WO2011065004A1 - 環状化合物、その製造方法、感放射線性組成物及びレジストパターン形成方法 - Google Patents

環状化合物、その製造方法、感放射線性組成物及びレジストパターン形成方法 Download PDF

Info

Publication number
WO2011065004A1
WO2011065004A1 PCT/JP2010/006895 JP2010006895W WO2011065004A1 WO 2011065004 A1 WO2011065004 A1 WO 2011065004A1 JP 2010006895 W JP2010006895 W JP 2010006895W WO 2011065004 A1 WO2011065004 A1 WO 2011065004A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
cyclic compound
radiation
Prior art date
Application number
PCT/JP2010/006895
Other languages
English (en)
French (fr)
Inventor
高須賀 大晃
越後 雅敏
悠 岡田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US13/512,099 priority Critical patent/US8969629B2/en
Priority to KR1020127016552A priority patent/KR101801523B1/ko
Priority to JP2011543109A priority patent/JP5857745B2/ja
Priority to CN201080053806.7A priority patent/CN102666461B/zh
Priority to EP10832853.5A priority patent/EP2505576B1/en
Publication of WO2011065004A1 publication Critical patent/WO2011065004A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/235Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring and to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C43/253Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring and to a carbon atom of a ring other than a six-membered aromatic ring containing hydroxy or O-metal groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a cyclic compound represented by a specific chemical structural formula, a production method thereof, a radiation-sensitive composition containing the compound, and a resist pattern formation using the composition, which are useful as an acid amplification type non-polymer resist material Regarding the method.
  • the conventional general resist material is a polymer material capable of forming an amorphous thin film.
  • a resist thin film prepared by applying a solution of a polymer resist material such as polymethyl methacrylate, polyhydroxystyrene having an acid-dissociable reactive group or polyalkyl methacrylate on a substrate, ultraviolet rays, far ultraviolet rays, electron beams, extreme A line resist pattern of about 45 to 100 nm is formed by irradiating with ultraviolet rays (EUV), X-rays and the like.
  • EUV ultraviolet rays
  • the molecular weight of the polymer resist is as large as about 10,000 to 100,000 and the molecular weight distribution is wide, the lithography using the polymer resist causes roughness on the surface of the fine resist pattern, and the resist pattern size can be controlled. It becomes difficult and the yield decreases. Therefore, there is a limit to miniaturization in conventional lithography using a polymer resist material.
  • Various low molecular weight resist materials have been disclosed for producing finer resist patterns.
  • an alkali development negative using a low molecular weight cyclic polyphenol compound see Patent Document 3 and Non-Patent Document 1 or a calix resorcinarene compound (see Patent Document 3 and Patent Document 4) as a main component.
  • Type radiation sensitive compositions have been proposed. Since these low molecular weight cyclic polyphenol compounds have a low molecular weight, it is expected to provide a resist pattern having a small molecular size, high resolution, and low roughness. Further, the low molecular weight cyclic polyphenol compound has a rigid cyclic structure in its skeleton, and thus provides high heat resistance despite its low molecular weight.
  • low molecular weight cyclic polyphenol compounds or calix resorcinarene compounds have low safety solvent solubility, low sensitivity, and poor resist pattern shape obtained in semiconductor manufacturing processes. There are problems such as easy falling and peeling, and improvements in low molecular weight cyclic polyphenol compounds are desired.
  • the calix resorcinalene compound synthesized from the currently disclosed methoxyphenol and a benzaldehyde derivative has low solubility in a safe solvent used in a semiconductor manufacturing process and poor heat resistance. There are problems such as low sensitivity and poor storage stability of the resist solvent. Moreover, since the yield is low and purification by column chromatography is necessary, it is not practical.
  • An object of the present invention includes a cyclic compound having high solubility in a safe solvent, high sensitivity, good resist pattern shape, and less prone to resist pattern collapse and peeling, its production method, and its cyclic compound.
  • the object is to provide a radiation-sensitive composition and a resist pattern forming method using the radiation-sensitive composition.
  • the gist configuration of the present invention is as follows. 1.
  • R 12 is independently an alkyl group having 6 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an alkylsilyl group having 1 to 20 carbon atoms.
  • a functional group selected from the group consisting of a group and an alkyl ester group having 2 to 20 carbon atoms, or a hydrogen atom (provided that at least one R 12 is an alkyl group having 6 to 20 carbon atoms, A functional group selected from the group consisting of a cycloalkyl group having 6 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylsilyl group having 1 to 20 carbon atoms, and an alkyl ester group having 2 to 20 carbon atoms, Another at least one R 12 is a hydrogen atom.)
  • X is independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cyano group, or a nitro group.
  • R ′ is independently an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms having a carboxyl group, a cycloalkyl group having 3 to 20 carbon atoms, or a cycloalkyl group having 3 to 20 carbon atoms having a carboxyl group.
  • An alkyl group an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a cyano group, a nitro group, a heterocyclic group, a halogen atom, a carboxyl group, a hydroxyl group, an alkylsilyl group having 1 to 20 carbon atoms, and A functional group selected from the group consisting of alkyl ester groups having 2 to 20 carbon atoms.
  • R ′ is a C 1-20 alkyl group having a carboxyl group and / or a hydroxyl group, a C 3-20 cycloalkyl group having a carboxyl group and / or a hydroxyl group, or the following formula:
  • R 4 is an alkyl group having 1 to 14 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, an aryl group having 6 to 14 carbon atoms, an alkoxy group having 1 to 14 carbon atoms, or a cyano group.
  • the cyclic compound is a compound represented by the above formula (1), and in R 12 in formula (1), at least one R 12 is an alkyl group having 6 to 20 carbon atoms or a cyclohexane having 3 to 20 carbon atoms.
  • R 12 is a hydrogen atom.
  • the cyclic compound is a compound represented by the following formula (3). (In formula (3), R 12 and p are the same as above.) 4).
  • a radiation-sensitive composition comprising the cyclic compound according to item 1 and a solvent.
  • the radiation-sensitive composition according to item 8 comprising 1 to 80% by weight of a solid component and 20 to 99% by weight of a solvent.
  • the cyclic compound is a compound having 2 to 59 carbon atoms and having 1 to 4 formyl groups and 1 to 3 phenolic hydroxyl groups (aldehyde compound (A1A)), 7 to 26 carbon atoms, and 1 To a hydrogen atom of at least one phenolic hydroxyl group of a cyclic compound (A) having a molecular weight of 700 to 5000, synthesized by a condensation reaction with a compound having 3 phenolic hydroxyl groups (phenolic compound (A2))
  • the radiation-sensitive composition according to claim 8 which is a cyclic compound having a structure in which an alkyl group of several 1 to 20 is substituted and having at least one phenolic hydroxyl group and having a molecular weight of 800 to 5500.
  • the radiation sensitive composition of Claim 8 containing an agent (C). 13.
  • the solid component is cyclic compound / acid generator (C) / acid cross-linking agent (G) / acid diffusion controller (E) / optional component (F) in an amount of 50 to 99.489 by weight% based on the solid component.
  • the radiation-sensitive composition according to item 8 which contains /0.001 to 49.49 / 0.5 to 49.989 / 0.01 to 49.499 / 0 to 49.489. 16.
  • the dissolution rate of the amorphous film in an aqueous 2.38 wt% tetramethylammonium hydroxide solution at 23 ° C is 10 ⁇ / sec or more. 18.
  • a step of forming a resist film on a substrate, a step of exposing the resist film using the radiation-sensitive composition according to any one of items 8 to 18, and developing the resist film to develop a resist pattern A resist pattern forming method including a step of forming a film.
  • a cyclic compound having high solubility in a safe solvent, high sensitivity, good resist pattern shape and resisting resist pattern collapse and peeling, a method for producing the same, and radiation sensitivity including the cyclic compound Composition and a resist pattern forming method using the radiation-sensitive composition can be provided.
  • the present invention relates to a cyclic compound useful as a resist material and a method for producing the same.
  • the cyclic compound of the present invention is a cyclic compound represented by the following formula (1).
  • R 12 is independently an alkyl group having 6 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms (preferably a cycloalkyl group having 6 to 12 carbon atoms, particularly preferably a cyclohexyl group). ), A functional group selected from the group consisting of an aryl group having 6 to 20 carbon atoms, an alkylsilyl group having 1 to 20 carbon atoms, and an alkyl ester group having 2 to 20 carbon atoms, or a hydrogen atom.
  • At least one R 12 is an alkyl group having 6 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylsilyl group having 1 to 20 carbon atoms, and carbon.
  • Another at least one R 12 is preferably a hydrogen atom.
  • X is independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cyano group, A functional group selected from the group consisting of a nitro group, a hydroxyl group, a heterocyclic group, a halogen atom, a carboxyl group, an alkylsilyl group having 1 to 20 carbon atoms, an alkyl ester group having 2 to 20 carbon atoms, and derivatives thereof .
  • R ′ is independently an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms having a carboxyl group, a cycloalkyl group having 3 to 20 carbon atoms, or a 3 to 20 carbon atom having a carboxyl group.
  • a cycloalkyl group an aryl group having 6 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a cyano group, a nitro group, a heterocyclic group, a halogen atom, a carboxyl group, a hydroxyl group, an alkylsilyl group having 1 to 20 carbon atoms, A functional group selected from the group consisting of alkyl ester groups having 2 to 20 carbon atoms and derivatives thereof.
  • At least one R ′ is a C 1-20 alkyl group having a carboxyl group and / or a hydroxyl group, a C 3-20 cycloalkyl group having a carboxyl group and / or a hydroxyl group, or the following formula: R 4 is an alkyl group having 1 to 14 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, an aryl group having 6 to 14 carbon atoms, an alkoxy group having 1 to 14 carbon atoms, or a cyano group.
  • a functional group selected from the group consisting of a nitro group, a heterocyclic group, a halogen atom, a carboxyl group, a hydroxyl group, an alkylsilyl group having 1 to 14 carbon atoms, an alkyl ester group having 2 to 14 carbon atoms, and derivatives thereof
  • at least one R 4 is a hydroxyl group or a carboxyl group
  • p is an integer of 1 to 5.
  • Preferred examples of the cyclic compound represented by the above formula (1) include the following compounds. (In the above formula (2), R 12 , R 4 and p are the same as above.)
  • cyclic compound represented by the above formula (2) include compounds represented by the following formulas (2-1) to (2-4). (In the above formulas (2-1) to (2-4), R 12 , R 4 and p are as defined above.)
  • the cyclic compounds represented by the above formulas (2-1) to (2-4) are more preferably compounds represented by any of the isomers of the following formulas (3-1) to (3-4) can give.
  • R 12 and p are as defined above.
  • cyclic compound More preferable examples of the cyclic compound include compounds represented by any one of isomers of the following formulas (3′-1) to (3′-4).
  • R 4 and p are the same as described above.
  • R 5 represents an alkyl group having 1 to 3 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, an alkoxy group having 1 to 14 carbon atoms, a cyano group, a nitro group, or a heterocyclic group.
  • q is an integer of 0 to 2.
  • the cyclic compound of the present invention has high heat resistance and is amorphous, so that it is excellent in film-forming properties, does not have sublimation properties, is excellent in alkali developability, etching resistance, and the like, and is a phenolic hydroxyl group or carboxyl derived from aldehydes. Since it has a group and does not have a phenolic hydroxyl group derived from resorcinol derivatives, it improves the adhesion and crosslinking reactivity of the resulting resist pattern without compromising the solubility in a safe solvent, and the resist pattern collapses. In addition to suppressing peeling and improving sensitivity, it is suitably used as a resist material, particularly as a main component (base material) of the resist material.
  • the cyclic compound of the present invention can be obtained by subjecting various aldehydes including aromatic aldehydes and phenol derivatives such as cyclohexyloxyphenol as raw materials to a dehydration condensation reaction with a non-metallic catalyst such as hydrochloric acid. At this time, by controlling the reaction temperature at a reaction temperature of 0 to 60 ° C., resination and gelation can be prevented, and the target product can be obtained at a high conversion rate without performing a special purification operation. It is also extremely practical.
  • the molecular weight of the cyclic compound represented by the above formula (1) is 800 to 5000, preferably 800 to 2000, more preferably 1000 to 2000. Within the above range, the resolution is improved while maintaining the film formability required for the resist.
  • the cyclic compound in the present invention can take a cis form or a trans form, but may have any structure or mixture.
  • a resist component of a radiation-sensitive composition it is preferable to have only a cis- or trans-structure because it is a pure substance compound and the uniformity of the components in the resist film is high.
  • a method for obtaining a cyclic compound having only a cis- or trans-structure is performed by a known method such as separation by column chromatography or preparative liquid chromatography or optimization of reaction solvent and reaction temperature during production. Can do.
  • the cyclic compound represented by the above formula (1) is one or more selected from the group consisting of compounds having 2 to 59 carbon atoms and having 1 to 4 formyl groups (aldehyde compound (A1A)), and phenol. It is obtained by a condensation reaction with one or more selected from the group consisting of the functional compound (A2).
  • the cyclic compound represented by the formula (1) is one or more selected from the group consisting of the aromatic carbonyl compound (A1) and one or more selected from the group consisting of the phenolic compound (A2). It is obtained by the condensation reaction of
  • the aromatic carbonyl compound (A1) is a hydroxybenzaldehyde having 7 to 20 carbon atoms or a carboxybenzaldehyde having 7 to 20 carbon atoms.
  • the aromatic carbonyl compound (A1) may have a linear or branched alkyl group having 1 to 4 carbon atoms, a cyano group, a hydroxyl group, a halogen or the like as long as the effects of the present invention are not impaired.
  • the aromatic carbonyl compound (A1) may be used alone or in combination of two or more.
  • the phenolic compound (A2) is an alkoxyphenol having 12 to 20 carbon atoms such as cyclohexyloxyphenol, methylcyclohexyloxyphenol, dimethylcyclohexyloxyphenol, ethylcyclohexyloxyphenol, propylcyclohexyloxyphenol, trimethylcyclohexyloxyphenol, Butylcyclohexyloxyphenol, pentylcyclohexyloxyphenol, hexylcyclohexyloxyphenol, bicyclohexyloxyphenol, menthyloxyphenol, bornyloxyphenol, phenoxyphenol, chlorocyclohexyloxyphenol, cyclohexyloxyhydroxytoluene, dicyclohexyloxyphenol, fluorocycline Hexyloxyphenol, cyclohexyloxyhydroxybenzoic acid, dicyclohexyloxyhydroxybenzoic acid, tricyclohexyloxyhydroxybenzoic acid, cyclohe
  • the phenolic compound (A2) may have a linear or branched alkyl group having 1 to 4 carbon atoms, a cyano group, a hydroxyl group, a halogen atom or the like as long as the effects of the present invention are not impaired. You may use a phenolic compound (A2) individually or in combination of 2 or more types.
  • the cyclic compound represented by the above formula (1) can be produced by a known method.
  • an organic solvent such as methanol or ethanol
  • 0.1 to 10 moles of phenolic compound (A2) is used per 1 mole of aromatic carbonyl compound (A1), acid catalyst (hydrochloric acid, sulfuric acid, paratoluenesulfonic acid, etc. ), Reaction at 60 to 150 ° C. for about 0.5 to 20 hours, filtration, washing with alcohol such as methanol, washing with water, filtration, separation, and drying to obtain the cyclic compound (A) Is obtained.
  • a basic catalyst sodium hydroxide, barium hydroxide or 1,8-diazabicyclo [5.4.0] undecene-7 etc.
  • the cyclic compound (A) Is obtained.
  • the cyclic compound (A) can also be produced by converting the aromatic carbonyl compound (A1) into a dihalide with hydrogen halide or halogen gas, and reacting the isolated dihalide with the phenolic compound (A2). .
  • two or more aromatic carbonyl compounds (A1) and two or more phenolic compounds (A2) are used.
  • the solubility of the resulting cyclic compound in a semiconductor safety solvent is improved.
  • purification may be performed as necessary. If the acid catalyst and the cocatalyst remain, generally, the storage stability of the radiation-sensitive composition is lowered, or if the basic catalyst remains, generally the sensitivity of the radiation-sensitive composition is lowered.
  • the intended purification may be performed. Purification can be performed by a known method as long as the cyclic compound is not denatured, and is not particularly limited. For example, a method of washing with water, a method of washing with an acidic aqueous solution, a method of washing with a basic aqueous solution, or an ion exchange resin. The method of processing, the method of processing by silica gel column chromatography, etc. are mentioned.
  • the acidic aqueous solution, basic aqueous solution, ion exchange resin, and silica gel column chromatography should be optimized according to the metal to be removed, the amount and type of acidic compound and / or basic compound, the type of cyclic compound to be purified, etc. It is possible to select appropriately.
  • Amberlyst 15J-HG Dry made by Organo can be mentioned. You may dry after refinement
  • the cyclic compound represented by the above formula (1) can form an amorphous film by spin coating. Further, it can be applied to a general semiconductor manufacturing process.
  • the cyclic compound of the present invention represented by the above formula (1) is useful as a negative resist material that becomes a compound hardly soluble in an alkali developer by irradiation with KrF excimer laser, extreme ultraviolet light, electron beam or X-ray. It is. It is considered that the condensation reaction between the compounds is induced by irradiation of the cyclic compound with KrF excimer laser, extreme ultraviolet light, electron beam or X-ray, and the compound becomes insoluble in an alkali developer.
  • the resist pattern thus obtained has a very low LER.
  • the cyclic compound of the present invention can be made into a negative radiation-sensitive composition based on itself as a main component, and is not added to the radiation-sensitive composition as an additive for improving sensitivity and etching resistance, for example, instead of the main component. be able to.
  • the cyclic compound is used at 1 to 49.999% by weight of the total weight of the solid component.
  • the dissolution rate of the amorphous film of the cyclic compound of the present invention in a 2.38 mass% tetramethylammonium hydroxide (TMAH) aqueous solution at 23 ° C. is preferably 10 ⁇ / sec or more, more preferably 10 to 10,000 ⁇ / sec, more preferably 100 to 1000 ⁇ . / Sec is more preferable. It can melt
  • the glass transition temperature of the cyclic compound of the present invention is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, further preferably 140 ° C. or higher, and particularly preferably 150 ° C. or higher.
  • the semiconductor lithography process has heat resistance capable of maintaining the resist pattern shape and can provide performance such as high resolution.
  • the calorific value of crystallization determined by differential scanning calorimetry of the glass transition temperature of the cyclic compound of the present invention is preferably less than 20 J / g.
  • (crystallization temperature) ⁇ glass transition temperature is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 100 ° C.
  • crystallization heat generation amount is less than 20 J / g, or (crystallization temperature) ⁇ (glass transition temperature) is within the above range, an amorphous film can be easily formed by spin-coating the radiation-sensitive composition, and The film formability required for the resist can be maintained for a long time, and the resolution can be improved.
  • the crystallization calorific value, crystallization temperature, and glass transition temperature can be determined by measurement and differential scanning calorimetry as follows using DSC / TA-50WS manufactured by Shimadzu Corporation.
  • About 10 mg of a sample is put in an aluminum non-sealed container and heated to a melting point or higher at a temperature rising rate of 20 ° C./min in a nitrogen gas stream (50 ml / min). After the rapid cooling, the temperature is again raised to the melting point or higher at a temperature rising rate of 20 ° C./min in a nitrogen gas stream (30 ml / min). After further rapid cooling, the temperature is raised again to 400 ° C.
  • the temperature at the midpoint where the discontinuity appears in the baseline is the glass transition temperature (Tg), and the temperature of the exothermic peak that appears thereafter is the crystallization temperature.
  • Tg glass transition temperature
  • the calorific value is obtained from the area of the region surrounded by the exothermic peak and the baseline, and is defined as the crystallization calorific value.
  • the cyclic compound of the present invention preferably has a low sublimation property under normal pressure at 100 ° C. or lower, preferably 120 ° C. or lower, more preferably 130 ° C. or lower, still more preferably 140 ° C. or lower, particularly preferably 150 ° C. or lower.
  • the low sublimation property means that, in thermogravimetric analysis, the weight loss when held at a predetermined temperature for 10 minutes is 10%, preferably 5%, more preferably 3%, still more preferably 1%, particularly preferably 0.1. % Or less is preferable. Since the sublimation property is low, it is possible to prevent exposure apparatus from being contaminated by outgas during exposure. Moreover, a favorable resist pattern shape can be given with low LER.
  • the cyclic compound of the present invention preferably satisfies F ⁇ 3.0 (F represents the total number of atoms / (total number of carbon atoms ⁇ total number of oxygen atoms)), and more preferably satisfies F ⁇ 2.5.
  • F represents the total number of atoms / (total number of carbon atoms ⁇ total number of oxygen atoms)
  • the cyclic compound of the present invention includes propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), cyclohexanone (CHN), cyclopentanone (CPN), 2-heptanone, anisole, butyl acetate, ethyl propionate, and A solvent selected from ethyl lactate and having the highest solubility for the cyclic compound is preferably at least 1% by weight, more preferably at least 5% by weight, even more preferably at least 10% by weight, particularly at 23 ° C.
  • PMEA propylene glycol monomethyl ether acetate
  • PGME propylene glycol monomethyl ether
  • CHN cyclohexanone
  • CPN cyclopentanone
  • 2-heptanone 2-heptanone
  • anisole butyl acetate
  • a solvent selected from PGMEA, PGME, and CHN and exhibiting the highest solubility with respect to the cyclic compound is at least 20% by weight at 23 ° C., particularly preferably 20 ° C. with respect to PGMEA at 20 Dissolves by weight% or more.
  • a halogen atom may be introduced into the cyclic compound of the present invention as long as the effects of the present invention are not impaired.
  • the ratio of the number of halogen atoms to the total number of constituent atoms of the cyclic compound is preferably 0.1 to 60%, more preferably 0.1 to 40%, and more preferably 0.1 to 20%. More preferably, it is 0.1 to 10%, particularly preferably 1 to 5%.
  • the film formability can be maintained while increasing the sensitivity to radiation.
  • the solubility in a safe solvent can be improved.
  • a nitrogen atom may be introduced into the cyclic compound of the present invention as long as the effects of the present invention are not impaired.
  • the ratio of the number of nitrogen atoms to the total number of constituent atoms of the cyclic compound is preferably 0.1 to 40%, more preferably 0.1 to 20%, and preferably 0.1 to 10%. Further preferred is 0.1 to 5%. Within the above range, the line edge roughness of the resulting resist pattern can be reduced.
  • a nitrogen atom it is preferable that it is a nitrogen atom contained in a secondary amine or a tertiary amine, and it is more preferable that it is a nitrogen atom contained in a tertiary amine.
  • the cyclic compound of the present invention is irradiated with visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet light (EUV), X-ray, ion beam irradiation or chemical reaction induced thereby.
  • a crosslinking reactive group that causes a crosslinking reaction may be introduced. The introduction is performed, for example, by reacting a cyclic compound and a crosslinking reactive group introduction reagent in the presence of a base catalyst.
  • the crosslinking reactive group include a carbon-carbon multiple bond, an epoxy group, an azide group, a halogenated phenyl group, and a chloromethyl group.
  • crosslinking reactive group introduction reagent examples include acids, acid chlorides, acid anhydrides, carboxylic acid derivatives such as dicarbonates and alkyl halides having such a crosslinking reactive group.
  • a radiation-sensitive composition containing a cyclic compound having a crosslinking reactive group is also useful as a non-polymeric radiation-sensitive composition having high resolution, high heat resistance and solvent solubility.
  • a non-acid-dissociable functional group may be introduced into at least one phenolic hydroxyl group of the cyclic compound of the present invention as long as the effect of the present invention is not impaired.
  • the non-acid-dissociable functional group refers to a characteristic group that does not cleave in the presence of an acid and does not generate an alkali-soluble group.
  • C1-20 alkyl group, C3-20 cycloalkyl group, C6-20 aryl group, C1-20 alkoxyl group, cyano group, nitro group, hydroxyl group examples thereof include a cyclic group, a halogen atom, a carboxyl group, a C1-20 alkylsilyl group, and a functional group selected from the group consisting of these derivatives.
  • a naphthoquinone diazide ester group may be introduced into at least one phenolic hydroxyl group of the cyclic compound of the present invention as long as the effects of the present invention are not impaired.
  • a compound in which a naphthoquinone diazide ester group is introduced into at least one phenolic hydroxyl group of a cyclic compound can be a negative radiation-sensitive composition based on itself, and a positive radiation-sensitive composition based on itself. It can add to a radiation sensitive composition as an acid generator and an additive.
