WO2018023728A1 - Water filter cartridge and method of processing the same - Google Patents

Water filter cartridge and method of processing the same Download PDF

Info

Publication number
WO2018023728A1
WO2018023728A1 PCT/CN2016/093593 CN2016093593W WO2018023728A1 WO 2018023728 A1 WO2018023728 A1 WO 2018023728A1 CN 2016093593 W CN2016093593 W CN 2016093593W WO 2018023728 A1 WO2018023728 A1 WO 2018023728A1
Authority
WO
WIPO (PCT)
Prior art keywords
water filter
filter cartridge
adsorbent materials
water
remove
Prior art date
Application number
PCT/CN2016/093593
Other languages
French (fr)
Inventor
Minling Liu
Changquan QIU
Kai Huang
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Priority to PCT/CN2016/093593 priority Critical patent/WO2018023728A1/en
Publication of WO2018023728A1 publication Critical patent/WO2018023728A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • B01D39/06Inorganic material, e.g. asbestos fibres, glass beads or fibres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/006Cartridges

Definitions

  • the present disclosure relates to water filter cartridges and methods of processing the same.
  • Heavy metals such as, for instance, arsenic (As) , mercury (Hg) , lead (Pb) , and/or cadmium (Cd) , may be found in potentially harmful concentration levels in numerous drinking water systems due to, for example, natural and/or industrial pollution.
  • As arsenic
  • Hg mercury
  • Pb lead
  • Cd cadmium
  • toxic heavy metals must be removed from the water to very low concentration levels, such as 10 parts per billion (ppb) for As and Pb, 1 ppb for Hg, and 5 ppb for Cd, for instance, as recommended by the World Health Organization (WHO) .
  • WHO World Health Organization
  • reverse osmosis which uses a semipermeable membrane to remove particles from the water.
  • a reverse osmosis approach can have a high energy consumption, a high cost, and/or can produce highly concentrated waste water, and therefore may not be suitable for residential (e.g., domestic) uses and settings.
  • Another current approach for removing heavy metals from water is to filter the water through a cartridge that includes granular adsorbent materials.
  • the adsorbent materials used to remove heavy metals in current water filter cartridges may have a low reaction efficiency with the heavy metals, and therefore may not be able to efficiently remove the heavy metals from the water.
  • current water filter cartridges may need to be a large size to ensure there is sufficient contact and reaction between the water and the adsorbent materials to effectively filter the water (e.g., to remove the heavy metals from the water to the low concentration levels recommended by the WHO) , and therefore may not be suitable for residential uses and settings.
  • adsorbent materials used to remove heavy metals in current water filter cartridges may need to undergo various chemical reactions, synthetizations, and/or processes, such as metal coating and/or doping, which can be complicated and/or complex, to be able to effectively filter the water. Accordingly, current water filter cartridges can be expensive and/or difficult to prepare and/or produce.
  • FIG. 1 illustrates an example water filter cartridge in accordance with one or more embodiments of the present disclosure.
  • Figures 2A-2C illustrate graphs showing the efficiency levels at which a water filter cartridge in accordance with the present disclosure can remove different heavy metals from water.
  • Figure 3 illustrates a method of processing a water filter cartridge in accordance with one or more embodiments of the present disclosure.
  • one or more embodiments include a first number of adsorbent materials, wherein each of the first number of adsorbent materials is a metal oxide material, and a second number of adsorbent materials, wherein each of the second number of adsorbent materials is an oxyhydroxide material.
  • Water filter cartridges in accordance with the present disclosure can be less costly, use less energy, and/or produce less waste water than previous water filtering approaches, such as reverse osmosis. As such, water filter cartridges in accordance with the present disclosure may be more suitable for residential (e.g., domestic) uses and/or settings than reverse osmosis.
  • the adsorbent materials of water filter cartridges in accordance with the present disclosure can have a higher reaction efficiency with heavy metals (e.g., As, Hg, Pb, and/or Cd) , and therefore may be able to remove heavy metals from water more efficiently, than previous water filter cartridges. Accordingly, water filter cartridges in accordance with the present disclosure can be smaller than previous water filter cartridges, while still ensuring that there is sufficient contact and reaction between the water and the adsorbent materials to effectively filter the water (e.g., to remove the heavy metals from the water to the low concentration levels recommended by the WHO) . As such, water filter cartridges in accordance with the present disclosure may be more suitable for residential uses and/or settings than previous water filter cartridges.
  • heavy metals e.g., As, Hg, Pb, and/or Cd
  • the adsorbent materials of water filter cartridges in accordance with the present disclosure can be inorganic materials that do not need to undergo any complicated and/or complex chemical reactions, synthetizations, and/or processes, such as metal coating and/or doping, to be able to effectively filter water.
  • water filter cartridges in accordance with the present disclosure can be easier (e.g., less complex) and/or less expensive to prepare and/or produce than previous water filter cartridges.
  • a or “anumber of” something can refer to one or more such things.
  • “anumber of adsorbent materials” can refer to one or more adsorbent materials.
  • FIG. 1 illustrates an example water filter cartridge 100 in accordance with one or more embodiments of the present disclosure.
  • Water filter cartridge 100 can be used to filter water.
  • Filtering water can refer to and/or include the removal of, and/or the process of removing, heavy metals from the water.
  • water filter cartridge 100 can remove a number of different types of heavy metals, such as, for instance, As, Hg, Pb, and/or Cd, from water that flows through water filter cartridge 100, as will be further described herein.
  • Water filter cartridge 100 can be used in and/or be a part of a residential (e.g., domestic) water filter system, for example.
