JP2009265164A - フレキシブル光配線及びその製造方法 - Google Patents

フレキシブル光配線及びその製造方法 Download PDF

Info

Publication number
JP2009265164A
JP2009265164A JP2008111460A JP2008111460A JP2009265164A JP 2009265164 A JP2009265164 A JP 2009265164A JP 2008111460 A JP2008111460 A JP 2008111460A JP 2008111460 A JP2008111460 A JP 2008111460A JP 2009265164 A JP2009265164 A JP 2009265164A
Authority
JP
Japan
Prior art keywords
core
flexible optical
wiring
optical wiring
neutral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008111460A
Other languages
English (en)
Inventor
Takemasa Ushiwatari
剛真 牛渡
Mitsuki Hirano
光樹 平野
Hironori Yasuda
裕紀 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008111460A priority Critical patent/JP2009265164A/ja
Priority to US12/292,933 priority patent/US7805042B2/en
Priority to CN200910135117XA priority patent/CN101566704B/zh
Publication of JP2009265164A publication Critical patent/JP2009265164A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】機械的な信頼性を向上させたフレキシブル光配線を提供する。
【解決手段】コア2とクラッド3からなる光導波路の層4を含む複数の層を有するフレキシブル光配線1において、上記コア2が曲げによる伸び縮みのない中立面Nを含むよう配置されるか又は上記コア2が上記中立面Nを含まない場合は、上記コア2の上記中立面Nに近い面と上記中立面Nとの距離Δyが最外層の表面の許容曲率半径Rの0.03倍以下となるよう配置される。
【選択図】図1