  • an acid-generating functional group that generates an acid upon irradiation with radiation may be introduced into at least one phenolic hydroxyl group of the cyclic compound of the present invention.
  • a cyclic polyphenol compound in which an acid-generating functional group that generates an acid upon irradiation with radiation is introduced into at least one phenolic hydroxyl group of the cyclic compound can be used as a negative radiation-sensitive composition based on itself. Can be added to the radiation-sensitive composition as an acid generator or additive.
  • the present invention relates to a radiation-sensitive composition containing the cyclic compound represented by the above formula (1) and a solvent. Further, the present invention is preferably a radiation-sensitive composition comprising 1 to 80% by weight of a solid component and 20 to 99% by weight of a solvent. Further, the cyclic compound is 50 to 99.999% by weight of the total weight of the solid component. % Is preferred.
  • the radiation-sensitive composition of the present invention can form an amorphous film by spin coating.
  • the dissolution rate of the amorphous film formed by spin-coating the radiation-sensitive composition of the present invention in a 2.38 mass% TMAH aqueous solution at 23 ° C. is preferably 10 ⁇ / sec or more, more preferably 10 to 10000 ⁇ / sec, 100 More preferably, it is ⁇ 1000 kg / sec.
  • the dissolution rate is 10 ⁇ / sec or more, it can be dissolved in an alkali developer to form a resist.
  • the amorphous film has a dissolution rate of 10000 kg / sec or less, resolution may be improved.
  • the speed is preferably 5 K / sec or less, more preferably 0.05 to 5 K / sec, and further preferably 0.0005 to 5 K / sec.
  • the dissolution rate is 5 ⁇ / sec or less, it is insoluble in an alkali developer and can be used as a resist.
  • the exposed portion has a dissolution rate of 0.0005 K / sec or more, resolution may be improved. This is presumed to be because the micro surface portion of the cyclic compound is dissolved and LER is reduced. There is also an effect of reducing defects.
  • the radiation-sensitive composition of the present invention is preferably 1 to 80% by weight of a solid component and 20 to 99% by weight of a solvent, more preferably 1 to 50% by weight of a solid component and 50 to 99% by weight of a solvent, and still more preferably.
  • the solid component is 2 to 40% by weight and the solvent is 60 to 98% by weight, and particularly preferably the solid component is 2 to 10% by weight and the solvent is 90 to 98% by weight.
  • the amount of the cyclic compound represented by the formula (1) is 50 to 99.999% by weight, preferably 65 to 80% by weight, more preferably 60 to 70% by weight, based on the total weight of the solid component.
  • the radiation-sensitive composition of the present invention can be directly or indirectly oxidized by irradiation with any radiation selected from visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet light (EUV), X-ray, and ion beam. It is preferable to include one or more acid generators (C) that generate water.
  • the amount of the acid generator used is arbitrarily selected such as the total weight of the solid component (cyclic compound, acid generator (C), acid crosslinking agent (G), acid diffusion controller (E), and other components (F)). 0.001 to 50% by weight of the total amount of solid components to be applied, the same applies hereinafter), more preferably 1 to 40% by weight, still more preferably 3 to 30% by weight, and particularly preferably 10 to 25% by weight.
  • the acid generation method is not limited as long as an acid is generated in the system. If excimer laser is used instead of ultraviolet rays such as g-line and i-line, finer processing is possible, and if high-energy rays are used, electron beam, extreme ultraviolet rays, X-rays, ion beam, further fine processing Is possible.
  • the acid generator (C) is preferably at least one selected from the group consisting of compounds represented by the following formulas (4-1) to (4-8).
  • R 13 may be the same or different and each independently represents a hydrogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group. , A hydroxyl group or a halogen atom; X ⁇ is a sulfonate ion or a halide ion having an alkyl group, an aryl group, a halogen-substituted alkyl group or a halogen-substituted aryl group.
  • the compound represented by the formula (4-1) includes triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, diphenyltolylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium perfluoro-n- Octane sulfonate, diphenyl-4-methylphenylsulfonium trifluoromethanesulfonate, di-2,4,6-trimethylphenylsulfonium trifluoromethanesulfonate, diphenyl-4-t-butoxyphenylsulfonium trifluoromethanesulfonate, diphenyl-4-t-butoxyphenyl Sulfonium nonafluoro-n-butanesulfonate, diphenyl-4-hydroxyphenylsulfonium trifluoromethane Sulfon
  • R 14 may be the same or different and each independently represents a hydrogen atom, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group. Represents a hydroxyl group or a halogen atom.
  • X ⁇ is the same as described above.
  • the compound represented by the formula (4-2) includes bis (4-t-butylphenyl) iodonium trifluoromethanesulfonate, bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate, bis (4-t -Butylphenyl) iodonium perfluoro-n-octanesulfonate, bis (4-tert-butylphenyl) iodonium, p-toluenesulfonate, bis (4-tert-butylphenyl) iodoniumbenzenesulfonate, bis (4-tert-butylphenyl) Iodonium-2-trifluoromethylbenzenesulfonate, bis (4-tert-butylphenyl) iodonium-4-trifluoromethylbenzenesulfonate, bis (4-tert-butylphenyl) iodonium-2,
  • Q represents an alkylene group, an arylene group or an alkoxylene group
  • R 15 represents an alkyl group, an aryl group, a halogen-substituted alkyl group or a halogen-substituted aryl group.
  • the compound represented by the formula (4-3) includes N- (trifluoromethylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- ( Trifluoromethylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) naphthylimide, N- (10-camphorsulfonyloxy) Succinimide, N- (10-camphorsulfonyloxy) phthalimide, N- (10-camphorsulfonyloxy) diphenylmaleimide, N- (10-camphorsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2 , 3-Dicarboximide, N (10-camphorsulfonyloxy) naph
  • R 16 may be the same or different and each independently represents an optionally substituted linear, branched or cyclic alkyl group, an optionally substituted aryl group, and optionally substituted. Heteroaryl groups or optionally substituted aralkyl groups.
  • the compound represented by the formula (4-4) is diphenyl disulfone, di (4-methylphenyl) disulfone, dinaphthyl disulfone, di (4-tert-butylphenyl) disulfone, di (4-hydroxyphenyl) disulfone. At least one selected from the group consisting of di (3-hydroxynaphthyl) disulfone, di (4-fluorophenyl) disulfone, di (2-fluorophenyl) disulfone and di (4-trifluoromethylphenyl) disulfone It is preferable.
  • R 17 may be the same or different and each independently represents an optionally substituted linear, branched or cyclic alkyl group, an optionally substituted aryl group, and optionally substituted. Heteroaryl groups or optionally substituted aralkyl groups.
  • the compound represented by the formula (4-5) is ⁇ - (methylsulfonyloxyimino) -phenylacetonitrile, ⁇ - (methylsulfonyloxyimino) -4-methoxyphenylacetonitrile, ⁇ - (trifluoromethylsulfonyloxyimino).
  • R 18 may be the same or different and each independently represents a halogenated alkyl group having one or more chlorine atoms and one or more bromine atoms.
  • the halogenated alkyl group preferably has 1 to 5 carbon atoms.
  • R 19 and R 20 are each independently an alkyl group having 1 to 3 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, or cyclopentyl.
  • Group, cycloalkyl group such as cyclohexyl group, alkoxyl group having 1 to 3 carbon atoms such as methoxy group, ethoxy group, propoxy group, or aryl group such as phenyl group, toluyl group, naphthyl group, preferably 6 carbon atoms ⁇ 10 aryl groups.
  • L 19 and L 20 are each independently an organic group having a 1,2-naphthoquinonediazide group.
  • organic group having a 1,2-naphthoquinonediazide group examples include a 1,2-naphthoquinonediazide-4-sulfonyl group, a 1,2-naphthoquinonediazide-5-sulfonyl group, and a 1,2-naphthoquinonediazide- Preferred examples include 1,2-quinonediazidosulfonyl groups such as a 6-sulfonyl group.
  • 1,2-naphthoquinonediazido-4-sulfonyl group and 1,2-naphthoquinonediazide-5-sulfonyl group are preferable.
  • J 19 is a single bond, a polymethylene group having 1 to 4 carbon atoms, a cycloalkylene group, a phenylene group, a group represented by the following formula (4-7-1), a carbonyl group, an ester group, an amide group or an ether group.
  • Y 19 represents a hydrogen atom, an alkyl group or an aryl group, and X 20 each independently represents a group represented by the following formula (4-8-1).
  • Z 22 each independently represents an alkyl group, a cycloalkyl group or an aryl group
  • R 22 represents an alkyl group, a cycloalkyl group or an alkoxyl group
  • r represents 0 to 3 It is an integer.
  • Other acid generators include bis (p-toluenesulfonyl) diazomethane, bis (2,4-dimethylphenylsulfonyl) diazomethane, bis (tert-butylsulfonyl) diazomethane, bis (n-butylsulfonyl) diazomethane, bis (isobutylsulfonyl) ) Diazomethane, bis (isopropylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, 1,3-bis (cyclohexylsulfonylazomethylsulfonyl) propane, 1, 4 -Bis (phenylsulfonylazomethylsulfonyl) butane, 1,6
  • acid generators having an aromatic ring are preferable, and acid generators represented by formula (4-1) or (4-2) are more preferable.
  • An acid generator having a sulfonate ion having X ⁇ in formula (4-1) or (4-2) having an aryl group or a halogen-substituted aryl group is more preferred, and an acid generator having a sulfonate ion having an aryl group are particularly preferred, and diphenyltrimethylphenylsulfonium p-toluenesulfonate, triphenylsulfonium p-toluenesulfonate, triphenylsulfonium trifluoromethanesulfonate, and triphenylsulfonium nonafluoromethanesulfonate are particularly preferred.
  • LER can be reduced by using the acid generator.
  • the acid generator (C) can be used alone or in combination of two or more.
  • the radiation-sensitive composition of the present invention preferably contains one or more acid crosslinking agents (G).
  • the acid crosslinking agent (G) is a compound that can crosslink the cyclic compound (A) within a molecule or between molecules in the presence of an acid generated from the acid generator (C).
  • Examples of such an acid crosslinking agent (G) include compounds having one or more substituents (hereinafter referred to as “crosslinkable substituents”) having crosslinking reactivity with the cyclic compound (A). it can.
  • crosslinkable substituent examples include (i) hydroxyalkyl such as hydroxy (C1-C6 alkyl group), C1-C6 alkoxy (C1-C6 alkyl group), acetoxy (C1-C6 alkyl group) and the like.
  • a group or a substituent derived therefrom (ii) a carbonyl group such as formyl group, carboxy (C1-C6 alkyl group) or a substituent derived therefrom; (iii) a dimethylaminomethyl group, a diethylaminomethyl group, a di Nitrogen-containing substituents such as methylolaminomethyl group, diethylolaminomethyl group, morpholinomethyl group; (iv) glycidyl group-containing substituents such as glycidyl ether group, glycidyl ester group, glycidylamino group; (v) benzyloxy C6-C12 allyloxy (C1-C) such as methyl group, benzoyloxymethyl group 6 alkyl groups), substituents derived from aromatic groups such as C7-C12 aralkyloxy (C1-C6 alkyl groups); (vi) substituents containing polymerizable multiple bonds such as
  • crosslinkable substituent of the acid crosslinking agent (G) of the present invention a hydroxyalkyl group, an alkoxyalkyl group, and the like are preferable, and an alkoxymethyl group is particularly preferable.
  • Examples of the acid crosslinking agent (G) having a crosslinkable substituent include (i) a methylol group-containing melamine compound, a methylol group-containing benzoguanamine compound, a methylol group-containing urea compound, a methylol group-containing glycoluril compound, and a methylol group-containing phenol compound. (Ii) alkoxyalkyl group-containing melamine compounds, alkoxyalkyl group-containing benzoguanamine compounds, alkoxyalkyl group-containing urea compounds, alkoxyalkyl group-containing glycoluril compounds, alkoxyalkyl group-containing phenol compounds, etc.
  • the acid cross-linking agent (G) a compound having a phenolic hydroxyl group, and a compound and resin imparted with crosslinkability by introducing the crosslinkable substituent into an acidic functional group in the alkali-soluble resin may be used. it can.
  • the introduction rate of the crosslinkable substituent is usually 5 to 100 mol%, preferably 10 to 60 mol%, more preferably 10 to 60 mol%, based on the total acidic functional group in the compound having a phenolic hydroxyl group and the alkali-soluble resin. Preferably, it is adjusted to 15 to 40 mol%. Within the above range, a crosslinking reaction is sufficiently caused, and a decrease in the remaining film ratio, swelling phenomenon of the resist pattern, meandering, and the like can be avoided.
  • the acid crosslinking agent (G) is preferably an alkoxyalkylated urea compound or a resin thereof, or an alkoxyalkylated glycoluril compound or a resin thereof.
  • Particularly preferred acid crosslinking agents (G) include compounds represented by the following formula (5) and alkoxymethylated melamine compounds (acid crosslinking agents (G1)).
  • R 7 each independently represents a hydrogen atom, an alkyl group, or an acyl group
  • R 8 to R 11 each independently represent a hydrogen atom, a hydroxyl group, an alkyl group, or an alkoxyl group
  • X 2 represents a single bond, a methylene group, or an oxygen atom.
  • R 7 is preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an acyl group having 2 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms is more preferably an alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
  • the acyl group having 2 to 6 carbon atoms is more preferably an acyl group having 2 to 4 carbon atoms, and examples thereof include an acetyl group and a propionyl group.
  • R 8 to R 11 in Formula (5) are preferably a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, or an alkoxyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms is preferably an alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
  • the alkoxy group having 1 to 6 carbon atoms is preferably an alkoxy group having 1 to 3 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, and a propoxy group.
  • X 2 represents a single bond, a methylene group, or an oxygen atom, and preferably a single bond or a methylene group.
  • R 7 to R 11 and X 2 have substituents such as an alkyl group such as a methyl group and an ethyl group, an alkoxy group such as a methoxy group and an ethoxy group, a hydroxyl group and a halogen atom in addition to the groups exemplified above. You may do it.
  • the plurality of R 7 and R 8 to R 11 may be the same or different.
  • Specific examples of the compound represented by the formula (5-2) include, for example, N, N, N, N, N-tetra (methoxymethyl) glycoluril, N, N, N, N-tetra (ethoxymethyl) glycoluril.
  • Glycoluril N, N, N, N-tetra (t-butoxymethyl) glycoluril, and the like.
  • N, N, N, N-tetra (methoxymethyl) glycoluril is particularly preferable.
  • alkoxymethylated melamine compounds include N, N, N, N, N, N-hexa (methoxymethyl) melamine, N, N, N, N, N-hexa (ethoxymethyl) melamine N, N, N, N, N-hexa (n-propoxymethyl) melamine, N, N, N, N, N-hexa (isopropoxymethyl) melamine, N, N, N, N, Examples thereof include N, N-hexa (n-butoxymethyl) melamine, N, N, N, N, N-hexa (t-butoxymethyl) melamine and the like. Among these, N, N, N, N, N, N-hexa (methoxymethyl) melamine is particularly preferable.
  • the acid cross-linking agent (G1) is obtained by, for example, condensing a urea compound or glycoluril compound and formalin to introduce a methylol group, and then ether with lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol. Then, the reaction solution is cooled and the precipitated compound or its resin is recovered.
  • the acid cross-linking agent (G1) can also be obtained as a commercial product such as CYMEL (trade name, manufactured by Mitsui Cyanamid) or Nicalac (manufactured by Sanwa Chemical Co., Ltd.).
  • the molecule has 1 to 6 benzene rings, and has at least two hydroxyalkyl groups and / or alkoxyalkyl groups in the molecule. And / or a phenol derivative in which an alkoxyalkyl group is bonded to any one of the benzene rings (acid crosslinking agent (G2)).
  • the molecular weight is 1500 or less
  • the molecule has 1 to 6 benzene rings
  • the hydroxyalkyl group and / or alkoxyalkyl group has 2 or more in total
  • the hydroxyalkyl group and / or alkoxyalkyl group is the benzene ring.
  • a phenol derivative formed by bonding to any one of the rings or a plurality of benzene rings can be given.
  • hydroxyalkyl group bonded to the benzene ring those having 1 to 6 carbon atoms such as hydroxymethyl group, 2-hydroxyethyl group, and 2-hydroxy-1-propyl group are preferable.
  • the alkoxyalkyl group bonded to the benzene ring is preferably one having 2 to 6 carbon atoms. Specifically, methoxymethyl group, ethoxymethyl group, n-propoxymethyl group, isopropoxymethyl group, n-butoxymethyl group, isobutoxymethyl group, sec-butoxymethyl group, t-butoxymethyl group, 2-methoxyethyl And a 2-methoxy-1-propyl group are preferred.
  • L 1 to L 8 may be the same or different and each independently represents a hydroxymethyl group, a methoxymethyl group or an ethoxymethyl group.
  • a phenol derivative having a hydroxymethyl group can be obtained by reacting a corresponding phenol compound having no hydroxymethyl group (a compound in which L 1 to L 8 are hydrogen atoms in the above formula) with formaldehyde in the presence of a base catalyst. it can.
  • the reaction temperature is preferably 60 ° C. or lower. Specifically, it can be synthesized by the methods described in JP-A-6-282067, JP-A-7-64285 and the like.
  • a phenol derivative having an alkoxymethyl group can be obtained by reacting a corresponding phenol derivative having a hydroxymethyl group with an alcohol in the presence of an acid catalyst.
  • the reaction temperature is preferably 100 ° C. or lower. Specifically, it can be synthesized by the method described in EP632003A1 and the like.
  • a phenol derivative having a hydroxymethyl group and / or an alkoxymethyl group synthesized in this manner is preferable in terms of stability during storage, but a phenol derivative having an alkoxymethyl group is particularly preferable from the viewpoint of stability during storage.
  • the acid crosslinking agent (G2) may be used alone or in combination of two or more.
  • Another particularly preferable acid crosslinking agent (G) is a compound having at least one ⁇ -hydroxyisopropyl group (acid crosslinking agent (G3)).
  • the compound is not particularly limited as long as it has an ⁇ -hydroxyisopropyl group.
  • the hydrogen atom of the hydroxyl group in the ⁇ -hydroxyisopropyl group is one or more acid-dissociable groups (R—COO— group, R—SO 2 — group, etc., R is a straight chain having 1 to 12 carbon atoms)
  • R—COO— group, R—SO 2 — group, etc., R is a straight chain having 1 to 12 carbon atoms
  • a cyclic hydrocarbon group having 3 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, a 1-branched alkyl group having 3 to 12 carbon atoms, and an aromatic hydrocarbon group having 6 to 12 carbon atoms Which represents a substituent selected from the group consisting of:
  • Examples of the compound having an ⁇ -hydroxyisopropyl group include one or two types such as a substituted or unsubstituted aromatic compound, diphenyl compound, naphthalene compound, and furan compound containing at least one ⁇ -hydroxyisopropyl group.
  • a compound represented by the following general formula (6-1) hereinafter referred to as “benzene compound (1)”
  • a compound represented by the following general formula (6-2) hereinafter referred to as “benzene compound (1)”.
  • Diphenyl compound (2) a compound represented by the following general formula (6-3) (hereinafter referred to as “naphthalene compound (3”)), and the following general formula (6-4): And the like (hereinafter referred to as “furan compound (4)”).
  • each A 2 independently represents an ⁇ -hydroxyisopropyl group or a hydrogen atom, and at least one A 2 is an ⁇ -hydroxyisopropyl group.
  • R 51 represents a hydrogen atom, a hydroxyl group, a linear or branched alkylcarbonyl group having 2 to 6 carbon atoms, or a linear or branched structure having 2 to 6 carbon atoms. The alkoxycarbonyl group of is shown.
  • R 52 represents a single bond, a linear or branched alkylene group having 1 to 5 carbon atoms, —O—, —CO—, or —COO—.
  • R 53 and R 54 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms.
  • benzene compound (6-1) examples include ⁇ -hydroxyisopropylbenzene, 1,3-bis ( ⁇ -hydroxyisopropyl) benzene, 1,4-bis ( ⁇ -hydroxyisopropyl) benzene, 1 ⁇ -hydroxyisopropylbenzenes such as 1,2,4-tris ( ⁇ -hydroxyisopropyl) benzene, 1,3,5-tris ( ⁇ -hydroxyisopropyl) benzene; 3- ⁇ -hydroxyisopropylphenol, 4- ⁇ -hydroxy ⁇ -hydroxyisopropylphenols such as isopropylphenol, 3,5-bis ( ⁇ -hydroxyisopropyl) phenol, 2,4,6-tris ( ⁇ -hydroxyisopropyl) phenol; 3- ⁇ -hydroxyisopropylphenyl methyl ketone, 4 - ⁇ -Hydroxyisopro Ruphenyl methyl ketone, 4- ⁇ -hydroxyisopropyl phenyl ethyl ketone,
  • diphenyl compound (6-2) examples include 3- ⁇ -hydroxyisopropylbiphenyl, 4- ⁇ -hydroxyisopropylbiphenyl, 3,5-bis ( ⁇ -hydroxyisopropyl) biphenyl, 3, 3′-bis ( ⁇ -hydroxyisopropyl) biphenyl, 3,4′-bis ( ⁇ -hydroxyisopropyl) biphenyl, 4,4′-bis ( ⁇ -hydroxyisopropyl) biphenyl, 2,4,6-tris ( ⁇ - Hydroxyisopropyl) biphenyl, 3,3 ′, 5-tris ( ⁇ -hydroxyisopropyl) biphenyl, 3,4 ′, 5-tris ( ⁇ -hydroxyisopropyl) biphenyl, 2,3 ′, 4,6, -tetrakis ( ⁇ -Hydroxyisopropyl) biphenyl, 2,4,4 ', 6, -tetrakis ( ⁇ -hydroxy Isopropyl) biphenyl, 3,3
  • naphthalene compound (6-3) examples include 1- ( ⁇ -hydroxyisopropyl) naphthalene, 2- ( ⁇ -hydroxyisopropyl) naphthalene and 1,3-bis ( ⁇ -hydroxyisopropyl).
  • furan compound (6-4) examples include 3- ( ⁇ -hydroxyisopropyl) furan, 2-methyl-3- ( ⁇ -hydroxyisopropyl) furan, 2-methyl-4- ( ⁇ -hydroxyisopropyl) furan, 2-ethyl-4- ( ⁇ -hydroxyisopropyl) furan, 2-n-propyl-4- ( ⁇ -hydroxyisopropyl) furan, 2-isopropyl-4- ( ⁇ -hydroxyisopropyl) furan 2-n-butyl-4- ( ⁇ -hydroxyisopropyl) furan, 2-t-butyl-4- ( ⁇ -hydroxyisopropyl) furan, 2-n-pentyl-4- ( ⁇ -hydroxyisopropyl) furan, 2 , 5-Dimethyl-3- ( ⁇ -hydroxyisopropyl) furan, 2,5-diethyl-3- ( ⁇ -hydroxyisopropyl) Furan, 3,4-bis ( ⁇ -hydroxyisopropyl) furan, 2,5-dimethyl-3,4
  • the acid crosslinking agent (G3) is preferably a compound having two or more free ⁇ -hydroxyisopropyl groups, the benzene compound (6-1) having two or more ⁇ -hydroxyisopropyl groups, and an ⁇ -hydroxyisopropyl group. More preferably, the diphenyl compound (6-2) having two or more and the naphthalene compound (6-3) having two or more ⁇ -hydroxyisopropyl groups, and an ⁇ -hydroxyisopropyl having two or more ⁇ -hydroxyisopropyl groups. Biphenyls and naphthalene compounds (6-3) having two or more ⁇ -hydroxyisopropyl groups are particularly preferred.
  • the acid cross-linking agent (G3) is usually obtained by a method in which a acetyl group-containing compound such as 1,3-diacetylbenzene is reacted with a Grignard reagent such as CH 3 MgBr to be methylated and then hydrolyzed. It can be obtained by a method in which an isopropyl group-containing compound such as diisopropylbenzene is oxidized with oxygen or the like to generate a peroxide and then reduced.
  • the blending ratio of the acid crosslinking agent (G) is 1 to 100 parts by weight, preferably 1 to 80 parts by weight, more preferably 2 to 60 parts by weight per 100 parts by weight of the cyclic compound represented by the formula (6-1). Parts, particularly preferably 4 to 40 parts by weight.
  • the blending ratio of the acid crosslinking agent (G) is 0.5 parts by weight or more, the effect of suppressing the solubility of the resist film in an alkaline developer is improved, the remaining film ratio is decreased, the resist pattern is swollen or meandered
  • the amount of 50 parts by weight or less is preferable because a decrease in heat resistance as a resist can be suppressed.
  • the blending ratio of at least one compound selected from the acid crosslinking agent (G1), the acid crosslinking agent (G2), and the acid crosslinking agent (G3) in the acid crosslinking agent (G) is not particularly limited. Various ranges can be used depending on the type of substrate used when forming the pattern.
  • the alkoxymethylated melamine compound and / or the compounds represented by (6-1) to (6-3) are 50 to 99% by weight, preferably 60 to 99% by weight, more preferably 70%. It is preferable that the amount be ⁇ 98 wt%, more preferably 80 to 97 wt%. It is preferable that the alkoxymethylated melamine compound and / or the compounds represented by (6-1) to (6-3) be 50% by weight or more of the total acid crosslinking agent component because the resolution can be improved. It is preferable to set the weight% or less because it is easy to obtain a rectangular cross-sectional shape as the resist pattern cross-sectional shape.
  • an acid diffusion control agent (E) having an action of controlling undesired chemical reaction in an unexposed region by controlling diffusion of an acid generated from an acid generator by irradiation in a resist film. You may mix
  • an acid diffusion controller (E) By using such an acid diffusion controller (E), the storage stability of the radiation-sensitive composition is improved. Further, the resolution is improved, and a change in the line width of the resist pattern due to fluctuations in the holding time before electron beam irradiation and the holding time after electron beam irradiation can be suppressed, and the process stability is extremely excellent.
  • Examples of the acid diffusion control agent (E) include electron beam radiation decomposable basic compounds such as nitrogen atom-containing basic compounds, basic sulfonium compounds, and basic iodonium compounds.
  • the acid diffusion controller can be used alone or in combination of two or more.
  • Examples of the acid diffusion controller include nitrogen-containing organic compounds and basic compounds that are decomposed by exposure.
  • Examples of the nitrogen-containing organic compound include the following general formula (7):
  • nitrogen-containing compound (I) a diamino compound having two nitrogen atoms in the same molecule
  • nitrogen-containing compound (II) a diamino compound having two nitrogen atoms in the same molecule
  • nitrogen-containing compound (II) a diamino compound having two nitrogen atoms in the same molecule
  • nitrogen-containing compound (III) polyamino compounds and polymers having three or more
  • amide group-containing compounds amide group-containing compounds
  • urea compounds urea compounds
  • nitrogen-containing heterocyclic compounds nitrogen-containing heterocyclic compounds.
  • the said acid diffusion control agent may be used individually by 1 type, and may use 2 or more types together.
  • R 61 , R 62 and R 63 each independently represent a hydrogen atom, a linear, branched or cyclic alkyl group, an aryl group, or an aralkyl group.
  • the alkyl group, aryl group, or aralkyl group may be unsubstituted or substituted with another functional group such as a hydroxyl group.
  • examples of the linear, branched or cyclic alkyl group include those having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, and specifically include methyl groups, ethyl groups, and n- Propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n-pentyl group, neopentyl group, n-hexyl group, texyl group, n-heptyl group, n-octyl group N-ethylhexyl group, n-nonyl group, n-decyl group and the like.