  • water filter cartridge 100 can be used to filter the tap and/or drinking water of a residence.
  • embodiments of the present disclosure are not limited to a particular type of use or application for water filter cartridge 100.
  • water filter cartridge 100 can include a first number (e.g., plurality) of adsorbent materials 102, and a second number (e.g., plurality) of adsorbent materials 104.
  • Each of the first number of adsorbent materials 102 can be a metal oxide material, such as, for instance, a titanium dioxide (TiO 2 ) material
  • each of the second number of adsorbent materials 104 can be an oxyhydroxide material, such as, for instance, an iron oxyhydroxide (FeO (OH) ) material.
  • water filter cartridge 100 can include a number of TiO 2 materials and a number of FeO (OH) materials.
  • the weight ratio of the first number of adsorbent materials 102 to the second number of adsorbent materials 104 can be, for example, in the range of 1: 7 to 6: 1, inclusive.
  • each of the first number of adsorbent materials 102 can be an oxyhydroxide material, such as, for instance, a titanium oxyhydroxide (TiO (OH) ) material.
  • each of the second number of adsorbent materials 104 can be an iron oxide material, such as, or instance, FeO or Fe 2 O 3 .
  • the first number of adsorbent materials 102 and the second number of adsorbent materials 104 each have approximately the same size. Further, in the example illustrated in Figure 1, the first number of adsorbent materials 102 and the second number of adsorbent materials 104 each have the same shape. For instance, the first number of adsorbent materials 102 and the second number of adsorbent materials 104 illustrated in Figure 1 each have a circular shape. However, embodiments of the present disclosure are not limited to a particular size or shape for the first number of adsorbent materials 102 or the second number of adsorbent materials 104.
  • the first number of adsorbent materials 102 and the second number of adsorbent materials 104 can be mixed together in water filter cartridge 100. That is, the first number of adsorbent materials 102 and the second number of adsorbent materials 104 are not separate layers in water filter cartridge 100.
  • the first number of adsorbent materials 102 and the second number of adsorbent materials 104 can be mixed together in a uniform distribution (e.g., uniformly distributed) throughout water filter cartridge 100.
  • the first number of adsorbent materials 102 and the second number of adsorbent materials 104 can be in cross-contact in water filter cartridge 100.
  • each of the first number of adsorbent materials 102 can be in contact with at least one of the second number of adsorbent materials 104
  • each of the second number of adsorbent materials 104 can be in contact with at least one of the first number of adsorbent materials 102.
  • the first number of adsorbent materials 102 and the second number of adsorbent materials 104 can be inorganic materials (e.g., materials that have not previously undergone a chemical reaction, synthetization, or process) .
  • inorganic materials e.g., materials that have not previously undergone a chemical reaction, synthetization, or process
  • no chemical reaction, synthetization, or process such as, for instance, metal coating and/or doping, may have been performed on the first number of adsorbent materials 102 or the second number of adsorbent materials 104 before they were mixed together in water filter cartridge 100.
  • inorganic materials such as, for instance, TiO 2 and FeO (OH)
  • TiO 2 and FeO (OH) for the first number of adsorbent materials 102 and the second number of adsorbent materials 104 can reduce the cost and/or difficultly of preparing and/or producing water filter cartridge 100.
  • Water filter cartridge 100 can have a small size that is suitable for residential uses and/or settings.
  • the length of water filter cartridge 100 e.g., the length from the top of water filter cartridge 100 to the bottom of water filter cartridge 100
  • water can be input into (e.g., enter) water filter cartridge 100 at the bottom, and flow up through water filter cartridge 100, contacting the first number of adsorbent materials 102 and the second number of adsorbent materials 104.
  • heavy metals e.g., heavy metal ions
  • the filtered water can then be output from (e.g., exit) water filter cartridge 100 at the top after flowing through the cartridge.
  • the heavy metals removed from the water can include, for example, arsenic (As) , mercury (Hg) , lead (Pb) , and/or cadmium (Cd) , among other types of potentially toxic heavy metals. That is, water filter cartridge 100 can be used to remove heavy metals such as As, Hg, Pb, and/or Cd from the water.
  • As arsenic
  • Hg mercury
  • Pb lead
  • Cd cadmium
  • Water filtered by water filter cartridge 100 can have concentration levels of 10 parts per billion (ppb) or less for a number of different heavy metal types.
  • the filtered water can have heavy metal concentration levels as low as, or lower than, those recommended by the WHO (e.g., 10 ppb for As and Pb, 1 ppb for Hg, and 5 ppb for Cd) .
  • water that flows through water filter cartridge 100 can be effectively filtered, which can be due to, for example, the high reaction efficiency of the mixture of the first number of adsorbent materials 102 and the second number of adsorbent materials 104 (e.g., the mixture of TiO 2 and FeO(OH) ) in water filter cartridge 100.
  • the high reaction efficiency of the mixture of the first number of adsorbent materials 102 and the second number of adsorbent materials 104 e.g., the mixture of TiO 2 and FeO(OH) in water filter cartridge 100.
  • Water filter cartridge 100 can have an uptake of 5,000 Liters (L) or more.
  • water filter 100 can effectively filter at least 5,000 L of water, as will be further described herein (e.g., in connection with Figures 2A-2C) .
  • FIGS 2A-2C illustrate graphs showing the efficiency levels at which a water filter cartridge in accordance with the present disclosure can remove (e.g., filter out) different heavy metals from water.
  • the water filter cartridge can be, for example, water filter cartridge 100 previously described in connection with Figure 1.
  • the water filter cartridge can include a mixture of TiO 2 and FeO (OH) adsorbent materials, as previously described herein (e.g., in connection with Figure 1) .
  • Figure 2A illustrates a graph 210 showing the efficiency level 212 at which the water filter cartridge can remove As from water.