Description

本発明は、機械的な信頼性を向上させたフレキシブル光配線及びその製造方法に関する。
パソコン、携帯電話、テレビなどの電子機器において、画像などの大容量のデータを扱うサービスやアプリケーションの拡大に伴い、高速・大容量な信号伝送技術の開発が活発に進められている。上記に挙げられるような機器間、機器内、または機器内における電子基板間、電子基板内において、高速・大容量の信号伝送を可能とする光インターコネクションの開発が注目されている。
従来より、上記基板間の信号伝送路の接続には電気配線が用いられている。特に機器内、電子基板間においてフレキシブル性を求められる部位には、多芯でフレキシブルなFPC(Flexible Printed Circuit)や細径の同軸ケーブルを用いた電気配線が検討されている。
しかし、電気配線による信号伝送は、信号の高速化に伴ってクロストーク、電磁輻射、帯域の制限、高周波化による損失などの問題が表れる。電気配線では、伝送速度は1チャンネルあたり数Gbps程度が限界であり、今後の高速化には、芯線数の増加や波形補正機能を持つ素子を用いる必要がある。芯線数を増加した場合、配線コストが高くなるばかりでなく、配線の体積も増加し、配線スペースの点で問題となる。また、信号伝送の高速化を行うには、伝送路の終端付近に伝送での遅延等により生じた波形の乱れを補正する波形補正機能をもった補正回路が必要となり、これを新たに実装する場合には、補正回路のコストと合わせて実装コストが新たに加わり、コスト高となる問題がある。さらに、電気配線においては伝送路がアンテナの役割を果たし、伝送路からの電磁波の放射や、外部の電磁波により信号にノイズが発生するなどの問題がある。
電気信号に代わって、光を伝送媒体とした光インターコネクションにより、クロストーク、電磁輻射等の問題なく電気信号では実現できない数Gbps以上の高速伝送が可能となる。電気配線より高速伝送が可能な光配線は、主に長距離情報伝送で用いられており、例えば、大陸間や大都市間を結ぶネットワークでは、光パルス間の遅延の少ないシングルモード伝送により行われている。より伝送距離の短いLAN(Loca1 Area Network)や、機器間においては、コア径が大きいため機器間の光接続が容易なマルチモード伝送にて信号伝送が行われている。これらは、光ファイバを用いて伝送されており、それぞれの伝送モードに対応したシングルモードファイバやマルチモードファイバが利用されている。
一方、機器内や電子基板間、電子基板内においては、光導波路を用いた光伝送が検討されている。これらの光伝送のために、主にポリマから作製されるマルチモード光導波路が数多く開発されている。これらの光導波路には、電気信号と光信号を変換する素子が搭載され、電気信号は光信号に変換されて光導波路に入り、光導波路を伝送した光信号は再び電気信号に変換される。電気信号を光信号に変換するためには発光素子と発光素子を駆動させるためのドライバが使用され、光信号を電気信号に変換するためには、受光素子と受光した信号を増幅処理するためのアンプが使用される。
これら受発光素子やドライバ、アンプは光配線に表面実装され、発光素子からの光の出射される方向と光導波路の長手方向(光導波路内を伝播する光の方向)は垂直な配置にある。また、光導波路の長手方向と光導波路から出射され受光素子に入射する光の方向は垂直な配置にある。従って、発光素子から光導波路への入射部と光導波路から受光素子への出射部には、光路の向きを90゜変換する光路変換部が必要となる。光路変換部には、光導波路コアの入射部と出射部に45゜の角度を設けるように加工し、この45゜の面をミラー面として光を90゜の角度で反射させる技術が利用されている。
可動部を有する機器内や基板間を光配線にて信号伝送する際には、光配線が屈曲や変形に耐える必要があり、フレキシブルな光配線の開発が活発に行われている。携帯電話やパソコンのヒンジ部、可動機械等の信号伝送を行うために、主にポリマ導波路を用いた開発が行われている。
特開2006−323316号公報 特開2006−339173号公報
ポリマ導波路を用いたフレキシブル光配線で可動部を有する機器内や基板間を信号伝送する際には、フレキシブル光配線は繰り返し屈曲や変形に耐える必要がある。そこで、ポリイミドやノルボルネンなどの屈曲特性に優れたポリマを用いたフレキシブル光配線が開発されている(特許文献1)。
フレキシブル光配線は、光導波路単独の配線として用いられる場合と、電気配線や他の部材と積層されて用いられる場合がある。他の部材と積層されて用いられる場合においては、光導波路の他に電力や電気信号を伝送するための金属配線やこの金属配線を作製するための基材フィルム、また、フレキシブル光配線の強度を向上させるためや磨耗、傷による損傷を防ぐための補強板などが用いられる。
フレキシブル光配線が厚み方向の中心面に対して対称な構成となっていない場合には、これら様々な部材は様々な材料から構成され、弾性係数や厚みが異なっているため、曲げによる伸び縮みのない中立面は厚さ方向の中心位置からずれることになる。フレキシブル光配線が曲げられた場合に曲げの外側部分(中立面より外側部分)には引張応力が加わって材料は伸び、曲げの内側部分(中立面より内側部分)には圧縮応力が加わって材料は縮むことになる。この伸びや縮みのひずみのない部分が中立面である。
ポリマ導波路はコアの屈折率をクラッドより大きくするために、通常、ベンゼン環など剛直な構造が導入される。そのためコアはクラッドに比べて弾性係数が大きくなり、クラッドと比較して硬く脆い材料となる。繰り返し屈曲性には弾性係数の大きい材料は不利であり、加わる引張応力や圧縮応力は極力小さい方が好ましい。従って、弾性係数の大きいコアはフレキシブル光配線の中立面やその近傍に位置していることが必要である。