  • Examples of the aryl group include those having 6 to 12 carbon atoms, and specific examples include a phenyl group, a tolyl group, a xylyl group, a cumenyl group, and a 1-naphthyl group.
  • examples of the aralkyl group include those having 7 to 19 carbon atoms, preferably 7 to 13 carbon atoms, and specific examples include a benzyl group, an ⁇ -methylbenzyl group, a phenethyl group, and a naphthylmethyl group.
  • nitrogen-containing compound (I) examples include mono (cyclohexanamine) such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, n-dodecylamine, cyclohexylamine and the like.
  • mono (cyclohexanamine) such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine, n-dodecylamine, cyclohexylamine and the like.
  • Alkylamines Alkylamines; di-n-butylamine, di-n-pentylamine, di-n-hexylamine, di-n-heptylamine, di-n-octylamine, di-n-nonylamine, di-n-decylamine , Methyl-n-dodecylamine, di-n-dodecylmethyl, cyclohexylmethylamine, dicyclohexylamine and other di (cyclo) alkylamines; triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n- Pentylamine, tri-n-hexylamine, tri-n-heptylamine, Tri (cyclo) alkylamines such as ri-n-octylamine, tri-n-nonylamine, tri-n-decylamine, dimethyl-n-dodecylamine, di
  • nitrogen-containing compound (II) examples include ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetrakis (2-hydroxypropyl) ethylenediamine, Tetramethylenediamine, hexamethylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminobenzophenone, 4,4'-diaminodiphenylamine, 2,2-bis (4-aminophenyl) ) Propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2- (4-aminophenyl) -2- (3-hydroxyphenyl) propane, 2- (4-aminophenyl)- 2- (4-hydroxyphenyl) propane, 1,4-bis [1- (4-aminopheny ) -1-methylethyl
  • nitrogen-containing compound (III) examples include polyethyleneimine, polyallylamine, and N- (2-dimethylaminoethyl) acrylamide polymer.
  • amide group-containing compound examples include, for example, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, pyrrolidone, N- And methyl pyrrolidone.
  • urea compound examples include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tri- Examples thereof include n-butylthiourea.
  • nitrogen-containing heterocyclic compound examples include imidazole, benzimidazole, 4-methylimidazole, 4-methyl-2-phenylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole and the like.
  • Imidazoles pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, 2-methyl-4-phenylpyridine, nicotine, nicotinic acid, Pyridines such as nicotinamide, quinoline, 8-oxyquinoline, acridine; and pyrazine, pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, morpholine, 4-methylmorpholine, piperazine, 1,4-dimethylpiperazine, 1 , 4- Azabicyclo [2.2.2] octane and the like can be mentioned.
  • Examples of the basic compound that decomposes upon exposure include the following general formula (8-1): A sulfonium compound represented by the following general formula (8-2):
  • R 71 , R 72 , R 73 , R 74 and R 75 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 carbon atom. Represents 6 to 6 alkoxyl groups, hydroxyl groups or halogen atoms; Z ⁇ represents HO ⁇ , R—COO ⁇ (wherein R represents an alkyl group having 1 to 6 carbon atoms, an aryl group having 1 to 6 carbon atoms, or an alkaryl group having 1 to 6 carbon atoms) or the following general formula (8-3):
  • the basic compound that decomposes upon exposure include, for example, triphenylsulfonium hydroxide, triphenylsulfonium acetate, triphenylsulfonium salicylate, diphenyl-4-hydroxyphenylsulfonium hydroxide, diphenyl-4-hydroxyphenyl.
  • the blending amount of the acid diffusion controller (E) is preferably 0.001 to 50% by weight, more preferably 0.001 to 10% by weight, still more preferably 0.001 to 5% by weight, based on the total weight of the solid component. 0.001 to 3% by weight is particularly preferred. Within the above range, it is possible to prevent degradation of resolution, resist pattern shape, dimensional fidelity and the like. Furthermore, even if the holding time from the electron beam irradiation to the heating after irradiation is increased, the shape of the resist pattern upper layer portion does not deteriorate. Further, when the blending amount is 10% by weight or less, it is possible to prevent a decrease in sensitivity, developability of an unexposed portion, and the like.
  • the storage stability of the radiation-sensitive composition is improved, the resolution is improved, and the holding time before irradiation and the holding time after irradiation are reduced. Changes in the line width of the resist pattern due to fluctuations can be suppressed, and the process stability is extremely excellent.
  • the radiation-sensitive composition of the present invention includes, as necessary, other components (F) as long as the purpose of the present invention is not impaired, a dissolution accelerator, a dissolution controller, a sensitizer, a surfactant, One or more additives such as organic carboxylic acids or phosphorus oxo acids or derivatives thereof can be added.
  • the low molecular weight dissolution accelerator increases the solubility of the cyclic compound represented by the formula (1) in a developing solution such as an alkali, so that the cyclic compound at the time of development is improved. It is a component having an action of appropriately increasing the dissolution rate, and can be used as long as the effects of the present invention are not impaired.
  • the dissolution accelerator include low molecular weight phenolic compounds such as bisphenols and tris (hydroxyphenyl) methane. These dissolution promoters can be used alone or in admixture of two or more.
  • the blending amount of the dissolution accelerator is appropriately adjusted depending on the kind of the cyclic compound to be used, but is preferably 0 to 100 parts by weight, preferably 0 to 30 parts per 100 parts by weight of the cyclic compound represented by the formula (1). Parts by weight, more preferably 0 to 10 parts by weight, still more preferably 0 to 2 parts by weight.
  • Solubility control agent When the cyclic compound represented by the formula (1) is too soluble in a developing solution such as an alkali, the solubility control agent controls the solubility to moderately increase the dissolution rate during development. It is a component having an action of decreasing. As such a dissolution control agent, those that do not chemically change in steps such as baking of resist film, irradiation with radiation, and development are preferable.
  • dissolution control agent examples include aromatic hydrocarbons such as naphthalene, phenanthrene, anthracene, and acenaphthene; ketones such as acetophenone, benzophenone, and phenylnaphthyl ketone; and sulfones such as methylphenylsulfone, diphenylsulfone, and dinaphthylsulfone. Can be mentioned. These dissolution control agents can be used alone or in combination of two or more.
  • the blending amount of the dissolution control agent is appropriately adjusted according to the kind of the cyclic compound used, but is preferably 0 to 100 parts by weight, preferably 0 to 30 parts per 100 parts by weight of the cyclic compound represented by the formula (1). Parts by weight, more preferably 0 to 10 parts by weight, still more preferably 0 to 2 parts by weight.
  • Sensitizer absorbs the energy of the irradiated radiation and transmits the energy to the acid generator (C), thereby increasing the amount of acid generated. It is a component that improves the apparent sensitivity.
  • sensitizers include, but are not limited to, benzophenones, biacetyls, pyrenes, phenothiazines, and fluorenes. These sensitizers can be used alone or in combination of two or more.
  • the blending amount of the sensitizer is appropriately adjusted depending on the kind of the cyclic compound to be used, but is preferably 0 to 100 parts by weight, preferably 0 to 30 parts per 100 parts by weight of the cyclic compound represented by the formula (1). Parts by weight, more preferably 0 to 10 parts by weight, still more preferably 0 to 2 parts by weight.
  • a surfactant is a component having an action of improving the coating property and striation of the radiation-sensitive composition of the present invention, the developability of a resist, and the like.
  • Such a surfactant may be anionic, cationic, nonionic or amphoteric.
  • a preferred surfactant is a nonionic surfactant.
  • Nonionic surfactants have better affinity with the solvent used in the production of the radiation-sensitive composition and are more effective.
  • nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, and higher fatty acid diesters of polyethylene glycol, but are not particularly limited.
  • Commercially available products have the following trade names: F-top (manufactured by Gemco), Mega-Fac (manufactured by Dainippon Ink and Chemicals), Florard (manufactured by Sumitomo 3M), Asahi Guard, Surflon (manufactured by Asahi Glass), Examples include Pepol (manufactured by Toho Chemical Industry Co., Ltd.), KP (manufactured by Shin-Etsu Chemical Co., Ltd.), polyflow (manufactured by Kyoeisha Yushi Chemical Co., Ltd.), and the like.
  • the blending amount of the surfactant is appropriately adjusted according to the kind of the cyclic compound to be used, but is preferably 0 to 100 parts by weight, preferably 0 to 30 parts per 100 parts by weight of the cyclic compound represented by the formula (1). Parts by weight, more preferably 0 to 10 parts by weight, still more preferably 0 to 2 parts by weight.
  • Organic carboxylic acid or phosphorus oxo acid or derivative thereof For the purpose of preventing sensitivity degradation, preventing resist pattern collapse or peeling, improving resist pattern shape, stability of placement, etc.
  • Carboxylic acids or phosphorus oxo acids or their derivatives can be included. In addition, it can be used in combination with an acid diffusion controller, or may be used alone.
  • organic carboxylic acid for example, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are suitable.
  • Phosphorus oxoacids or derivatives thereof include phosphoric acid, phosphoric acid di-n-butyl ester, phosphoric acid such as diphenyl phosphate, or derivatives thereof such as phosphonic acid, phosphonic acid dimethyl ester, phosphonic acid di- Derivatives such as n-butyl ester, phenylphosphonic acid, phosphonic acid diphenyl ester, phosphonic acid dibenzyl ester and the like, phosphonic acid or their esters, phosphinic acid, phenylphosphinic acid and the like, and derivatives thereof Of these, phosphonic acid is particularly preferred.
  • Organic carboxylic acids or phosphorus oxo acids or derivatives thereof may be used alone or in combination of two or more.
  • the amount of organic carboxylic acid or phosphorus oxo acid or derivative thereof is appropriately adjusted according to the type of cyclic compound used, but is 0 to 100 parts by weight per 100 parts by weight of the cyclic compound represented by formula (1). Is preferably 0 to 30 parts by weight, more preferably 0 to 10 parts by weight, still more preferably 0 to 2 parts by weight.
  • additives other than organic carboxylic acid or phosphorus oxo acid or derivative thereof can be blended as necessary within a range not inhibiting the purpose.
  • additives include dyes, pigments, and adhesion aids.
  • it is preferable to add a dye or a pigment because the latent image in the exposed area can be visualized and the influence of halation during exposure can be reduced.
  • adhesion assistant because the adhesion to the substrate can be improved.
  • examples of other additives include an antihalation agent, a storage stabilizer, an antifoaming agent, a shape improving agent, and the like, specifically 4-hydroxy-4′-methylchalcone.
  • Formulation of the radiation-sensitive composition of the present invention is weight% based on solids And preferably 50 to 99.489 / 0.001 to 49.49 / 0.5 to 49.989 / 0.01 to 49.499 / 0 to 49.489, more preferably 50 to 99.489 / 0.001 to 49.49 / 0.5 to 40 / 0.01 to 5/0 to 15, More preferably 60 to 70/10 to 25/1 to 30 / 0.01 to 3/0 to 1 Particularly preferred is 60 to 70/10 to 25/2 to 20 / 0.01 to 3/0.
  • the performance such as sensitivity, resolution and alkali developability is excellent.
  • the radiation-sensitive composition of the present invention is usually prepared by dissolving each component in a solvent at the time of use to make a uniform solution, and then filtering with a filter having a pore size of about 0.2 ⁇ m, if necessary.
  • the solvent used for the preparation of the radiation-sensitive composition of the present invention is not basically limited as long as the solubility of each component of the composition and the applicability of the curable composition are satisfied, but the solubility of the binder, A safe solvent selected in consideration of applicability and safety is preferred.
  • the safe solvent examples include ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, and ethylene glycol mono-n-butyl ether acetate; Ethylene glycol monoalkyl ethers such as glycol monomethyl ether and ethylene glycol monoethyl ether; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol mono-n-propyl ether acetate, propylene glycol mono-n-butyl ether acetate, etc.
  • Ethylene glycol monoalkyl ethers such as glycol monomethyl ether and ethylene glycol monoethyl ether
  • Propylene glycol monoalkyl a Propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether and propylene glycol monoethyl ether; Lactic acid esters such as methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate and n-amyl lactate; Acetic acid Aliphatic carboxylic acid esters such as methyl, ethyl acetate, n-propyl acetate, n-butyl acetate, n-amyl acetate, n-hexyl acetate, methyl propionate and ethyl propionate; methyl 3-methoxypropionate, 3- Ethyl methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl 3-methoxy-2-methylpropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybut
  • the radiation-sensitive composition of the present invention can contain a resin that is soluble in an alkaline aqueous solution as long as the object of the present invention is not impaired.
  • Resins that are soluble in an alkaline aqueous solution include novolak resins, polyvinylphenols, polyacrylic acid, polyvinyl alcohol, styrene-maleic anhydride resins, and heavy polymers containing acrylic acid, vinyl alcohol, or vinyl phenol as monomer units. A combination, or a derivative thereof may be used.
  • the amount of the resin soluble in the alkaline aqueous solution is appropriately adjusted according to the type of the cyclic compound represented by the formula (1) to be used, but is preferably 30 parts by weight or less per 100 parts by weight of the cyclic compound. More preferred is 10 parts by weight or less, further preferred is 5 parts by weight or less, and particularly preferred is 0 part by weight.
  • the present invention includes a step of forming a resist film on a substrate using the radiation-sensitive composition of the present invention, a step of exposing the resist film, and a step of developing the resist film to form a resist pattern.
  • the present invention relates to a resist pattern forming method.
  • the resist pattern of the present invention can also be formed as an upper layer resist in a multilayer resist process.
  • a resist film is formed by applying the radiation-sensitive composition of the present invention on a conventionally known substrate using a coating means such as spin coating, cast coating, roll coating or the like.
  • the conventionally known substrate is not particularly limited, and examples thereof include a substrate for electronic components and a substrate on which a predetermined wiring resist pattern is formed. More specifically, a silicon substrate, a metal substrate such as copper, chromium, iron, and aluminum, a glass substrate, and the like can be given.
  • Examples of the wiring resist pattern material include copper, aluminum, nickel, and gold. If necessary, an inorganic and / or organic film may be provided on the substrate.
  • An inorganic antireflection film (inorganic BARC) is an example of the inorganic film.
  • Examples of the organic film include an organic antireflection film (organic BARC). Surface treatment with hexamethylene disilazane or the like may be performed.
  • the coated substrate is heated as necessary.
  • the heating conditions vary depending on the composition of the radiation sensitive composition, but are preferably 20 to 250 ° C., more preferably 20 to 150 ° C. Heating may improve the adhesion of the resist to the substrate, which is preferable.
  • the resist film is exposed to a desired resist pattern with any radiation selected from the group consisting of visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet light (EUV), X-ray, and ion beam.
  • the exposure conditions and the like are appropriately selected according to the composition of the radiation-sensitive radiation-sensitive composition.
  • the heating condition varies depending on the composition of the radiation-sensitive radiation-sensitive composition, but is preferably 20 to 250 ° C, more preferably 20 to 150 ° C.
  • a predetermined resist pattern is formed by developing the exposed resist film with an alkali developer.
  • the alkaline developer include alkaline such as mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), and choline.
  • TMAH tetramethylammonium hydroxide
  • An alkaline aqueous solution in which one or more compounds are dissolved in a concentration of preferably 1 to 10% by mass, more preferably 1 to 5% by mass is used. When the concentration of the alkaline aqueous solution is 10% by mass or less, it is preferable because the exposed portion can be prevented from being dissolved in the developer.
  • an appropriate amount of alcohols such as methanol, ethanol, isopropyl alcohol, and the surfactant can be added to the alkaline developer.
  • alcohols such as methanol, ethanol, isopropyl alcohol, and the surfactant.
  • the developing solution which consists of such alkaline aqueous solution, generally it wash
  • a resist pattern wiring board is obtained by etching.
  • the etching can be performed by a known method such as dry etching using plasma gas and wet etching using an alkali solution, a cupric chloride solution, a ferric chloride solution, or the like.
  • Plating can be performed after forming the resist pattern.
  • Examples of the plating method include copper plating, solder plating, nickel plating, and gold plating.
  • the residual resist pattern after etching can be peeled off with an organic solvent or a stronger alkaline aqueous solution than the alkaline aqueous solution used for development.
  • organic solvent include PGMEA (propylene glycol monomethyl ether acetate), PGME (propylene glycol monomethyl ether), EL (ethyl lactate), etc.
  • strong alkaline aqueous solution include 1 to 20% by mass sodium hydroxide aqueous solution, A 1 to 20% by mass aqueous potassium hydroxide solution can be mentioned.
  • Examples of the peeling method include a dipping method and a spray method.
  • the wiring board on which the resist pattern is formed may be a multilayer wiring board or may have a small diameter through hole.
  • the wiring board obtained by the present invention can also be formed by a method of depositing a metal in a vacuum after forming a resist pattern and then dissolving the resist pattern with a solution, that is, a lift-off method.
  • Synthesis example 1 Synthesis of cyclohexyloxyphenol A four-necked flask (2 L) equipped with a well-dried, nitrogen-substituted dropping funnel, Jim Rohto condenser, thermometer and stirring blade was placed under a nitrogen stream under resorcinol (55 g, 0.5 mol). ), Potassium carbonate (207 g, 1.5 mol), water (25 ml, 1.4 mol), and N, N-dimethylformaldehyde (500 ml) were added to prepare a dimethylformaldehyde solution.
  • bromocyclohexane (408 g, 2.5 mol) was added dropwise by a dropping funnel over 10 minutes, and then the solution was heated with a mantle heater for 14 hours with stirring, then at 100 ° C. for 11 hours. Heated. After the completion of the reaction, the mixture was allowed to cool and allowed to reach room temperature, and then cooled in an ice bath. The reaction solution was dissolved in 1 L of toluene and washed three times with 500 ml water.
  • Synthesis Example 1 Synthesis of cyclic compound (A) Synthesis of CR-1A Obtained in Synthesis Example 1 above in a four-necked flask (100 mL) equipped with a well-dried dropping funnel purged with nitrogen, a Jim Rohto condenser, a thermometer, and a stirring blade under a nitrogen stream R-1A (5.38 g, 28 mmol), concentrated hydrochloric acid (35 wt%, 4.37 g), and ethanol (15 g) were added to prepare an ethanol solution. Next, at room temperature, 4-hydroxybenzaldehyde (3.25 g, 27 mmol) manufactured by Kanto Chemical Co., Inc.
  • Synthesis Example 2 Synthesis of cyclic compound (A) Synthesis of CR-2A Obtained in Synthesis Example 1 above in a four-necked flask (100 mL) equipped with a sufficiently dried, nitrogen-substituted dropping funnel, Jim Rohto condenser, thermometer, and stirring blade under a nitrogen stream R-1A (10.76 g, 56 mmol), concentrated hydrochloric acid (35 wt%, 8.74 g) and ethanol (40 g) were added to prepare an ethanol solution. Next, at room temperature, 3,4-dihydroxybenzaldehyde (7.35 g, 54 mmol) manufactured by Kanto Chemical Co., Ltd.
  • Synthesis example 2 Synthesis of 3- (4-methylcyclohexyloxy) phenol A four-necked flask (2 L) equipped with a well-dried, nitrogen-substituted dropping funnel, Jim Roth condenser, thermometer, stirring blade, under a nitrogen stream, Resorcinol (110 g, 1.0 mol), 4-methylcyclohexanol (114 g, 1.0 mol) and triphenylphosphine (393 g, 1.5 mol) were dissolved in dry tetrahydrofuran (500 ml) and cooled with iced saline.
  • Resorcinol 110 g, 1.0 mol
  • 4-methylcyclohexanol 114 g, 1.0 mol
  • triphenylphosphine 393 g, 1.5 mol
  • R-2A reddish brown target product
  • the chemical shift value ( ⁇ ppm, TMS standard) of 1H-NMR in a heavy dimethyl sulfoxide solvent of this compound is 0.9 (m, 3H), 1.0 to 1.8 (m, 8H), 2.0 (M, H), 4.0 (m, H), 6.3 (m, 3H), 7.0 (m, H), and 9.3 (b, H).
  • Synthesis Example 3 Synthesis of cyclic compound (A) Synthesis of CR-3A Obtained in Synthesis Example 2 above in a four-necked flask (100 mL) equipped with a well-dried dropping funnel purged with nitrogen, a Jim Rohto condenser, a thermometer, and a stirring blade under a nitrogen stream R-2A (11.53 g, 56 mmol), concentrated hydrochloric acid (35 wt%, 8.73 g) and ethanol (40 g) were added to prepare an ethanol solution. Next, at room temperature, 4-hydroxybenzaldehyde (6.50 g, 53 mmol) manufactured by Kanto Chemical Co., Inc.
  • Synthesis Example 4 Synthesis of CR-4A Obtained in Synthesis Example 2 above in a four-necked flask (100 mL) equipped with a well-dried dropping funnel purged with nitrogen, a Jim Rohto condenser, a thermometer, and a stirring blade under a nitrogen stream R-2A (11.54 g, 56 mmol), concentrated hydrochloric acid (35 wt%, 8.73 g) and ethanol (45 g) were added to prepare an ethanol solution. Next, at room temperature, 3,4-dihydroxybenzaldehyde (7.35 g, 53 mmol) manufactured by Kanto Chemical Co., Inc.
  • Synthesis example 3 Synthesis of 3- (4-ethylcyclohexyloxy) phenol A four-necked flask (2 L) equipped with a well-dried, nitrogen-substituted dropping funnel, Jim Roth condenser, thermometer, stirring blade, under a nitrogen stream, Resorcinol (72 g, 0.65 mol), 4-ethylcyclohexanol (92 g, 0.72 mol) and triphenylphosphine (185 g, 0.70 mol) were dissolved in dry tetrahydrofuran (700 ml) and cooled with iced saline.
  • R-3A reddish brown target product
  • the chemical shift value ( ⁇ ppm, TMS standard) of 1H-NMR in a heavy dimethyl sulfoxide solvent of this compound is 0.8 (m, 5H), 1.0 to 1.9 (m, 9H), 4.0 (M, H), 6.5 (m, 3H), 7.0 (m, H), and 8.9 (b, H).
  • Synthesis Example 5 Synthesis of cyclic compound (A) Synthesis of CR-5A Obtained in Synthesis Example 3 above in a four-necked flask (100 mL) equipped with a fully dried, nitrogen-substituted dropping funnel, Jim Rohto condenser, thermometer, and stirring blade under a nitrogen stream R-3A (9.17 g, 28 mmol), concentrated hydrochloric acid (35 wt%, 4.37 g) and ethanol (20 g) were added to prepare an ethanol solution. Next, at room temperature, 4-hydroxybenzaldehyde (3.25 g, 27 mmol) manufactured by Kanto Chemical Co., Inc.
  • Synthesis Example 6 Synthesis of cyclic compound (A) Synthesis of CR-6A Obtained in Synthesis Example 3 above in a four-necked flask (100 mL) equipped with a well-dried dropping funnel purged with nitrogen, a Jim Rohto condenser, a thermometer, and a stirring blade under a nitrogen stream R-3A (6.16 g, 28 mmol), concentrated hydrochloric acid (35 wt%, 4.38 g), and ethanol (15 g) were added to prepare an ethanol solution. Next, at room temperature, 3,4-dihydroxybenzaldehyde (3.68 g, 27 mmol) manufactured by Kanto Chemical Co., Inc.
  • Synthesis example 4 Synthesis of 3- (3,3,5-trimethylcyclohexyloxy) phenol A four-necked flask (1 L) equipped with a well-dried, nitrogen-substituted dropping funnel, Jim Rohto condenser, thermometer, and stirring blades was charged with nitrogen. Under an air stream, resorcinol (42 g, 0.38 mol), 3,3,5-trimethylcyclohexanol (54 g, 0.57 mol), and triphenylphosphine (150 g, 0.57 mol) were added to dry tetrahydrofuran (200 ml).
  • R-4A reddish brown target product (19.5 g). Yield 22%, GC purity 99%).
  • the chemical shift value ( ⁇ ppm, TMS standard) of 1H-NMR in a heavy dimethyl sulfoxide solvent of this compound is 0.7 (m, 1H), 0.9 to 1.0 (m, 9H), 1.2 -2.0 (m, 6H), 4.1 (m, H), 6.5 (m, 3H), 7.0 (m, H), 8.9 (b, H).
  • Synthesis Example 7 Synthesis of cyclic compound (A) Synthesis of CR-7A Obtained in Synthesis Example 4 above in a four-necked flask (100 mL) equipped with a fully dried, nitrogen-substituted dropping funnel, Jim Rohto condenser, thermometer, and stirring blade under a nitrogen stream R-4A (6.55 g, 28 mmol), concentrated hydrochloric acid (35 wt%, 4.37 g) and ethanol (21 g) were added to prepare an ethanol solution. Next, at room temperature, 3,4-dihydroxybenzaldehyde (3.67 g, 27 mmol) manufactured by Kanto Chemical Co., Inc.
  • Synthesis Comparative Example 1 Synthesis of cyclic compound (A) Synthesis of CR-8A A well-dried, nitrogen-substituted dropping funnel, Jim Roth condenser, thermometer, and four-necked flask equipped with a stirring blade (100 mL) under a nitrogen stream, 3-methoxy manufactured by Kanto Chemical Co., Inc. Phenol (6.9 g, 57 mmol), concentrated hydrochloric acid (35 wt%, 8.74 g), and ethanol (40 g) were added to prepare an ethanol solution. Next, at room temperature, 2,4-dimethylbenzaldehyde (7.1 g, 53 mmol) manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • Synthesis Comparative Example 2 Synthesis of cyclic compound (A) Synthesis of CR-9A 3-ethoxy (manufactured by Kanto Chemical Co., Inc.) under a nitrogen stream in a four-necked flask (1 L) equipped with a fully dried, nitrogen-substituted dropping funnel, Jim Rohto condenser, thermometer, and stirring blade Phenol (13.8 g, 0.1 mol), p-anisbenzaldehyde (13.6 g, 0.1 mol), and ethanol (200 g) were added to prepare an ethanol solution.
  • (C) Acid generator P-1 Triphenylsulfonium trifluoromethanesulfonate (Midori Chemical Co., Ltd.)
  • P-2 Triphenylsulfonium 1-butanesulfonate (Wako Pure Chemical Industries, Ltd.)
  • P-3 Triphenylsulfonium p-toluenesulfonate (Wako Pure Chemical Industries, Ltd.)
  • P-4 Diphenyl-2,4,6-phenylsulfonium paratoluenesulfonate (Wako Pure Chemical Industries, Ltd.)
  • P-5 Diphenyliodonium trifluoromethanesulfonate (Midori Chemical Co., Ltd.)
  • P-6 Diphenyliodonium p-toluenesulfonate (Midori Chemical Co., Ltd.)
  • G Acid cross-linking agent C-1: Nicalak MW-100LM (Sanwa Chemical Co., Ltd.
  • the present invention relates to a cyclic compound represented by a specific chemical structural formula, useful as an acid-amplified non-polymer resist material, a radiation-sensitive composition containing the same, and a resist pattern forming method using the radiation-sensitive composition Is preferably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 安全溶媒に対する溶解性が高く、高感度でかつ、得られるレジストパターン形状が良好で、レジストパターン倒れを生じにくい環状化合物、その製造方法、その環状化合物を含む感放射線性組成物、及び該組成物を用いるレジストパターン形成方法を提供する。 特定構造を有する環状化合物、その製造方法、該化合物を含む感放射性組成物、及び該組成物を用いるレジストパターン形成方法。