  • the efficiency level 212 at which the water filter cartridge can remove As from water can remain at or near 100%for an uptake of at least 5,000 L.
  • the water filter e.g., the mixture of TiO 2 and FeO (OH)
  • the water filter can effectively remove As from at least 5,000 L of water.
  • Graph 210 also shows, for comparison, the efficiency level 214 at which a water filter cartridge that uses only TiO 2 as its adsorbent materials can remove As from water, and the efficiency level 216 at which a water filter cartridge that uses only FeO (OH) as its adsorbent materials can remove As from water.
  • the efficiency levels 214 and 216 at which a water filter cartridge that uses only TiO 2 or only FeO (OH) , respectively, as its adsorbent materials can remove As from water is much lower than the efficiency level 212 at which a water filter cartridge that uses a mixture of TiO 2 and FeO (OH) as its adsorbent materials can remove As from water.
  • a water filter cartridge that uses only TiO 2 or only FeO (OH) as its adsorbent materials may be much less effective at removing As from water than a water filter cartridge in accordance with the present disclosure that uses a mixture of TiO 2 and FeO (OH) as its adsorbent materials.
  • Figure 2B illustrates a graph 220 showing the efficiency level 222 at which the water filter cartridge can remove Pb from water.
  • the efficiency level 222 at which the water filter cartridge can remove Pb from water can remain high for an uptake of at least 5,000 L.
  • the water filter e.g., the mixture of TiO 2 and FeO(OH)
  • the water filter can effectively remove Pb from at least 5,000 L of water.
  • Graph 220 also shows, for comparison, the efficiency level 224 at which a water filter cartridge that uses only TiO 2 as its adsorbent materials can remove Pb from water, and the efficiency level 226 at which a water filter cartridge that uses only FeO (OH) as its adsorbent materials can remove Pb from water.
  • the efficiency levels 224 and 226 at which a water filter cartridge that uses only TiO 2 or only FeO (OH) , respectively, as its adsorbent materials can remove Pb from water is lower than the efficiency level 222 at which a water filter cartridge that uses a mixture of TiO 2 and FeO (OH) as its adsorbent materials can remove Pb from water.
  • a water filter cartridge that uses only TiO 2 or only FeO (OH) as its adsorbent materials may be much less effective at removing Pb from water than a water filter cartridge in accordance with the present disclosure that uses a mixture of TiO 2 and FeO (OH) as its adsorbent materials.
  • Figure 2C illustrates a graph 230 showing the efficiency level 232 at which the water filter cartridge can remove Cd from water.
  • the efficiency level 232 at which the water filter cartridge can remove Cd from water can remain high for an uptake of at least 5,000 L.
  • the water filter e.g., the mixture of TiO 2 and FeO(OH)
  • the water filter can effectively remove Cd from at least 5,000 L of water.
  • Graph 230 also shows, for comparison, the efficiency level 234 at which a water filter cartridge that uses only TiO 2 as its adsorbent materials can remove Cd from water, and the efficiency level 236 at which a water filter cartridge that uses only FeO (OH) as its adsorbent materials can remove Cd from water.
  • the efficiency levels 234 and 236 at which a water filter cartridge that uses only TiO 2 or only FeO (OH) , respectively, as its adsorbent materials can remove Cd from water is lower than the efficiency level 232 at which a water filter cartridge that uses a mixture of TiO 2 and FeO (OH) as its adsorbent materials can remove Cd from water.
  • a water filter cartridge that uses only TiO 2 or only FeO (OH) as its adsorbent materials may be much less effective at removing Cd from water than a water filter cartridge in accordance with the present disclosure that uses a mixture of TiO 2 and FeO (OH) as its adsorbent materials.
  • FIG 3 illustrates a method 340 of processing (e.g., preparing and/or producing) a water filter cartridge in accordance with one or more embodiments of the present disclosure.
  • the water filter cartridge can be, for example, water filter cartridge 100 previously described in connection with Figure 1.
  • method 340 includes separately weighting a particular amount of a first number of adsorbent materials and a particular amount of a second number of adsorbent materials.
  • the first number of adsorbent materials and the second number of adsorbent materials can be, for example, adsorbent materials 102 adsorbent materials 104, respectively previously described in connection with Figure 1.
  • each of the first number of adsorbent materials can be a metal oxide material, such as, for instance, a titanium dioxide (TiO 2 ) material
  • each of the second number of adsorbent materials can be an oxyhydroxide material, such as, for instance, an iron oxyhydroxide (FeO (OH) ) material, as previously described herein (e.g., in connection with Figure 1.
  • the first number of adsorbent materials and the second number of adsorbent materials may be weighted such that the weight ratio of the first number of adsorbent materials to the second number of adsorbent materials is in the range of 1: 7 to 6: 1, inclusive.
  • method 340 includes mixing the first number of adsorbent materials and the second number of adsorbent materials together.
  • the first number of adsorbent materials and the second number of adsorbent materials may be mixed together in a uniform distribution.
  • a wetting agent such as, for instance, water
  • Applying the wetting agent can help ensure sufficient cross-contact between the first number of adsorbent materials and the second number of adsorbent materials in the mixture.
  • method 340 includes filling a water cartridge with the mixture of the first number of adsorbent materials and the second number of adsorbent materials.
  • the filled water cartridge can then be used to filter water, as previously described herein (e.g., in connection with Figure 1) .
  • no chemical reaction, synthetization, or process such as, for instance, metal coating and/or doping, may be performed on the first number of adsorbent materials or the second number of adsorbent materials as part of the processing of the water filter cartridge (e.g., during method 340) .
  • no chemical reaction, synthetization, or process may be performed on the first number of adsorbent materials or the second number of adsorbent materials before they are mixed together. As such, the cost and/or difficulty of processing the water filter cartridge can be reduced.