フレキシブル光配線に加わる引張応力や圧縮応力を小さくするには、全体の厚さを小さくする方法がある。しかし、先に挙げた金属配線や補強板等の付与が必要な場合には、厚さの下限には制限がある(特許文献2)。
機器内や基板間の可動部に使用するフレキシブル光配線は、繰り返し屈曲特性に優れていなければならず、フレキシブル光配線中で特に屈曲特性に劣るコア部分に破断などの不具合が起こりやすい。
そこで、本発明の目的は、上記課題を解決し、機械的な信頼性(屈曲特性)を向上させたフレキシブル光配線及びその製造方法を提供することにある。
上記目的を達成するために本発明のフレキシブル光配線は、コアとクラッドからなる光導波路の層を含む複数の層を有するフレキシブル光配線において、上記コアが曲げによる伸び縮みのない中立面を含むよう配置されるか又は上記コアが上記中立面を含まない場合は、上記コアの上記中立面に近い面と上記中立面との距離Δyが上記フレキシブル光配線を曲げた際の該フレキシブル光配線の内側最表面の曲率半径Rの0.03倍以下となるよう配置されたものである。
また、本発明のフレキシブル光配線は、コアとクラッドからなる光導波路の層を含む複数の層を有するフレキシブル光配線において、該フレキシブル光配線の最表面からi番目(iは自然数)の層における弾性係数Ei、該層の厚さti、該層の厚さ方向中心から上記最表面までの距離yiの時、上記コアが上記最表面から式(1)
Figure 2009265164
で定義される距離ynにある中立面を含むよう配置されるか又は上記コアが上記中立面を含まない場合は、上記コアの上記中立面に近い面と上記中立面との距離Δyが上記フレキシブル光配線を曲げた際の該フレキシブル光配線の内側最表面の曲率半径Rの0.03倍以下となるよう配置されたものである。
上記複数の層中に電気配線層を含んでもよい。
上記光導波路がポリマ導波路又は光ファイバであってもよい。
また、本発明のフレキシブル光配線の製造方法は、コアとクラッドからなる光導波路の層を含む複数の層を有するフレキシブル光配線の製造方法において、上記フレキシブル光配線を構成する各層の弾性係数と各層の厚さとを用いて上記フレキシブル光配線の最表面から中立面までの距離ynを算出し、該距離ynより上記フレキシブル光配線内に形成される上記中立面の位置を算出し、上記コアが上記中立面を含むか又は上記コアの上記中立面に近い面と上記中立面との距離Δyが上記フレキシブル光配線を曲げた際の該フレキシブル光配線の内側最表面の曲率半径Rの0.03倍以下となるように上記各層の弾性係数と上記各層の厚さとにより上記フレキシブル光配線内に形成される上記中立面の位置を制御するものである。
本発明は次の如き優れた効果を発揮する。
(1)機械的な信頼性(屈曲特性)を向上させることができる。
以下、本発明の一実施形態を添付図面に基づいて詳述する。
図1(a)及び図1(b)に示されるように、本発明に係るフレキシブル光配線1は、コア2とクラッド3からなる光導波路の層4を含む複数の層を有するフレキシブル光配線1において、上記コア2が曲げによる伸び縮みのない中立面Nを含むよう配置されたものである。
また、図2(a)及び図2(b)に示されるように、本発明に係るフレキシブル光配線11は、コア2とクラッド3からなる光導波路の層4を含む複数の層を有するフレキシブル光配線11において、コア2が中立面Nを含まないように各層が配置されたものである。このフレキシブル光配線11は、最表面Sが内側となるように、中心点Oを中心とする曲率半径R(μm)の曲率で曲げられている。また、中立面Nは、内側最表面S側のクラッド3内に位置している。
このようにコア2が中立面Nを含まない場合は、コア2の中立面Nに近い面と中立面Nとの距離Δy(μm)が曲率半径Rの0.03倍以下となるようにフレキシブル光配線11が形成されている。なお、フレキシブル光配線1,11を形成する各層の配置方法については、後述する。
本実施形態では、フレキシブル光配線1は、銅配線層5、ポリイミド等からなる銅配線用基材フィルム6、クラッド3、コア2、クラッド3、ポリイミド等からなるカバーフィルム7の6層からなる。
図1に示す実施形態では、図示のように、コア2は該コアの厚み方向両面の間に、中立面Nを含むように配置されている。
また、図2に示されるように、コア2が中立面Nを含まない場合は、コア2の中立面Nに近い面と中立面Nとの距離をΔy(μm)とし、曲げられた際の内側最表面Sの曲率半径をR(μm)としたとき、
Δy≦0.03×R (2)
となるようコアが配置される。この式(2)の理由については後述する。
コア2の配置を、コア2が中立面Nを含むようにするか、あるいはコア2と中立面Nとの距離Δyを曲率半径Rとの関係で規定する理由を以下に説明する。
フレキシブル光配線1,11が屈曲などの動作をする際には、フレキシブル光配線1,11に引張応力と圧縮応力が加わる。この応力が繰り返し加わると、疲労によりフレキシブル光配線1,11の機械的に弱い部分から破断などの不具合を生じることになる。屈曲された際にフレキシブル光配線1,11の曲げの外側最表面に最も大きい引張応力が加わり、表面から内部に進むにつれて応力は減少し、やがて圧縮応力に変わる。この引張応力から圧縮応力に変わる部分が中立面Nである。さらに曲げの内側にいくと、曲げの最内側部分にあたる内側最表面Sにおいて圧縮応力が最も大きくなる。
本発明のフレキシブル光配線1,11は、中立面N又はその近傍にコア2を配置したものである。ここで、中立面Nにコア2を配置するとは、コア2が中立面Nを含むよう配置することを意味し、中立面Nの近傍にコア2を配置するとは、コア2が中立面Nを含まない場合であって、コア2の中立面Nに近い面と中立面Nとの距離Δyが内側最表面Sの曲率半径Rの0.03倍以下となるよう配置することを意味する。
