WO2011062277A1 - 多孔性成形体及びその製造方法 - Google Patents

多孔性成形体及びその製造方法 Download PDF

Info

Publication number
WO2011062277A1
WO2011062277A1 PCT/JP2010/070742 JP2010070742W WO2011062277A1 WO 2011062277 A1 WO2011062277 A1 WO 2011062277A1 JP 2010070742 W JP2010070742 W JP 2010070742W WO 2011062277 A1 WO2011062277 A1 WO 2011062277A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous molded
molded body
organic polymer
polymer resin
inorganic ion
Prior art date
Application number
PCT/JP2010/070742
Other languages
English (en)
French (fr)
Inventor
昭浩 大森
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to ES10831669T priority Critical patent/ES2758653T3/es
Priority to EP10831669.6A priority patent/EP2502959B1/en
Priority to CN201080052294.2A priority patent/CN102612535B/zh
Priority to US13/505,880 priority patent/US9359227B2/en
Priority to JP2011541983A priority patent/JP5622745B2/ja
Priority to KR1020127005791A priority patent/KR101479820B1/ko
Publication of WO2011062277A1 publication Critical patent/WO2011062277A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/052Inducing phase separation by thermal treatment, e.g. cooling a solution
    • C08J2201/0522Inducing phase separation by thermal treatment, e.g. cooling a solution the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/06Polysulfones; Polyethersulfones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a porous molded body and a method for producing the same.
  • Arsenic is contained in wastewater from nonferrous metal refining industry, thermal wastewater from geothermal power plants, and groundwater in specific areas.
  • the toxicity of arsenic has been known for a long time and is accumulative in the living body, and is said to cause chronic poisoning, weight loss, sensory injury, liver damage, skin deposition, skin cancer and the like.
  • a large amount of fluorine is contained in waste water from the metal refining industry, the glass industry, the electronic materials industry, and the like.
  • Patent Document 1 describes an invention of a porous molded body including an organic polymer resin and an inorganic ion adsorbent, and describes adsorbing phosphorus, boron, and the like. In addition, a method for producing the porous molded body is also described.
  • inorganic ion adsorbents such as zirconium hydrous ferrite and hydrous cerium hydroxide are hydrophilic, hydrophilic organic vinyl alcohol copolymers (EVOH) and polyacrylonitrile (PAN) are used as organic polymer resins. Is known to choose.
  • hydrophilic organic polymer resins such as EVOH and PAN have low resistance to oxidizing agents such as sodium hypochlorite, a cleaning method using an oxidizing agent cannot be actively applied. Have.
  • harmful substances such as phosphorus, boron, fluorine and arsenic contained in water and wastewater can be adsorbed and removed at high speed, and the adsorption capacity is large, and durability against oxidizing agents such as sodium hypochlorite. It is an object of the present invention to provide a porous molded article suitable as an adsorbent that can be used repeatedly, and a method for producing the same.
  • the present inventors have found that a porous molded body containing an organic polymer resin having a hydroxyl group and an inorganic ion adsorbent powder as an adsorption substrate is obtained.
  • the present invention is completed by finding a porous molded article suitable for adsorbents that can remove harmful substances at high speed, has a large adsorption capacity, has high durability against cleaning agents such as oxidizing agents, and can be used repeatedly. It came to. That is, the present invention is as follows.
  • a porous molded body comprising an organic polymer resin and an inorganic ion adsorbent, wherein the organic polymer resin is a polyethersulfone resin and / or a polysulfone resin, and is an organic polymer resin having a hydroxyl group.
  • the organic polymer resin is a polyethersulfone resin and / or a polysulfone resin, and is an organic polymer resin having a hydroxyl group.
  • n represents an integer of 1 or more
  • Y is selected from a direct bond, O, S, SO 2 , CO, C (CH 3 ) 2 , CH (CH 3 ), and CH 2.
  • the hydrogen of the benzene ring may be substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 8 carbon atoms.
  • n represents an integer of 2 or more, and hydrogen in the benzene ring may be substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 8 carbon atoms.
  • the organic polymer resin forms a porous structure having communication holes;
  • the inorganic ion adsorbent is The porous molded body according to any one of [1] to [10], containing at least one metal oxide represented by the following formula (i).
  • An adsorbent comprising the porous molded body according to any one of [1] to [13].
  • a method for producing a porous molded article containing an organic polymer resin and an inorganic ion adsorbent A pulverization / mixing step of obtaining a slurry by pulverizing and mixing the good solvent of the organic polymer resin, the inorganic ion adsorbent, and the water-soluble polymer; The organic polymer resin is mixed and dissolved in the slurry to obtain a molding slurry, A coagulation step of coagulating the molding slurry in a poor solvent of the organic polymer resin; The manufacturing method of the porous molded object which has.
  • the good solvent for the organic polymer resin is at least one selected from the group consisting of N-methyl-2pyrrolidone (NMP), N, N-dimethylacetamide (DMAC), and N, N-dimethylformamide (DMF).
  • NMP N-methyl-2pyrrolidone
  • DMAC N-dimethylacetamide
  • DMF N, N-dimethylformamide
  • [18] The method for producing a porous molded body according to any one of [15] to [17], wherein the poor solvent contains water.
  • harmful substances can be removed at high speed, the adsorption capacity is large, the durability against cleaning chemicals is high, and the affinity between the inorganic ion adsorbent and the organic polymer resin is high.
  • a porous molded body suitable for an adsorbent that is supported and hardly crushed even after repeated use can be obtained.
  • the electron micrograph of the cut section of the molded object of Example 1 is shown (150 times magnification).
  • the electron micrograph of the cut section of the molded object of Example 1 is shown (magnification 10,000 times).
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as the present embodiment) will be described.
  • the present invention is not limited to the following embodiment, and various modifications may be made within the scope of the gist. Can be implemented.
  • the porous molded body of this embodiment contains an organic polymer resin and an inorganic ion adsorbent, and the organic polymer resin is a polyether sulfone resin and / or a polysulfone resin, and has an hydroxyl group. It is a porous molded body that is a resin.
  • the organic polymer resin constituting the porous molded body of this embodiment is a polyether sulfone resin and / or a polysulfone resin that forms a porous structure and has a hydroxyl group. It is.
  • the organic polymer resin has a hydroxyl group, the affinity with the inorganic ion adsorbent is improved, and peeling of the inorganic ion adsorbent can be prevented.
  • the polyethersulfone resin is a polymer compound resin having a repeating structure including a sulfonyl group and an ether bond.
  • an organic polymer resin represented by the following general formula (1) is preferable.
  • n represents an integer of 1 or more
  • Y is selected from a direct bond, O, S, SO 2 , CO, C (CH 3 ) 2 , CH (CH 3 ), and CH 2.
  • hydrogen on the benzene ring may be substituted, for example, it may be substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 8 carbon atoms. More preferably, it is a polyethersulfone resin represented by the following general formula (2), wherein Y is SO 2 .
  • n represents an integer of 2 or more, and hydrogen on the benzene ring may be substituted, for example, substituted with an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 8 carbon atoms.
  • the polysulfone resin is a polymer resin having a repeating structure containing a sulfonyl group.
  • the polysulfone resin preferably has a bisphenol A residue or a biphenylene group. More preferably, it is an organic polymer resin represented by the following general formula (1).
  • Y is a direct bond, a polyallylsulfone resin represented by the following general formula (3), or Y is C (CH 3 ) 2. It is a polysulfone resin represented by the following general formula (4).
  • n represents an integer of 1 or more, and hydrogen in the benzene ring may be substituted, for example, an alkyl group having 1 to 6 carbon atoms or a carbon atom having 6 to 8 carbon atoms. It may be substituted with an aryl group.
  • the organic polymer resin preferably has a mass average molecular weight (Mw) of 10,000 to 140,000, more preferably 20,000 to 90,000, and more preferably 30,000 to 80,000.
  • Mw mass average molecular weight
  • the mass average molecular weight can be measured by a gel permeation chromatography (GPC) method.
  • the organic polymer resin preferably has a hydroxyl group at the terminal.
  • the porous molded body of this embodiment can exhibit excellent carrying performance of an inorganic ion adsorbent.
  • the organic polymer resin having high hydrophobicity has a hydroxyl group at the terminal, fouling hardly occurs even when the porous molded body of this embodiment is used for water treatment.
  • the ratio of the hydroxyl group to the terminal group (hereinafter referred to as the terminal hydroxyl group composition) in all the terminal groups is preferably 5 to 100 mol%.
  • the terminal hydroxyl group composition is 5 mol% or more, the affinity with the inorganic ion adsorbent is increased and the carrying performance is excellent, and when it is 100 mol% or less, the chemical resistance against the oxidizing agent is excellent. It becomes.
  • the terminal hydroxyl group composition is more preferably 10 to 100 mol%, further preferably 40 to 100 mol%, and further preferably 60 to 100 mol%.
  • the terminal hydroxyl group of the organic polymer resin can be determined by nuclear magnetic resonance (NMR). That is, the proton signal adjacent to the end group (ortho position) is separated by a hydroxyl group (H OH ) or other (H X ) (for example, Cl group (H Cl ) or t-butyl group (H t )). And can be quantified from the integrated value of the signal.
  • NMR nuclear magnetic resonance
  • H OH hydroxyl group
  • H X for example, Cl group (H Cl ) or t-butyl group (H t )
  • the area ratio of the 1H-NMR signal reflects the number of moles, and therefore the terminal hydroxyl group composition (mol%) can be calculated by the following formula.
  • the terminal group of the organic polymer resin is composed of a hydroxyl group, a chloro group, and a t-butyl group
  • the terminal chloro group, the terminal hydroxyl group, and a new peak are t-butyl substituted around 1.2 ppm.
  • the structure of the organic polymer resin constituting the porous molded body of the present embodiment can be specified by extracting the organic polymer resin and analyzing it using a nuclear magnetic resonance method (NMR) or the like.
  • the extraction method of the organic polymer resin is not particularly limited.
  • the organic polymer resin may be separated using a solvent such as deuterated N, N-dimethylformamide (d-DMF) and then separated. The method of extracting by is mentioned.
  • the organic polymer resin constituting the porous molded body of the present embodiment is preferably a polyethersulfone resin.
  • the organic polymer resin is a polyethersulfone resin having a hydroxyl group, the affinity with the inorganic ion adsorbent is improved, and peeling of the inorganic ion adsorbent can be prevented. Furthermore, it is preferable because durability against cleaning chemicals is improved.
  • the polyethersulfone resin is preferably a polyethersulfone resin represented by the following general formula (2) from the viewpoint of durability of the porous molded body.
  • n represents an integer of 2 or more
  • hydrogen in the benzene ring may be substituted, for example, an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 8 carbon atoms. May be substituted.
  • organic polymer resin constituting the porous molded body of the present embodiment two or more kinds of organic polymer resins having different molecular weights and hydroxyl group amounts, as long as the supporting performance of the inorganic ion adsorbent described later is not lowered. It can be used by mixing.
  • the inorganic ion adsorbent constituting the porous molded body of the present embodiment refers to an inorganic substance that exhibits an ion adsorption phenomenon or an ion exchange phenomenon.
  • the natural product-based inorganic ion adsorbent include zeolite, montmorillonite, and various mineral substances. Specific examples of various mineral substances are kaolin minerals with a single layer lattice in aluminosilicate, bilayered muscovite, sea green stone, Kanuma soil, pyrophyllite, talc, three-dimensional framework feldspar And zeolite.
  • Examples of the synthetic inorganic ion adsorbent include, for example, metal oxides (metal oxides, composite metal oxides, composite metal hydroxides, metal hydrated oxides, etc.), polyvalent metal salts, or insolubility. And hydrous oxides.
  • the inorganic ion adsorbent is preferably a metal oxide represented by the following formula (i).
  • the inorganic ion adsorbent may contain a plurality of metal oxides represented by the following formula (i).
  • MN x O n ⁇ mH 2 O ⁇ (i) In the formula (i), x is 0 to 3, n is 1 to 4, m is 0 to 6, and M and N are Ti, Zr, Sn, Sc, Y, La, Ce, Pr Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Si, Cr, Co, Ga, Fe, Mn, Ni, V, Ge, Nb, and Ta Metal elements to be selected, which are different from each other.
  • the metal oxide may be a non-hydrated (unhydrated) metal oxide in which m in the formula (i) is 0, or a metal hydrous oxide in which m is a value other than 0. (Hydrated metal oxide) may be used.
  • a metal hydrous oxide in which m is a value other than 0. Heydrated metal oxide
  • each contained metal element has regularity and is uniformly distributed throughout the oxide, and is contained in the metal oxide.
  • the composite metal oxide is represented by a chemical formula in which the composition ratio of each metal element is constant. Specifically, a perovskite structure, a spinel structure, etc. are formed, nickel ferrite (NiFe 2 O 4 ), zirconium hydrous ferrite (Zr ⁇ Fe 2 O 4 ⁇ mH 2 O m is 0.5 to 6) Etc.
  • an inorganic ion adsorbent from the viewpoint of excellent adsorption performance of phosphorus, boron, fluorine, arsenic, (A) Hydrated titanium oxide, hydrated zirconium oxide, hydrated tin oxide, hydrated cerium oxide, hydrated lanthanum oxide, hydrated yttrium oxide (b) From the group consisting of titanium, zirconium, tin, cerium, lanthanum, yttrium It is preferable to select at least one metal oxide selected from the group consisting of a composite metal oxide (c) activated alumina of a metal element selected and a metal element selected from the group consisting of aluminum, silicon and iron.
  • the material selected from these groups may be used in combination with materials selected from any of the groups (a), (b), (c), You may use combining each material in each suitably.
  • the inorganic ion adsorbent contains aluminum sulfate-added activated alumina and / or aluminum sulfate-added activated carbon. These have the advantage of being inexpensive and highly adsorbable.
  • a metal element other than the above-described metal elements other than M and N is more preferable from the viewpoint of the adsorptivity of inorganic ions and the manufacturing cost.
  • a hydrated zirconium oxide represented by the formula ZrO 2 .mH 2 O is obtained by dissolving iron in solid solution.
  • Examples of the polyvalent metal salt include a hydrotalcite compound represented by the following formula (ii).
  • M 2+ is at least one divalent metal ion selected from the group consisting of Mg 2+ , Ni 2+ , Zn 2+ , Fe 2+ , Ca 2+ and Cu 2+. Indicates.
  • M 3+ is selected from the group consisting of Al 3+ and Fe 3+, represents at least one trivalent metal ion
  • 0.1 ⁇ p ⁇ 0.5, 0.1 ⁇ q ⁇ 0.5, and r is 1 or 2.
  • the hydrotalcite compound of the formula (ii) is preferable because the raw material is inexpensive as the inorganic ion adsorbent and the adsorptivity is high.
  • insoluble hydrated oxide examples include insoluble heteropolyacid salt and insoluble hexacyanoferrate.
  • the structure of the inorganic ion adsorbent constituting the porous molded body of the present embodiment is not particularly limited, but it is preferable to have a mixed structure in which a specific metal oxide is covered with another metal oxide. .
  • a mixed structure in which a specific metal oxide is covered with another metal oxide.
  • An example of such a structure is a structure in which hydrated zirconium oxide covers the periphery of iron trioxide.
  • the metal oxide includes those in which other elements are dissolved.
  • hydrated zirconium oxide has high adsorption performance against ions such as phosphorus, boron, fluorine, arsenic and durability against repeated use, and is expensive.
  • iron trioxide is hydrated zirconium oxide. In comparison, adsorption performance for ions such as phosphorus, boron, fluorine, and arsenic and durability performance for repeated use are low, and it is very inexpensive.
  • the surface of the inorganic ion adsorbent that is involved in ion adsorption becomes hydrated zirconium oxide with high adsorption performance and durability. Since the inside which does not participate in adsorption becomes inexpensive iron trioxide, it is preferable because it can be used as an adsorbent having high adsorption performance, high durability performance and low cost, that is, extremely excellent in cost performance.
  • the inorganic ion adsorbent is expressed by the above formula (i )
  • at least one of M and N is a metal element selected from the group consisting of aluminum, silicon, and iron
  • at least one of M and N in the above formula (i) is titanium.
  • Zirconium, tin, cerium, lanthanum, and yttrium, and a metal oxide selected from the group consisting of yttrium is preferable.
  • the content ratio of the metal element selected from the group consisting of aluminum, silicon and iron in the inorganic ion adsorbent is the metal element selected from the group consisting of aluminum, silicon and iron, and titanium, zirconium, tin and cerium.
  • F / T (molar ratio) is 0, where T is the total number of moles of the metal element selected from the group consisting of lanthanum and yttrium, and F is the number of moles of the metal element selected from the group consisting of aluminum, silicon and iron.
  • the range is preferably from 0.01 to 0.95, more preferably from 0.1 to 0.90, still more preferably from 0.2 to 0.85, and more preferably from 0.3 to 0. Even more preferably, it is 80. If the value of F / T (molar ratio) is too large, the adsorption performance and durability performance tend to be low, and if it is small, the effect on price reduction is small.
  • Some metals have a plurality of forms of metal oxides having different oxidation numbers of metal elements, but the form is not particularly limited as long as it can be stably present in the inorganic ion adsorbent.
  • the form is not particularly limited as long as it can be stably present in the inorganic ion adsorbent.
  • iron oxide hydrated ferric oxide (general formula: FeO 1.5 ⁇ mH 2 O) or hydrated ferric tetroxide (general formula: FeO) due to the problem of oxidation stability in air. 1.33 ⁇ mH 2 O).
  • the inorganic ion adsorbent constituting the porous molded body of the present embodiment contains an impurity element mixed due to the production method and the like within a range that does not hinder the function of the porous molded body of the present embodiment. It may be.
  • impurity elements that may be mixed include nitrogen (nitrate, nitrite, ammonium), sodium, magnesium, sulfur, chlorine, potassium, calcium, copper, zinc, bromine, barium, hafnium, and the like.
  • the specific surface area of the inorganic ion adsorbent constituting the porous molded body of the present embodiment affects the adsorption performance and durability performance
  • the specific surface area is preferably within a certain range.
  • the BET specific surface area determined by the nitrogen adsorption method is preferably 20 to 1000 m 2 / g, more preferably 30 to 800 m 2 / g, and 50 to 600 m 2 / g. Is more preferably 60 to 500 m 2 / g. If the BET specific surface area is too small, the adsorption performance decreases, and if it is too large, the solubility in acids and alkalis increases, and as a result, the durability performance against repeated use decreases.
  • the metal oxide represented by the above formula (i) will be described as an example.
  • the method for producing the metal oxide is not particularly limited.
  • the precipitate obtained by adding an alkaline solution in an aqueous salt solution such as metal hydrochloride, sulfate, nitrate, etc. is filtered, washed, and then dried. Can be obtained.
  • the drying is performed by air drying or at about 150 ° C. or less, preferably about 90 ° C. or less for about 1 to 20 hours.
  • an inorganic ion adsorbent having a structure in which zirconium oxide is covered around triiron tetroxide is manufactured for a manufacturing method in which the periphery of a specific metal oxide is a mixed structure covered with another metal oxide.
  • an inorganic ion adsorbent comprising a structure in which at least one of M and N is covered with a metal oxide which is a metal element selected from the group consisting of titanium, zirconium, tin, cerium, lanthanum and yttrium To do.
  • a metal oxide which is a metal element selected from the group consisting of titanium, zirconium, tin, cerium, lanthanum and yttrium
  • zirconium chloride, nitrate, sulfate, and other salts and iron chloride, nitrate, sulfate, and other salts were mixed so that the above-mentioned F / T (molar ratio) was a desired value.
  • An aqueous salt solution is prepared.
  • an alkaline aqueous solution is added to adjust the pH to 8 to 9.5, preferably 8.5 to 9, thereby generating a precipitate.
  • the temperature of the aqueous solution is set to 50 ° C., air is blown in while maintaining the pH at 8 to 9.5, preferably 8.5 to 9, and oxidation is performed until ferrous ions cannot be detected in the liquid phase.
  • the resulting precipitate is filtered off, washed with water and dried.
  • the drying is performed by air drying or at about 150 ° C. or less, preferably about 90 ° C. or less for about 1 to 20 hours.
  • the moisture content after drying is preferably in the range of about 6 to 30% by mass.
  • Zirconium salts used in the production method described above include zirconium oxychloride (ZrOCl 2 ), zirconium tetrachloride (ZrCl 4 ), zirconium nitrate (Zr (NO 3 ) 4 ), zirconium sulfate (Zr (SO 4 ) 2 ). Etc. These may be hydrated salts such as Zr (SO 4 ) 2 .4H 2 O. These metal salts are usually used in the form of a solution of about 0.05 to 2.0 mol per liter.
  • iron salts used in the above-described production method include ferrous sulfates such as ferrous sulfate (FeSO 4 ), ferrous nitrate (Fe (NO 3 ) 2 ), and ferrous chloride (FeCl 2 ). Can be mentioned. These may also be hydrated salts such as FeSO 4 .7H 2 O. These ferrous salts are usually added as solids, but may be added in the form of a solution. Examples of the alkali include sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, sodium carbonate and the like. The zirconium salt and iron salt are preferably used in an aqueous solution of about 5 to 20% by mass.
  • the time varies depending on the type of oxidizing gas and the like, but is usually about 1 to 10 hours.
  • an oxidizing agent for example, hydrogen peroxide, sodium hypochlorite, potassium hypochlorite, or the like is used.
  • the porous molded body of the present embodiment has a porous structure in which the organic polymer resin has communication holes, and the inorganic ion adsorbent is supported on the outer surface and inside of the organic polymer resin constituting the porous structure. It is preferable that it is a structure.
  • the porous structure having communication holes means a fibrous structure that forms a three-dimensional continuous network structure on the outer surface and inside of the porous molded body.
  • the porous structure may include a polyethersulfone resin and an organic polymer resin other than the polysulfone resin.
  • Examples of other organic polymer resins include polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), and ethylene vinyl alcohol copolymer (EVOH).
  • PVDF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • EVOH ethylene vinyl alcohol copolymer
  • the thickness of the fibrous part in the porous structure is preferably 0.01 ⁇ m to 50 ⁇ m.
  • the dispersion state of the inorganic ion adsorbent supported on the porous molded body of the present embodiment in the porous molded body can be quantified by measurement using an electron beam microanalyzer (EPMA). That is, surface analysis is performed using an electron beam microanalyzer (EPMA), and surface analysis data (frequency distribution of X-ray intensity (count number)) obtained by the analysis is statistically processed. Specifically, the ratio of 95% relative cumulative X-ray intensity to 5% relative cumulative X-ray intensity (relative cumulative X-ray intensity ratio) is determined in the concentration distribution of the element of the inorganic ion adsorbent obtained from the EPMA analysis. Can be measured.