Abstract

A water filter cartridge(100) and method of processing the same are described herein. One device includes a first number of adsorbent materials(102), wherein each of the first number of adsorbent materials(102) is a metal oxide material, and a second number of adsorbent materials(104), wherein each of the second number of adsorbent materials(104) is an oxyhydroxide material.

Description

WATER FILTER CARTRIDGE AND METHOD OF PROCESSING THE SAME Technical Field
The present disclosure relates to water filter cartridges and methods of processing the same.
Background
Heavy metals, such as, for instance, arsenic (As) , mercury (Hg) , lead (Pb) , and/or cadmium (Cd) , may be found in potentially harmful concentration levels in numerous drinking water systems due to, for example, natural and/or industrial pollution. In order to prevent health problems, such toxic heavy metals must be removed from the water to very low concentration levels, such as 10 parts per billion (ppb) for As and Pb, 1 ppb for Hg, and 5 ppb for Cd, for instance, as recommended by the World Health Organization (WHO) .
One current approach for removing heavy metals from water (e.g., drinking water) is reverse osmosis, which uses a semipermeable membrane to remove particles from the water. However, a reverse osmosis approach can have a high energy consumption, a high cost, and/or can produce highly concentrated waste water, and therefore may not be suitable for residential (e.g., domestic) uses and settings.
Another current approach for removing heavy metals from water is to filter the water through a cartridge that includes granular adsorbent materials. However, the adsorbent materials used to remove heavy metals in current water filter cartridges may have a low reaction efficiency with the heavy metals, and therefore may not be able to efficiently remove the heavy metals from the water. Accordingly, current water filter cartridges may need to be a large size to ensure there is sufficient contact and reaction between the water and the adsorbent materials to effectively filter the water (e.g., to remove the heavy metals from the water to the low concentration levels recommended by the WHO) , and therefore may not be suitable for residential uses and settings.
Further, the adsorbent materials used to remove heavy metals in current water filter cartridges may need to undergo various chemical reactions, synthetizations, and/or processes, such as metal coating and/or doping, which can be complicated and/or complex, to be able to effectively filter the water. Accordingly, current water filter cartridges can be expensive and/or difficult to prepare and/or produce.
Brief Description of the Drawings
Figure 1 illustrates an example water filter cartridge in accordance with one or more embodiments of the present disclosure.
Figures 2A-2C illustrate graphs showing the efficiency levels at which a water filter cartridge in accordance with the present disclosure can remove different heavy metals from water.
Figure 3 illustrates a method of processing a water filter cartridge in accordance with one or more embodiments of the present disclosure.
Detailed Description
A water filter cartridge and method processing the same are described herein. For example, one or more embodiments include a first number of adsorbent materials, wherein each of the first number of adsorbent materials is a metal oxide material, and a second number of adsorbent materials, wherein each of the second number of adsorbent materials is an oxyhydroxide material.
Water filter cartridges in accordance with the present disclosure can be less costly, use less energy, and/or produce less waste water than previous water filtering approaches, such as reverse osmosis. As such, water filter cartridges in accordance with the present disclosure may be more suitable for residential (e.g., domestic) uses and/or settings than reverse osmosis.
Further, the adsorbent materials of water filter cartridges in accordance with the present disclosure can have a higher reaction efficiency with heavy metals (e.g., As, Hg, Pb, and/or Cd) , and therefore  may be able to remove heavy metals from water more efficiently, than previous water filter cartridges. Accordingly, water filter cartridges in accordance with the present disclosure can be smaller than previous water filter cartridges, while still ensuring that there is sufficient contact and reaction between the water and the adsorbent materials to effectively filter the water (e.g., to remove the heavy metals from the water to the low concentration levels recommended by the WHO) . As such, water filter cartridges in accordance with the present disclosure may be more suitable for residential uses and/or settings than previous water filter cartridges.
Further, the adsorbent materials of water filter cartridges in accordance with the present disclosure can be inorganic materials that do not need to undergo any complicated and/or complex chemical reactions, synthetizations, and/or processes, such as metal coating and/or doping, to be able to effectively filter water. As such, water filter cartridges in accordance with the present disclosure can be easier (e.g., less complex) and/or less expensive to prepare and/or produce than previous water filter cartridges.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof. The drawings show by way of illustration how one or more embodiments of the disclosure may be practiced.
These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice one or more embodiments of this disclosure. It is to be understood that other embodiments may be utilized and that mechanical, electrical, and/or process changes may be made without departing from the scope of the present disclosure.
As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, combined, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. The proportion and the relative scale of the elements  provided in the figures are intended to illustrate the embodiments of the present disclosure, and should not be taken in a limiting sense.
The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits.
As used herein, “a” or “anumber of” something can refer to one or more such things. For example, “anumber of adsorbent materials” can refer to one or more adsorbent materials.
Figure 1 illustrates an example water filter cartridge 100 in accordance with one or more embodiments of the present disclosure. Water filter cartridge 100 can be used to filter water. Filtering water, as used herein, can refer to and/or include the removal of, and/or the process of removing, heavy metals from the water. For example, water filter cartridge 100 can remove a number of different types of heavy metals, such as, for instance, As, Hg, Pb, and/or Cd, from water that flows through water filter cartridge 100, as will be further described herein.
Water filter cartridge 100 can be used in and/or be a part of a residential (e.g., domestic) water filter system, for example. For instance, water filter cartridge 100 can be used to filter the tap and/or drinking water of a residence. However, embodiments of the present disclosure are not limited to a particular type of use or application for water filter cartridge 100.