一般に、フレキシブル光配線がポリマ導波路で構成されている場合、コア、クラッド、さらにこれらを保護するためのカバーフィルム、これを貼り付ける接着層などが積層された構造が想定される。それぞれの層に用いられる材料は、厚み、弾性係数が異なっていることが通常である。これらの材料のうち光導波路のコア2は、屈折率を高くする必要があるため、ベンゼン環など剛直な構造を含んだ材料で作製されることが多く、コア2は硬く脆い部位となりがちである。屈曲の際に加わる応力を考慮せずに作製された従来のフレキシブル光配線で、コアに大きい引張応力が加わる場合、応力に対する伸びなどの応答の小さいコアからクラック、破断などの不具合を生じることが考えられる。
本発明のフレキシブル光配線1,11では中立面Nやその近傍にコア2を配置することにより、コア2が受ける引張や圧縮応力によるひずみは小さく、これから生じる不具合を減少させることが可能となる。
また、本発明のフレキシブル光配線1,11は、コア2、クラッド3に加えさらに金属などの電気配線(銅配線層5)を含めた複数の層から形成されるフレキシブル光配線1であり、中立面N又はその近傍にコア2を配置したものである。金属の電気配線(銅配線層5)がフレキシブル光配線1に含まれる場合、金属の弾性係数は他のポリマ層に比較し、1桁から2桁ほど大きくなるため、中立面Nの位置はこの電気配線の厚さに大きく影響される。このフレキシブル光配線1,11においても、コア2を中立面Nまたはその近傍に配置することでコアの不具合を抑制することが可能となる。
図2に示すように、コア2が中立面Nを含まない場合、フレキシブル光配線11に要求される曲率半径Rによって、コア2の中立面Nに近い面と中立面Nとの距離Δy(μm)の許容される値は異なる。
ここで図2(b)のようにフレキシブル光配線11を中心点Oを中心とする曲率半径R(μm)の曲率で屈曲させ、圧縮応力が最も強く作用する内側最表面Sから中立面Nまでの距離をyn(μm)とする。このとき、コア2の中立面Nに近い面と中立面Nとの距離Δy(μm)に位置する面に作用する歪みεは式(3)で表される。
Figure 2009265164
通常、フレキシブル光配線1,11が用いられる機器間の配線などの用途での曲率半径Rは1000μm以上であり、フレキシブル光配線1,11は100〜300μm程度の厚さであるので、R>>ynとし、式(3)を近似すると、
Δy=εR (4)
と表される。コア2が3%伸びるような引っ張り応力が1000回以上繰り返し作用すると、破損等の不具合が生じる場合がある。そのため、歪みεは0.03以下であることが望ましい。フレキシブル光配線1,11の曲率半径R(μm)に依存して、コア2の中立面Nに近い面と中立面Nとの距離Δy(μm)が、式(2)を満足するようコアが配置されるのが好ましい。
フレキシブル光配線1,11は、光導波路単独の配線として用いられる場合と、電気配線や他の部材と積層されて用いられる場合がある。他の部材と積層されて用いられる場合においては、光導波路(コア2、クラッド3)の他に電力や電気信号を伝送するための金属配線やこの金属配線を作製するための基材フィルム(銅配線層5、銅配線用基材フィルム6)、また、フレキシブル光配線1の強度を向上させるためや磨耗、傷による損傷を防ぐための補強板(カバーフィルム7)、これらを接着させるための接着層(図示せず)が用いられることもある。これらの材料は互いに弾性係数が異なり、用いられる厚みも異なる。フレキシブル光配線1,11を構成する上側最表面層又は下側最表面層(図示上の上下で最も上又は下となる層)からなる最表面層からi番目(iは自然数であり最表面層から数えた順番)の層の弾性係数をEiとし、その層の厚さをtiとし、フレキシブル光配線1,11の最表面層からi番目の層の厚さの中心までの距離をyi(i=1の場合は、y1=t1/2、iが2以上の自然数の場合、
Figure 2009265164
)とすると、フレキシブル光配線1,11を構成するフレキシブル光配線1,11の中立面Nとフレキシブル光配線1,11の最表面層の表面位置(最表面)との距離ynは式(1)で表される。
Figure 2009265164
本発明によれば、この距離ynの位置(中立面N)またはその近傍に光導波路のコア2を配置することで、屈曲等によるコア2の破断等の不具合を抑制することが可能となる。フレキシブル光配線1を構成する各層の弾性係数、厚みを変えることで中立面Nを任意の位置に設定し、この中立面Nまたはその近傍にコア2を配置することで、屈曲特性に優れたフレキシブル光配線1,11を得ることが可能となる。ここにおいて、
Δy≦0.03×R (2)
となるようコア2が配置されることが望まれる。
本発明のフレキシブル光配線の光導波路としてポリマ導波路または光ファイバ(図3参照)を用いることができる。
ポリマ導波路は様々な材料、様々な作製法により開発されており、ここにおいてはどのような材料、作製法も用いることが可能である。ポリマ材料は、エラストマからポリイミド、また無機物を充填させた材料まで様々な材料を用いることができ、弾性係数も0.01〜8GPa程度が通常である。作製法も直接露光法、ドライエッチング、フォトブリーチ、スタンパ法など、材料と合わせて様々に用いることができる。電気配線(銅配線層5)とともにフレキシブル光配線1に積層させる際には、電気配線の基材フィルム(銅配線用基材フィルム6)として、ポリイミド、PET(ポリエチレンテレフタレート)、液晶ポリマ、または光導波路材料そのものなど様々な材料を用いることができ、各層を接着剤(図示せず)で貼り付ける際にもその材料に制限はない。ポリマ材料のみでフレキシブル光配線1が構成されている際には、各層の弾性係数にそれほど大きな差はないため、コア2の配置場所の許容範囲は大きいが、コア2を中立面Nまたはその近傍に配置することで、より屈曲の信頼性を向上できる。
