WO2019165598A1 - Polymer composite granule and method of processing the same - Google Patents

Polymer composite granule and method of processing the same Download PDF

Info

Publication number
WO2019165598A1
WO2019165598A1 PCT/CN2018/077551 CN2018077551W WO2019165598A1 WO 2019165598 A1 WO2019165598 A1 WO 2019165598A1 CN 2018077551 W CN2018077551 W CN 2018077551W WO 2019165598 A1 WO2019165598 A1 WO 2019165598A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer composite
composite granule
polymer
water
granule
Prior art date
Application number
PCT/CN2018/077551
Other languages
French (fr)
Inventor
Minling Liu
Changquan QIU
Christine MA
Bo REN
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Priority to PCT/CN2018/077551 priority Critical patent/WO2019165598A1/en
Publication of WO2019165598A1 publication Critical patent/WO2019165598A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/62In a cartridge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Definitions

  • the present disclosure relates to a polymer composite granule and methods of processing the same.
  • Heavy metals such as, for instance, arsenic (As) , mercury (Hg) , lead (Pb) , and cadmium (Cd) , may be found in potentially harmful concentration levels in numerous drinking water systems due to, for example, natural and industrial pollution.
  • As arsenic
  • Hg mercury
  • Pb lead
  • Cd cadmium
  • toxic heavy metals must be removed from the water to very low concentration levels, such as 10 parts per billion (ppb) for As and Pb, 1 ppb for Hg, and 5 ppb for Cd, for instance, as recommended by the World Health Organization (WHO) .
  • WHO World Health Organization
  • reverse osmosis which uses a semipermeable membrane to remove particles from the water.
  • a reverse osmosis approach can have a high energy consumption, a high cost, and/or can produce highly concentrated waste water and, therefore, may not be suitable for residential (e.g., domestic) uses and settings.
  • Another current approach for removing heavy metals from water is to filter the water through a cartridge that includes granule adsorbent materials.
  • the adsorbent materials used to remove heavy metals in current water filter cartridges may have a low reaction efficiency with the heavy metals and, therefore, may not be able to efficiently remove the heavy metals from the water.
  • current water filter cartridges using adsorbent materials may need to be a large size to ensure there is sufficient contact and reaction between the water and the adsorbent materials to effectively filter the water (e.g., to remove the heavy metals from the water to the low concentration levels recommended by the WHO) and, therefore, may not be suitable for residential uses and settings.
  • Some approaches for producing solid granules such as compaction granulation, centrifugal granulation, melting granulation, spraying granulation, and extrusion granulation, use high temperature heating and/or high pressure to enhance the crush strength of the obtained granules.
  • some granules used to remove heavy metals from water may need to undergo various chemical reactions, synthetizations, and/or processes, such as metal coating and/or doping, which can be complicated and/or complex, to be able to effectively filter the water. Accordingly, current granules, can be expensive and/or difficult to prepare and/or produce.
  • Figure 1 illustrates an example polymer composite granule in accordance with one or more embodiments of the present disclosure.
  • Figure 2 illustrates a graph showing the efficiency levels at which a polymer composite granule in accordance with the present disclosure can remove different heavy metals from water.
  • Figure 3 illustrates a method of processing a polymer composite granule in accordance with one or more embodiments of the present disclosure.
  • one or more embodiments include an adsorbent material, wherein the adsorbent material can be a metal oxide material, and a polymer material, wherein the polymer material can be polyacrylonitrile (PAN) .
  • PAN polyacrylonitrile
  • a polymer composite granule in accordance with the present disclosure can be less costly and/or use less energy than current approaches for forming granules, such as compaction granulation. As such, polymer composite granule in accordance with the present disclosure may be particularly beneficial for water filter cartridges for residential (e.g., domestic) uses and/or settings.
  • the polymer composite granule in accordance with the present disclosure can have a higher reaction efficiency with heavy metals (e.g., As, Hg, Pb, and/or Cd) and, therefore, may be able to remove heavy metals from water more efficiently, than previous granules.
  • heavy metals e.g., As, Hg, Pb, and/or Cd
  • the polymer composite granule in accordance with the present disclosure can be used in cartridge form factors that are smaller than previous water filter cartridges, while still ensuring that there is sufficient contact and reaction between the water and the adsorbent materials to effectively filter the water (e.g., to remove the heavy metals from the water to the low concentration levels recommended by the WHO) .
  • the polymer composite granule in accordance with the present disclosure may be more suitable for residential uses and/or settings than previous granules used in water filter cartridges.