As shown in Figure 1, water filter cartridge 100 can include a first number (e.g., plurality) of adsorbent materials 102, and a second number (e.g., plurality) of adsorbent materials 104. Each of the first number of adsorbent materials 102 can be a metal oxide material, such as, for instance, a titanium dioxide (TiO2) material, and each of the second number of adsorbent materials 104 can be an oxyhydroxide material, such as, for instance, an iron oxyhydroxide (FeO (OH) ) material. That is, in some embodiments, water filter cartridge 100 can include a number of  TiO2 materials and a number of FeO (OH) materials. In such embodiments, the weight ratio of the first number of adsorbent materials 102 to the second number of adsorbent materials 104 (e.g., the weight ratio of TiO2 to FeO (OH) in water filter cartridge 100) can be, for example, in the range of 1: 7 to 6: 1, inclusive.
As an additional example, in some embodiments, each of the first number of adsorbent materials 102 can be an oxyhydroxide material, such as, for instance, a titanium oxyhydroxide (TiO (OH) ) material. Further, in some embodiments, each of the second number of adsorbent materials 104 can be an iron oxide material, such as, or instance, FeO or Fe2O3.
In the example illustrated in Figure 1, the first number of adsorbent materials 102 and the second number of adsorbent materials 104 each have approximately the same size. Further, in the example illustrated in Figure 1, the first number of adsorbent materials 102 and the second number of adsorbent materials 104 each have the same shape. For instance, the first number of adsorbent materials 102 and the second number of adsorbent materials 104 illustrated in Figure 1 each have a circular shape. However, embodiments of the present disclosure are not limited to a particular size or shape for the first number of adsorbent materials 102 or the second number of adsorbent materials 104.
As shown in Figure 1, the first number of adsorbent materials 102 and the second number of adsorbent materials 104 can be mixed together in water filter cartridge 100. That is, the first number of adsorbent materials 102 and the second number of adsorbent materials 104 are not separate layers in water filter cartridge 100. For example, the first number of adsorbent materials 102 and the second number of adsorbent materials 104 can be mixed together in a uniform distribution (e.g., uniformly distributed) throughout water filter cartridge 100.
Further, as shown in Figure 1, the first number of adsorbent materials 102 and the second number of adsorbent materials 104 can be in cross-contact in water filter cartridge 100. For example, each of the  first number of adsorbent materials 102 can be in contact with at least one of the second number of adsorbent materials 104, and each of the second number of adsorbent materials 104 can be in contact with at least one of the first number of adsorbent materials 102.
The first number of adsorbent materials 102 and the second number of adsorbent materials 104 can be inorganic materials (e.g., materials that have not previously undergone a chemical reaction, synthetization, or process) . For instance, no chemical reaction, synthetization, or process, such as, for instance, metal coating and/or doping, may have been performed on the first number of adsorbent materials 102 or the second number of adsorbent materials 104 before they were mixed together in water filter cartridge 100. Using inorganic materials, such as, for instance, TiO2 and FeO (OH) , for the first number of adsorbent materials 102 and the second number of adsorbent materials 104 can reduce the cost and/or difficultly of preparing and/or producing water filter cartridge 100.
Water filter cartridge 100 can have a small size that is suitable for residential uses and/or settings. For example, the length of water filter cartridge 100 (e.g., the length from the top of water filter cartridge 100 to the bottom of water filter cartridge 100) can be ten inches or less.
During the water filtering process, water can be input into (e.g., enter) water filter cartridge 100 at the bottom, and flow up through water filter cartridge 100, contacting the first number of adsorbent materials 102 and the second number of adsorbent materials 104. As the water flows through water filter cartridge 100 and contacts  adsorbent materials  102 and 104, heavy metals (e.g., heavy metal ions) can be removed from the water (e.g., adsorbed) by  adsorbent materials  102 and 104. The filtered water (e.g., with the heavy metals removed) can then be output from (e.g., exit) water filter cartridge 100 at the top after flowing through the cartridge.
The heavy metals removed from the water can include, for example, arsenic (As) , mercury (Hg) , lead (Pb) , and/or cadmium (Cd) , among other types of potentially toxic heavy metals. That is, water filter  cartridge 100 can be used to remove heavy metals such as As, Hg, Pb, and/or Cd from the water.
Water filtered by water filter cartridge 100 (e.g., water that has flowed through water filter cartridge 100) can have concentration levels of 10 parts per billion (ppb) or less for a number of different heavy metal types. For example, the filtered water can have heavy metal concentration levels as low as, or lower than, those recommended by the WHO (e.g., 10 ppb for As and Pb, 1 ppb for Hg, and 5 ppb for Cd) . That is, water that flows through water filter cartridge 100 can be effectively filtered, which can be due to, for example, the high reaction efficiency of the mixture of the first number of adsorbent materials 102 and the second number of adsorbent materials 104 (e.g., the mixture of TiO2 and FeO(OH) ) in water filter cartridge 100.
Water filter cartridge 100 can have an uptake of 5,000 Liters (L) or more. For example, water filter 100 can effectively filter at least 5,000 L of water, as will be further described herein (e.g., in connection with Figures 2A-2C) .
Figures 2A-2C illustrate graphs showing the efficiency levels at which a water filter cartridge in accordance with the present disclosure can remove (e.g., filter out) different heavy metals from water. The water filter cartridge can be, for example, water filter cartridge 100 previously described in connection with Figure 1. For instance, the water filter cartridge can include a mixture of TiO2 and FeO (OH) adsorbent materials, as previously described herein (e.g., in connection with Figure 1) .
For example, Figure 2A illustrates a graph 210 showing the efficiency level 212 at which the water filter cartridge can remove As from water. As shown in Figure 2A, the efficiency level 212 at which the water filter cartridge can remove As from water can remain at or near 100%for an uptake of at least 5,000 L. As such, the water filter (e.g., the mixture of TiO2 and FeO (OH) ) can effectively remove As from at least 5,000 L of water.
