を駆動するBレーザドライバ231と、赤色の画像光を発生するRレーザ235及びRレーザ235を駆動するRレーザドライバ232と、緑色の画像光を発生するGレーザ236及びGレーザ236を駆動するGレーザドライバ233と、を備えている。
 光合成部240は、光源部230から出力された3つの画像光を供給され、3つの画像光を1つの画像光に合成して任意の画像光を生成する。光合成部240は、コリメート光学系241、242、243と、このコリメートされた画像光を合成するためのダイクロイックミラー244、245、246と、合成された画像光を伝送ケーブル250に導く結合光学系247とを備えている。各レーザ234、235、236から出射したレーザ光は、コリメート光学系241、242、243によってそれぞれ平行光化された後に、ダイクロイックミラー244、245、246に入射される。その後、これらのダイクロイックミラー244、245、246により、各画像光が波長に関して選択的に反射または透過される。コリメート光学系251は、伝送ケーブル250を介して出射される画像光を平行光化し、水平走査部260に導く。
 平行光化された画像光は、水平走査部260、リレー光学系270、垂直走査部280、及びリレー光学系290により、2次元的に走査された画像光に変換される。水平走査部260は、コリメート光学系251で平行光化された画像光を画像表示のために水平方向に往復走査する。リレー光学系270は、水平走査部260と垂直走査部280との間に設けられ、水平走査部260により走査された画像光を、垂直走査部280に導く。垂直走査部280は、水平走査部260で水平方向に走査された画像光を垂直方向に往復走査する。リレー光学系290は、水平方向と垂直方向とに走査(2次元的に走査)された画像光を瞳孔Eaへ出射する。
 水平走査部260は、共振型偏向素子261と、水平走査制御回路262と、を備えている。第2の実施形態に係る光スキャナ101は、共振型偏向素子261に用いられる。共振型偏向素子261は、画像光を水平方向に走査するための反射面を有する。水平走査制御回路262は、信号処理回路221から供給される水平同期信号に基づいて、共振型偏向素子261を共振させる。リレー光学系270は、水平走査部260と垂直走査部280との間で画像光を中継する。共振型偏向素子261によって水平方向に走査された光は、リレー光学系270によって垂直走査部280内の偏向素子281の反射面に収束される。
 垂直走査部280は、偏向素子281と、垂直走査制御回路282と、を備えている。偏向素子281は、リレー光学系270により導かれた画像光を垂直方向に走査する。垂直走査制御回路282は、信号処理回路221から供給される垂直同期信号に基づいて、偏向素子281を揺動させる。共振型偏向素子261により水平方向に走査され、偏向素子281によって垂直方向に走査された画像光は、2次元的に走査された走査画像光としてリレー光学系290へ出射される。
 リレー光学系290は、垂直走査部280と装着者の瞳孔Eaとの間で画像光を中継する。共振型偏向素子261により水平方向に走査され、偏向素子281によって垂直方向に走査された画像光は、リレー光学系290によって装着者の瞳孔Eaに収束される。このようにして、装着者は画像情報に対応する画像を視認することができる。
 (変形例)
光スキャナ使用例において、第2の実施形態に係る光スキャナ101が、図13に示した共振型偏向素子261に用いられた。同様に第1の実施形態に係る光スキャナ1も共振型偏向素子261に用いられてもよい。ただし、駆動制御部20は、水平走査制御回路262に対応するものである。
 第1の実施形態、及び第2の実施形態において、光スキャナ1、101は、各々、BDセンサ50、150を備えていたが、これに限らず、光スキャナは、BDセンサを備えず、光スキャナとBDセンサとは、別個の装置であってもよい。この場合、光スキャナの角度決定部は、光スキャナの外部に設けられたBDセンサからタイミング信号を受け取る信号受取部としての機能を有する必要がある。