  • polymer composite granules in accordance with the present disclosure can include inorganic materials that do not need to undergo any complicated and/or complex chemical reactions, synthetizations, and/or processes, such as metal coating and/or doping, to be able to effectively filter water.
  • polymer composite granules in accordance with the present disclosure can be easier (e.g., less complex) and/or less expensive to prepare and/or produce than previous granular adsorbent material. Accordingly, the polymer composite granular of the present disclosure can offer more efficient water filtration in both residential and commercial application.
  • a” or “a number of” something can refer to one or more such things.
  • a number of adsorbent materials can refer to one or more adsorbent materials.
  • Figure 1 illustrates an example of polymer composite granules 100-1, 100-2 in accordance with one or more embodiments of the present disclosure.
  • the polymer composite granules 100-1, 100-2 can be used in water filter cartridges.
  • Water filter cartridges can be used to filter water.
  • Filtering water can refer to and/or include the removal of, and/or the process of removing, heavy metals from the water.
  • a water filter cartridge containing a number of polymer composite granules 100-1, 100-2 can remove a number of different types of heavy metals, such as, for instance, As, Hg, Pb, and/or Cd, from water that flows through the water filter cartridge, as will be further described herein.
  • the polymer composite granules 100-1, 100-2 can be used in and/or be a part of a residential (e.g., domestic) water filter system, for example.
  • the polymer composite granules 100-1, 100-2 can be used to filter the tap and/or drinking water of a residence.
  • embodiments of the present disclosure are not limited to a particular type of use or application for the polymer composite granule 100-1, 100-2.
  • the polymer composite granules 100-1, 100-2 can include an adsorbent material and a polymer material.
  • the adsorbent material can be an active carbon (AC) , a metal oxide material, such as, for instance, a titanium dioxide (TiO 2 ) material, an iron oxide material, such as, or instance, FeO or iron (III) oxide (Fe 2 O 3 ) , or a heavy metal removal material.
  • the polymer material can be polyacrylonitrile (PAN) , polysulfone (PSF) , polyethersulfone (PES) , polyvinylidene fluoride (PVDF) , polyvinyl chloride (PVC) , or a combination thereof.
  • the weight ratio of the adsorbent materials to the polymer material can be, for example, in the range of (50% ⁇ 90%) : (10% ⁇ 50%) .
  • a higher adsorbent material ratio may provide an increased heavy metal performance and a decreased granule strength, while a higher polymer material ratio may provide a decreased heavy metal performant and an increased granule strength.
  • the polymer composite granules 100-1, 100-2 can have a spherical shape.
  • embodiments of the present disclosure are not limited to a particular size or shape for the polymer composite granules 100-1, 100-2.
  • a plurality of polymer composite granules can be included in the water filter cartridge.
  • the plurality of polymer composite granules can be in cross-contact in the water filter cartridge.
  • a first polymer composite granule 100-1 can be in contact with a second polymer composite granule 100-2.
  • the adsorbent materials can be inorganic materials (e.g., materials that have not previously undergone a chemical reaction, synthetization, or process) . For instance, no chemical reaction, synthetization, or process, such as, for instance, metal coating and/or doping, may have been performed on the adsorbent material.
  • inorganic materials such as, for instance, TiO 2 and Fe 2 O 3 , for the adsorbent material can reduce the cost and/or difficultly of preparing and/or producing the polymer composite granule and water filter cartridge.
  • water can be input into (e.g., enter) the water filter cartridge at the bottom, and flow up through the water filter cartridge, contacting the number of polymer composite granules.
  • heavy metals e.g., heavy metal ions
  • adhere to the surfaces of the polymer composite granules e.g., both on an outer surface of the shape and on interior surfaces
  • the filtered water e.g., with the heavy metals removed
  • the heavy metals removed from the water can include, for example, arsenic (As) , mercury (Hg) , lead (Pb) , and/or cadmium (Cd) , among other types of potentially toxic heavy metals. That is, the polymer composite granules 100-1, 100-2 can be used to remove heavy metals such as As, Hg, Pb, and/or Cd from the water.
  • As arsenic
  • Hg mercury
  • Pb lead
  • Cd cadmium
  • Water filtered by polymer composite granules 100-1, 100-2 can have concentration levels of 10 parts per billion (ppb) or less for a number of different heavy metal types.
  • the filtered water can have heavy metal concentration levels as low as, or lower than, those recommended by the WHO (e.g., 10 ppb for As and Pb, 1 ppb for Hg, and 5 ppb for Cd) . That is, water that flows through the number of polymer composite granules can be effectively filtered, which can be due to, for example, the high reaction efficiency of the mixture of the adsorbent material and the polymer material.
  • Figure 2 illustrates a graph showing the efficiency levels at which a polymer composite granule in accordance with the present disclosure can remove (e.g., filter out) different heavy metals from water.