Graph 210 also shows, for comparison, the efficiency level 214 at which a water filter cartridge that uses only TiO2 as its adsorbent materials can remove As from water, and the efficiency level 216 at which a water filter cartridge that uses only FeO (OH) as its adsorbent materials can remove As from water. As shown in Figure 2A, the  efficiency levels  214 and 216 at which a water filter cartridge that uses only TiO2 or only FeO (OH) , respectively, as its adsorbent materials can remove As from water is much lower than the efficiency level 212 at which a water filter cartridge that uses a mixture of TiO2 and FeO (OH) as its adsorbent materials can remove As from water. As such, a water filter cartridge that uses only TiO2 or only FeO (OH) as its adsorbent materials may be much less effective at removing As from water than a water filter cartridge in accordance with the present disclosure that uses a mixture of TiO2 and FeO (OH) as its adsorbent materials.
Further, Figure 2B illustrates a graph 220 showing the efficiency level 222 at which the water filter cartridge can remove Pb from water. As shown in Figure 2B, the efficiency level 222 at which the water filter cartridge can remove Pb from water can remain high for an uptake of at least 5,000 L. As such, the water filter (e.g., the mixture of TiO2 and FeO(OH) ) can effectively remove Pb from at least 5,000 L of water.
Graph 220 also shows, for comparison, the efficiency level 224 at which a water filter cartridge that uses only TiO2 as its adsorbent materials can remove Pb from water, and the efficiency level 226 at which a water filter cartridge that uses only FeO (OH) as its adsorbent materials can remove Pb from water. As shown in Figure 2B, the  efficiency levels  224 and 226 at which a water filter cartridge that uses only TiO2 or only FeO (OH) , respectively, as its adsorbent materials can remove Pb from water is lower than the efficiency level 222 at which a water filter cartridge that uses a mixture of TiO2 and FeO (OH) as its adsorbent materials can remove Pb from water. As such, a water filter cartridge that uses only TiO2 or only FeO (OH) as its adsorbent materials may be much less effective at removing Pb from water than a water filter  cartridge in accordance with the present disclosure that uses a mixture of TiO2 and FeO (OH) as its adsorbent materials.
Further, Figure 2C illustrates a graph 230 showing the efficiency level 232 at which the water filter cartridge can remove Cd from water. As shown in Figure 2C, the efficiency level 232 at which the water filter cartridge can remove Cd from water can remain high for an uptake of at least 5,000 L. As such, the water filter (e.g., the mixture of TiO2 and FeO(OH) ) can effectively remove Cd from at least 5,000 L of water.
Graph 230 also shows, for comparison, the efficiency level 234 at which a water filter cartridge that uses only TiO2 as its adsorbent materials can remove Cd from water, and the efficiency level 236 at which a water filter cartridge that uses only FeO (OH) as its adsorbent materials can remove Cd from water. As shown in Figure 2C, the  efficiency levels  234 and 236 at which a water filter cartridge that uses only TiO2 or only FeO (OH) , respectively, as its adsorbent materials can remove Cd from water is lower than the efficiency level 232 at which a water filter cartridge that uses a mixture of TiO2 and FeO (OH) as its adsorbent materials can remove Cd from water. As such, a water filter cartridge that uses only TiO2 or only FeO (OH) as its adsorbent materials may be much less effective at removing Cd from water than a water filter cartridge in accordance with the present disclosure that uses a mixture of TiO2 and FeO (OH) as its adsorbent materials.
Figure 3 illustrates a method 340 of processing (e.g., preparing and/or producing) a water filter cartridge in accordance with one or more embodiments of the present disclosure. The water filter cartridge can be, for example, water filter cartridge 100 previously described in connection with Figure 1.
At block 342, method 340 includes separately weighting a particular amount of a first number of adsorbent materials and a particular amount of a second number of adsorbent materials. The first number of adsorbent materials and the second number of adsorbent materials can be, for example, adsorbent materials 102 adsorbent  materials 104, respectively previously described in connection with Figure 1. For instance, each of the first number of adsorbent materials can be a metal oxide material, such as, for instance, a titanium dioxide (TiO2) material, and each of the second number of adsorbent materials can be an oxyhydroxide material, such as, for instance, an iron oxyhydroxide (FeO (OH) ) material, as previously described herein (e.g., in connection with Figure 1. The first number of adsorbent materials and the second number of adsorbent materials may be weighted such that the weight ratio of the first number of adsorbent materials to the second number of adsorbent materials is in the range of 1: 7 to 6: 1, inclusive.
At block 344, method 340 includes mixing the first number of adsorbent materials and the second number of adsorbent materials together. For example, the first number of adsorbent materials and the second number of adsorbent materials may be mixed together in a uniform distribution.
In some embodiments, a wetting agent, such as, for instance, water, may be applied to the first number of adsorbent materials and the second number of adsorbent materials while they are being mixed together. Applying the wetting agent can help ensure sufficient cross-contact between the first number of adsorbent materials and the second number of adsorbent materials in the mixture.
At block 346, method 340 includes filling a water cartridge with the mixture of the first number of adsorbent materials and the second number of adsorbent materials. The filled water cartridge can then be used to filter water, as previously described herein (e.g., in connection with Figure 1) .
In some embodiments, no chemical reaction, synthetization, or process, such as, for instance, metal coating and/or doping, may be performed on the first number of adsorbent materials or the second number of adsorbent materials as part of the processing of the water filter cartridge (e.g., during method 340) . For example, no chemical reaction, synthetization, or process may be performed on the first number of  adsorbent materials or the second number of adsorbent materials before they are mixed together. As such, the cost and/or difficulty of processing the water filter cartridge can be reduced.
Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that any arrangement calculated to achieve the same techniques can be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments of the disclosure.
It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description.
The scope of the various embodiments of the disclosure includes any other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the disclosure should be determined with reference to the appended claims, along with the full range of equivalents to which such claims are entitled.
In the foregoing Detailed Description, various features are grouped together in example embodiments illustrated in the figures for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim.
Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims (10)