Description

環状化合物、その製造方法、感放射線性組成物及びレジストパターン形成方法
 本発明は、酸増幅型非高分子系レジスト材料として有用な、特定の化学構造式で示される環状化合物、その製造方法、これを含む感放射線性組成物、及び該組成物を用いるレジストパターン形成方法に関する。
 これまでの一般的なレジスト材料は、アモルファス薄膜を形成可能な高分子系材料である。例えば、ポリメチルメタクリレート、酸解離性反応基を有するポリヒドロキシスチレン又はポリアルキルメタクリレート等の高分子レジスト材料の溶液を基板上に塗布することにより作製したレジスト薄膜に紫外線、遠紫外線、電子線、極端紫外線(EUV)、X線などを照射することにより、45~100nm程度のラインレジストパターンを形成している。
 しかしながら、高分子系レジストは分子量が1万~10万程度と大きく、分子量分布も広いため、高分子系レジストを用いるリソグラフィでは、微細レジストパターン表面にラフネスが生じ、レジストパターン寸法を制御することが困難となり、歩留まりが低下する。従って、従来の高分子系レジスト材料を用いるリソグラフィでは微細化に限界がある。より微細なレジストパターンを作製するために、種々の低分子量レジスト材料が開示されている。
 例えば、低分子量多核ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物(特許文献1及び特許文献2参照)が提案されているが、これらは耐熱性が十分では無く、得られるレジストパターンの形状が悪くなる欠点があった。
 低分子量レジスト材料の候補として、低分子量環状ポリフェノール化合物(特許文献3及び非特許文献1参照)若しくはカリックスレゾルシナレン化合物(特許文献3及び特許文献4参照)を主成分として用いるアルカリ現像型のネガ型感放射線性組成物が提案されている。これらの低分子量環状ポリフェノール化合物は、低分子量であるため、分子サイズが小さく、解像性が高く、ラフネスが小さいレジストパターンを与えることが期待される。また低分子量環状ポリフェノール化合物は、その骨格に剛直な環状構造を有することにより、低分子量ながらも高耐熱性を与える。
 しかしながら、現在開示されている低分子量環状ポリフェノール化合物若しくはカリックスレゾルシナレン化合物はともに、半導体製造プロセスに用いられる安全溶媒溶解性が低い、感度が低い、及び得られるレジストパターン形状が悪い、レジストパターンの倒れや剥れを生じやすい等の問題点があり、低分子量環状ポリフェノール化合物の改良が望まれている。
 さらに、現在開示されているメトキシフェノールとベンズアルデヒド誘導体(特許文献4参照)とから合成されるカリックスレゾルシナレン化合物は、半導体製造プロセスに用いられる安全溶媒への溶解性が低い、耐熱性が悪い、感度が低い、レジスト溶剤の保存安定性が悪いといった問題点がある。その上、収率が低く、カラムクロマトグラフィーによる精製が必要であることから、実用的ではない。
特開2005-326838号公報 特開2008-145539号公報 特開2009-173623号公報 国際公開第2009/060869号
T.Nakayama,M.Nomura,K.Haga,M.Ueda:Bull.Chem.Soc.Jpn.,71,2979(1998)
 本発明の目的は、安全溶媒に対する溶解性が高く、高感度でかつ、得られるレジストパターン形状が良好で、レジストパターンの倒れや剥れを生じにくい環状化合物、その製造方法、その環状化合物を含む感放射線性組成物、及び該感放射線性組成物を用いるレジストパターン形成方法を提供することにある。
本発明者らは上記課題を解決するため鋭意検討した結果、特定構造を有する環状化合物が安全溶媒に対する溶解性が高く、高感度で、かつ、良好なレジストパターン形状を与え、レジストパターンの倒れや剥れを生じにくいことを見出し、本発明に到った。
 すなわち、本発明の要旨構成は、以下の通りである。
1. 下記式(1)で示される環状化合物。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、R12は独立して、炭素数6~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数1~20のアルキルシリル基、及び炭素数2~20のアルキルエステル基からなる群から選択される官能基、又は水素原子である。(但し、その少なくとも1つのR12は、炭素数6~20のアルキル基、炭素数6~20のシクロアルキル基、炭素数6~20のアリール基、炭素数1~20のアルキルシリル基、及び炭素数2~20のアルキルエステル基からなる群から選択される官能基であり、また別の少なくとも1つのR12は、水素原子である。)
 Xは独立して、水素原子、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシル基、シアノ基、ニトロ基、水酸基、複素環基、ハロゲン原子、カルボキシル基、炭素数1~20のアルキルシリル基、及び炭素数2~20のアルキルエステル基からなる群から選択される官能基である。
 R’は独立して、炭素数1~20のアルキル基、カルボキシル基を有する炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、カルボキシル基を有する炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシ基、シアノ基、ニトロ基、複素環基、ハロゲン原子、カルボキシル基、水酸基、炭素数1~20のアルキルシリル基、及び炭素数2~20のアルキルエステル基からなる群から選択される官能基である。(但し、少なくとも1つのR’は、カルボキシル基及び/又は水酸基を有する炭素数1~20のアルキル基、カルボキシル基及び/又は水酸基を有する炭素数3~20のシクロアルキル基、又は下記式
Figure JPOXMLDOC01-appb-C000002
で表わされる基であり、Rは、炭素数1~14のアルキル基、炭素数3~14のシクロアルキル基、炭素数6~14のアリール基、炭素数1~14のアルコキシ基、シアノ基、ニトロ基、複素環基、ハロゲン原子、カルボキシル基、水酸基、炭素数1~14のアルキルシリル基、及び炭素数2~14のアルキルエステル基からなる群から選択される官能基であり、少なくともひとつのRは、水酸基若しくはカルボキシル基であり、pは1~5の整数である。))
2. 前記環状化合物が、上記式(1)で示される化合物であり、式(1)中のR12は、少なくとも1つのR12が、炭素数6~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数1~20のアルキルシリル基、及び炭素数2~20のアルキルエステル基からなる群から選択される官能基であり、また別の少なくとも1つのR12が、水素原子である第1項記載の環状化合物。
3. 前記環状化合物が、下記式(3)で示される化合物である第1項記載の環状化合物。
Figure JPOXMLDOC01-appb-C000003
(式(3)中、R12、pは前記と同様である。)
4. 前記環状化合物が、下記式(3-1)から(3-4)の異性体のうちいずれかで示される第3項記載の環状化合物。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-I000001
(式(3-1)~(3-4)中、R12、pは前記と同様である。)
5. 前記環状化合物が、下記式(3’-1)~(3’-4)の異性体のうちいずれかで示される第3項記載の環状化合物。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-I000002
(式(3’-1)~(3’-4)中、R、pは前記と同様である。Rは、炭素数1~3のアルキル基、炭素数3~6のシクロアルキル基、炭素数6~14のアリール基、炭素数1~14のアルコキシ基、シアノ基、ニトロ基、複素環基、ハロゲン原子、カルボキシル基、水酸基、及び炭素数1~14のアルキルシリル基からなる群から選択される官能基又は水素原子であり、qは0~2の整数である。)
6. 芳香族カルボニル化合物(A1)からなる群より選ばれる1種以上,及びフェノール性化合物(A2)からなる群より選ばれる1種以上を縮合反応させる式(1)で示される環状化合物(A)の製造方法。
7. 反応温度0~60℃で反応させる第6項記載の製造方法。
8. 第1項記載の環状化合物及び溶媒を含む感放射線性組成物。
9. 固形成分1~80重量%及び溶媒20~99重量%からなる第8項記載の感放射線性組成物。
10. 前記環状化合物が固形成分全重量の50~99.999重量%である第8項又は第9項記載の感放射線性組成物。
11. 前記環状化合物が、炭素数が2~59であり1~4個のホルミル基及び1~3個のフェノール性水酸基を有する化合物(アルデヒド性化合物(A1A))と、炭素数7~26であり1~3個のフェノール性水酸基を有する化合物(フェノール性化合物(A2))との縮合反応により合成した、分子量が700~5000の環状化合物(A)の少なくとも一つのフェノール性水酸基の水素原子に、炭素数1~20のアルキル基が置換した構造を有する、少なくとも一つのフェノール性水酸基を有する分子量が800~5500の環状化合物である、第8項記載の感放射線性組成物。
12. さらに、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビームからなる群から選ばれるいずれかの放射線の照射により直接的又は間接的に酸を発生する酸発生剤(C)を含む第8項記載の感放射線性組成物。
13. さらに、酸架橋剤(G)を含む第8項記載の感放射線性組成物。
14. さらに、酸拡散制御剤(E)を含む第8項記載の感放射線性組成物。
15. 前記固形成分が、環状化合物/酸発生剤(C)/酸架橋剤(G)/酸拡散制御剤(E)/任意成分(F)を、固形成分基準の重量%で、50~99.489/0.001~49.49/0.5~49.989/0.01~49.499/0~49.489含有する第8項記載の感放射線性組成物。
16. スピンコートによりアモルファス膜を形成することができる第8項記載の感放射線性組成物。
17. 前記アモルファス膜の、23℃における2.38重量%テトラメチルアンモニウムヒドロキシド水溶液に対する溶解速度が10Å/sec以上である第16項記載の感放射線性組成物。
18. 前記アモルファス膜にKrFエキシマレーザー、極端紫外線、電子線又はX線を照射したもの、又はこれを20~250℃で加熱した後のアモルファス膜の2.38重量%テトラメチルアンモニウムヒドロキシド水溶液に対する溶解速度が5Å/sec以下である第16項記載の感放射線性組成物。
19. 第8項~第18項のいずれかに記載の感放射線性組成物を用いて、基板上にレジスト膜を形成する工程、前記レジスト膜を露光する工程、及び前記レジスト膜を現像してレジストパターンを形成する工程を含むレジストパターン形成方法。
 本発明により、安全溶媒に対する溶解性が高く、高感度でかつ、得られるレジストパターン形状が良好で、レジストパターンの倒れや剥れを生じにくい環状化合物、その製造方法、その環状化合物を含む感放射線性組成物、及び該感放射線性組成物を用いるレジストパターン形成方法を提供することができる。
 以下、本発明を詳細に説明する。
[環状化合物及びその製造方法]
 本発明は、レジスト材料として有用な環状化合物及びその製造方法に関する。
 本発明の環状化合物は、下記式(1)で示される環状化合物である。
Figure JPOXMLDOC01-appb-C000006
 式(1)中、R12は、独立して、炭素数6~20のアルキル基、炭素数3~20のシクロアルキル基(好ましくは炭素数6~12のシクロアルキル基、特に好ましくはシクロヘキシル基)、炭素数6~20のアリール基、炭素数1~20のアルキルシリル基、炭素数2~20のアルキルエステル基からなる群から選択される官能基、又は水素原子である。但し、その少なくとも1つのR12は、炭素数6~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数1~20のアルキルシリル基、及び炭素数2~20のアルキルエステル基からなる群から選択される官能基である。
 また、別の少なくとも1つのR12は、水素原子であることが好ましい。
 Xは、独立して、水素原子、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシル基、シアノ基、ニトロ基、水酸基、複素環基、ハロゲン原子、カルボキシル基、炭素数1~20のアルキルシリル基、炭素数2~20のアルキルエステル基、及びこれらの誘導体からなる群から選択される官能基である。
 R’は、独立して、炭素数1~20のアルキル基、カルボキシル基を有する炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、カルボキシル基を有する炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシ基、シアノ基、ニトロ基、複素環基、ハロゲン原子、カルボキシル基、水酸基、炭素数1~20のアルキルシリル基、炭素数2~20のアルキルエステル基、及びこれらの誘導体からなる群から選択される官能基である。但し、少なくとも1つのR’は、カルボキシル基及び/又は水酸基を有する炭素数1~20のアルキル基、カルボキシル基及び/又は水酸基を有する炭素数3~20のシクロアルキル基、又は下記式
Figure JPOXMLDOC01-appb-C000007
で表わされる基であり、Rは、炭素数1~14のアルキル基、炭素数3~14のシクロアルキル基、炭素数6~14のアリール基、炭素数1~14のアルコキシ基、シアノ基、ニトロ基、複素環基、ハロゲン原子、カルボキシル基、水酸基、炭素数1~14のアルキルシリル基、炭素数2~14のアルキルエステル基、及びこれらの誘導体からなる群から選択される官能基であり、少なくともひとつのRは、水酸基若しくはカルボキシル基であり、pは1~5の整数である。
 上記式(1)で表される環状化合物としては、好ましくは以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000008
(上記式(2)において、R12、R、pは前記と同様である。)
 上記式(2)で表される環状化合物としては、より好ましくは下記式(2-1)から(2-4)で示される化合物があげられる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-I000003
(上記式(2-1)から(2-4)において、R12、R、pは前記と同様である。)
 上記式(2)で表される環状化合物としては、さらに好ましくは以下の化合物があげられる。
Figure JPOXMLDOC01-appb-C000010
 上記式(2-1)から(2-4)で表される環状化合物としては、さらに好ましくは下記式(3-1)から(3-4)の異性体のうちいずれかで示される化合物があげられる。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-I000004
(式(3-1)~(3-4)中、R12、pは前記と同様である。)
 上記環状化合物としては、より好ましくは下記式(3’-1)~(3’-4)の異性体のうちいずれかで示される化合物があげられる。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-I000005
 式(3’-1)~(3’-4)中、R、pは前記と同様である。Rは、炭素数1~3のアルキル基、炭素数3~6のシクロアルキル基、炭素数6~14のアリール基、炭素数1~14のアルコキシ基、シアノ基、ニトロ基、複素環基、ハロゲン原子、カルボキシル基、水酸基、炭素数1~14のアルキルシリル基、及びこれらの誘導体からなる群から選択される官能基又は水素原子であり、qは0~2の整数である。
 本発明の環状化合物は耐熱性が高く、アモルファス性を有するため製膜性にも優れ、昇華性を持たず、アルカリ現像性、エッチング耐性等に優れ、かつ、アルデヒド類由来のフェノール性水酸基又はカルボキシル基を有し、レゾルシノール誘導体類由来のフェノール性水酸基を有さないことから、安全溶媒への溶解性を損なうことなく、得られるレジストパターンの密着性及び架橋反応性を向上し、レジストパターンの倒れや剥れを抑制するとともに、感度を向上することから、レジスト材料、特にレジスト材料の主成分(基材)として好適に用いられる。
 また、製造面においても工業的に製造されている芳香族アルデヒドをはじめとする各種アルデヒド類とメトキシフェノール等のフェノール誘導体類を原料として、塩酸等の非金属触媒により脱水縮合反応することにより、高収率で製造できることから、実用性にも極めて優れる。
 本発明の環状化合物は、芳香族アルデヒドをはじめとする各種アルデヒド類とシクロヘキシルオキシフェノール等のフェノール誘導体類を原料として、塩酸等の非金属触媒により脱水縮合反応させることによって得ることができる。この際、反応温度を0~60℃で反応速度を制御することにより、樹脂化やゲル化を防ぎ、特別な精製作業を行うことなく、目的物を高転化率で得ることができことから、実用性にもきわめて優れる。
 上記式(1)で示される環状化合物の分子量は800~5000であり、好ましくは800~2000、より好ましくは1000~2000である。上記範囲であるとレジストに必要な成膜性を保持しつつ、解像性が向上する。
 本発明における環状化合物は、シス体及びトランス体を取りうるが、いずれかの構造若しくは混合物でもよい。感放射線性組成物のレジスト成分として用いる場合は、シス体及びトランス体のいずれかの構造のみを有する方が、純物質化合物となり、レジスト膜中成分の均一性が高いので好ましい。シス体及びトランス体のいずれかの構造のみを有する環状化合物を得る方法は、カラムクロマトや分取液体クロマトグラフィによる分離や製造時における反応溶媒及び反応温度等の最適化等、公知の方法で行うことができる。
 上記式(1)で示される環状化合物は、炭素数が2~59であり1~4個のホルミル基を有する化合物(アルデヒド性化合物(A1A))からなる群より選ばれる1種以上,及びフェノール性化合物(A2)からなる群より選ばれる1種以上との縮合反応により得られる。
 より好ましくは、上記式(1)で示される環状化合物は、芳香族カルボニル化合物(A1)からなる群より選ばれる1種以上,及びフェノール性化合物(A2)からなる群より選ばれる1種以上との縮合反応により得られる。
 芳香族カルボニル化合物(A1)は、炭素数7~20のヒドロキシベンズアルデヒド又は炭素数7~20のカルボキシベンズアルデヒドであり、例えば、ヒドロキシベンズアルデヒド、ヒドロキシメチルベンズアルデヒド、ヒドロキシジメチルベンズアルデヒド、ヒドロキシエチルベンズアルデヒド、ヒドロキシプロピルベンズアルデヒド、ヒドロキシブチルベンズアルデヒド、ヒドロキシエチルメチルベンズアルデヒド、ヒドロキシイソプロピルメチルベンズアルデヒド、ヒドロキシジエチルベンズアルデヒド、ヒドロキシアニスアルデヒド、ヒドロキシナフトアルデヒド、ヒドロキシアントラアルデヒド、ヒドロキシシクロプロピルベンズアルデヒド、ヒドロキシシクロブチルベンズアルデヒド、ヒドロキシシクロペンチルベンズアルデヒド、ヒドロキシシクロヘキシルベンズアルデヒド、ヒドロキシフェニルベンズアルデヒド、ヒドロキシナフチルベンズアルデヒド、ヒドロキシアダマンチルベンズアルデヒド、ヒドロキシノルボルニルベンズアルデヒド、ヒドロキシラクチルベンズアルデヒド、ヒドロキシイソプロピルベンズアルデヒド、ヒドロキシノルマルプロピルベンズアルデヒド、ヒドロキシブロモベンズアルデヒド、ジメチルアミノヒドロキシベンズアルデヒド、ジヒドロキシベンズアルデヒド、トリヒドロキシベンズアルデヒド、カルボキシベンズアルデヒド、ジカルボキシベンズアルデヒド、ホルミルメチル安息香酸、ホルミルエチル安息香酸、ホルミルジメチル安息香酸、ホルミルジエチル安息香酸、ホルミルクロロ安息香酸、ホルミルブロモ安息香酸、ホルミルヒドロキシ安息香酸、ホルミルジクロロ安息香酸、ホルミルジブロモ安息香酸、ホルミルジヒドロキシ安息香酸等が挙げられ、ヒドロキシベンズアルデヒド、ジヒドロキシベンズアルデヒド及びトリヒドロキシベンズアルデヒドが好ましく、2-ヒドロキシベンズアルデヒド、3-ヒドロキシベンズアルデヒド、4-ヒドロキシベンズアルデヒド、2,4-ジヒドロキシベンズアルデヒド、3,4-ジヒドロキシベンズアルデヒド及び3,5-ジヒドロキシベンズアルデヒドがより好ましい。芳香族カルボニル化合物(A1)は本発明の効果を損ねない範囲で炭素数1~4の直鎖又は分岐アルキル基、シアノ基、水酸基、ハロゲン等を有していても良い。芳香族カルボニル化合物(A1)は、単独で又は二種以上組み合わせて使用してもよい。
 フェノール性化合物(A2)は、炭素数12~20のアルコキシフェノールであり、例えば、シクロヘキシルオキシフェノール、メチルシクロヘキシルオキシフェノール、ジメチルシクロヘキシルオキシフェノール、エチルシクロヘキシルオキシフェノール、プロピルシクロヘキシルオキシフェノール、トリメチルシクロヘキシルオキシフェノール、ブチルシクロヘキシルオキシフェノール、ペンチルシクロヘキシルオキシフェノール、ヘキシルシクロヘキシルオキシフェノール、ビシクロヘキシルオキシフェノール、メンチルオキシフェノール、ボルニルオキシフェノール、フェノキシフェノール、クロロシクロヘキシルオキシフェノール、シクロヘキシルオキシヒドロキシトルエン、ジシクロヘキシルオキシフェノール、フルオロシクロヘキシルオキシフェノール、シクロヘキシルオキシヒドロキシ安息香酸、ジシクロヘキシルオキシヒドロキシ安息香酸、トリシクロヘキシルオキシヒドロキシ安息香酸、シクロヘキシルオキシジヒドロキシ安息香酸、シクロヘキシルオキシヒドロキシ安息香酸メチル、シクロヘキシルオキシジヒドロキシ安息香酸メチル、クロロシクロヘキシルオキシヒドロキシ安息香酸メチル、クロロシクロヘキシルオキシヒドロキシ安息香酸エチル、アセチルシクロヘキシルオキシヒドロキシ安息香酸等が挙げられ、シクロヘキシルオキシフェノール、メチルシクロヘキシルオキシフェノール、シクロヘキシルクレゾールが好ましく、更に3-シクロヘキシルオキシフェノールが好ましい。フェノール性化合物(A2)は本発明の効果を損ねない範囲で炭素数1~4の直鎖又は分岐アルキル基、シアノ基、水酸基、ハロゲン原子等を有していても良い。フェノール性化合物(A2)は、単独で又は二種以上組み合わせて使用してもよい。
 上記式(1)で示される環状化合物は、公知の方法によって製造できる。例えば、メタノール、エタノール等の有機溶媒中、芳香族カルボニル化合物(A1)1モルに対し、フェノール性化合物(A2)を0.1~10モル量、酸触媒(塩酸、硫酸又はパラトルエンスルホン酸等)を使用し、60~150℃で0.5~20時間程度反応させ、濾過後、メタノール等のアルコール類で洗浄後、水洗し、濾過を行い分離し、乾燥させることにより環状化合物(A)が得られる。酸触媒の代わりに、塩基性触媒(水酸化ナトリウム、水酸化バリウム又は1,8-ジアザビシクロ[5.4.0]ウンデセン-7等)を使用し、同様に反応することによっても環状化合物(A)は得られる。さらに環状化合物(A)は、上記芳香族カルボニル化合物(A1)をハロゲン化水素若しくはハロゲンガスでジハロゲン化物とし、単離したジハロゲン化物とフェノール性化合物(A2)とを反応させて製造することも出来る。
 2種以上の芳香族カルボニル化合物(A1)、2種以上のフェノール性化合物(A2)を用いることがより好ましい。2種以上の芳香族カルボニル化合物(A1)、2種以上のフェノール性化合物(A2)を用いることにより、得られる環状化合物の半導体安全溶媒に対する溶解性が向上する。
 環状化合物の残存金属量を低減するために、必要に応じて精製してもよい。また酸触媒及び助触媒が残存すると、一般に、感放射線性組成物の保存安定性が低下する、又は塩基性触媒が残存すると、一般に、感放射線性組成物の感度が低下するので、その低減を目的とした精製を行ってもよい。精製は、環状化合物が変性しない限り公知の方法により行うことができ、特に限定されないが、例えば、水で洗浄する方法、酸性水溶液で洗浄する方法、塩基性水溶液で洗浄する方法、イオン交換樹脂で処理する方法、シリカゲルカラムクロマトグラフィーで処理する方法などが挙げられる。これら精製方法は2種以上を組み合わせて行うことがより好ましい。酸性水溶液、塩基性水溶液、イオン交換樹脂及びシリカゲルカラムクロマトグラフィーは、除去すべき金属、酸性化合物及び/又は塩基性化合物の量や種類、精製する環状化合物の種類などに応じて、最適なものを適宜選択することが可能である。例えば、酸性水溶液として、濃度が0.01~10mol/Lの塩酸、硝酸、酢酸水溶液、塩基性水溶液として、濃度が0.01~10mol/Lのアンモニア水溶液、イオン交換樹脂として、カチオン交換樹脂、例えばオルガノ製Amberlyst 15J-HG Dryなどが挙げられる。精製後に乾燥を行っても良い。乾燥は公知の方法により行うことができ、特に限定されないが、環状化合物が変性しない条件で真空乾燥、熱風乾燥する方法などが挙げられる。
 上記式(1)で示される環状化合物は、スピンコートによりアモルファス膜を形成することができる。また一般的な半導体製造プロセスに適用することができる。
 上記式(1)で示される本発明の環状化合物は、KrFエキシマレーザー、極端紫外線、電子線又はX線を照射することにより、アルカリ現像液に難溶な化合物となるネガ型レジスト用材料として有用である。環状化合物に、KrFエキシマレーザー、極端紫外線、電子線又はX線の照射により、化合物同士の縮合反応が誘起され、アルカリ現像液に難溶な化合物となるためと考えられる。このようにして得られたレジストパターンは、LERが非常に小さい。
 本発明の環状化合物は、それ自身を主成分としてネガ型感放射線組成物とできる他、主成分ではなく、例えば感度向上や耐エッチング耐性を向上するための添加剤として感放射線性組成物に加えることができる。この場合、環状化合物が固形成分全重量の1~49.999重量%で用いられる。
 本発明の環状化合物のアモルファス膜の23℃における2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液に対する溶解速度は、10Å/sec以上が好ましく、10~10000Å/secがより好ましく、100~1000Å/secがさらに好ましい。10Å/sec以上であると、アルカリ現像液に溶解し、レジストとすることができる。また10000Å/sec以下の溶解速度を有すると、解像性が向上する場合もある。これは、環状化合物の露光前後の溶解性の変化により、アルカリ現像液に溶解する未露光部と、アルカリ現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
 本発明の環状化合物のガラス転移温度は、好ましくは100℃以上、より好ましくは120℃以上、さらに好ましくは140℃以上、特に好ましくは150℃以上である。ガラス転移温度が上記範囲内であることにより、半導体リソグラフィープロセスにおいて、レジストパターン形状を維持しうる耐熱性を有し、高解像度などの性能が付与しうる。
 本発明の環状化合物のガラス転移温度の示差走査熱量分析により求めた結晶化発熱量は20J/g未満であるのが好ましい。また、(結晶化温度)-(ガラス転移温度)は好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上、特に好ましくは130℃以上である。結晶化発熱量が20J/g未満、又は(結晶化温度)-(ガラス転移温度)が上記範囲内であると、感放射線性組成物をスピンコートすることにより、アモルファス膜を形成しやすく、かつレジストに必要な成膜性が長期に渡り保持でき、解像性を向上することができる。
 本発明において、前記結晶化発熱量、結晶化温度及びガラス転移温度は、島津製作所製DSC/TA-50WSを用いて次のように測定及び示差走査熱量分析により求めることができる。試料約10mgをアルミニウム製非密封容器に入れ、窒素ガス気流中(50ml/min)昇温速度20℃/minで融点以上まで昇温する。急冷後、再び窒素ガス気流中(30ml/min)昇温速度20℃/minで融点以上まで昇温する。さらに急冷後、再び窒素ガス気流中(30ml/min)昇温速度20℃/minで400℃まで昇温する。ベースラインに不連続部分が現れる領域の中点(比熱が半分に変化したところ)の温度をガラス転移温度(Tg)、その後に現れる発熱ピークの温度を結晶化温度とする。発熱ピークとベースラインに囲まれた領域の面積から発熱量を求め、結晶化発熱量とする。
 本発明の環状化合物は、常圧下、100℃以下、好ましくは120℃以下、より好ましくは130℃以下、さらに好ましくは140℃以下、特に好ましくは150℃以下において、昇華性が低いことが好ましい。昇華性が低いとは、熱重量分析において、所定温度で10分保持した際の重量減少が10%、好ましくは5%、より好ましくは3%、さらに好ましくは1%、特に好ましくは0.1%以下であることが好ましい。昇華性が低いことにより、露光時のアウトガスによる露光装置の汚染を防止することができる。また低LERで良好なレジストパターン形状を与えることができる。
 本発明の環状化合物は、好ましくはF<3.0(Fは、全原子数/(全炭素原子数-全酸素原子数)を表す)、より好ましくはF<2.5を満たす。上記条件を満たしていることにより、耐ドライエッチング性が優れる。
 本発明の環状化合物は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、シクロペンタノン(CPN)、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル、及び乳酸エチルから選ばれ、かつ、環状化合物に対して最も高い溶解能を示す溶媒に、23℃で、好ましくは1重量%以上、より好ましくは5重量%以上、さらに好ましくは10重量%以上、特に好ましくは、PGMEA、PGME、CHNから選ばれ、かつ、環状化合物に対して最も高い溶解能を示す溶媒に、23℃で、20重量%以上、特に好ましくはPGMEAに対して、23℃で、20重量%以上溶解する。上記条件を満たしていることにより、実生産における半導体製造工程での使用が可能となる。
 本発明の効果を損ねない範囲で、本発明の環状化合物にハロゲン原子を導入しても良い。前記環状化合物の全構成原子数に対するハロゲン原子数の割合は0.1~60%であることが好ましく、0.1~40%であることがより好ましく、0.1~20%であることがさらに好ましく、0.1~10%であることが特に好ましく、1~5%であることが最も好ましい。上記範囲内であると、放射線に対する感度を上げつつ、成膜性を維持することができる。また安全溶媒溶解性を向上しうる。
 本発明の効果を損ねない範囲で、本発明の環状化合物に窒素原子を導入しても良い。前記環状化合物の全構成原子数に対する窒素原子数の割合は0.1~40%であることが好ましく、0.1~20%であることがより好ましく、0.1~10%であることがさらに好ましく、0.1~5%であることが特に好ましい。上記範囲内であると、得られるレジストパターンのラインエッジラフネスを減らすことができる。また窒素原子としては、二級アミン又は三級アミンに含まれる窒素原子であることが好ましく、三級アミンに含まれる窒素原子であることがより好ましい。