  • the polymer composite granule can be, for example, a polymer composite granule, such as one of granules 100-1, 100-2 previously described in connection with Figure 1.
  • the polymer composite granule can include a mixture of an adsorbent material and a polymer material, as previously described herein (e.g., in connection with Figure 1) .
  • Figure 2 illustrates a graph 210 showing the efficiency level 202 at which the polymer composite granule can remove arsenic (As) from water.
  • the efficiency level 202 at which a water filter cartridge including 300 milliliters (mL) of the polymer composite granules can remove As from water can remain at or near 100%for an uptake of at least 1,600 L.
  • the polymer composite granule e.g., the mixture of adsorbent material and polymer material
  • Figure 3 illustrates a method 320 of processing (e.g., preparing and/or producing) a polymer composite granule in accordance with one or more embodiments of the present disclosure.
  • the polymer composite granule can be, for example, one of the polymer composite granules 100-1, 100-2 previously described in connection with Figure 1.
  • method 320 includes mixing an adsorbent material, a polymer material, and an organic solvent to form a polymer-composite solution.
  • Forming the polymer-composite solution can include separately weighting a particular amount of the adsorbent material, a particular amount of the polymer material, and a particular amount of the organic solvent.
  • the adsorbent material can be an active carbon (AC) , a metal oxide material, such as, for instance, a titanium dioxide (TiO 2 ) material, an iron oxide material, such as, for instance, FeO or Fe 2 O 3 , or a heavy metal removal material.
  • the polymer material can, for example, be polyacrylonitrile (PAN) , polysulfone (PSF) , polyethersulfone (PES) , polyvinylidene fluoride (PVDF) , and/or polyvinyl chloride (PVC) .
  • PAN polyacrylonitrile
  • PSF polysulfone
  • PES polyethersulfone
  • PVDF polyvinylidene fluoride
  • PVC polyvinyl chloride
  • the weight ratio of the adsorbent materials to the polymer material can be, for example, in the range of (50% ⁇ 90%) : (10% ⁇ 50%) .
  • the method 320 includes adding the adsorbent material and the polymer material into a bottle, such as a glass bottle.
  • the organic solvent can be added to the bottle containing the adsorbent material and the polymer material.
  • the organic solvent can be dimethylformamide (DMF) , N-methyl pyrrolidone (NMP) , dimethylacetamide (DMAC) , dimethyl sulfoxide (DMSO) , or a combination thereof.
  • the weight ratio of the solid content (e.g., the mixture of adsorbent material and polymer material) and the organic solvent can be, for example, in the range of (10% ⁇ 50%) : (50% ⁇ 90%) .
  • the adsorbent material, the polymer material, and the organic solvent can be mixed to form a polymer-composite solution.
  • a magnetic stirrer can be added to the bottle.
  • the bottle can be placed on a magnetic stirring apparatus.
  • the magnetic stirring apparatus can be, for example, set to between 20 and 60 degrees centigrade for a period of time until the solid content disperses in the organic solvent. For instance, the period of time can range from 2 to 24 hours.
  • the process of forming the polymer-composite solution can be beneficial as it may not use high temperature or high pressure.
  • the adsorbent material, the polymer material, and the organic solvent can be mixed to form a polymer-composite solution using mechanical stirring and ultrasonic mixing, among other methods of mixing.
  • the method 320 includes adding the polymer-composite solution to a water solution to form a polymer composite granule.
  • the polymer-composite solution may be added to the water solution in an injection, drop-wise, and/or spraying method, among other adding methods.
  • the polymer-composite solution can be added drop-wise to the water solution.
  • the selected polymer such as PAN
  • the selected organic solvent such as DMF may be soluble in the water solution.
  • the organic solvent may co-solute with the water solution and the polymer material-based polymer-composite can form a granule as a result of phase separation.
  • the polymer composite granule can then be removed from the water and organic solvent solution. Once removed, the polymer composite granule can be used in a water filter cartridge to remove (e.g., filter out) different heavy metals from water.
  • the polymer composite granule can be generally spherical as a result of the polymer-composite solution being added to the water solution in a drop-wise method.
  • the process of forming a polymer composite may ensure the crush strength of a granule without the use of high temperature and pressure.
  • Crush strength can decrease the peel off that the polymer composite granule may experience during storage of the polymer composite granule. Peel off can be when one or more outer layers of the granule is stripped from the polymer composite granule.
  • no chemical reaction, synthetization, or process, such as, for instance, metal coating and/or doping, are performed on the polymer composite granule.
  • the cost and/or difficulty of processing the polymer composite granule, as well as a water filter cartridge, can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