  • EPMA electron beam microanalyzer
  • the 5% relative cumulative X-ray intensity is small in the frequency distribution of the X-ray intensity of the component elements constituting the inorganic ion adsorbent, obtained by surface analysis of the cut surface of the molded body with an electron beam microanalyzer (EPMA).
  • the X-ray intensity value is accumulated from the X-ray intensity (low concentration) side, and the accumulated X-ray intensity frequency reaches 5%.
  • the 95% relative cumulative X-ray intensity is a frequency distribution of the X-ray intensity of the constituent elements constituting the inorganic ion adsorbent, which is obtained by surface analysis of the cut surface of the molded body with an electron beam microanalyzer (EPMA).
  • the relative cumulative X-ray intensity ratio can be obtained from the following formula.
  • Relative cumulative X-ray intensity ratio 95% relative cumulative X-ray intensity / 5% relative cumulative X-ray intensity
  • 95% relative cumulative X-ray intensity ratio 95% relative cumulative X-ray intensity / 5% relative cumulative X-ray intensity
  • the relative cumulative X-ray intensity ratio is 1 to 10
  • the dispersion state of the inorganic ion adsorbent in the porous molded body is good and the secondary aggregates of the inorganic ion adsorbent are small. Therefore, the contact efficiency between the inorganic ion adsorbent and the ions to be adsorbed is increased, and the adsorption performance is kept good. Furthermore, since there are few secondary aggregates of an inorganic ion adsorption body, durability is also high because there are few cases where a secondary aggregate breaks from a secondary aggregate.
  • the relative cumulative X-ray intensity ratio is more preferably 1 to 7, and further preferably 1 to 5.
  • the porosity Pr (%) of the porous molded body of this embodiment is preferably 50% to 95%, more preferably 60 to 90%.
  • the porosity Pr (%) means the mass W1 (g) when the porous molded body is wet, the mass W0 (g) after drying, and the specific gravity of the porous molded body as ⁇ . It is expressed by a formula.
  • the porosity 50% or more, the contact frequency between the adsorption target substance such as phosphorus and boron and the inorganic ion adsorbent as the adsorption substrate is sufficient, and when it is 95% or less, the strength of the porous molded body is high. This is sufficient for practical use.
  • the mass (W1) at the time of water content is obtained by spreading a porous molded body sufficiently wet with water on dry filter paper and taking out excess moisture before measuring the mass.
  • the mass (W0) after drying is obtained by vacuum drying the porous molded body at room temperature and then measuring the mass.
  • the specific gravity ( ⁇ ) of the porous molded body can be easily measured using a specific gravity bottle.
  • the supported amount of the inorganic ion adsorbent in the porous molded body of this embodiment is preferably 65 to 95%, more preferably 70 to 90%, and further preferably 75 to 90%.
  • the ash content is obtained as a residue when the porous molded body of this embodiment is baked at 800 ° C. for 2 hours.
  • the porous molded body of the present embodiment is obtained by kneading and molding an inorganic ion adsorbent and an organic polymer resin. According to this method, it is possible to obtain a porous molded body that maintains a large amount of support and has high strength.
  • volume-based specific surface area of porous molded body of the present embodiment is defined by the following formula.
  • Volume-based specific surface area (m 2 / cm 3 ) S BET ⁇ bulk specific gravity (g / cm 3 )
  • S BET is a surface area (m 2 / g) per unit mass of the molded body, and can be measured by a BET method using nitrogen gas as an adsorption gas after the porous molded body is vacuum-dried at room temperature. A method for measuring the bulk specific gravity will be described below.
  • a porous molded body having a short shape such as a particulate shape, a cylindrical shape, or a hollow cylindrical shape is wetted, and an apparent volume is measured using a graduated cylinder or the like. Then, it vacuum-drys at room temperature and calculates
  • a porous molded body having a long shape such as a filament shape, a hollow fiber shape, and a sheet shape
  • the bulk specific gravity is a value calculated by mass / apparent volume after vacuum drying in the case of a porous molded body having a short shape such as a particulate shape, a cylindrical shape, or a hollow cylindrical shape.
  • the value is calculated by mass / volume after vacuum drying.
  • the preferred volume-based specific surface area of the porous molded body of this embodiment is 5 m 2 / cm 3 to 500 m 2 / cm 3 . When the volume-based specific surface area is 5 m 2 / cm 3 or more, the carrying amount and adsorption performance of the adsorption substrate are practically sufficient.
  • the volume-based specific surface area is 500 m 2 / cm 3 or less, the strength of the porous molded body is practically sufficient.
  • the adsorption performance of an inorganic ion adsorbent that is an adsorption substrate is often proportional to the volume-based specific surface area. Therefore, the higher the volume reference specific surface area (surface area per unit volume), the higher the adsorption performance per unit volume, and it is easier to achieve high-speed processing and high-capacity processing when packed in a column or tank.
  • the shape of the porous molded body of the present embodiment may be in the form of particles, a column, a hollow cylinder, a thread, a hollow fiber, a sheet, etc., by a molding step in a method for manufacturing a porous molded body described later. it can.
  • the porous molded body when used as an adsorbent in the water treatment field, it is particulate from the viewpoint of pressure loss, contact area effectiveness, and ease of handling when packed into a column or the like and passed through.
  • spherical particles (not only spherical but may be elliptical) may be preferable.
  • the maximum length of the spherical particles is the particle diameter
  • the average value is the average particle diameter.
  • the average particle diameter can be obtained by observing the surface of the molded body with an electron microscope or a stereomicroscope and actually measuring the surface of the molded body. For example, when the particles of the porous molded body are true spheres, the diameter is the diameter, and when the particles are not true spheres, the maximum length is the particle diameter.
  • the “spherical shape” may be any shape that is substantially regarded as a substantially spherical shape, and does not require a perfect spherical shape.
  • a preferred average particle size range is 100 to 2500 ⁇ m, and 200 to 2000 ⁇ m is more preferred.
  • the average particle size is 100 ⁇ m or more, pressure loss is suppressed when the column or tank is packed, and when the average particle size is 2500 ⁇ m or less, the surface area when the column or tank is packed is increased. Increases processing efficiency.
  • the average particle diameter can be obtained by the same method as that for the spherical body, and the preferable numerical range of the average particle diameter is also the same.
  • the method for producing the porous molded body of this embodiment is as follows: A pulverization / mixing step of obtaining a slurry by pulverizing and mixing the good solvent of the organic polymer resin, the inorganic ion adsorbent, and the water-soluble polymer; The organic polymer resin is mixed and dissolved in the slurry to obtain a molding slurry, A solidification step of forming the molding slurry and coagulating in a poor solvent; Have.
  • the organic polymer resin is a polyethersulfone resin and / or a polysulfone resin, and is an organic polymer resin having a hydroxyl group.
  • the organic polymer resin in the present embodiment can be produced by a generally known method. For example, in an organic solvent, an alkali metal compound, a dihalogenodiphenyl compound represented by the general formula (I), and a dihydric phenol compound represented by the general formula (II-1) and / or (II-2) Can be produced by polycondensation.
  • the dihydric phenol compound represented by the general formula (II-1) and / or (II-2) is reacted in advance with an alkali metal compound, and the reaction product is reacted with the divalent compound represented by the general formula (I). It can also be produced by polycondensation with a halogenodiphenyl compound.
  • X represents Cl or F
  • R is a hydrogen substituent on the benzene ring, and each is the same or different. Alternatively, it represents an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 8 carbon atoms, and m represents an integer of 0 to 3.
  • Y represents any one selected from the group consisting of a direct bond, O, S, SO 2 , CO, C (CH 3 ) 2 , CH (CH 3 ), and CH 2 .
  • Examples of the compound represented by the formula (I) include 4,4′-dichlorodiphenyl sulfone.
  • the polyethersulfone resin represented by the formula (2) is a compound represented by the above formula (II-1) wherein Y is SO 2 (for example, 4,4′-dihydroxydiphenylsulfone (bisphenol- S) etc.).
  • the polyallylsulfone resin represented by the above formula (3) uses a compound in which Y is a direct bond (eg, 4,4′-biphenol) as the compound represented by the above formula (II-1). Can be manufactured.
  • the polysulfone resin represented by the above formula (4) is a compound represented by the above formula (II-1) wherein Y is C (CH 3 ) 2 (for example, 2,2-bis (4-hydroxy Phenyl) propane (bisphenol-A)).
  • the dihalogenodiphenyl compound is usually used in an equimolar amount with respect to the dihydric phenol compound. Further, in order to finely adjust the molecular weight of the organic polymer resin and the composition of the end groups, the dihydric phenol compound can be used in an excessive amount or a slight amount from an equimolar amount. In order to adjust the molecular weight and the terminal group composition, a small amount of monohalogenodiphenyl compound or monohydric phenol compound can be added to the polymerization solution.
  • alkali metal compound used for the polycondensation reaction examples include alkali metal carbonates, alkali metal hydroxides, alkali metal hydrides, alkali metal alkoxides, and the like.
  • alkali metal carbonates such as potassium carbonate and sodium carbonate are preferable, and anhydrous alkali metal salts such as anhydrous potassium carbonate and anhydrous sodium carbonate are particularly preferable.
  • the organic solvent used for the polycondensation reaction examples include the following.
  • the organic solvent may be a mixture of two or more.
  • Sulfoxide solvents such as dimethyl sulfoxide and hexamethylene sulfoxide;
  • Amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, Piperidone solvents such as N-methyl-2-pyrrolidone and N-methyl-2-piperidone;
  • 2-imidazolinone solvents such as 1,3-dimethyl-2-imidazolidinone, Diphenyl compounds such as diphenyl ether and diphenyl sulfone,
  • Halogen solvents such as methylene chloride, chloroform, dichloroethane, tetrachloroethane, trichloroethylene, lactone solvents such as ⁇ -butyrolactone
  • Examples include sulfolane-based solvents such as sulfolane.
  • the water azeotropic solvent is a solvent that is compatible with an aprotic polar solvent and forms an azeotropic mixture with water under 0.101 MPa. Two or more water azeotropic solvents may be used. Although it does not specifically limit as a specific example of a water azeotropic solvent, For example, the following are mentioned.
  • Hydrocarbon solvents such as pentane, hexane, heptane, octane, cyclohexane, dodecane, benzene, toluene, xylene, naphthalene, ethylbenzene, Ether solvents such as diisopropyl ether, ethyl butyl ether, dioxane, Ketone solvents such as acetylacetone and methyl ethyl ketone; Alcohol solvents such as ethanol, isopropanol, n-propanol, isobutyl alcohol, hexanol, benzyl alcohol, Esters such as ethyl acetate, methyl acetate, butyl acetate, butyl butyrate, methyl benzoate, etc.
  • Carboxylic acid solvents such as formic acid, acetic acid, propionic acid, valeric acid, benzoic acid, Halogen solvents such as chloroform, bromoform, 1,2-dichloromethane, 1,2-dichloroethane, carbon tetrachloride, chlorobenzene, hexafluoroisopropanol, Examples include amine solvents such as ethylenediamine, aniline, pyridine, and methylpyridine. A hydrocarbon solvent is preferable, and at least one selected from benzene, toluene, and xylene is more preferable.
  • the amount of water azeotropic solvent used is not particularly limited as long as it can remove water in the system, but it is represented by all monomers (formula (I), formula (II-1), formula (II-2)).
  • the mass is preferably in the range of 0.01 to 10 times the mass, more preferably 0.02 to 5 times the mass of the compound.
  • the reaction temperature of the polycondensation reaction depends on the characteristics of the organic solvent to be used, but it is usually preferably carried out at 140 to 340 ° C.
  • the decomposition reaction of the produced polymer proceeds, so that there is a tendency that a high molecular weight body or a high-purity organic polymer resin cannot be obtained.
  • a molecular weight body cannot be obtained.
  • the reaction time varies greatly depending on the types of reaction raw material components, the type of polymerization reaction, and the reaction temperature, but is usually in the range of 10 minutes to 100 hours, preferably in the range of 30 minutes to 24 hours.
  • a reaction atmosphere it is preferable that oxygen does not exist, and it is preferable to carry out in nitrogen or other inert gas. This is because the alkali metal salt of the dihydric phenol compound generated in the polymerization process is heated in the presence of oxygen to suppress oxidation.
  • the reaction atmosphere is preferably in an inert gas.
  • an appropriate terminal stopper for example, a monofunctional chloride such as methyl chloride, t-butyl chloride, or 4,4′-dichlorodiphenyl sulfone, or a polyfunctional chloride is added to the reaction solution at the end of the polymerization. It is added as a polymer terminator. The temperature at that time can be blocked by, for example, reacting at 90 to 150 ° C.
  • methyl chloride when methyl chloride is used as a terminal terminator, the organic polymer resin has a methyl group.
  • t-butyl chloride When t-butyl chloride is used, it has a t-butyl group, when 4,4′-dichlorodiphenyl sulfone is used, it has a chloro group, and when p-tert-butylphenol is used, t-butyl Has a group.
  • the organic polymer resin obtained by the polycondensation reaction is separated from the reaction solution containing the alkali metal compound used in the reaction. Specifically, it can be separated as a precipitated solid by adding a poor solvent of an organic polymer resin (polyethersulfone resin or polysulfone resin) to the reaction solution, or by adding the reaction solution to the poor solvent. In addition, before depositing using a poor solvent, you may remove an alkali metal compound previously by filtering or centrifuging a reaction solution.
  • the poor solvent of the organic polymer resin in the present embodiment include alcohols such as methanol, ethanol, isopropanol and butanol, nitriles such as acetonitrile, and water.
  • the poor solvent may contain a good solvent for an organic polymer resin such as the organic solvent used in the polymerization reaction as long as the organic polymer resin can be precipitated.
  • the precipitated solid is washed with a poor solvent and then dried to obtain an organic polymer resin powder.
  • the organic polymer resin constituting the porous molded body of the present embodiment preferably has a hydroxyl group and has 5 to 100 mol% of the hydroxyl group at the terminal.
  • the amount of the terminal hydroxyl group of the organic polymer resin is determined by heating the divalent phenol compound and the basic compound in an aprotic polar solvent using the organic polymer resin produced by the above method as a raw material. Can be adjusted.
  • the dihydric phenol compound used in the reaction for adjusting the amount of the terminal hydroxyl group (hereinafter referred to as the reaction) is represented by the following general formula (b-1) and / or (b-2) It is.
  • R in the above formulas (b-1) and (b-2) is a substituent of the benzene ring, which may be the same or different, each having an alkyl group having 1 to 6 carbon atoms and 6 carbon atoms.
  • Y in the formula (b-1) represents any one selected from a direct bond, O, S, SO 2 , CO, C (CH 3 ) 2 , CH (CH 3 ), and CH 2 .
  • dihydric phenol compound examples include the following. Hydroquinone, catechol, resorcin, 4,4'-biphenol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) Bis (4-hydroxyphenyl) alkanes such as ethane, Dihydroxydiphenyl sulfones such as 4,4′-dihydroxydiphenyl sulfone, Examples include dihydroxyphenyl ethers such as 4,4′-dihydroxydiphenyl ether, and these structural isomers may be used.
  • hydroquinone 4,4′-biphenol, 4,4′-dihydroxydiphenylsulfone (bisphenol-S), 2,2-bis (4-hydroxyphenyl) propane, because of availability, practicality, and price.
  • bisphenol-S 4,4′-dihydroxydiphenylsulfone
  • 2,2-bis (4-hydroxyphenyl) propane because of availability, practicality, and price.
  • bisphenol-A bis (4-hydroxyphenyl) methane
  • bisphenol-E 4,4′-ethylidenebisphenol
  • 4,4′-dihydroxydiphenyl ether 4,4′-dihydroxydiphenylsulfone preferable.
  • 4,4′-dihydroxydiphenylsulfone bisphenol-S
  • 2,2-bis (4-hydroxyphenyl) propane bisphenol-A
  • bis (4-hydroxyphenyl) methane bisphenol-F
  • 4,4′-ethylidenebisphenol bisphenol-E
  • 4,4′-dihydroxydiphenylsulfone bisphenol-S
  • 2,2-bis (4-hydroxyphenyl) propane bisphenol-A
  • the amount of the dihydric phenol compound added as described above By controlling the amount of the dihydric phenol compound added as described above, the amount of terminal hydroxyl groups in the finally obtained organic polymer resin and the molecular weight of the organic polymer resin can be controlled.
  • the addition amount of the dihydric phenol compound is 0.001 to 2 with respect to 1 mol of the organic polymer. Double moles are preferred, more preferably 0.01 to 1.5, even more preferably 0.01 to 1 mole, and even more preferably 0.01 to 0.5 moles.
  • the number of moles of the organic polymer is calculated based on the molecular weight of one repeating unit.
  • a basic compound is added to the reaction system in order to improve the reaction rate.
  • a basic compound the following are mentioned, for example.
  • Alkali metal compounds such as anhydrous potassium carbonate and anhydrous sodium carbonate
  • Alkaline earth metal compounds such as calcium hydroxide, magnesium hydroxide, calcium hydrogen carbonate, barium hydrogen carbonate, magnesium hydrogen carbonate, calcium carbonate, Quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; tertiary amines such as trimethylamine and triethylamine; Secondary amines such as N, N-dimethylamine, N, N-diethylamine, Primary amines
  • the addition amount of the basic compound is preferably in the range of 0.1 to 3 times mole, more preferably 0.5 to 1 time mole, with respect to 1 mole of the dihydric phenol compound used.
  • the addition amount of the basic compound exceeds 3 moles relative to 1 mole of the dihydric phenol compound, the molecular weight of the organic polymer resin having a terminal hydroxyl group is too small, which makes recovery and washing difficult.
  • the acidic dihydric phenol compound, the salt of the dihydric phenol compound, and the basic compound itself tend to remain in the polymer, or the organic polymer resin tends to be colored.
  • the molecular weight of the organic polymer resin is too small, the inherent heat resistance, mechanical properties, etc. of the organic polymer resin tend to be impaired.
  • the amount is less than 0.1 times mol, it is difficult to introduce a reactive terminal hydroxyl group.
  • an aprotic polar solvent as the solvent for the reaction.
  • the aprotic polar solvent include dimethyl sulfoxide, N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), N-methyl-2-piperidone, 1 , 3-dimethyl-2-imidazolidinone, and mixtures of two or more thereof, and dimethyl sulfoxide, DMF and NMP are preferred.
  • the amount of the aprotic polar solvent used in the reaction is not particularly limited as long as it is an amount capable of dissolving the organic polymer resin and the dihydric phenol compound.
  • the mass is preferably 0.5 to 20 times, more preferably 2 to 10 times the mass of the compound. If it is less than 0.5 times, the raw organic polymer resin and dihydric phenol compound will not dissolve, and operations such as stirring during the reaction will be difficult, and a uniform reaction will be difficult. In addition, when the amount of the solvent exceeds 20 times, the concentration of the organic polymer resin and the concentration of the dihydric phenol compound are decreased, and the reaction rate tends to be slow, and reprecipitation, washing, and recovery tend to be difficult. Above all, the increase in the amount of solvent affects the decrease in production amount and the solvent recovery cost.
  • an organic solvent other than the aprotic polar solvent can be used in combination.
  • a very small amount of moisture contained in the raw material, moisture entering from the outside during the reaction, binding water of the basic compound used, moisture in the aqueous solution of the basic compound, moisture at the time of preparing the basic compound, etc. Is mixed.
  • hydrolysis of these waters may proceed, and the target reaction, which is a nucleophilic substitution reaction between the organic polymer resin and the dihydric phenol compound, may be inhibited.
  • an organic solvent that forms an azeotrope with water is preferable.
  • an organic solvent that is compatible with an aprotic polar solvent and forms an azeotrope with water under 0.101 MPa is preferable.
  • Such an organic solvent is not particularly limited, and examples thereof include the following. Two or more organic solvents may be used.
  • Hydrocarbon solvents such as pentane, hexane, heptane, octane, cyclohexane, dodecane, benzene, toluene, xylene, naphthalene, ethylbenzene, Ether solvents such as diisopropyl ether, ethyl butyl ether, dioxane, Ketone solvents such as acetylacetone and methyl ethyl ketone; Alcohol solvents such as ethanol, isopropanol, n-propanol, isobutyl alcohol, hexanol, benzyl alcohol, Esters such as ethyl acetate, methyl acetate, butyl acetate, butyl butyrate, methyl benzoate, etc.
  • Carboxylic acid solvents such as formic acid, acetic acid, propionic acid, valeric acid, benzoic acid, Halogen solvents such as chloroform, bromoform, 1,2-dichloromethane, 1,2-dichloroethane, carbon tetrachloride, chlorobenzene, hexafluoroisopropanol, Examples include amine solvents such as ethylenediamine, aniline, pyridine, and methylpyridine. Preferred is a hydrocarbon solvent, and more preferred are benzene, toluene and xylene.
  • the amount of the water azeotropic solvent used is not particularly limited as long as it is an amount capable of removing moisture in the system. The range of ⁇ 10 times mass is preferable, and the amount is more preferably 0.02 to 5 times.
  • the heating temperature in the reaction depends on the type of solvent used, the boiling point of the solvent, the concentration of the reaction solution, the addition amount of the dihydric phenol compound, and the addition amount of the basic compound, but is usually carried out at 100 to 250 ° C. Preferably, it is 100 to 200 ° C.
  • the reaction is carried out at a temperature higher than 250 ° C.
  • the thermal decomposition of the dihydric phenol compound salt and the thermal decomposition of the organic polymer resin itself having a terminal hydroxyl group generated in the reaction system proceed. It becomes difficult to control the above, and the organic polymer resin having a terminal hydroxyl group finally obtained tends to have a tendency to decrease in thermal stability and retention stability and to be colored.
  • this reaction when this reaction is carried out at a temperature lower than 100 ° C., the reaction becomes slow.
  • the time required for the reaction varies greatly depending on the type / addition amount of the dihydric phenol compound, the type / addition amount of the basic compound, the reaction concentration, and the reaction temperature, but is usually in the range of 10 minutes to 10 hours. Preferably, it is carried out in the range of 30 minutes to 5 hours.
  • As the reaction atmosphere it is preferable that oxygen does not exist, and good results can be obtained when the reaction is performed in nitrogen or other inert gas.
  • a basic compound of a dihydric phenol compound is easily oxidized when heated in the presence of oxygen, hindering the intended reaction, and as a result, it becomes difficult to control the molecular weight and the amount of terminal hydroxyl groups introduced, Also causes coloring.
  • An organic polymer resin having a suitable amount of terminal hydroxyl groups is obtained through the above-described reaction for adjusting the amount of terminal hydroxyl groups.
  • This organic polymer resin is separated from the reaction solution containing the basic compound used in the reaction. Specifically, it can be separated as a precipitated solid by adding a poor solvent of an organic polymer resin (polyethersulfone resin or polysulfone resin) to the reaction solution, or by adding the reaction solution to the poor solvent. In addition, before depositing using a poor solvent, you may remove a basic compound previously by filtering or centrifuging a reaction solution.