  1. A water filter cartridge, comprising:
    a first number of adsorbent materials, wherein each of the first number of adsorbent materials is a metal oxide material; and
    a second number of adsorbent materials, wherein each of the second number of adsorbent materials is an oxyhydroxide material.
  2. The water filter cartridge of claim 1, wherein each of the first number of adsorbent materials is a titanium dioxide material.
  3. The water filter cartridge of claim 1, wherein each of the second number of adsorbent materials is an iron oxyhydroxide material.
  4. The water filter cartridge of claim 1, wherein the first number of adsorbent materials and the second number of adsorbent materials are mixed together in the water filter cartridge.
  5. The water filter cartridge of claim 1, wherein the first number of adsorbent materials and the second number of adsorbent materials are inorganic materials.
  6. The water filter cartridge of claim 1, wherein the water filter cartridge is configured to be used in a residential water filter system.
  7. The water filter cartridge of claim 1, wherein the water filter cartridge is configured to remove a number of different types of heavy metals from water that flows through the water filter cartridge.
  8. The water filter cartridge of claim 7, wherein the number of different types of heavy metals include arsenic, lead, and cadmium.
  9. The water filter cartridge of claim 7, wherein water filter cartridge is configured to remove the number of different types of heavy metals from the water such that a concentration of each of the different types of heavy metals in the water output from the water filter cartridge is ten parts per billion or less.
  10. The water filter cartridge of claim 1, wherein the first number of adsorbent materials and the second number of adsorbent materials are in cross-contact in the water filter cartridge.
PCT/CN2016/093593 2016-08-05 2016-08-05 Water filter cartridge and method of processing the same WO2018023728A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/093593 WO2018023728A1 (en) 2016-08-05 2016-08-05 Water filter cartridge and method of processing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/093593 WO2018023728A1 (en) 2016-08-05 2016-08-05 Water filter cartridge and method of processing the same