A polymer composite granule and method of processing the same. The polymer composite granule includes an adsorbent material and a polymer material.

Description

POLYMER COMPOSITE GRANULE AND METHOD OF PROCESSING THE SAME Technical Field
The present disclosure relates to a polymer composite granule and methods of processing the same.
Background
Heavy metals, such as, for instance, arsenic (As) , mercury (Hg) , lead (Pb) , and cadmium (Cd) , may be found in potentially harmful concentration levels in numerous drinking water systems due to, for example, natural and industrial pollution. In order to prevent health problems, such toxic heavy metals must be removed from the water to very low concentration levels, such as 10 parts per billion (ppb) for As and Pb, 1 ppb for Hg, and 5 ppb for Cd, for instance, as recommended by the World Health Organization (WHO) .
One current approach for removing heavy metals from water (e.g., drinking water) is reverse osmosis, which uses a semipermeable membrane to remove particles from the water. However, a reverse osmosis approach can have a high energy consumption, a high cost, and/or can produce highly concentrated waste water and, therefore, may not be suitable for residential (e.g., domestic) uses and settings.
Another current approach for removing heavy metals from water is to filter the water through a cartridge that includes granule adsorbent materials. However, the adsorbent materials used to remove heavy metals in current water filter cartridges may have a low reaction efficiency with the heavy metals and, therefore, may not be able to efficiently remove the heavy metals from the water. Accordingly, current water filter cartridges using adsorbent materials may need to be a large size to ensure there is sufficient contact and reaction between the water and the adsorbent materials to effectively filter the water (e.g., to remove the heavy metals from the water to the low concentration levels  recommended by the WHO) and, therefore, may not be suitable for residential uses and settings.
Some approaches for producing solid granules, such as compaction granulation, centrifugal granulation, melting granulation, spraying granulation, and extrusion granulation, use high temperature heating and/or high pressure to enhance the crush strength of the obtained granules. Further, some granules used to remove heavy metals from water may need to undergo various chemical reactions, synthetizations, and/or processes, such as metal coating and/or doping, which can be complicated and/or complex, to be able to effectively filter the water. Accordingly, current granules, can be expensive and/or difficult to prepare and/or produce.
Brief Description of the Drawings
Figure 1 illustrates an example polymer composite granule in accordance with one or more embodiments of the present disclosure.
Figure 2 illustrates a graph showing the efficiency levels at which a polymer composite granule in accordance with the present disclosure can remove different heavy metals from water.
Figure 3 illustrates a method of processing a polymer composite granule in accordance with one or more embodiments of the present disclosure.
Detailed Description
A polymer composite granule and method for processing the same are described herein. For example, one or more embodiments include an adsorbent material, wherein the adsorbent material can be a metal oxide material, and a polymer material, wherein the polymer material can be polyacrylonitrile (PAN) .
A polymer composite granule in accordance with the present disclosure can be less costly and/or use less energy than current approaches for forming granules, such as compaction granulation. As  such, polymer composite granule in accordance with the present disclosure may be particularly beneficial for water filter cartridges for residential (e.g., domestic) uses and/or settings.
Further, the polymer composite granule in accordance with the present disclosure can have a higher reaction efficiency with heavy metals (e.g., As, Hg, Pb, and/or Cd) and, therefore, may be able to remove heavy metals from water more efficiently, than previous granules. Accordingly, the polymer composite granule in accordance with the present disclosure can be used in cartridge form factors that are smaller than previous water filter cartridges, while still ensuring that there is sufficient contact and reaction between the water and the adsorbent materials to effectively filter the water (e.g., to remove the heavy metals from the water to the low concentration levels recommended by the WHO) . As such, the polymer composite granule in accordance with the present disclosure may be more suitable for residential uses and/or settings than previous granules used in water filter cartridges.
Further, polymer composite granules in accordance with the present disclosure can include inorganic materials that do not need to undergo any complicated and/or complex chemical reactions, synthetizations, and/or processes, such as metal coating and/or doping, to be able to effectively filter water. As such, polymer composite granules in accordance with the present disclosure can be easier (e.g., less complex) and/or less expensive to prepare and/or produce than previous granular adsorbent material. Accordingly, the polymer composite granular of the present disclosure can offer more efficient water filtration in both residential and commercial application.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof. The drawings show by way of illustration how one or more embodiments of the disclosure may be practiced.
These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice one or more embodiments of this disclosure. It is to be understood that other embodiments may be  utilized and that mechanical and/or process changes may be made without departing from the scope of the present disclosure.