 第1の実施形態、及び第2の実施形態において、本発明の検知部の一例としてBDセンサ50、150を挙げたが、これに限らず、圧電体と電極とから構成された検出用素子を光スキャナに設け、検出用素子の出力電圧から光学振れ角を算出し、検知してもよい。検出用素子には、例えば、特開2007-199682号公報に開示されている公知の技術が用いられる。この場合、例えば、第2の実施形態における光スキャナの構造の場合、駆動部105a、105bの揺動軸線AXを挟んだ反対側における捻れ梁部104a、104bと固定部6とに跨って、検出用素子を設ければよい。
 光スキャナの使用例として、網膜走査ディスプレイ201を示したが、これに限らず、電子写真式複合機や、レーザプリンタ、バーコードリーダ等に用いられてもよい。
 第1の実施形態におけるSA6、及びSA14、並びに第2の実施形態におけるSB6、及びSB14において、判断部25により現在の電圧値と最初の電圧値との差分が算出されていた。また、算出された差分が、現在までのトータルの電圧変更値とされていた。そして、この算出された差分が1ボルトを超えているか否かが判断部25により判断されていた。しかし、これに限らず、以下に示すような処理により、トータルの電圧変更値が決定されていてもよい。即ち、現在の電圧値と最初の電圧値との差分は算出されず、変更された電圧変更幅分のみが変更値記憶部に記憶されている電圧変更値に逐次加算される。そして、この電圧変更値に電圧変更幅が加算された値がトータルの電圧変更値として決定される。この場合、トータルの電圧変更値が1ボルトを超えると、周波数制御処理に移る際に、それまで記憶されていたトータルの電圧変更値が0ボルトにされる。
 第1の実施形態におけるSA9、及びSA11、並びに第2の実施形態におけるSB9、及びSB11において、判断部25により現在の周波数値と最初の周波数値との差分が算出されていた。また、算出された差分が、現在までのトータルの周波数変更値とされていた。そして、この算出された差分が30Hzを超えているか否かが判断部25により判断されていた。しかし、これに限らず、以下に示すような処理により、トータルの周波数変更値が決定されていてもよい。即ち、現在の周波数値と最初の周波数値との差分は算出されず、変更された周波数変更幅分のみが変更値記憶部に記憶されている周波数変更値に逐次加算される。そして、この周波数変更値に周波数変更幅が加算された値がトータルの周波数変更値として決定される。この場合、トータルの周波数変更値が30Hzを超えると、電圧制御処理に移る際に、それまで記憶されていたトータルの周波数変更値が0Hzにされる。
 第1の実施形態、及び第2の実施形態において、電圧変更幅は0.1V、トータルの電圧変更値の制限値は1V、周波数変更幅は1Hz、トータルの周波数変更値の制限値は30Hzであった。しかし、これに限らず、例えば、電圧変更幅は0.05V、トータルの電圧変更値の制限値は0.5V、周波数変更幅は0.5Hz、トータルの周波数変更値の制限値は15Hzなどであってもよい。
 1、101 光スキャナ
 2、102 揺動体
 3、103 ミラー部
 5、105a、105b 駆動部
 21、121 駆動信号生成部
 22、122 信号重畳回路
 23、123 直流電圧印加部
 24、124 角度決定部
 26、126 第1判断部
 27、127 第2判断部
 28、128 電圧制御部
 29、129 周波数制御部
 30、130 設定角度記憶部
 31、131 範囲記憶部
 32、132 第1記憶部
 33、133 第2記憶部
 50、150 BDセンサ
 220 光束生成部
 270、290 リレー光学系