  • Examples of the poor solvent of the organic polymer resin in the present embodiment include alcohols such as methanol, ethanol, isopropanol, and butanol, nitriles such as acetonitrile, and water. These poor solvents can be used in combination of two or more.
  • the poor solvent may contain a good solvent for an organic polymer resin such as the organic solvent used in the polymerization reaction as long as the organic polymer resin can be precipitated.
  • the organic polymer resin is brought into contact with the acid at any step after precipitation with the solution or poor solvent after the reaction, or after recovery, so that the organic polymer resin is contacted.
  • the contained alkali metal salt can be efficiently removed.
  • an acid used The following are mentioned, Two or more types of mixed acids can also be used.
  • the amount of acid used is not particularly limited because it is affected by the solubility in the solvent used for the reaction, but is preferably in the range of 0.001 to 2 moles per mole of the organic polymer. The amount is preferably 0.01 to 1 mole. When the amount of the acid is less than the above range, the alkali metal salt cannot be sufficiently removed, which is not preferable.
  • the organic polymer resin after the acid contact can be obtained by washing with a poor solvent and then drying.
  • pulverization / mixing step for obtaining a slurry by pulverizing and mixing the good solvent of the organic polymer resin, the inorganic ion adsorbent, and the water-soluble polymer
  • a good solvent of the organic polymer resin, the inorganic ion adsorbent, and the water-soluble polymer are pulverized and mixed to obtain a slurry.
  • the inorganic ion adsorbent can be made into fine particles.
  • the water-soluble polymer functions as a dispersion aid for the inorganic ion adsorbent, improving the efficiency of the pulverization, and further reaggregating the inorganic ion adsorbent. Play a role to prevent.
  • the inorganic ion adsorbent supported on the molded porous molded body has few secondary aggregates.
  • a mechanism in which the water-soluble polymer works as a dispersion aid will be described.
  • the water-soluble polymer is adsorbed on the surface of the solid particles of the inorganic ion adsorbent, so that the wettability of the inorganic ion adsorbent to the good solvent of the organic polymer resin is improved.
  • the air in the aggregate of the inorganic ion adsorbent is replaced with a liquid, and the aggregated inorganic ion adsorbent is loosened in a good solvent.
  • the dispersion state of the solid particles of the inorganic ion adsorbent is improved.
  • the water-soluble polymer having a high molecular weight is bulky, an adsorption layer of the water-soluble polymer is formed on the surface of the solid particles of the inorganic ion adsorbent.
  • the repulsive force between the particles increases due to the increase in the charge on the surface of the solid particles and steric hindrance.
  • the dispersion state of the solid particles of the inorganic ion adsorbent is improved.
  • the secondary aggregate of the inorganic ion adsorbent in the porous molded body is reduced when the porous molded body is formed.
  • the inorganic ion adsorbents used for preparation are uniformly dispersed throughout the porous molded body, all of which are effectively involved in the adsorption, and the contact efficiency with the adsorption target substance becomes extremely high. Further, since there are few secondary aggregates, the secondary aggregates are the starting point, and the porous molded body is rarely cracked, so the durability is improved. Further, the water-soluble polymer has an effect of increasing the porosity of the molded body in addition to the effect as the dispersant described above. In the method for producing a porous molded body in the present embodiment, since a water-soluble polymer is used in the pulverization and mixing steps, the effect brought about in the performance and ease of production of the porous molded body is high.
  • the pulverization time can be shortened.
  • the stability of the slurry is improved, and the inorganic ion adsorbent is less likely to settle even when stored for a long period of time.
  • ⁇ Good solvent for organic polymer resin As a good solvent for the organic polymer resin used in the method for producing a porous molded body of the present embodiment, as long as the organic polymer resin is stably dissolved in excess of 1% by mass under the production conditions of the molded body, It does not specifically limit and a conventionally well-known thing can be used. Examples thereof include N-methyl-2pyrrolidone (NMP), N, N-dimethylacetamide (DMAC), N, N-dimethylformamide (DMF) and the like. These may use only 1 type and may mix and use 2 or more types.
  • NMP N-methyl-2pyrrolidone
  • DMAC N-dimethylacetamide
  • DMF N-dimethylformamide
  • the water-soluble polymer used in the method for producing a porous molded body of the present embodiment is not particularly limited as long as it is compatible with a good solvent for the organic polymer resin and the organic polymer resin.
  • any of natural polymers, semi-synthetic polymers, and synthetic polymers can be used. Examples of natural polymers include guar gum, locust bean gum, carrageenan, gum arabic, tragacanth, pectin, starch, dextrin, gelatin, casein, collagen and the like.
  • Examples of the semisynthetic polymer include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl starch, and methyl starch.
  • Examples of the synthetic polymer include polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl methyl ether, carboxyvinyl polymer, sodium polyacrylate, and polyethylene glycols such as tetraethylene glycol and triethylene glycol.
  • a synthetic polymer is preferable from the viewpoint of improving the supportability of the inorganic ion adsorbent, and polyethylene glycols are more preferable from the viewpoint of improving the porosity.
  • the mass average molecular weight of polyethylene glycols is preferably in the range of 400 to 35,000,000, more preferably in the range of 1,000 to 1,000,000, and still more preferably in the range of 2,000 to 100,000.
  • the mass average molecular weight can be measured by gel permeation chromatography (GPC) analysis after dissolving polyethylene glycol in a predetermined solvent.
  • GPC gel permeation chromatography
  • the amount of water-soluble polymer added should be such that the ratio of water-soluble polymer / (water-soluble polymer + organic polymer resin + organic polymer resin good solvent) is 0.1 to 40% by mass. Is preferred.
  • a porous molded body comprising a fibrous structure that forms a three-dimensional continuous network structure on the outer surface and inside of the porous molded body when the amount of the water-soluble polymer added is 0.1% by mass or more Is obtained uniformly. Moreover, a porous molded object with strong intensity
  • a known dispersant such as a surfactant may be added within a range that does not affect the structure of the porous molded body.
  • the pulverization / mixing means in the pulverization and mixing step is not particularly limited as long as it can pulverize and mix together the inorganic ion adsorbent, the good solvent of the organic polymer resin, and the water-soluble polymer.
  • physical crushing methods such as pressure fracture, mechanical grinding, sonication, and homogenizer can be used.
  • Specific examples thereof include a generator shaft type homogenizer, a blender such as a Waring blender, a pulverizer such as a sand mill and a ball mill, a jet mill, a mortar and pestle, a raid device, and ultrasonic treatment.
  • medium stirring type mills such as a ball mill, an attritor, and a bead mill, are preferable.
  • a bead mill is more preferable in that the inorganic ion adsorbent can be pulverized and mixed to a fine particle size in the nano region.
  • the ball diameter used in the bead mill is not particularly limited, but is preferably in the range of 0.1 to 2 mm. If it is 0.1 mm or more, the ball mass is sufficient, so that the pulverization force is high and the pulverization efficiency is high.
  • the material of the ball used in the bead mill is not particularly limited, but various ceramics such as iron or stainless steel metal, alumina or zirconia oxides, non-oxides such as silicon nitride or silicon carbide Is mentioned.
  • zirconia is excellent in that it is excellent in wear resistance and has little contamination to the product (mixture of worn objects).
  • a molding slurry is obtained by mixing and dissolving the organic polymer resin in the slurry obtained by the pulverization and mixing step.
  • the addition amount of the organic polymer resin is such that the ratio of organic polymer resin / (organic polymer resin + water-soluble polymer + organic polymer resin good solvent) is 5 to 40% by mass. It is preferable.
  • the content of the organic polymer resin is 5% by mass or more, a strong porous molded body is obtained, and when it is 40% by mass or less, a porous molded body having a high porosity is obtained. More preferably, it is 7 to 30% by mass.
  • the molding slurry obtained in the dissolution step is coagulated in a poor solvent to form the molding slurry to obtain a porous molded body.
  • a solvent having a solubility of the organic polymer resin of 1% by mass or less can be used under the conditions of the solidifying step.
  • liquids that do not dissolve water or organic polymer resins such as alcohols such as methanol and ethanol, ethers, and aliphatic hydrocarbons such as n-hexane and n-heptane.
  • it is water.
  • a good solvent is brought in from the previous process, and the concentration of the good solvent changes at the start and end of the coagulation process. Therefore, it is preferable to adopt a method in which a good solvent is added to a poor solvent in advance, and the concentration is controlled and solidified while separately adding the poor solvent so as to maintain the initial concentration. By adjusting the concentration in such a manner, the structure (opening degree of the surface and particle shape) of the porous molded body can be controlled.
  • the content of the organic polymer resin with respect to water is preferably 0 to 60% by mass and more preferably 0 to 50% by mass in the coagulation step.
  • the content of the good solvent of the organic polymer resin is 60% by mass or less, an effect of improving the shape of the porous molded body can be obtained.
  • the solidification rate of the molding slurry can be controlled by controlling the amount and speed of adding the good solvent of the organic polymer resin to the poor solvent.
  • the temperature of the poor solvent is not particularly limited, but preferably from ⁇ 30 ° C. to 90 ° C., more preferably from 0 ° C. to 90 ° C., from the viewpoint of the stability of the state of the molded body in the poor solvent. Preferably, it is 0 ° C to 80 ° C.
  • the form of the porous molded body of the present embodiment can take any form such as a particulate form, a thread form, a sheet form, a hollow fiber form, a cylindrical form, and a hollow cylindrical form, depending on the method for forming the forming slurry.
  • the method of forming the particulate porous molded body is not particularly limited, but the molding slurry stored in the container is scattered from the nozzle provided on the side surface of the rotating container, and droplets are formed. Examples of the method include a rotating nozzle method.
  • a molding slurry (a mixed slurry of an organic polymer resin, a good solvent for the organic polymer resin, an inorganic ion adsorbent, and a water-soluble polymer) is sprayed from a 1-fluid nozzle or a 2-fluid nozzle. And a method of coagulating in a coagulation bath.
  • the rotating nozzle method is particularly preferable from the viewpoint that particles having a uniform particle size distribution can be obtained.
  • the rotating nozzle method is a method in which droplets are formed by scattering molding slurry by centrifugal force from a nozzle provided on a side surface of a rotating container that rotates at high speed.
  • the nozzle diameter is preferably in the range of 0.1 mm to 10 mm, and more preferably in the range of 0.1 mm to 5 mm. If the thickness is 0.1 mm or more, droplets are likely to scatter, and if it is 10 mm or less, the spread of the particle size distribution can be suppressed.
  • Centrifugal force is expressed by centrifugal acceleration, preferably in the range of 5 to 1500 G, more preferably in the range of 10 to 1000 G, and still more preferably in the range of 10 to 800 G.
  • a method for forming a thread-like or sheet-like porous molded body include a method of extruding a molding slurry from a spinneret or die having a corresponding shape and solidifying it in a poor solvent.
  • a hollow fiber-shaped molded body when a hollow fiber-shaped molded body is formed, it can be molded in the same manner by using a spinning nozzle composed of an annular orifice.
  • the porous molded body of this embodiment can be used mainly for water treatment applications.
  • it can be suitably used as an adsorbent for ions of phosphorus, boron, arsenic, fluorine and the like.
  • a phosphorus adsorbent is more preferable.
  • the porous molded body of the present embodiment has a feature that the communication holes are developed in a three-dimensional network inside the molded body, the contact efficiency is high, and the chemical resistance against an oxidizing agent and the like is also high. .
  • the inorganic ion adsorbent of the porous molded body of the present embodiment is zeolite, and further exhibits antibacterial properties when silver is supported on the zeolite. Further, when palladium or platinum is supported, it can be used as a freshness retaining agent because it adsorbs ethylene.
  • the physical properties of the molded body were measured by the following methods.
  • the strength retention rate of the porous molded body was calculated by the following formula.
  • Strength retention (%) (bulk specific gravity ⁇ 10 ⁇ Wh) / (bulk specific gravity ⁇ 10) ⁇ 100
  • the strength retention was 95% or more, it was judged that the repeated useability and durability against the oxidizing agent were practically good. Preferably, it is 97% or more.
  • surface analysis data (specifically, frequency distribution of X-ray intensity (count number)) obtained by surface analysis was statistically processed.
  • the frequency distribution of the X-ray intensity of the component elements constituting the inorganic ion adsorbent is integrated from the low X-ray intensity (low concentration) side of the X-ray intensity, and the cumulative frequency of the X-ray intensity reaches 5%.
  • the value of X-ray intensity was taken as 5% relative cumulative X-ray intensity.
  • the frequency distribution of the X-ray intensity of the component elements constituting the inorganic ion adsorbent is integrated from the small X-ray intensity (low concentration) side, and the total of the X-ray intensity frequencies is 95.
  • the value of X-ray intensity reaching% was taken as 95% relative cumulative X-ray intensity.
  • the porous molded body was vacuum-dried at room temperature for 24 hours. The mass of the dried porous molded body was measured and taken as the mass Wd (g) when the porous molded body was dried. Next, the dried molded body was fired at 800 ° C. for 2 hours using an electric furnace, and the mass of ash was measured to obtain the mass of ash Wa (g). From the following formula, the supported amount of the inorganic ion adsorbent was determined.
  • Amount of inorganic ion adsorbent supported (%) Wa / Wd ⁇ 100
  • Wa is the mass (g) of the ash content of the porous molded body
  • Wd is the mass (g) when the porous molded body is dried. If the supported amount of the inorganic ion adsorbent was 65% or more, it was judged that the harmful substance was excellent in high-speed removal performance.
  • S BET is the surface area (m 2 / g) per unit mass of the porous molded body
  • W is the dry mass (g) of the porous molded body
  • V is its apparent volume (cm 3 ). is there.
  • the particle size distribution of the inorganic ion adsorbent is determined by measuring the particle size distribution of the inorganic ion adsorbent using a laser diffraction / scattering particle size distribution analyzer (LA-950 (trade name) manufactured by HORIBA). (D50) was measured as an average particle diameter.
  • LA-950 laser diffraction / scattering particle size distribution analyzer
  • the surface of the porous molded body was observed with a scanning electron microscope or a stereoscopic microscope.
  • the S-800 scanning electron microscope manufactured by Hitachi, Ltd. was used for observation of the molded body with a scanning electron microscope (SEM). From the image of the surface of the particle, the particle diameter was measured when the particle was true spherical, and when the particle was other than true spherical, the maximum length was measured as the particle diameter. An average was calculated for the diameter or maximum length of 50 or more samples actually measured, and the average particle diameter was obtained.
  • the porous molded body wet in pure water was put into this specific gravity bottle, and the pure water was filled up to the marked line, and the mass was measured to obtain (Wwm).
  • this porous molded body was taken out from the specific gravity bottle and vacuum-dried at room temperature for 24 hours to obtain a dried porous molded body.
  • the mass of the dried porous molded body was measured to obtain (M).
  • the specific gravity ( ⁇ ) of the porous molded body and the porosity (Pr) of the porous molded body were determined according to the following calculation formula.
  • Pr is the porosity (%)
  • W1 is the mass (g) when the molded body is wet
  • W0 is the mass (g) after drying the molded body
  • is the specific gravity (g / g) of the molded body. cm 3
  • M is the mass (g) after drying the molded body
  • Ww is the mass (g) when the specific gravity bottle is full
  • Wwm is the mass (g) when the molded body containing water and pure water are added to the specific gravity bottle.
  • Trisodium phosphate Na 3 PO 4 ⁇ 12H 2 O
  • a solution adjusted to pH 7 with sulfuric acid was used as an adsorption stock solution.
  • a porous molded body (8 mL) was packed in a column (inner diameter: 10 mm), and the adsorption stock solution was passed at a rate of 240 mL / hr (SV30).
  • the effluent (treatment solution) from the column is sampled every 30 minutes, and the phosphate ion concentration (phosphorus concentration) in the treated water is measured.
  • the adsorption amount (adsorption amount mg-P / L-porous molded body (R)) was determined.
  • the phosphate ion concentration was measured using a phosphate measuring apparatus Phosfax Compact (trade name) manufactured by HACH. If the phosphorus adsorption amount was 4.0 (gP / L-porous molded body (R)) or more, it was judged that the adsorption capacity was large and the phosphorous adsorbent was good.
  • Example 1 80 g of polyethylene glycol (PEG 35,000, Merck) was dissolved in 4400 g of N-methyl-2pyrrolidone (NMP, Mitsubishi Chemical) to obtain a uniform solution.
  • a bead mill (SC100, Mitsui Mining Co., Ltd.) in which 2000 g of hydrated cerium oxide powder (Iwatani Sangyo Co., Ltd.) having an average particle size of 2.0 ⁇ m was added to 4480 g of this solution and filled with zirconia balls having a diameter of 0.8 mm ⁇ . The mixture was pulverized and mixed for 30 minutes to obtain a yellow slurry.
  • the slurry was formed and discharged into a 200 L capacity coagulation bath made of 60 ° C. water to coagulate the molding slurry. Furthermore, washing
  • the physical properties of this spherical porous molded body are shown in Table 1 below. The strength retention rate was maintained at 99% or more, and it was found that the durability against the oxidizing agent was high. Moreover, the surface and fractured surface of the obtained porous molded body were observed using a scanning electron microscope (SEM). An electron micrograph at a magnification of 150 times and an electron micrograph at a magnification of 10,000 times are shown in FIGS. 1 and 2, respectively.
  • Example 1 that the porous molded body of Example 1 has communication holes and a porous structure. Furthermore, when the whole fractured surface was observed, it was confirmed that the inorganic ion adsorbent was uniformly dispersed and supported. Furthermore, surface analysis inside the compact was performed for cerium (Ce), which is a constituent element of the inorganic ion adsorbent, using an electron beam microanalyzer (EPMA). As a result of analysis, the relative cumulative X-ray intensity ratio was 1.8. In addition, it is observed from FIG. 2 that the inorganic ion adsorbent is supported on the outer surface and the inside of the fibrous structure forming a three-dimensional continuous network structure on the outer surface and inside of the porous molded body. It was done.
  • Ce cerium
  • EPMA electron beam microanalyzer
  • the dispersion state in the porous molded body of the inorganic ion adsorbent is good, there are few secondary aggregates called so-called lumps, the contact efficiency between the inorganic ion adsorbent and the ions to be adsorbed is high, It was found that the adsorption performance was good. Furthermore, since there were few secondary aggregates of an inorganic ion adsorption body, it turned out that durability is also high because there are few cases where a secondary aggregate breaks from the starting point.
  • Example 2 As an organic polymer resin, a polyethersulfone resin having a hydroxyl group (Sumitomo Chemical Co., Ltd., SUMIKAEXCEL 5003PS (trade name), OH terminal grade, terminal hydroxyl group composition 90 (mol%)) 540 g, and a poly having a terminal Cl group 60 g of ether sulfone resin (Sumitomo Chemical Co., Ltd., Sumika Excel 5200P (trade name), terminal hydroxyl group composition 0 (mol%)) was mixed and used. The terminal hydroxyl group composition of the organic polymer resin after mixing was 81 mol%. Other conditions were the same as in Example 1 to obtain a spherical porous molded body having an average particle diameter of 600 ⁇ m. The physical properties of this spherical porous molded body are shown in Table 1 below.
  • Example 3 As an organic polymer resin, a polyethersulfone resin having a hydroxyl group (Sumitomo Chemical Co., Ltd., SUMIKAEXCEL 5003PS (trade name), OH terminal grade, terminal hydroxyl group composition 90 (mol%)) 60 g and poly having a terminal Cl group A mixture of 540 g of ether sulfone resin (Sumitomo Chemical Co., Ltd., Sumika Excel 5200P (trade name), terminal hydroxyl group composition 0 (mol%)) was used. The terminal hydroxyl group composition of the organic polymer resin after mixing was 9 mol%. Other conditions were the same as in Example 1 to obtain a spherical porous molded body having an average particle diameter of 600 ⁇ m. The physical properties of this spherical porous molded body are shown in Table 1.
  • Example 4 Polyethersulfone resin having a hydroxyl group (Sumitomo Chemical Co., Ltd., Sumika Excel 5003PS (trade name), OH terminal grade, terminal hydroxyl group composition 90 (mol%)) 540 g as an organic polymer resin, and polysulfone having a terminal Cl group A mixture of 60 g of resin (Solvay Advanced Polymers Co., Ltd., Udel P-3500LCD (trade name), terminal hydroxyl group composition 0 (mol%)) was used. The terminal hydroxyl group composition of the organic polymer resin after mixing was 81 mol%. Other conditions were the same as in Example 1 to obtain a spherical porous molded body having an average particle diameter of 600 ⁇ m. The physical properties of this spherical porous molded body are shown in Table 1.
  • the mixture was heated to 130 ° C. while passing nitrogen gas. As the temperature of the reaction system increased, the reflux of toluene was started, water in the reaction system was removed by azeotropic distillation with toluene, and azeotropic dehydration was performed at 130 ° C. for 4 hours while returning the toluene to the reaction system. Thereafter, 4,4′-dichlorodiphenylsulfone (hereinafter abbreviated as DCDPS) (57.40 g, 0.20 mol) was added to the reaction system together with 40 g of toluene, and the reaction system was heated to 150 ° C.
  • DCDPS 4,4′-dichlorodiphenylsulfone
  • the mixture was reacted for 4 hours while distilling toluene to obtain a dark brown solution with high viscosity.
  • the temperature of the reaction solution was cooled to room temperature, and the reaction solution was dropped into 1 kg of methanol to precipitate polymer powder.
  • the polymer powder was recovered by filtration, 1 kg of water was added thereto, 1N hydrochloric acid was further added, and the slurry solution was added until the pH reached 3-4 to make it acidic. After collecting the polymer powder by filtration, the polymer powder was washed twice with 1 kg of water. Furthermore, it wash
  • PES indicates a polyethersulfone resin
  • PSF indicates a polysulfone resin
  • the porous molded body of the present invention includes an adsorbent, a filtering agent, a deodorizing agent, an antibacterial agent, a hygroscopic agent, a food freshness-preserving agent, various chromatographic carriers, catalysts, waste water, seawater, etc.
  • an agent for recovering valuable materials for example, uranium, lithium, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 有害物質を高速除去でき、吸着容量が大きく、洗浄薬剤に対する耐久性が高く、さらには繰り返し使用しても破砕が少ない多孔性成形体として、有機高分子樹脂と無機イオン吸着体とを含有し、前記有機高分子樹脂が、ポリエーテルスルホン樹脂及び/又はポリスルホン樹脂であり、水酸基を有する有機高分子樹脂である多孔性成形体を提供する。