図3に示されるように、本発明の他の実施形態に係るフレキシブル光配線31は、銅配線層5、銅配線用基材フィルム6、光ファイバ32、接着剤33、支持層35、カバーフィルム7の5層からなる。このように、フレキシブル光配線31は、光ファイバが銅配線用基材フィルム6とカバーフィルム7の間で接着剤を用いてラミネートされた構造となっている。
光ファイバ32を用いる場合には、光ファイバ32を支持するための支持層35となるフィルムにラミネートやV溝加工により配置することができる。光ファイバ32は、特にガラスファイバで作製されている場合、光ファイバ32が硬く脆い材料であるため屈曲に弱い。この際にも光ファイバ32のコアをフレキシブル光配線31の中立面Nまたはその近傍に配置させることで、屈曲による不具合を抑制することが可能となる。
大きい弾性係数の層と小さい弾性係数の層が同じ厚さで2層張り合わせてある場合には、弾性係数の大きい方へ中立面Nは移動する。この中立面Nの移動を制御すること(=目論んだ位置に中立面Nがあるように構成すること)で、コア2内部の位置に中立面Nを配置することも可能である。金属の電気配線(銅配線層5)がフレキシブル光配線1,11,31の表面にある場合には、弾性係数の大きい電気配線側に中立面Nが移動する傾向にある。電気配線の厚みが大きいほど顕著になり、電気配線に中立面Nが入り込むこともある。この際には、この電気配線と反対側の最外層表面やフレキシブル光配線1,11,31の中に同様の弾性係数をもつ金属箔等からなる対抗金属層(図示せず)を設けることでフレキシブル光配線31の中ほどに中立面Nを移動させることができ、この位置にコア2(又は光ファイバ32)を配置させることが可能となる。対抗金属層は放熱、電気配線など他の目的にも使用可能である。対抗金属層の弾性率や厚さを調節することで、中立面Nの位置を自在に設計することが可能となる。
図1又は図2の構造を基本とするフレキシブル光配線1,11(実施例1〜4)を作製し、表1に各層の弾性係数と厚さ、式(1)より得られる銅配線層5の表面(最表面)から中立面(以下、中立面Nとする)までの距離ynを示す。
Figure 2009265164
実施例1〜4では銅配線用基材フィルム6、カバーフィルム7はポリイミドを用い、弾性係数は3GPaである。クラッド3、コア2の弾性係数はそれぞれ1GPa、2GPaである。コア2の厚さはマルチモードの50μmとした。
表1中の実施例1について、基準となる最表面を銅配線層(上側最表面層)側とした場合のコア2の中立面に近い面と中立面Nとの距離Δyの算出方法と、基準となる最表面をカバーフィルム(下側最表面層)側とした場合のコア2の中立面に近い面と中立面Nとの距離Δyの算出方法の2通りの方法について以下詳述する。
まず、最表面Sを銅配線層5側とした場合について、図5(a)を用いて説明する。図5(a)は、フレキシブル光配線を光伝播方向と積層方向を含む面に沿ってコア2が含まれるように切断した側断面図である。
最表面Sから中立面Nまでの距離ynを式(1)によって算出すると、yn=22.5μmとなる。次に、この中立面Nがフレキシブル光配線内のどの部分に位置するかを判断する。具体的には、最表面Sから第1クラッド3までの位置(0〜26.5μm)、コア2内(26.5〜76.5μm)、第2クラッド3からカバーフィルム7までの位置(76.5〜121.5μm)のどの位置に中立面Nが位置しているかを判断する。この結果、中立面Nは第1クラッド3内であること、つまり、図5(a)のようにコア2の中立面Nに近い面と中立面Nとの距離Δy=(4+12.5+10)−22.5=4μmが算出される。
次に、最表面Sをカバーフィルム7側とした場合について、図5(b)を用いて説明する。図5(b)は、フレキシブル光配線を光伝播方向と積層方向を含む面に沿ってコア2が含まれるように切断した側断面図である。
最表面Sから中立面Nまでの距離ynを式(1)によって算出すると、yn=99.0μmとなる。次に、この中立面Nがフレキシブル光配線内のどの部分に位置するかを判断する。具体的には、最表面Sから第2クラッド3までの位置(0〜45μm)、コア2内(45〜95μm)、第1クラッド3から銅配線層5までの位置(95〜121.5μm)のどの位置に中立面Nが位置しているかを判断する。この結果、中立面Nは第1クラッド3内であること、つまり、図5(b)のようにコア2の中立面Nに近い面と中立面Nとの距離Δy=99.0−(25+20+50)=4μmが算出される。
上記のように最表面Sを図示上側となる上側最表面層にあるものとするか図示下側となる下側最表面層にあるものとするかの選択にかかわらず、コア2の中立面Nに近い面と中立面Nとの距離Δyは一義的に求めることができる。
また、図4に、式(2)で表される中立面Nからコア2までの距離Δyの許容値(μm)を示す。図4中の直線は、Δyの許容上限値(Δy=0.03×R)をプロットしたものである。図示のように、曲率半径Rが小さい場合、言い換えるとフレキシブル光配線1,11を大きな曲率で曲げる場合、距離Δyは小さいことが必要となる。つまり、コア2は中立面Nからあまり離して配置できない。一方、曲率半径Rが大きく、フレキシブル光配線1を小さな曲率で曲げる場合は、距離Δyは大きくできる。つまり、コア2は中立面Nから離して配置してもよいことになる。