Claims (14)

  1.  入射した光束を反射するミラー部を有する揺動体を備える光スキャナであって、
     前記揺動体を駆動することで、前記ミラー部を揺動軸線回りに揺動させる駆動部と、
     前記駆動部を駆動するための駆動信号を生成し、前記駆動信号を前記駆動部に供給する信号生成部と、
     前記信号生成部により生成される前記駆動信号の駆動電圧値が変更されるように前記信号生成部を制御する電圧制御部と、
     前記信号生成部により生成される前記駆動信号の駆動周波数値が変更されるように前記信号生成部を制御する周波数制御部と、
     前記ミラー部の前記揺動軸線回りの揺動角度を検知する検知部と、
     前記ミラー部の前記揺動角度としてあらかじめ設定された設定角度を記憶している設定角度記憶部と、
     前記検知部により検知された前記揺動角度が、前記設定角度未満か否かを判断する第1判断部と、を備え、
     前記光スキャナは、共振周波数値の近傍における前記駆動周波数値の変化に対して、前記揺動角度が大きく変化する跳躍現象と、前記電圧制御部により前記駆動信号の駆動電圧値が大きくなるように前記信号生成部が制御された場合に、前記共振周波数値が大きくなる方向、または小さくなる方向にシフトするというシフト現象と、がそれぞれ発生する構成を有し、
     前記電圧制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記信号生成部を制御し、
     前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記電圧制御部により前記信号生成部が制御された後、前記共振周波数値のシフトする方向と同じ方向に前記駆動信号の駆動周波数値が変更されるように前記信号生成部を制御することを特徴とする光スキャナ。
  2.  前記電圧制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記駆動電圧値を設定する第1設定ステップを繰り返し実行することにより前記駆動電圧値が順次変更されるように前記信号生成部を制御し、
     前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記電圧制御部により前記信号生成部が制御された後、前記駆動周波数値を設定する第2設定ステップを繰り返し実行することにより前記駆動周波数値が順次変更されるように前記信号生成部を制御することを特徴とする請求項1に記載の光スキャナ。
  3.  前記電圧制御部により実行される前記第1設定ステップの繰り返し実行により変更される前記駆動電圧値の電圧変更幅をあらかじめ記憶している第1記憶部と、
     前記周波数制御部により実行される前記第2設定ステップの繰り返し実行により変更される前記駆動周波数値の周波数変更幅をあらかじめ記憶している第2記憶部と、を備え、
     前記電圧制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記第1記憶部により記憶されている前記電圧変更幅の分だけ前記駆動電圧値が順次変更されるように前記信号生成部を制御し、
     前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記電圧制御部により前記信号生成部が制御された後、前記第2記憶部により記憶されている前記周波数変更幅の分だけ前記駆動周波数値が順次変更されるように前記信号生成部を制御することを特徴とする請求項1に記載の光スキャナ。
  4.  前記設定角度を含む所定の角度範囲をあらかじめ記憶している範囲記憶部と、
     前記検知部により検知された前記揺動角度が、前記範囲記憶部に記憶されている前記所定の角度範囲内の値か否かを判断する第2判断部と、を備え、
     前記電圧制御部、及び前記周波数制御部は、各々、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断され、前記検知部により検知された前記揺動角度が、前記範囲記憶部に記憶されている前記所定の角度範囲内の値であると前記第2判断部により判断された場合に、前記信号生成部を制御することを停止することを特徴とする請求項1に記載の光スキャナ。
  5.  前記光スキャナは、前記電圧制御部により前記駆動信号の駆動電圧値が大きくなるように前記信号生成部が制御された場合に、前記共振周波数値が小さくなるという前記シフト現象が発生する構成を有し、
     前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記電圧制御部により前記信号生成部が制御された後、前記駆動信号の駆動周波数値が小さくなるように前記信号生成部を制御することを特徴とする請求項1に記載の光スキャナ。
  6.  前記光スキャナは、前記電圧制御部により前記駆動信号の駆動電圧値が大きくなるように前記信号生成部が制御された場合に、前記共振周波数値が大きくなるという前記シフト現象が発生する構成を有し、
     前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度未満であると前記第1判断部により判断された場合に、前記電圧制御部により前記信号生成部が制御された後、前記駆動信号の駆動周波数値が大きくなるように前記信号生成部を制御することを特徴とする請求項1に記載の光スキャナ。
  7.  前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度以上であると前記第1判断部により判断された場合に、前記共振周波数値のシフトする方向と逆方向に前記駆動信号の駆動周波数値が変更されるように前記信号生成部を制御し、前記電圧制御部は、前記周波数制御部により前記信号生成部が制御された後、前記信号生成部を制御することを特徴とする請求項1に記載の光スキャナ。