Description

多孔性成形体及びその製造方法
 本発明は、多孔性成形体及びその製造方法に関する。
 近年、環境汚染による富栄養化の問題から、飲料水、工業用水、工業排水、下水道処理水、各種環境水中のリン、ホウ素、ヒ素、フッ素イオン等の環境基準が強化されており、それらを除去する技術への要望が高まっている。
 リンは、富栄養化の原因物質の一つであり、特に閉鎖水域で規制が強まっている。また、枯渇が危惧されている元素でもあるため、排水中から回収し、再利用する技術が求められている。
 ホウ素は、植物の育成にとって必須の元素であるが、過剰に存在すると植物の成長に悪影響を及ぼすことが知られている。さらに、人体に対しても、飲料水中に含まれると健康への影響、特に生殖機能の低下等の健康障害を起こす可能性が指摘されている。
 ヒ素は、非鉄金属精錬工業の排水や、地熱発電所の熱排水、特定地域の地下水等に含まれている。ヒ素の毒性については昔より知られており、生体への蓄積性があり、慢性中毒や、体重減少、知覚傷害、肝臓障害、皮膚沈着、皮膚がんなどを発症すると言われている。
 フッ素は、金属精錬工業、ガラス工業、電子材料工業等からの排水に多く含まれる。フッ素の人体へ影響が懸念されており、フッ素を過剰に摂取すると、斑状歯、骨硬化症、甲状腺障害等の慢性フッ素中毒症を引き起こすことが知られている。
 これらの有害物質の排出量は、産業の発達に伴い、年々増加しており、これらの有害物質を効率的に除去する技術が求められている。
 上述したような各種有害物質を除去する技術としては、例えば、ジルコニウム含水亜鉄酸塩や、含水酸化セリウム等の無機イオン吸着体粉末を高分子材料に担持させた吸着剤を用いる技術が知られている。
 特許文献1には、有機高分子樹脂と無機イオン吸着体を含む多孔性成形体の発明が記載され、リンやホウ素等を吸着することが記載されている。加えて、この多孔性成形体の製造方法についても記載されている。
国際公開第2005/056175号
 上記従来技術における無機イオン吸着体が担持された多孔性成形体では、有機高分子樹脂と無機イオン吸着体との担持性(接着強度)を高めるために、互いに親和性の高い組み合わせを選択する必要がある。
 例えば、ジルコニウム含水亜鉄酸塩や含水酸化セリウム等の無機イオン吸着体は、親水性であるため、有機高分子樹脂としては親水性のエチレンビニルアルコール共重合体(EVOH)やポリアクリロニトリル(PAN)を選択することが知られている。
 上記のような従来技術における無機イオン吸着体が担持された多孔性成形体を用いて、排水中のリンやフッ素等のイオンを除去する水処理用途に使用した場合、排水を通水している間に、微生物による汚れ(ファウリング)が発生し、ひどい場合は通水させるのに圧力上昇を起こすという問題を有している。
 このようなファウリングを洗浄するには、次亜塩素酸ナトリウム等の酸化剤を用いて洗浄するのが一般的である。
 しかしながら、EVOHやPAN等の親水性の有機高分子樹脂は、次亜塩素酸ナトリウム等の酸化剤に対する耐性が低いため、酸化剤を用いた洗浄方法を積極的に適用することができないという問題を有している。
 そこで本発明においては、用水や排水中に含まれるリン、ホウ素、フッ素、ヒ素等の有害物質を高速に吸着除去でき、また吸着容量が大きく、かつ次亜塩素酸ナトリウム等の酸化剤に対する耐久性が高く、繰り返し使用できる、吸着剤として好適な多孔性成形体及びその製造方法を提供することを目的とする。
 本発明者らは、上記従来技術の課題を解決するために、鋭意研究を重ねた結果、水酸基を有する有機高分子樹脂と、吸着基質である無機イオン吸着体粉末とを含む多孔性成形体は、有害物質を高速除去でき、吸着容量が大きく、酸化剤等の洗浄薬剤に対する耐久性が高く、繰り返し使用可能な、吸着剤に適した多孔性成形体であることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
〔1〕
 有機高分子樹脂と、無機イオン吸着体とを含有し、前記有機高分子樹脂が、ポリエーテルスルホン樹脂及び/又はポリスルホン樹脂であり、水酸基を有する有機高分子樹脂である多孔性成形体。
〔2〕
 前記有機高分子樹脂が、末端に水酸基を有している前記〔1〕に記載の多孔性成形体。
〔3〕
 前記有機高分子樹脂の末端水酸基組成が、5~100モル%である前記〔1〕又は〔2〕に記載の多孔性成形体。
〔4〕
 前記有機高分子樹脂が、下記一般式(1)で表される有機高分子樹脂である前記〔1〕乃至〔3〕のいずれか一に記載の多孔性成形体。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(1)において、nは1以上の整数を表し、Yは、直接結合、O、S、SO2、CO、C(CH32、CH(CH3)、及びCH2から選ばれるいずれかを表し、ベンゼン環の水素は、炭素数1~6のアルキル基又は炭素数6~8のアリール基で置換されていてもよい。
〔5〕
 前記有機高分子樹脂が、下記一般式(2)で示されるポリエーテルスルホン樹脂である前記〔1〕乃至〔4〕のいずれか一に記載の多孔性成形体。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(2)において、nは、2以上の整数を表し、ベンゼン環の水素は、炭素数1~6のアルキル基又は炭素数6~8のアリール基で置換されていてもよい。
〔6〕
 前記有機高分子樹脂が、連通孔を具備する多孔質構造を形成しており、
 前記有機高分子樹脂の外表面と内部に無機イオン吸着体が担持されている前記〔1〕乃至〔5〕のいずれか一に記載の多孔性成形体。
〔7〕
 空孔率Pr(%)が50%~95%である前記〔1〕乃至〔6〕のいずれか一に記載の多孔性成形体。
〔8〕
 前記無機イオン吸着体の担持量が65~95%である前記〔1〕乃至〔7〕のいずれか一に記載の多孔性成形体。
〔9〕
 相対累積X線強度比が1~10である前記〔1〕乃至〔8〕のいずれか一に記載の多孔性成形体。
〔10〕
 平均粒子径が100~2500μmの球状体である前記〔1〕乃至〔9〕のいずれか一に記載の多孔性成形体。
〔11〕
 前記無機イオン吸着体が、
 下記式(i)で表される金属酸化物を少なくとも一種含有している前記〔1〕乃至〔10〕のいずれか一に記載の多孔性成形体。
 MNxn・mH2O  ・・・(i)
(式(i)中、xは0~3、nは1~4、mは0~6であり、M及びNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群より選ばれる金属元素であり、互いに異なるものである。)
〔12〕
 前記金属酸化物が、下記(a)~(c)からなる群より選ばれる、1種又は2種以上の混合物である前記〔11〕に記載の多孔性成形体。
(a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン、及び水和酸化イットリウム
(b)チタン、ジルコニウム、スズ、セリウム、ランタン、及びイットリウムからなる群から選ばれる金属元素と、アルミニウム、珪素、及び鉄からなる群から選ばれる金属元素との複合金属の酸化物
(c)活性アルミナ
〔13〕
 前記無機イオン吸着体が、硫酸アルミニウム添着活性アルミナ及び/又は硫酸アルミニウム添着活性炭を含有している前記〔1〕乃至〔12〕のいずれか一に記載の多孔性成形体。
〔14〕
 前記〔1〕乃至〔13〕のいずれか一に記載の多孔性成形体を含む吸着剤。
〔15〕
 有機高分子樹脂及び無機イオン吸着体を含有する多孔性成形体の製造方法であって、
 前記有機高分子樹脂の良溶媒と、前記無機イオン吸着体と、水溶性高分子とを、粉砕、混合してスラリーを得る、粉砕・混合工程と、
 前記スラリーに前記有機高分子樹脂を混合し溶解させ、成形用スラリーを得る、溶解工程と、
 前記成形用スラリーを、前記有機高分子樹脂の貧溶媒中で凝固させる凝固工程と、
を、有する多孔性成形体の製造方法。
〔16〕
 前記粉砕・混合工程を、媒体撹拌型ミルを用いて行う前記〔15〕に記載の多孔性成形体の製造方法。
〔17〕
 前記有機高分子樹脂の良溶媒が、N-メチル-2ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド(DMF)からなる群より選ばれる1種以上である前記〔15〕又は〔16〕に記載の多孔性成形体の製造方法。
〔18〕
 前記貧溶媒が水を含む、前記〔15〕乃至〔17〕のいずれか一に記載の多孔性成形体の製造方法。
〔19〕
 前記凝固工程において、前記貧溶媒と、前記良溶媒との混合比率が、100~40質量%:0~60質量%である前記〔18〕に記載の多孔性成形体の製造方法。
〔20〕
 前記凝固工程が、回転する容器の側面に設けたノズルから、前記容器中に収納されている前記成形用スラリーを飛散させて液滴を形成させる工程を含む前記〔15〕乃至〔19〕のいずれか一に記載の多孔性成形体の製造方法。
〔21〕
 前記粉砕・混合工程において、前記水溶性高分子を、水溶性高分子/(水溶性高分子+有機高分子樹脂+有機高分子樹脂の良溶媒)が0.1~40質量%の割合となるようにして、添加する前記〔15〕乃至〔20〕のいずれか一に記載の多孔性成形体の製造方法。
 本発明によれば、有害物質を高速除去でき、吸着容量が大きく、洗浄薬剤に対する耐久性が高く、さらに、無機イオン吸着体と有機高分子樹脂の親和性が高いため、無機イオン吸着体が強く担持されており、繰り返し使用しても破砕することが少ない、吸着剤に適した多孔性成形体が得られる。
実施例1の成形体の割断面の電子顕微鏡写真を示す(倍率150倍)。 実施例1の成形体の割断面の電子顕微鏡写真を示す(倍率10,000倍)。
 以下、本発明を実施するための形態(以下、本実施形態と言う。)について、説明するが、本発明は以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
〔多孔性成形体〕
 本実施形態の多孔性成形体は、有機高分子樹脂と、無機イオン吸着体とを含有し、前記有機高分子樹脂が、ポリエーテルスルホン樹脂及び/又はポリスルホン樹脂であり、水酸基を有する有機高分子樹脂である多孔性成形体である。
 (有機高分子樹脂)
 上記のように、本実施形態の多孔性成形体を構成する有機高分子樹脂は、多孔質構造を形成し、ポリエーテルスルホン樹脂及び/又はポリスルホン樹脂であり、かつ、水酸基を有する有機高分子樹脂である。
 有機高分子樹脂が、水酸基を有することによって、無機イオン吸着体との親和性が向上し、無機イオン吸着体の剥離を防止できる。
 本実施形態において、ポリエーテルスルホン樹脂とは、スルホニル基とエーテル結合を含む繰り返し構造を持った高分子化合物の樹脂である。
 ポリエーテルスルホン樹脂としては、下記一般式(1)で示される有機高分子樹脂が好ましい。下記一般式(1)において、nは1以上の整数を表し、Yは、直接結合、O、S、SO2、CO、C(CH32、CH(CH3)、及びCH2から選ばれるいずれかを表す。なお、下記一般式(1)において、ベンゼン環の水素が置換されていてもよく、例えば、炭素数1~6のアルキル基又は炭素数6~8のアリール基で置換されていてもよい。
 より好ましくは、YがSO2である下記一般式(2)で表されるポリエーテルスルホン樹脂である。
 下記一般式(2)において、nは2以上の整数を表し、ベンゼン環の水素は置換されていてもよく、例えば、炭素数1~6のアルキル基又は炭素数6~8のアリール基で置換されていてもよい。
 本実施形態において、ポリスルホン樹脂とは、スルホニル基を含む繰り返し構造を持った高分子化合物の樹脂である。
 ポリスルホン樹脂は、ビスフェノールA残基、又はビフェニレン基を有していることが好ましい。
 より好ましくは、下記一般式(1)で示される有機高分子樹脂である。
 さらに好ましくは、下記一般式(1)で表される有機高分子樹脂において、Yが直接結合である下記一般式(3)で表されるポリアリルスルホン樹脂、またはYがC(CH32である下記一般式(4)で表されるポリスルホン樹脂である。
 下記一般式(3)及び(4)において、nは1以上の整数を表し、ベンゼン環の水素は置換されていてもよく、例えば、炭素数1~6のアルキル基又は炭素数6~8のアリール基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 有機高分子樹脂は、質量平均分子量(Mw)が10,000~140,000であることが好ましく、さらに好ましくは20,000~90,000、より好ましくは30,000~80,000である。
 質量平均分子量は、ゲルパーミエーション・クロマトグラフィー(GPC)法により測定できる。
 有機高分子樹脂は、末端に水酸基を有することが好ましい。
 末端基として水酸基を有していることによって、本実施形態の多孔性成形体において、優れた無機イオン吸着体の担持性能が発揮できる。加えて、疎水性が高い有機高分子樹脂が、末端に水酸基を有しているため、本実施形態の多孔性成形体を水処理用途に使用しても、ファウリングが発生しにくい。
 有機高分子樹脂において、全末端基中、水酸基が末端基である割合(以下、末端水酸基組成)は、5~100モル%であることが好ましい。
 末端水酸基組成が5モル%以上であると、無機イオン吸着体との親和性が増して担持性能に優れたものとなり、100モル%以下であると、酸化剤等に対する耐薬品に優れているものとなる。末端水酸基組成は、より好ましくは10~100モル%であり、さらに好ましくは40~100モル%であり、さらに好ましくは60~100モル%である。
 有機高分子樹脂の末端水酸基の定量については、核磁気共鳴法(NMR)により測定できる。
 すなわち末端基に隣接する(オルト位)のプロトンのシグナルが、水酸基(HOH)か、それ以外(H)(例えばCl基(HCl)やt-ブチル基(H)等)で分離し、シグナルの積分値から定量することができる。1H-NMRシグナルの面積比は周知の通り、そのモル数を反映していることから、末端水酸基組成(モル%)は、下記式により算出することができる。
[末端水酸基組成(モル%)]=[HOHのピーク面積]/([HOHのピーク面積]+[Hピーク面積])×100
 具体的には、以下の方法で測定できる。まず、多孔性成形体を乳鉢等を用いてすり潰し、下記溶媒の沸点以下の温度に加熱して溶解し、遠心分離法により、有機高分子樹脂を分離して、その上澄み液を測定サンプルとする。
 重水素化N,N-ジメチルホルムアミド(d-DMF)溶媒中、400MHz 1H-NMRを用い、積算回数512回で、高分解能で観測できる。
 有機高分子樹脂の末端基として、末端水酸基と末端クロル基が存在する場合、7.7ppmにクロル置換された芳香族炭素に隣接する2つのプロトン(HCl)が観測でき、6.9ppmに水酸基で置換された芳香族炭素に隣接する2つのプロトン(HOH)が観測できる。そして、末端水酸基と末端クロル基が1:1で存在する場合は、末端水酸基組成は、50モル%で表すことができる。
 また、有機高分子樹脂の末端基が、水酸基、クロル基、t-ブチル基から構成される場合、NMRでは、末端クロル基、末端水酸基、新たなピークとして1.2ppm付近にt-ブチル置換された芳香族炭素に隣接する2つのプロトン(H)が確認できる。このプロトン面積比より、末端クロル基/末端水酸基/t-ブチル末端基=20/10/70(モル%)である場合、末端水酸基組成は、10モル%と表すことができる。
 なお、本実施形態の多孔性成形体を構成する有機高分子樹脂の構造は、有機高分子樹脂を抽出して核磁気共鳴法(NMR)等を用いて解析することにより特定できる。
 有機高分子樹脂の抽出方法については、特に限定されるものではないが、例えば、重水素化N,N-ジメチルホルムアミド(d-DMF)等の溶媒を用いて溶解した後、分離操作を行うことにより抽出する方法が挙げられる。
 本実施形態の多孔性成形体を構成する有機高分子樹脂は、ポリエーテルスルホン樹脂であることが好ましい。有機高分子樹脂が、水酸基を有するポリエーテルスルホン樹脂であることによって、無機イオン吸着体との親和性が向上し、無機イオン吸着体の剥離を防止できる。さらに、洗浄薬剤に対する耐久性も向上するため、好ましい。
 本実施形態において、ポリエーテルスルホン樹脂は、下記一般式(2)で示されるポリエーテルスルホン樹脂であることが、多孔性成形体の耐久性の観点から好ましい。
 下記一般式(2)中、nは、2以上の整数を表し、ベンゼン環の水素は置換されていてもよく、例えば、炭素数1~6のアルキル基又は炭素数6~8のアリール基で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000007
 本実施形態の多孔性成形体を構成する有機高分子樹脂としては、後述する無機イオン吸着体の担持性能を低下させない範囲で、分子量や、水酸基量が異なる有機高分子樹脂を、2種以上、混合して用いることができる。
 (無機イオン吸着体)
 本実施形態の多孔性成形体を構成する無機イオン吸着体とは、イオン吸着現象又はイオン交換現象を示す無機物質をいう。
 天然物系の無機イオン吸着体としては、ゼオライトやモンモリロナイト、各種の鉱物性物質が挙げられる。各種の鉱物性物質の具体例としては、アルミノケイ酸塩で単一層格子をもつカオリン鉱物、2層格子構造の白雲母、海緑石、鹿沼土、パイロフィライト、タルク、3次元骨組み構造の長石、ゼオライト等が挙げられる。
 また、合成物系の無機イオン吸着体としては、例えば、金属酸化物(金属酸化物、複合金属酸化物、複合金属水酸化物、金属の含水酸化物等)、多価金属の塩、又は不溶性の含水酸化物等が挙げられる。
 無機イオン吸着体は、下記式(i)により表される金属酸化物であることが好ましい。無機イオン吸着体は、下記式(i)で表される金属酸化物を複数種含有していてもよい。
 MNxn・mH2O ・・・(i)
 ここで、上記式(i)中、xは0~3、nは1~4、mは0~6であり、M及びNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群より選ばれる金属元素であり、互いに異なるものである。
 金属酸化物は、前記式(i)中のmが0で表される未含水(未水和)の金属酸化物であってもよいし、mが0以外の数値で表せる金属の含水酸化物(水和金属酸化物)であってもよい。
 また、前記式(i)中のxが0以外の数値である場合の金属酸化物は、含有される各金属元素が規則性を持って酸化物全体に均一に分布し、金属酸化物に含有される各金属元素の組成比が一定に定まった化学式で表される複合金属酸化物である。
 具体的には、ペロブスカイト構造、スピネル構造等を形成し、ニッケルフェライト(NiFe24)、ジルコニウムの含水亜鉄酸塩(Zr・Fe24・mH2O mは0.5~6)等が挙げられる。
 無機イオン吸着体としては、リン、ホウ素、フッ素、ヒ素の吸着性能に優れているという観点から、
(a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン、水和酸化イットリウム
(b)チタン、ジルコニウム、スズ、セリウム、ランタン、イットリウムからなる群より選ばれる金属元素と、アルミニウム、珪素、鉄からなる群より選ばれる金属元素との複合金属酸化物
(c)活性アルミナ
からなる群から選ばれる少なくとも一種以上の金属酸化物を選択することが好ましい。これらの群より選ばれる材料は、(a)、(b)、(c)群のうち、いずれかの群から選択される材料を組み合わせて用いてもよく、(a)~(c)群のそれぞれにおける各材料を適宜組み合わせて用いてもよい。
 また、無機イオン吸着体は、硫酸アルミニウム添着活性アルミナ、及び/又は硫酸アルミニウム添着活性炭を含有していることが好ましい。これらは、安価で吸着性が高いという利点を有している。
 上記式(i)により表される金属酸化物において、上述したM、N以外の金属元素がさらに固溶したものは、無機イオンの吸着性や製造コストの観点から、より好ましい。
 例えば、上記式(i)に則って、ZrO2・mH2Oという式で表される水和酸化ジルコニウムに、鉄が固溶したものが挙げられる。
 前記多価金属の塩としては、例えば、下記式(ii)のハイドロタルサイト系化合物が挙げられる。
 M2+ (1-p)3+ p(OH-(2+p-q)(An-q/r  ・・・(ii)
 前記式(ii)中、M2+は、Mg2+、Ni2+、Zn2+、Fe2+、Ca2+及びCu2+からなる群より選ばれる少なくとも1種の二価の金属イオンを示す。
 また、M3+は、Al3+及びFe3+からなる群より選ばれる、少なくとも1種の三価の金属イオンを示し、An-は、n価のアニオンを示す。
 また、0.1≦p≦0.5であり、0.1≦q≦0.5であり、rは1又は2である。
 前記式(ii)のハイドロタルサイト系化合物は、前記無機イオン吸着体として原料が安価であり、吸着性が高いことから好ましい。
 前記不溶性の含水酸化物としては、不溶性のヘテロポリ酸塩、不溶性ヘキサシアノ鉄酸塩等が挙げられる。
 本実施形態の多孔性成形体を構成する無機イオン吸着体の構造については、特に制限はないが、特定の金属酸化物の周囲を他の金属酸化物が覆った混合体構造にすることが好ましい。この混合体構造とすることで、各金属酸化物の有する特性が有効に活用され、よりコストパフォーマンスに優れる無機イオン吸着体が得られる。
このような構造の一例として、四三酸化鉄の廻りを水和酸化ジルコニウムが覆った構造が挙げられる。上述したように、金属酸化物には、他の元素を固溶しているものも含む。そのため、ジルコニウムが固溶した四三酸化鉄の周囲が、鉄が固溶した水和酸化ジルコニウムにより覆われた構造も好ましい。
 ここで、水和酸化ジルコニウムは、リン、ホウ素、フッ素、ヒ素等のイオンに対する吸着性能や繰り返し使用に対する耐久性能が高く、高価であるが、その一方、四三酸化鉄は、水和酸化ジルコニウムに比較してリン、ホウ素、フッ素、ヒ素等のイオンに対する吸着性能や繰り返し使用に対する耐久性能が低く、非常に安価である。
 従って、四三酸化鉄の周囲を水和酸化ジルコニウムで覆った構造にした場合、イオンの吸着に関与する無機イオン吸着体の表面付近は、吸着性能、耐久性能が高い水和酸化ジルコニウムになる一方、吸着に関与しない内部は安価な四三酸化鉄になるため、高吸着性能、高耐久性能で低価格の、すなわちコストパフォーマンスに極めて優れる吸着剤として利用できるため好ましい。
 上述したことから、リン、ホウ素、フッ素、ヒ素の環境や健康に有害なイオンの吸着除去に対して、コストパフォーマンスに優れる吸着剤を得るという観点からは、無機イオン吸着体は、上記式(i)中の、M及びNの少なくとも一方が、アルミニウム、珪素、鉄からなる群より選ばれる金属元素である金属酸化物の周囲を、上記式(i)中のM及びNの少なくとも一方が、チタン、ジルコニウム、スズ、セリウム、ランタン、イットリウムからなる群より選ばれる金属元素である金属酸化物で覆った構造で構成されていることが好ましい。