実施例1では、銅配線用基材フィルム6の上に銅配線層5が作製された構造である。中立面Nの位置は、銅配線層5の表面から距離yn=22.5μmであり、銅配線層5の表面からコア2の上面までの距離が26.5μmであるため、中立面Nはコア2近傍に配置した構造(Δy=4μm)となっている(曲率半径R=1mmでは、Δyは30μm以下)。
このフレキシブル光配線を用いて曲率半径R=1mmとなる曲げを3万回繰り返しても、コア2は破断しないことを確認した。また、曲率半径R=2mmとなる曲げを5万回繰り返しても、コア2は破断しないことを確認した。
実施例2では、光導波路のクラッド3に直接、銅配線層5が作製された構造となっている。この組み合わせにおいては、銅配線層5の表面から中立面Nまでの距離ynは20.9μmであり、中立面Nからコア2までの距離が19μmであるため、コア2は中立面Nを含む位置に配置されている構造となっている。
このフレキシブル光配線を用いて曲率半径R=2mmとなる曲げを10万回繰り返しても、コア2は破断しないことを確認した。
これら実施例1、2は、フレキシブル光配線1の表面にある銅配線層5が銅箔として、フレキシブル光配線1の表面全体に備えられている構造となっている。しかし、実際の製品では、コア2より狭い幅をもつ銅配線が一本または複数本配置され、銅配線面積はコア面積より小さくなっている。従って、銅配線がある部分とない部分で中立面Nの位置は異なっている。銅配線のない部分は銅配線からより離れたところに中立面N1が存在し、銅配線がある部分は銅配線に近いところに中立面N2が存在する。銅配線面積がコア面積より小さい場合、平均的な中立面NAVGはよりコア2側へと移動する。
このような実際の製品においては、銅配線が無い部分の面積と銅配線がある部分の面積(銅配線面積)とから求まる面積比と、銅配線側の最表面から中立面N1までの距離y1と、銅配線側の最表面から中立面N2までの距離y2とを用いて、銅配線側の最表面から中立面NAVGまでの距離yAVGを算出し、コア2がこの中立面NAVGを含むように配置するか、又はコア2がこの中立面NAVGを含まない場合は式(3)を満たすようにコア2を配置する。このΔyAVGは、コア2の中立面に近い側の面と中立面NAVGとの距離である。
ΔyAVG≦0.03×R (3)
例えば、銅配線が無い部分と銅配線がある部分の面積比が1:1の場合は、銅配線の最表面から中立面NAVGまでの距離yAVG=(y1+y2)/2となる。銅配線が無い部分と銅配線がある部分の面積比が2:1の場合は、銅配線の最表面から中立面NAVGまでの距離yAVG=(2×y1+y2)/3となる。
実施例3では、銅配線層5の表面から中立面Nまでの距離ynは19.2μmであり、銅配線層5の表面からコア2までの距離が55μmであることからΔyは35.8μmであり、式(2)によるとR=1mmの場合のΔyが30μmを超えてしまう。しかし、R=2mmでは許容値Δyは60μmであるため、R=2mm以上の屈曲に用いる光配線としては実用可能である。
このフレキシブル光配線を用いて曲率半径R=1mmとなる曲げを繰り返したところ、1000回未満の曲げでコア2は破断してしまうことを確認した。しかし、曲率半径R=2mmの場合は、曲げを3万回繰り返しても、コア2は破断しないことを確認した。
実施例4は、実施例3におけるカバーフィルム7の外側にさらに銅箔による対抗金属層(図示せず)を設けた構造である。両面に銅箔(銅配線層5と対抗金属層)を設けることで、コア2に中立面Nが含まれた構造となっている。この銅箔のない実施例3では、コア2が中立面Nから離れた構造となっているが、実施例4のように新たな層(厚さ5μmの銅箔)を付与することで中立面Nの位置を制御し、コア2内に中立面Nが含まれる構造となっている。したがって、実施例4のフレキシブル光配線を曲げた際にコア2に作用する引っ張り力又は圧縮応力を低減することができるので、コア2の破断等の不具合を低減し、フレキシブル光配線の機械的な信頼性を向上させることができる。
このフレキシブル光配線を用いて曲率半径R=1mmとなる曲げを5万回繰り返しても、コア2は破断しないことを確認した。また、曲率半径R=2mmとなる曲げを10万回繰り返しても、コア2は破断しないことを確認した。
図3の構造を基本とする光ファイバ32を光導波路に用いたフレキシブル光配線31(実施例5、6)を作製し、表2に各層の弾性係数と厚さ、式(1)より得られる銅配線層5の表面から中立面Nまでの距離ynを示す。表2に示されるように、実施例5、6において中立面Nは、光ファイバ中に位置している構造となっている。
Figure 2009265164
上述した通り、フレキシブル光配線の各層の弾性率及び各層の層厚を制御することにより、中立面Nがコア2内又はその近傍に位置するように調整できる。これより、フレキシブル光配線が曲げられた際にコアに作用する引っ張り力又は圧縮応力を低減することができる。したがって、フレキシブル光配線の曲げによるコアの破断等の不具合を低減することができ、フレキシブル光配線の機械的な信頼性を向上させることができる。
本発明の一実施形態を示すフレキシブル光配線の図であり、(a)は側断面図、(b)は横断面図である。 本発明の一実施形態を示すフレキシブル光配線の図であり、(a)は側断面図、(b)は屈曲時の横断面図である。 本発明の一実施形態を示すフレキシブル光配線の図であり、(a)は側断面図、(b)は横断面図である。 本発明による許容曲率半径R対距離Δy特性の図である。 実施例における距離算出方法を示す図であり、(a)は銅配線層に最表面がある場合の側断面図、(b)はカバーフィルムに最表面がある場合の側断面図である。
符号の説明
1 フレキシブル光配線
2 コア
3 クラッド
5 銅配線層
6 銅配線用基材フィルム
7 カバーフィルム