  8.  前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度以上であると前記第1判断部により判断された場合に、前記駆動周波数値を設定する第3設定ステップを繰り返し実行することにより前記駆動周波数値が順次変更されるように前記信号生成部を制御し、
     前記電圧制御部は、前記検知部により検知された前記揺動角度が、前記設定角度以上であると前記第1判断部により判断された場合に、前記周波数制御部により前記信号生成部が制御された後、前記駆動電圧値を設定する第4設定ステップを繰り返し実行することにより前記駆動電圧値が順次変更されるように前記信号生成部を制御することを特徴とする請求項7に記載の光スキャナ。
  9.  前記周波数制御部により実行される前記第3設定ステップの繰り返し実行により変更される前記駆動周波数値の周波数変更幅をあらかじめ記憶している第3記憶部と、
     前記電圧制御部により実行される前記第4設定ステップの繰り返し実行により変更される前記駆動周電圧の電圧値の電圧変更幅をあらかじめ記憶している第4記憶部と、を備え、
     前記周波数制御部は、前記第1判断部により前記検知部により検知された前記揺動角度が、前記設定角度以上であると判断された場合に、前記第3記憶部により記憶されている前記周波数変更幅の分だけ前記駆動周波数値が順次変更されるように前記信号生成部を制御し、
     前記電圧制御部は、前記第1判断部により前記検知部により検知された前記揺動角度が、前記設定角度以上であると判断された場合に、前記周波数制御部により前記信号生成部が制御された後、前記第4記憶部により記憶されている前記電圧変更幅の分だけ前記駆動電圧値が順次変更されるように前記信号生成部を制御することを特徴とする請求項7に記載の光スキャナ。
  10.  前記設定角度を含む所定の角度範囲をあらかじめ記憶している範囲記憶部と、
     前記検知部により検知された前記揺動角度が、前記範囲記憶部に記憶されている前記所定の角度範囲内の値か否かを判断する第2判断部と、を備え、
     前記電圧制御部、及び前記周波数制御部は、各々、前記検知部により検知された前記揺動角度が、前記設定角度以上であると前記第1判断部により判断され、前記検知部により検知された前記揺動角度が、前記範囲記憶部に記憶されている前記所定の角度範囲内の値であると前記第2判断部により判断された場合に、前記信号生成部を制御することを停止することを特徴とする請求項7に記載の光スキャナ。
  11.  前記光スキャナは、前記電圧制御部により前記駆動信号の駆動電圧値が大きくなるように前記信号生成部が制御された場合に、前記共振周波数値が小さくなるという前記シフト現象が発生する構成を有し、
     前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度以上であると前記第1判断部により判断された場合に、前記駆動信号の駆動周波数値が大きくなるように前記信号生成部を制御することを特徴とする請求項7に記載の光スキャナ。
  12.  前記光スキャナは、前記電圧制御部により前記駆動信号の駆動電圧値が大きくなるように前記信号生成部が制御された場合に、前記共振周波数値が大きくなるという前記シフト現象が発生する構成を有し、
     前記周波数制御部は、前記検知部により検知された前記揺動角度が、前記設定角度以上であると前記第1判断部により判断された場合に、前記駆動信号の駆動周波数値が小さくなるように前記信号生成部を制御することを特徴とする請求項7に記載の光スキャナ。
  13.  請求項1に記載の光スキャナと、
     前記光スキャナに光を供給する光源部と、
     前記光スキャナにより走査された走査光を使用者の目に導く光学系と、を備えることを特徴とする画像表示装置。
  14.  入射した光束を反射するミラー部を有する揺動体と、前記揺動体を駆動することで、前記ミラー部を揺動軸線回りに揺動させる駆動部と、前記駆動部を駆動するための駆動信号を生成し、前記駆動信号を前記駆動部に供給する信号生成部とを備え、共振周波数値の近傍における前記駆動周波数値の変化に対して、前記揺動角度が大きく変化する跳躍現象と、前記駆動信号の駆動電圧値が大きくなる場合に、前記共振周波数値が大きくなる方向、または小さくなる方向にシフトするというシフト現象と、がそれぞれ発生する構成を有する光スキャナに使用される駆動制御方法であって、
     前記ミラー部の前記揺動角度としてあらかじめ設定された設定角度を記憶する設定角度記憶ステップと、
     前記ミラー部の前記揺動軸線回りの揺動角度を検知する検知ステップと、
     前記検知ステップにより検知された前記揺動角度が、前記設定角度未満か否かを判断する第1判断ステップと、
     前記検知ステップにより検知された前記揺動角度が、前記設定角度未満であると前記第1判断ステップにより判断された場合に、前記駆動信号の駆動電圧値が変更されるように
    前記信号生成部を制御する電圧制御ステップと、
     前記検知ステップにより検知された前記揺動角度が、前記設定角度未満であると前記第1判断ステップにより判断された場合に、前記電圧制御ステップにより前記信号生成部が制御された後、前記共振周波数値のシフトする方向と同じ方向に前記駆動信号の駆動周波数値が変更されるように前記信号生成部を制御する周波数制御ステップと、
     を備えることを特徴とする駆動制御方法。
PCT/JP2010/069686 2009-12-25 2010-11-05 光スキャナ、光スキャナを用いた画像表示装置、及び光スキャナ駆動制御方法 WO2011077841A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009294149A JP2011133728A (ja) 2009-12-25 2009-12-25 光スキャナ、光スキャナを用いた画像表示装置、光スキャナ駆動制御方法、光スキャナ駆動制御プログラム。
JP2009-294149 2009-12-25