 本発明の効果を損ねない範囲で、本発明における環状化合物に、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビーム照射あるいはこれにより誘起される化学反応により架橋反応を起こす架橋反応性基を導入してもよい。導入は、例えば、環状化合物と架橋反応性基導入試剤を塩基触媒下で反応させることにより行う。架橋反応性基としては、炭素-炭素多重結合、エポキシ基、アジド基、ハロゲン化フェニル基、及びクロロメチル基が挙げられる。架橋反応性基導入試剤としては、このような架橋反応性基を有する酸、酸塩化物、酸無水物、ジカーボネートなどのカルボン酸誘導体やアルキルハライド等が挙げられる。架橋反応性基を有する環状化合物を含む感放射線性組成物も、高解像度、高耐熱性かつ溶媒可溶性の非高分子系感放射線性組成物として有用である。
 本発明の効果を損ねない範囲で、本発明の環状化合物の少なくとも一つのフェノール性水酸基に非酸解離性官能基を導入しても良い。非酸解離性官能基とは、酸の存在下で開裂せず、アルカリ可溶性基を生じない特性基をいう。例えば、酸の作用により分解することの無い、C1~20のアルキル基、C3~20のシクロアルキル基、C6~20のアリール基、C1~20のアルコキシル基、シアノ基、ニトロ基、水酸基、複素環基、ハロゲン原子、カルボキシル基、C1~20のアルキルシリル基、これらの誘導体からなる群から選択される官能基等が挙げられる。
 本発明の効果を損ねない範囲で、本発明の環状化合物の少なくとも一つのフェノール性水酸基にナフトキノンジアジドエステル基を導入しても良い。環状化合物の少なくとも一つのフェノール性水酸基にナフトキノンジアジドエステル基を導入した化合物は、それ自身を主成分としてネガ型感放射線組成物とできる他、それ自身を主成分としたポジ型感放射線組成物、酸発生剤や添加剤として感放射線性組成物に加えることができる。
 本発明の効果を損ねない範囲で、本発明の環状化合物の少なくとも一つのフェノール性水酸基に、放射線の照射により酸を発生する酸発生性官能基を導入しても良い。環状化合物の少なくとも一つのフェノール性水酸基に、放射線の照射により酸を発生する酸発生性官能基を導入した環状ポリフェノール化合物は、それ自身を主成分としてネガ型感放射線組成物とできる他、それ自身を主成分としたポジ型感放射線組成物、酸発生剤や添加剤として感放射線性組成物に加えることができる。
[感放射線性組成物]
 本発明は、前記した式(1)で示される環状化合物と溶媒とを含む感放射線性組成物に関する。また、本発明は、固形成分1~80重量%及び溶媒20~99重量%からなる感放射線性組成物であることが好ましく、さらに、該環状化合物が固形成分全重量の50~99.999重量%であることが好ましい。
 本発明の感放射線性組成物は、スピンコートによりアモルファス膜を形成することができる。本発明の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における2.38質量%TMAH水溶液に対する溶解速度は、10Å/sec以上が好ましく、10~10000Å/secがより好ましく、100~1000Å/secがさらに好ましい。溶解速度が10Å/sec以上であると、アルカリ現像液に溶解し、レジストとすることができる。またアモルファス膜が10000Å/sec以下の溶解速度を有すると、解像性が向上する場合もある。これは、環状化合物の露光前後の溶解性の変化により、アルカリ現像液に溶解する未露光部と、アルカリ現像液に溶解しない露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果がある。
 本発明の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における2.38質量%TMAH水溶液に対する溶解速度は、5Å/sec以下が好ましく、0.05~5Å/secがより好ましく、0.0005~5Å/secがさらに好ましい。溶解速度が5Å/sec以下であるとアルカリ現像液に不溶で、レジストとすることができる。また露光した部分が0.0005Å/sec以上の溶解速度を有すると、解像性が向上する場合もある。これは、前記環状化合物のミクロの表面部位が溶解し、LERを低減するからと推測される。またディフェクトの低減効果がある。
 本発明の感放射線性組成物は、好ましくは固形成分1~80重量%及び溶媒20~99重量%であり、より好ましくは固形成分1~50重量%及び溶媒50~99重量%、さらに好ましくは固形成分2~40重量%及び溶媒60~98重量%であり、特に好ましくは固形成分2~10重量%及び溶媒90~98重量%である。
 式(1)で示される環状化合物の量は、固形成分全重量の50~99.999重量%であり、好ましくは65~80重量%、より好ましくは60~70重量%である。上記配合割合であると、高解像度が得られ、ラインエッジラフネスが小さくなる。
 本発明の感放射線性組成物は、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビームから選ばれるいずれかの放射線の照射により直接的又は間接的に酸を発生する酸発生剤(C)を一種以上含むことが好ましい。酸発生剤の使用量は、固形成分全重量(環状化合物、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及び、その他の成分(F)などの任意に使用される固形成分の総和、以下同様)の0.001~50重量%が好ましく、1~40重量%がより好ましく、3~30重量%がさらに好ましく、10~25重量%が特に好ましい。上記範囲内で使用することにより、高感度でかつ低エッジラフネスのレジストパターンプロファイルが得られる。本発明では、系内に酸が発生すれば、酸の発生方法は限定されない。g線、i線などの紫外線の代わりにエキシマレーザーを使用すれば、より微細加工が可能であるし、また高エネルギー線として電子線、極端紫外線、X線、イオンビームを使用すれば更に微細加工が可能である。
 前記酸発生剤(C)としては、下記式(4-1)~(4-8)で表される化合物からなる群から選択される少なくとも一種類であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 式(4-1)中、R13は、同一でも異なっていても良く、それぞれ独立に、水素原子、直鎖状、分枝状若しくは環状アルキル基、直鎖状、分枝状若しくは環状アルコキシ基、ヒドロキシル基又はハロゲン原子であり;X-は、アルキル基、アリール基、ハロゲン置換アルキル基若しくはハロゲン置換アリール基を有するスルホン酸イオン又はハロゲン化物イオンである。
 前記式(4-1)で示される化合物は、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、ジフェニルトリルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、ジフェニル-4-メチルフェニルスルホニウムトリフルオロメタンスルホネート、ジ-2,4,6-トリメチルフェニルスルホニウムトリフルオロメタンスルホネート、ジフェニル-4-t-ブトキシフェニルスルホニウムトリフルオロメタンスルホネート、ジフェニル-4-t-ブトキシフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、ジフェニル-4-ヒドロキシフェニルスルホニウムトリフルオロメタンスルホネート、ビス(4-フルオロフェニル)-4-ヒドロキシフェニルスルホニウムトリフルオロメタンスルホネート、ジフェニル-4-ヒドロキシフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、ビス(4-ヒドロキシフェニル)-フェニルスルホニウムトリフルオロメタンスルホネート、トリ(4-メトキシフェニル)スルホニウムトリフルオロメタンスルホネート、トリ(4-フルオロフェニル)スルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウム1‐ブタンスルホネート、トリフェニルスルホニウムp-トルエンスルホネート、トリフェニルスルホニウムベンゼンスルホネート、ジフェニル-2,4,6-トリメチルフェニル-p-トルエンスルホネート、ジフェニル-2,4,6-トリメチルフェニルスルホニウム-2-トリフルオロメチルベンゼンスルホネート、ジフェニル-2,4,6-トリメチルフェニルスルホニウム-4-トリフルオロメチルベンゼンスルホネート、ジフェニル-2,4,6-トリメチルフェニルスルホニウム-2,4-ジフルオロベンゼンスルホネート、ジフェニル-2,4,6-トリメチルフェニルスルホニウムヘキサフルオロベンゼンスルホネート、ジフェニルナフチルスルホニウムトリフルオロメタンスルホネート、ジフェニル-4-ヒドロキシフェニルスルホニウム-p-トルエンスルホネート、トリフェニルスルホニウム10-カンファースルホネート、ジフェニル-4-ヒドロキシフェニルスルホニウム10-カンファースルホネート及びシクロ(1,3-パーフルオロプロパンジスルホン)イミデートからなる群から選択される少なくとも一種類であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(4-2)中、R14は、同一でも異なっていても良く、それぞれ独立に、水素原子、直鎖状、分枝状若しくは環状アルキル基、直鎖状、分枝状若しくは環状アルコキシ基、ヒドロキシル基又はハロゲン原子を表す。X-は前記と同様である。
 前記式(4-2)で示される化合物は、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムパーフルオロ-n-オクタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム p-トルエンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム-2-トリフルオロメチルベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム-4-トリフルオロメチルベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム-2,4-ジフルオロベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムヘキサフルオロベンゼンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウム10-カンファースルホネート、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムパーフルオロ-n-オクタンスルホネート、ジフェニルヨードニウム p-トルエンスルホネート、ジフェニルヨードニウムベンゼンスルホネート、ジフェニルヨードニウム10-カンファースルホネート、ジフェニルヨードニウム-2-トリフルオロメチルベンゼンスルホネート、ジフェニルヨードニウム-4-トリフルオロメチルベンゼンスルホネート、ジフェニルヨードニウム-2,4-ジフルオロベンゼンスルホネート、ジフェニルヨードニウムへキサフルオロベンゼンスルホネート、ジ(4-トリフルオロメチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ジ(4-トリフルオロメチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、ジ(4-トリフルオロメチルフェニル)ヨードニウムパーフルオロ-n-オクタンスルホネート、ジ(4-トリフルオロメチルフェニル)ヨードニウム p-トルエンスルホネート、ジ(4-トリフルオロメチルフェニル)ヨードニウムベンゼンスルホネート及びジ(4-トリフルオロメチルフェニル)ヨードニウム10-カンファースルホネートからなる群から選択される少なくとも一種類であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 式(4-3)中、Qはアルキレン基、アリーレン基又はアルコキシレン基であり、R15はアルキル基、アリール基、ハロゲン置換アルキル基又はハロゲン置換アリール基である。
 前記式(4-3)で示される化合物は、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメチルスルホニルオキシ)ナフチルイミド、N-(10-カンファースルホニルオキシ)スクシンイミド、N-(10-カンファースルホニルオキシ)フタルイミド、N-(10-カンファースルホニルオキシ)ジフェニルマレイミド、N-(10-カンファースルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(10-カンファースルホニルオキシ)ナフチルイミド、N-(n-オクタンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(n-オクタンスルホニルオキシ)ナフチルイミド、N-(p-トルエンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(p-トルエンスルホニルオキシ)ナフチルイミド、N-(2-トリフルオロメチルベンゼンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(2-トリフルオロメチルベンゼンスルホニルオキシ)ナフチルイミド、N-(4-トリフルオロメチルベンゼンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(4-トリフルオロメチルベンゼンスルホニルオキシ)ナフチルイミド、N-(パーフルオロベンゼンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(パーフルオロベンゼンスルホニルオキシ)ナフチルイミド、N-(1-ナフタレンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-ナフタレンスルホニルオキシ)ナフチルイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ナフチルイミド、N-(パーフルオロ-n-オクタンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エンー2,3-ジカルボキシイミド及びN-(パーフルオロ-n-オクタンスルホニルオキシ)ナフチルイミドからなる群から選択される少なくとも一種類であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(4-4)中、R16は、同一でも異なっていても良く、それぞれ独立に、任意に置換された直鎖、分枝若しくは環状アルキル基、任意に置換されたアリール基、任意に置換されたヘテロアリール基又は任意に置換されたアラルキル基である。
 前記式(4-4)で示される化合物は、ジフェニルジスルフォン、ジ(4-メチルフェニル)ジスルフォン、ジナフチルジスルフォン、ジ(4-tert-ブチルフェニル)ジスルフォン、ジ(4-ヒドロキシフェニル)ジスルフォン、ジ(3-ヒドロキシナフチル)ジスルフォン、ジ(4-フルオロフェニル)ジスルフォン、ジ(2-フルオロフェニル)ジスルフォン及びジ(4-トルフルオロメチルフェニル)ジスルフォンからなる群から選択される少なくとも一種類であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 式(4-5)中、R17は、同一でも異なっていても良く、それぞれ独立に、任意に置換された直鎖、分枝若しくは環状アルキル基、任意に置換されたアリール基、任意に置換されたヘテロアリール基又は任意に置換されたアラルキル基である。
 前記式(4-5)で示される化合物は、α-(メチルスルホニルオキシイミノ)-フェニルアセトニトリル、α-(メチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(トリフルオロメチルスルホニルオキシイミノ)-フェニルアセトニトリル、α-(トリフルオロメチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(エチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(プロピルスルホニルオキシイミノ)-4-メチルフェニルアセトニトリル及びα-(メチルスルホニルオキシイミノ)-4-ブロモフェニルアセトニトリルからなる群から選択される少なくとも一種類であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 式(4-6)中、R18は、同一でも異なっていても良く、それぞれ独立に、1以上の塩素原子及び1以上の臭素原子を有するハロゲン化アルキル基である。ハロゲン化アルキル基の炭素原子数は1~5が好ましい。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 式(4-7)及び(4-8)中、R19及びR20はそれぞれ独立に、メチル基、エチル基、n-プロピル基、イソプロピル基等の炭素原子数1~3のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、メトキシ基、エトキシ基、プロポキシ基等の炭素原子数1~3のアルコキシル基、又はフェニル基、トルイル基、ナフチル基等アリール基、好ましくは、炭素原子数6~10のアリール基である。L19及びL20はそれぞれ独立に1,2-ナフトキノンジアジド基を有する有機基である。1,2-ナフトキノンジアジド基を有する有機基としては、具体的には、1,2-ナフトキノンジアジド-4-スルホニル基、1,2-ナフトキノンジアジド-5-スルホニル基、1,2-ナフトキノンジアジド-6-スルホニル基等の1,2-キノンジアジドスルホニル基を好ましいものとして挙げることができる。特に、1,2-ナフトキノンジアジド-4-スルホニル基及び1,2-ナフトキノンジアジド-5-スルホニル基が好ましい。pは1~3の整数、qは0~4の整数、かつ1≦p+q≦5である。J19は単結合、炭素原子数1~4のポリメチレン基、シクロアルキレン基、フェニレン基、下記式(4-7-1)で表わされる基、カルボニル基、エステル基、アミド基又はエーテル基であり、Y19は水素原子、アルキル基又はアリール基であり、X20は、それぞれ独立に下記式(4-8-1)で示される基である。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 式(4-8-1)中、Z22はそれぞれ独立に、アルキル基、シクロアルキル基又はアリール基であり、R22はアルキル基、シクロアルキル基又はアルコキシル基であり、rは0~3の整数である。
 その他の酸発生剤として、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(2,4-ジメチルフェニルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(n-プロピルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、1、3-ビス(シクロヘキシルスルホニルアゾメチルスルホニル)プロパン、1、4-ビス(フェニルスルホニルアゾメチルスルホニル)ブタン、1、6-ビス(フェニルスルホニルアゾメチルスルホニル)ヘキサン、1、10-ビス(シクロヘキシルスルホニルアゾメチルスルホニル)デカンなどのビススルホニルジアゾメタン類、2-(4-メトキシフェニル)-4,6-(ビストリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシナフチル)-4,6-(ビストリクロロメチル)-1,3,5-トリアジン、トリス(2,3-ジブロモプロピル)-1,3,5-トリアジン、トリス(2,3-ジブロモプロピル)イソシアヌレートなどのハロゲン含有トリアジン誘導体等が挙げられる。
 上記酸発生剤のうち、芳香環を有する酸発生剤が好ましく、式(4-1)又は(4-2)で示され酸発生剤がより好ましい。式(4-1)又は(4-2)のXが、アリール基若しくはハロゲン置換アリール基を有するスルホン酸イオンを有する酸発生剤がさらに好ましく、アリール基を有するスルホン酸イオンを有する酸発生剤が特に好ましく、ジフェニルトリメチルフェニルスルホニウム p-トルエンスルホネート、トリフェニルスルホニウム p-トルエンスルホネート、トリフェニルスルホニウム トリフルオロメタンスルホナート、トリフェニルスルホニウム ノナフルオロメタンスルホナートが特に好ましい。該酸発生剤を用いることで、LERを低減することができる。
 上記酸発生剤(C)は、単独で、又は2種以上を使用することができる。
 本発明の感放射線性組成物は、酸架橋剤(G)を一種以上含むことが好ましい。酸架橋剤(G)とは、酸発生剤(C)から発生した酸の存在下で、環状化合物(A)を分子内又は分子間架橋し得る化合物である。このような酸架橋剤(G)としては、例えば環状化合物(A)との架橋反応性を有する1種以上の置換基(以下、「架橋性置換基」という。)を有する化合物を挙げることができる。
 このような架橋性置換基の具体例としては、例えば(i)ヒドロキシ(C1-C6アルキル基)、C1-C6アルコキシ(C1-C6アルキル基)、アセトキシ(C1-C6アルキル基)等のヒドロキシアルキル基又はそれらから誘導される置換基;(ii)ホルミル基、カルボキシ(C1-C6アルキル基)等のカルボニル基又はそれらから誘導される置換基;(iii)ジメチルアミノメチル基、ジエチルアミノメチル基、ジメチロールアミノメチル基、ジエチロールアミノメチル基、モルホリノメチル基等の含窒素基含有置換基;(iv)グリシジルエーテル基、グリシジルエステル基、グリシジルアミノ基等のグリシジル基含有置換基;(v)ベンジルオキシメチル基、ベンゾイルオキシメチル基等の、C6-C12アリルオキシ(C1-C6アルキル基)、C7-C12アラルキルオキシ(C1-C6アルキル基)等の芳香族基から誘導される置換基;(vi)ビニル基、イソプロペニル基等の重合性多重結合含有置換基等を挙げることができる。本発明の酸架橋剤(G)の架橋性置換基としては、ヒドロキシアルキル基、及びアルコキシアルキル基等が好ましく、特にアルコキシメチル基が好ましい。
 前記架橋性置換基を有する酸架橋剤(G)としては、例えば(i)メチロール基含有メラミン化合物、メチロール基含有ベンゾグアナミン化合物、メチロール基含有ウレア化合物、メチロール基含有グリコールウリル化合物、メチロール基含有フェノール化合物等のメチロール基含有化合物;(ii)アルコキシアルキル基含有メラミン化合物、アルコキシアルキル基含有ベンゾグアナミン化合物、アルコキシアルキル基含有ウレア化合物、アルコキシアルキル基含有グリコールウリル化合物、アルコキシアルキル基含有フェノール化合物等のアルコキシアルキル基含有化合物;(iii)カルボキシメチル基含有メラミン化合物、カルボキシメチル基含有ベンゾグアナミン化合物、カルボキシメチル基含有ウレア化合物、カルボキシメチル基含有グリコールウリル化合物、カルボキシメチル基含有フェノール化合物等のカルボキシメチル基含有化合物;(iv)ビスフェノールA系エポキシ化合物、ビスフェノールF系エポキシ化合物、ビスフェノールS系エポキシ化合物、ノボラック樹脂系エポキシ化合物、レゾール樹脂系エポキシ化合物、ポリ(ヒドロキシスチレン)系エポキシ化合物等のエポキシ化合物等を挙げることができる。
 酸架橋剤(G)としては、さらに、フェノール性水酸基を有する化合物、ならびにアルカリ可溶性樹脂中の酸性官能基に前記架橋性置換基を導入し、架橋性を付与した化合物及び樹脂を使用することができる。その場合の架橋性置換基の導入率は、フェノール性水酸基を有する化合物、及びアルカリ可溶性樹脂中の全酸性官能基に対して、通常、5~100モル%、好ましくは10~60モル%、さらに好ましくは15~40モル%に調節される。上記範囲であると、架橋反応が十分起こり、残膜率の低下、レジストパターンの膨潤現象や蛇行等が避けられるので好ましい。
 本発明の感放射線性組成物において酸架橋剤(G)は、アルコキシアルキル化ウレア化合物若しくはその樹脂、又はアルコキシアルキル化グリコールウリル化合物若しくはその樹脂が好ましい。特に好ましい酸架橋剤(G)としては、下記式(5)で示される化合物及びアルコキシメチル化メラミン化合物を挙げることができる(酸架橋剤(G1))。
Figure JPOXMLDOC01-appb-C000023
 上記式(5)中、Rはそれぞれ独立して、水素原子、アルキル基、又はアシル基を表し;R~R11はそれぞれ独立して、水素原子、水酸基、アルキル基、又はアルコキシル基を示し;Xは、単結合、メチレン基、又は酸素原子を示す。
 上記式(5)においてRは、水素原子、炭素数1~6のアルキル基、又は炭素数2~6のアシル基が好ましい。炭素数1~6のアルキル基は、更に炭素数1~3のアルキル基がより好ましく、例えばメチル基、エチル基、プロピル基が挙げられる。炭素数2~6のアシル基は、更に炭素数2~4のアシル基がより好ましく、例えばアセチル基、プロピオニル基が挙げられる。式(5)におけるR~R11は、水素原子、水酸基、炭素数1~6のアルキル基、又は炭素数1~6のアルコキシル基が好ましい。炭素数1~6のアルキル基は、更に炭素数1~3のアルキル基が好ましく、例えばメチル基、エチル基、プロピル基が挙げられる。炭素数1~6のアルコキシル基は、更に炭素数1~3のアルコキシル基が好ましくは、例えばメトキシ基、エトキシ基、プロポキシ基が挙げられる。Xは、単結合、メチレン基、又は酸素原子を表し、単結合又はメチレン基が好ましい。尚、R~R11、Xは、上記で例示した基に、更にメチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、水酸基、ハロゲン原子などの置換基を有していてもよい。複数個のR、R~R11は、各々同一でも異なっていてもよい。
 式(5-1)で表される化合物として具体的には、例えば、以下に示される化合物等を挙げることができる。
Figure JPOXMLDOC01-appb-C000024
 式(5-2)で表される化合物として具体的には、例えば、N,N,N,N-テトラ(メトキシメチル)グリコールウリル、N,N,N,N-テトラ(エトキシメチル)グリコールウリル、N,N,N,N-テトラ(n-プロポキシメチル)グリコールウリル、N,N,N,N-テトラ(イソプロポキシメチル)グリコールウリル、N,N,N,N-テトラ(n-ブトキシメチル)グリコールウリル、N,N,N,N-テトラ(t-ブトキシメチル)グリコールウリル等を挙げることができる。この中で、特に、N,N,N,N-テトラ(メトキシメチル)グリコールウリルが好ましい。
 式(5-3)で表される化合物として具体的には、例えば、以下に示される化合物等を挙げることができる。
Figure JPOXMLDOC01-appb-C000025
 アルコキシメチル化メラミン化合物として具体的には、例えば、N,N,N,N,N,N-ヘキサ(メトキシメチル)メラミン、N,N,N,N,N,N-ヘキサ(エトキシメチル)メラミン、N,N,N,N,N,N-ヘキサ(n-プロポキシメチル)メラミン、N,N,N,N,N,N-ヘキサ(イソプロポキシメチル)メラミン、N,N,N,N,N,N-ヘキサ(n-ブトキシメチル)メラミン、N,N,N,N,N,N-ヘキサ(t-ブトキシメチル)メラミン等を挙げることができる。この中で特に、N,N,N,N,N,N-ヘキサ(メトキシメチル)メラミンが好ましい。
 前記酸架橋剤(G1)は、例えば尿素化合物又はグリコールウリル化合物、及びホルマリンを縮合反応させてメチロール基を導入した後、さらにメチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等の低級アルコール類でエーテル化し、次いで反応液を冷却して析出する化合物又はその樹脂を回収することで得られる。また前記酸架橋剤(G1)は、CYMEL(商品名、三井サイアナミッド製)、ニカラック(三和ケミカル(株)製)のような市販品としても入手することができる。
 また、他の特に好ましい酸架橋剤(G)として、分子内にベンゼン環を1~6有し、ヒドロキシアルキル基及び/又はアルコキシアルキル基を分子内全体に2以上有し、該ヒドロキシアルキル基及び/又はアルコキシアルキル基が前記いずれかのベンゼン環に結合しているフェノール誘導体を挙げることができる(酸架橋剤(G2))。好ましくは、分子量が1500以下、分子内にベンゼン環を1~6有し、ヒドロキシアルキル基及び/又はアルコキシアルキル基を合わせて2以上有し、該ヒドロキシアルキル基及び/又はアルコキシアルキル基が前記ベンゼン環のいずれか一、又は、複数のベンゼン環に結合してなるフェノール誘導体を挙げることができる。
 ベンゼン環に結合するヒドロキシアルキル基としては、ヒドロキシメチル基、2-ヒドロキシエチル基、及び2-ヒドロキシ-1-プロピル基などの炭素数1~6のものが好ましい。ベンゼン環に結合するアルコキシアルキル基としては、炭素数2~6のものが好ましい。具体的にはメトキシメチル基、エトキシメチル基、n-プロポキシメチル基、イソプロポキシメチル基、n-ブトキシメチル基、イソブトキシメチル基、sec-ブトキシメチル基、t-ブトキシメチル基、2-メトキシエチル基、及び、2-メトキシ-1-プロピル基が好ましい。
 これらのフェノール誘導体のうち、特に好ましいものを以下に挙げる。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 上記式中、L~Lは、同じであっても異なっていてもよく、それぞれ独立して、ヒドロキシメチル基、メトキシメチル基又はエトキシメチル基を示す。ヒドロキシメチル基を有するフェノール誘導体は、対応するヒドロキシメチル基を有さないフェノール化合物(上記式においてL~Lが水素原子である化合物)とホルムアルデヒドを塩基触媒下で反応させることによって得ることができる。この際、樹脂化やゲル化を防ぐために、反応温度を60℃以下で行うことが好ましい。具体的には、特開平6-282067号公報、特開平7-64285号公報等に記載されている方法にて合成することができる。
 アルコキシメチル基を有するフェノール誘導体は、対応するヒドロキシメチル基を有するフェノール誘導体とアルコールを酸触媒下で反応させることによって得ることができる。この際、樹脂化やゲル化を防ぐために、反応温度を100℃以下で行うことが好ましい。具体的には、EP632003A1等に記載されている方法にて合成することができる。
 このようにして合成されたヒドロキシメチル基及び/又はアルコキシメチル基を有するフェノール誘導体は、保存時の安定性の点で好ましいが、アルコキシメチル基を有するフェノール誘導体は保存時の安定性の観点から特に好ましい。酸架橋剤(G2)は、単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 また、他の特に好ましい酸架橋剤(G)として、少なくとも一つのα-ヒドロキシイソプロピル基を有する化合物を挙げることができる(酸架橋剤(G3))。該化合物は、α-ヒドロキシイソプロピル基を有する限り、その構造に特に限定はない。また、上記α-ヒドロキシイソプロピル基中のヒドロキシル基の水素原子は1種以上の酸解離性基(R-COO-基、R-SO-基等、Rは、炭素数1~12の直鎖状炭化水素基、炭素数3~12の環状炭化水素基、炭素数1~12のアルコキシ基、炭素数3~12の1-分岐アルキル基、及び炭素数6~12の芳香族炭化水素基からなる群から選ばれる置換基を表す)で置換されていてもよい。