 この場合、無機イオン吸着体中の、アルミニウム、珪素、鉄からなる群より選ばれる金属元素の含有比率は、アルミニウム、珪素、鉄からなる群より選ばれる金属元素と、チタン、ジルコニウム、スズ、セリウム、ランタン、イットリウムからなる群より選ばれる金属元素との合計モル数をT、アルミニウム、珪素、鉄からなる群より選ばれる金属元素のモル数をFとして、F/T(モル比)が、0.01~0.95の範囲であることが好ましく、0.1~0.90の範囲であることがより好ましく、0.2~0.85であることがさらに好ましく、0.3~0.80であることがさらにより好ましい。
 F/T(モル比)の値を大きくし過ぎると、吸着性能、耐久性能が低くなる傾向にあり、小さくなると低価格化に対する効果が小さくなる。
 また、金属によっては、金属元素の酸化数が異なる複数の形態の金属酸化物が存在するものがあるが、無機イオン吸着体中で安定に存在できれば、その形態は特に制限されるものではない。
 例えば、鉄の酸化物である場合は、空気中での酸化安定性の問題から水和酸化第二鉄(一般式:FeO1.5・mH2O)又は水和四三酸化鉄(一般式:FeO1.33・mH2O)であることが好ましい。
 なお、本実施形態の多孔性成形体を構成する無機イオン吸着体は、その製造方法等に起因して混入する不純物元素を、本実施形態の多孔性成形体の機能を阻害しない範囲で含有していてもよい。混入する可能性がある不純物元素としては、窒素(硝酸態、亜硝酸態、アンモニウム態)、ナトリウム、マグネシウム、イオウ、塩素、カリウム、カルシウム、銅、亜鉛、臭素、バリウム、ハフニウム等が挙げられる。
 また、本実施形態の多孔性成形体を構成する無機イオン吸着体は、その比表面積が、吸着性能や耐久性能に影響するため、比表面積が一定の範囲内であることが好ましい。
 具体的には、窒素吸着法で求めたBET比表面積が、20~1000m2/gであることが好ましく、30~800m2/gであることがより好ましく、50~600m2/gであることがさらに好ましく、60~500m2/gであることがさらにより好ましい。BET比表面積が小さすぎると吸着性能が低下し、大きすぎると酸やアルカリに対する溶解性が大きくなり、その結果繰り返し使用に対する耐久性能が低下する。
 無機イオン吸着体の製造方法として、上記式(i)で表される金属酸化物を例として、説明する。前記金属酸化物の製造方法としては、特に限定されないが、例えば、金属塩酸塩、硫酸塩、硝酸塩等の塩類水溶液中にアルカリ溶液を添加して得られた沈殿物をろ過、洗浄した後、乾燥することにより得られる。乾燥は風乾するかもしくは約150℃以下、好ましくは約90℃以下で約1~20時間程度乾燥する。
 次に、特定の金属酸化物の周囲を、他の金属酸化物が覆った混合体構造にする製造方法について、四三酸化鉄の周囲を酸化ジルコニウムが覆った構造の無機イオン吸着体を製造する場合を例に説明する。この例の製造方法は、上記式(i)中のM及びNの少なくとも一方がアルミニウム、珪素、鉄からなる群より選ばれる金属元素である金属酸化物の周囲を、上記式(i)中のM及びNの少なくとも一方がチタン、ジルコニウム、スズ、セリウム、ランタン、イットリウムからなる群から選ばれる金属元素である金属酸化物で覆った構造で構成されている無機イオン吸着体の製造方法にも相当する。
先ず、ジルコニウムの塩化物、硝酸塩、硫酸塩等の塩と、鉄の塩化物、硝酸塩、硫酸塩等の塩とを、上述のF/T(モル比)が所望の値になるように混合した塩類水溶液を作製する。その後、アルカリ水溶液を添加して、pHを8~9.5好ましくは8.5~9に調製して沈殿物を生成させる。この後、水溶液の温度を50℃にし、pHを8~9.5好ましくは8.5~9に保ちながら空気を吹き込み、液相に第一鉄イオンが検出できなくなるまで、酸化処理を行う。そして、生じた沈澱を濾別し、水洗した後乾燥することにより得られる。乾燥は風乾するかもしくは約150℃以下、好ましくは約90℃以下で約1~20時間程度乾燥する。乾燥後の含水率は、約6~30質量%の範囲内に入ることが好ましい。
 上述した製造方法において用いられるジルコニウムの塩としては、オキシ塩化ジルコニウム(ZrOCl2)、四塩化ジルコニウム(ZrCl4)、硝酸ジルコニウム(Zr(NO34)、硫酸ジルコニウム(Zr(SO42)等が挙げられる。これらは例えば、Zr(SO42・4H2O等のように含水塩であってもよい。
 これらの金属塩は、通常、1リットル中に約0.05~2.0モルの溶液状で用いられる。
 上述した製造方法において用いられる鉄の塩としては、硫酸第一鉄(FeSO4)、硝酸第一鉄(Fe(NO32)、塩化第一鉄(FeCl2)等の第一鉄塩が挙げられる。これらもFeSO4・7H2O等の含水塩であってもよい。これらの第一鉄塩は通常、固形物で加えられるが、溶液状で加えてもよい。
 アルカリとしては、例えば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア、炭酸ナトリウム等が挙げられる。
 前記ジルコニウムの塩及び鉄の塩は、好ましくは約5~20質量%の水溶液で用いられる。
 前記酸化処理工程において酸化性ガスを吹き込む場合、その時間は、酸化性ガスの種類などによって異なるが、通常約1~10時間程度である。前記酸化処理工程において空気を吹き込む処理に代えて酸化剤を用いる場合、酸化剤としては、例えば過酸化水素、次亜塩素酸ナトリウム、次亜塩素酸カリウム等が用いられる。
(多孔性成形体の構造)
 <多孔質構造>
 本実施形態の多孔性成形体は、有機高分子樹脂が連通孔を有する多孔質構造を形成しており、多孔質構造を構成する有機高分子樹脂の外表面と内部に無機イオン吸着体が担持されている構造であることが好ましい。
 ここで、連通孔を有する多孔質構造とは、多孔性成形体の外表面及び内部に三次元的に連続した網目構造を形成する繊維状の構造体を意味する。なお、この多孔質構造は、ポリエーテルスルホン樹脂、及びポリスルホン樹脂以外の有機高分子樹脂を含んでもよい。その他の有機高分子樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンビニルアルコール共重合体(EVOH)などが挙げられる。
 また、多孔質構造における繊維状の部分の太さは0.01μm~50μmが好ましい。
 <無機イオン吸着体の分散状態>
 本実施形態の多孔性成形体に担持されている無機イオン吸着体の、多孔性成形体中での分散状態は、電子線マイクロアナライザ(EPMA)を用いた測定によって定量化することができる。すなわち、電子線マイクロアナライザ(EPMA)を用いて面分析を行い、分析して得た面分析データ(X線強度(カウント数)の度数分布)を統計処理する。
 具体的には、EPMAによる分析から求められる無機イオン吸着体の元素の濃度分布において、95%相対累積X線強度と5%相対累積X線強度との比(相対累積X線強度比)を求めることによって、計測することができる。
 5%相対累積X線強度とは、電子線マイクロアナライザ(EPMA)で成形体の割断面を面分析して求めた、無機イオン吸着体を構成する成分元素のX線強度の度数分布を、小さいX線強度(低濃度)側からそのX線強度の度数を積算し、X線強度の度数の累計が5%に達するX線強度の値である。
 同様に、95%相対累積X線強度とは、電子線マイクロアナライザ(EPMA)で成形体の割断面を面分析して求めた、無機イオン吸着体を構成する成分元素のX線強度の度数分布を、小さいX線強度(低濃度)側からそのX線強度の度数を積算し、X線強度の度数の累計が95%に達するX線強度の値である。
 このようにして求めた、95%相対累積X線強度と5%相対累積X線強度とを用いて、下記式より、相対累積X線強度比を求められる。
 相対累積X線強度比=95%相対累積X線強度/5%相対累積X線強度
 本実施形態の多孔性成形体に担持されている無機イオン吸着体の分散状態として、95%相対累積X線強度と5%相対累積X線強度との比(相対累積X線強度比)が1~10であることが好ましい。
 前記相対累積X線強度比が1~10であると、多孔性成形体中での無機イオン吸着体の分散状態が良好であり、無機イオン吸着体の二次凝集物が少ない。よって、無機イオン吸着体と吸着対象イオンとの接触効率が高くなり、吸着性能が良好に保たれる。さらに、無機イオン吸着体の二次凝集物が少ないため、二次凝集物が起点となって多孔性成形体が割れるといったことが少ないため耐久性も高い。
 前記相対累積X線強度比は1~7であることがより好ましく、1~5であることがさらに好ましい。
 <多孔性成形体の空孔率>
 本実施形態の多孔性成形体の空孔率Pr(%)は50%~95%が好ましく、60~90%がより好ましい。
 ここで、空孔率Pr(%)とは、多孔性成形体の含水時の質量W1(g)、乾燥後の質量W0(g)、及び多孔性成形体の比重をρとするとき、下式で表わされる。
 Pr=(W1-W0)/(W1-W0+W0/ρ)×100
 空孔率が50%以上であると、リンやホウ素等の吸着対象物質と吸着基質である無機イオン吸着体との接触頻度が十分となり、95%以下であると、多孔性成形体の強度が実用上十分なものとなる。
 なお、含水時の質量(W1)は、十分に水に濡れた多孔性成形体を、乾いたろ紙上に拡げ、余分な水分を取ってから質量を測定することにより得られる。
 乾燥後の質量(W0)は、多孔性成形体を室温下で真空乾燥を行い、その後、質量を測定することにより得られる。
 多孔性成形体の比重(ρ)は、比重瓶を用いて簡便に測定することができる。
 <多孔性成形体の無機イオン吸着体の担持量>
 本実施形態の多孔性成形体における無機イオン吸着体の担持量は、65~95%が好ましく、70~90%がより好ましく、75~90%がさらに好ましい。
 多孔性成形体の無機イオン吸着体の担持量とは、多孔性成形体の乾燥時の質量Wd(g)、灰分の質量Wa(g)、とするとき、下記式により表される値である。
 担持量(%)=Wa/Wd ×100
 ここで、灰分は本実施形態の多孔性成形体を800℃で2時間焼成したときの残分として求められる。
 高い吸着性能を有する多孔性成形体を得るためには、無機イオン吸着体の担持量を高くすることが好ましい。但し、無機イオン吸着体の担持量を高くし過ぎると、多孔性成形体の強度が不足しやすくなる。本実施形態の多孔性成形体は、後述するように、無機イオン吸着体と有機高分子樹脂とを練り込んで成形することにより得られる。この方法によると、担持量を多く保ち、かつ強度が高い多孔性成形体を得ることができる。
 <多孔性成形体の体積基準比表面積>
 本実施形態の多孔性成形体の体積基準比表面積は、下記式により定義される。
 体積基準比表面積(m2/cm3)=SBET×かさ比重(g/cm3
 ここで、SBETは、成形体の単位質量あたりの表面積(m2/g)であり、多孔性成形体を室温で真空乾燥した後、吸着ガスとして窒素ガスを用いるBET法で測定できる。
 かさ比重の測定方法について以下で説明する。まず、粒子状、円柱状、中空円柱状等の形状が短い多孔性成形体を湿潤状態にして、メスシリンダー等を用いて、みかけの体積を測定する。その後、室温で真空乾燥し、真空乾燥後の質量を求める。一方、糸状、中空糸状、シート状の形状が長い多孔性成形体については、湿潤時の断面積と長さを測定して、両者の積から体積を算出する。その後、室温で真空乾燥し、真空乾燥後の質量を求める。
 そして、かさ比重は、粒子状、円柱状、中空円柱状等の形状が短い多孔性成形体の場合は、真空乾燥後の質量/みかけの体積により算出される値である。一方、糸状、中空糸状、シート状の形状が長い多孔性成形体の場合は、真空乾燥後の質量/体積により算出される値である。
 本実施形態の多孔性成形体の、好ましい体積基準比表面積の範囲は、5m2/cm3~500m2/cm3である。体積基準比表面積が5m2/cm3以上であると、吸着基質の担持量及び吸着性能が実用上十分となる。体積基準比表面積が500m2/cm3以下であると、多孔性成形体の強度が実用上十分となる。
 一般的に、吸着基質である無機イオン吸着体の吸着性能は、体積基準比表面積に比例する場合が多い。従って、体積基準比表面積(単位体積あたりの表面積)が高い程、単位体積あたりの吸着性能が高く、カラムやタンクに充填したときの高速処理、高容量処理を達成し易い。
<多孔性成形体の形状>
 本実施形態の多孔性成形体の形状は、後述の多孔性成形体の製造方法における成形工程によって、粒子状、円柱状、中空円柱状、糸状、中空糸状、シート状等の形状とすることができる。
 特に、多孔性成形体を水処理分野において吸着剤として使用する場合には、カラム等に充填して通水する際の圧力損失、接触面積の有効性の点、取り扱い易さの点から粒子状が好ましく、特に球状粒子(真球状のみならず、楕円球状であってもよい)が好ましい。
 本実施形態の多孔性成形体を球状体としたとき、該球状粒子の最大長を粒子径とし、その平均値を平均粒子径とする。
 平均粒子径は、成形体表面を電子顕微鏡又は実体顕微鏡で観察し、成形体表面の画像から実測して求めることができる。例えば、多孔性成形体の粒子が真球である場合はその直径、真球以外である場合は最大長が粒子径となる。
 なお、「球状」とは、実質的に略球形状とみなされるものであればよく、完全な真球状であることを要求するものではない。
 好ましい平均粒子径の範囲は100~2500μmであり、200~2000μmがより好ましい。平均粒子径が100μm以上であると、カラムやタンク等に充填した際に、圧力損失が抑えられ、また、平均粒子径が2500μm以下であると、カラムやタンクに充填したときの表面積が大きくなり処理効率が上がる。
 また、多孔性成形体が球状体以外の粒子状の形状である場合についても、球状体と同様の方法により平均粒子径を求めることができ、好ましい平均粒子径の数値範囲も同様である。
〔多孔性成形体の製造方法〕
 本実施形態の多孔性成形体の製造方法は、
 前記有機高分子樹脂の良溶媒と、前記無機イオン吸着体と、水溶性高分子とを、粉砕、混合してスラリーを得る、粉砕・混合工程と、
 前記スラリーに前記有機高分子樹脂を混合し溶解させ、成形用スラリーを得る、溶解工程と、
 前記成形用スラリーを成形し、貧溶媒中で凝固させる凝固工程と、
を、有する。
 (有機高分子樹脂を製造する方法)
 先ず、多孔性成形体を構成する有機高分子樹脂を製造する方法について説明する。
 有機高分子樹脂は、上述したように、ポリエーテルスルホン樹脂及び/又はポリスルホン樹脂であり、水酸基を有する有機高分子樹脂である。
 本実施形態における有機高分子樹脂は、通常公知の方法により製造することができる。
 例えば、有機溶媒中、アルカリ金属化合物と、一般式(I)で表されるジハロゲノジフェニル化合物と、一般式(II-1)及び/又は(II-2)で表される二価フェノール化合物とを重縮合させることにより製造することができる。または、予め、一般式(II-1)及び/又は(II-2)で表される二価フェノール化合物とアルカリ金属化合物とを反応させ、その反応物と一般式(I)で表されるジハロゲノジフェニル化合物とを重縮合させることによっても製造することができる。
Figure JPOXMLDOC01-appb-C000008
 前記式(I)及び(II-1)及び(II-2)において、Xは、Cl又はFを表し、Rは、ベンゼン環の水素の置換基であり、それぞれ同一であっても異なっていてもよく、炭素数1~6のアルキル基及び炭素数6~8のアリール基を表し、mは0~3の整数を表す。Yは直接結合、O、S、SO2、CO、C(CH32、CH(CH3)、及びCH2からなる群より選ばれるいずれかを表す。
 前記式(I)に示す化合物としては、例えば、4,4’-ジクロロジフェニルスルホンなどが挙げられる。
 前記式(2)で表されるポリエーテルスルホン樹脂は、上記(II-1)式で表される化合物として、YがSO2である化合物(例えば、4,4’-ジヒドロキシジフェニルスルホン(ビスフェノール-S)等)を用いて製造することができる。
 また、前記式(3)で表されるポリアリルスルホン樹脂は、上記(II-1)式で表される化合物として、Yが直接結合である化合物(例えば、4,4’-ビフェノール)を用いて製造することができる。
 前記式(4)で表されるポリスルホン樹脂は、上記(II-1)式で表される化合物として、YがC(CH32である化合物(例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノール-A))を用いて製造することができる。
 前記ジハロゲノジフェニル化合物は、前記二価フェノール化合物に対して、通常等モル使用される。また、有機高分子樹脂の分子量や末端基の組成を微調整するために、二価フェノール化合物を等モルからわずかに過剰量あるいは過小量で使用することもできる。
 また、分子量や末端基組成を調整するために、少量のモノハロゲノジフェニル化合物あるいは一価フェノール化合物を重合溶液中に添加することもできる。
 重縮合反応に利用されるアルカリ金属化合物としては、例えば、アルカリ金属炭酸塩、アルカリ金属水酸化物、アルカリ金属水素化物、アルカリ金属アルコキシド等が挙げられる。なかでも炭酸カリウム、炭酸ナトリウム等のアルカリ金属炭酸塩が好ましく、とりわけ無水炭酸カリウム、無水炭酸ナトリウム等の無水アルカリ金属塩が好ましい。
 重縮合反応に利用される有機溶媒としては、例えば、以下のものが挙げられる。なお、有機溶媒は、2種以上の混合物としてもよい。
ジメチルスルホキシド、ヘキサメチレンスルホキシド等のスルホキシド系溶媒、
N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒、
N-メチル-2-ピロリドン、N-メチル-2-ピペリドン等のピペリドン系溶媒、
1,3-ジメチル-2-イミダゾリジノン等の2-イミダゾリノン系溶媒、
ジフェニルエーテル、ジフェニルスルホン等のジフェニル化合物、
塩化メチレン、クロロホルム、ジクロロエタン、テトラクロロエタン、トリクロロエチレン等のハロゲン系溶媒、
γ-ブチロラクトン等のラクトン系溶媒、
スルホラン等のスルホラン系溶媒が挙げられる。
 また、重合時に微量の水分、反応中に外部から入ってくる水分、重合時に発生する水は、重合の進行を阻害する。そのため、これら反応系内の水を分離する目的で、水共沸溶媒を用いることが好ましい。本実施形態において、水共沸溶媒としては、非プロトン性極性溶媒に相溶し、かつ0.101MPa下において、水と共沸混合物を形成する溶媒のことである。水共沸溶媒は、2種以上用いてもよい。
 水共沸溶媒の具体例としては、特に限定されないが、例えば、以下のものが挙げられる。
 ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、ドデカン、ベンゼン、トルエン、キシレン、ナフタレン、エチルベンゼン等の炭化水素系溶媒、
ジイソプロピルエーテル、エチルブチルエーテル、ジオキサン等のエーテル系溶媒、
アセチルアセトン、メチルエチルケトン等のケトン系溶媒、
エタノール、イソプロパノール、n-プロパノール、イソブチルアルコール、ヘキサノール、ベンジルアルコール等のアルコール系溶媒、
酢酸エチル、酢酸メチル、酢酸ブチル、酪酸ブチル、安息香酸メチル等のエステル系溶媒等、
ギ酸、酢酸、プロピオン酸、吉草酸、安息香酸等のカルボン酸系溶媒、
クロロホルム、ブロモホルム、1,2-ジクロロメタン、1,2-ジクロロエタン、四塩化炭素、クロロベンゼン、ヘキサフルオロイソプロパノール等のハロゲン系溶媒、
エチレンジアミン、アニリン、ピリジン、メチルピリジン等のアミン系溶媒等が挙げられる。
好ましくは、炭化水素系溶媒であり、より好ましくはベンゼン、トルエン、キシレンから選ばれる少なくとも1種である。
 水共沸溶媒の使用量は、系内の水分を除去可能な量であれば特に制限はないが、全モノマー(式(I)、式(II-1)、式(II-2)で表される化合物など)の質量に対して、0.01~10倍質量の範囲が好ましく、より好ましくは0.02~5倍質量である。
 重縮合反応の反応温度は、使用する有機溶媒の特性に依存するが、通常140~340℃で実施するのが好ましい。340℃以上より高温で重縮合すると、生成ポリマーの分解反応が進行するため、高分子量体や高純度の有機高分子樹脂が得られなくなる傾向にあり、140℃より低い温度で重縮合すると、高分子量体が得られない傾向にある。
 反応時間は、反応原料成分の種類、重合反応の形式、反応温度により大幅に変化するが、通常は10分~100時間の範囲であり、好ましくは30分~24時間の範囲で実施される。反応雰囲気としては、酸素が存在しないことが好ましく、窒素もしくはその他の不活性ガス中で行うことが好ましい。これは、重合過程で生成する二価フェノール化合物のアルカリ金属塩が、酸素の存在下で加熱されて、酸化するのを抑制するためである。二価フェノール化合物のアルカリ金属塩が、酸化すると、目的とする重合反応が妨げられ、高分子量化が困難になるほか、重合体の着色原因ともなる。したがって、反応雰囲気としては、不活性ガス中が好ましい。
 また、重縮合反応は、重合終了時に、適当な末端停止剤、例えば、メチルクロライド、t-ブチルクロライド、4,4’-ジクロロジフェニルスルホンのような単官能クロライド、多官能クロライドを、反応溶液に重合体の末端停止剤として添加する。その際の温度としては、例えば、90~150℃で反応させることによって末端封鎖することができる。
 なお、末端停止剤としてメチルクロライドを使用した場合、有機高分子樹脂はメチル基を有する。t-ブチルクロライドを使用した場合、t-ブチル基を有し、4,4’-ジクロロジフェニルスルホンを使用した場合、クロル基を有し、p-tert-ブチルフェノールを用いた場合は、t-ブチル基を有する。
 重縮合反応により得られた有機高分子樹脂は、反応に用いたアルカリ金属化合物などを含む反応溶液中から、分離する。具体的には、反応溶液に有機高分子樹脂(ポリエーテルスルホン樹脂、又はポリスルホン樹脂)の貧溶媒を加えて、あるいは貧溶媒に反応溶液を加えて、析出固体として分離することができる。なお、貧溶媒を用いて析出する前に、反応溶液を濾過又は遠心分離することで、アルカリ金属化合物を予め除去してもよい。