Publications (1)

Publication Number Publication Date
WO2011077841A1 true WO2011077841A1 (ja) 2011-06-30

Family

ID=44195386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069686 WO2011077841A1 (ja) 2009-12-25 2010-11-05 光スキャナ、光スキャナを用いた画像表示装置、及び光スキャナ駆動制御方法

Country Status (2)

Country Link
JP (1) JP2011133728A (ja)
WO (1) WO2011077841A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235243A (ja) * 2013-05-31 2014-12-15 京セラドキュメントソリューションズ株式会社 光走査装置及び画像形成装置
CN110320662A (zh) * 2018-03-30 2019-10-11 三美电机株式会社 促动器以及光扫描装置
CN114184547A (zh) * 2021-11-29 2022-03-15 重庆川仪自动化股份有限公司 一种基于双闭环的扫描光栅微镜机械摆角的控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884577B2 (ja) * 2012-03-16 2016-03-15 ブラザー工業株式会社 光スキャナ
JP2014028017A (ja) * 2012-07-31 2014-02-13 Nidek Co Ltd 眼底撮影装置
JP6754074B2 (ja) * 2015-03-31 2020-09-09 ミツミ電機株式会社 光走査制御装置
JP6753449B2 (ja) * 2017-11-24 2020-09-09 株式会社村田製作所 走査反射器システム
JP2020112583A (ja) * 2019-01-08 2020-07-27 矢崎総業株式会社 ヘッドアップディスプレイ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257811A (ja) * 2004-03-09 2005-09-22 Ricoh Co Ltd 光スキャナ、光スキャナ駆動方法および光スキャナ駆動装置
JP2007025608A (ja) * 2005-07-21 2007-02-01 Brother Ind Ltd 光走査装置、画像表示装置及び光スキャナの共振周波数変更方法並びに反射ミラー位置の補正方法
JP2007093644A (ja) * 2005-09-27 2007-04-12 Brother Ind Ltd 光走査型ディスプレイ
JP2008046450A (ja) * 2006-08-18 2008-02-28 Nippon Telegr & Teleph Corp <Ntt> ミラー制御装置およびミラー制御方法
JP2009244799A (ja) * 2008-03-31 2009-10-22 Brother Ind Ltd 画像投影装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4219631B2 (ja) * 2002-07-19 2009-02-04 株式会社リコー 光走査装置および画像形成装置
JP4389740B2 (ja) * 2004-09-30 2009-12-24 ブラザー工業株式会社 振動体制御装置、それを備えた画像形成装置および揺動型スキャナ制御方法
JP2007086626A (ja) * 2005-09-26 2007-04-05 Sumitomo Precision Prod Co Ltd マイクロミラースキャナ及びこれを用いたレーザ光走査装置
JP2007245246A (ja) * 2006-03-13 2007-09-27 Sumitomo Precision Prod Co Ltd 静電容量型memsアクチュエータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257811A (ja) * 2004-03-09 2005-09-22 Ricoh Co Ltd 光スキャナ、光スキャナ駆動方法および光スキャナ駆動装置
JP2007025608A (ja) * 2005-07-21 2007-02-01 Brother Ind Ltd 光走査装置、画像表示装置及び光スキャナの共振周波数変更方法並びに反射ミラー位置の補正方法
JP2007093644A (ja) * 2005-09-27 2007-04-12 Brother Ind Ltd 光走査型ディスプレイ
JP2008046450A (ja) * 2006-08-18 2008-02-28 Nippon Telegr & Teleph Corp <Ntt> ミラー制御装置およびミラー制御方法
JP2009244799A (ja) * 2008-03-31 2009-10-22 Brother Ind Ltd 画像投影装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235243A (ja) * 2013-05-31 2014-12-15 京セラドキュメントソリューションズ株式会社 光走査装置及び画像形成装置
CN110320662A (zh) * 2018-03-30 2019-10-11 三美电机株式会社 促动器以及光扫描装置
CN114184547A (zh) * 2021-11-29 2022-03-15 重庆川仪自动化股份有限公司 一种基于双闭环的扫描光栅微镜机械摆角的控制方法