 上記α-ヒドロキシイソプロピル基を有する化合物としては、例えば、少なくとも一つのα-ヒドロキシイソプロピル基を含有する置換又は非置換の芳香族系化合物、ジフェニル化合物、ナフタレン化合物、フラン化合物等の1種又は2種以上が挙げられる。具体的には、例えば、下記一般式(6-1)で表される化合物(以下、「ベンゼン系化合物(1)」という。)、下記一般式(6-2)で表される化合物(以下、「ジフェニル系化合物(2)」という。)、下記一般式(6-3)で表される化合物(以下、「ナフタレン系化合物(3」という。)、及び下記一般式(6-4)で表される化合物(以下、「フラン系化合物(4)」という。)等が挙げられる。
Figure JPOXMLDOC01-appb-C000032
 上記一般式(6-1)~(6-4)中、各Aは独立にα-ヒドロキシイソプロピル基又は水素原子を示し、かつ少なくとも1のAがα-ヒドロキシイソプロピル基である。また、一般式(6-1)中、R51は水素原子、ヒドロキシル基、炭素数2~6の直鎖状若しくは分岐状のアルキルカルボニル基、又は炭素数2~6の直鎖状若しくは分岐状のアルコキシカルボニル基を示す。更に、一般式(6-2)中、R52は単結合、炭素数1~5の直鎖状若しくは分岐状のアルキレン基、-O-、-CO-、又は-COO-を示す。また、一般式(6-4)中、R53及びR54は、相互に独立に水素原子又は炭素数1~6の直鎖状若しくは分岐状のアルキル基を示す。
 上記ベンゼン系化合物(6-1)として具体的には、例えば、α-ヒドロキシイソプロピルベンゼン、1,3-ビス(α-ヒドロキシイソプロピル)ベンゼン、1,4-ビス(α-ヒドロキシイソプロピル)ベンゼン、1,2,4-トリス(α-ヒドロキシイソプロピル)ベンゼン、1,3,5-トリス(α-ヒドロキシイソプロピル)ベンゼン等のα-ヒドロキシイソプロピルベンゼン類;3-α-ヒドロキシイソプロピルフェノール、4-α-ヒドロキシイソプロピルフェノール、3,5-ビス(α-ヒドロキシイソプロピル)フェノール、2,4,6-トリス(α-ヒドロキシイソプロピル)フェノール等のα-ヒドロキシイソプロピルフェノール類;3-α-ヒドロキシイソプロピルフェニル・メチルケトン、4-α-ヒドロキシイソプロピルフェニル・メチルケトン、4-α-ヒドロキシイソプロピルフェニル・エチルケトン、4-α-ヒドロキシイソプロピルフェニル・n-プロピルケトン、4-α-ヒドロキシイソプロピルフェニル・イソプロピルケトン、4-α-ヒドロキシイソプロピルフェニル・n-ブチルケトン、4-α-ヒドロキシイソプロピルフェニル・t-ブチルケトン、4-α-ヒドロキシイソプロピルフェニル・n-ペンチルケトン、3,5-ビス(α-ヒドロキシイソプロピル)フェニル・メチルケトン、3,5-ビス(α-ヒドロキシイソプロピル)フェニル・エチルケトン、2,4,6-トリス(α-ヒドロキシイソプロピル)フェニル・メチルケトン等のα-ヒドロキシイソプロピルフェニル・アルキルケトン類;3-α-ヒドロキシイソプロピル安息香酸メチル、4-α-ヒドロキシイソプロピル安息香酸メチル、4-α-ヒドロキシイソプロピル安息香酸エチル、4-α-ヒドロキシイソプロピル安息香酸n-プロピル、4-α-ヒドロキシイソプロピル安息香酸イソプロピル、4-α-ヒドロキシイソプロピル安息香酸n-ブチル、4-α-ヒドロキシイソプロピル安息香酸t-ブチル、4-α-ヒドロキシイソプロピル安息香酸n-ペンチル、3,5-ビス(α-ヒドロキシイソプロピル)安息香酸メチル、3,5-ビス(α-ヒドロキシイソプロピル)安息香酸エチル、2,4,6-トリス(α-ヒドロキシイソプロピル)安息香酸メチル等の4-α-ヒドロキシイソプロピル安息香酸アルキル類等が挙げられる。
 また、上記ジフェニル系化合物(6-2)として具体的には、例えば、3-α-ヒドロキシイソプロピルビフェニル、4-α-ヒドロキシイソプロピルビフェニル、3,5-ビス(α-ヒドロキシイソプロピル)ビフェニル、3,3’-ビス(α-ヒドロキシイソプロピル)ビフェニル、3,4’-ビス(α-ヒドロキシイソプロピル)ビフェニル、4,4’-ビス(α-ヒドロキシイソプロピル)ビフェニル、2,4,6-トリス(α-ヒドロキシイソプロピル)ビフェニル、3,3’,5-トリス(α-ヒドロキシイソプロピル)ビフェニル、3,4’,5-トリス(α-ヒドロキシイソプロピル)ビフェニル、2,3’,4,6,-テトラキス(α-ヒドロキシイソプロピル)ビフェニル、2,4,4’,6,-テトラキス(α-ヒドロキシイソプロピル)ビフェニル、3,3’,5,5’-テトラキス(α-ヒドロキシイソプロピル)ビフェニル、2,3’,4,5’,6-ペンタキス(α-ヒドロキシイソプロピル)ビフェニル、2,2’,4,4’,6,6’-ヘキサキス(α-ヒドロキシイソプロピル)ビフェニル等のα-ヒドロキシイソプロピルビフェニル類;3-α-ヒドロキシイソプロピルジフェニルメタン、4-α-ヒドロキシイソプロピルジフェニルメタン、1-(4-α-ヒドロキシイソプロピルフェニル)-2-フェニルエタン、1-(4-α-ヒドロキシイソプロピルフェニル)-2-フェニルプロパン、2-(4-α-ヒドロキシイソプロピルフェニル)-2-フェニルプロパン、1-(4-α-ヒドロキシイソプロピルフェニル)-3-フェニルプロパン、1-(4-α-ヒドロキシイソプロピルフェニル)-4-フェニルブタン、1-(4-α-ヒドロキシイソプロピルフェニル)-5-フェニルペンタン、3,5-ビス(α-ヒドロキシイソプロピルジフェニルメタン、3,3’-ビス(α-ヒドロキシイソプロピル)ジフェニルメタン、3,4’-ビス(α-ヒドロキシイソプロピル)ジフェニルメタン、4,4’-ビス(α-ヒドロキシイソプロピル)ジフェニルメタン、1,2-ビス(4-α-ヒドロキシイソプロピルフェニル)エタン、1,2-ビス(4-α-ヒドロキシプロピルフェニル)プロパン、2,2-ビス(4-α-ヒドロキシプロピルフェニル)プロパン、1,3-ビス(4-α-ヒドロキシプロピルフェニル)プロパン、2,4,6-トリス(α-ヒドロキシイソプロピル)ジフェニルメタン、3,3’,5-トリス(α-ヒドロキシイソプロピル)ジフェニルメタン、3,4’,5-トリス(α-ヒドロキシイソプロピル)ジフェニルメタン、2,3’,4,6-テトラキス(α-ヒドロキシイソプロピル)ジフェニルメタン、2,4,4’,6-テトラキス(α-ヒドロキシイソプロピル)ジフェニルメタン、3,3’,5,5’-テトラキス(α-ヒドロキシイソプロピル)ジフェニルメタン、2,3’,4,5’,6-ペンタキス(α-ヒドロキシイソプロピル)ジフェニルメタン、2,2’,4,4’,6,6’-ヘキサキス(α-ヒドロキシイソプロピル)ジフェニルメタン等のα-ヒドロキシイソプロピルジフェニルアルカン類;3-α-ヒドロキシイソプロピルジフェニルエーテル、4-α-ヒドロキシイソプロピルジフェニルエーテル、3,5-ビス(α-ヒドロキシイソプロピル)ジフェニルエーテル、3,3’-ビス(α-ヒドロキシイソプロピル)ジフェニルエーテル、3,4’-ビス(α-ヒドロキシイソプロピル)ジフェニルエーテル、4,4’-ビス(α-ヒドロキシイソプロピル)ジフェニルエーテル、2,4,6-トリス(α-ヒドロキシイソプロピル)ジフェニルエーテル、3,3’,5-トリス(α-ヒドロキシイソプロピル)ジフェニルエーテル、3,4’,5-トリス(α-ヒドロキシイソプロピル)ジフェニルエーテル、2,3’ ,4,6-テトラキス(α-ヒドロキシイソプロピル)ジフェニルエーテル、2,4,4’,6-テトラキス(α-ヒドロキシイソプロピル)ジフェニルエーテル、3,3’,5,5’-テトラキス(α-ヒドロキシイソプロピル)ジフェニルエーテル、2,3’,4,5’,6-ペンタキス(α-ヒドロキシイソプロピル)ジフェニルエーテル、2,2’,4,4’,6,6’-ヘキサキス(α-ヒドロキシイソプロピル)ジフェニルエーテル等のα-ヒドロキシイソプロピルジフェニルエーテル類;3-α-ヒドロキシイソプロピルジフェニルケトン、4-α-ヒドロキシイソプロピルジフェニルケトン、3,5-ビス(α-ヒドロキシイソプロピル)ジフェニルケトン、3,3’-ビス(α-ヒドロキシイソプロピル)ジフェニルケトン、3,4’-ビス(α-ヒドロキシイソプロピル)ジフェニルケトン、4,4’-ビス(α-ヒドロキシイソプロピル)ジフェニルケトン、2,4,6-トリス(α-ヒドロキシイソプロピル)ジフェニルケトン、3,3’,5-トリス(α-ヒドロキシイソプロピル)ジフェニルケトン、3,4’,5-トリス(α-ヒドロキシイソプロピル)ジフェニルケトン、2,3’,4,6-テトラキス(α-ヒドロキシイソプロピル)ジフェニルケトン、2,4,4’,6-テトラキス(α-ヒドロキシイソプロピル)ジフェニルケトン、3,3’,5,5’-テトラキス(α-ヒドロキシイソプロピル)ジフェニルケトン、2,3’,4,5’,6-ペンタキス(α-ヒドロキシイソプロピル)ジフェニルケトン、2,2’,4,4’,6,6’-ヘキサキス(α-ヒドロキシイソプロピル)ジフェニルケトン等のα-ヒドロキシイソプロピルジフェニルケトン類;3-α-ヒドロキシイソプロピル安息香酸フェニル、4-α-ヒドロキシイソプロピル安息香酸フェニル、安息香酸3-α-ヒドロキシイソプロピルフェニル、安息香酸4-α-ヒドロキシイソプロピルフェニル、3,5-ビス(α-ヒドロキシイソプロピル)安息香酸フェニル、3-α-ヒドロキシイソプロピル安息香酸3-α-ヒドロキシイソプロピルフェニル、3-α-ヒドロキシイソプロピル安息香酸4-α-ヒドロキシイソプロピルフェニル、4-α-ヒドロキシイソプロピル安息香酸3-α-ヒドロキシイソプロピルフェニル、4-α-ヒドロキシイソプロピル安息香酸4-α-ヒドロキシイソプロピルフェニル、安息香酸3,5-ビス(α-ヒドロキシイソプロピル)フェニル、2,4,6-トリス(α-ヒドロキシイソプロピル)安息香酸フェニル、3,5-ビス(α-ヒドロキシイソプロピル)安息香酸3-α-ヒドロキシイソプロピルフェニル、3,5-ビス(α-ヒドロキシイソプロピル)安息香酸4-α-ヒドロキシイソプロピルフェニル、3-α-ヒドロキシイソプロピル安息香酸3,5-ビス(α-ヒドロキシイソプロピル)フェニル、4-α-ヒドロキシイソプロピル安息香酸3,5-ビス(α-ヒドロキシイソプロピル)フェニル、安息香酸2,4,6-トリス(α-ヒドロキシイソプロピル)フェニル、2,4,6-トリス(α-ヒドロキシイソプロピル)安息香酸3-α-ヒドロキシイソプロピルフェニル、2,4,6-トリス(α-ヒドロキシイソプロピル)安息香酸4-α-ヒドロキシイソプロピルフェニル、3,5-ビス(α-ヒドロキシイソプロピル)安息香酸3,5-ビス(α-ヒドロキシイソプロピル)フェニル、3-α-ヒドロキシイソプロピル安息香酸2,4,6-トリス(α-ヒドロキシイソプロピル)フェニル、4-α-ヒドロキシイソプロピル安息香酸2,4,6-トリス(α-ヒドロキシイソプロピル)フェニル、2,4,6-トリス(α-ヒドロキシイソプロピル)安息香酸3,5-ビス(α-ヒドロキシイソプロピル)フェニル、3,5-ビス(α-ヒドロキシイソプロピル)安息香酸2,4,6-トリス(α-ヒドロキシイソプロピル)フェニル、2,4,6-トリス(α-ヒドロキシイソプロピル)安息香酸2,4,6-トリス(α-ヒドロキシイソプロピル)フェニル等のα-ヒドロキシイソプロピル安息香酸フェニル類等が挙げられる。
 更に、上記ナフタレン系化合物(6-3)として具体的には、例えば、1-(α-ヒドロキシイソプロピル)ナフタレン、2-(α-ヒドロキシイソプロピル)ナフタレン、1,3-ビス(α-ヒドロキシイソプロピル)ナフタレン、1,4-ビス(α-ヒドロキシイソプロピル)ナフタレン、1,5-ビス(α-ヒドロキシイソプロピル)ナフタレン、1,6-ビス(α-ヒドロキシイソプロピル)ナフタレン、1,7-ビス(α-ヒドロキシイソプロピル)ナフタレン、2,6-ビス(α-ヒドロキシイソプロピル)ナフタレン、2,7-ビス(α-ヒドロキシイソプロピル)ナフタレン、1,3,5-トリス(α-ヒドロキシイソプロピル)ナフタレン、1,3,6-トリス(α-ヒドロキシイソプロピル)ナフタレン、1,3,7-トリス(α-ヒドロキシイソプロピル)ナフタレン、1,4,6-トリス(α-ヒドロキシイソプロピル)ナフタレン、1,4,7-トリス(α-ヒドロキシイソプロピル)ナフタレン、1,3,5,7-テトラキス(α-ヒドロキシイソプロピル)ナフタレン等が挙げられる。
 また、上記フラン系化合物(6-4)として具体的には、例えば、3-(α-ヒドロキシイソプロピル)フラン、2-メチル-3-(α-ヒドロキシイソプロピル)フラン、2-メチル-4-(α-ヒドロキシイソプロピル)フラン、2-エチル-4-(α-ヒドロキシイソプロピル)フラン、2-n-プロピル-4-(α-ヒドロキシイソプロピル)フラン、2-イソプロピル-4-(α-ヒドロキシイソプロピル)フラン、2-n-ブチル-4-(α-ヒドロキシイソプロピル)フラン、2-t-ブチル-4-(α-ヒドロキシイソプロピル)フラン、2-n-ペンチル-4-(α-ヒドロキシイソプロピル)フラン、2,5-ジメチル-3-(α-ヒドロキシイソプロピル)フラン、2,5-ジエチル-3-(α-ヒドロキシイソプロピル)フラン、3,4-ビス(α-ヒドロキシイソプロピル)フラン、2,5-ジメチル-3,4-ビス(α-ヒドロキシイソプロピル)フラン、2,5-ジエチル-3,4-ビス(α-ヒドロキシイソプロピル)フラン等を挙げることができる。
 上記酸架橋剤(G3)としては、遊離のα-ヒドロキシイソプロピル基を2以上有する化合物が好ましく、α-ヒドロキシイソプロピル基を2以上有する前記ベンゼン系化合物(6-1)、α-ヒドロキシイソプロピル基を2以上有する前記ジフェニル系化合物(6-2)、α-ヒドロキシイソプロピル基を2個以上有する前記ナフタレン系化合物(6-3)が更に好ましく、α-ヒドロキシイソプロピル基を2個以上有するα-ヒドロキシイソプロピルビフェニル類、α-ヒドロキシイソプロピル基を2個以上有するナフタレン系化合物(6-3)が特に好ましい。
 上記酸架橋剤(G3)は、通常、1,3-ジアセチルベンゼン等のアセチル基含有化合物に、CHMgBr等のグリニヤール試薬を反応させてメチル化した後、加水分解する方法や、1,3-ジイソプロピルベンゼン等のイソプロピル基含有化合物を酸素等で酸化して過酸化物を生成させた後、還元する方法により得ることができる。
 本発明において酸架橋剤(G)の配合割合は、式(6-1)で示される環状化合物100重量部あたり1~100重量部、好ましくは1~80重量部、より好ましくは2~60重量部、特に好ましくは4~40重量部である。上記酸架橋剤(G)の配合割合を0.5重量部以上とすると、レジスト膜のアルカリ現像液に対する溶解性の抑制効果を向上させ、残膜率が低下したり、レジストパターンの膨潤や蛇行が生じたりするのを抑制することができるので好ましく、一方、50重量部以下とすると、レジストとしての耐熱性の低下を抑制できることから好ましい。
 また、上記酸架橋剤(G)中の上記酸架橋剤(G1)、酸架橋剤(G2)、酸架橋剤(G3)から選ばれる少なくとも1種の化合物の配合割合も特に限定はなく、レジストパターンを形成する際に使用される基板の種類等によって種々の範囲とすることができる。
 全酸架橋剤成分において、上記アルコキシメチル化メラミン化合物及び/又は(6-1)~(6-3)で示される化合物が50~99重量%、好ましくは60~99重量%、より好ましくは70~98重量%、更に好ましくは80~97重量%であることが好ましい。アルコキシメチル化メラミン化合物及び/又は(6-1)~(6-3)で示される化合物を全酸架橋剤成分の50重量%以上とすることにより、解像度を向上させることができるので好ましく、99重量%以下とすることにより、レジストパターン断面形状として矩形状の断面形状とし易いので好ましい。
 本発明においては、放射線照射により酸発生剤から生じた酸のレジスト膜中における拡散を制御して、未露光領域での好ましくない化学反応を阻止する作用等を有する酸拡散制御剤(E)を感放射線性組成物に配合しても良い。この様な酸拡散制御剤(E)を使用することにより、感放射線性組成物の貯蔵安定性が向上する。また解像度が向上するとともに、電子線照射前の引き置き時間、電子線照射後の引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。
 このような酸拡散制御剤(E)としては、窒素原子含有塩基性化合物、塩基性スルホニウム化合物、塩基性ヨードニウム化合物等の電子線放射分解性塩基性化合物が挙げられる。酸拡散制御剤は、単独で又は2種以上を使用することができる。
 上記酸拡散制御剤としては、例えば、含窒素有機化合物や、露光により分解する塩基性化合物等が挙げられる。上記含窒素有機化合物としては、例えば、下記一般式(7): 
Figure JPOXMLDOC01-appb-C000033
で表される化合物(以下、「含窒素化合物(I)」という。)、同一分子内に窒素原子を2個有するジアミノ化合物(以下、「含窒素化合物(II)」という。)、窒素原子を3個以上有するポリアミノ化合物や重合体(以下、「含窒素化合物(III)」という。)、アミド基含有化合物、ウレア化合物、及び含窒素複素環式化合物等を挙げることができる。尚、上記酸拡散制御剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 上記一般式(7)中、R61、R62及びR63は相互に独立に水素原子、直鎖状、分岐状若しくは環状のアルキル基、アリール基、又はアラルキル基を示す。また、上記アルキル基、アリール基、又はアラルキル基は、非置換でもよく、ヒドロキシル基等の他の官能基で置換されていてもよい。ここで、上記直鎖状、分岐状若しくは環状のアルキル基としては、例えば、炭素数1~15、好ましくは1~10のものが挙げられ、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、n-へプチル基、n-オクチル基、n-エチルヘキシル基、n-ノニル基、n-デシル基等が挙げられる。また、上記アリール基としては、炭素数6~12のものが挙げられ、具体的には、フェニル基、トリル基、キシリル基、クメニル基、1-ナフチル基等が挙げられる。更に、上記アラルキル基としては、炭素数7~19、好ましくは7~13のものが挙げられ、具体的には、ベンジル基、α-メチルベンジル基、フェネチル基、ナフチルメチル基等が挙げられる。
 上記含窒素化合物(I)として具体的には、例えば、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン、n-ドデシルアミン、シクロヘキシルアミン等のモノ(シクロ)アルキルアミン類;ジ-n-ブチルアミン、ジ-n-ペンチルアミン、ジ-n-ヘキシルアミン、ジ-n-ヘプチルアミン、ジ-n-オクチルアミン、ジ-n-ノニルアミン、ジ-n-デシルアミン、メチル-n-ドデシルアミン、ジ-n-ドデシルメチル、シクロヘキシルメチルアミン、ジシクロヘキシルアミン等のジ(シクロ)アルキルアミン類;トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、トリ-n-ノニルアミン、トリ-n-デシルアミン、ジメチル-n-ドデシルアミン、ジ-n-ドデシルメチルアミン、ジシクロヘキシルメチルアミン、トリシクロヘキシルアミン等のトリ(シクロ)アルキルアミン類;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類;アニリン、N-メチルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、4-ニトロアニリン、ジフェニルアミン、トリフェニルアミン、1-ナフチルアミン等の芳香族アミン類等を挙げることができる。
 上記含窒素化合物(II)として具体的には、例えば、エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルアミン、2,2-ビス(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2-(4-アミノフェニル)-2-(3-ヒドロキシフェニル)プロパン、2-(4-アミノフェニル)-2-(4-ヒドロキシフェニル)プロパン、1,4-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン、1,3-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン等を挙げることができる。
 上記含窒素化合物(III)として具体的には、例えば、ポリエチレンイミン、ポリアリルアミン、N-(2-ジメチルアミノエチル)アクリルアミドの重合体等を挙げることができる。
 上記アミド基含有化合物として具体的には、例えば、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン等を挙げることができる。
 上記ウレア化合物として具体的には、例えば、尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリ-n-ブチルチオウレア等を挙げることができる。
 上記含窒素複素環式化合物として具体的には、例えば、イミダゾール、ベンズイミダゾール、4-メチルイミダゾール、4-メチル-2-フェニルイミダゾール、2-フェニルベンズイミダゾール、2,4,5‐トリフェニルイミダゾール等のイミダゾール類;ピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、2-メチル-4-フェニルピリジン、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、8-オキシキノリン、アクリジン等のピリジン類;及び、ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、モルホリン、4-メチルモルホリン、ピペラジン、1,4-ジメチルピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン等を挙げることができる。
また、上記露光により分解する塩基性化合物としては、例えば、下記一般式(8-1):
Figure JPOXMLDOC01-appb-C000034
で表されるスルホニウム化合物、及び下記一般式(8-2):
Figure JPOXMLDOC01-appb-C000035
で表されるヨードニウム化合物等を挙げることができる。
 上記一般式(8-1)及び(8-2)中、R71、R72、R73、R74及びR75は相互に独立に水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシル基、ヒドロキシル基又はハロゲン原子を示す。ZはHO、R-COO(但し、Rは炭素数1~6のアルキル基、炭素数1~6のアリール基若しくは炭素数1~6のアルカリール基を示す。)又は下記一般式(8-3):
Figure JPOXMLDOC01-appb-C000036
で表されるアニオンを示す。
 上記露光により分解する塩基性化合物として具体的には、例えば、トリフェニルスルホニウムハイドロオキサイド、トリフェニルスルホニウムアセテート、トリフェニルスルホニウムサリチレート、ジフェニル-4-ヒドロキシフェニルスルホニウムハイドロオキサイド、ジフェニル-4-ヒドロキシフェニルスルホニウムアセテート、ジフェニル-4-ヒドロキシフェニルスルホニウムサリチレート、ビス(4-t-ブチルフェニル)ヨードニウムハイドロオキサイド、ビス(4-t-ブチルフェニル)ヨードニウムアセテート、ビス(4-t-ブチルフェニル)ヨードニウムハイドロオキサイド、ビス(4-t-ブチルフェニル)ヨードニウムアセテート、ビス(4-t-ブチルフェニル)ヨードニウムサリチレート、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムハイドロオキサイド、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムアセテート、4-t-ブチルフェニル-4-ヒドロキシフェニルヨードニウムサリチレート等が挙げられる。
 酸拡散制御剤(E)の配合量は、固形成分全重量の0.001~50重量%が好ましく、0.001~10重量%がより好ましく、0.001~5重量%がさらに好ましく、0.001~3重量%が特に好ましい。上記範囲内であると、解像度の低下、レジストパターン形状、寸法忠実度等の劣化を防止することができる。さらに、電子線照射から放射線照射後加熱までの引き置き時間が長くなっても、レジストパターン上層部の形状が劣化することがない。また、配合量が10重量%以下であると、感度、未露光部の現像性等の低下を防ぐことができる。またこの様な酸拡散制御剤を使用することにより、感放射線性組成物の貯蔵安定性が向上し、また解像度が向上するとともに、放射線照射前の引き置き時間、放射線照射後の引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。
 本発明の感放射線性組成物には、本発明の目的を阻害しない範囲で、必要に応じて、その他の成分(F)として、溶解促進剤、溶解制御剤、増感剤、界面活性剤、及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体等の各種添加剤を1種又は2種以上添加することができる。
[1]溶解促進剤
 低分子量溶解促進剤は、式(1)で示される環状化合物のアルカリ等の現像液に対する溶解性が低すぎる場合に、その溶解性を高めて、現像時の環状化合物の溶解速度を適度に増大させる作用を有する成分であり、本発明の効果を損なわない範囲で使用することができる。前記溶解促進剤としては、例えば、低分子量のフェノール性化合物を挙げることができ、例えば、ビスフェノール類、トリス(ヒドロキシフェニル)メタン等を挙げることができる。これらの溶解促進剤は、単独で又は2種以上を混合して使用することができる。
 溶解促進剤の配合量は、使用する環状化合物の種類に応じて適宜調節されるが、式(1)で示される環状化合物100重量部当たり、0~100重量部が好ましく、好ましくは0~30重量部であり、より好ましくは0~10重量部、更に好ましくは0~2重量部である。
[2]溶解制御剤
 溶解制御剤は、式(1)で示される環状化合物がアルカリ等の現像液に対する溶解性が高すぎる場合に、その溶解性を制御して現像時の溶解速度を適度に減少させる作用を有する成分である。このような溶解制御剤としては、レジスト被膜の焼成、放射線照射、現像等の工程において化学変化しないものが好ましい。
 溶解制御剤としては、例えば、ナフタレン、フェナントレン、アントラセン、アセナフテン等の芳香族炭化水素類;アセトフェノン、ベンゾフェノン、フェニルナフチルケトン等のケトン類;メチルフェニルスルホン、ジフェニルスルホン、ジナフチルスルホン等のスルホン類等を挙げることができる。これらの溶解制御剤は、単独で又は2種以上を使用することができる。
 溶解制御剤の配合量は、使用する環状化合物の種類に応じて適宜調節されるが、式(1)で示される環状化合物100重量部当たり、0~100重量部が好ましく、好ましくは0~30重量部であり、より好ましくは0~10重量部、更に好ましくは0~2重量部である。
[3]増感剤
 増感剤は、照射された放射線のエネルギーを吸収して、そのエネルギーを酸発生剤(C)に伝達し、それにより酸の生成量を増加する作用を有し、レジストの見掛けの感度を向上させる成分である。このような増感剤としては、例えば、ベンゾフェノン類、ビアセチル類、ピレン類、フェノチアジン類、フルオレン類等を挙げることができるが、特に限定はされない。これらの増感剤は、単独で又は2種以上を使用することができる。
増感剤の配合量は、使用する環状化合物の種類に応じて適宜調節されるが、式(1)で示される環状化合物100重量部当たり、0~100重量部が好ましく、好ましくは0~30重量部であり、より好ましくは0~10重量部、更に好ましくは0~2重量部である。
[4]界面活性剤
 界面活性剤は、本発明の感放射線性組成物の塗布性やストリエーション、レジストの現像性等を改良する作用を有する成分である。このような界面活性剤は、アニオン系、カチオン系、ノニオン系あるいは両性のいずれでもよい。好ましい界面活性剤はノニオン系界面活性剤である。ノニオン系界面活性剤は、感放射線性組成物の製造に用いる溶媒との親和性がよく、より効果がある。
 ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリエチレングリコールの高級脂肪酸ジエステル類等が挙げられるが、特に限定はされない。市販品としては、以下商品名で、エフトップ(ジェムコ社製)、メガファック(大日本インキ化学工業社製)、フロラード(住友スリーエム社製)、アサヒガード、サーフロン(以上、旭硝子社製)、ペポール(東邦化学工業社製)、KP(信越化学工業社製)、ポリフロー(共栄社油脂化学工業社製)等を挙げることができる。
 界面活性剤の配合量は、使用する環状化合物の種類に応じて適宜調節されるが、式(1)で示される環状化合物100重量部当たり、0~100重量部が好ましく、好ましくは0~30重量部であり、より好ましくは0~10重量部、更に好ましくは0~2重量部である。
[5]有機カルボン酸又はリンのオキソ酸若しくはその誘導体
 感度劣化防止又はレジストパターンの倒れや剥れの防止、レジストパターン形状、引き置き安定性等の向上の目的で、さらに任意の成分として、有機カルボン酸又はリンのオキソ酸若しくはその誘導体を含有させることができる。なお、酸拡散制御剤と併用することも出来るし、単独で用いても良い。
 有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸などが好適である。リンのオキソ酸若しくはその誘導体としては、リン酸、リン酸ジ-n-ブチルエステル、リン酸ジフェニルエステルなどのリン酸又はそれらのエステルなどの誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸ジ-n-ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステルなどのホスホン酸又はそれらのエステルなどの誘導体、ホスフィン酸、フェニルホスフィン酸などのホスフィン酸及びそれらのエステルなどの誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。
 有機カルボン酸又はリンのオキソ酸若しくはその誘導体は、単独で又は2種以上を使用することができる。有機カルボン酸又はリンのオキソ酸若しくはその誘導体の配合量は、使用する環状化合物の種類に応じて適宜調節されるが、式(1)で示される環状化合物100重量部当たり、0~100重量部が好ましく、好ましくは0~30重量部であり、より好ましくは0~10重量部、更に好ましくは0~2重量部である。
[6]上記溶解制御剤、増感剤、界面活性剤、及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体以外のその他の添加剤