Publications (1)

Publication Number Publication Date
WO2018023728A1 true WO2018023728A1 (en) 2018-02-08

Family

ID=61072802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093593 WO2018023728A1 (en) 2016-08-05 2016-08-05 Water filter cartridge and method of processing the same

Country Status (1)

Country Link
WO (1) WO2018023728A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030209495A1 (en) * 2002-03-12 2003-11-13 Andreas Schlegel Mixtures of adsorber materials
CN1466547A (en) * 2000-09-26 2004-01-07 Contacting and adsorbent granules
CN101422720A (en) * 2008-11-24 2009-05-06 中国科学院生态环境研究中心 Absorption filtration dearsenication method based on in-situ composite metal oxides generation
US20100243571A1 (en) * 2007-11-12 2010-09-30 Technion Research And Development Foundation Ltd. Method for adsorption of phosphate contaminants from water solutions and its recovery
WO2013041898A1 (en) * 2011-09-19 2013-03-28 Compagnie Gervais Danone A process for treating drinking water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1466547A (en) * 2000-09-26 2004-01-07 Contacting and adsorbent granules
US20030209495A1 (en) * 2002-03-12 2003-11-13 Andreas Schlegel Mixtures of adsorber materials
US20100243571A1 (en) * 2007-11-12 2010-09-30 Technion Research And Development Foundation Ltd. Method for adsorption of phosphate contaminants from water solutions and its recovery
CN101422720A (en) * 2008-11-24 2009-05-06 中国科学院生态环境研究中心 Absorption filtration dearsenication method based on in-situ composite metal oxides generation
WO2013041898A1 (en) * 2011-09-19 2013-03-28 Compagnie Gervais Danone A process for treating drinking water

Similar Documents

Publication Publication Date Title
Kalaruban et al. Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: Batch and fluidised-bed adsorption studies
Rana et al. Radioactive decontamination of water by membrane processes—a review
Sengupta et al. Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer
Mertens et al. Adsorption of arsenic on polyaluminum granulate
US6368510B2 (en) Method and apparatus for the removal of arsenic from water
US11235994B2 (en) Methods for treating selenocyanate in wastewater
Rahman et al. Overview on recent trends and developments in radioactive liquid waste treatment part 1: sorption/ion exchange technique
US20170217790A1 (en) Removal of contaminants from a fluid involving in-situ generation of adsorption filtration media or reactive components
Pookrod et al. Removal of arsenic anions from water using polyelectrolyte‐enhanced ultrafiltration
Sorlini et al. Survey on full-scale drinking water treatment plants for arsenic removal in Italy
CN104645932B (en) A kind of composite modified zeolite of iron and manganese oxides and preparation method and application
CN106683732A (en) Equipment and method for treating radioactive wastewater
Guesmi et al. Optimization of boron removal from water by electrodialysis using response surface methodology
RU2342720C1 (en) Method of treating liquid radioactive wastes
WO2018129693A1 (en) Water filter cartridge and method of processing the same
WO2018023728A1 (en) Water filter cartridge and method of processing the same
CN107545940A (en) The Absorptive complex wave processing method of radioactive wastewater
CN205740639U (en) A kind of strong brine zero discharge treatment device
KR101919150B1 (en) double functional adsorption material for removing contaminants including heavy metals and preventing membrane fouling
Aslam et al. Sand as adsorbent for removal of zinc from industrial effluents
CN110379532B (en) Method and device for treating radioactive waste liquid
Nyangi et al. Removal of fluoride and arsenic from groundwater by hybrid Al–Fe electrocoagulation: Adsorption isotherm and kinetics study of single and binary component systems
Chen et al. The on-site feasibility study of iron and manganese removal from groundwater by hollow-fiber microfiltration
WO2019165598A1 (en) Polymer composite granule and method of processing the same
CN106365244B (en) A kind of suspended liquid Fe-contg complex reagent and preparation method thereof and the method for efficiently removing selenate in water removal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16911323

Country of ref document: EP

Kind code of ref document: A1