As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, combined, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. The proportion and the relative scale of the elements provided in the figures are intended to illustrate examples of the embodiments of the present disclosure, and should not be taken in a limiting sense.
The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits.
As used herein, “a” or “a number of” something can refer to one or more such things. For example, “a number of adsorbent materials” can refer to one or more adsorbent materials.
Figure 1 illustrates an example of polymer composite granules 100-1, 100-2 in accordance with one or more embodiments of the present disclosure. The polymer composite granules 100-1, 100-2 can be used in water filter cartridges.
Water filter cartridges can be used to filter water. Filtering water, as used herein, can refer to and/or include the removal of, and/or the process of removing, heavy metals from the water. For example, a water filter cartridge containing a number of polymer composite granules 100-1, 100-2 can remove a number of different types of heavy metals, such as, for instance, As, Hg, Pb, and/or Cd, from water that flows through the water filter cartridge, as will be further described herein.
The polymer composite granules 100-1, 100-2 can be used in and/or be a part of a residential (e.g., domestic) water filter system, for example. For instance, the polymer composite granules 100-1, 100-2  can be used to filter the tap and/or drinking water of a residence. However, embodiments of the present disclosure are not limited to a particular type of use or application for the polymer composite granule 100-1, 100-2.
As shown in Figure 1, the polymer composite granules 100-1, 100-2 can include an adsorbent material and a polymer material. For instance, the adsorbent material can be an active carbon (AC) , a metal oxide material, such as, for instance, a titanium dioxide (TiO 2) material, an iron oxide material, such as, or instance, FeO or iron (III) oxide (Fe 2O 3) , or a heavy metal removal material. The polymer material can be polyacrylonitrile (PAN) , polysulfone (PSF) , polyethersulfone (PES) , polyvinylidene fluoride (PVDF) , polyvinyl chloride (PVC) , or a combination thereof. In such embodiments, the weight ratio of the adsorbent materials to the polymer material can be, for example, in the range of (50%~90%) : (10%~50%) . A higher adsorbent material ratio may provide an increased heavy metal performance and a decreased granule strength, while a higher polymer material ratio may provide a decreased heavy metal performant and an increased granule strength.
In the example illustrated in Figure 1, the polymer composite granules 100-1, 100-2 can have a spherical shape. However, embodiments of the present disclosure are not limited to a particular size or shape for the polymer composite granules 100-1, 100-2.
A plurality of polymer composite granules can be included in the water filter cartridge. For example, the plurality of polymer composite granules can be in cross-contact in the water filter cartridge. For example, a first polymer composite granule 100-1 can be in contact with a second polymer composite granule 100-2.
The adsorbent materials can be inorganic materials (e.g., materials that have not previously undergone a chemical reaction, synthetization, or process) . For instance, no chemical reaction, synthetization, or process, such as, for instance, metal coating and/or doping, may have been performed on the adsorbent material. Using  inorganic materials, such as, for instance, TiO 2 and Fe 2O 3, for the adsorbent material can reduce the cost and/or difficultly of preparing and/or producing the polymer composite granule and water filter cartridge.
In one example implementation, during the water filtering process, water can be input into (e.g., enter) the water filter cartridge at the bottom, and flow up through the water filter cartridge, contacting the number of polymer composite granules. As the water flows through the water filter cartridge and contacts the number of polymer composite granules, heavy metals (e.g., heavy metal ions) adhere to the surfaces of the polymer composite granules (e.g., both on an outer surface of the shape and on interior surfaces) , which are accordingly removed from the water (e.g., adsorbed) by the polymer composite granule. The filtered water (e.g., with the heavy metals removed) can then be output from (e.g., exit) the water filter cartridge at the top after flowing through the cartridge.
The heavy metals removed from the water can include, for example, arsenic (As) , mercury (Hg) , lead (Pb) , and/or cadmium (Cd) , among other types of potentially toxic heavy metals. That is, the polymer composite granules 100-1, 100-2 can be used to remove heavy metals such as As, Hg, Pb, and/or Cd from the water.
Water filtered by polymer composite granules 100-1, 100-2 (e.g., water that has flowed through the water filter cartridge containing polymer composite granules) can have concentration levels of 10 parts per billion (ppb) or less for a number of different heavy metal types. For example, the filtered water can have heavy metal concentration levels as low as, or lower than, those recommended by the WHO (e.g., 10 ppb for As and Pb, 1 ppb for Hg, and 5 ppb for Cd) . That is, water that flows through the number of polymer composite granules can be effectively filtered, which can be due to, for example, the high reaction efficiency of the mixture of the adsorbent material and the polymer material.
Figure 2 illustrates a graph showing the efficiency levels at which a polymer composite granule in accordance with the present disclosure can remove (e.g., filter out) different heavy metals from water. The polymer  composite granule can be, for example, a polymer composite granule, such as one of granules 100-1, 100-2 previously described in connection with Figure 1. For instance, the polymer composite granule can include a mixture of an adsorbent material and a polymer material, as previously described herein (e.g., in connection with Figure 1) .