 更に、本発明の感放射線性組成物には、本発明の目的を阻害しない範囲で、必要に応じて、上記溶解制御剤、増感剤、及び界面活性剤以外の添加剤を1種又は2種以上配合することができる。そのような添加剤としては、例えば、染料、顔料、及び接着助剤等が挙げられる。例えば、染料又は顔料を配合すると、露光部の潜像を可視化させて、露光時のハレーションの影響を緩和できるので好ましい。また、接着助剤を配合すると、基板との接着性を改善することができるので好ましい。更に、他の添加剤としては、ハレーション防止剤、保存安定剤、消泡剤、形状改良剤等、具体的には4-ヒドロキシ-4’-メチルカルコン等を挙げることができる。
 本発明の感放射線性組成物の配合(環状化合物/酸発生剤(C)/酸架橋剤(G)/酸拡散制御剤(E)/任意成分(F))は、固形物基準の重量%で、好ましくは、
50~99.489/0.001~49.49/0.5~49.989/0.01~49.499/0~49.489より好ましくは      
50~99.489/0.001~49.49/0.5~40/0.01~5/0~15、
さらに好ましくは
60~70/10~25/1~30/0.01~3/0~1
特に好ましくは
60~70/10~25/2~20/0.01~3/0である。上記配合にすると、感度、解像度、アルカリ現像性等の性能に優れる。
 本発明の感放射線性組成物は、通常は、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば孔径0.2μm程度のフィルター等でろ過することにより調製される。
 本発明の感放射線性組成物の調製に使用される溶剤は、該組成物の各成分の溶解性や硬化性組成物の塗布性を満足すれば基本的に限定されないが、バインダーの溶解性、塗布性、安全性を考慮して選ばれた安全溶媒が好ましい。
 前記安全溶媒としては、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのプロピレングリコールモノアルキルエーテル類;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル類;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、酢酸n-アミル、酢酸n-ヘキシル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メトキシ-3-メチルプロピオン酸ブチル、3-メトキシ-3-メチル酪酸ブチル、アセト酢酸メチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロペンタノン、シクロヘキサノン等のケトン類;N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ラクトン等のラクトン類等を挙げることができるが、特に限定はされない。これらの溶媒は、単独で又は2種以上を使用することができる。
 本発明の感放射線組成物は、本発明の目的を阻害しない範囲で、アルカリ水溶液に可溶である樹脂を含むことができる。アルカリ水溶液に可溶である樹脂としては、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体、あるいはこれらの誘導体などが挙げられる。
 アルカリ水溶液に可溶である樹脂の配合量は、使用する式(1)で示される環状化合物の種類に応じて適宜調節されるが、上記環状化合物100重量部当たり、30重量部以下が好ましく、より好ましくは10重量部以下、さらに好ましくは5重量部以下、特に好ましくは0重量部である。
[レジストパターンの形成方法]
 本発明は、上記本発明の感放射線性組成物を用いて、基板上にレジスト膜を形成する工程、前記レジスト膜を露光する工程、及び前記レジスト膜を現像してレジストパターンを形成する工程を含むレジストパターン形成方法に関する。本発明のレジストパターンは多層レジストプロセスにおける上層レジストとして形成することもできる。
 レジストパターンを形成するには、従来公知の基板上に前記本発明の感放射線性組成物を、回転塗布、流延塗布、ロール塗布等の塗布手段を用いて塗布することによりレジスト膜を形成する。従来公知の基板とは、特に限定されず、例えば、電子部品用の基板や、これに所定の配線レジストパターンが形成されたもの等を例示することができる。より具体的には、シリコンウェハ、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。
 配線レジストパターンの材料としては、例えば銅、アルミニウム、ニッケル、金等が挙げられる。また必要に応じて、前述基板上に無機系及び/又は有機系の膜が設けられたものであってもよい。無機系の膜としては、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、有機反射防止膜(有機BARC)が挙げられる。ヘキサメチレンジシラザン等による表面処理を行ってもよい。
 次いで、必要に応じ、塗布した基板を加熱する。加熱条件は、感放射線性組成物の配合組成等により変わるが、20~250℃が好ましく、より好ましくは20~150℃である。加熱することによって、レジストの基板に対する密着性が向上する場合があり好ましい。次いで、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビームからなる群から選ばれるいずれかの放射線により、レジスト膜を所望のレジストパターンに露光する。露光条件等は、感放射線性感放射線性組成物の配合組成等に応じて適宜選定される。本発明においては、露光における高精度の微細レジストパターンを安定して形成するために、放射線照射後に加熱するのが好ましい。加熱条件は、感放射線性感放射線性組成物の配合組成等により変わるが、20~250℃が好ましく、より好ましくは20~150℃である。
 次いで、露光されたレジスト膜をアルカリ現像液で現像することにより、所定のレジストパターンを形成する。前記アルカリ現像液としては、例えば、モノ-、ジ-あるいはトリアルキルアミン類、モノ-、ジ-あるいはトリアルカノールアミン類、複素環式アミン類、テトラメチルアンモニウムヒドロキシド(TMAH)、コリン等のアルカリ性化合物の1種以上を、好ましくは1~10質量%、より好ましくは1~5質量%の濃度となるように溶解したアルカリ性水溶液が使用される。上記アルカリ性水溶液の濃度が10質量%以下とすると、露光部が現像液に溶解することを抑制することが出来るので好ましい。
 また、前記アルカリ現像液には、メタノール、エタノール、イソプロピルアルコールなどのアルコール類や前記界面活性剤を適量添加することもできる。これらのうちイソプロピルアルコールを10~30質量%添加することが特に好ましい。これにより、レジストに対する現像液の濡れ性を高めることが出来るので好ましい。なお、このようなアルカリ性水溶液からなる現像液を用いた場合は、一般に、現像後、水で洗浄する。
 レジストパターンを形成した後、エッチングすることによりレジストパターン配線基板が得られる。エッチングの方法はプラズマガスを使用するドライエッチング及びアルカリ溶液、塩化第二銅溶液、塩化第二鉄溶液等によるウェットエッチングなど公知の方法で行うことが出来る。
 レジストパターンを形成した後、めっきを行うことも出来る。上記めっき法としては、例えば、銅めっき、はんだめっき、ニッケルめっき、金めっきなどがある。
 エッチング後の残存レジストパターンは有機溶剤や現像に用いたアルカリ水溶液より強アルカリ性の水溶液で剥離することが出来る。上記有機溶剤として、PGMEA(プロピレングリコールモノメチルエーテルアセテート),PGME(プロピレングリコールモノメチルエーテル),EL(乳酸エチル)等が挙げられ、強アルカリ水溶液としては、例えば1~20質量%の水酸化ナトリウム水溶液や1~20質量%の水酸化カリウム水溶液が挙げられる。上記剥離方法としては、例えば、浸漬方法、スプレイ方式等が挙げられる。またレジストパターンが形成された配線基板は、多層配線基板でも良く、小径スルーホールを有していても良い。
 本発明で得られる配線基板は、レジストパターン形成後、金属を真空中で蒸着し、その後レジストパターンを溶液で溶かす方法、すなわちリフトオフ法により形成することもできる。
 以下、実施例を挙げて、本発明の実施の形態をさらに具体的に説明する。但し、本発明は、これらの実施例に限定はされない。以下の合成実施例、実施例において、化合物の構造はH-NMR測定及びLC-MS測定で確認した。
合成例1
シクロヘキシルオキシフェノールの合成
 十分乾燥し、窒素置換した滴下漏斗、ジム・ロート冷却管、温度計、攪拌翼を設置した四つ口フラスコ(2L)に、窒素気流下で、レゾルシノール(55g、0.5mol)と、炭酸カリウム(207g、1.5mol)と、水(25ml、1.4mol)と、N,N-ジメチルホルムアルデヒド(500ml)を投入し、ジメチルホルムアルデヒド溶液を調整した。次いで室温にて、ブロモシクロヘキサン(408g,2.5mol)を、滴下漏斗により10分かけて滴下した後、この溶液を攪拌しながらマントルヒーターで80℃、14時間加熱した後、100℃、11時間加熱した。反応終了後、放冷し、室温に到達させた後、氷浴で冷却した。反応溶液を1Lのトルエンに溶解し、500ml水で3回洗浄した。エバポレーションによりトルエンを留去させ、残渣物を展開溶媒としてヘキサンと酢酸エチルを用いて、カラムクロマトグラフィーにより精製することで、赤褐色の目的生成物(以下、R-1Aと示す)(21.9g、収率23%、GC純度100%)を得た。
この化合物の重ジメチルスルホキシド溶媒中でのH-NMRのケミカルシフト値(δppm,TMS基準)は、1.1~2.0(m,10H)、4.2(m,H)、6.3(m,3H)、7.0(m,H)、9.3(s,H)であった。
Figure JPOXMLDOC01-appb-C000037
合成実施例1
環状化合物(A)の合成
CR-1Aの合成
 十分乾燥し、窒素置換した滴下漏斗、ジム・ロート冷却管、温度計、攪拌翼を設置した四つ口フラスコ(100mL)に、窒素気流下で、上記合成例1で得られたR-1A(5.38g、28mmol)と、濃塩酸(35wt%、4.37g)と、エタノール(15g)を投入し、エタノール溶液を調整した。次いで室温にて、関東化学社製4-ヒドロキシベンズアルデヒド(3.25g,27mmol)と、エタノール(8g)を、滴下漏斗により10分かけて滴下した後、この溶液を攪拌しながらマントルヒーターで40℃、5時間加熱した。反応終了後、放冷し、室温に到達させた後、氷浴で冷却した。エバポレーションによりエタノールを留去させ、蒸留水を加える。茶色の目的粗結晶が生成し、これを濾別した。粗結晶を蒸留水100mlで6回洗浄し、濾別、120℃で真空乾燥させることにより、赤褐色の目的生成物(以下、CR-1Aと示す)(8.3g、収率99%)を得た。(但し、少なくとも4種類の立体異性体が考えられる。)
この化合物の構造は、LC-MSで分析した結果、目的物の分子量1010を示した。この化合物の重ジメチルスルホキシド溶媒中でのH-NMRのケミカルシフト値(δppm,TMS基準)は、1.0~1.8(m,40H)、4.0(m,4H)、5.5(m,4H)、6.0~6.5(m,24H)、8.5~8.7(m,8H)であった。
Figure JPOXMLDOC01-appb-C000038
合成実施例2
環状化合物(A)の合成
CR-2Aの合成
 十分乾燥し、窒素置換した滴下漏斗、ジム・ロート冷却管、温度計、攪拌翼を設置した四つ口フラスコ(100mL)に、窒素気流下で、上記合成例1で得られたR-1A(10.76g、56mmol)と、濃塩酸(35wt%、8.74g)と、エタノール(40g)を投入し、エタノール溶液を調整した。次いで室温にて、関東化学社製3,4-ジヒドロキシベンズアルデヒド(7.35g,54mmol)と、エタノール(7g)を、滴下漏斗により10分かけて滴下した後、この溶液を攪拌しながらマントルヒーターで40℃、2時間および60℃、5時間加熱した。反応終了後、放冷し、室温に到達させた後、氷浴で冷却した。エバポレーションによりエタノールを留去させ、蒸留水を加える。赤褐色の目的粗結晶が生成し、これを濾別した。粗結晶を蒸留水100mlで6回洗浄し、濾別、120℃で真空乾燥させることにより、目的生成物(以下、CR-2Aと示す)(16.2g、収率97%)を得た。(但し、少なくとも4種類の立体異性体が考えられる。)
この化合物の構造は、LC-MSで分析した結果、目的物の分子量1071を示した。この化合物の重ジメチルスルホキシド溶媒中でのH-NMRのケミカルシフト値(δppm,TMS基準)は1.0~1.8(m,40H)、4.0(m,4H)、5.4(m,4H)、5.9~6.4(m,20H)、8.5(m,12H)であった。
Figure JPOXMLDOC01-appb-C000039
合成例2
3-(4-メチルシクロヘキシルオキシ)フェノールの合成
 十分乾燥し、窒素置換した滴下漏斗、ジム・ロート冷却管、温度計、攪拌翼を設置した四つ口フラスコ(2L)に、窒素気流下で、レゾルシノール(110g、1.0mol)と、4-メチルシクロヘキサノール(114g、1.0mol)と、トリフェニルホスフィン(393g、1.5mol)を、乾燥テトラヒドロフラン(500ml)に溶解し、氷食塩水で冷却しながら、ジイソプロピルアゾジカルボキシレート(269g、1.3mol)と、乾燥テトラヒドロフラン(400ml)の混合溶液を1時間かけて滴下した。次いで室温にて12時間撹拌した。反応終了後、30%過酸化水素(200ml)を、滴下漏斗により10分かけて滴下した後、反応溶液を2Lのトルエンに溶解し、1L水で3回洗浄した。エバポレーションによりトルエンを留去させ、残渣物を展開溶媒としてヘキサンと酢酸エチルを用いて、カラムクロマトグラフィーにより精製することで、赤褐色の目的生成物(以下、R-2Aと示す)(45.0g、収率22%、GC純度97%)を得た。
この化合物の重ジメチルスルホキシド溶媒中での1H-NMRのケミカルシフト値(δppm,TMS基準)は、0.9(m,3H)、1.0~1.8(m,8H)、2.0(m,H)、4.0(m,H)、6.3(m,3H)、7.0(m,H)、9.3(b,H)であった。
Figure JPOXMLDOC01-appb-C000040
合成実施例3
環状化合物(A)の合成
CR-3Aの合成
 十分乾燥し、窒素置換した滴下漏斗、ジム・ロート冷却管、温度計、攪拌翼を設置した四つ口フラスコ(100mL)に、窒素気流下で、上記合成例2で得られたR-2A(11.53g、56mmol)と、濃塩酸(35wt%、8.73g)と、エタノール(40g)を投入し、エタノール溶液を調整した。次いで室温にて、関東化学社製4-ヒドロキシベンズアルデヒド(6.50g,53mmol)と、エタノール(7g)を、滴下漏斗により10分かけて滴下した後、この溶液を攪拌しながらマントルヒーターで40℃、5時間加熱した。反応終了後、放冷し、室温に到達させた後、氷浴で冷却した。エバポレーションによりエタノールを留去させ、蒸留水を加える。茶色の目的粗結晶が生成し、これを濾別した。粗結晶を蒸留水100mlで6回洗浄し、濾別、120℃で真空乾燥させることにより、赤紫色の目的生成物(以下、CR-3Aと示す)(15.6g、収率94%)を得た。(但し、少なくとも4種類の立体異性体が考えられる。)
この化合物の構造は、LC-MSで分析した結果、目的物の分子量1085を示した。この化合物の重ジメチルスルホキシド溶媒中での1H-NMRのケミカルシフト値(δppm,TMS基準)は、1.0~1.6(m,48H)、3.2~3.4(m,4H)、5.5(m,4H)、6.2~6.5(m,24H)、8.5~8.7(m,8H)であった。
Figure JPOXMLDOC01-appb-C000041
合成実施例4
CR-4Aの合成
 十分乾燥し、窒素置換した滴下漏斗、ジム・ロート冷却管、温度計、攪拌翼を設置した四つ口フラスコ(100mL)に、窒素気流下で、上記合成例2で得られたR-2A(11.54g、56mmol)と、濃塩酸(35wt%、8.73g)と、エタノール(45g)を投入し、エタノール溶液を調整した。次いで室温にて、関東化学社製3,4-ジヒドロキシベンズアルデヒド(7.35g,53mmol)と、エタノール(4g)を、滴下漏斗により10分かけて滴下した後、この溶液を攪拌しながらマントルヒーターで40℃、5時間加熱した。反応終了後、放冷し、室温に到達させた後、氷浴で冷却した。エバポレーションによりエタノールを留去させ、蒸留水を加える。茶色の目的粗結晶が生成し、これを濾別した。粗結晶を蒸留水100mlで6回洗浄し、濾別、120℃で真空乾燥させることにより、赤紫色の目的生成物(以下、CR-4Aと示す)(16.6g、収率96%)を得た。(但し、少なくとも4種類の立体異性体が考えられる。)
この化合物の構造は、LC-MSで分析した結果、目的物の分子量1085を示した。この化合物の重ジメチルスルホキシド溶媒中での1H-NMRのケミカルシフト値(δppm,TMS基準)は、0.7~2.1(m,48H)、3.1~3.4(m,4H)、5.4(m,4H)、6.2~6.4(m,20H)、8.0~8.5(m,12H)であった。
Figure JPOXMLDOC01-appb-C000042
合成例3
3-(4-エチルシクロヘキシルオキシ)フェノールの合成
 十分乾燥し、窒素置換した滴下漏斗、ジム・ロート冷却管、温度計、攪拌翼を設置した四つ口フラスコ(2L)に、窒素気流下で、レゾルシノール(72g、0.65mol)と、4-エチルシクロヘキサノール(92g、0.72mol)と、トリフェニルホスフィン(185g、0.70mol)を、乾燥テトラヒドロフラン(700ml)に溶解し、氷食塩水で冷却しながら、ジイソプロピルアゾジカルボキシレート(132g、0.65mol)と、乾燥テトラヒドロフラン(180ml)の混合溶液を1時間かけて滴下した。次いで室温にて12時間撹拌した。反応終了後、30%過酸化水素(140ml)を、滴下漏斗により10分かけて滴下した後、反応溶液を1Lのトルエンに溶解し、500ml水で3回洗浄した。エバポレーションによりトルエンを留去させ、残渣物を展開溶媒としてヘキサンと酢酸エチルを用いて、カラムクロマトグラフィーにより精製することで、赤褐色の目的生成物(以下、R-3Aと示す)(38.5g、収率27%、GC純度99%以上)を得た。
この化合物の重ジメチルスルホキシド溶媒中での1H-NMRのケミカルシフト値(δppm,TMS基準)は、0.8(m,5H)、1.0~1.9(m,9H)、4.0(m,H)、6.5(m,3H)、7.0(m,H)、8.9(b,H)であった。
Figure JPOXMLDOC01-appb-C000043
合成実施例5
環状化合物(A)の合成
CR-5Aの合成
 十分乾燥し、窒素置換した滴下漏斗、ジム・ロート冷却管、温度計、攪拌翼を設置した四つ口フラスコ(100mL)に、窒素気流下で、上記合成例3で得られたR-3A(9.17g、28mmol)と、濃塩酸(35wt%、4.37g)と、エタノール(20g)を投入し、エタノール溶液を調整した。次いで室温にて、関東化学社製4-ヒドロキシベンズアルデヒド(3.25g,27mmol)と、エタノール(4g)を、滴下漏斗により10分かけて滴下した後、この溶液を攪拌しながらマントルヒーターで40℃、5時間加熱した。反応終了後、放冷し、室温に到達させた後、氷浴で冷却した。エバポレーションによりエタノールを留去させ、蒸留水を加える。茶色の目的粗結晶が生成し、これを濾別した。粗結晶を蒸留水100mlで6回洗浄し、濾別、120℃で真空乾燥させることにより、赤紫色の目的生成物(以下、CR-5Aと示す)(7.9g、収率91%)を得た。(但し、少なくとも4種類の立体異性体が考えられる。)
この化合物の構造は、LC-MSで分析した結果、目的物の分子量1124を示した。この化合物の重ジメチルスルホキシド溶媒中での1H-NMRのケミカルシフト値(δppm,TMS基準)は、1.0~1.6(m,56H)、3.2~3.8(m,4H)、4.9(m,4H)、5.8~6.1(m,24H)、8.0~8.2(m,8H)であった。
Figure JPOXMLDOC01-appb-C000044
合成実施例6
環状化合物(A)の合成
CR-6Aの合成
 十分乾燥し、窒素置換した滴下漏斗、ジム・ロート冷却管、温度計、攪拌翼を設置した四つ口フラスコ(100mL)に、窒素気流下で、上記合成例3で得られたR-3A(6.16g、28mmol)と、濃塩酸(35wt%、4.38g)と、エタノール(15g)を投入し、エタノール溶液を調整した。次いで室温にて、関東化学社製3,4-ジヒドロキシベンズアルデヒド(3.68g,27mmol)と、エタノール(8g)を、滴下漏斗により10分かけて滴下した後、この溶液を攪拌しながらマントルヒーターで40℃、5時間加熱した。反応終了後、放冷し、室温に到達させた後、氷浴で冷却した。エバポレーションによりエタノールを留去させ、蒸留水を加える。茶色の目的粗結晶が生成し、これを濾別した。粗結晶を蒸留水100mlで6回洗浄し、濾別、120℃で真空乾燥させることにより、赤紫色の目的生成物(以下、CR-6Aと示す)(8.3g、収率92%)を得た。(但し、少なくとも4種類の立体異性体が考えられる。)
この化合物の構造は、LC-MSで分析した結果、目的物の分子量1198を示した。この化合物の重ジメチルスルホキシド溶媒中での1H-NMRのケミカルシフト値(δppm,TMS基準)は、0.7~1.8(m,56H)、4.1~4.2(m,4H)、5.8(m,4H)、6.1~6.4(m,20H)、8.0~8.5(m,12H)であった。
Figure JPOXMLDOC01-appb-C000045
合成例4
3-(3,3,5-トリメチルシクロヘキシルオキシ)フェノールの合成
 十分乾燥し、窒素置換した滴下漏斗、ジム・ロート冷却管、温度計、攪拌翼を設置した四つ口フラスコ(1L)に、窒素気流下で、レゾルシノール(42g、0.38mol)と、3,3,5-トリメチルシクロヘキサノール(54g、0.57mol)と、トリフェニルホスフィン(150g、0.57mol)を、乾燥テトラヒドロフラン(200ml)に溶解し、氷食塩水で冷却しながら、ジイソプロピルアゾジカルボキシレート(100g、0.5mol)と、乾燥テトラヒドロフラン(150ml)の混合溶液を1時間かけて滴下した。次いで室温にて12時間撹拌した。反応終了後、30%過酸化水素(75ml)を、滴下漏斗により10分かけて滴下した後、反応溶液を1Lのトルエンに溶解し、500ml水で3回洗浄した。エバポレーションによりトルエンを留去させ、残渣物を展開溶媒としてヘキサンと酢酸エチルを用いて、カラムクロマトグラフィーにより精製することで、赤褐色の目的生成物(以下、R-4Aと示す)(19.5g、収率22%、GC純度99%)を得た。
この化合物の重ジメチルスルホキシド溶媒中での1H-NMRのケミカルシフト値(δppm,TMS基準)は、0.7(m,1H)、0.9~1.0(m,9H)、1.2~2.0(m,6H)、4.1(m,H)、6.5(m,3H)、7.0(m,H)、8.9(b,H)であった。
Figure JPOXMLDOC01-appb-C000046
合成実施例7
環状化合物(A)の合成
CR-7Aの合成
 十分乾燥し、窒素置換した滴下漏斗、ジム・ロート冷却管、温度計、攪拌翼を設置した四つ口フラスコ(100mL)に、窒素気流下で、上記合成例4で得られたR-4A(6.55g、28mmol)と、濃塩酸(35wt%、4.37g)と、エタノール(21g)を投入し、エタノール溶液を調整した。次いで室温にて、関東化学社製3,4-ジヒドロキシベンズアルデヒド(3.67g,27mmol)と、エタノール(3g)を、滴下漏斗により10分かけて滴下した後、この溶液を攪拌しながらマントルヒーターで40℃、5時間加熱した。反応終了後、放冷し、室温に到達させた後、氷浴で冷却した。エバポレーションによりエタノールを留去させ、蒸留水を加える。茶色の目的粗結晶が生成し、これを濾別した。粗結晶を蒸留水100mlで6回洗浄し、濾別、120℃で真空乾燥させることにより、赤紫色の目的生成物(以下、CR-7Aと示す)(8.6g、収率99%)を得た。(但し、少なくとも4種類の立体異性体が考えられる。)
この化合物の構造は、LC-MSで分析した結果、目的物の分子量1254を示した。この化合物の重ジメチルスルホキシド溶媒中での1H-NMRのケミカルシフト値(δppm,TMS基準)は、0.5~2.0(m,64H)、4.1~4.3(m,4H)、5.4(m,4H)、6.0~6.4(m,20H)、7.8~8.4(m,12H)であった。
Figure JPOXMLDOC01-appb-C000047
合成比較例1
環状化合物(A)の合成
CR-8Aの合成
 十分乾燥し、窒素置換した滴下漏斗、ジム・ロート冷却管、温度計、攪拌翼を設置した四つ口フラスコ(100mL)に、窒素気流下で、関東化学社製3‐メトキシフェノール(6.9g、57mmol)と、濃塩酸(35wt%、8.74g)と、エタノール(40g)を投入し、エタノール溶液を調整した。次いで室温にて、三菱瓦斯化学製2,4‐ジメチルベンズアルデヒド(7.1g,53mmol)と、エタノール(7g)を、滴下漏斗により10分かけて滴下した後、この溶液を攪拌しながらマントルヒーターで40℃、1時間および60℃、5時間加熱した。反応終了後、放冷し、室温に到達させた後、氷浴で冷却した。エバポレーションによりエタノールを留去させ、蒸留水を加える。黄色の目的粗結晶が生成し、これを濾別した。粗結晶を蒸留水100mlで6回洗浄し、濾別、120℃で真空乾燥させることにより、赤紫色の目的生成物(以下、CR-8Aと示す)(12.6g、収率98%)を得た。(但し、少なくとも4種類の立体異性体が考えられる。)
この化合物の構造は、LC-MSで分析した結果、目的物の分子量1069を示した。この化合物の重ジメチルスルホキシド溶媒中での1H-NMRのケミカルシフト値(δppm,TMS基準)は、1.2~2.3(m,24H)、2.9~3.2(m,12H)、5.2~5.6(m,4H)、6.0~6.8(m,20H)、8.6~9.1(m,4H)であった。
Figure JPOXMLDOC01-appb-C000048
合成比較例2
環状化合物(A)の合成
CR-9Aの合成
 十分乾燥し、窒素置換した滴下漏斗、ジム・ロート冷却管、温度計、攪拌翼を設置した四つ口フラスコ(1L)に、窒素気流下で、関東化学社製3‐エトキシフェノール(13.8g、0.1mol)と、p‐アニスベンズアルデヒド(13.6g,0.1mol)と、エタノール(200g)を投入し、エタノール溶液を調整した。次いで室温にて、濃塩酸(35wt%、25ml)を、滴下漏斗により10分かけて滴下した後、この溶液を攪拌しながらマントルヒーターで70℃、12時間加熱した。反応終了後、放冷し、室温に到達させた後、氷浴で冷却した。エバポレーションによりエタノールを留去させ、蒸留水を加える。黄色の目的粗結晶が生成し、これを濾別した。粗結晶を蒸留水100mlで6回洗浄し、濾別、120℃で真空乾燥させることにより、赤紫色の目的生成物(以下、CR-9Aと示す)(25.1g、収率98%)を得た。(但し、少なくとも4種類の立体異性体が考えられる。)
この化合物の構造は、LC-MSで分析した結果、目的物の分子量757を示した。この化合物の重ジメチルスルホキシド溶媒中での1H-NMRのケミカルシフト値(δppm,TMS基準)は、1.0~1.2(m,12H)、3.5~4.0(m,20H)、5.5(m,4H)、6.2~6.6(m,24H)、8.6~8.7(m,4H)であった。
Figure JPOXMLDOC01-appb-C000049
(実施例1~7、比較例1及び2)
(1)化合物の安全溶媒溶解度試験
 上記合成実施例1~7、合成比較例1及び2で得られた化合物のプロピレングリコールモノメチルエーテル(PGME)、及びシクロヘキサノン(CHN)への溶解量を評価した。結果を第1表に示す。
 A:5.0wt% ≦ 溶解量
 B:3.0wt% ≦ 溶解量 < 5.0wt%
 C:溶解量 < 3.0wt%
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1~7で得られた化合物については、比較例1及び2で得られた化合物に比べて、プロピレングリコールモノメチルエーテル(PGME)、及びシクロヘキサノン(CHN)への溶解量が大きく、良好な結果を示すことがわかった。
(実施例8~24、比較例3及び4)
(2)パターニング試験
 第2表記載の成分を調合し、均一溶液としたのち、孔径0.1μmのテフロン(登録商標)製メンブランフィルターで濾過して、感放射線性組成物を調製し、各々について以下の評価を行った。結果を第3表に示す。
Figure JPOXMLDOC01-appb-T000002
(C)酸発生剤
P-1:トリフェニルスルホニウム トリフルオロメタンスルホネート(みどり化学(株))
P-2:トリフェニルスルホニウム 1‐ブタンスルホネート(和光純薬工業(株))
P-3:トリフェニルスルホニウム パラトルエンスルホネート(和光純薬工業(株))
P-4:ジフェニル‐2,4,6‐フェニルスルホニウム パラトルエンスルホネート(和光純薬工業(株))
P-5:ジフェニルヨードニウム トリフルオロメタンスルホネート(みどり化学(株))
P-6:ジフェニルヨードニウム パラトルエンスルホネート(みどり化学(株))
(G)酸架橋剤
C-1:ニカラックMW-100LM(三和ケミカル(株))
(E)酸拡散制御剤
Q-1:トリオクチルアミン(東京化成工業(株))
Q-2:ロフィン(東京化成工業(株))
溶媒
S-1 プロピレングリコールモノメチルエーテル(東京化成工業(株))
(2-1)解像度の評価
 レジストを清浄なシリコンウェハ上に回転塗布した後、オーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。該レジスト膜を電子線描画装置(ELS-7500,(株)エリオニクス社製)を用いて、50nm間隔と30nm間隔の1:1のラインアンドスペース設定の電子線を照射した。照射後に、それぞれ所定の温度で、90秒間加熱し、2.38重量%TMAH水溶液に60秒間現像を行った。その後、水で30秒間洗浄し、乾燥して、ネガ型のレジストパターンを形成した。得られたラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察した。またその際のドーズ量(μC/cm)を感度とした。
(2-2)パターン形状の評価
 得られた50nm間隔と30nm間隔の1:1のラインアンドスペースの断面写真を走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察し、評価した。
 A:パターン倒れのない矩形パターン(良好なパターン)
 B:パターン倒れのあるほぼ矩形パターン(ほぼ良好なパターン)
 C:乱雑なパターンもしくはパターン流れ(粗悪なパターン)
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、実施例8~24ではパターン倒れのない良好なパターンを形成した。これに対して、比較例3及び4ではエッジが滑らかな2×2mmのネガ型レジストパターンを形成したが、一部でパターンの剥れが認められた。
 本発明は、酸増幅型非高分子系レジスト材料として有用な、特定の化学構造式で示される環状化合物、これを含む感放射線性組成物、及び該感放射線性組成物を用いるレジストパターン形成方法に好適に使用される。