Also Published As

Publication number Publication date
JP2011133728A (ja) 2011-07-07

Similar Documents

Publication Publication Date Title
WO2011077841A1 (ja) 光スキャナ、光スキャナを用いた画像表示装置、及び光スキャナ駆動制御方法
JP5176823B2 (ja) 光走査装置、画像表示装置及び光走査装置の駆動方法
JP4935013B2 (ja) 光走査装置、画像表示装置及び光スキャナの共振周波数変更方法並びに反射ミラー位置の補正方法
JP5151065B2 (ja) 光スキャナ及び走査型プロジェクタ
US7872782B2 (en) Optical scanner and method of controlling optical scanner
JP4840058B2 (ja) 光走査装置及びそれを備えた画像表示装置並びに網膜走査型画像表示装置、及び光走査素子の駆動方法
WO2005093491A1 (ja) 光走査装置およびそれを備えた画像形成装置
JP2012137692A (ja) 画像表示装置
JP5184909B2 (ja) 揺動体装置及び光偏向装置
JP4888022B2 (ja) 画像表示装置及び網膜走査型画像表示装置
US8270057B2 (en) Oscillator device, optical deflecting device and method of controlling the same
JP2014197063A (ja) 振動ミラー素子およびプロジェクタ
JP2010139691A (ja) 光スキャナ及びこの光スキャナを備えた画像表示装置
WO2005059624A1 (ja) 光スキャナおよびそれを備えた画像形成装置
JP5152075B2 (ja) 駆動信号発生器及びそれを備えた光走査装置並びに画像表示装置
JP2009229517A (ja) アクチュエータ
JP2008116699A (ja) 駆動素子
JP5446513B2 (ja) 光スキャナ、この光スキャナを備えた画像表示装置、光スキャナの駆動方法
JP2011180450A (ja) 光走査装置及びそれを備えた画像表示装置
JP2011017885A (ja) 光スキャナ、光スキャナを用いた画像表示装置、光スキャナ駆動制御方法、光スキャナ駆動制御プログラム。
JP2009101343A (ja) 揺動体装置、光偏向装置、及びそれを用いた光学機器
JP4389740B2 (ja) 振動体制御装置、それを備えた画像形成装置および揺動型スキャナ制御方法
US11169372B2 (en) Light scanning apparatus and method for controlling light scanning apparatus
JP5152074B2 (ja) 駆動信号発生器及びそれを備えた光走査装置並びに画像表示装置
JP5884577B2 (ja) 光スキャナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839077

Country of ref document: EP

Kind code of ref document: A1