For example, Figure 2 illustrates a graph 210 showing the efficiency level 202 at which the polymer composite granule can remove arsenic (As) from water. As shown in Figure 2, the efficiency level 202 at which a water filter cartridge including 300 milliliters (mL) of the polymer composite granules can remove As from water can remain at or near 100%for an uptake of at least 1,600 L. As such, the polymer composite granule (e.g., the mixture of adsorbent material and polymer material) can effectively remove As from at least 1,600 L of water.
Figure 3 illustrates a method 320 of processing (e.g., preparing and/or producing) a polymer composite granule in accordance with one or more embodiments of the present disclosure. The polymer composite granule can be, for example, one of the polymer composite granules 100-1, 100-2 previously described in connection with Figure 1.
At block 304, method 320 includes mixing an adsorbent material, a polymer material, and an organic solvent to form a polymer-composite solution. Forming the polymer-composite solution can include separately weighting a particular amount of the adsorbent material, a particular amount of the polymer material, and a particular amount of the organic solvent.
For instance, as previously described, the adsorbent material can be an active carbon (AC) , a metal oxide material, such as, for instance, a titanium dioxide (TiO 2) material, an iron oxide material, such as, for instance, FeO or Fe 2O 3, or a heavy metal removal material. The polymer material can, for example, be polyacrylonitrile (PAN) , polysulfone (PSF) , polyethersulfone (PES) , polyvinylidene fluoride (PVDF) , and/or polyvinyl chloride (PVC) . In such embodiments, the weight ratio of the adsorbent  materials to the polymer material can be, for example, in the range of (50%~90%) : (10%~50%) .
At block 306, the method 320 includes adding the adsorbent material and the polymer material into a bottle, such as a glass bottle. The organic solvent can be added to the bottle containing the adsorbent material and the polymer material. For instance, the organic solvent can be dimethylformamide (DMF) , N-methyl pyrrolidone (NMP) , dimethylacetamide (DMAC) , dimethyl sulfoxide (DMSO) , or a combination thereof. In such embodiments, the weight ratio of the solid content (e.g., the mixture of adsorbent material and polymer material) and the organic solvent can be, for example, in the range of (10%~50%) : (50%~90%) .
The adsorbent material, the polymer material, and the organic solvent can be mixed to form a polymer-composite solution. In such embodiments, a magnetic stirrer can be added to the bottle. Upon sealing the bottle with a lid, the bottle can be placed on a magnetic stirring apparatus. To mix the adsorbent material, the polymer material, and the organic solvent, the magnetic stirring apparatus can be, for example, set to between 20 and 60 degrees centigrade for a period of time until the solid content disperses in the organic solvent. For instance, the period of time can range from 2 to 24 hours. In such an approach, the process of forming the polymer-composite solution can be beneficial as it may not use high temperature or high pressure. In other embodiments, the adsorbent material, the polymer material, and the organic solvent can be mixed to form a polymer-composite solution using mechanical stirring and ultrasonic mixing, among other methods of mixing.
At block 308, the method 320 includes adding the polymer-composite solution to a water solution to form a polymer composite granule. The polymer-composite solution may be added to the water solution in an injection, drop-wise, and/or spraying method, among other adding methods. In one embodiment, the polymer-composite solution  can be added drop-wise to the water solution. In such an embodiment, the selected polymer, such as PAN, may be insoluble in the water solution. The selected organic solvent, such as DMF may be soluble in the water solution. Thus, as the polymer-composite solution is added to the water solution, the organic solvent may co-solute with the water solution and the polymer material-based polymer-composite can form a granule as a result of phase separation.
The polymer composite granule can then be removed from the water and organic solvent solution. Once removed, the polymer composite granule can be used in a water filter cartridge to remove (e.g., filter out) different heavy metals from water. The polymer composite granule can be generally spherical as a result of the polymer-composite solution being added to the water solution in a drop-wise method.
As discussed herein, in some embodiments, the process of forming a polymer composite may ensure the crush strength of a granule without the use of high temperature and pressure. Crush strength can decrease the peel off that the polymer composite granule may experience during storage of the polymer composite granule. Peel off can be when one or more outer layers of the granule is stripped from the polymer composite granule.
Furthermore, as discussed above, in some embodiments, no chemical reaction, synthetization, or process, such as, for instance, metal coating and/or doping, are performed on the polymer composite granule. As such, the cost and/or difficulty of processing the polymer composite granule, as well as a water filter cartridge, can be reduced.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments of the disclosure.
It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description.
The scope of the various embodiments of the disclosure includes any other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
In the foregoing Detailed Description, various features are grouped together in example embodiments illustrated in the figures for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim.
Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims (10)