 本実施形態における有機高分子樹脂の、貧溶媒としては、例えばメタノール、エタノール、イソプロパノール、ブタノールなどのアルコール類、アセトニトリル等のニトリル類、水等を挙げることができる。これらの貧溶媒は、2種以上混合して用いることもできる。また上記の貧溶媒には、有機高分子樹脂が析出可能な範囲で、前記の重合反応に用いる有機溶媒などの有機高分子樹脂の良溶媒が含有されていてもよい。
 そして、析出固体を、貧溶媒で洗浄した後、乾燥させることによって、有機高分子樹脂の粉末を得ることができる。
 <末端水酸基の量の調整方法>
 本実施形態の多孔性成形体を構成する有機高分子樹脂は、水酸基を有しており、末端に水酸基を5~100モル%有するものであることが好ましい。そして、有機高分子樹脂の末端水酸基の量は、上記の方法で製造した有機高分子樹脂を原料とし、二価フェノール化合物と、塩基性化合物とを、非プロトン性極性溶媒中で加熱することにより、調整することができる。
 前記末端水酸基の量を調整するための反応(以下、前記反応とする)に使用する二価フェノール化合物とは、下記一般式(b-1)及び/又は(b-2)で表されるものである。
Figure JPOXMLDOC01-appb-C000009
 前記式(b-1)及び(b-2)中のRは、ベンゼン環の置換基であり、それぞれ同一であっても異なっていてもよく、炭素数1~6のアルキル基及び炭素数6~8のアリール基からなる群より選ばれるいずれかを表し、mは0~3の整数を表す。
 前記式(b-1)中のYは、直接結合、O、S、SO、CO、C(CH、CH(CH)、及びCHから選ばれるいずれかを表す。
 上述したような二価フェノール化合物としては、例えば、以下のものが挙げられる。
 ハイドロキノン、カテコール、レゾルシン、4,4’-ビフェノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)エタン等のビス(4-ヒドロキシフェニル)アルカン類、
4,4’-ジヒドロキシジフェニルスルホン等のジヒドロキシジフェニルスルホン類、
4,4’-ジヒドロキシジフェニルエーテル等のジヒドロキシフェニルエーテル類が挙げられ、これらの構造異性体でもよい。
 これらの中で、入手性や実用性及び価格面から、ハイドロキノン、4,4’-ビフェノール、4,4’-ジヒドロキシジフェニルスルホン(ビスフェノール-S)、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノール-A)、ビス(4-ヒドロキシフェニル)メタン(ビスフェノール-F)、4,4’-エチリデンビスフェノール(ビスフェノール-E)、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルホンが好ましい。
 より好ましくは、4,4’-ジヒドロキシジフェニルスルホン(ビスフェノール-S)、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノール-A)、ビス(4-ヒドロキシフェニル)メタン(ビスフェノール-F)、4,4’-エチリデンビスフェノール(ビスフェノール-E)である。
 さらに好ましくは、4,4’-ジヒドロキシジフェニルスルホン(ビスフェノール-S)、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノール-A)である。
 上述した二価フェノール化合物の添加量を制御することによって、最終的に得られる有機高分子樹脂の末端水酸基の量及び有機高分子樹脂の分子量を制御することができる。
 有機高分子樹脂の末端水酸基の量が、ある一定量になるように前記反応を進行させるためには、有機高分子1モルに対し、上記二価フェノール化合物の添加量は、0.001~2倍モルが好ましく、より好ましくは0.01~1.5、さらに好ましくは0.01~1倍モル、さらにより好ましくは0.01~0.5倍モルである。なお、有機高分子のモル数は、1つの繰り返し単位の分子量を基準に算出されるものである。
 二価フェノール化合物の添加量が2倍モル以上になると、得られる水酸基を有する有機高分子樹脂の分子量が小さくなりすぎ、回収・洗浄が困難となるだけでなく、酸性を示す未反応の二価フェノール化合物や二価フェノール化合物の塩、あるいは塩基性化合物そのものが有機高分子樹脂中に残存したり、有機高分子樹脂が着色したりする傾向にある。特に、末端水酸基の導入量の増加に伴い、有機高分子樹脂の溶解性や、塩基性化合物との相互作用が増加するため、洗浄・回収・分離が困難となる傾向がある。一方、0.001倍モル以下では、末端水酸基を一定量導入することが困難となる。
 前記反応においては、反応速度を向上させるために、塩基性化合物を反応系に添加する。塩基性化合物としては、例えば、以下のものが挙げられる。
 水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウム、酢酸ナトリウム、酢酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、無水炭酸カリウム、無水炭酸ナトリウム等のアルカリ金属化合物、
水酸化カルシウム、水酸化マグネシウム、炭酸水素カルシウム、炭酸水素バリウム、炭酸水素マグネシウム、炭酸カルシウム等のアルカリ土類金属化合物、
テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の4級アンモニウム塩;トリメチルアミン、トリエチルアミン等の三級アミン、
N,N-ジメチルアミン、N,N-ジエチルアミン等の二級アミン、
N-メチルアミン、N-エチルアミン等の一級アミン、
アンモニア等が挙げられ、2種以上用いてもよい。
 これらの中でも、取り扱い易さから、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、無水炭酸ナトリウム、無水炭酸カリウム等が好ましく、炭酸ナトリウム、炭酸カリウム、無水炭酸ナトリウム、無水炭酸カリウムがより好ましい。
 また、塩基性化合物の添加量は、使用する前記二価フェノール化合物1モルに対し、0.1~3倍モルの範囲が好ましく、より好ましくは0.5~1倍モルである。塩基性化合物の添加量が二価フェノール化合物1モルに対し、3倍モルを超えると、得られる末端水酸基を有する有機高分子樹脂の分子量が小さくなりすぎ、回収・洗浄が困難となるだけでなく、酸性の二価フェノール化合物や二価フェノール化合物の塩、さらには塩基性化合物自身がポリマー中に残存したり、有機高分子樹脂が着色したりする傾向にある。また、有機高分子樹脂の分子量が小さすぎると、有機高分子樹脂本来の耐熱性、機械特性等が損なわれる傾向にある。一方、0.1倍モル未満であると、反応性の末端水酸基を導入することが困難となる。
 前記反応を定量的に進行させるため、前記反応の溶媒として、非プロトン性極性溶媒を使用することが好ましい。
 非プロトン性極性溶媒としては、例えば、ジメチルスルホキシド、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン(NMP)、N-メチル-2-ピペリドン、1,3-ジメチル-2-イミダゾリジノン、及びこれらの2種以上の混合物等が挙げられ、ジメチルスルホキシド、DMF、NMPが好ましい。
 前記反応に使用される非プロトン性極性溶媒の添加量は、有機高分子樹脂、二価フェノール化合物を溶解させる量であれば、特に制限はないが、全モノマー(有機高分子樹脂と二価フェノール化合物など)の質量に対して、0.5~20倍質量の範囲が好ましく、より好ましくは2~10倍量である。0.5倍未満であると、原料となる有機高分子樹脂、二価フェノール化合物が溶解せず、また反応時の攪拌等の操作が困難となり、均一な反応が困難となる。また溶媒量が20倍を超えると、有機高分子樹脂の濃度や二価フェノール化合物の濃度が下がり、反応速度が遅くなったり、再沈殿生成、洗浄、回収が困難になったりする傾向が認められ、何よりも溶媒量の増加により、生産量の低下、溶媒回収コストに影響する。
 前記反応は、非プロトン性極性溶媒中で実施することが重要であるが、場合によっては、非プロトン性極性溶媒以外の有機溶媒を併用することもできる。反応系内には、原料中に含まれる微量の水分、反応中に外部から入ってくる水分、使用する塩基性化合物の結合水、塩基性化合物水溶液中の水分、塩基性化合物調製時の水分等が混入する。前記反応において、これらの水分の加水分解が進行することがあり、目的の反応である、有機高分子樹脂と二価フェノール化合物の求核置換反応を阻害することがある。したがって、反応系内の水を分離する目的で、有機溶媒として、水と共沸混合物を形成する有機溶媒を用いることが好ましい。特に、非プロトン性極性溶媒に相溶し、かつ0.101MPa下において、水と共沸混合物を形成する有機溶媒が好ましい。
 このような有機溶媒としては、特に限定されないが、例えば、以下のものが挙げられる。この有機溶媒は、2種以上用いてもよい。
 ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、ドデカン、ベンゼン、トルエン、キシレン、ナフタレン、エチルベンゼン等の炭化水素系溶媒、
ジイソプロピルエーテル、エチルブチルエーテル、ジオキサン等のエーテル系溶媒、
アセチルアセトン、メチルエチルケトン等のケトン系溶媒、
エタノール、イソプロパノール、n-プロパノール、イソブチルアルコール、ヘキサノール、ベンジルアルコール等のアルコール系溶媒、
酢酸エチル、酢酸メチル、酢酸ブチル、酪酸ブチル、安息香酸メチル等のエステル系溶媒等、
ギ酸、酢酸、プロピオン酸、吉草酸、安息香酸等のカルボン酸系溶媒、
クロロホルム、ブロモホルム、1,2-ジクロロメタン、1,2-ジクロロエタン、四塩化炭素、クロロベンゼン、ヘキサフルオロイソプロパノール等のハロゲン系溶媒、
エチレンジアミン、アニリン、ピリジン、メチルピリジン等のアミン系溶媒等が挙げられる。好ましくは、炭化水素系溶媒であり、より好ましくはベンゼン、トルエン、キシレンである。
 水共沸溶媒の使用量は、系内の水分を除去可能な量であれば特に制限はないが、全モノマー(有機高分子樹脂と二価フェノール化合物など)の質量に対して、0.01~10倍質量の範囲が好ましく、さらに好ましくは0.02~5倍量である。
 前記反応における加熱温度は、使用する溶媒種、溶媒の沸点、反応溶液の濃度、二価フェノール化合物の添加量、塩基性化合物の添加量に依存するが、通常100~250℃で実施するのが好ましく、より好ましくは100~200℃である。
 250℃より高い温度で反応すると、二価フェノール化合物塩の熱分解、反応系内で生成した末端水酸基を有する有機高分子樹脂そのものの熱分解が進行するため、分子量の制御や末端水酸基の導入量の制御が困難となったり、最終的に得られる末端水酸基を有する有機高分子樹脂の熱安定性・滞留安定性の低下や、着色といった傾向が認められるようになったりする。一方、100℃より低い温度で本反応を行うと、反応が遅くなる。
 前記反応に要する時間は、二価フェノール化合物の種類・添加量、塩基性化合物の種類・添加量、反応濃度、反応温度により大幅に変化するが、通常は10分~10時間の範囲であり、好ましくは30分~5時間の範囲で実施される。
反応雰囲気としては、酸素が存在しないことが好ましく、窒素もしくはその他の不活性ガス中で行うとよい結果が得られる。二価フェノール化合物の塩基性化合物は酸素の存在下で加熱すると酸化されやすく、目的とする反応が妨げられ、その結果、分子量制御、末端水酸基の導入量の制御が困難となるほか、重合体の着色原因ともなる。
 <末端水酸基を有する有機高分子樹脂の分離>
 上述した末端水酸基の量を調整する反応を経て、末端水酸基を好適な量有する有機高分子樹脂が得られる。
 この有機高分子樹脂は、反応に用いた塩基性化合物などを含む反応溶液中から、分離する。具体的には、反応溶液に有機高分子樹脂(ポリエーテルスルホン樹脂、又はポリスルホン樹脂)の貧溶媒を加えて、あるいは貧溶媒に反応溶液を加えて、析出固体として分離することができる。なお、貧溶媒を用いて析出する前に、反応溶液を濾過又は遠心分離することで、塩基性化合物を予め除去してもよい。
 本実施形態における有機高分子樹脂の、貧溶媒としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール類、アセトニトリル等のニトリル類、水等を挙げることができる。これらの貧溶媒は、2種以上混合して用いることもできる。
 また、上記貧溶媒には、有機高分子樹脂が析出可能な範囲で、前記の重合反応に用いる有機溶媒等の有機高分子樹脂の良溶媒が含有されていてもよい。
 また、いずれかの工程において、酸を接触させることが好ましい。接触させる工程は特に限定されないが、好ましくは、反応後の溶液あるいは貧溶媒による析出時、あるいは回収後、いずれかの工程で、有機高分子樹脂と酸を接触させることで、有機高分子樹脂に含まれるアルカリ金属塩を効率よく取り除くことが可能となる。
 使用される酸としては、特に限定されないが、以下のものが挙げられ、2種以上の混酸も用いることができる。
塩酸、硝酸、硫酸、リン酸、過塩素酸、亜硫酸、クロム酸、次亜塩素酸、過塩素酸、シアン化水素、臭素水素酸、ホウ酸等の無機酸、酢酸、蟻酸、シュウ酸、酒石酸、ステアリン酸、ナフテン酸、ピクリン酸、りんご酸等の有機酸が挙げられる。
 使用する酸の量としては、反応に用いる溶媒への溶解性等の影響を受けるため、特に制限はないが、有機高分子1モルに対し、0.001~2倍モルの範囲が好ましく、より好ましくは0.01~1倍モルである。酸の量が上記範囲より少ない場合、アルカリ金属塩が十分に取り除くことができず、好ましくない。
 酸接触後の有機高分子樹脂を貧溶媒で洗浄後、乾燥させることによって、有機高分子樹脂を得ることができる。
(有機高分子樹脂の良溶媒と、前記無機イオン吸着体と、水溶性高分子とを、粉砕、混合してスラリーを得る、粉砕・混合工程)
 粉砕及び混合工程において、有機高分子樹脂の良溶媒と、前記無機イオン吸着体と、水溶性高分子とを、粉砕、混合してスラリーを得る。無機イオン吸着体を有機高分子樹脂の良溶媒中で湿式粉砕することにより、無機イオン吸着体を微粒子化できる。
 さらに、この粉砕及び混合工程において、水溶性高分子を加えることで、水溶性高分子が無機イオン吸着体の分散助剤として機能し、粉砕の効率を改善し、さらに無機イオン吸着体の再凝集を防ぐ役割をする。その結果、成形後の多孔性成形体に担持された無機イオン吸着体は、二次凝集物が少ないものとなる。
 ここで、水溶性高分子が分散助剤として働くメカニズムについて説明する。
 水溶性高分子が、無機イオン吸着体の固体粒子の表面に吸着することで、有機高分子樹脂の良溶媒に対する無機イオン吸着体の濡れ性が向上する。濡れ性が向上することにより、無機イオン吸着体の凝集体中の空気が液体で置換され、凝集していた無機イオン吸着体は良溶媒中でほぐれる。その結果、無機イオン吸着体の固体粒子の分散状態が良好になる。
 また、分子量が高い水溶性高分子は嵩が高いので、無機イオン吸着体の固体粒子の表面に水溶性高分子の吸着層が形成される。それによって、固体粒子の表面の電荷の増加や、立体障害により、粒子間の反発力が高まる。その結果、無機イオン吸着体の固体粒子の分散状態が良好になる。
 無機イオン吸着体の固体粒子の分散状態が良好になることによって、多孔性成形体としたときに、多孔性成形体中の無機イオン吸着体の二次凝集物が少なくなる。そのため、仕込みに用いた無機イオン吸着体の全てが均一に多孔性成形体全体に分散し、その全てが有効に吸着に関与し、吸着対象物質との接触効率が極めて高くなる。また、二次凝集物が少ないため、二次凝集物が起点となって、多孔性成形体が割れるといったことが少ないため耐久性も向上する。
 また、水溶性高分子には、上述した分散剤としての効果の他に、成形体の多孔性を高める効果もある。
 本実施形態における多孔性成形体の製造方法では、粉砕及び混合工程において、水溶性高分子を使用するため、多孔性成形体の性能及び製造容易性にもたらす効果は高い。具体的には、粉砕・分散効率が高くなるため、粉砕時間を短くできることである。また、スラリーの安定性が向上し、長期間保存しても、無機イオン吸着体が沈降するといったことが少ないことも挙げられる。
 <有機高分子樹脂の良溶媒>
 本実施形態の多孔性成形体の製造方法に用いる前記有機高分子樹脂の良溶媒としては、成形体の製造条件において有機高分子樹脂を安定に1質量%を超えて溶解するものであれば、特に限定されるものではなく、従来公知のものを使用できる。例えば、N-メチル-2ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド(DMF)等が挙げられる。これらは1種のみを用いてもよく、2種以上を混合して用いてもよい。
 <水溶性高分子>
 本実施形態の多孔性成形体の製造方法に用いる水溶性高分子は、有機高分子樹脂の良溶媒と有機高分子樹脂とに対して相溶性のあるものであればよく、特に限定されない。
 水溶性高分子としては、天然高分子、半合成高分子、合成高分子のいずれも使用できる。
 天然高分子としては、例えば、グアーガム、ローカストビーンガム、カラーギナン、アラビアゴム、トラガント、ペクチン、デンプン、デキストリン、ゼラチン、カゼイン、コラーゲン等が挙げられる。
 半合成高分子としては、例えば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルデンプン、メチルデンプン等が挙げられる。
 合成高分子としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルメチルエーテル、カルボキシビニルポリマー、ポリアクリル酸ナトリウム、さらに、テトラエチレングリコール、トリエチレングリコール等のポリエチレングリコール類が挙げられる。
 上記水溶性高分子のなかでも、無機イオン吸着体の担持性を高める点から、合成高分子が好ましく、多孔性が向上する点から、ポリエチレングリコール類がより好ましい。
 ポリエチレングリコール類の質量平均分子量は、400~35,000,000の範囲が好ましく、1,000~1,000,000の範囲がより好ましく、2,000~100,000の範囲がさらに好ましい。質量平均分子量が2,000以上であると、表面開口性の高い多孔性成形体が得られ、1,000,000以下であると、成形する時の粘度が低いので成形が容易になる傾向がある。なお、前記質量平均分子量は、ポリエチレングリコールを所定の溶媒に溶解し、ゲル浸透クロマトグラフィー(GPC)分析により測定できる。
 水溶性高分子の添加量は、水溶性高分子/(水溶性高分子+有機高分子樹脂+有機高分子樹脂の良溶媒)の割合が、0.1~40質量%となるようにすることが好ましい。水溶性高分子の添加量が0.1質量%以上であると、多孔性成形体の外表面及び内部に三次元的に連続した網目構造を形成する繊維状の構造体を含む多孔性成形体が均一に得られる。また、40質量%以下であると、強度が強い多孔性成形体が得られる。より好ましくは、0.5~30質量%であり、更に好ましくは1~20質量%である。
 <分散剤>
 前記粉砕及び混合工程においては、多孔性成形体の構造に影響しない範囲で、界面活性剤等の公知の分散剤を添加することもできる。
 <粉砕・混合手段>
 前記粉砕及び混合工程における粉砕・混合手段は、無機イオン吸着体、有機高分子樹脂の良溶媒及び水溶性高分子を合わせて粉砕・混合できるものであればよく、特に限定されない。例えば、加圧型破壊、機械的磨砕、超音波処理、ホモジナイザー等の物理的破砕方法を用いることができる。その具体例としては、ジェネレーターシャフト型ホモジナイザー、ワーリングブレンダー等のブレンダー、サンドミルやボールミル等の粉砕器、ジェットミル、乳鉢及び乳棒、らいかい器、超音波処理等の手段が挙げられる。
 なお、粉砕効率が高く、粘度の高いものまで粉砕できることから、ボールミルやアトライタ、ビーズミル等の媒体撹拌型ミルが好ましい。無機イオン吸着体をナノ領域の微小粒径まで粉砕・混合が可能な点で、ビーズミルがより好ましい。ビーズミルに使用するボール径は、特に限定されるものではないが0.1~2mmの範囲が好ましい。0.1mm以上であると、ボール質量が充分あるので粉砕力があり粉砕効率が高く、2mm以下では、微粉砕する能力が優れている。
 また、ビーズミルに使用するボールの材質は、特に限定されるものではないが、鉄やステンレスの金属系、アルミナやジルコニアの酸化物類、窒化ケイ素や炭化ケイ素等の非酸化物類の各種セラミック系が挙げられる。特に、耐摩耗性に優れ、製品へのコンタミネーション(摩耗物の混入)が少ない点で、ジルコニア類が優れている。
(前記スラリーに前記有機高分子樹脂を混合し溶解させ、成形用スラリーを得る、溶解工程)
 溶解工程においては、粉砕及び混合工程により得られたスラリーに、前記有機高分子樹脂を混合して溶解させることで、成形用スラリーを得る。
 ここで、有機高分子樹脂の添加量は、有機高分子樹脂/(有機高分子樹脂+水溶性高分子+有機高分子樹脂の良溶媒)の割合が、5~40質量%となるようにすることが好ましい。有機高分子樹脂の含有率が5質量%以上であると、強度のある多孔性成形体が得られ、40質量%以下であると、空孔率の高い多孔性成形体が得られる。より好ましくは、7~30質量%である。
(前記成形用スラリーを、貧溶媒中で凝固させる凝固工程)
 この凝固工程においては、前記溶解工程により得た成形用スラリーを貧溶媒中で凝固させて、成形用スラリーを成形し、多孔性成形体を得る。
 <貧溶媒>
 前記溶解工程により得た成形用スラリーを、貧溶媒中で凝固させる工程において用いる貧溶媒としては、凝固させる工程の条件において有機高分子樹脂の溶解度が1質量%以下の溶媒を使用することができ、例えば、水や、メタノール、エタノール等のアルコール類、エーテル類、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類等の有機高分子樹脂を溶解しない液体が挙げられる。好ましくは、水である。
 また、凝固工程では、前の工程から良溶媒が持ち込まれ、良溶媒の濃度が、凝固工程開始時と終点で、変化してしまう。そのため、あらかじめ貧溶媒中に良溶媒を加え、初期の濃度を維持するように貧溶媒を別途加えながら濃度を管理して凝固する方法を採ることが好ましい。そのように濃度調整することで、多孔性成形体の構造(表面の開口度や、粒子形状)を制御できる。貧溶媒が水の場合、凝固工程において、水に対する有機高分子樹脂の含有量は、0~60質量%であることが好ましく、0~50質量%であることがより好ましい。有機高分子樹脂の良溶媒の含有量が、60質量%以下であると、多孔性成形体の形状が良好になる効果が得られる。