Claims (19)

  1.  下記式(1)で示される環状化合物。
    Figure JPOXMLDOC01-appb-C000050
    (式(1)中、R12は、独立して、炭素数6~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数1~20のアルキルシリル基、及び炭素数2~20のアルキルエステル基からなる群から選択される官能基、又は水素原子である。(但し、その少なくとも1つのR12は、炭素数6~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数1~20のアルキルシリル基、及び炭素数2~20のアルキルエステル基からなる群から選択される官能基である。)
    Xは、独立して、水素原子、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシル基、シアノ基、ニトロ基、水酸基、複素環基、ハロゲン原子、カルボキシル基、炭素数1~20のアルキルシリル基、及び炭素数2~20のアルキルエステル基からなる群から選択される官能基である。
    R’は、独立して、炭素数1~20のアルキル基、カルボキシル基を有する炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、カルボキシル基を有する炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数1~20のアルコキシ基、シアノ基、ニトロ基、複素環基、ハロゲン原子、カルボキシル基、水酸基、炭素数1~20のアルキルシリル基、及び炭素数2~20のアルキルエステル基からなる群から選択される官能基である。(但し、少なくとも1つのR’は、カルボキシル基及び/又は水酸基を有する炭素数1~20のアルキル基、カルボキシル基及び/又は水酸基を有する炭素数3~20のシクロアルキル基、又は下記式
    Figure JPOXMLDOC01-appb-C000051
    で表わされる基であり、Rは、炭素数1~14のアルキル基、炭素数3~14のシクロアルキル基、炭素数6~14のアリール基、炭素数1~14のアルコキシ基、シアノ基、ニトロ基、複素環基、ハロゲン原子、カルボキシル基、水酸基、炭素数1~14のアルキルシリル基、及び炭素数2~14のアルキルエステル基からなる群から選択される官能基であり、少なくともひとつのRは、水酸基若しくはカルボキシル基であり、pは1~5の整数である。))
  2.  前記環状化合物が、上記式(1)で示される化合物であり、式(1)中のR12は、少なくとも1つのR12が、炭素数6~20のアルキル基、炭素数6~20のシクロアルキル基、炭素数6~20のアリール基、炭素数1~20のアルキルシリル基、及び炭素数2~20のアルキルエステル基からなる群から選択される官能基であり、また別の少なくとも1つのR12が、水素原子である請求項1記載の環状化合物。
  3.  前記環状化合物が、下記式(3)で示される化合物である請求項1記載の環状化合物。
    Figure JPOXMLDOC01-appb-C000052
    (式(3)中、R12、pは前記と同様である。)
  4.  前記環状化合物が、下記式(3-1)から(3-4)の異性体のうちいずれかで示される請求項3記載の環状化合物。
    Figure JPOXMLDOC01-appb-C000053
    Figure JPOXMLDOC01-appb-I000006
    (式(3-1)~(3-4)中、R12、pは前記と同様である。)
  5.  前記環状化合物が、下記式(3’-1)~(3’-4)の異性体のうちいずれかで示される請求項3記載の環状化合物。
    Figure JPOXMLDOC01-appb-C000054
    Figure JPOXMLDOC01-appb-I000007
    (式(3’-1)~(3’-4)中、R、pは前記と同様である。Rは、炭素数1~3のアルキル基、炭素数3~6のシクロアルキル基、炭素数6~14のアリール基、炭素数1~14のアルコキシ基、シアノ基、ニトロ基、複素環基、ハロゲン原子、カルボキシル基、水酸基、及び炭素数1~14のアルキルシリル基からなる群から選択される官能基又は水素原子であり、qは0~2の整数である。)
  6.  芳香族カルボニル化合物(A1)からなる群より選ばれる1種以上,及びフェノール性化合物(A2)からなる群より選ばれる1種以上を縮合反応させる式(1)で示される環状化合物(A)の製造方法。
  7.  反応温度0~60℃で反応させる請求項6記載の製造方法。
  8.  請求項1記載の環状化合物及び溶媒を含む感放射線性組成物。
  9.  固形成分1~80重量%及び溶媒20~99重量%からなる請求項8記載の感放射線性組成物。
  10.  前記環状化合物が固形成分全重量の50~99.999重量%である請求項8又は9記載の感放射線性組成物。
  11.  前記環状化合物が、炭素数が2~59であり1~4個のホルミル基及び1~3個のフェノール性水酸基を有する化合物(アルデヒド性化合物(A1A))と、炭素数6~15であり1~3個のフェノール性水酸基を有する化合物(フェノール性化合物(A2))との縮合反応により合成した、分子量が700~5000の環状化合物(A)の少なくとも1つのフェノール性水酸基の水素原子に、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、及び炭素数1~20のアルキルシリル基からなる群から選択される官能基が置換した構造を有する、少なくとも1つのフェノール性水酸基若しくはカルボキシル基を有する、分子量が800~5000の環状化合物である、請求項8記載の感放射線性組成物。
  12.  さらに、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビームからなる群から選ばれるいずれかの放射線の照射により直接的又は間接的に酸を発生する酸発生剤(C)を含む請求項8記載の感放射線性組成物。
  13.  さらに、酸架橋剤(G)を含む請求項8記載の感放射線性組成物。
  14.  さらに、酸拡散制御剤(E)を含む請求項8記載の感放射線性組成物。
  15.  前記固形成分が、環状化合物/酸発生剤(C)/酸架橋剤(G)/酸拡散制御剤(E)/任意成分(F)を、固形成分基準の重量%で、50~99.489/0.001~49.49/0.5~49.989/0.01~49.499/0~49.489含有する請求項8記載の感放射線性組成物。
  16.  スピンコートによりアモルファス膜を形成することができる請求項8記載の感放射線性組成物。
  17.  前記アモルファス膜の、23℃における2.38重量%テトラメチルアンモニウムヒドロキシド水溶液に対する溶解速度が10Å/sec以上である請求項16記載の感放射線性組成物。
  18.  前記アモルファス膜にKrFエキシマレーザー、極端紫外線、電子線又はX線を照射したもの、又はこれを20~250℃で加熱した後のアモルファス膜の2.38重量%テトラメチルアンモニウムヒドロキシド水溶液に対する溶解速度が5Å/sec以下である請求項16記載の感放射線性組成物。
  19.  請求項8~18のいずれかに記載の感放射線性組成物を用いて、基板上にレジスト膜を形成する工程、前記レジスト膜を露光する工程、及び前記レジスト膜を現像してレジストパターンを形成する工程を含むレジストパターン形成方法。
PCT/JP2010/006895 2009-11-27 2010-11-25 環状化合物、その製造方法、感放射線性組成物及びレジストパターン形成方法 WO2011065004A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/512,099 US8969629B2 (en) 2009-11-27 2010-11-25 Cyclic compound, production process thereof, radiation-sensitive composition and resist pattern formation method
KR1020127016552A KR101801523B1 (ko) 2009-11-27 2010-11-25 환상 화합물, 그 제조 방법, 감방사선성 조성물 및 레지스트 패턴 형성 방법
JP2011543109A JP5857745B2 (ja) 2009-11-27 2010-11-25 環状化合物、その製造方法、感放射線性組成物及びレジストパターン形成方法
CN201080053806.7A CN102666461B (zh) 2009-11-27 2010-11-25 环状化合物、其生产方法、放射线敏感性组合物和抗蚀图案形成方法
EP10832853.5A EP2505576B1 (en) 2009-11-27 2010-11-25 Cyclic compound, process for production thereof, radiation-sensitive composition, and resist pattern formation method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-270652 2009-11-27
JP2009270652 2009-11-27
JP2009270653 2009-11-27
JP2009-270653 2009-11-27
JP2010-138525 2010-06-17
JP2010138525 2010-06-17

Publications (1)

Publication Number Publication Date
WO2011065004A1 true WO2011065004A1 (ja) 2011-06-03

Family

ID=44066109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006895 WO2011065004A1 (ja) 2009-11-27 2010-11-25 環状化合物、その製造方法、感放射線性組成物及びレジストパターン形成方法

Country Status (7)

Country Link
US (1) US8969629B2 (ja)
EP (1) EP2505576B1 (ja)
JP (1) JP5857745B2 (ja)
KR (1) KR101801523B1 (ja)
CN (1) CN102666461B (ja)
TW (1) TWI460153B (ja)
WO (1) WO2011065004A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129700A1 (ja) * 2014-02-26 2015-09-03 三菱瓦斯化学株式会社 化合物及びそれを含むフォトレジスト組成物
WO2017098882A1 (ja) * 2015-12-11 2017-06-15 Dic株式会社 ノボラック型樹脂及びレジスト膜

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2453250B1 (en) 2009-06-30 2019-06-12 Aspect Imaging Ltd. A cage in an magnetic resonance device with a fastening/attenuating system
WO2011099235A1 (ja) * 2010-02-12 2011-08-18 三菱瓦斯化学株式会社 下層膜材料及び多層レジストパターン形成方法
CN102971281A (zh) * 2010-05-26 2013-03-13 三菱瓦斯化学株式会社 环状化合物的纯化方法
TWI596082B (zh) * 2011-08-12 2017-08-21 三菱瓦斯化學股份有限公司 環狀化合物、其製造方法、組成物及光阻圖型之形成方法
JP2013079230A (ja) * 2011-09-23 2013-05-02 Rohm & Haas Electronic Materials Llc カリックスアレーンおよびこれを含むフォトレジスト組成物
US9354516B2 (en) * 2012-10-17 2016-05-31 Mitsubishi Gas Chemical Company, Inc. Resist composition
KR102328318B1 (ko) * 2014-07-09 2021-11-19 디아이씨 가부시끼가이샤 페놀성 수산기 함유 수지, 그 제조 방법, 감광성 조성물, 레지스트 재료, 도막, 경화성 조성물과 그 경화물, 및 레지스트 하층막
WO2019021758A1 (ja) * 2017-07-27 2019-01-31 Dic株式会社 レジスト材料

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06282067A (ja) 1992-09-14 1994-10-07 Fuji Photo Film Co Ltd ポジ型感光性平版印刷版
EP0632003A1 (en) 1993-06-30 1995-01-04 Fuji Photo Film Co., Ltd. Novel phenol compounds containing methoxymethyl group or hydroxymethyl group
JPH0764285A (ja) 1993-08-31 1995-03-10 Fuji Photo Film Co Ltd ポジ型感光性平版印刷版
JP2005326838A (ja) 2004-04-15 2005-11-24 Mitsubishi Gas Chem Co Inc レジスト組成物
JP2008145539A (ja) 2006-12-06 2008-06-26 Mitsubishi Gas Chem Co Inc 感放射線性レジスト組成物
WO2009060869A1 (ja) 2007-11-05 2009-05-14 Dai Nippon Printing Co., Ltd. ネガ型レジスト組成物、及び当該ネガ型レジスト組成物を用いたパターン形成方法
WO2009075308A1 (ja) * 2007-12-11 2009-06-18 Idemitsu Kosan Co., Ltd. 環状化合物、フォトレジスト基材、フォトレジスト組成物、微細加工方法及び半導体装置
JP2009173623A (ja) 2007-04-23 2009-08-06 Mitsubishi Gas Chem Co Inc 感放射線性組成物
JP2009244769A (ja) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd ポジ型レジスト組成物、及び当該ポジ型レジスト組成物を用いたパターン形成方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0259016B1 (en) * 1986-08-29 1990-07-04 LOCTITE (IRELAND) Ltd. Calixarene derivatives and use of such compounds as accelerators in instant adhesive compositions
US5143784A (en) * 1990-05-10 1992-09-01 Nec Corporation Soluble calixarene derivative and films thereof
US5757034A (en) * 1994-07-28 1998-05-26 International Rectifier Corporation Emitter switched thyristor
US5804664A (en) * 1997-05-23 1998-09-08 Kennedy; Joseph P. Star polymers having multiple arms emanating from a calixarene core, initiators therefor, and method for the synthesis thereof
US6093517A (en) * 1998-07-31 2000-07-25 International Business Machines Corporation Calixarenes for use as dissolution inhibitors in lithographic photoresist compositions
JP2000256362A (ja) * 1999-03-09 2000-09-19 Kuraray Co Ltd 新規カリックスアレーン誘導体およびそれを含有する硬化性樹脂組成物
KR20080028863A (ko) * 2005-06-01 2008-04-02 이데미쓰 고산 가부시키가이샤 칼릭스레졸시나렌 화합물, 그리고, 그것으로 이루어지는포토레지스트 기재 및 그 조성물
CN103102251B (zh) 2006-11-02 2016-01-20 三菱瓦斯化学株式会社 放射线敏感性组合物
JPWO2008136372A1 (ja) 2007-04-27 2010-07-29 出光興産株式会社 フォトレジスト基材、及びそれを含んでなるフォトレジスト組成物
US7993812B2 (en) * 2009-07-23 2011-08-09 International Business Machines Corporation Calixarene blended molecular glass photoresists and processes of use
US8530136B2 (en) * 2010-12-17 2013-09-10 International Business Machines Corporation Fluoroalcohol containing molecular photoresist materials and processes of use

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06282067A (ja) 1992-09-14 1994-10-07 Fuji Photo Film Co Ltd ポジ型感光性平版印刷版
EP0632003A1 (en) 1993-06-30 1995-01-04 Fuji Photo Film Co., Ltd. Novel phenol compounds containing methoxymethyl group or hydroxymethyl group
JPH0764285A (ja) 1993-08-31 1995-03-10 Fuji Photo Film Co Ltd ポジ型感光性平版印刷版
JP2005326838A (ja) 2004-04-15 2005-11-24 Mitsubishi Gas Chem Co Inc レジスト組成物
JP2008145539A (ja) 2006-12-06 2008-06-26 Mitsubishi Gas Chem Co Inc 感放射線性レジスト組成物
JP2009173623A (ja) 2007-04-23 2009-08-06 Mitsubishi Gas Chem Co Inc 感放射線性組成物
WO2009060869A1 (ja) 2007-11-05 2009-05-14 Dai Nippon Printing Co., Ltd. ネガ型レジスト組成物、及び当該ネガ型レジスト組成物を用いたパターン形成方法
US20100239980A1 (en) * 2007-11-05 2010-09-23 Dai Nippon Printing Co., Ltd. Negative-working resist composition and pattern forming method using the same
WO2009075308A1 (ja) * 2007-12-11 2009-06-18 Idemitsu Kosan Co., Ltd. 環状化合物、フォトレジスト基材、フォトレジスト組成物、微細加工方法及び半導体装置
JP2009244769A (ja) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd ポジ型レジスト組成物、及び当該ポジ型レジスト組成物を用いたパターン形成方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BARRETT, E.S. ET AL.: "Assembly and exchange of resorcinarene capsules monitored by fluorescence resonance energy transfer", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 129, no. 13, 2007, pages 3818 - 3819, XP055081892, DOI: doi:10.1021/ja0700956 *
CHEMICAL ABSTRACTS, vol. 144, 2006, Columbus, Ohio, US; abstract no. 77776G *
HAUKE, F. ET AL.: "Lower rim mono- functionalization of resorcinarenes", CHEMICAL COMMUNICATIONS, 2005, pages 4164 - 4166 *
T. NAKAYAMA; M. NOMURA; K. HAGA; M. UEDA, BULL. CHEM. SOC. JPN., vol. 71, 1998, pages 2979

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129700A1 (ja) * 2014-02-26 2015-09-03 三菱瓦斯化学株式会社 化合物及びそれを含むフォトレジスト組成物
WO2017098882A1 (ja) * 2015-12-11 2017-06-15 Dic株式会社 ノボラック型樹脂及びレジスト膜

Also Published As

Publication number Publication date
US20120282546A1 (en) 2012-11-08
JPWO2011065004A1 (ja) 2013-04-11
KR101801523B1 (ko) 2017-11-27
EP2505576A4 (en) 2013-08-28
TW201121932A (en) 2011-07-01
KR20120089760A (ko) 2012-08-13
CN102666461B (zh) 2015-09-30
TWI460153B (zh) 2014-11-11
JP5857745B2 (ja) 2016-02-10
EP2505576A1 (en) 2012-10-03
US8969629B2 (en) 2015-03-03
EP2505576B1 (en) 2019-04-24
CN102666461A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
JP6217817B2 (ja) レジスト組成物、レジストパターン形成方法、それに用いるポリフェノール化合物及びそれから誘導され得るアルコール化合物
JP6066333B2 (ja) 環状化合物、その製造方法、組成物及びレジストパターン形成方法
JP5857745B2 (ja) 環状化合物、その製造方法、感放射線性組成物及びレジストパターン形成方法
JP5982823B2 (ja) 環状化合物、その製造方法、感放射線性組成物およびレジストパターン形成方法
JP5786713B2 (ja) 環状化合物、その製造方法、感放射線性組成物およびレジストパターン形成方法
JP5796490B2 (ja) 環状化合物、その製造方法、感放射線性組成物およびレジストパターン形成方法
JP6313045B2 (ja) 環状化合物、その製造方法、感放射線性組成物及びレジストパターン形成方法
JP5825104B2 (ja) 環状化合物、その製造方法、感放射線性組成物およびレジストパターン形成方法
JP5733211B2 (ja) 環状化合物、その製造方法、感放射線性組成物およびレジストパターン形成方法
JP6007793B2 (ja) 低分子化合物、感放射線性組成物、およびレジストパターン形成方法
JP5564883B2 (ja) 溶解抑止剤、ネガ型感放射線性組成物およびレジストパターン形成方法
WO2011037072A1 (ja) 環状化合物、感放射線性組成物およびレジストパターン形成法
JP5413070B2 (ja) 感放射線性組成物、その製造方法およびレジストパターン形成方法
JPWO2014061710A1 (ja) レジスト組成物
JP2013140342A (ja) 感放射線性組成物
JP6313046B2 (ja) 環状化合物、その製造方法、感放射線性組成物及びレジストパターン形成方法
JP5493668B2 (ja) 感放射線性組成物、その製造方法、およびレジストパターン形成方法
WO2011037071A1 (ja) 環状化合物、感放射線性組成物およびレジストパターン形成法
JP2013018711A (ja) 環状化合物、その製造方法、感放射線性組成物及びレジストパターン形成方法
JP2013107841A (ja) 環状化合物、その製造方法、感放射線性組成物及びレジストパターン形成方法
JP2011079764A (ja) 環状化合物、その製造方法、感放射線性組成物およびレジストパターン形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053806.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832853

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543109

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010832853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13512099

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127016552

Country of ref document: KR

Kind code of ref document: A