  1. A polymer composite granule, comprising:
    an adsorbent material; and
    a polymer material.
  2. The polymer composite granule of claim 1, wherein the adsorbent material is heavy metal removal material.
  3. The polymer composite granule of claim 1, wherein the adsorbent material is an active carbon material.
  4. The polymer composite granule of claim 1, wherein the adsorbent material is an inorganic material.
  5. The polymer composite granule of claim 1, wherein the adsorbent material is a metal oxide material.
  6. The polymer composite granule of claim 1, wherein the polymer material can be selected from the group: polyacrylonitrile (PAN) , polysulfone (PSF) , polyethersulfone (PES) , polyvinylidene fluoride (PVDF) , polyvinyl chloride (PVC) , or a combination thereof.
  7. The polymer composite granule of claim 1, wherein the polymer composite granule is a spherical shape.
  8. The polymer composite granule of claim 1, wherein the polymer composite granule is configured to remove a number of different types of heavy metals from water that flows through the polymer composite granule by adhering the heavy metals to surfaces of the polymer composite granule.
  9. The polymer composite granule of claim 8, wherein the number of different types of heavy metals removed by adhering to surfaces of the polymer composite granular include arsenic, lead, and cadmium.
  10. The polymer composite granule of claim 1, wherein the polymer material is insoluble in a water solution
PCT/CN2018/077551 2018-02-28 2018-02-28 Polymer composite granule and method of processing the same WO2019165598A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/077551 WO2019165598A1 (en) 2018-02-28 2018-02-28 Polymer composite granule and method of processing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/077551 WO2019165598A1 (en) 2018-02-28 2018-02-28 Polymer composite granule and method of processing the same