Claims (5)

  1. コアとクラッドからなる光導波路の層を含む複数の層を有するフレキシブル光配線において、上記コアが曲げによる伸び縮みのない中立面を含むよう配置されるか又は上記コアが上記中立面を含まない場合は、上記コアの上記中立面に近い面と上記中立面との距離Δyが上記フレキシブル光配線を曲げた際の該フレキシブル光配線の内側最表面の曲率半径Rの0.03倍以下となるよう配置されたことを特徴とするフレキシブル光配線。
  2. コアとクラッドからなる光導波路の層を含む複数の層を有するフレキシブル光配線において、該フレキシブル光配線の最表面からi番目(iは自然数)の層における弾性係数Ei、該層の厚さti、該層の厚さ方向中心から上記最表面までの距離yiの時、上記コアが上記最表面から式(1)
    Figure 2009265164
    で定義される距離ynにある中立面を含むよう配置されるか又は上記コアが上記中立面を含まない場合は、上記コアの上記中立面に近い面と上記中立面との距離Δyが上記フレキシブル光配線を曲げた際の該フレキシブル光配線の内側最表面の曲率半径Rの0.03倍以下となるよう配置されたことを特徴とするフレキシブル光配線。
  3. 上記複数の層中に電気配線層を含むことを特徴とする請求項1又は2記載のフレキシブル光配線。
  4. 上記光導波路がポリマ導波路又は光ファイバであることを特徴とする請求項1〜3いずれか記載のフレキシブル光配線。
  5. コアとクラッドからなる光導波路の層を含む複数の層を有するフレキシブル光配線の製造方法において、上記フレキシブル光配線を構成する各層の弾性係数と各層の厚さとを用いて上記フレキシブル光配線の最表面から中立面までの距離ynを算出し、該距離ynより上記フレキシブル光配線内に形成される上記中立面の位置を算出し、上記コアが上記中立面を含むか又は上記コアの上記中立面に近い面と上記中立面との距離Δyが上記フレキシブル光配線を曲げた際の該フレキシブル光配線の内側最表面の曲率半径Rの0.03倍以下となるように上記各層の弾性係数と上記各層の厚さとにより上記フレキシブル光配線内に形成される上記中立面の位置を制御することを特徴とするフレキシブル光配線の製造方法。
JP2008111460A 2008-04-22 2008-04-22 フレキシブル光配線及びその製造方法 Pending JP2009265164A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008111460A JP2009265164A (ja) 2008-04-22 2008-04-22 フレキシブル光配線及びその製造方法
US12/292,933 US7805042B2 (en) 2008-04-22 2008-12-01 Flexible optical interconnection structure and method for fabricating same
CN200910135117XA CN101566704B (zh) 2008-04-22 2009-04-20 挠性光配线及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111460A JP2009265164A (ja) 2008-04-22 2008-04-22 フレキシブル光配線及びその製造方法