 加えて、貧溶媒中に、有機高分子樹脂の良溶媒を添加する量や速さを制御することで、成形用スラリーの凝固速度をコントロールすることも可能である。
 貧溶媒の温度については、特に限定されるものではないが、貧溶媒中の成形体の状態の安定性の観点から、好ましくは-30℃~90℃、より好ましくは0℃~90℃、さらに好ましくは0℃~80℃である。
 本実施形態の多孔性成形体の形態は、成形用スラリーを成形する方法によって、粒子状、糸状、シート状、中空糸状、円柱状、中空円柱状等の任意の形態を採ることができる。
 例えば、粒子状の多孔性成形体を成形する方法としては、特に限定されないが、回転する容器の側面に設けたノズルから、容器中に収納されている成形用スラリーを飛散させて、液滴を形成させる回転ノズル法等が挙げられる。さらに具体的には、1流体ノズルや2流体ノズルから、成形用スラリー(有機高分子樹脂と、有機高分子樹脂の良溶媒と、無機イオン吸着体と、水溶性高分子の混合スラリー)を噴霧して凝固浴中で凝固する方法が挙げられる。特に、粒子状で粒度分布が揃ったものが得られるという観点から、回転ノズル法が特に好ましい。回転ノズル法とは、高速で回転する回転容器の側面に設けたノズルから、遠心力で成形用スラリーを飛散させて液滴を形成させる方法である。
 このとき、ノズルの径は、0.1mm~10mmの範囲が好ましく、0.1mm~5mmの範囲がより好ましい。0.1mm以上とすると液滴が飛散しやすく、10mm以下とすると粒度分布の広がりを抑えることができる。
 遠心力は、遠心加速度で表され、5~1500Gの範囲が好ましく、10~1000Gの範囲がより好ましく、10~800Gの範囲がさらに好ましい。遠心加速度が5G以上であると、液滴の形成と飛散が容易であり、1500G以下であるとポリマースラリーが糸状にならずに吐出するので粒度分布が広くなるのを抑えることができる。
 また、糸状やシート状の多孔性成形体を成形する方法としては、該当する形状の紡口、ダイスから成形用スラリーを押し出し、貧溶媒中で凝固させる方法が挙げられる。
 また、中空糸状成形体とするときは、環状オリフィスからなる紡口を用いることで同様に成形できる。
 円柱状及び中空円柱状成形体とするときは、紡口から成形用スラリーを押し出す際、切断しながら貧溶媒中で凝固させてもよいし、糸状に凝固させてから後に切断しても構わない。
〔多孔性成形体の用途〕
 本実施形態の多孔性成形体は、主として、水処理用途に使用できる。水処理用途においては、特に、リン、ホウ素、ヒ素、フッ素等のイオンの吸着剤として好適に利用できる。その中でも、リン吸着剤がより好適である。
 また、本実施形態の多孔性成形体は、成形体内部に連通孔が三次元網目状に発達しており、接触効率が高く、酸化剤等に対する耐薬品性も高いという特徴を有している。
 上記のように接触効率が高いことを活かし、水処理用途、その他各種吸着剤、脱臭剤、抗菌剤、吸湿剤、食品の鮮度保持剤、酵素固定担体、クロマトグラフィーの担体等の用途にも用いられる。
例えば、無機イオン吸着体にゼオライトを用いた場合は、脱臭効果が期待できる。さらに、本実施形態の多孔性成形体の無機イオン吸着体がゼオライトであり、さらに、該ゼオライトに銀を担持した場合には抗菌性を示す。また、パラジウムや白金を担持させた場合には、エチレンを吸着することから鮮度保持剤として使用できる。また、銀又は銅を担持させた場合は、硫化水素やアンモニア、メチルメルカプタンといった悪臭ガスを吸着、分解できることから脱臭効果がある。
 いずれの場合でも、本実施形態の多孔性成形体の接触効率の高さを活かした従来技術にない効果が期待できる。
 以下、具体的な実施例及び比較例を挙げて説明するが、本発明はこれらに限定されるものではない。
 成形体の物性は、以下の方法により測定した。
〔末端水酸基組成〕
 400MHz 1H-NMR(核磁気共鳴)装置(日本電子株式会社製 JNM-LA400)を用い、試料濃度50mg/gの重水素化DMF溶液中、積算回数512回で測定した。
 7.7ppmにクロル置換された芳香族炭素に隣接する2つのプロトン(HCl)と、6.9ppmに水酸基で置換された芳香族炭素に隣接する2つのプロトン(HOH)が、観察される。これらのピーク面積比を用い、末端水酸基組成を下記関係式より算出した。
[末端水酸基組成(モル%)]=
[HOHのピーク面積]/([HOHのピーク面積]+[HClのピーク面積])×100
〔強度保持率〕
 濃度500mg/Lの次亜塩素酸ナトリウム水溶液1000mLに対し、メスシリンダーを用いて秤量した多孔性成形体20mLを投入して、24時間浸漬した。24時間後に、多孔性成形体を取り出し、純水で洗浄して試験用サンプルを調製した。目開き300μmの篩を用いて、前記試験用サンプルを篩い、300μmより小さいものを除去した成形体を得た。
 メスシリンダーを用いて秤量した前記多孔性成形体10mLと純水100mLとを容量100mLのポリエチレン製容器(直径約50mm)に入れて、振とう機にて、250rpmの往復振とう周期で96時間振とうした。96時間振とう後、多孔性成形体を容器から取り出し、目開き300μmの篩で篩い分け、300μmより小さいものを破砕品として捕集した。
 捕集した破砕品を真空乾燥機で乾燥し、破砕した成形体の乾燥質量(Wh(g))を求めた。別途求めた多孔性成形体のかさ比重(g/mL)及び前記乾燥質量Whから、下記式により、多孔性成形体の強度保持率を算出した。
 強度保持率(%)=(かさ比重×10-Wh)/(かさ比重×10)×100
 強度保持率は、95%以上であれば、繰り返し使用性や酸化剤に対する耐久性が実用上良好であると判断した。好ましくは、97%以上である。
〔相対累積X線強度比〕
 無機イオン吸着体の多孔性成形体中での分布状態は、電子線マイクロアナライザ(EPMA)(EPMA1600、(株)島津製作所)を用いて面分析を行うことにより測定した。
 <電子線マイクロアナライザ(EPMA)用サンプルの作製>
 多孔性成形体を室温で真空乾燥した。乾燥した多孔性成形体をカミソリにて割断後、オスミウム(Os)を蒸着した。次いでエポキシ樹脂にて包埋し、研磨にて断面を作製後、再びオスミウム(Os)を蒸着して、多孔性成形体内部を観察するEPMA用サンプルを作製した。
 前記測定用サンプルを用い、面分析して得た面分析データ(具体的にはX線強度(カウント数)の度数分布)を統計処理した。
 無機イオン吸着体を構成する成分元素のX線強度の度数分布を、小さいX線強度(低濃度)側からそのX線強度の度数を積算し、X線強度の度数の累計が5%に達するX線強度の値を5%相対累積X線強度とした。
 同様に、無機イオン吸着体を構成する成分元素のX線強度の度数分布を、小さいX線強度(低濃度)側からそのX線強度の度数を積算し、X線強度の度数の累計が95%に達するX線強度の値を95%相対累積X線強度とした。
 下記式より、相対累積X線強度比を求めた。
 相対累積X線強度比=95%相対累積X線強度/5%相対累積X線強度
〔無機イオン吸着体の担持量〕
 多孔性成形体を室温下で24時間真空乾燥した。乾燥した多孔性成形体の質量を測定し、多孔性成形体の乾燥時の質量Wd(g)とした。
 次に、乾燥した成形体を、電気炉を用いて800℃で2時間焼成して灰分の質量を測定し、灰分の質量Wa(g)とした。
 下記式より、無機イオン吸着体の担持量を求めた。
 無機イオン吸着体の担持量(%)=Wa/Wd ×100
 上記式中、Waは多孔性成形体の灰分の質量(g)であり、Wdは多孔性成形体の乾燥時の質量(g)である。
 無機イオン吸着体の担持量は65%以上であれば、有害物質の高速除去性能に優れているものと判断した。
〔体積基準比表面積〕
 多孔性成形体を室温で真空乾燥した後、ベックマン・コールター(株)社製コールターSA3100(商品名)を用い、吸着ガスに窒素を用いたBET法で、多孔性成形体の単位質量あたりの表面積SBET(m2/g)を求めた。
 次に、湿潤状態の多孔性成形体を、メスシリンダー等を用いて、みかけの体積V(cm3)を測定した。
 その後、室温で真空乾燥して、多孔性成形体の乾燥質量W(g)を求めた。
 多孔性成形体の体積基準比表面積は、次式から求めた。
 体積基準比表面積(m2/cm3)=SBET(m2/g)×かさ比重(g/cm3
 かさ比重(g/cm3)=W/V
 前記式中、SBETは多孔性成形体の単位質量あたりの表面積(m2/g)であり、Wは多孔性成形体の乾燥質量(g)、Vはそのみかけの体積(cm3)である。
〔無機イオン吸着体の粒径〕
 無機イオン吸着体の粒径は、レーザー回折/散乱式粒度分布測定装置(HORIBA社製のLA-950(商品名))を用いて、無機イオン吸着体の粒径分布を測定し、そのメジアン径(d50)を平均粒径として測定した。
〔多孔性成形体の平均粒子径〕
 多孔性成形体表面を、走査型電子顕微鏡又は実体顕微鏡で観察した。走査型電子顕微鏡(SEM)による成形体の観察は、日立製作所製のS-800型走査型電子顕微鏡を用いた。
 粒子の表面の画像から粒子が真球状の場合はその直径、真球状以外の場合は、最大長を粒子径として実測した。実測した標本数50以上の直径又は最大長について平均を算出し、平均粒子径とした。
〔多孔性成形体の空孔率〕
 十分に水に濡れた多孔性成形体を、乾いたろ紙上に拡げ、余分な水分を除去した後に、質量を測定し、多孔性成形体の含水時の質量(W1)とした。
 次に、多孔性成形体を室温下で24時間真空乾燥を行って乾燥した多孔性成形体を得た。乾燥した多孔性成形体の質量を測定し、多孔性成形体の乾燥時の質量(W0)とした。
 次に、比重瓶(ゲーリュサック型、容量10mL)を用意し、この比重瓶に純水(25℃)を満たしたときの質量を測定し、満水時の質量(Ww)とした。
 次に、この比重瓶に、純水に湿潤した状態の多孔性成形体を入れ、さらに標線まで純水を満たして質量を測定し、(Wwm)とした。
 次に、この多孔性成形体を比重瓶から取り出し、室温で24時間、真空乾燥を行い、乾燥した多孔性成形体を得た。乾燥した多孔性成形体の質量を測定して(M)とした。
 下記の計算式に従って、多孔性成形体の比重(ρ)、及び多孔性成形体の空孔率(Pr)を求めた。
 ρ=M/(Ww+M-Wwm)
 Pr=(W1-W0)/(W1-W0+W0/ρ)×100
 上記式中、Prは空孔率(%)であり、W1は成形体の含水時の質量(g)、W0は成形体の乾燥後の質量(g)、ρは成形体の比重(g/cm3)、Mは成形体の乾燥後の質量(g)、Wwは比重瓶の満水時の質量(g)、Wwmは比重瓶に含水した成形体と純水を入れたときの質量(g)である。
 多孔性成形体の空孔率は50%以上であれば、有害物質の高速除去性能に優れていると判断し、95%以下であれば、多孔性成形体の強度が実用上十分なものであると判断した。
〔多孔性成形体の割断〕
 多孔性成形体を室温で真空乾燥し、乾燥した成形体をイソプロピルアルコール(IPA)に加えて、成形体中にIPAを含浸させた。
 次いで、IPAと共に成形体を直径5mmのゼラチンカプセルに封入し、液体窒素中で凍結した。
 凍結した多孔性成形体をカプセルごと彫刻刀で割断した。
 割断されている多孔性成形体を選別して、電子顕微鏡による観察用試料とした。
〔リン吸着量〕
 リン酸三ナトリウム(Na3PO4・12H2O)を蒸留水に溶解し、リン濃度9mg-P/Lの液を作製し、硫酸でpH7に調製した液を吸着原液とした。
 多孔性成形体8mLを、カラム(内径10mm)に充填して、前記吸着原液を240mL/hr(SV30)の速度で通水した。
 カラムからの流出液(処理液)を30分毎にサンプリングして、該処理水中のリン酸イオン濃度(リン濃度)を測定して、0.5mg-P/L(ppm)超過時までのリン吸着量(吸着量 mg-P/L-多孔性成形体(R))を求めた。
 リン酸イオン濃度は、HACH社製リン酸測定装置フォスファックス・コンパクト(商品名)を用いて測定した。
 リン吸着量が、4.0(g-P/L-多孔性成形体(R))以上であれば、吸着容量が大きく、リン吸着剤として良好であると判断した。
〔凝固浴槽の濁り〕
 後述する実施例1~6、比較例1、2において、成形用スラリーを凝固浴槽中に吐出させ、ポリマースラリーを凝固させた後、凝固浴槽の水面から30cmの深さに置いた標識板の二重十字が判別できるか否かで、凝固浴槽の濁りの有無を判定した。
 標識板の判別としては、白色の板に、太さ0.5mm、間隔1mmの二重線で十字(二重十字)が記載されているものを使用し、判別可能性を判定した。
 多孔性成形体の無機イオン吸着体の担持性が弱い場合、凝固浴槽に白濁が生じる。また、無機イオン吸着体の担持性がさらに弱い場合、白濁によって標識板の二重十字が判別不能となる。
〔実施例1〕
 ポリエチレングリコール(PEG35,000、メルク(株))80gを、N-メチル-2ピロリドン(NMP、三菱化学(株))4400g中に溶解して均一な溶液を得た。この溶液4480gに対し、平均粒径2.0μmの水和酸化セリウム粉末(岩谷産業(株))2000gを加えて、直径0.8mmφのジルコニアボールを充填したビーズミル(SC100、三井鉱山(株))を用いて、30分間粉砕・混合処理を行い黄色のスラリーを得た。
 さらに、このスラリーに水酸基を有するポリエーテルスルホン樹脂(住友化学(株)、スミカエクセル5003PS(商品名)、OH末端グレード、末端水酸基組成90(モル%))600gを、溶解槽中にて、60℃に加温して撹拌羽根を用いて撹拌・溶解し、均一な成形用スラリー溶液を得た。
 得られた成形用スラリーを40℃に加温し、側面に直径5mmのノズルを開けた円筒状回転容器の内部に供給し、この容器を回転させ、遠心力(15G)によりノズルから液滴を形成し、60℃の水からなる容量200Lの凝固浴槽中に吐出させ、成形用スラリーを凝固させた。
 さらに、洗浄、分級を行い、平均粒子径600μmの球状の多孔性成形体を得た。
 この球状の多孔性成形体の物性を下記表1に示した。
 強度保持率は99%以上を維持しており、酸化剤に対する耐久性が高いことが分かった。
 また、得られた多孔性成形体の表面及び割断面を、走査型電子顕微鏡(SEM)を用いて観察した。倍率150倍の電子顕微鏡写真と、倍率10000倍の電子顕微鏡写真とを、それぞれ図1、図2に示す。
 図1から、実施例1の多孔性成形体は連通孔を有し、多孔質な構造を有していることが分かった。さらに、割断面全体を観察したところ、無機イオン吸着体は、均一に分散して担持されていることが確認された。
 さらに、電子線マイクロアナライザ(EPMA)を用いて、無機イオン吸着体の構成元素であるセリウム(Ce)について、成形体内部の面分析を行った。解析の結果、相対累積X線強度比は1.8であった。
 また、図2から、多孔性成形体の外表面及び内部に三次元的に連続した網目構造を形成する繊維状の構造体の外表面と内部に無機イオン吸着体が担持されている様子が観察された。これにより、無機イオン吸着体の多孔性成形体中での分散状態が良好であり、いわゆるダマと呼ばれるような二次凝集物が少なく、無機イオン吸着体と吸着対象イオンとの接触効率が高く、吸着性能が良好であることが分かった。さらには、無機イオン吸着体の二次凝集物が少ないため、二次凝集物が起点となって割れるといったことが少ないため耐久性も高いことが分かった。
〔実施例2〕
 有機高分子樹脂として、水酸基を有するポリエーテルスルホン樹脂(住友化学(株)、スミカエクセル5003PS(商品名)、OH末端グレード、末端水酸基組成90(モル%))540gと、末端Cl基を有するポリエーテルスルホン樹脂(住友化学(株)、スミカエクセル5200P(商品名)、末端水酸基組成0(モル%))60gを混合して使用した。この混合後の有機高分子樹脂の末端水酸基組成は、81モル%であった。
 その他の条件は、実施例1と同様として、平均粒子径600μmの球状の多孔性成形体を得た。
 この球状の多孔性成形体の物性を下記表1に示した。
〔実施例3〕
 有機高分子樹脂として、水酸基を有するポリエーテルスルホン樹脂(住友化学(株)、スミカエクセル5003PS(商品名)、OH末端グレード、末端水酸基組成90(モル%))60gと、末端Cl基を有するポリエーテルスルホン樹脂(住友化学(株)、スミカエクセル5200P(商品名)、末端水酸基組成0(モル%))540gを混合して使用した。この混合後の有機高分子樹脂の末端水酸基組成は、9モル%であった。
 その他の条件は、実施例1と同様として、平均粒子径600μmの球状の多孔性成形体を得た。
 この球状の多孔性成形体の物性を表1に示した。
〔実施例4〕
 有機高分子樹脂として、水酸基を有するポリエーテルスルホン樹脂(住友化学(株)、スミカエクセル5003PS(商品名)、OH末端グレード、末端水酸基組成90(モル%))540gと、末端Cl基を有するポリスルホン樹脂(ソルベイアドバンストポリマーズ(株)、ユーデルP-3500LCD(商品名)、末端水酸基組成0(モル%))60gを混合して使用した。この混合後の有機高分子樹脂の末端水酸基組成は、81モル%であった。
 その他の条件は、実施例1と同様として、平均粒子径600μmの球状の多孔性成形体を得た。
 この球状の多孔性成形体の物性を表1に示した。
〔実施例5〕
 有機高分子樹脂として、下記(製造例1)で製造した水酸基を有するポリエーテルスルホン樹脂(末端クロル基/末端水酸基=50/50(モル%))600gを使用した。この有機高分子樹脂の末端水酸基組成は、50モル%であった。
 その他の条件は実施例1と同様として平均粒子径600μmの球状の多孔性成形体を得た。
 この球状の多孔性成形体の物性を表1に示した。
 (製造例1)
 <末端水酸基/末端クロル基=50/50(モル%)のポリエーテルスルホン樹脂の合成>
 攪拌機、温度計、冷却器、留出物分液器及び窒素導入管を備えた1Lの四口フラスコに、4,4’-ジヒドロキシジフェニルスルホン(以下DHDPSと略す)(50.06g、0.20モル)、トルエン100mL、1,3-ジメチル-2-イミダゾリジノン(250.8g)、40%水酸化カリウム水溶液(56.0g、0.39モル)を秤量し、攪拌しながら窒素ガスを通じ、反応系をすべて窒素置換した。
 窒素ガスを通じながら130℃まで加熱した。
 反応系の温度が上昇するとともにトルエンの環流が開始され、反応系内の水をトルエンとの共沸で除去し、トルエンを反応系に戻しながら共沸脱水を130℃で4時間行った。
 この後、4,4’-ジクロロジフェニルスルホン(以下DCDPSと略す)(57.40g、0.20モル)をトルエン40gとともに反応系に加え、反応系を150℃に加熱した。
 トルエンを留出させながら4時間反応させ、高粘度の茶褐色の溶液を得た。
 反応液の温度を室温まで冷却し、反応溶液をメタノール1kgに投下し、ポリマー粉を析出させた。
 濾過によりポリマー粉を回収し、これに水1kgを加え、さらに1Nの塩酸を加え、スラリー溶液をpH3~4になるまで加え、酸性にした。濾過によりポリマー粉を回収した後、ポリマー粉を水1kgで2回洗浄した。
 さらにメタノール1kgで洗浄し、150℃で12時間真空乾燥した。
 得られたポリマー粉は白色粉末状で、400MHz 1H-NMRにより測定した末端基組成は、末端水酸基/末端クロル基=50/50(モル%)であった。
〔実施例6〕
 有機高分子樹脂として、下記(製造例2)で製造した水酸基を有するポリスルホン樹脂(末端水酸基/末端クロル基=50/50(モル%))600gを使用した。この有機高分子樹脂の末端水酸基組成は、50モル%であった。
 その他の条件は、実施例1と同様として、平均粒子径600μmの球状の多孔性成形体を得た。この球状の多孔性成形体の物性を表1に示した。
 (製造例2)
 <末端水酸基/末端クロル基=50/50(モル%)のポリスルホン樹脂の製造>
 前記(製造例1)のDHDPSの代わりに2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノール-A)(45.66g、0.20モル)を使用した。その他の条件は上記(製造例1)と同様とした。
 得られたポリマー粉は白色粉末状で、400MHz 1H-NMRにより測定した末端基組成は、末端水酸基/末端クロル基=50/50(モル%)であった。
〔比較例1〕
 有機高分子樹脂として、末端にCl基を有するポリエーテルスルホン樹脂(BASFジャパン(株)、ウルトラゾンE6020P(商品名))(末端水酸基/末端クロル基=0/100(モル%))600gを使用した。この有機高分子樹脂の末端水酸基組成は、0モル%であった。
 その他の条件は、実施例1と同様として、平均粒子径600μmの球状の多孔性成形体を得た。
 この球状の多孔性成形体の物性を表1に示した。
〔比較例2〕
 有機高分子樹脂として、ポリスルホン樹脂(ソルベイアドバンストポリマーズ(株)、ユーデルP-3500LCD(商品名))(末端水酸基/末端クロル基=0/100(モル%))600gを使用した。この有機高分子樹脂の末端水酸基組成は、0モル%であった。
 その他の条件は、〔実施例1〕と同様として、平均粒子径600μmの球状の多孔性成形体を得た。
 この球状の多孔性成形体の物性を表1に示した。
Figure JPOXMLDOC01-appb-T000010
 表1中、「PES」とはポリエーテルスルホン樹脂を示し、「PSF」とはポリスルホン樹脂を示す。
 実施例1、5及び6の結果より、末端水酸基を有するポリエーテルスルホン樹脂及びポリスルホン樹脂を使用すると、強度保持率が高い多孔性成形体が得られることが分かった。
 さらに、実施例2~4の結果より、末端水酸基を有するポリエーテルスルホン樹脂と、通常のCl末端基のみを有するポリエーテルスルホン樹脂又はポリスルホン樹脂を混合して使用しても、強度保持率が高い多孔性成形体が得られることが分かった。
 一方、比較例1及び2の結果より、末端水酸基を持たないで通常のCl末端基のみを有するポリエーテルスルホン樹脂とポリスルホン樹脂を使用した場合、強度保持率は95%より低下して、実用上の耐久性能を発揮し得ないことが分かった。また、凝固浴槽の水には濁りが確認され、無機イオン吸着体の担持状態が悪く、凝固浴槽中の水に溶け出していた。
 本出願は、2009年11月20日に日本国特許庁へ出願された、日本特許出願(特願2009-265164)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の多孔性成形体は、液体及び気体の処理に用いる吸着剤、ろ過剤、脱臭剤、抗菌剤、吸湿剤、食品の鮮度保持剤、各種のクロマトグラフィー用担体、触媒、排水や海水などからの有価物(例えば、ウランやリチウムなど)の回収剤等として、産業上の利用可能性がある。