Publications (1)

Publication Number Publication Date
WO2019165598A1 true WO2019165598A1 (en) 2019-09-06

Family

ID=67804732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077551 WO2019165598A1 (en) 2018-02-28 2018-02-28 Polymer composite granule and method of processing the same

Country Status (1)

Country Link
WO (1) WO2019165598A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116274330A (en) * 2023-03-22 2023-06-23 江苏暨之阳环保科技有限公司 Method for repairing organic pollutant polluted soil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612535A (en) * 2009-11-20 2012-07-25 旭化成化学株式会社 Porous molded article, and process for production thereof
CN104707577A (en) * 2013-12-17 2015-06-17 青岛胜利锅炉有限公司 Carbon material embedding macromolecule gel bead preparation process
CN106582577A (en) * 2017-01-06 2017-04-26 南京林业大学 Preparation method and applications of attapulgite/polymer porous millimeter-scale small ball

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612535A (en) * 2009-11-20 2012-07-25 旭化成化学株式会社 Porous molded article, and process for production thereof
CN104707577A (en) * 2013-12-17 2015-06-17 青岛胜利锅炉有限公司 Carbon material embedding macromolecule gel bead preparation process
CN106582577A (en) * 2017-01-06 2017-04-26 南京林业大学 Preparation method and applications of attapulgite/polymer porous millimeter-scale small ball

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116274330A (en) * 2023-03-22 2023-06-23 江苏暨之阳环保科技有限公司 Method for repairing organic pollutant polluted soil
CN116274330B (en) * 2023-03-22 2023-09-22 江苏暨之阳环保科技有限公司 Method for repairing organic pollutant polluted soil

Similar Documents

Publication Publication Date Title
US7186344B2 (en) Membrane based fluid treatment systems
Ng et al. Arsenic removal technologies for drinking water treatment
CN101198549B (en) Waste water treatment device and method
US6878285B2 (en) Ion-exchange based fluid treatment systems
CN109879477B (en) Arsenic-containing wastewater treatment method
Rohani et al. Ammonia removal from raw water by using adsorptive membrane filtration process
CN206512017U (en) A kind of heavy metal in electroplating wastewater stably reaching standard exhaust system
CN108473345A (en) Desalination processes and fertilizer production method
CN101844845A (en) Method for treating waste water containing ammonia and nitrogen
CN205662404U (en) Zero release water treatment facilities
WO2019165598A1 (en) Polymer composite granule and method of processing the same
CN108211825B (en) Metal organic framework composite membrane material and preparation and application thereof
CN106154908A (en) A kind of purifier management method based on APP
CN105384296B (en) A kind of processing system and processing method of the waste water that SCR denitration regeneration generates
CN112661968B (en) Method for preparing MOF adsorption material
CN110759430B (en) Plasticized polymer ionic liquid film and method for selectively separating chromium (VI) by using same
CN107129081A (en) A kind of processing of the sour acid out waste water of 2B and resource recovery process
Vara et al. Membrane technology for treatment of pharmaceutical wastewaters: a novel approach
CN106467332A (en) Functionalization MOFs intensified ceramic film new technique recycling treatment heavy metal wastewater thereby
WO2018129693A1 (en) Water filter cartridge and method of processing the same
CN109775898B (en) Recycling process and system for high-concentration waste liquid containing aluminum phosphate and triethylamine
KR20190085902A (en) Method for preparation of hollow fiber type arsenic adsorbent
WO2018023728A1 (en) Water filter cartridge and method of processing the same
Antony et al. Membrane technology—a promising approach for metal ion extraction
KR20180066331A (en) Method for preparation of hollow fiber type arsenic adsorbent and hollow fiber media

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907778

Country of ref document: EP

Kind code of ref document: A1