Publications (1)

Publication Number Publication Date
JP2009265164A true JP2009265164A (ja) 2009-11-12

Family

ID=41201166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111460A Pending JP2009265164A (ja) 2008-04-22 2008-04-22 フレキシブル光配線及びその製造方法

Country Status (3)

Country Link
US (1) US7805042B2 (ja)
JP (1) JP2009265164A (ja)
CN (1) CN101566704B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062277A1 (ja) 2009-11-20 2011-05-26 旭化成ケミカルズ株式会社 多孔性成形体及びその製造方法
WO2012093462A1 (ja) * 2011-01-07 2012-07-12 パナソニック株式会社 光電気複合フレキシブル配線板

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5970658B2 (ja) * 2013-02-12 2016-08-17 パナソニックIpマネジメント株式会社 受光装置
JP6026346B2 (ja) * 2013-03-06 2016-11-16 日東電工株式会社 位置センサ
JP2014197364A (ja) * 2013-03-07 2014-10-16 日東電工株式会社 情報表示システム
JP2014219897A (ja) * 2013-05-10 2014-11-20 日東電工株式会社 情報表示装置
JP2015072670A (ja) * 2013-09-04 2015-04-16 日東電工株式会社 入力装置
JP2015088163A (ja) * 2013-09-26 2015-05-07 日東電工株式会社 入力装置
JP2015092329A (ja) * 2013-10-04 2015-05-14 日東電工株式会社 入力装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1279128A (fr) * 1960-03-03 1961-12-15 Ericsson Telefon Ab L M Agencement de câble-chaîne
JPS62209405A (ja) * 1986-03-04 1987-09-14 Fujikura Ltd 光フアイバケ−ブル
US5668912A (en) * 1996-02-07 1997-09-16 Alcatel Na Cable Systems, Inc. Rectangular optical fiber cable
JP4760126B2 (ja) 2005-05-20 2011-08-31 住友ベークライト株式会社 光導波路構造体
JP2006339173A (ja) 2005-05-31 2006-12-14 Sumitomo Bakelite Co Ltd フレキシブル配線板の補強部材およびフレキシブル配線板
US7272282B1 (en) * 2006-07-31 2007-09-18 Corning Cable Systems. Llc. Fiber optic cables and assemblies suitable for distribution
US7536073B2 (en) * 2006-11-22 2009-05-19 Corning Cable Systems Llc Fiber optic cable having a dry insert and offset cavity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011062277A1 (ja) 2009-11-20 2011-05-26 旭化成ケミカルズ株式会社 多孔性成形体及びその製造方法
WO2012093462A1 (ja) * 2011-01-07 2012-07-12 パナソニック株式会社 光電気複合フレキシブル配線板
US9146348B2 (en) 2011-01-07 2015-09-29 Panasonic Intellectual Property Management Co., Ltd. Optical-electrical composite flexible circuit substrate including optical circuit and electrical circuit

Also Published As

Publication number Publication date
US7805042B2 (en) 2010-09-28
US20090263077A1 (en) 2009-10-22
CN101566704A (zh) 2009-10-28
CN101566704B (zh) 2012-11-07

Similar Documents

Publication Publication Date Title
JP2009265164A (ja) フレキシブル光配線及びその製造方法
US8363993B2 (en) Combined optical and electrical interconnection module and method for producing same
US7184617B2 (en) Portable device
US7333682B2 (en) Photoelectric composite interconnection assembly and electronics device using same
KR100908616B1 (ko) 광전 복합 배선 모듈 및 정보 처리 장치
JP2006042307A (ja) 携帯機器
JP4661931B2 (ja) 光伝送モジュール、光伝送モジュールの製造方法、及び電子機器
US20110222815A1 (en) Optical transmission module, electronic device, and method for manufacturing optical transmission module
KR20140068756A (ko) 광 전기 혼재 기판 및 그 제조 방법
JP2010152319A (ja) 柔軟性導波路構造及び光学的相互接続アセンブリ
JP5862391B2 (ja) 光結合構造及び光伝送装置
KR101023337B1 (ko) 광케이블 모듈 및 그것을 이용한 기기
TW201348768A (zh) 光學電路板及光電通訊模組
KR101262499B1 (ko) 광 인쇄회로기판 및 그의 제조 방법
JP2007025382A (ja) 光導波路、光導波路の製造方法及び光導波路モジュール
KR101113416B1 (ko) 광 도파로, 광 전송 모듈, 전자 기기 및 광 도파로의 제조 방법
KR101082730B1 (ko) 광전송 모듈, 전자 기기, 광전송 모듈의 조립 방법 및 광전송 방법
US7835607B2 (en) Optical-electrical composite transmission device and electronic equipment
JP4613964B2 (ja) 光電複合配線モジュールおよび情報処理装置
CN102326212B (zh) 复合线束及其制造方法
JP2009223176A (ja) 携帯機器用光導波路及び光導波路装置
JP2010145937A (ja) 光導波路装置
JP2008176071A (ja) 光伝送モジュール、電子機器、及び光伝送モジュールの製造方法
JP4659082B2 (ja) 光電気複合配線部品及びこれを用いた電子機器
JP2006139094A (ja) 光モジュール、光通信装置、電子機器