Claims (21)

  1.  有機高分子樹脂と、無機イオン吸着体とを含有し、
     前記有機高分子樹脂が、ポリエーテルスルホン樹脂及び/又はポリスルホン樹脂であり、水酸基を有する有機高分子樹脂である多孔性成形体。
  2.  前記有機高分子樹脂が、末端に水酸基を有している請求項1に記載の多孔性成形体。
  3.  前記有機高分子樹脂の末端水酸基組成が、5~100モル%である請求項1又は2に記載の多孔性成形体。
  4.  前記有機高分子樹脂が、下記一般式(1)で表される有機高分子樹脂である請求項1乃至3のいずれか一項に記載の多孔性成形体。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)において、nは1以上の整数を表し、Yは、直接結合、O、S、SO2、CO、C(CH32、CH(CH3)、及びCH2から選ばれるいずれかを表し、ベンゼン環の水素は、炭素数1~6のアルキル基又は炭素数6~8のアリール基で置換されていてもよい。)
  5.  前記有機高分子樹脂が、下記一般式(2)で示されるポリエーテルスルホン樹脂である請求項1乃至4のいずれか一項に記載の多孔性成形体。
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(2)において、nは、2以上の整数を表し、ベンゼン環の水素は、炭素数1~6のアルキル基又は炭素数6~8のアリール基で置換されていてもよい。)
  6.  前記有機高分子樹脂が、連通孔を具備する多孔質構造を形成しており、
     前記有機高分子樹脂の外表面と内部に無機イオン吸着体が担持されている請求項1乃至5のいずれか一項に記載の多孔性成形体。
  7.  空孔率Pr(%)が50%~95%である請求項1乃至6のいずれか一項に記載の多孔性成形体。
  8.  前記無機イオン吸着体の担持量が65~95%である請求項1乃至7のいずれか一項に記載の多孔性成形体。
  9.  相対累積X線強度比が1~10である請求項1乃至8のいずれか一項に記載の多孔性成形体。
  10.  平均粒子径が100~2500μmの球状体である請求項1乃至9のいずれか一項に記載の多孔性成形体。
  11.  前記無機イオン吸着体が、
     下記式(i)で表される金属酸化物を少なくとも一種含有している請求項1乃至10のいずれか一項に記載の多孔性成形体。
     MNxn・mH2O  ・・・(i)
    (式(i)中、xは0~3、nは1~4、mは0~6であり、M及びNは、Ti、Zr、Sn、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Si、Cr、Co、Ga、Fe、Mn、Ni、V、Ge、Nb及びTaからなる群より選ばれる金属元素であり、互いに異なるものである。)
  12.  前記金属酸化物が、下記(a)~(c)からなる群より選ばれる、1種又は2種以上の混合物である請求項11に記載の多孔性成形体。
    (a)水和酸化チタン、水和酸化ジルコニウム、水和酸化スズ、水和酸化セリウム、水和酸化ランタン、及び水和酸化イットリウム
    (b)チタン、ジルコニウム、スズ、セリウム、ランタン、及びイットリウムからなる群から選ばれる金属元素と、アルミニウム、珪素、及び鉄からなる群から選ばれる金属元素との複合金属の酸化物
    (c)活性アルミナ
  13.  前記無機イオン吸着体が、硫酸アルミニウム添着活性アルミナ、及び/又は硫酸アルミニウム添着活性炭を含有している請求項1乃至12のいずれか一項に記載の多孔性成形体。
  14.  請求項1乃至13のいずれか一項に記載の多孔性成形体を含む吸着剤。
  15.  有機高分子樹脂及び無機イオン吸着体を含有する多孔性成形体の製造方法であって、
     前記有機高分子樹脂の良溶媒と、前記無機イオン吸着体と、水溶性高分子とを、粉砕、混合してスラリーを得る、粉砕・混合工程と、
     前記スラリーに前記有機高分子樹脂を混合し溶解させ、成形用スラリーを得る、溶解工程と、
     前記成形用スラリーを、前記有機高分子樹脂の貧溶媒中で凝固させる凝固工程と、
    を、有する多孔性成形体の製造方法。
  16.  前記粉砕・混合工程を、媒体撹拌型ミルを用いて行う請求項15に記載の多孔性成形体の製造方法。
  17.  前記有機高分子樹脂の良溶媒が、N-メチル-2ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド(DMF)からなる群より選ばれる1種以上である請求項15又は16に記載の多孔性成形体の製造方法。
  18.  前記貧溶媒が水を含む、請求項15乃至17のいずれか一項に記載の多孔性成形体の製造方法。
  19.  前記凝固工程において、前記貧溶媒と、前記良溶媒との混合比率が、100~40質量%:0~60質量%である請求項18に記載の多孔性成形体の製造方法。
  20.  前記凝固工程が、回転する容器の側面に設けたノズルから、前記容器中に収納されている前記成形用スラリーを飛散させて液滴を形成させる工程を含む請求項15乃至19のいずれか一項に記載の多孔性成形体の製造方法。
  21.  前記粉砕・混合工程において、前記水溶性高分子を、水溶性高分子/(水溶性高分子+有機高分子樹脂+有機高分子樹脂の良溶媒)が0.1~40質量%の割合となるようにして、添加する請求項15乃至20のいずれか一項に記載の多孔性成形体の製造方法。
     
PCT/JP2010/070742 2009-11-20 2010-11-19 多孔性成形体及びその製造方法 WO2011062277A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES10831669T ES2758653T3 (es) 2009-11-20 2010-11-19 Artículo moldeado poroso y procedimiento para fabricar el mismo
EP10831669.6A EP2502959B1 (en) 2009-11-20 2010-11-19 Porous molded article, and method for manufacturing the same
CN201080052294.2A CN102612535B (zh) 2009-11-20 2010-11-19 多孔性成形体及其制造方法
US13/505,880 US9359227B2 (en) 2009-11-20 2010-11-19 Porous formed article, and method for manufacturing the same
JP2011541983A JP5622745B2 (ja) 2009-11-20 2010-11-19 多孔性成形体及びその製造方法
KR1020127005791A KR101479820B1 (ko) 2009-11-20 2010-11-19 다공성 성형체 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009265164 2009-11-20
JP2009-265164 2009-11-20

Publications (1)

Publication Number Publication Date
WO2011062277A1 true WO2011062277A1 (ja) 2011-05-26

Family

ID=44059749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070742 WO2011062277A1 (ja) 2009-11-20 2010-11-19 多孔性成形体及びその製造方法

Country Status (7)

Country Link
US (1) US9359227B2 (ja)
EP (1) EP2502959B1 (ja)
JP (1) JP5622745B2 (ja)
KR (1) KR101479820B1 (ja)
CN (1) CN102612535B (ja)
ES (1) ES2758653T3 (ja)
WO (1) WO2011062277A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208596A (ja) * 2012-03-30 2013-10-10 Toshiba Corp 吸着剤とその製造方法
JP2014195787A (ja) * 2013-03-29 2014-10-16 旭化成ケミカルズ株式会社 無機イオン吸着体、多孔性成形体及びそれらの製造方法
KR101609802B1 (ko) * 2015-02-09 2016-04-06 광주과학기술원 아카가나이트 분말이 고정화된 수중 산소산 음이온 제거 및 회수용 입상 흡착제 및 그 제조방법
CN106268701A (zh) * 2016-10-08 2017-01-04 南京工业大学 一种用于同步深度去除水中磷和氟的树脂基复合吸附剂及制备方法
JP2017039874A (ja) * 2015-08-21 2017-02-23 学校法人 中央大学 多孔質膜およびその製造方法
JP2018012091A (ja) * 2016-07-22 2018-01-25 旭化成株式会社 ヨウ素酸及び/又はアンチモン吸着材
WO2018128108A1 (ja) * 2017-01-06 2018-07-12 住友化学株式会社 樹脂微粒子の製造方法、樹脂粒子
JPWO2017082420A1 (ja) * 2015-11-11 2018-08-09 旭化成株式会社 多孔性成形体、並びに多孔性成形体の製造方法及び製造装置
JP2018140338A (ja) * 2017-02-27 2018-09-13 株式会社カサイ 陰イオン吸着剤組成物、繊維状陰イオン吸着剤、及び繊維状陰イオン吸着剤の製造方法
WO2018212269A1 (ja) 2017-05-17 2018-11-22 旭化成メディカル株式会社 血液処理用リン吸着剤、血液処理システム及び血液処理方法
WO2019135371A1 (ja) 2018-01-04 2019-07-11 旭化成株式会社 多孔性成形体
JP2019118880A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118881A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118877A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118879A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2021037471A (ja) * 2019-09-04 2021-03-11 株式会社クボタ 濁度測定装置および凝集槽
CN114051721A (zh) * 2019-09-04 2022-02-15 株式会社久保田 液体拍摄装置以及具备液体拍摄装置的凝聚槽
US11964084B2 (en) 2015-11-11 2024-04-23 Asahi Kasei Medical Co., Ltd. Phosphate adsorbing agent for blood processing, blood processing system and blood processing method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012093462A1 (ja) * 2011-01-07 2012-07-12 パナソニック株式会社 光電気複合フレキシブル配線板
CN112680073A (zh) * 2013-04-10 2021-04-20 宣伟投资管理有限公司 耐酸气涂层
KR101297978B1 (ko) * 2013-05-28 2013-08-23 주식회사 지이테크 하/폐수 생물학적 처리를 위한 폐피혁부산물에서 추출한 젤라틴을 함유한 친수성 다공성 담체 제조방법
US20150080537A1 (en) * 2013-09-13 2015-03-19 Samsung Sdi Co., Ltd. Method for Preparing Polyethersulfone
CN104671322A (zh) * 2013-11-26 2015-06-03 天津大学 一种改性树脂在硼脱除过程中的应用
US9663723B2 (en) 2015-08-26 2017-05-30 King Fahd University Of Petroleum And Minerals Method for removing sulfur compounds from fuel using an adsorbent
WO2019165598A1 (en) * 2018-02-28 2019-09-06 Honeywell International Inc. Polymer composite granule and method of processing the same
CN108671900A (zh) * 2018-04-26 2018-10-19 武汉理工大学 一种分散改性制备高比表面积负载型水合氧化锆的方法及其应用
KR102342317B1 (ko) * 2020-02-25 2021-12-24 인오켐 주식회사 불소흡착재, 이의 제조방법, 및 이를 이용한 불소 함유 폐수 처리방법
CN112619440B (zh) * 2020-12-28 2023-01-20 中建一局集团安装工程有限公司 一种乙二胺改性氧化镧-pvdf杂化膜材料在吸附除磷中的应用及污水除磷方法
US20230035362A1 (en) * 2021-07-21 2023-02-02 Neo Chemicals & Oxides, LLC Use of Trivalent Doped Cerium Oxide Compositions for Biological Contaminant Removal
CN114843406B (zh) * 2022-04-02 2024-05-24 湖北文理学院 有机无机杂化钙钛矿薄膜的制备方法及半透明太阳能电池的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056175A1 (ja) 2003-12-15 2005-06-23 Asahi Kasei Chemicals Corporation 多孔性成形体及びその製造方法
JP2006297382A (ja) * 2005-03-25 2006-11-02 Asahi Kasei Chemicals Corp 高吸着性能多孔性成形体及び製造方法
JP2008238132A (ja) * 2007-03-29 2008-10-09 Asahi Kasei Chemicals Corp 吸着装置および方法
JP2009265164A (ja) 2008-04-22 2009-11-12 Hitachi Cable Ltd フレキシブル光配線及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625000A (en) * 1985-06-12 1986-11-25 Union Carbide Corporation Process for preparing sulfonated poly(aryl ether) resins
AU4529289A (en) * 1988-10-17 1990-05-14 Sepracor, Inc. Process for the covalent surface modification of hydrophobic polymers and articles made therefrom
US20110108478A1 (en) * 2008-04-11 2011-05-12 Kawasaki Jukogyo Kabushiki Kaisha Hydrophilic Polyethersulfone Filtration Membrane, Process for Producing the Same, and Dope Solution
CN101422701B (zh) 2008-11-25 2014-08-06 北京仁创科技集团有限公司 过滤元件及其制造方法以及水处理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005056175A1 (ja) 2003-12-15 2005-06-23 Asahi Kasei Chemicals Corporation 多孔性成形体及びその製造方法
JP2006297382A (ja) * 2005-03-25 2006-11-02 Asahi Kasei Chemicals Corp 高吸着性能多孔性成形体及び製造方法
JP2008238132A (ja) * 2007-03-29 2008-10-09 Asahi Kasei Chemicals Corp 吸着装置および方法
JP2009265164A (ja) 2008-04-22 2009-11-12 Hitachi Cable Ltd フレキシブル光配線及びその製造方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013208596A (ja) * 2012-03-30 2013-10-10 Toshiba Corp 吸着剤とその製造方法
JP2014195787A (ja) * 2013-03-29 2014-10-16 旭化成ケミカルズ株式会社 無機イオン吸着体、多孔性成形体及びそれらの製造方法
KR101609802B1 (ko) * 2015-02-09 2016-04-06 광주과학기술원 아카가나이트 분말이 고정화된 수중 산소산 음이온 제거 및 회수용 입상 흡착제 및 그 제조방법
JP2017039874A (ja) * 2015-08-21 2017-02-23 学校法人 中央大学 多孔質膜およびその製造方法
US11964084B2 (en) 2015-11-11 2024-04-23 Asahi Kasei Medical Co., Ltd. Phosphate adsorbing agent for blood processing, blood processing system and blood processing method
US11224854B2 (en) 2015-11-11 2022-01-18 Asahi Kasei Kabushiki Kaisha Porous formed article, method for producing porous formed article, and production apparatus for porous formed article
JPWO2017082420A1 (ja) * 2015-11-11 2018-08-09 旭化成株式会社 多孔性成形体、並びに多孔性成形体の製造方法及び製造装置
JP2018012091A (ja) * 2016-07-22 2018-01-25 旭化成株式会社 ヨウ素酸及び/又はアンチモン吸着材
CN106268701A (zh) * 2016-10-08 2017-01-04 南京工业大学 一种用于同步深度去除水中磷和氟的树脂基复合吸附剂及制备方法
WO2018128108A1 (ja) * 2017-01-06 2018-07-12 住友化学株式会社 樹脂微粒子の製造方法、樹脂粒子
JP7046489B2 (ja) 2017-01-06 2022-04-04 住友化学株式会社 樹脂微粒子の製造方法、樹脂粒子
US11230628B2 (en) 2017-01-06 2022-01-25 Sumitomo Chemical Company, Limited Resin microparticle production method and resin particles
JP2018111739A (ja) * 2017-01-06 2018-07-19 住友化学株式会社 樹脂微粒子の製造方法、樹脂粒子
JP2018140338A (ja) * 2017-02-27 2018-09-13 株式会社カサイ 陰イオン吸着剤組成物、繊維状陰イオン吸着剤、及び繊維状陰イオン吸着剤の製造方法
US11224871B2 (en) 2017-05-17 2022-01-18 Asahi Kasei Medical Co., Ltd. Phosphate adsorbing agent for blood processing, blood processing system and blood processing method
WO2018212269A1 (ja) 2017-05-17 2018-11-22 旭化成メディカル株式会社 血液処理用リン吸着剤、血液処理システム及び血液処理方法
JP2019118879A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118877A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118881A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
JP2019118880A (ja) * 2018-01-04 2019-07-22 旭化成株式会社 多孔性成形体
WO2019135371A1 (ja) 2018-01-04 2019-07-11 旭化成株式会社 多孔性成形体
US11865509B2 (en) 2018-01-04 2024-01-09 Asahi Kasei Kabushiki Kaisha Porous molding
JP2021037471A (ja) * 2019-09-04 2021-03-11 株式会社クボタ 濁度測定装置および凝集槽
CN114051721A (zh) * 2019-09-04 2022-02-15 株式会社久保田 液体拍摄装置以及具备液体拍摄装置的凝聚槽
JP7353105B2 (ja) 2019-09-04 2023-09-29 株式会社クボタ 濁度測定装置および凝集槽

Also Published As

Publication number Publication date
JPWO2011062277A1 (ja) 2013-04-11
JP5622745B2 (ja) 2014-11-12
EP2502959B1 (en) 2019-09-11
CN102612535A (zh) 2012-07-25
US9359227B2 (en) 2016-06-07
CN102612535B (zh) 2015-03-25
KR101479820B1 (ko) 2015-01-06
EP2502959A4 (en) 2015-08-19
US20120219799A1 (en) 2012-08-30
KR20120055603A (ko) 2012-05-31
EP2502959A1 (en) 2012-09-26
ES2758653T3 (es) 2020-05-06

Similar Documents

Publication Publication Date Title
JP5622745B2 (ja) 多孔性成形体及びその製造方法
JP6573678B2 (ja) 多孔性成形体、並びに多孔性成形体の製造方法及び製造装置
JP5813150B2 (ja) 高吸着性能多孔性成形体及びその製造方法
KR100804360B1 (ko) 다공성 성형체 및 그의 제조 방법
JP4646301B2 (ja) 多孔性成形体およびその製造方法
JP2006297382A (ja) 高吸着性能多孔性成形体及び製造方法
JP2008238132A (ja) 吸着装置および方法
JP6093223B2 (ja) 無機イオン吸着体、及び、多孔性成形体
US11865509B2 (en) Porous molding
JP5062972B2 (ja) イオン除去装置およびイオン除去方法
JP2019118880A (ja) 多孔性成形体
JP2018012090A (ja) 吸着材
JP2019118881A (ja) 多孔性成形体
JP2019118877A (ja) 多孔性成形体
JP2019118878A (ja) 多孔性成形体
JP2020099866A (ja) 多孔性成形体
JP6716382B2 (ja) ヨウ素酸及び/又はアンチモン吸着材
JP5062975B2 (ja) 水浄化システムおよび水浄化方法
JP2019118879A (ja) 多孔性成形体
JP2019118876A (ja) 多孔性成形体
JP2018012091A (ja) ヨウ素酸及び/又はアンチモン吸着材
JP2021041378A (ja) 多孔性成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052294.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831669

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541983

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127005791

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3721/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13505880

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010831669

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE