WO2011061996A1 - ビフェニル誘導体の製法 - Google Patents

ビフェニル誘導体の製法 Download PDF

Info

Publication number
WO2011061996A1
WO2011061996A1 PCT/JP2010/066596 JP2010066596W WO2011061996A1 WO 2011061996 A1 WO2011061996 A1 WO 2011061996A1 JP 2010066596 W JP2010066596 W JP 2010066596W WO 2011061996 A1 WO2011061996 A1 WO 2011061996A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
general formula
mmol
compound represented
added
Prior art date
Application number
PCT/JP2010/066596
Other languages
English (en)
French (fr)
Inventor
雅彦 関
Original Assignee
田辺三菱製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田辺三菱製薬株式会社 filed Critical 田辺三菱製薬株式会社
Priority to JP2011541847A priority Critical patent/JPWO2011061996A1/ja
Priority to CN201080061483.6A priority patent/CN102712606A/zh
Priority to US13/509,817 priority patent/US8530506B2/en
Priority to EP10831395.8A priority patent/EP2502919A4/en
Publication of WO2011061996A1 publication Critical patent/WO2011061996A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a process for producing a biaryl tetrazole derivative or a salt thereof which is useful as an intermediate for angiotensin II receptor antagonist.
  • Losartan potassium, valsartan, olmesartan medoxomil, candesartan cilexetil, telmisartan, irbesartan and the like are useful as angiotensin II receptor antagonists.
  • As a method for producing these compounds for example, as a synthesis method of losartan, J. Org. Chem. 1994, 59, 6391-6394 (non-patent document 1), and also as a synthesis method of valsartan, Org. Process Res. Dev. 2007, 11, pp. 892-898 (non-patent document 2), further, as a method of synthesizing irbesartan, J. Am. Med. Chem.
  • Non-patent Document 3 1993, 36, 3371-3380 (non-patent document 3) are known.
  • a conventional method of biphenylation reaction for example, Chem. Lett. 2008, 37, No. 9, pp. 994 to 995 (Non-patent Document 4), Tetrahedron, 2008, 64, 6051 to 6059 (Non-patent Document 5), Angewandte Chemie International Edition, 2009 48, pp. 9792 to 9827 (Non-patent Document 6).
  • the present invention makes it possible to use inexpensive metal compounds, and is capable of producing a biaryl tetrazole derivative useful as an intermediate for angiotensin II receptor antagonist under conditions suitable for economical and industrial production.
  • the purpose is to provide
  • R 1 represents a protecting group of tetrazolyl group.
  • R 1 represents a protecting group of tetrazolyl group.
  • aryl tetrazole derivative [II] represented by the general formula [III]
  • R 2 represents a methyl group, a methyl group substituted by a protective group protected by a hydroxyl group, or a lower alkoxycarbonyl group
  • X 1 represents a leaving group.
  • a process for producing a biaryl tetrazole derivative (also referred to as a biaryl tetrazole derivative [I]) or a salt thereof (hereinafter also referred to as “production method 1”) (2) The method according to the above (1), characterized in that the aryl tetrazole derivative represented by the general formula [II] and the benzene derivative represented by the general formula [III] are reacted in the presence of a metal catalyst; (3) The aryltetrazole derivative represented by the general formula [II] and the benzene derivative represented by the general formula [III] are reacted in the presence of a base and a metal catalyst, as described in the above (1) Manufacturing method; (4) 1) The general formula [I] obtained by the method described in (1) above:
  • X 2 represents a halogen atom
  • R 1 represents a protecting group for a tetrazolyl group.
  • a process for producing a compound represented by the formula i.e. losartan, hereinafter also referred to as compound [IX]) or a salt thereof (hereinafter also referred to as “production method 2”); (5) 1) The general formula [I] obtained by the method described in (1) above:
  • X 2 represents a halogen atom
  • R 1 represents a protecting group for a tetrazolyl group.
  • R 3 represents a carboxy-protecting group.
  • a process for producing a compound represented by the formula that is, valsartan, hereinafter also referred to as compound [XV]) or a salt thereof (hereinafter also referred to as “production method 3”); (6)
  • X 2 represents a halogen atom
  • R 1 represents a protecting group for a tetrazolyl group.
  • X 2 represents a halogen atom
  • R 1 represents a protecting group for a tetrazolyl group.
  • X 4 represents a leaving group or a hydroxyl group.
  • XXV a compound represented by the general formula [XXVI]:
  • a process for producing a compound represented by the formula ie, candesartan cilexetil, hereinafter also referred to as compound [XXVII]) or a salt thereof (hereinafter, also referred to as “production method 5”); About.
  • biaryl tetrazole derivatives useful as intermediates for angiotensin II receptor antagonists can be produced under conditions suitable for economical and industrial production. It becomes.
  • the “tetrazolyl group-protecting group” is not particularly limited as long as it can stably protect the tetrazolyl group during the reaction, and specific examples thereof include Protective Groups in Organic Synthesis 3 rd Ed. , T. W. Greene, P .; G. M. Wuts, John Wiley and Sons, Inc. And those described in 1999.
  • C 7-19 aralkyl group eg, benzyl, diphenylmethyl, trityl etc.
  • a substituted C 7-19 aralkyl group such as substituted benzyl and substituted diphenylmethyl (preferably selected from the group consisting of C 1-6 alkyl, nitro, C 1-6 alkylenedioxy and C 1-6 alkoxy C 7-19 aralkyl substituted with two or more substituents (when two or more substituents are present, they may be the same or different, and the substituents may be combined to form a ring ), Eg, p-methylbenzyl, p-nitrobenzyl, 2,4-dimethoxybenzyl, 3,4-dimethoxybenzyl, 3,4- (methylenedioxy) benzyl, p-methoxybenzyl, o-methoxybenzyl, 3) , 4,5-trimethoxybenzyl etc
  • the "protecting group" of the "methyl group substituted with a hydroxyl group protected with a protecting group” is not particularly limited as long as it can stably protect the hydroxyl group during the reaction, and specifically, Protective Groups in Organic Synthesis 3 rd Ed. , T. W. Greene, P .; G. M. Wuts, John Wiley and Sons, Inc. And those described in 1999.
  • an acyl group preferably, C 1-6 alkyl-carbonyl, C 3-8 cycloalkyl-carbonyl, C 6-10 aryl-carbonyl, such as acetyl, propionyl, butyryl, isobutyryl, pivaloyl, cyclohexylcarbonyl, benzoyl etc.
  • C 7-19 aralkyl group eg, benzyl etc.
  • Trialkylsilyl group preferably, tri (C 1-6 alkyl) silyl, eg, trimethylsilyl, triethylsilyl, triisopropylsilyl, t-butyldimethylsilyl etc.
  • alkoxycarbonyl group preferably, C 1-6 alkoxy- Carbonyl
  • the “carboxy-protecting group” is not particularly limited as long as it can stably protect the carboxy group during the reaction, and specific examples thereof include Protective Groups in Organic Synthesis 3 rd Ed. , T. W. Greene, P .; G. M. Wuts, John Wiley and Sons, Inc. And those described in 1999.
  • Alkyl group preferably, C 1-6 alkyl, for example, methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl
  • C 3-8 cycloalkyl group eg, cyclohexyl
  • C 7-19 aralkyl group eg, benzyl, diphenylmethyl, trityl
  • C 2-6 alkenyl group eg, allyl
  • amino-protecting group is not particularly limited as long as it can stably protect the amino group during the reaction, and more specifically, Protective Groups in Organic Synthesis 3 rd Ed. , T. W. Greene, P .; G. M. Wuts, John Wiley and Sons, Inc. And those described in 1999.
  • an acyl group preferably, C 1-6 alkyl - carbonyl, C 3-8 cycloalkyl - carbonyl, C 6-10 aryl - carbonyl, for example, acetyl, propionyl, butyryl, isobutyryl And pivaloyl, cyclohexylcarbonyl, benzoyl and the like
  • lower alkoxycarbonyl group includes a linear or branched C 1-12 alkoxy-carbonyl group, preferably methoxycarbonyl, ethoxycarbonyl, butoxycarbonyl (eg, tert-butoxycarbonyl) and the like. It can be mentioned.
  • C 1-6 alkyl groups eg, toluenesulfonyloxy etc.
  • C 1-6 alkylsulfonyloxy group optionally substituted by 1 to 3 halogen atoms (eg, methanesulfonyloxy, trifluoromethanesulfonyloxy etc.) Etc.
  • Halogen atom A C 6-10 arylsulfonyloxy group which may be substituted by 1 to 3 C 1-6 alkyl groups (eg, toluenesulfonyloxy etc.), A C 1-6 alkylsulfonyloxy group optionally substituted by 1 to 3 halogen atoms (eg, methanesulfonyloxy etc.), An alkanoyloxy group (preferably, a C 1-6 alkyl-carbonyloxy), Aroyloxy group (preferably, C 6-10 aryl-carbonyloxy), Dialkoxy phosphoryloxy group (preferably, di (C 1-6 alkoxy) phosphoryloxy), Diaryloxyphosphoryloxy group (preferably, di (C 6-10 aryloxy) phosphoryloxy) Etc.
  • C 1-6 alkyl groups eg, toluenesulfonyloxy etc.
  • a C 1-6 alkylsulfonyloxy group optionally substituted by 1 to 3 halogen
  • halogen atom includes fluorine, chlorine, bromine or iodine.
  • the aryl tetrazole derivative [II] and the benzene derivative [III] may be commercially available products, and the aryl tetrazole derivative [II] may be produced by the method described in WO2009 / 49305, or a method analogous thereto.
  • Step 1 Compound [IV] can be produced by reacting aryl tetrazole derivative [II] with benzene derivative [III] in the presence of a metal catalyst and a base. This reaction can also be carried out using a solvent.
  • a metal catalyst such as a ruthenium catalyst, an iridium catalyst, a rhodium catalyst, a palladium catalyst, a nickel catalyst, a copper catalyst, an iron catalyst, a cobalt catalyst and the like can be used alone or in combination.
  • the amount of the metal catalyst to be used is generally 0.00001 to 10 equivalents, preferably 0.001 to 0.3 equivalents, relative to the aryl tetrazole derivative [II].
  • a base potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (NaHCO 3 ), potassium hydrogen carbonate (KHCO 3 ), potassium phosphate (K 3 PO 4 ), cesium carbonate (Cs 2 CO 3 ), rubidium carbonate (Rb 2 CO 3 ), and the like.
  • the amount of the base to be used is generally 0.1 to 10 equivalents, preferably 1 to 3 equivalents, more preferably 1 to 2 equivalents, relative to the aryl tetrazole derivative [II].
  • a ligand may be further added.
  • the ligand triphenylphosphine (sometimes referred to as triphenylphosphane), tri (t-butyl) phosphine, triethyl phosphite, tricyclohexyl phosphine, tri (o-tolyl) phosphine, tri (p-tolyl) Phosphane, tri (p-methoxyphenyl) phosphane, cyclohexyl diphenylphosphane, acetic acid, trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, benzenesulfonic acid, 2,4,6-trimethylbenzoic acid, 1-adamantylcarbonic acid An acid etc.
  • the amount of the ligand to be used is generally 0.00001 to 10 equivalents, preferably 0.001 to 1 equivalent, relative to the aryl tetrazole derivative [II].
  • the solvent is not particularly limited as long as the reaction proceeds, but N-methyl-2-pyrrolidone (sometimes abbreviated as NMP), N, N-dimethylformamide (sometimes abbreviated as DMF), N, N -Polar solvents such as dimethylacetamide (sometimes abbreviated as DMA), dimethylsulfoxide (sometimes abbreviated as DMSO) or nonpolar solvents such as toluene and xylene, and mixtures of these polar solvents and nonpolar solvents Is preferred.
  • NMP N-methyl-2-pyrrolidone
  • DMF N-dimethylformamide
  • DMA dimethylacetamide
  • DMSO dimethylsulfoxide
  • nonpolar solvents such as toluene and xylene, and mixtures of these polar solvents and
  • the amount of the solvent to be used is generally 0 to 100 mL, preferably 0.1 to 10 mL, per 1 mmol of the aryl tetrazole derivative [II].
  • the reaction temperature is generally 20 to 300 ° C., preferably 100 to 200 ° C.
  • the reaction time is generally 0.01 to 200 hours, preferably 0.5 to 24 hours.
  • Step 2a When R 2 of compound [IV] is a methyl group substituted with a hydroxyl group protected by a protecting group, compound [V] is produced by deprotecting compound [IV] in the presence of a base be able to.
  • This reaction can also be carried out using a solvent.
  • the base sodium methoxide, sodium ethoxide, dimethylamine, methylamine, ammonia, potassium carbonate, sodium carbonate and the like can be mentioned.
  • the amount of the base to be used is generally 0.001 to 10 equivalents, preferably 0.01 to 1 equivalent, relative to compound [IV].
  • the solvent is not particularly limited as long as the reaction proceeds, and methanol, ethanol, propanol and the like can be mentioned.
  • the amount of the solvent to be used is generally 0.01 to 100 mL, preferably 0.1 to 10 mL, per 1 mmol of compound [IV].
  • the reaction temperature is generally ⁇ 50 to 100 ° C., preferably 0 to 40 ° C.
  • the reaction time is usually 0.001 to 10 hours, preferably 0.1 to 5 hours.
  • Step 2b When R 2 of compound [IV] is a lower alkoxycarbonyl group, compound [V] can be produced by reducing compound [IV] in the presence of a reducing agent. This reaction can also be carried out using a solvent.
  • a reducing agent sodium borohydride (also referred to as sodium tetrahydroborate), lithium aluminum hydride, diisobutylaluminum hydride and the like can be mentioned.
  • the amount of the reducing agent to be used is generally 1 to 5 equivalents, preferably 1 to 2 equivalents, relative to compound [IV].
  • the amount of the metal salt to be used is generally 0.1 to 2 equivalents, preferably 0.5 to 1 equivalents, relative to compound [IV], but when lithium aluminum hydride or diisobutylaluminum hydride is used as the reducing agent, The reaction proceeds in the absence of metal salts.
  • the solvent is not particularly limited as long as the reaction proceeds, and ethanol, 2-propanol, methanol and the like can be mentioned.
  • the amount of the solvent to be used is generally 1 to 50 mL, preferably 1 to 2 mL, per 1 mmol of compound [IV].
  • the reaction temperature is generally ⁇ 50 to 120 ° C., preferably 0 to 80 ° C.
  • the reaction time is generally 0.1-24 hours, preferably 3-10 hours.
  • Step 3 When R 2 of the compound [IV] is a methyl group, the biaryl tetrazole derivative [I] or a salt thereof is obtained by reacting the compound [IV] with a halogenating reagent in the presence of azobisisobutyronitrile (AIBN) It can be manufactured.
  • AIBN azobisisobutyronitrile
  • R 2 of compound [IV] is a methyl group or lower alkoxycarbonyl group substituted with a hydroxyl group protected by a protecting group
  • biaryl tetrazole derivative [I] or a salt thereof is compounded with compound [V] as a halogenating reagent It can be produced by reacting with These reactions can also be carried out using a solvent.
  • the halogenating reagent is not particularly limited, and a halogenating reagent known per se can be applied.
  • a halogenating reagent known per se can be applied.
  • phosphorus tribromide, thionyl bromide, hydrobromic acid, hydrogen chloride, thionyl chloride, Carbon tetrachloride / triphenylphosphine, bromotrimethylsilane, N-bromosuccinimide (NBS) and the like can be mentioned.
  • the amount of the halogenation reagent to be used is generally 1 to 10 equivalents, preferably 1 to 3 equivalents, relative to compound [V].
  • the solvent is not particularly limited as long as the reaction proceeds, but tetrahydrofuran (sometimes abbreviated as THF), toluene, ethyl acetate, dioxane, methyl t-butyl ether (MTBE), chloroform, methylene chloride, diisopropyl ether, acetonitrile, etc. Can be mentioned.
  • the amount of the solvent to be used is generally 0.01 to 100 mL, preferably 0.1 to 10 mL, per 1 mmol of compound [V].
  • the reaction temperature is generally ⁇ 50 to 150 ° C., preferably ⁇ 20 to 50 ° C.
  • the reaction time is generally 0.001 to 24 hours, preferably 0.1 to 10 hours.
  • Step 1 Compound [VII] can be produced by reacting biaryl tetrazole derivative [I] obtained by the aforementioned production method 1 with compound [VI] in the presence of a base. This reaction can also be carried out using a solvent.
  • the base is not particularly limited, and a base known per se can be applied. For example, potassium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide, triethylamine, diisopropylethylamine, 1,8-diazabicyclo [5.4.0] Undeca-7-ene (DBU) etc. are mentioned.
  • the amount of the base to be used is generally 1 to 10 equivalents, preferably 1 to 3 equivalents, relative to the biaryl tetrazole derivative [I].
  • the solvent is not particularly limited as long as the reaction proceeds, and includes DMA, DMF, DMSO, NMP, acetonitrile, toluene, THF, dioxane and the like.
  • the amount of the solvent to be used is generally 0.001 to 100 mL, preferably 0.1 to 10 mL, per 1 mmol of the biaryl tetrazole derivative [I].
  • the reaction temperature is generally ⁇ 50 to 150 ° C., preferably ⁇ 20 to 50 ° C.
  • the reaction time is generally 0.1 to 48 hours, preferably 0.5 to 5 hours.
  • Step 2-A (1) Compound [VIII] can be produced by reducing compound [VII] in the presence of a reducing agent.
  • This reaction can also be carried out using a solvent.
  • the reducing agent is not particularly limited, and a reducing agent known per se can be applied, and examples thereof include sodium borohydride, lithium borohydride, zinc borohydride, triacetoxyborohydride and the like.
  • Be The amount of the reducing agent to be used is generally 1 to 10 equivalents, preferably 1 to 5 equivalents, relative to compound [VII].
  • the solvent is not particularly limited as long as the reaction proceeds, and methanol, water, ethanol, isopropyl alcohol, dimethoxyethane and the like can be mentioned.
  • the amount of the solvent to be used is generally 0.01 to 100 mL, preferably 0.1 to 10 mL, per 1 mmol of compound [VII].
  • a base can also be used for this reaction as needed. Examples of the base include sodium hydroxide and the like.
  • the amount of the base to be used is generally 0 to 10 equivalents, preferably 1 to 2 equivalents, relative to compound [VII].
  • the reaction temperature is generally ⁇ 50 to 100 ° C., preferably ⁇ 20 to 50 ° C.
  • the reaction time is generally 0.01 to 48 hours, preferably 0.1 to 5 hours.
  • Step 2-A (2) Compound [IX] can be produced by deprotection (removal of R 1 ) of compound [VIII] in the presence of an acid.
  • the acid is not particularly limited, and an acid known per se can be applied, and examples thereof include trifluoroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, sulfuric acid, hydrochloric acid and the like.
  • the amount of the acid to be used is generally 0.1 to 1000 equivalents, preferably 1 to 500 equivalents, relative to compound [VIII].
  • Deprotection by acid may suitably be carried out in the presence of a scavenger.
  • the capture agent is not particularly limited as long as the reaction proceeds, but includes mercaptans such as anisole, mesitylene, 1-octanethiol and the like.
  • the amount of the scavenger to be used is generally 0.001 to 10 mL, preferably 0.1 to 5 mL, per 1 mmol of compound [VIII].
  • the above acids and scavengers may act as solvents in this step.
  • the reaction temperature is generally ⁇ 50 to 150 ° C., preferably 10 to 100 ° C.
  • the reaction time is generally 0.1 to 48 hours, preferably 0.5 to 20 hours.
  • a method of reduction eg, catalytic reduction, formic acid reduction, etc.
  • This reaction can also be carried out using a solvent.
  • the reduction can be carried out in the presence of a catalyst.
  • the catalyst is not particularly limited as long as it can be used for catalytic reduction or formic acid reduction, and examples thereof include palladium carbon, palladium black, palladium oxide, palladium chloride, palladium acetate and the like.
  • the amount of the catalyst to be used is generally 0.0001 to 10 equivalents, preferably 0.01 to 0.1 equivalents, relative to compound [VIII].
  • the hydrogen pressure is 1 to 100 atm, preferably 1 to 10 atm.
  • a salt of formic acid (such as ammonium formate) is added as an additive.
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include isopropyl alcohol, n-propyl alcohol, methanol, ethanol, tetrahydrofuran, methylene chloride, ethyl acetate and the like, or a mixed solvent of the above solvent and water.
  • the amount of the solvent to be used is generally 0.1 to 100 mL, preferably 0.5 to 10 mL, per 1 mmol of compound [VIII].
  • the reaction temperature is generally 0 to 150 ° C., preferably 10 to 80 ° C.
  • the reaction time is generally 0.1 to 72 hours, preferably 0.5 to 24 hours.
  • Step 2-B (1) Compound [VIII-2] is, the compound [VII], in an analogous manner to that described in (deprotection of the compound [VIII]) above production method 2 Step 2-A (2), deprotection (R 1 It can manufacture by removing.
  • Step 2-B (2) Compound [IX] is produced by reducing compound [VIII-2] in the same manner as the method described in the step 2-A (1) (reduction of compound [VII]) of the above-mentioned production method 2 Can.
  • Step 1 Compound [XI] is a compound of compound [X] or a salt thereof (eg, p-toluenesulfonic acid salt, hydrochloride etc.) in the presence of a base in the biaryl tetrazole derivative [I] obtained by the aforementioned production method 1 It can be produced by reacting with This reaction can also be carried out using a solvent.
  • the base is not particularly limited, and a base known per se can be applied, and examples thereof include ethyldiisopropylamine, triethylamine, pyridine, sodium hydride, potassium t-butoxide and the like.
  • the amount of the base to be used is generally 1 to 10 equivalents, preferably 1 to 5 equivalents, relative to the biaryl tetrazole derivative [I].
  • the solvent is not particularly limited as long as the reaction proceeds, and includes acetonitrile, toluene, THF, dioxane, chloroform, methylene chloride and the like.
  • the amount of the solvent to be used is generally 0.1 to 100 mL, preferably 0.5 to 5 mL, per 1 mmol of the biaryl tetrazole derivative [I].
  • the reaction temperature is generally ⁇ 50 to 150 ° C., preferably 5 to 100 ° C.
  • the reaction time is generally 0.1 to 48 hours, preferably 0.5 to 5 hours.
  • Step 2-A (1) Compound [XII] can be produced by deprotecting (removing R 1 ) of compound [XI] in the presence of an acid.
  • the acid is not particularly limited, and an acid known per se can be applied, and examples thereof include trifluoroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, sulfuric acid, hydrochloric acid and the like.
  • the amount of the acid to be used is generally 0.1 to 1000 equivalents, preferably 1 to 500 equivalents, relative to compound [XI]. Deprotection by acid may suitably be carried out in the presence of a scavenger.
  • the capture agent is not particularly limited as long as the reaction proceeds, but includes mercaptans such as anisole, mesitylene, 1-octanethiol and the like.
  • the amount of the scavenger to be used is generally 0.001 to 10 mL, preferably 0.1 to 5 mL, per 1 mmol of compound [XI].
  • the above acids and scavengers may act as solvents in this step.
  • the reaction temperature is generally ⁇ 50 to 150 ° C., preferably 10 to 100 ° C.
  • the reaction time is generally 0.1 to 48 hours, preferably 0.5 to 5 hours.
  • a method of reduction eg, catalytic reduction, formic acid reduction, etc.
  • This reaction can also be carried out using a solvent.
  • the reduction can be carried out in the presence of a catalyst.
  • the catalyst is not particularly limited as long as it can be used for catalytic reduction or formic acid reduction, and examples thereof include palladium carbon, palladium black, palladium oxide, palladium chloride, palladium acetate and the like.
  • the amount of the catalyst to be used is generally 0.0001 to 10 equivalents, preferably 0.01 to 0.1 equivalents, relative to compound [XI].
  • the hydrogen pressure is 1 to 100 atm, preferably 1 to 10 atm.
  • a salt of formic acid (such as ammonium formate) is added as an additive.
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include isopropyl alcohol, n-propyl alcohol, methanol, ethanol, tetrahydrofuran, methylene chloride, ethyl acetate and the like, or a mixed solvent of the above solvent and water.
  • the amount of the solvent to be used is generally 0.1 to 100 mL, preferably 0.5 to 10 mL, per 1 mmol of compound [XI].
  • the reaction temperature is generally 0 to 150 ° C., preferably 10 to 80 ° C.
  • the reaction time is generally 0.1 to 72 hours, preferably 0.5 to 24 hours.
  • Step 2-A (2) Compound [XIV] can be produced by reacting compound [XII] with compound [XIII] in the presence of a base. This reaction can also be carried out using a solvent.
  • the base is not particularly limited and, for example, triethylamine, ethyldiisopropylamine, DBU, sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, sodium hydrogencarbonate, potassium hydroxide, potassium carbonate, potassium hydrogencarbonate, potassium phosphate, 4- Dimethylaminopyridine (DMAP), lutidine, pyridine and the like can be mentioned.
  • the amount of the base to be used is generally 1 to 10 equivalents, preferably 1 to 3 equivalents, relative to compound [XII].
  • the solvent is not particularly limited as long as the reaction proceeds, but toluene, xylene, methylene chloride, chloroform, acetonitrile, NMP, DMF, DMSO, THF, dimethoxyethane, t-butyl methyl ether (hereinafter also referred to as t-BME) And 1,4-dioxane.
  • the amount of the solvent to be used is generally 0.001 to 100 mL, preferably 0.1 to 10 mL, per 1 mmol of compound [XII].
  • the reaction temperature is generally ⁇ 20 to 150 ° C., preferably 0 to 100 ° C.
  • the reaction time is generally 0.1 to 48 hours, preferably 0.5 to 5 hours.
  • Step 2-A (3) Compound [XV] can be produced by deprotection (removal of R 3 ) of compound [XIV] in the presence of an acid.
  • the acid is not particularly limited, and an acid known per se can be applied, and examples thereof include trifluoroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, sulfuric acid, hydrochloric acid and the like.
  • the amount of the acid to be used is generally 0.1 to 1000 equivalents, preferably 1 to 500 equivalents, relative to compound [XIV].
  • Deprotection by acid may suitably be carried out in the presence of a scavenger.
  • the scavenger is not particularly limited as long as the reaction proceeds, and examples include anisole, mesitylene, mercaptan and the like.
  • the amount of the scavenger to be used is generally 0.001 to 10 mL, preferably 0.1 to 5 mL, per 1 mmol of compound [XIV].
  • the above acids and scavengers may act as solvents in this step.
  • the reaction temperature is generally ⁇ 50 to 150 ° C., preferably 10 to 100 ° C.
  • the reaction time is generally 0.1 to 48 hours, preferably 0.5 to 5 hours.
  • compound [XV] can also be produced by deprotection (removal of R 3 ) of compound [XIV] in the presence of a base.
  • This reaction can also be carried out using a solvent.
  • the base sodium methoxide, sodium ethoxide, dimethylamine, methylamine, ammonia, potassium carbonate, sodium carbonate and the like can be mentioned.
  • the amount of the base to be used is generally 0.001 to 10 equivalents, preferably 0.01 to 1 equivalent, relative to compound [XIV].
  • the solvent is not particularly limited as long as the reaction proceeds, and methanol, ethanol, propanol and the like can be mentioned.
  • the amount of the solvent to be used is generally 0.01 to 100 mL, preferably 0.1 to 10 mL, per 1 mmol of compound [XIV].
  • the reaction temperature is generally ⁇ 50 to 100 ° C., preferably 0 to 20 ° C.
  • the reaction time is usually 0.001 to 10 hours, preferably 0.1 to 5 hours.
  • compound [XV] can also be produced by reduction (eg, catalytic reduction, formic acid reduction, etc.) of compound [XIV] for deprotection (removal of R 3 ).
  • This reaction can also be carried out using a solvent.
  • the reduction can be carried out in the presence of a catalyst.
  • the catalyst is not particularly limited as long as it can be used for catalytic reduction or formic acid reduction, and examples thereof include palladium carbon, palladium black, palladium oxide, palladium chloride, palladium acetate and the like.
  • the amount of the catalyst to be used is generally 0.0001 to 10 equivalents, preferably 0.01 to 0.1 equivalents, relative to compound [XIV].
  • the hydrogen pressure is 1 to 100 atm, preferably 1 to 10 atm.
  • formic acid a salt of formic acid (such as ammonium formate) is added as an additive.
  • the solvent is not particularly limited as long as the reaction proceeds, and includes n-propyl alcohol, methanol, ethanol, tetrahydrofuran, methylene chloride, ethyl acetate and the like, or a mixed solvent of the above solvent and water.
  • the amount of the solvent to be used is generally 0.1 to 100 mL, preferably 0.5 to 10 mL, per 1 mmol of compound [XIV].
  • the reaction temperature is generally 0 to 150 ° C., preferably 10 to 80 ° C.
  • the reaction time is generally 0.1 to 72 hours, preferably 0.5 to 24 hours.
  • Step 2-B (1) Compound [XII-2] is a compound similar to Compound [XI] in the same manner as described in the step 2-A (2) (reaction of compound [XII] with compound [XIII]) of the above-mentioned production method 3 It can be produced by reacting with [XIII].
  • Step 2-B (2) Compound [XV] is produced by subjecting compound [XII-2] to a method similar to that described in steps 2-A (1) and (3) of the above-mentioned production method 3 (deprotection of compounds [XI] and [XIV]). Can be prepared by deprotection (removal of R 1 and R 3 ).
  • compound [XV] can also be produced by deprotecting (removing R 1 and R 3 ) by reducing (eg, catalytic reduction, formic acid reduction) of compound [XII-2].
  • This reaction can also be carried out using a solvent.
  • the reduction can be carried out in the presence of a catalyst.
  • the catalyst is not particularly limited as long as it can be used for catalytic reduction or formic acid reduction, and examples thereof include palladium carbon, palladium black, palladium oxide, palladium chloride, palladium acetate and the like.
  • the amount of the catalyst to be used is generally 0.0001 to 10 equivalents, preferably 0.01 to 0.1 equivalents, relative to compound [XII-2].
  • the hydrogen pressure is 1 to 100 atm, preferably 1 to 10 atm.
  • formic acid a salt of formic acid (such as ammonium formate) is added as an additive.
  • the solvent is not particularly limited as long as the reaction proceeds, and includes n-propyl alcohol, methanol, ethanol, tetrahydrofuran, methylene chloride, ethyl acetate and the like, or a mixed solvent of the above solvent and water.
  • the amount of the solvent to be used is generally 0.1 to 100 mL, preferably 0.5 to 10 mL, per 1 mmol of compound [XII-2].
  • the reaction temperature is generally 0 to 150 ° C., preferably 10 to 80 ° C.
  • the reaction time is generally 0.1 to 72 hours, preferably 0.5 to 24 hours.
  • Step 1 Compound [XVII] is obtained by reacting biaryl tetrazole derivative [I] obtained by the aforementioned production method 1 with compound [XVI] or a salt thereof (eg, hydrochloride etc.) in the presence of a base or a base and an additive. It can be manufactured by This reaction can also be carried out using a solvent.
  • the base is not particularly limited and, for example, triethylamine, ethyldiisopropylamine, DBU, sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, sodium hydrogencarbonate, potassium hydroxide, potassium carbonate, potassium hydrogencarbonate, potassium phosphate, 4- Examples include dimethylaminopyridine (DMAP) and lutidine.
  • DMAP dimethylaminopyridine
  • the amount of the base to be used is generally 1 to 10 equivalents, preferably 1 to 3 equivalents, relative to the biaryl tetrazole derivative [I] compound.
  • the additive include tetraalkyl ammonium halide (eg, tetrabutyl ammonium bromide), tetraalkyl phosphonium halide and the like.
  • the amount of the additive to be used is generally 0.01 to 10 equivalents, preferably 0.05 to 1 equivalent, relative to the biaryl tetrazole derivative [I] compound.
  • the solvent is not particularly limited as long as the reaction proceeds, but toluene, xylene, methylene chloride, chloroform, acetonitrile, DMF, DMSO, THF, dimethoxyethane, t-BME, 1,4-dioxane or the like, or the above solvent and water And mixtures thereof.
  • the amount of the solvent to be used is generally 0.001 to 100 mL, preferably 0.1 to 10 mL, per 1 mmol of the biaryl tetrazole derivative [I].
  • the reaction temperature is generally ⁇ 20 to 150 ° C., preferably 0 to 100 ° C.
  • the reaction time is generally 0.1 to 48 hours, preferably 0.5 to 10 hours.
  • Step 2 Compound [XVIII] can be produced by deprotecting compound (XVII) (removing R 1 ).
  • a method of reduction eg, catalytic reduction, formic acid reduction, etc.
  • This reaction can also be carried out using a solvent.
  • the reduction can be carried out in the presence of a catalyst.
  • the catalyst is not particularly limited as long as it can be used for catalytic reduction or formic acid reduction, and examples thereof include palladium carbon, palladium black, palladium oxide, palladium chloride, palladium acetate and the like.
  • the amount of the catalyst to be used is generally 0.0001 to 10 equivalents, preferably 0.01 to 0.1 equivalents, relative to compound [XVII].
  • the hydrogen pressure is 1 to 100 atm, preferably 1 to 10 atm.
  • formic acid a salt of formic acid (such as ammonium formate) is added as an additive.
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include isopropyl alcohol, n-propyl alcohol, methanol, ethanol, tetrahydrofuran, methylene chloride, ethyl acetate and the like, or a mixed solvent of the above solvent and water.
  • the amount of the solvent to be used is generally 0.1 to 100 mL, preferably 0.5 to 10 mL, per 1 mmol of compound [XVII].
  • the reaction temperature is generally 0 to 150 ° C., preferably 10 to 80 ° C.
  • the reaction time is generally 0.1 to 72 hours, preferably 0.5 to 24 hours.
  • Step 1 Compound [XX] can be produced by reacting biaryl tetrazole derivative [I] obtained by the aforementioned production method 1 with compound [XIX] in the presence or absence of a base. This reaction can also be carried out using a solvent. The reaction is preferably carried out in the presence of a base.
  • bases include metal hydrides such as sodium hydride, metal alkoxides such as t-butoxy sodium and t-butoxy potassium, potassium carbonate, potassium hydrogen carbonate, Although carbonates, such as sodium carbonate and sodium hydrogencarbonate, etc. are mentioned, carbonate, especially potassium carbonate is used preferably.
  • the amount of the base to be used is generally 1 to 5 equivalents relative to the biaryl tetrazole derivative [I].
  • aprotic polar solvents such as dimethylformamide, dimethylsulfoxide and dimethylacetamide, ketones such as acetone and ethyl methyl ketone, ethers such as tetrahydrofuran and dioxane, esters such as ethyl acetate, benzene, toluene, Aromatic hydrocarbons such as xylene, dichloromethane, chloroform, carbon tetrachloride, halogenated hydrocarbons such as dichloroethane, acetonitrile and the like can be mentioned, among which acetonitrile is preferably used.
  • the amount of the solvent to be used is generally 0.1 to 10 mL relative to 1 mmol of the biaryl tetrazole derivative [I].
  • the reaction temperature is usually 70 to 90 ° C., and the reaction time is 3 to 10 hours.
  • Step 2 (1) Compound [XXI] can be produced by deprotection (removal of R 5 ) of compound [XX] in the presence of an acid.
  • the acid is not particularly limited, and an acid known per se can be used, for example, a Bronsted acid (eg, trifluoromethanesulfonic acid, methanesulfonic acid, phosphoric acid, sulfuric acid, hydrochloric acid, etc.) or Lewis acids (eg, aluminum chloride, tin chloride, borane trifluoride diethyl ether etc.) can be mentioned.
  • the amount of the acid to be used is generally 0.1 to 1000 equivalents, preferably 1 to 500 equivalents, relative to compound [XX].
  • the solvent is not particularly limited as long as the reaction proceeds, and water, methanol, ethanol, isopropyl alcohol, tetrahydrofuran, dimethoxyethane, methyl t-butyl ether and the like can be mentioned.
  • the amount of the solvent to be used is generally 0.01 to 100 mL, preferably 0.1 to 10 mL, per 1 mmol of compound [XX].
  • the reaction temperature is generally ⁇ 50 to 150 ° C., preferably 10 to 100 ° C.
  • the reaction time is generally 0.1 to 48 hours, preferably 0.5 to 20 hours.
  • Step 2 (2) Compound [XXII] can be produced by reducing compound [XXI] in the presence of a reducing agent. This reaction can also be carried out using a solvent.
  • the reducing agent is not particularly limited, and a reducing agent known per se can be used, for example, tin chloride, sodium borohydride, lithium borohydride, zinc borohydride, triacetoxyborohydride Etc.
  • the amount of the reducing agent to be used is generally 1 to 10 equivalents, preferably 1 to 5 equivalents, relative to compound [XXI].
  • the solvent is not particularly limited as long as the reaction proceeds, and water, methanol, ethanol, isopropyl alcohol, dimethoxyethane, methyl t-butyl ether and the like can be mentioned.
  • the amount of the solvent to be used is generally 0.01 to 100 mL, preferably 0.1 to 10 mL, per 1 mmol of compound [XXI].
  • the reaction temperature is generally ⁇ 50 to 100 ° C., preferably ⁇ 20 to 50 ° C.
  • the reaction time is generally 0.01 to 48 hours, preferably 0.1 to 5 hours.
  • Step 3 (1) Compound [XXIII] can be produced by reacting compound [XXII] with tetraethoxymethane in the presence or absence of a solvent.
  • the solvent is not particularly limited as long as the reaction proceeds, and ethanol, tetrahydrofuran, toluene, ethyl acetate, acetic acid, dimethoxyethane, methyl t-butyl ether and the like can be mentioned.
  • the reaction temperature is generally 0 to 120 ° C., preferably 50 to 100 ° C.
  • the reaction time is generally 0.01 to 48 hours, preferably 0.1 to 5 hours.
  • Step 3 (2) Compound [XXIV] can be produced by hydrolysis and deprotection (removal of R 4 ) in the presence of a base or an acid and an aqueous organic solvent.
  • the base is not particularly limited, and a base known per se can be applied, and examples thereof include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate and sodium hydride.
  • the acid is not particularly limited, and an acid known per se can be applied, and examples thereof include trifluoroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, sulfuric acid, hydrochloric acid and the like. .
  • the reaction temperature is generally 0 to 120 ° C., preferably 50 to 100 ° C.
  • the reaction time is generally 0.1 to 48 hours, preferably 0.5 to 5 hours.
  • Step 4 (1) Compound [XXVI] can be produced by reacting compound [XXIV] with compound [XXV] in the presence of a base. This reaction can also be carried out using a solvent.
  • the base is not particularly limited, and a base known per se can be applied, and examples thereof include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, triethylamine, and the like. Examples include tributylamine, methylamine and dimethylamine.
  • the solvent is not particularly limited as long as the reaction proceeds, and methanol, ethanol, isopropyl alcohol, dimethylformamide and the like can be mentioned.
  • the amount of the solvent to be used is generally 0.01 to 100 mL, preferably 0.1 to 10 mL, per 1 mmol of compound [XXIV].
  • the reaction temperature is generally ⁇ 50 to 150 ° C., preferably 10 to 100 ° C.
  • the reaction time is generally 0.1 to 48 hours, preferably 0.5 to 20 hours.
  • Step 4 (2) Compound [XXVII] can be produced by deprotecting compound [XXVI] (removing R 1 ).
  • a method of reduction eg, catalytic reduction, formic acid reduction, etc.
  • This reaction can also be carried out using a solvent.
  • the reduction can be carried out in the presence of a catalyst.
  • the catalyst is not particularly limited as long as it can be used for catalytic reduction or formic acid reduction, and examples thereof include palladium carbon, palladium black, palladium oxide, palladium chloride, palladium acetate and the like.
  • the amount of the catalyst to be used is generally 0.0001 to 10 equivalents, preferably 0.01 to 0.1 equivalents, relative to compound [XXVII].
  • the hydrogen pressure is 1 to 100 atm, preferably 1 to 10 atm.
  • formic acid a salt of formic acid (such as ammonium formate) is added as an additive.
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include isopropyl alcohol, n-propyl alcohol, methanol, ethanol, tetrahydrofuran, methylene chloride, ethyl acetate and the like, or a mixed solvent of the above solvent and water.
  • the amount of the solvent to be used is generally 0.1 to 100 mL, preferably 0.5 to 10 mL, per 1 mmol of compound [XXVI].
  • the reaction temperature is generally 0 to 150 ° C., preferably 10 to 80 ° C.
  • the reaction time is generally 0.1 to 72 hours, preferably 0.5 to 24 hours.
  • the reaction can be carried out under pH 7-14 basic conditions or pH 7.
  • the salt of compound (I) is not particularly limited, and examples thereof include salts with hydrochloric acid, sulfuric acid and the like.
  • the compound (IX), the compound (XVIII) or the salt of the compound (XXVII) is not particularly limited as long as it is pharmacologically acceptable.
  • Salts with mineral acids such as hydrochloric acid, sulfuric acid, hydrobromide, phosphoric acid etc .
  • Salts with organic acids such as methanesulfonic acid, p-toluenesulfonic acid, acetic acid, oxalic acid, citric acid, malic acid, fumaric acid
  • Salts with alkali metals such as sodium and potassium
  • Salts with alkaline earth metals such as magnesium
  • salts with amines such as ammonia, ethanolamine, 2-amino-2-methyl-1-propanol and the like.
  • the salt of compound (XV) is not particularly limited as long as it is pharmacologically acceptable, for example, Salts with alkali metals such as sodium and potassium; Salts with alkaline earth metals such as magnesium; And salts with amines such as ammonia, ethanolamine, 2-amino-2-methyl-1-propanol and the like.
  • the compound (I), the compound (IX), the compound (XV), the compound (XVIII), the compound (XXVII) or a salt thereof includes a solvate.
  • a solvate for example, hydrate, alcoholate (eg, methanolate, ethanolate) can be mentioned.
  • room temperature refers to a temperature of 15 to 30 ° C.
  • C M indicates a major conformer
  • C m indicates a minor conformer.
  • % in concentration and content indicates “% by weight” unless otherwise specified.
  • Phosphorus pentachloride (67.9 g, 0.326 mol) was added in five portions to a mixture of N-benzyl benzamide (62.5 g, 0.296 mol) and dichloromethane (570 mL) at -15 to -8 ° C. The mixture was heated to 21 ° C. over 3 hours and then concentrated to 0.17 L under reduced pressure at 21 ° C. or less. Dichloromethane (450 mL) was added to this mixture, and azidotrimethylsilane (50.3 g, 0.436 mol) was dropped over 0.5 hours at ⁇ 8 ° C. or less, and washed with dichloromethane (5 mL). The reaction mixture was warmed to room temperature and stirred for 4 hours.
  • N-benzylbenzamide was confirmed by TLC (developing solvent: toluene / ethyl acetate (4: 1)).
  • saturated aqueous sodium hydrogen carbonate solution (2300 mL) at 17 ° C. or less to separate.
  • the aqueous layer was extracted with dichloromethane (450 mL), and the combined organic layer was washed with 20% brine (300 mL), dried over magnesium sulfate (20 g), concentrated under reduced pressure at 40 ° C. or lower, crude product ( 69.8 g (99.8% of the theoretical yield) were obtained as a turbid yellow oil.
  • the mixture is gradually cooled to 6 ° C., and the precipitated crystals are collected by filtration, washed with cold ethyl acetate (10 mL), and dried at 40 ° C. or less under reduced pressure to obtain N-benzoyl-2-methoxybenzylamine (30.7 g). , 87.1%) as white crystals.
  • Phosphorus pentachloride (15.2 g, 73.1 mmol) was added to a mixture of N-benzoyl-2-methoxybenzylamine (16.0 g, 66.3 mmol) and dichloromethane (128 mL) at -15 to -11 ° C. After addition over 11 minutes, the temperature was raised to 21 ° C. over 2 hours. During this time, the inner wall of the reaction vessel was washed with dichloromethane (11 mL).
  • reaction mixture was concentrated under reduced pressure at room temperature or less, dichloromethane (101 mL) was added, azidotrimethylsilane (11.2 g, 97.5 mmol) was added dropwise at -13 to -10 ° C, and washed with dichloromethane (10 mL) .
  • the reaction mixture was warmed to room temperature and stirred for 4 hours.
  • the reaction was monitored by TLC (developing solvent: toluene / ethyl acetate (4: 1, 2: 1)).
  • saturated aqueous sodium hydrogen carbonate solution 200 mL was added dropwise at 3 to 11 ° C.
  • the solid is collected by filtration, washed with cold ethyl acetate (33 g), and dried at 50 ° C. or less under reduced pressure to give compound 1c (primary crystal; 14.6 g, 82.5%; HPLC 99.2 area%) Was obtained as white crystals.
  • the filtrate was concentrated under reduced pressure at 40 ° C. or less (5.6 g of contents), ethyl acetate (2.7 mL) was added, and heating was performed in a 70 ° C. bath to substantially dissolve the solid. The mixture was cooled to -3.degree. C. during which seeding was performed.
  • the solid is collected by filtration, washed with cold ethyl acetate (2 mL), and dried under reduced pressure at 50 ° C.
  • the reaction was monitored by TLC (developing solvent: hexane / ethyl acetate (1: 1)).
  • water 48 mL
  • ethyl acetate 144 mL
  • the combined organic layer is washed successively with 10% hydrochloric acid (48 mL), saturated aqueous sodium hydrogen carbonate solution (48 mL), water (48 mL) and saturated brine (48 mL), dried with magnesium sulfate (12 g), and then reduced in pressure.
  • the solvent was distilled off at 40 ° C. or less.
  • the seed crystals obtained by the above operation were inoculated to precipitate crystals. After cooling to 13 ° C., the solid was collected by filtration, washed with a dichloromethane / hexane mixture (7: 3; 48 mL) and then dried at 30 ° C. or less under reduced pressure. After observation of melting during drying, vacuum drying was performed without using a warm bath to obtain Compound 1d (28.1 g, 82.8%) as a slightly brown solid.
  • the temperature of the reaction mixture was raised to room temperature over 3 hours and stirred for 6 hours.
  • the reaction was monitored by TLC (developing solvent: toluene / ethyl acetate (7: 3)).
  • the reaction mixture was cooled and saturated aqueous sodium hydrogen carbonate solution (250 mL) was added at 3 to 10 ° C.
  • the layers were separated, and the aqueous layer was extracted by adding dichloromethane (90 mL).
  • the combined organic layer was washed with 20% brine (50 mL), dried over magnesium sulfate, and concentrated under reduced pressure at 40 ° C. or less.
  • Dichloromethane (30 mL) was added to the concentrate and concentrated again.
  • the organic layer was washed successively with 1 mol / L hydrochloric acid (600 mL), water (600 mL) and 20% brine (600 mL), and dried over magnesium sulfate (60 g).
  • Magnesium sulfate was removed by filtration, the filtrate was concentrated under reduced pressure with a bath at 50 ° C. or less (about 830 g), and the bath temperature was lowered to 18 ° C.
  • the solid is collected by filtration, washed with cold dichloromethane (85 mL) and dried under reduced pressure at 50 ° C. or less to obtain N-benzoyl-2-methoxybenzylamine (primary crystals 481 g, 91.2%) as white crystals. Obtained.
  • the area percentage was 99.3% and the content was 97.8%.
  • the filtrate was concentrated under reduced pressure at 30 ° C. or less (53.5 g), ethyl acetate (41.1 g) was added, and the solution was dissolved using a 60 ° C. bath. After cooling to 1 ° C. over 4 hours, the solid is collected by filtration, washed with cold ethyl acetate (20 mL), and dried under reduced pressure at 50 ° C. or less to give a secondary N-benzoyl-2-methoxybenzylamine. Crystal (29.9 g, 5.7%) was obtained. As a result of HPLC analysis, the area percentage was 98.7%, and the content was 97.0%.
  • the concentrate is diluted with ethyl acetate (88 mL), washed sequentially with 1 mol / L hydrochloric acid (44 mL), saturated aqueous sodium hydrogen carbonate solution (22 mL, 12 mL ⁇ 2) and 20% brine (33 mL), and magnesium sulfate (5 After drying with 0. 0g), it was concentrated at 35 ° C or less under reduced pressure. After adding chloroform (20 mL) to the concentrated solution and repeating the operation of concentration under reduced pressure at 45 ° C. or less four times, Compound 2c (14.0 g, 98.0%) was fined by drying under reduced pressure at 45 ° C. or lower. Obtained as a yellow oil. IR (neat): 1739, 1227 cm -1
  • Triphenylphosphine (4.81 g, 18.3 mmol), 1-benzyl-5-phenyl-1H-tetrazole (compound 1b, 43.3 g, 183 mmol), potassium carbonate (50.7 g, 367 mmol), dichloro (1, 5) -Cyclooctadiene) ruthenium (II) polymer (2.57 g, 9.17 mmol as monomer), p-bromobenzyl acetate (compound 2a, 62.9 g, 274 mmol) and N-methyl-2-pyrrolidone (366 mL) The mixture was stirred at 140 ° C. for 5 hours under a nitrogen atmosphere. The reaction was monitored by HPLC.
  • the aqueous layer was extracted with ethyl acetate (5.0 mL). The combined organic layer was washed with saturated brine (5.0 mL), and then saturated brine (8.0 mL) was added to separate the layers. Since the main product was detected in the aqueous layer by TLC, the aqueous layer was combined and extracted with ethyl acetate (10 mL).
  • the total amount (9.54 g) of the obtained crude product was purified by silica gel column chromatography (developing solvent: hexane / ethyl acetate (100: 0 to 2: 1)). After distilling off the solvent and heating with ethyl acetate (2 mL) to dissolve most of the solid, diisopropyl ether (8 mL) was gradually added, and seed crystals were appropriately inoculated. The mixture is cooled to ⁇ 2 ° C., the solid is collected by filtration, washed with diisopropyl ether (8.5 mL), and dried at 40 ° C. or less to give compound 3d (466 mg, 76.0% of the theoretical yield) as a white Obtained as a crystal.
  • the combined organic layer was washed successively with saturated aqueous sodium hydrogen carbonate solution (3.0 mL) and 20% brine (3.0 mL), dried over magnesium sulfate (0.5 g) and concentrated under reduced pressure at 30 ° C. or less .
  • the obtained oil was triturated with diisopropyl ether (1.0 mL) to crystallize. Further, diisopropyl ether (2.0 mL) is added, and the mixture is stirred for 30 minutes, and the solid is collected by filtration, washed with diisopropyl ether (1.0 mL), and dried at 40 ° C. or less under reduced pressure to obtain compound 4c (62. 7 mg, 76.4%) were obtained.
  • reaction was monitored by TLC (developing solvent: toluene / ethyl acetate (3: 2)).
  • Cold water (0.33 mL), ethyl acetate (10 mL) and 20% brine (1.0 mL) were added to the reaction mixture to carry out liquid separation.
  • the organic layer was washed with 20% brine (1.0 mL), dried over magnesium sulfate (1.2 g), and concentrated under reduced pressure at 40 ° C. or less.
  • Chloroform (5 mL) was added to the concentrate and the operation of concentration under reduced pressure was repeated three times, and then dried under reduced pressure to obtain a crude product of compound 5c (63.1 mg, 114% of the theoretical yield).
  • the aqueous layer was extracted by adding cold ethyl acetate (3.8 mL). The combined organic layer was washed with 10% brine (1.7 mL) and saturated brine (1.0 mL), then washed with brine (2.0 mL), and then with magnesium sulfate (1.2 g) After drying, it was concentrated under reduced pressure at 35 ° C. or less. The solvent was replaced with chloroform, and purification was performed by silica gel (Merck; silica gel 60N (trade name)) column chromatography (developing solvent: toluene / ethyl acetate (100: 0 to 50: 1)).
  • reaction mixture was stirred at 5 ° C. for 25 minutes and then at room temperature for 3 hours.
  • NaBH 4 (8.6 mg, 0.23 mmol) was added and stirred for 1 hour.
  • the reaction was monitored by TLC (developing solvent: chloroform / methanol (10: 1)) and HPLC.
  • To the reaction mixture was added water (0.5 mL) and washed with diisopropyl ether (0.5 mL). The aqueous layer was added 1% HCl to adjust pH to 2, and extracted three times with ethyl acetate (5 mL).
  • reaction solution was diluted with ethyl acetate (20 mL) and washed with water (5 mL), and then the aqueous layer was reextracted with ethyl acetate (10 mL). The organic layers were combined and dried over magnesium sulfate, and the solvent was evaporated to give a yellow oil.
  • a mixture of the crude product of compound 12-2a (153 mg), methanol (21 mL) and palladium carbon (200 mg, 4.12 mg in terms of Pd) is pressurized with hydrogen at about 0.46 MPa (4.5 atm) under hydrogen atmosphere, Stir at room temperature for 2 hours. The pressure was released, and the gas in the system was replaced with nitrogen, and then the same catalyst (206 mg, 4.24 mg in terms of Pd) was added. The reaction mixture was pressurized with hydrogen under a hydrogen atmosphere at 0.65 MPa and stirred at room temperature for 3 hours.
  • the filtrate was concentrated under reduced pressure, the concentrate was dissolved in 0.5 mol / L aqueous sodium hydroxide solution (1.5 mL) and water (4.2 mL), and washed with MTBE (5.5 mL). The aqueous layer was washed with water (4.2 mL) and MTBE (10 mL). The aqueous layer is brought to pH 2 by adding 4 mol / L hydrochloric acid (0.17 mL) and 0.2 mol / L hydrochloric acid (0.10 mL) and 5% hydrochloric acid (0.13 mL), and the solution is adjusted to 2 with ethyl acetate (34 mL, 10 mL) Extracted times.
  • the aqueous layer was further adjusted to pH 1 by adding 5% hydrochloric acid (70 ⁇ L) and extracted with ethyl acetate (30 mL). The combined organic layer was washed twice with 10% brine (20 mL), dried over magnesium sulfate (2.0 g), and concentrated to dryness under reduced pressure at 40 ° C. The concentrate was dissolved in ethyl acetate (0.29 mL), cyclohexane (0.30 mL) was added and seeded. Further, cyclohexane (0.30 mL) was added to the mixture and cooled to 9 ° C.
  • valsartan Compound 15, 25.9 mg, yield 25.1%
  • the reaction mixture was cooled to room temperature, 1% hydrochloric acid (3 mL) and ethyl acetate (10 mL) were added to separate, and the aqueous layer was extracted with ethyl acetate (10 mL).
  • the combined organic layers were washed twice with saturated aqueous sodium hydrogen carbonate solution (5 mL) and twice with 10% brine (5 mL) and then dried over magnesium sulfate, and the crude product (236 mg, 114% of the theoretical yield) was obtained Obtained.
  • the crude product was purified by TLC (developing solvent: hexane / ethyl acetate (10: 9)) to give compound 12-2a (227 mg, 109% of the theoretical yield) as a pale yellow oil.
  • the reaction mixture was allowed to stand for 5 days, water (10 mL) and tert-butyl methyl ether (30 mL) were added to separate, and the aqueous layer was extracted with tert-butyl methyl ether (20 mL).
  • the combined organic layers were washed with 5% citric acid (5.0 mL) and then twice with 20% brine (5 mL).
  • the washed organic layer was dried over magnesium sulfate (3.0 g), concentrated under reduced pressure at 40 ° C., and the crude product (0.99 g, 1.0 ⁇ 10 2 % of the theoretical yield) was white orange with foam. Obtained as a solid.
  • the reaction mixture was added with 5% palladium carbon (136 mg, 3.0 mg in terms of Pd, 0.028 mmol), and heated at 80 ° C. for 4 hours.
  • the reaction was monitored by HPLC and TLC (developing solvent: chloroform / methanol (20: 1)).
  • the reaction mixture was cooled to room temperature and filtered using isopropyl alcohol (about 20 mL).
  • the filtrate is concentrated to 0.15 g and then 0.5 mol / L aqueous sodium hydroxide solution (1.5 mL), water (1.6 mL), tert-butyl methyl ether (3.0 mL) and 1 mol / L aqueous sodium hydroxide solution (0.2 mL) was added and separated.
  • the aqueous layer was washed with tert-butyl methyl ether (3.0 mL), then 4 mol / L hydrochloric acid (0.17 mL), 0.2 mol / L hydrochloric acid (0.15 mL) and 1 mol / L hydrochloric acid (0.11 mL) were added.
  • the pH was dropped to 6.0.
  • the precipitated solid is collected by filtration, washed with water (5.0 mL) and dried under reduced pressure at 40-60 ° C. to give crude irbesartan (compound 18) (63.9 mg, 50. I got 5%).
  • the reaction mixture is warmed in a bath at 40 ° C. for 2 hours, the bath is removed, pyridine (92.8 mg, 1.17 mmol) and pentanoyl chloride (141 mg, 1.17 mol) are added, and again in a bath at 40 ° C. for 3 hours Half warmed.
  • the reaction mixture was cooled to room temperature, and 1 mol / L hydrochloric acid (5 mL) and ethyl acetate (20 mL) were added to separate the layers.
  • the aqueous layer was extracted with ethyl acetate (20 mL), and the combined organic layer was washed twice with saturated sodium bicarbonate (10 mL), twice with 20% brine (10 mL), and dried over magnesium sulfate.
  • Valerylated body isopropyl alcohol solution 24.4%, 800 mg, net 195 mg, 0.302 mmol
  • palladium-carbon E 1003 NN / W 5% Pd, water 58.8%; 128 mg, 2.6 mg as Pd, 25 ⁇ mol
  • ammonium formate 96.2 mg, 1.53 mmol
  • purified water 0.51 mL
  • the filtrate was concentrated under reduced pressure and then 0.5 mol / L sodium hydroxide (2.0 mL), water (7 mL) and t-butyl methyl ether (5 mL) were added to carry out liquid separation.
  • the aqueous layer was washed with t-butyl methyl ether (5 mL), and 1 mol / L hydrochloric acid (1.7 mL) and ethyl acetate (40 mL) were added to separate the layers.
  • the aqueous layer was extracted twice with ethyl acetate (15 mL) and the combined organic layers were washed twice with 10% brine (10 mL) and dried over magnesium sulfate (2.0 g).
  • the reaction mixture was cooled, filtered, and the cake was washed with acetonitrile (35 mL) and concentrated under reduced pressure at 35 ° C. to give a crude product.
  • the crude product is purified by silica gel column chromatography (developing solvent: toluene / ethyl acetate (100: 0 to 4: 1)), concentrated, and chloroform (about 30 mL) is added and concentrated four times.
  • biaryl tetrazole derivatives useful as intermediates for angiotensin II receptor antagonists can be produced under conditions suitable for economical and industrial production. It becomes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、アンジオテンシンII受容体拮抗薬の中間体として有用なビアリールテトラゾール誘導体又はその塩の製法を提供する。本発明の製法は、1)一般式[II]のアリールテトラゾール誘導体と、一般式[III]のベンゼン誘導体を反応させ;2)得られる一般式[IV]の化合物において(a)Rが保護基で保護された水酸基で置換されたメチル基である場合は、脱保護して、(b)Rが低級アルコキシカルボニル基である場合は、還元して、一般式[V]の化合物を得;3)一般式[IV]の化合物のRがメチル基である場合は、一般式[IV]の化合物を、一般式[IV]の化合物のRが保護基で保護された水酸基で置換されたメチル基又は低級アルコキシカルボニル基である場合は、一般式[V]の化合物を、さらにハロゲン化することを特徴とする(各式中、各記号は本明細書中で定義した通り)。

Description

ビフェニル誘導体の製法
 本発明は、アンジオテンシンII受容体拮抗薬の中間体として有用なビアリールテトラゾール誘導体又はその塩の製法に関する。
 ロサルタン カリウム、バルサルタン、オルメサルタン メドキソミル、カンデサルタン シレキセチル、テルミサルタン、イルベサルタンなどは、アンジオテンシンII受容体拮抗薬として有用である。
 これら化合物の製造方法としては、例えば、ロサルタンの合成法としてJ.Org.Chem.、1994年、59巻、6391~6394頁(非特許文献1)に記載の製法が、また、バルサルタンの合成法としてOrg.Process Res.Dev.、2007年、11巻、892~898頁(非特許文献2)に記載の製法が、さらにイルベサルタンの合成法としてJ.Med.Chem.、1993年、36巻、3371~3380頁(非特許文献3)に記載の製法がそれぞれ知られている。
 また、ビフェニル化反応の従来法としては、例えば、Chem.Lett.、2008年、37巻、9号、994~995頁(非特許文献4)に記載の方法、Tetrahedron、2008年、64巻、6051~6059頁(非特許文献5)、Angewandte Chemie International Edition、2009年、48巻、9792~9827頁(非特許文献6)に記載の方法が知られている。
J.Org.Chem.、1994年、59巻、6391~6394頁 Org.Process Res.Dev.、2007年、11巻、892~898頁 J.Med.Chem.、1993年、36巻、3371~3380頁 Chem.Lett.、2008年、37巻、9号、994~995頁 Tetrahedron、2008年、64巻、6051~6059頁 Angewandte Chemie International Edition、2009年、48巻、9792~9827頁
 前記の従来技術の製造法は、高価な金属化合物を必要としているため、より経済的な製造法の開発が望まれている。
 本発明は、安価な金属化合物を用いることを可能とし、経済的かつ工業的製造に適した条件で、アンジオテンシンII受容体拮抗薬の中間体として有用なビアリールテトラゾール誘導体を製造することができる、新規な製法を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意研究した結果、下記の製法により、安価な金属化合物を用いることが可能となり、経済的かつ工業的製造に適した条件で、アンジオテンシンII受容体拮抗薬の中間体として有用なビアリールテトラゾール誘導体を製造できることを見出し、本発明を完成するに至った。
 即ち、本発明は;
(1)1)一般式[II]:
Figure JPOXMLDOC01-appb-C000033
[式中、Rはテトラゾリル基の保護基を表す。]
で示されるアリールテトラゾール誘導体(アリールテトラゾール誘導体[II]ともいう)と、一般式[III]:
Figure JPOXMLDOC01-appb-C000034
[式中、Rはメチル基、保護基で保護された水酸基で置換されたメチル基又は低級アルコキシカルボニル基、Xは脱離基を表す。]
で示されるベンゼン誘導体(ベンゼン誘導体[III]ともいう)を反応させ;
2)得られる一般式[IV]:
Figure JPOXMLDOC01-appb-C000035
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[IV]ともいう)において
(a)Rが保護基で保護された水酸基で置換されたメチル基である場合は、脱保護して、
(b)Rが低級アルコキシカルボニル基である場合は、還元して、
一般式[V]:
Figure JPOXMLDOC01-appb-C000036
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[V]ともいう)を得;
3)一般式[IV]で示される化合物のRがメチル基である場合は、一般式[IV]で示される化合物を、
一般式[IV]で示される化合物のRが保護基で保護された水酸基で置換されたメチル基又は低級アルコキシカルボニル基である場合は、一般式[V]で示される化合物を、
さらにハロゲン化することを特徴とする、一般式[I]:
Figure JPOXMLDOC01-appb-C000037
[式中、Xはハロゲン原子を表し、他の記号は前記と同一意味を表す。]
で示されるビアリールテトラゾール誘導体(ビアリールテトラゾール誘導体[I]ともいう)又はその塩の製法(以下、「製造方法1」ともいう);
(2)一般式[II]で示されるアリールテトラゾール誘導体と、一般式[III]で示されるベンゼン誘導体を、金属触媒存在下で反応させることを特徴とする、上記(1)に記載の製法;
(3)一般式[II]で示されるアリールテトラゾール誘導体と、一般式[III]で示されるベンゼン誘導体を、塩基及び金属触媒存在下で反応させることを特徴とする、上記(1)に記載の製法;
(4)1)上記(1)記載の製法で得られた一般式[I]:
Figure JPOXMLDOC01-appb-C000038
[式中、Xはハロゲン原子を表し、Rはテトラゾリル基の保護基を表す。]
で示されるビアリールテトラゾール誘導体又はその塩と、式[VI]:
Figure JPOXMLDOC01-appb-C000039
で示される化合物(化合物[VI]ともいう)を反応させ;
2-A)得られる一般式[VII]:
Figure JPOXMLDOC01-appb-C000040
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[VII]ともいう)を還元して、一般式[VIII]:
Figure JPOXMLDOC01-appb-C000041
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[VIII]ともいう)を得、さらにRを除去するか;又は2-B)一般式[VII]で示される化合物のRを除去して、式[VIII-2]:
Figure JPOXMLDOC01-appb-C000042
で示される化合物(化合物[VIII-2]ともいう)を得、さらに還元することを特徴とする、
式[IX]:
Figure JPOXMLDOC01-appb-C000043
で示される化合物(即ちロサルタン、以下化合物[IX]ともいう)又はその塩の製法(以下、「製造方法2」ともいう);
(5)1)上記(1)記載の製法で得られた一般式[I]:
Figure JPOXMLDOC01-appb-C000044
[式中、Xはハロゲン原子を表し、Rはテトラゾリル基の保護基を表す。]
で示されるビアリールテトラゾール誘導体又はその塩と、一般式[X]:
Figure JPOXMLDOC01-appb-C000045
[式中、Rはカルボキシ基の保護基を表す。]
で示される化合物(化合物[X]ともいう)又はその塩を反応させ;
2-A)得られる一般式[XI]:
Figure JPOXMLDOC01-appb-C000046
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[XI]ともいう)のRを除去し、得られる一般式[XII]:
Figure JPOXMLDOC01-appb-C000047
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[XII]ともいう)と、一般式[XIII]:
CHCHCHCHCO-X
[式中、Xは脱離基を表す。]
で示される化合物(化合物[XIII]ともいう)を反応させ、得られる一般式[XIV]:
Figure JPOXMLDOC01-appb-C000048
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[XIV]ともいう)のRを除去するか;又は
2-B)一般式[XI]で示される化合物と、一般式[XIII]で示される化合物を反応させ、得られる一般式[XII-2]:
Figure JPOXMLDOC01-appb-C000049
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[XII-2]ともいう)のR及びRを除去することを特徴とする、
式[XV]:
Figure JPOXMLDOC01-appb-C000050
で示される化合物(即ちバルサルタン、以下化合物[XV]ともいう)又はその塩の製法(以下、「製造方法3」ともいう);
(6)上記(1)記載の製法で得られた一般式[I]:
Figure JPOXMLDOC01-appb-C000051
[式中、Xはハロゲン原子を表し、Rはテトラゾリル基の保護基を表す。]
で示されるビアリールテトラゾール誘導体又はその塩と、式[XVI]:
Figure JPOXMLDOC01-appb-C000052
で示される化合物(化合物[XVI]ともいう)又はその塩を反応させて、一般式[XVII]:
Figure JPOXMLDOC01-appb-C000053
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[XVII]ともいう)を得、さらにRを除去することを特徴とする、
式[XVIII]:
Figure JPOXMLDOC01-appb-C000054
で示される化合物(即ちイルベサルタン、以下化合物[XVIII]ともいう)又はその塩の製法(以下、「製造方法4」ともいう);及び
(7)1)上記(1)記載の製法で得られた一般式[I]:
Figure JPOXMLDOC01-appb-C000055
[式中、Xはハロゲン原子を表し、Rはテトラゾリル基の保護基を表す。]
で示されるビアリールテトラゾール誘導体又はその塩と、一般式[XIX]:
Figure JPOXMLDOC01-appb-C000056
[式中、Rはカルボキシ基の保護基を表し、Rはアミノ基の保護基を表す。]
で示される化合物(化合物[XIX]ともいう)を反応させ、
 2)得られる一般式[XX]:
Figure JPOXMLDOC01-appb-C000057
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[XX]ともいう)のRを除去して、一般式[XXI]:
Figure JPOXMLDOC01-appb-C000058
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[XXI]ともいう)を得、さらに還元して、
 3)得られる一般式[XXII]:
Figure JPOXMLDOC01-appb-C000059
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[XXII]ともいう)とテトラエトキシメタンを反応させて一般式[XXIII]:
Figure JPOXMLDOC01-appb-C000060
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[XXIII]ともいう)を得、さらにRを除去して、
 4)得られる一般式[XXIV]:
Figure JPOXMLDOC01-appb-C000061
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[XXIV]ともいう)と一般式[XXV]:
Figure JPOXMLDOC01-appb-C000062
[式中、Xは脱離基または水酸基を表す。]
で示される化合物(化合物[XXV]ともいう)とを反応させて一般式[XXVI]:
Figure JPOXMLDOC01-appb-C000063
[式中、記号は前記と同一意味を表す。]
で示される化合物(化合物[XXVI]ともいう)を得、さらにRを除去することを特徴とする、一般式[XXVII]:
Figure JPOXMLDOC01-appb-C000064
[式中、記号は前記と同一意味を表す。]
で示される化合物(即ちカンデサルタン シレキセチル、以下化合物[XXVII]ともいう)又はその塩の製法(以下、「製造方法5」ともいう);
に関する。
 本発明によれば、安価な金属化合物を用いることが可能となり、経済的かつ工業的製造に適した条件で、アンジオテンシンII受容体拮抗薬の中間体として有用なビアリールテトラゾール誘導体を製造することが可能となる。
 本発明において用いられる記号及び用語の定義について、以下に詳述する。
 「テトラゾリル基の保護基」とは、反応の際に安定してテトラゾリル基を保護し得るものであれば特に限定されないが、具体的にはProtective Groups in Organic Synthesis 3rd Ed.、T.W.Greene、P.G.M.Wuts著、John Wiley and Sons,Inc.、1999年に記載のものが挙げられる。
 テトラゾリル基の保護基としては、例えば、
7-19アラルキル基(例、ベンジル、ジフェニルメチル、トリチル等);
置換ベンジル、置換ジフェニルメチル等の置換C7-19アラルキル基(好ましくは、C1-6アルキル、ニトロ、C1-6アルキレンジオキシ及びC1-6アルコキシからなる群から選択される1~3個の置換基で置換された、C7-19アラルキル(該置換基が2個以上存在する場合は、同一又は異なっていてもよく、該置換基同士が結合して環を形成してもよい)、例、p-メチルベンジル、p-ニトロベンジル、2,4-ジメトキシベンジル、3,4-ジメトキシベンジル、3,4-(メチレンジオキシ)ベンジル、p-メトキシベンジル、o-メトキシベンジル、3,4,5-トリメトキシベンジル等);
置換C1-6アルキル基(好ましくは、ヒドロキシ、アルコキシ(例、C1-6アルコキシ)、アリールオキシ(例、C6-10アリールオキシ)及びジアルキルアミノ(例、ジ(C1-6アルキル)アミノ)からなる群から選択される1~3個の置換基で置換された、C1-6アルキル、例、ヒドロキシメチル、アルコキシメチル、アリールオキシメチル、ジアルキルアミノメチル等);
トリアルキルシリル基(好ましくは、トリ(C1-6アルキル)シリル);
1-6アルキル基(例、t-ブチル等)
等が挙げられる。
 「保護基で保護された水酸基で置換されたメチル基」の「保護基」とは、反応の際に安定して水酸基を保護し得るものであれば特に限定されないが、具体的にはProtective Groups in Organic Synthesis 3rd Ed.、T.W.Greene、P.G.M.Wuts著、John Wiley and Sons,Inc.、1999年に記載のものが挙げられる。
 該保護基としては、例えば、
アシル基(好ましくは、C1-6アルキル-カルボニル、C3-8シクロアルキル-カルボニル、C6-10アリール-カルボニル、例、アセチル、プロピオニル、ブチリル、イソブチリル、ピバロイル、シクロヘキシルカルボニル、ベンゾイル等)、
7-19アラルキル基(例、ベンジル等)、
トリアルキルシリル基(好ましくは、トリ(C1-6アルキル)シリル、例、トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、t-ブチルジメチルシリル等)、アルコキシカルボニル基(好ましくは、C1-6アルコキシ-カルボニル)
等が挙げられる。
 「カルボキシ基の保護基」とは、反応の際に安定してカルボキシ基を保護し得るものであれば特に限定されないが、具体的にはProtective Groups in Organic Synthesis 3rd Ed.、T.W.Greene、P.G.M.Wuts著、John Wiley and Sons,Inc.、1999年に記載のものが挙げられる。
 カルボキシ基の保護基としては、例えば、
アルキル基(好ましくは、C1-6アルキル、例、メチル、エチル、プロピル、イソプロピル、ブチル、ペンチル、ヘキシル)、
3-8シクロアルキル基(例、シクロヘキシル)、
7-19アラルキル基(例、ベンジル、ジフェニルメチル、トリチル)、
2-6アルケニル基(例、アリル)
等が挙げられる。
 「アミノ基の保護基」とは、反応の際に安定してアミノ基を保護し得るものであれば特に限定されないが、具体的にはProtective Groups in Organic Synthesis 3rd Ed.、T.W.Greene、P.G.M.Wuts著、John Wiley and Sons,Inc.、1999年に記載のものが挙げられる。
 アミノ基の保護基としては、例えば、アシル基(好ましくは、C1-6アルキル-カルボニル、C3-8シクロアルキル-カルボニル、C6-10アリール-カルボニル、例、アセチル、プロピオニル、ブチリル、イソブチリル、ピバロイル、シクロヘキシルカルボニル、ベンゾイル等)および低級アルコキシカルボニル基等が挙げられる。
 「低級アルコキシカルボニル基」としては、直鎖状又は分岐鎖状のC1-12アルコキシ-カルボニル基が挙げられ、好ましくは、メトキシカルボニル、エトキシカルボニル、ブトキシカルボニル(例、tert-ブトキシカルボニル)等が挙げられる。
 Xの「脱離基」としては、
ハロゲン原子、
1~3個のC1-6アルキル基で置換されていてもよいC6-10アリールスルホニルオキシ基(例、トルエンスルホニルオキシ等)、
1~3個のハロゲン原子で置換されていてもよいC1-6アルキルスルホニルオキシ基(例、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ等)
等が挙げられる。
 X及びXの「脱離基」としては、
ハロゲン原子、
1~3個のC1-6アルキル基で置換されていてもよいC6-10アリールスルホニルオキシ基(例、トルエンスルホニルオキシ等)、
1~3個のハロゲン原子で置換されていてもよいC1-6アルキルスルホニルオキシ基(例、メタンスルホニルオキシ等)、
アルカノイルオキシ基(好ましくは、C1-6アルキル-カルボニルオキシ)、
アロイルオキシ基(好ましくは、C6-10アリール-カルボニルオキシ)、
ジアルコキシホスホリルオキシ基(好ましくは、ジ(C1-6アルコキシ)ホスホリルオキシ)、
ジアリールオキシホスホリルオキシ基(好ましくは、ジ(C6-10アリールオキシ)ホスホリルオキシ)
等が挙げられる。
 「ハロゲン原子」としては、フッ素、塩素、臭素又はヨウ素が挙げられる。
 次に本発明の製造方法につき説明する。
[製造方法1]
 アリールテトラゾール誘導体[II]及びベンゼン誘導体[III]は、市販品を用いてもよく、アリールテトラゾール誘導体[II]はWO2009/49305に記載の方法、又はそれに準じる方法で製造してもよい。
(工程1)
 化合物[IV]は、アリールテトラゾール誘導体[II]を、金属触媒及び塩基の存在下で、ベンゼン誘導体[III]と反応させることにより製造することができる。本反応は溶媒を用いて行うこともできる。
 金属触媒としては、ルテニウム触媒、イリジウム触媒、ロジウム触媒、パラジウム触媒、ニッケル触媒、銅触媒、鉄触媒、コバルト触媒等の触媒を単独または混合したものを用いることができ、ルテニウム触媒としては、例えば、ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)(RuCl(PPh)、ジクロロ(1,5-シクロオクタジエン)ルテニウム(II)ポリマー([RuCl(η-COD)]またはポリ[(η,η-シクロオクタ-1,5-ジエン)ルテニウム-ジ-μ-クロロ]と表記することもある)、[RuCl(η-C)]、ジクロロ(p-シメン)ルテニウム(II)([Ru(p-cymene)Cl)、ジクロロ(メシチレン)ルテニウム(II)([Ru(mesitylene)Cl)、塩化ルテニウム(III)(RuCl)、塩化ルテニウム(III)水和物(RuCl・xHO)、ルテニウム炭素が挙げられる。金属触媒の使用量は、アリールテトラゾール誘導体[II]に対して、通常0.00001~10当量、好ましくは0.001~0.3当量である。
 塩基としては、炭酸カリウム(KCO)、炭酸ナトリウム(NaCO)、炭酸水素ナトリウム(NaHCO)、炭酸水素カリウム(KHCO)、リン酸カリウム(KPO)、炭酸セシウム(CsCO)、炭酸ルビジウム(RbCO)等が挙げられる。塩基の使用量は、アリールテトラゾール誘導体[II]に対して、通常0.1~10当量、好ましくは1~3当量、より好ましくは1~2当量である。
 好適に反応を進行させるために、配位子を更に添加してもよい。配位子としては、トリフェニルホスフィン(トリフェニルホスファンということもある)、トリ(t-ブチル)ホスフィン、トリエチルホスファイト、トリシクロヘキシルホスフィン、トリ(o-トリル)ホスフィン、トリ(p-トリル)ホスファン、トリ(p-メトキシフェニル)ホスファン、シクロヘキシルジフェニルホスファン、酢酸、トリフルオロ酢酸、メタンスルホン酸、p-トルエンスルホン酸、ベンゼンスルホン酸、2,4,6-トリメチル安息香酸、1-アダマンチルカルボン酸等が挙げられる。配位子の使用量は、アリールテトラゾール誘導体[II]に対して、通常0.00001~10当量、好ましくは0.001~1当量である。
 溶媒としては、反応が進行する限り特に限定されないが、N-メチル-2-ピロリドン(NMPと略記することもある)、N,N-ジメチルホルムアミド(DMFと略記することもある)、N,N-ジメチルアセトアミド(DMAと略記することもある)、ジメチルスルホキシド(DMSOと略記することもある)等の極性溶媒、またはトルエン、キシレン等の非極性溶媒、さらにはこれら極性溶媒と非極性溶媒の混合物が好ましい。溶媒の使用量は、アリールテトラゾール誘導体[II]1mmolに対して、通常0~100mL、好ましくは0.1~10mLである。
 反応温度は、通常20~300℃、好ましくは100~200℃である。
 反応時間は、通常0.01~200時間、好ましくは0.5~24時間である。
(工程2a)
 化合物[IV]のRが保護基で保護された水酸基で置換されたメチル基である場合、化合物[V]は、化合物[IV]を、塩基の存在下で、脱保護することにより製造することができる。本反応は溶媒を用いて行うこともできる。
 塩基としては、ナトリウムメトキシド、ナトリウムエトキシド、ジメチルアミン、メチルアミン、アンモニア、炭酸カリウム、炭酸ナトリウム等が挙げられる。塩基の使用量は、化合物[IV]に対して、通常0.001~10当量、好ましくは0.01~1当量である。
 溶媒としては、反応が進行する限り特に限定されないが、メタノール、エタノール、プロパノール等が挙げられる。溶媒の使用量は、化合物[IV]1mmolに対して、通常0.01~100mL、好ましくは0.1~10mLである。
 反応温度は、通常-50~100℃、好ましくは0~40℃である。
 反応時間は、通常0.001~10時間、好ましくは0.1~5時間である。
(工程2b)
 化合物[IV]のRが低級アルコキシカルボニル基である場合、化合物[V]は、化合物[IV]を、還元剤の存在下で、還元することにより製造することができる。本反応は溶媒を用いて行うこともできる。
 還元剤としては、水素化ホウ素ナトリウム(テトラヒドロホウ酸ナトリウムともいう)、水素化アルミニウムリチウム、ジイソブチルアルミニウムヒドリド等が挙げられる。還元剤の使用量は、化合物[IV]に対して、通常1~5当量、好ましくは1~2当量である。
 好適に反応を進行させるために、金属塩を添加してもよい。金属塩としては、塩化カルシウム、塩化亜鉛等が挙げられる。金属塩の使用量は、化合物[IV]に対して、通常0.1~2当量、好ましくは0.5~1当量であるが、還元剤として水素化アルミニウムリチウム、ジイソブチルアルミニウムヒドリドを用いる場合、金属塩の非存在下で反応は進行する。
 溶媒としては、反応が進行する限り特に限定されないが、エタノール、2-プロパノール、メタノール等が挙げられる。溶媒の使用量は、化合物[IV]1mmolに対して、通常1~50mL、好ましくは1~2mLである。
 反応温度は、通常-50~120℃、好ましくは0~80℃である。
 反応時間は、通常0.1~24時間、好ましくは3~10時間である。
(工程3)
 化合物[IV]のRがメチル基である場合、ビアリールテトラゾール誘導体[I]又はその塩は、化合物[IV]を、アゾビスイソブチロニトリル(AIBN)存在下ハロゲン化試薬と反応させることにより製造することができる。
 化合物[IV]のRが保護基で保護された水酸基で置換されたメチル基又は低級アルコキシカルボニル基である場合、ビアリールテトラゾール誘導体[I]又はその塩は、化合物[V]を、ハロゲン化試薬と反応させることにより製造することができる。
 これらの反応は溶媒を用いて行うこともできる。
 ハロゲン化試薬としては、特に限定されるものではなく、自体公知のハロゲン化試薬を適用することができるが、例えば、三臭化リン、臭化チオニル、臭化水素酸、塩化水素、塩化チオニル、四塩化炭素/トリフェニルホスフィン、ブロモトリメチルシラン、N-ブロモスクシンイミド(NBS)等が挙げられる。ハロゲン化試薬の使用量は、化合物[V]に対して、通常1~10当量、好ましくは1~3当量である。
 溶媒としては、反応が進行する限り特に限定されないが、テトラヒドロフラン(THFと略記することもある)、トルエン、酢酸エチル、ジオキサン、メチルt-ブチルエーテル(MTBE)、クロロホルム、塩化メチレン、ジイソプロピルエーテル、アセトニトリル等が挙げられる。溶媒の使用量は、化合物[V]1mmolに対して、通常0.01~100mL、好ましくは0.1~10mLである。
 反応温度は、通常-50~150℃、好ましくは-20~50℃である。
 反応時間は、通常0.001~24時間、好ましくは0.1~10時間である。
[製造方法2]
(工程1)
 化合物[VII]は、前記の製造方法1で得られたビアリールテトラゾール誘導体[I]を、塩基の存在下で、化合物[VI]と反応させることにより製造することができる。本反応は溶媒を用いて行うこともできる。
 塩基としては、特に限定されるものではなく、自体公知の塩基を適用することができるが、例えば、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ジイソプロピルエチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)等が挙げられる。塩基の使用量は、ビアリールテトラゾール誘導体[I]に対して、通常1~10当量、好ましくは1~3当量である。
 溶媒としては、反応が進行する限り特に限定されないが、DMA、DMF、DMSO、NMP、アセトニトリル、トルエン、THF、ジオキサン等が挙げられる。溶媒の使用量は、ビアリールテトラゾール誘導体[I]1mmolに対して、通常0.001~100mL、好ましくは0.1~10mLである。
 反応温度は、通常-50~150℃、好ましくは-20~50℃である。
 反応時間は、通常0.1~48時間、好ましくは0.5~5時間である。
(工程2-A(1))
 化合物[VIII]は、化合物[VII]を、還元剤の存在下で還元することにより製造することができる。本反応は溶媒を用いて行うこともできる。
 還元剤としては、特に限定されるものではなく、自体公知の還元剤を適用することができるが、例えば、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化ホウ素亜鉛、トリアセトキシボロヒドリド等が挙げられる。還元剤の使用量は、化合物[VII]に対して、通常1~10当量、好ましくは1~5当量である。
 溶媒としては、反応が進行する限り特に限定されないが、メタノール、水、エタノール、イソプロピルアルコール、ジメトキシエタン等が挙げられる。溶媒の使用量は、化合物[VII]1mmolに対して、通常0.01~100mL、好ましくは0.1~10mLである。
 本反応には、必要に応じて塩基を用いることもできる。塩基としては、例えば水酸化ナトリウム等が挙げられる。塩基の使用量は、化合物[VII]に対して、通常0~10当量、好ましくは1~2当量である。
 反応温度は、通常-50~100℃、好ましくは-20~50℃である。
 反応時間は、通常0.01~48時間、好ましくは0.1~5時間である。
(工程2-A(2))
 化合物[IX]は、化合物[VIII]を、酸の存在下で脱保護(Rの除去)することにより製造することができる。
 酸としては、特に限定されるものではなく、自体公知の酸を適用することができるが、例えば、トリフルオロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、メタンスルホン酸、硫酸、塩酸等が挙げられる。酸の使用量は、化合物[VIII]に対して、通常0.1~1000当量、好ましくは1~500当量である。
 酸による脱保護は、好適には捕捉剤の存在下で行うことができる。捕捉剤としては、反応が進行する限り特に限定されないが、アニソール、メシチレン、1-オクタンチオール等のメルカプタン類等が挙げられる。捕捉剤の使用量は、化合物[VIII]1mmolに対して、通常0.001~10mL、好ましくは0.1~5mLである。
 上記の酸及び捕捉剤が、本工程において溶媒として作用してもよい。
 反応温度は、通常-50~150℃、好ましくは10~100℃である。
 反応時間は、通常0.1~48時間、好ましくは0.5~20時間である。
 Rの脱保護には、還元(例、接触還元、ギ酸還元等)する方法も用いることができる。本反応は溶媒を用いて行うこともできる。
 還元は、触媒の存在下で行うことができる。触媒としては、接触還元またはギ酸還元に用いることができれば特に限定されるものではなく、例えば、パラジウム炭素、パラジウムブラック、酸化パラジウム、塩化パラジウム、酢酸パラジウム等が挙げられる。触媒の使用量は、化合物[VIII]に対して、通常0.0001~10当量、好ましくは0.01~0.1当量である。
 接触還元の場合、水素圧としては、1~100気圧、好ましくは1~10気圧である。
 ギ酸還元の場合、添加剤として、ギ酸、ギ酸の塩(ギ酸アンモニウム等)を添加する。
 溶媒としては、反応が進行する限り特に限定されないが、イソプロピルアルコール、n-プロピルアルコール、メタノール、エタノール、テトラヒドロフラン、塩化メチレン、酢酸エチル等、あるいは上記溶媒と水との混合溶媒が挙げられる。溶媒の使用量は、化合物[VIII]1mmolに対して、通常0.1~100mL、好ましくは0.5~10mLである。
 反応温度は、通常0~150℃、好ましくは10~80℃である。
 反応時間は、通常0.1~72時間、好ましくは0.5~24時間である。
(工程2-B(1))
 化合物[VIII-2]は、化合物[VII]を、上記製造方法2の工程2-A(2)(化合物[VIII]の脱保護)に記載の方法と同様にして、脱保護(Rの除去)することにより製造することができる。
(工程2-B(2))
 化合物[IX]は、化合物[VIII-2]を、上記製造方法2の工程2-A(1)(化合物[VII]の還元)に記載の方法と同様にして、還元することにより製造することができる。
[製造方法3]
(工程1)
 化合物[XI]は、前記の製造方法1で得られたビアリールテトラゾール誘導体[I]を、塩基の存在下で、化合物[X]又はその塩(例えば、p-トルエンスルホン酸塩、塩酸塩等)と反応させることにより製造することができる。本反応は溶媒を用いて行うこともできる。
 塩基としては、特に限定されるものではなく、自体公知の塩基を適用することができるが、例えば、エチルジイソプロピルアミン、トリエチルアミン、ピリジン、水素化ナトリウム、カリウムt-ブトキサイド等が挙げられる。塩基の使用量は、ビアリールテトラゾール誘導体[I]に対して、通常1~10当量、好ましくは1~5当量である。
 溶媒としては、反応が進行する限り特に限定されないが、アセトニトリル、トルエン、THF、ジオキサン、クロロホルム、塩化メチレン等が挙げられる。溶媒の使用量は、ビアリールテトラゾール誘導体[I]1mmolに対して、通常0.1~100mL、好ましくは0.5~5mLである。
 反応温度は、通常-50~150℃、好ましくは5~100℃である。
 反応時間は、通常0.1~48時間、好ましくは0.5~5時間である。
(工程2-A(1))
 化合物[XII]は、化合物[XI]を、酸の存在下で脱保護(Rの除去)することにより製造することができる。
 酸としては、特に限定されるものではなく、自体公知の酸を適用することができるが、例えば、トリフルオロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、メタンスルホン酸、硫酸、塩酸等が挙げられる。酸の使用量は、化合物[XI]に対して、通常0.1~1000当量、好ましくは1~500当量である。
 酸による脱保護は、好適には捕捉剤の存在下で行うことができる。捕捉剤としては、反応が進行する限り特に限定されないが、アニソール、メシチレン、1-オクタンチオール等のメルカプタン類等が挙げられる。捕捉剤の使用量は、化合物[XI]1mmolに対して、通常0.001~10mL、好ましくは0.1~5mLである。
 上記の酸及び捕捉剤が、本工程において溶媒として作用してもよい。
 反応温度は、通常-50~150℃、好ましくは10~100℃である。
 反応時間は、通常0.1~48時間、好ましくは0.5~5時間である。
 Rの脱保護には、還元(例、接触還元、ギ酸還元等)する方法も用いることができる。本反応は溶媒を用いて行うこともできる。
 還元は、触媒の存在下で行うことができる。触媒としては、接触還元またはギ酸還元に用いることができれば特に限定されるものではなく、例えば、パラジウム炭素、パラジウムブラック、酸化パラジウム、塩化パラジウム、酢酸パラジウム等が挙げられる。触媒の使用量は、化合物[XI]に対して、通常0.0001~10当量、好ましくは0.01~0.1当量である。
 接触還元の場合、水素圧としては、1~100気圧、好ましくは1~10気圧である。
 ギ酸還元の場合、添加剤として、ギ酸、ギ酸の塩(ギ酸アンモニウム等)を添加する。
 溶媒としては、反応が進行する限り特に限定されないが、イソプロピルアルコール、n-プロピルアルコール、メタノール、エタノール、テトラヒドロフラン、塩化メチレン、酢酸エチル等、あるいは上記溶媒と水との混合溶媒が挙げられる。溶媒の使用量は、化合物[XI]1mmolに対して、通常0.1~100mL、好ましくは0.5~10mLである。
 反応温度は、通常0~150℃、好ましくは10~80℃である。
 反応時間は、通常0.1~72時間、好ましくは0.5~24時間である。
(工程2-A(2))
 化合物[XIV]は、化合物[XII]を、塩基存在下で、化合物[XIII]と反応させることにより製造することができる。本反応は溶媒を用いて行うこともできる。
 塩基としては、特に限定されるものではなく、例えば、トリエチルアミン、エチルジイソプロピルアミン、DBU、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素カリウム、リン酸カリウム、4-ジメチルアミノピリジン(DMAP)、ルチジン、ピリジン等が挙げられる。塩基の使用量は、化合物[XII]に対して、通常1~10当量、好ましくは1~3当量である。
 溶媒としては、反応が進行する限り特に限定されないが、トルエン、キシレン、塩化メチレン、クロロホルム、アセトニトリル、NMP、DMF、DMSO、THF、ジメトキシエタン、t-ブチルメチルエーテル(以下、t-BMEともいう)、1,4-ジオキサン等が挙げられる。溶媒の使用量は、化合物[XII]1mmolに対して、通常0.001~100mL、好ましくは0.1~10mLである。
 反応温度は、通常-20~150℃、好ましくは0~100℃である。
 反応時間は、通常0.1~48時間、好ましくは0.5~5時間である。
(工程2-A(3))
 化合物[XV]は、化合物[XIV]を、酸の存在下、脱保護(Rの除去)することにより製造することができる。
 酸としては、特に限定されるものではなく、自体公知の酸を適用することができるが、例えば、トリフルオロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、メタンスルホン酸、硫酸、塩酸等が挙げられる。酸の使用量は、化合物[XIV]に対して、通常0.1~1000当量、好ましくは1~500当量である。
 酸による脱保護は、好適には捕捉剤の存在下で行うことができる。捕捉剤としては、反応が進行する限り特に限定されないが、アニソール、メシチレン、メルカプタン等が挙げられる。捕捉剤の使用量は、化合物[XIV]1mmolに対して、通常0.001~10mL、好ましくは0.1~5mLである。
 上記の酸及び捕捉剤が、本工程において溶媒として作用してもよい。
 反応温度は、通常-50~150℃、好ましくは10~100℃である。
 反応時間は、通常0.1~48時間、好ましくは0.5~5時間である。
 あるいは、化合物[XV]は、化合物[XIV]を、塩基の存在下、脱保護(Rの除去)することにより製造することもできる。本反応は溶媒を用いて行うこともできる。
 塩基としては、ナトリウムメトキシド、ナトリウムエトキシド、ジメチルアミン、メチルアミン、アンモニア、炭酸カリウム、炭酸ナトリウム等が挙げられる。塩基の使用量は、化合物[XIV]に対して、通常0.001~10当量、好ましくは0.01~1当量である。
 溶媒としては、反応が進行する限り特に限定されないが、メタノール、エタノール、プロパノール等が挙げられる。溶媒の使用量は、化合物[XIV]1mmolに対して、通常0.01~100mL、好ましくは0.1~10mLである。
 反応温度は、通常-50~100℃、好ましくは0~20℃である。
 反応時間は、通常0.001~10時間、好ましくは0.1~5時間である。
 あるいは、化合物[XV]は、化合物[XIV]を、還元(例、接触還元、ギ酸還元等)して脱保護(Rの除去)することにより製造することもできる。本反応は溶媒を用いて行うこともできる。
 還元は、触媒の存在下で行うことができる。触媒としては、接触還元またはギ酸還元に用いることができれば特に限定されるものではなく、例えば、パラジウム炭素、パラジウムブラック、酸化パラジウム、塩化パラジウム、酢酸パラジウム等が挙げられる。触媒の使用量は、化合物[XIV]に対して、通常0.0001~10当量、好ましくは0.01~0.1当量である。
 接触還元の場合、水素圧としては、1~100気圧、好ましくは1~10気圧である。
 ギ酸還元の場合、添加剤として、ギ酸、ギ酸の塩(ギ酸アンモニウム等)を添加する。
 溶媒としては、反応が進行する限り特に限定されないが、n-プロピルアルコール、メタノール、エタノール、テトラヒドロフラン、塩化メチレン、酢酸エチル等、あるいは上記溶媒と水との混合溶媒が挙げられる。溶媒の使用量は、化合物[XIV]1mmolに対して、通常0.1~100mL、好ましくは0.5~10mLである。
 反応温度は、通常0~150℃、好ましくは10~80℃である。
 反応時間は、通常0.1~72時間、好ましくは0.5~24時間である。
(工程2-B(1))
 化合物[XII-2]は、化合物[XI]を、上記製造方法3の工程2-A(2)(化合物[XII]と化合物[XIII]との反応)に記載の方法と同様にして、化合物[XIII]と反応させることにより製造することができる。
(工程2-B(2))
 化合物[XV]は、化合物[XII-2]を、上記製造方法3の工程2-A(1)及び(3)(化合物[XI]及び[XIV]の脱保護)に記載の方法と同様にして、脱保護(R及びRの除去)することにより製造することができる。
 あるいは、化合物[XV]は、化合物[XII-2]を、還元(例、接触還元、ギ酸還元)することにより脱保護(R及びRの除去)しても製造することもできる。本反応は溶媒を用いて行うこともできる。
 還元は、触媒の存在下で行うことができる。触媒としては、接触還元もしくはギ酸還元に用いることができれば特に限定されるものではなく、例えば、パラジウム炭素、パラジウムブラック、酸化パラジウム、塩化パラジウム、酢酸パラジウム等が挙げられる。触媒の使用量は、化合物[XII-2]に対して、通常0.0001~10当量、好ましくは0.01~0.1当量である。
 接触還元の場合、水素圧としては、1~100気圧、好ましくは1~10気圧である。
 ギ酸還元の場合、添加剤として、ギ酸、ギ酸の塩(ギ酸アンモニウム等)を添加する。
 溶媒としては、反応が進行する限り特に限定されないが、n-プロピルアルコール、メタノール、エタノール、テトラヒドロフラン、塩化メチレン、酢酸エチル等、あるいは上記溶媒と水との混合溶媒が挙げられる。溶媒の使用量は、化合物[XII-2]1mmolに対して、通常0.1~100mL、好ましくは0.5~10mLである。
 反応温度は、通常0~150℃、好ましくは10~80℃である。
 反応時間は、通常0.1~72時間、好ましくは0.5~24時間である。
[製造方法4]
(工程1)
 化合物[XVII]は、前記の製造方法1で得られたビアリールテトラゾール誘導体[I]を、塩基または塩基および添加物の存在下で、化合物[XVI]又はその塩(例えば、塩酸塩等)と反応させることにより製造することができる。本反応は溶媒を用いて行うこともできる。
 塩基としては、特に限定されるものではなく、例えば、トリエチルアミン、エチルジイソプロピルアミン、DBU、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素カリウム、リン酸カリウム、4-ジメチルアミノピリジン(DMAP)、ルチジンが挙げられる。塩基の使用量は、ビアリールテトラゾール誘導体[I]化合物に対して、通常1~10当量、好ましくは1~3当量である。
 添加物としては、テトラアルキルアンモニウムハライド(例、テトラブチルアンモニウムブロミド)、テトラアルキルホスホニウムハライド等が挙げられる。添加物の使用量は、ビアリールテトラゾール誘導体[I]化合物に対して、通常0.01~10当量、好ましくは0.05~1当量である。
 溶媒としては、反応が進行する限り特に限定されないが、トルエン、キシレン、塩化メチレン、クロロホルム、アセトニトリル、DMF、DMSO、THF、ジメトキシエタン、t-BME、1,4-ジオキサン等、あるいは上記溶媒と水との混合物が挙げられる。溶媒の使用量は、ビアリールテトラゾール誘導体[I]1mmolに対して、通常0.001~100mL、好ましくは0.1~10mLである。
 反応温度は、通常-20~150℃、好ましくは0~100℃である。
 反応時間は、通常0.1~48時間、好ましくは0.5~10時間である。
(工程2)
 化合物[XVIII]は、化合物[XVII]を、脱保護(Rの除去)することにより製造することができる。脱保護には、例えば、還元(例、接触還元、ギ酸還元等)する方法を用いることができる。本反応は溶媒を用いて行うこともできる。
 還元は、触媒の存在下で行うことができる。触媒としては、接触還元またはギ酸還元に用いることができれば特に限定されるものではなく、例えば、パラジウム炭素、パラジウムブラック、酸化パラジウム、塩化パラジウム、酢酸パラジウム等が挙げられる。触媒の使用量は、化合物[XVII]に対して、通常0.0001~10当量、好ましくは0.01~0.1当量である。
 接触還元の場合、水素圧としては、1~100気圧、好ましくは1~10気圧である。
 ギ酸還元の場合、添加剤として、ギ酸、ギ酸の塩(ギ酸アンモニウム等)を添加する。
 溶媒としては、反応が進行する限り特に限定されないが、イソプロピルアルコール、n-プロピルアルコール、メタノール、エタノール、テトラヒドロフラン、塩化メチレン、酢酸エチル等、あるいは上記溶媒と水との混合溶媒が挙げられる。溶媒の使用量は、化合物[XVII]1mmolに対して、通常0.1~100mL、好ましくは0.5~10mLである。
 反応温度は、通常0~150℃、好ましくは10~80℃である。
 反応時間は、通常0.1~72時間、好ましくは0.5~24時間である。
[製造方法5]
(工程1)
 化合物[XX]は、前記の製造方法1で得られたビアリールテトラゾール誘導体[I]を、塩基の存在下又は非存在下で、化合物[XIX]と反応させることにより製造することができる。本反応は溶媒を用いて行うこともできる。
 本反応は、塩基の存在下に行うことが好ましく、かかる塩基としては、水素化ナトリウムなどの金属水素化物、t-ブトキシナトリウム、t-ブトキシカリウムなどの金属アルコキシド類、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどの炭酸塩等が挙げられるが、なかでも炭酸塩、とりわけ炭酸カリウムが好ましく用いられる。塩基の使用量は、ビアリールテトラゾール誘導体[I]に対して、通常1~5当量である。
 溶媒としては、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミドなどの非プロトン性極性溶媒類、アセトン、エチルメチルケトンなどのケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸エチルなどのエステル類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタンなどのハロゲン化炭化水素類、アセトニトリルなどが挙げられるが、なかでもアセトニトリルが好ましく用いられる。溶媒の使用量は、ビアリールテトラゾール誘導体[I]1mmolに対して、通常0.1~10mLである。反応温度は、通常70~90℃で、反応時間は、3~10時間である。
(工程2(1))
 化合物[XXI]は、化合物[XX]を、酸の存在下で脱保護(Rの除去)することにより製造することができる。
 酸としては、特に限定されるものではなく、自体公知の酸を適用することができるが、例えば、ブレンステッド酸(例えば、トリフルオロメタンスルホン酸、メタンスルホン酸、リン酸、硫酸、塩酸等)あるいはルイス酸(例えば、塩化アルミ、塩化スズ、ボラントリフルオライドジエチルエーテル等)が挙げられる。酸の使用量は、化合物[XX]に対して、通常0.1~1000当量、好ましくは1~500当量である。
 溶媒としては、反応が進行する限り特に限定されないが、水、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、ジメトキシエタン、メチルt-ブチルエーテル等が挙げられる。溶媒の使用量は、化合物[XX]1mmolに対して、通常0.01~100mL、好ましくは0.1~10mLである。
 反応温度は、通常-50~150℃、好ましくは10~100℃である。
 反応時間は、通常0.1~48時間、好ましくは0.5~20時間である。
(工程2(2))
 化合物[XXII]は、化合物[XXI]を、還元剤の存在下で還元することにより製造することができる。本反応は溶媒を用いて行うこともできる。
 還元剤としては、特に限定されるものではなく、自体公知の還元剤を適用することができるが、例えば、塩化スズ、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化ホウ素亜鉛、トリアセトキシボロヒドリド等が挙げられる。還元剤の使用量は、化合物[XXI]に対して、通常1~10当量、好ましくは1~5当量である。
 溶媒としては、反応が進行する限り特に限定されないが、水、メタノール、エタノール、イソプロピルアルコール、ジメトキシエタン、メチルt-ブチルエーテル等が挙げられる。溶媒の使用量は、化合物[XXI]1mmolに対して、通常0.01~100mL、好ましくは0.1~10mLである。
 反応温度は、通常-50~100℃、好ましくは-20~50℃である。
 反応時間は、通常0.01~48時間、好ましくは0.1~5時間である。
(工程3(1))
 化合物[XXIII]は、化合物[XXII]とテトラエトキシメタンとを、溶媒の存在下又は非存在下で反応することにより製造することができる。
 溶媒としては、反応が進行する限り特に限定されないが、エタノール、テトラヒドロフラン、トルエン、酢酸エチル、酢酸、ジメトキシエタン、メチルt-ブチルエーテル等が挙げられる。
 反応温度は、通常0~120℃、好ましくは50~100℃である。
 反応時間は、通常0.01~48時間、好ましくは0.1~5時間である。
(工程3(2))
 化合物[XXIV]は、化合物[XXIII]を、塩基又は酸、及び水性有機溶媒の存在下、加水分解して脱保護(Rの除去)することにより製造することができる。
 塩基としては、特に限定されるものではなく、自体公知の塩基を適用することができるが、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、水素化ナトリウムが挙げられる。また酸としては、特に限定されるものではなく、自体公知の酸を適用することができるが、例えば、トリフルオロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、メタンスルホン酸、硫酸、塩酸等が挙げられる。
 水性有機溶媒としては、メタノール、エタノール、アセトン等が挙げられる。
 反応温度は、通常0~120℃、好ましくは50~100℃である。
 反応時間は、通常0.1~48時間、好ましくは0.5~5時間である。
(工程4(1))
 化合物[XXVI]は、化合物[XXIV]と化合物[XXV]とを、塩基の存在下反応させて製造することができる。本反応は溶媒を用いて行うこともできる。
 塩基としては、特に限定されるものではなく、自体公知の塩基を適用することができるが、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、トリエチルアミン、トリブチルアミン、メチルアミン、ジメチルアミンが挙げられる。
 溶媒としては、反応が進行する限り特に限定されないが、メタノール、エタノール、イソプロピルアルコール、ジメチルホルムアミド等が挙げられる。溶媒の使用量は、化合物[XXIV]1mmolに対して、通常0.01~100mL、好ましくは0.1~10mLである。
 反応温度は、通常-50~150℃、好ましくは10~100℃である。
 反応時間は、通常0.1~48時間、好ましくは0.5~20時間である。
(工程4(2))
 化合物[XXVII]は、化合物[XXVI]を、脱保護(Rの除去)することにより製造することができる。脱保護には、例えば、還元(例、接触還元、ギ酸還元等)する方法を用いることができる。本反応は溶媒を用いて行うこともできる。
 還元は、触媒の存在下で行うことができる。触媒としては、接触還元またはギ酸還元に用いることができれば特に限定されるものではなく、例えば、パラジウム炭素、パラジウムブラック、酸化パラジウム、塩化パラジウム、酢酸パラジウム等が挙げられる。触媒の使用量は、化合物[XXVII]に対して、通常0.0001~10当量、好ましくは0.01~0.1当量である。
 接触還元の場合、水素圧としては、1~100気圧、好ましくは1~10気圧である。
 ギ酸還元の場合、添加剤として、ギ酸、ギ酸の塩(ギ酸アンモニウム等)を添加する。
 溶媒としては、反応が進行する限り特に限定されないが、イソプロピルアルコール、n-プロピルアルコール、メタノール、エタノール、テトラヒドロフラン、塩化メチレン、酢酸エチル等、あるいは上記溶媒と水との混合溶媒が挙げられる。溶媒の使用量は、化合物[XXVI]1mmolに対して、通常0.1~100mL、好ましくは0.5~10mLである。
 反応温度は、通常0~150℃、好ましくは10~80℃である。
 反応時間は、通常0.1~72時間、好ましくは0.5~24時間である。
 本反応は、pH7~14塩基性条件下、もしくはpH7で実施することができる。
 化合物(I)の塩としては、特に限定されないが、例えば、塩酸、硫酸等との塩が挙げられる。
 化合物(IX)、化合物(XVIII)又は化合物(XXVII)の塩としては、薬理学的に許容されるものであれば特に限定されないが、例えば、
塩酸、硫酸、臭化水素酸塩、リン酸等の鉱酸との塩;
メタンスルホン酸、p-トルエンスルホン酸、酢酸、シュウ酸、クエン酸、リンゴ酸、フマル酸等の有機酸との塩;
ナトリウム、カリウム等のアルカリ金属との塩;
マグネシウム等のアルカリ土類金属との塩;
アンモニア、エタノールアミン、2-アミノ-2-メチル-1-プロパノール等のアミンとの塩が挙げられる。
 また、化合物(XV)の塩としては、薬理学的に許容されるものであれば特に限定されないが、例えば、
ナトリウム、カリウム等のアルカリ金属との塩;
マグネシウム等のアルカリ土類金属との塩;
アンモニア、エタノールアミン、2-アミノ-2-メチル-1-プロパノール等のアミンとの塩が挙げられる。
 化合物(I)、化合物(IX)、化合物(XV)、化合物(XVIII)、化合物(XXVII)又はその塩は、溶媒和物を含む。溶媒和物としては、例えば、水和物、アルコール和物(例、メタノール和物、エタノール和物)が挙げられる。
 以下に参考例、実施例を挙げて、本発明を更に具体的に説明するが、これによって本発明が限定されるものではない。
 以下の参考例、実施例において、「室温」とは、15~30℃の温度をいう。
 以下の参考例、実施例において、「C」は主コンホマーを示し、「C」は副コンホマーを示す。
 以下の参考例、実施例において、濃度および含量における「%」は、特段の記載が無い限り、「重量%」を示す。
参考例1
(工程1)
Figure JPOXMLDOC01-appb-C000065
 p-メトキシベンジルアミン(181g,1.32mol)、トリエチルアミン(185mL,134g,1.32mol)およびTHF(772mL)の混合物に、16℃以下で塩化ベンゾイル(185g,1.32mol)を滴下した。7℃以下で3時間撹拌した後、水(400mL)を14℃以下で滴下した。この混合物に酢酸エチル(140mL)を加えて抽出し、さらに水層に酢酸エチル(360mL)を加えて抽出した。あわせた有機層を20%食塩水(0.15kg)で2回、20%食塩水(0.22kg)で1回洗浄し、硫酸マグネシウム(50g)で乾燥し、シリカゲル(22g)を加えた後、濾過(シリカゲルプレコート)した。濾液を60℃以下で0.67kgまで減圧濃縮し、5℃まで冷却した。濾過を行い、結晶を冷酢酸エチル(140mL)で洗浄した後、減圧下50℃で乾燥することにより、N-(p-メトキシベンジル)ベンズアミド(257g,収率80.7%)を白色結晶として得た。
融点:98-99℃
IR (KBr): 3245 (NH), 1632 (C=O)cm-1
1H-NMR (CDCl3): δ= 7.78 (d, J = 8.2 Hz, 2H, Bz), 7.49 (t, J = 8.2 Hz, 1H, Bz), 7.42 (t, , J = 8.2, 2H, Bz), 7.29 (t, J = 8.7 Hz, 2H, Ph), 6.88 (d, J = 8.7 Hz, 2H, Ph), 6.36 (br s, 1H, NH), 4.58 (d, J = 5.6 Hz, 2H, CH2N), 3.80 (s, 3H, MeO).
(工程2)
Figure JPOXMLDOC01-appb-C000066
 N-(p-メトキシベンジル)ベンズアミド(193g,0.798mol)とジクロロメタン(1.55L)の混合物に、-11~-5℃で五塩化リン(183g,0.880mol)を加えた。この混合物を19℃まで昇温した後、15℃以下で減圧下、0.29Lまで濃縮した。この混合物にジクロロメタン(1.25L)を加え、アジドトリメチルシラン(135g,1.17mol)を-6℃以下で2時間かけて滴下した。反応混合物を室温で5時間撹拌した後、13℃以下で飽和炭酸水素ナトリウム水溶液(1.0L)を滴下した。さらに飽和炭酸水素ナトリウム水溶液(4.6L)を加え、分液した。水層にジクロロメタン(1.25L)を加えて抽出し、あわせた有機層を20%食塩水(0.85kg)で洗浄した。この有機層を硫酸マグネシウム(43g)で乾燥処理し、50℃以下で減圧濃縮することによって、化合物1aを粗生成物(258g)として得た。HPLCによって粗生成物中の化合物1aの含量を測定した結果は81.2%であり、正味の収量は209g(89.2%)であった。
1H-NMR (CDCl3): δ= 7.60-7.52 (m, 5H, Ph), 7.10 (d, J = 8.8 Hz, 2H, Ph), 6.86 (d, J = 8.8 Hz, 2H, Ph), 5.55 (s, 2H, CH2), 3.79 (s, 2H, CH3O).
MS: calcd for C15H15N4O [M + H]+ 267, found 267
参考例2
Figure JPOXMLDOC01-appb-C000067
 500mL四口フラスコに5-フェニル-1H-テトラゾール(14.64g,100mmol)、炭酸ナトリウム(15.91g,150mmol)、テトラブチルアンモニウムブロミド(TBABと略記することもある、0.71g,2.2mmol)および水(120mL)を加え、p-メトキシベンジルクロリド(15.40g,98mmol)のクロロホルム(160mL)溶液を氷冷下1時間かけて滴下し、さらに55℃で1時間撹拌した。反応終了後、有機層を分離し、水層をクロロホルム(120mL)で再抽出した。合わせた有機層を硫酸マグネシウムで乾燥し、濃縮し、白色の溶液(27.81g,収率107%)を得た。
 H-NMRから、粗生成物の組成比(モル比)は、1-メトキシベンジル体(化合物1a):2-メトキシベンジル体(化合物1a’):p-メトキシベンジルアルコール=43:16:41と決定した。
 先に得られた粗生成物(27.81g,p-メトキシベンジルアルコール含量:7.5g,54mmol)にTHF(100mL)、無水酢酸(6.02g,59mmol)、トリエチルアミン(1.82g,18mmol)、N,N-ジメチル-4-アミノピリジン(DMAPと略記することもある)(0.66g,5.4mmol)を加え、1時間撹拌した。メタノール(20mL)を加えた後、溶媒を留去し、酢酸エチル(100mL)に溶解し、水(20mL×2)で洗浄した。有機層を濃縮して真空乾燥したところ、淡白色溶液(22.02g)を得た。
 上記アセチル化処理した液体(20.02g)をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/3~1/2)により精製したところ、化合物1a(9.62g,収率37%)を白色固体として得た。
1H-NMR(400MHz, CDCl3)δ=3.79(3H, s), 5.55(2H, s), 6.84-6.88(2H, m), 7.08-7.13(2H, m), 7.48-7.62(5H, m).
13C-NMR(400MHz, CDCl3)δ=123.77, 125.72, 154.28, 159.61(4s), 114.37, 128.63, 128.78, 129.01, 131.12(5d), 51.03(1t), 55.37(1q).
IR(KBr)ν(cm-1):1611
EIMS(m/z):266 (M+)
融点:37.7-38.3℃
参考例3
(工程1)
Figure JPOXMLDOC01-appb-C000068
 ベンジルアミン(75.0g,0.700mol)、THF(300mL)およびトリエチルアミン(70.8g,134g,0.700mol)の混合物に、2℃以下で塩化ベンゾイル(98.4g,0.700mol)を滴下した後、昇温し、12~35で3時間攪拌した。反応の進行はTLC(展開溶媒:トルエン/酢酸エチル(4:1))で確認した。反応混合物に16℃以下で水(165mL)を加えた後、酢酸エチル(60mL)で抽出し、さらに水層に酢酸エチル(150mL)を加えて抽出した。あわせた有機層を、5%クエン酸水溶液(50mL)で2回、20%食塩水(75mL)で3回洗浄し、硫酸マグネシウム(20g)を加えて乾燥し、シリカゲル(12g)を加えた後、シリカゲルに通してろ過を行った。ろ液を、析出が始まるまで、40℃で減圧下濃縮した。濃縮物(263g)に酢酸エチル(41.5g)を加え、60℃で固体を溶解した後、2時間かけて20℃まで冷却し、酢酸エチル(40mL)を加えた。さらに5℃まで冷却した後、結晶をろ取し、残渣を冷酢酸エチル(75mL)で洗浄した。得られた結晶を、減圧下40℃で乾燥することにより、N-ベンジルベンズアミド(116g,収率78.5%)を白色結晶として得た。
融点:104-105℃
IR (KBr): 3244 (NH), 1633 (C=O)cm-1
1H-NMR (CDCl3): δ = 7.79 (d, J = 8.0 Hz, 2H, Bz), 7.50 (t, J = 8.0 Hz, 1H, Bz),.43 (t, J = 8.0, 2H, Bz), 7.37-7.35 (m, 4H, Ph), 7.32 (m, 1H, Ph), 6.41 (br s, 1H, NH), 4.65 (d, J = 5.6 Hz, 2H, CH2).
(工程2)
Figure JPOXMLDOC01-appb-C000069
 N-ベンジルベンズアミド(62.5g,0.296mol)とジクロロメタン(570mL)の混合物に、-15~-8℃で五塩化リン(67.9g,0.326mol)を5回に分けて加えた。この混合物を3時間かけて21℃まで昇温した後、21℃以下で減圧下、0.17Lまで濃縮した。この混合物にジクロロメタン(450mL)を加え、-8℃以下でアジドトリメチルシラン(50.3g,0.436mol)を0.5時間かけて滴下し、ジクロロメタン(5mL)で洗い込んだ。反応混合物を室温へ昇温し、4時間攪拌した。TLC(展開溶媒:トルエン/酢酸エチル(4:1))でN-ベンジルベンズアミドの消失を確認した。反応混合物に、17℃以下で飽和炭酸水素ナトリウム水溶液(2300mL)を加えて分離した。水層にジクロロメタン(450mL)を加えて抽出し、あわせた有機層を20%食塩水(300mL)で洗浄し、硫酸マグネシウム(20g)で乾燥し、40℃以下で減圧濃縮し、粗生成物(69.8g,理論収量の99.8%)を、濁りのある黄色油状物質として得た。
 得られた粗生成物(69.0g)にイソプロピルアルコール(75.9mL)を加えて加熱溶解し、熱時ろ過し、イソプロピルアルコール(4.7mL)で洗い込んだ。ろ液を7時間かけて-1℃まで冷却した。この間38℃のときに種晶の接種を行った。析出した結晶をろ取し、冷イソプロピルアルコール(20mL)で洗浄し、減圧下乾燥することにより、化合物1b(65.4g,収率94.7%)を得た。
融点:66.0-67.5℃
IR (KBr):1606 cm-1
1H-NMR (CDCl3): δ = 7.58 (d, J = 7.9 Hz, 2H, 5-Ph), 7.57 (t, J = 7.9 Hz, 1H, 5-Ph), 7.50 (t, J = 7.9 Hz, 2H, 5-Ph), 7.37-7.34 (m, 3H, Ph), 7.17-7.15 (m, 2H, Ph), 5.62 (s, CH2).
MS:237 (MH+)
参考例4
(工程1)
Figure JPOXMLDOC01-appb-C000070
 o-メトキシベンジルアミン(20.0g,0.146mol)、テトラヒドロフラン(124mL)およびトリエチルアミン(15.6g,0.154mol)の混合物に、-9~0℃でベンゾイルクロリド(20.5g,0.146mol)を滴下し、THF(10mL)で洗い込んだ。窒素雰囲気下反応混合物を徐々に昇温し約16℃にした。この間、内容物を攪拌するため適宜THF(合計51mL)を加えた。反応はTLC(展開溶媒:ヘキサン/酢酸エチル(1:1))で確認した。反応混合物を約16℃で10時間攪拌した後、5℃に冷却し、水(44mL)を加え、酢酸エチル(120mL,40mL,40mL)で3回抽出した。あわせた有機層を10%塩酸(40mL)、飽和炭酸水素ナトリウム水溶液(40mL)、水(40mL)および飽和食塩水(44mL)で順次洗浄し、硫酸マグネシウム(20g)で乾燥処理し、減圧下40℃以下で溶媒を留去した後、酢酸エチルを加え(内容物74g)、60℃に加温し固体を溶解した。6℃まで徐々に冷却し、析出した結晶を濾取し、冷酢酸エチル(10mL)で洗浄し、減圧下40℃以下で乾燥することによって、N-ベンゾイル-2-メトキシベンジルアミン(30.7g,87.1%)を白色結晶として得た。
融点:102~104℃
IR (KBr): 3308, 1647, 1636 cm-1
1H-NMR (DMSO-d6): δ = 8.86 (br t, J = 6.0 Hz, 1H), 7.91 (dd, J = 8.4, 1.6 Hz, 2H), 7.54 (t, J = 6.9, 1.6 Hz, 1H), 7.48 (dd, J = 8.9, 6.9 Hz, 2H), 7.24 (td, J = 7.8, 1.4 Hz, 1H), 7.17 (dd, J = 7.8, 1.4 Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 6.90 (td, J = 7.8, 1.4 Hz, 1H), 4.45 (d, J = 6.0 Hz, 2H), 3.83 (s, 3H).
MS: m/z = 242 (MH+)
(工程2)
Figure JPOXMLDOC01-appb-C000071
 N-ベンゾイル-2-メトキシベンジルアミン(16.0g,66.3mmol)とジクロロメタン(128mL)の混合物に、-15~-11℃にて、五塩化リン(15.2g,73.1mmol)を5回に分け11分かけて加えた後、2時間かけて21℃に昇温した。この間ジクロロメタン(11mL)で反応容器の内壁面を洗浄した。反応混合物を減圧下室温以下で濃縮した後、ジクロロメタン(101mL)を加え、-13~-10℃でアジドトリメチルシラン(11.2g,97.5mmol)を滴下し、ジクロロメタン(10mL)で洗い込んだ。反応混合物を室温へ昇温し、4時間攪拌した。反応はTLC(展開溶媒:トルエン/酢酸エチル(4:1,2:1))でモニターした。反応混合物に、3~11℃で飽和炭酸水素ナトリウム水溶液(200mL)を滴下した。さらに飽和炭酸水素ナトリウム水溶液(80mL)を加えて分液を行い、水層にジクロロメタン(100mL)を加えて抽出を行った。あわせた有機層を20%食塩水(50mL)で洗浄し、硫酸マグネシウム(10g)で乾燥し、減圧下35℃以下で溶媒を留去した。得られた固体(18g)に、酢酸エチル(25mL)を加えて80℃の浴で加熱し固体を溶解した後、4時間かけて-3℃まで冷却した。この間55℃のときに種晶の接種を行った。固体を濾取し、冷酢酸エチル(33g)で洗浄した後、減圧下50℃以下で乾燥することにより、化合物1c(1次晶;14.6g,82.5%;HPLC 99.2area%)を白色結晶として得た。濾液を減圧下40℃以下で濃縮した後(内容物5.6g)、酢酸エチル(2.7mL)を加え、70℃の浴で加熱して固体をほぼ溶解した。この混合物を-3℃まで冷却し、この間種晶の接種を行った。固体を濾取し、冷酢酸エチル(2mL)で洗浄し、減圧下50℃以下で乾燥することによって化合物1cの2次晶(2.11g,11.9%;HPLC 97.2area%)を白色結晶として得た。HPLCにて1次晶を標準とし、2次晶の含量を測定した結果96.7%であった。
HPLC測定条件:
  カラム Inertsil ODS-3,2μm,3.0×50mm
  移動相A MeCN/30mM KHPO(11:9)
  移動相B 0.1w/v%リン酸
  総流量 0.5mL/min
  グラジエントサイクル:0分(A液/B液=70/30)、5分(A液/B液=100/0)、35分(A液/B液=100/0)、38分(A液/B液=70/30)
  検出器 UV225nm
  温度 40℃
融点:100~102℃
IR (KBr):1603 cm-1
1H-NMR (DMSO-d6): δ = 7.76 (dd, J = 7.9, 2.2 Hz, 2H), 7.65-7.60 (m, 3H), 7.32 (td, J = 8.0, 1.5 Hz, 1H), 7.09 (dd, J = 8.0, 1.5 Hz, 1H), 6.97 (d, J = 8.0 Hz, 1H), 6.92 (t, J = 8.0 Hz, 1H), 5.64 (s, 2H), 3.58 (s, 3H).
13C-NMR (DMSO-d6): δ = 157, 154, 131, 130, 130, 129, 129, 124, 122, 120, 111, 55, 46.
MS: m/z = 267 (MH+)
参考例5
(工程1)
Figure JPOXMLDOC01-appb-C000072
 3,4-ジメトキシベンジルアミン(24.0g,0.144mol)、テトラヒドロフラン(192mL)およびトリエチルアミン(15.5g,0.153mol)の混合物に、-7~0℃でベンゾイルクロリド(20.7g,0.147mol)を滴下し、この間攪拌のためテトラヒドロフラン(24mL)を加え、滴下後テトラヒドロフラン(12mL)で洗い込み、さらにテトラヒドロフラン(24mL)を追加した。反応混合物を約15℃まで徐々に昇温した。反応はTLC(展開溶媒:ヘキサン/酢酸エチル(1:1))でモニターした。反応混合物に、5~8℃で水(48mL)を加えた後、酢酸エチル(144mL)を加えて分液を行い、水層を酢酸エチル(48mL)で2回抽出した。あわせた有機層を10%塩酸(48mL)、飽和炭酸水素ナトリウム水溶液(48mL)、水(48mL)および飽和食塩水(48mL)で順次洗浄し、硫酸マグネシウム(12g)で乾燥処理した後、減圧下40℃以下で溶媒を留去した。濃縮物(40g)に酢酸エチル(89g)を加えて50℃で均質になるまで温浸した後、11℃まで冷却した。固体を濾取し、冷酢酸エチル(15mL)で洗浄した後、40℃以下で減圧下乾燥することによって、N-ベンゾイル-3,4-ジメトキシベンジルアミン(33.3g,85.4%)を白色結晶として得た。
融点: 101~102℃
IR (KBr): 3334, 1637 cm-1
(工程2)
Figure JPOXMLDOC01-appb-C000073
 N-ベンゾイル-3,4-ジメトキシベンジルアミン(31.0g,0.114mol)とジクロロメタン(248mL)の混合物に、-12~-10℃で、五塩化リン(26.2g,0.126mol)を6回に分け12分かけて加え、ジクロロメタン(9mL)で容器内面を洗浄した。反応混合物を2時間かけて22℃まで昇温し、減圧下溶媒を留去した。濃縮物にジクロロメタン(220mL)を加えた後、-14-~13℃でアジドトリメチルシラン(19.3g,0.168mol)を38分かけて滴下し、ジクロロメタン(9mL)で洗い込んだ。反応混合物を4時間かけて室温へ昇温し、1時間攪拌後、3~6℃にて、飽和炭酸水素ナトリウム水溶液(200mL)を滴下し、さらに飽和炭酸水素ナトリウム水溶液(400mL)を加えた。水層にジクロロメタン(186mL)を加えて抽出を行い、あわせた有機層を20%食塩水(100mL)で洗浄し、硫酸マグネシウム(15g)で乾燥した後、減圧下40℃の浴を用いて濃縮した(濃縮物は固化した。内容物49g)。得られた固体に、酢酸エチル(60mL)を加え、40℃に加温して溶解した後、40gまで再び減圧濃縮し(濃縮物は固化しなかった)、酢酸エチル(25g)を加えた。
 得られた混合物の一部を採取し、溶媒をクロロホルムに置換して留去し、ジクロロメタンを加えた後、ヘキサンを加えて濁らせ、トリチュレーションを行った結果、結晶が析出した。これを種晶とした。
 残りの混合物について、溶媒をクロロホルムに置換して、留去した後、ジクロロメタン(35mL)を加え、ヘキサン(12mL)を滴下した。上記操作で得られた種晶を接種して結晶を析出させた。13℃まで冷却し、固体を濾取し、ジクロロメタン/ヘキサン混液(7:3;48mL)で洗浄した後、減圧下30℃以下で乾燥した。乾燥途中に融解を観察後、温浴を使用せずに真空乾燥を行い、化合物1d(28.1g,82.8%)を微褐色の固体として得た。
融点: 59~61℃
IR (KBr): 1607 cm-1
1H-NMR (DMSO-d6): δ = 7.76 (dd, J = 7.9, 1.6 Hz, 2H), 7.65-7.59 (m, 3H), 6.87 (d, J = 8.4 Hz, 1H), 6.72 (d, J = 1.8 Hz, 1H), 6.59 (dd, J = 8.4, 1.8 Hz, 1H), 5.70 (s, 2H), 3.70 (s, 3H), 3.62 (s, 3H).
13C-NMR (DMSO-d6): δ = 153, 149, 149, 131, 129, 129, 127, 124, 120, 112, 111, 55, 55, 51.
MS: m/z = 297 (MH+)
参考例6
(工程1)
Figure JPOXMLDOC01-appb-C000074
 3,4,5-トリメトキシベンジルアミン(20.0g,0.101mol)、THF(88.0mL)およびトリエチルアミン(14.9g,0.147mol)の混合物に、-6~-3℃にて、ベンゾイルクロリド(14.3g,0.101mol)を滴下し、THF(10mL)で洗い込んだ。反応混合物を窒素雰囲気下、-6~2℃で1時間攪拌した。TLC(ヘキサン/酢酸エチル(1:1))で出発原料の消費を確認した。反応混合物に2~10℃にて、水(44mL)を加えた後、酢酸エチル(17,40,18mL)で3回抽出を行った。あわせた有機層を18%食塩水(20mL)で2回洗浄し、硫酸マグネシウム(7.4g)で乾燥した後、シリカゲル(5.1g)を加えて11分攪拌後、シリカゲル(19g)を通して濾過した。35℃の浴を用い、減圧下35gまで濃縮した。濃縮物に酢酸エチルを加え、加熱し、固体を溶解した。この溶液を40~30℃の浴を用い、減圧下内容物が流動しなくなるまで溶媒を留去した(内容物量52g)。この際、途中で種晶の接種を行った。濾過に必要な量の酢酸エチルを加え、結晶を濾取し、酢酸エチルで洗浄し、減圧下50℃以下で乾燥することによって、N-ベンゾイル-3,4,5-トリメトキシベンジルアミン(27.3g,89.3%)を白色結晶として得た。
融点: 113~115℃
IR (KBr): 3374, 1654 cm-1
(工程2)
Figure JPOXMLDOC01-appb-C000075
 N-ベンゾイル-3,4,5-トリメトキシベンジルアミン(15.0g,49.8mmol)のジクロロメタン(120mL)溶液に、-17~-13℃にて五塩化リン(11.4g,54.7mmol)を12分かけて加えた。反応混合物を4時間かけて20℃に昇温し、減圧下濃縮した(浴温35℃以下)。濃縮物にジクロロメタン(97mL)を加え、-13~-14℃でアジドトリメチルシラン(8.41g,73.0mmol)を19分かけて滴下し、ジクロロメタン(5mL)で洗い込んだ。反応混合物の温度を3時間かけて室温に上げ、6時間攪拌した。反応はTLC(展開溶媒:トルエン/酢酸エチル(7:3))でモニターした。反応混合物を冷却し、3~10℃で飽和炭酸水素ナトリウム水溶液(250mL)を加えた。分液を行い、水層にジクロロメタン(90mL)を加えて抽出した。あわせた有機層を20%食塩水(50mL)で洗浄し、硫酸マグネシウムで乾燥した後、40℃以下で減圧下濃縮した。濃縮液にジクロロメタン(30mL)を加え、再度濃縮した。濃縮液にジクロロメタン(17mL)を加え、ヘキサンを加えて濁らせた。この混合物を少量採取し、減圧濃縮した後、ジイソプロピルエーテルを加えてトリチュレーションを行い結晶化させた。この結晶を種晶として上記の混合物に加え結晶を析出させた。この混合物を減圧下部分濃縮した後、結晶を濾取し、ヘキサン(40mL)とジクロロメタン(2mL)の混液で洗浄し、減圧下45℃以下で乾燥することによって、化合物1eの粗生成物(15.9g,97.7%)を淡褐黄色の結晶として得た。
融点:105~113℃
IR (KBr): 1595 cm-1
1H-NMR (CDCl3): δ = 7.61-7.52 (m, 5H), 6.34 (s, 2H), 5.54 (s, 2H), 3.82 (s, 3H), 3.76 (s, 6H).
13C-NMR (CDCl3): δ = 155, 154, 138, 131, 129, 129, 124, 105, 61, 56, 52.
MS: 327 (MH+).
参考例7
Figure JPOXMLDOC01-appb-C000076
 ピペロニルアミン(20.0g,0.133mol)、テトラヒドロフラン(87.5mL)およびトリエチルアミン(13.9g,0.137mol)の混合物に、-10~+6℃にて、ベンゾイルクロリド(18.6g,0.133mol)を滴下し、滴下途中内容物を攪拌するため適宜テトラヒドロフラン(合計123mL)を加え、滴下後テトラヒドロフラン(10mL)で洗い込んだ。反応混合物を窒素雰囲気下2~11℃で15時間攪拌した。出発原料の消費をTLC(展開溶媒:ヘキサン/酢酸エチル(1:1))で確認した。反応混合物に11℃にて、水(50mL)を加えた後、酢酸エチル(128mL)を加え分液を行った。水層につき酢酸エチル(44mL)で2回抽出を行い、あわせた有機層を、10%塩酸(40mL)、飽和炭酸水素ナトリウム水溶液(40mL)、水(40mL)および飽和食塩水(44mL)で順次洗浄し、硫酸マグネシウム(18g)で乾燥した。減圧下35℃以下で大部分の溶媒を留去した後(内容物61g)、酢酸エチル(61mL)を加え、結晶を濾取し、酢酸エチル(46mL)で洗浄し、減圧下50℃以下で乾燥することによって、N-ベンゾイルピペロニルアミン(28.6g,84.7%)を白色結晶として得た。
融点: 115~116℃
IR (KBr): 3308, 1629 cm-1
参考例8
Figure JPOXMLDOC01-appb-C000077
 炭酸ナトリウム(232g,2.19mol)の水(750mL)溶液にトルエン(750mL)および水(750mL)を加え、9℃に冷却し、o-メトキシベンジルアミン(300g,2.19mol)を加えた。この混合物に、攪拌下3~8℃でベンゾイルクロリド(307g,2.19mol)を滴下し、この間攪拌のためトルエン(750mL)を加えた。反応混合物を室温に昇温し20分攪拌した。反応はTLC(展開溶媒:ヘキサン/酢酸エチル(1:1))でモニターした。反応混合物を3℃に冷却し、濾過した。固体に市水(800mL)を加えて7時間半攪拌した後、濾過し、母液の有機層は濃縮乾固した。濾取した固体をトルエン(600mL)と懸濁した後、濾過し、濾液を濃縮乾固した。濾取した固体、上記の母液の有機層の濃縮乾固物、トルエン懸濁液の濾液の濃縮乾固物、ジクロロメタン(1500mL)および水(1500mL)を混合し、分液を行った。有機層を1mol/L塩酸(600mL)、水(600mL)および20%食塩水(600mL)で順次洗浄し、硫酸マグネシウム(60g)で乾燥した。硫酸マグネシウムを濾去し、濾液を減圧下50℃以下の浴で濃縮し(約830g)、浴温を18℃に下げた。固体を濾取し、冷ジクロロメタン(85mL)で洗浄し、50℃以下で減圧下乾燥することによって、N-ベンゾイル-2-メトキシベンジルアミン(1次晶481g,91.2%)を白色結晶として得た。HPLC分析の結果、面積百分率は99.3%、含量は97.8%であった。
 濾液を減圧下30℃以下で濃縮した後(53.5g)、酢酸エチル(41.1g)を加え、60℃の浴を用いて溶解した。4時間かけて1℃まで冷却した後、固体を濾取し、冷酢酸エチル(20mL)で洗浄し、50℃以下で減圧下乾燥することにより、N-ベンゾイル-2-メトキシベンジルアミンの2次晶(29.9g,5.7%)を得た。HPLC分析の結果、面積百分率は98.7%、含量は97.0%であった。
HPLC測定条件:
  カラム Inertsil ODS-3,2μm,3.0×50mm
  移動相A MeCN/30mM KHPO(11:9)
  移動相B 0.1w/v%リン酸
  総流量 0.5mL/min
  グラジエントサイクル:0分(A液/B液=70/30)、5分(A液/B液=100/0)、35分(A液/B液=100/0)、38分(A液/B液=70/30)
  検出器 UV225nm
  温度 40℃
参考例9
Figure JPOXMLDOC01-appb-C000078
 100mLナスフラスコに4-ブロモベンジルアルコール(5.00g,26.7mmol)、THF(19g)および無水酢酸(3.28g,32.1mmol)、トリエチルアミン(0.89g,8.80mmol)を加え、15℃でDMAP(0.33g,2.70mmol)を加えたところ、30℃まで温度が上昇した。1時間撹拌後、メタノール(10g)を加えて、溶媒を留去し、酢酸エチル(40mL)に溶解し水(20mL)で洗浄した。有機層を濃縮して真空乾燥したところ、薄黄色の透明溶液の化合物2a(5.52g,収率90.0%)を得た。
1H-NMR(400MHz, CDCl3)δ=2.09(3H, s), 5.04(2H, s), 7.22(2H, d, J=8.0), 7.47(2H, d, J=8.4).
13C-NMR(400MHz, CDCl3)δ=122.00, 134.69, 170.32(3s), 129.65, 131.41(2d), 65.35(1t), 20.97(1q).
IR(KBr)ν(cm-1):1738
EIMS(m/z):228 (M+-1)
参考例10
Figure JPOXMLDOC01-appb-C000079
 p-クロロベンジルアルコール(11.0g,77.1mmol)のテトラヒドロフラン(44.0mL)溶液に、窒素雰囲気下攪拌しながら-20~-18℃で無水酢酸(8.80g,86.2mmol)を滴下し、テトラヒドロフラン(8.0mL)で洗い込んだ。この溶液に-19~-17℃でトリエチルアミン(9.50g,93.9mmol)を滴下し、テトラヒドロフラン(6.4mL)で洗い込んだ。この溶液に、-20℃で4-ジメチルアミノピリジン(201mg,1.64mmol)を加え、テトラヒドロフラン(1.4mL)で容器内面を洗浄した(内温は-1℃まで上昇した)。冷浴を除き、内温を19℃まで上昇させた。反応はTLC(展開溶媒:ヘキサン/酢酸エチル(2:1))で確認した。反応混合物を適宜冷却しながら、2~19℃でメタノール(27.0mL)を滴下した後、45℃以下で減圧下濃縮した。濃縮物を酢酸エチル(88mL)で希釈し、1mol/L塩酸(44mL)、飽和炭酸水素ナトリウム水溶液(22mL,12mL×2回)および20%食塩水(33mL)で順次洗浄し、硫酸マグネシウム(5.0g)で乾燥した後、減圧下、35℃以下で濃縮した。濃縮液にクロロホルム(20mL)を加えて45℃以下で減圧濃縮する操作を4回繰り返した後、45℃以下で減圧下乾燥することによって、化合物2c(14.0g,98.0%)を微黄色油状物として得た。
IR (neat): 1739, 1227 cm-1
実施例1
(工程1)
Figure JPOXMLDOC01-appb-C000080
 アルゴン雰囲気下、50mL三口フラスコに、1-(4-メトキシベンジル)-5-フェニルテトラゾール(化合物1a,160mg,0.60mmol)、p-ブロモベンジルアセタート(化合物2a,345mg,1.5mmol)、ジクロロ(1,5-シクロオクタジエン)ルテニウム(II)ポリマー(16.9mg,0.06mmol(モノマー換算))、トリフェニルホスフィン(31.8mg,0.12mmol)、炭酸カリウム(333mg,2.4mmol)、脱水N-メチル-2-ピロリドン(1.2mL)を加え、140℃で2時間反応した。TLC(展開溶媒:酢酸エチル/ヘキサン=1/1)で反応の終点を確認した。反応液に酢酸エチル(18mL)を添加後ろ過し、残渣を酢酸エチル(9mL)で洗浄し、ろ液と洗液を合わせた。この液を硫酸マグネシウムで乾燥した後、濃縮したところ、濃緑色液体の粗生成物(504mg,収率202%)が得られた。HPLCにより粗生成物中の化合物3aの収量を計算したところ、154mg(収率62%)であった。続いて、粗生成物419mgをシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/4)により精製したところ、黄色油状の化合物3a(131mg,収率63%)を得た。
1H-NMR(400MHz, CDCl3)δ=2.13(3H, s), 3.73(3H, s), 4.75(2H, s), 5.08(2H, s), 6.64-6.72(4H, m),7.10-7.15(2H, m), 7.24-7.29(2H, m), 7.35(1H, dd, J=7.6, 1.2), 7.43-7.48(1H, m), 7.57(1H, dd, J=8.0, 0.8), 7.62-7.68(1H, m).
13C-NMR(400MHz, CDCl3)δ=122.45, 124.75,135.57, 138.35, 140.85, 153.92, 159.29, 170.31(8s), 113.78, 127.65, 128.18, 128.52, 129.07, 130.00, 130.90, 131.27(8d), 50.37, 65.40(2t), 20.94, 55.10(2q).
IR(KBr)ν(cm-1):1612, 1740
EIMS(m/z):414 (M+
(工程2)
Figure JPOXMLDOC01-appb-C000081
 50mLナスフラスコに化合物3a(0.268g,0.65mmol)、メタノール(15mL)、28%ナトリウムメトキシドメタノール溶液(0.125g,0.65mmol)を加え、室温で1.5時間反応した。TLC(展開溶媒:酢酸エチル/ヘキサン=1/1)で原料の消失を確認した。反応終了後、溶媒を留去して橙色油状の粗生成物(0.271g)を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/2)により精製したところ、黄色油状の化合物4a(0.151g,収率63%)を得た。
1H-NMR(400MHz, CDCl3)δ=3.72(3H, s), 4.68(2H, s), 4.74(2H, s), 6.63-6.72(4H, m), 7.08-7.12(2H, m), 7.24-7.29(2H, m), 7.33(1H, dd, J=7.6,1.2), 7.41-7.46(1H, m), 7.57(1H, dd, J=8.0, 1.2), 7.61-7.67(1H, m).
13C-NMR(400MHz, CDCl3)δ=122.48, 124.92, 137.68, 140.79, 141.21, 154.16, 159.36(7s), 113.88, 127.13, 127.61, 128.51, 129.19, 130.09, 131.01, 131.37(8d), 50.17, 64.44(2t), 55.24(1q).
IR(KBr)ν(cm-1):1612
EIMS(m/z):372 (M+
(工程3)
Figure JPOXMLDOC01-appb-C000082
 100mLナスフラスコに化合物4a(0.891g,2.39mmol)、THF(81.7mL)を加え、三臭化リン(1.30g,4.80mmol)を0℃で1.5時間かけて滴下した後、室温で4時間撹拌した。TLC(展開溶媒:酢酸エチル/ヘキサン=1/1)で反応の終了を確認した。反応液を水(817mL)に加え、酢酸エチル(653mL)で抽出し、水(490mL×3)で洗浄した。硫酸ナトリウムで乾燥した後、濃縮し、黄色油状の粗生成物(2.47g)を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/2)で精製し、黄色油状の化合物5a(1.09g,収率105%)を得た。
1H-NMR(400MHz, CDCl3)δ=3.73(3H, s), 4.46(2H, s), 4.75(2H, s), 6.64-6.73(4H, m), 7.07-7.13(2H, m), 7.28-7.33(2H, m), 7.34-7.38(1H, m), 7.44-7.49(1H, m), 7.55-7.59(1H, m), 7.62-7.68(1H, m).
13C-NMR(400MHz, CDCl3)δ=122.69, 124.87, 137.54, 138.72, 140.83, 154.02, 159.50(7s), 113.99, 127.92, 128.92, 129.26, 129.41, 130.11, 131.14, 131.45(8d), 32.72, 50.57(2t), 55.31(1q).
IR(KBr)ν(cm-1):1611
EIMS(m/z):434 (M+)
実施例2
Figure JPOXMLDOC01-appb-C000083
 1-(p-メトキシベンジル)-5-フェニル-1H-テトラゾール(化合物1a,151mg,0.567mmol)、炭酸カリウム(157mg,1.13mmol)、塩化ルテニウム(III)水和物(14.4mg,RuCl換算11.8mg,57.0μmol)、p-ブロモベンジルアセタート(化合物2a,156mg,0.681mmol)およびN-メチル-2-ピロリドン(1.1mL)の混合物を、窒素雰囲気下、120℃で16時間加熱した。反応はHPLCでモニターした。反応混合物を冷却後、酢酸エチル(4mL)を加え、ろ過して、化合物3aを含むろ液を得た。このろ液中の化合物3aの含量をHPLCで求めた結果、含量は30.0mg(12.8%)であった。
実施例3
(工程1)
Figure JPOXMLDOC01-appb-C000084
 アルゴン雰囲気下、100mL四口フラスコに、1-(4-メトキシベンジル)-5-フェニルテトラゾール(化合物1a,8.522g,32.0mmol)、p-ブロモベンジルアセタート(化合物2a,9.496g,41.5mmol)、[RuCl(η-COD)](0.897g,3.20mmol(10mol%))、トリフェニルホスフィン(1.679g,6.40mmol)、炭酸カリウム(8.845g,64.0mmol)、脱水NMP(64mL)を加え、140℃で4時間撹拌した。酢酸エチル(200mL)を加え、ろ過した後、有機層を10%食塩水(50mL)で二回洗浄した。続いて、有機層を硫酸マグネシウムで乾燥し、濃縮し、褐色溶液(19.96g,粗収率150.5%)を得た。化合物3aを含む粗生成物はそのまま次工程に使用した。
(工程2)
Figure JPOXMLDOC01-appb-C000085
 200mLフラスコに化合物3a(19.92g(粗生成物))、メタノール(160mL)、28%ナトリウムメトキシドメタノール溶液(3.086g,純分0.8643g,16.0mmol)を加え、室温で45分間撹拌した。TLC(展開溶媒:酢酸エチル/ヘキサン=1/1)で反応の終了を確認した。反応終了後、溶媒を留去し、クロロホルム(160mL)を加え、10%食塩水(40mL×2)で洗浄した後、クロロホルム(40mL)で水層から再抽出した。有機層を合わせ、硫酸マグネシウムで乾燥した後、溶媒を留去し、褐色の液体(25.63g,粗収率143%)を得た。化合物4aを含む粗生成物はそのまま次工程に使用した。
(工程3)
Figure JPOXMLDOC01-appb-C000086
 200mL四口フラスコに化合物4a(25.63g(粗生成物))、THF(160mL)を加え、三臭化リン(17.45g,64.5mmol)を0℃で1時間かけて滴下した後、室温で2時間撹拌した。TLC(展開溶媒:酢酸エチル/ヘキサン=1/1)で反応の終了を確認した。反応終了後、この溶液を水(80mL)に加え、酢酸エチル(80mL×2)で抽出し、10%食塩水(40mL×2)で洗浄した。有機層を硫酸マグネシウムで乾燥し、溶媒を留去し、黄色油状物(19.62g,粗収率141%)を得た。シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/3~1/2)により精製し、黄色油状物の化合物5a(5.89g,化合物1aからの収率42%)を得た。
1H-NMR(400MHz, CDCl3)δ=3.73(3H, s), 4.46(2H, s), 4.75(2H, s), 6.64-6.73(4H, m), 7.07-7.13(2H, m), 7.28-7.33(2H, m), 7.34-7.38(1H, m), 7.44-7.49(1H, m), 7.55-7.59(1H, m), 7.62-7.68(1H, m).
13C-NMR(400MHz, CDCl3)δ=122.69, 124.87, 137.54, 138.72, 140.83, 154.02, 159.50(7s), 113.99, 127.92, 128.92, 129.26, 129.41, 130.11, 131.14, 131.45(8d), 32.72, 50.57(2t), 55.31(1q).
IR(KBr)ν(cm-1):1611
EIMS(m/z):434 (M+)
実施例4
(工程1)
Figure JPOXMLDOC01-appb-C000087
 トリフェニルホスフィン(4.81g,18.3mmol)、1-ベンジル-5-フェニル-1H-テトラゾール(化合物1b,43.3g,183mmol)、炭酸カリウム(50.7g,367mmol)、ジクロロ(1,5-シクロオクタジエン)ルテニウム(II)ポリマー(2.57g,単量体として9.17mmol)、p-ブロモベンジルアセタート(化合物2a,62.9g,274mmol)およびN-メチル-2-ピロリドン(366mL)の混合物を、窒素雰囲気下140℃で5時間攪拌した。反応はHPLCでモニターした。反応混合物を冷却後、酢酸エチル(1000mL)と混合し、ろ過し、不溶物を酢酸エチル(約80mL)で洗浄した。濾液を10%食塩水(254mL)に加え、分離した。有機層を10%食塩水(254mL)で洗浄し、硫酸マグネシウム(50g)で乾燥した後、40℃以下で減圧下濃縮し、化合物3bの粗生成物(161g,理論収量の229%)を暗褐色油状物として得た。次工程には該粗生成物を精製せずに用いた。
IR (neat): 1741 (C=O), 1603 cm-1.
1H-NMR (CDCl3): δ = 7.63 (td, J = 7.6, 1.4 Hz, 1H, biphenyl), 7.57 (dd, J = 7.6, 1.4 Hz, 1H, biphenyl), 7.44 (td, J = 7.6, 1.4 Hz, 1H, biphenyl), 7.34 (dd, J = 7.6, 1.4 Hz, 1H, biphenyl), 7.27 (d, J = 8.6 Hz, 2H, o-Ph of Bn), 7.22 (t, J = 8.6 Hz, 1H, p-Ph of Bn), 7.16 (t, J = 8.6 Hz, 2H, m-Ph of Bn), 7.13 (d, J = 7.2 Hz, 2H, biphenyl), 6.76 (d, J = 7.2 Hz, 2H, biphenyl), 5.09 (s, 2H, CH2O), 4.82 (s, 2H, CH2N), 2.11 (s, 3H, Me).
13C-NMR (CDCl3): δ = 171 (C=O), 155 (tetrazole), 141, 139, 136, 133 (quaternary Ar), 132, 131, 130, 129, 129, 128, 128 (CH), 122 (quaternary Ar), 66 (CH2O), 51 (CH2 of Bn), 21 (CH3).
MS:385 (MH+)
(工程2)
Figure JPOXMLDOC01-appb-C000088
 粗[2’-(1-ベンジル-1H-テトラゾール-5-イル)ビフェニル-4-イル]メチルアセタート(粗生成物として150g,粗生成物中の化合物3bの含量65.4g,0.170mol)のメタノール(748mL)溶液に、18~19℃で、28%ナトリウムメトキシドメタノール溶液(16.4g,85mmol)を滴下し、メタノール(2.9g)で洗い込んだ。反応はTLC(展開溶媒:トルエン/酢酸エチル(4:1))およびHPLCで確認した。反応混合物を約20℃で1時間攪拌後、40℃以下で減圧下濃縮した。濃縮物をクロロホルム(791mL)および24%食塩水(186g)と混合した後、分離し、得られた有機層を24%食塩水(186g)で洗浄した。得られた混合物を硫酸マグネシウム(36g)で乾燥し、活性白土(ガレオンアースNV,50g)に通してろ過し、クロロホルム(約50mL)で洗い込んだ。濾液を減圧下濃縮することによって、化合物4bの粗生成物(130g,理論収量の222%)を暗褐色油状物として得た。該粗生成物を精製せずに次工程に用いた。
IR (neat): 3397 (OH), 1603 cm-1.
1H-NMR (CDCl3): δ = 7.64 (td, J = 7.6, 1.6 Hz, 1H, biphenyl), 7.57 (dd, J = 7.6, 1.6 Hz, 1H, biphenyl), 7.43 (td, J = 7.6, 1.6 Hz, 1H, biphenyl), 7.34 (dd, J = 7.6, 1.6 Hz, 1H, biphenyl), 7.29 (d, J = 8.4 Hz, 2H, Ph of Bn), 7.21 (t, J = 8.4 Hz, 1H, Ph of Bn), 7.16 (t, J = 8.4 Hz, 2H, Ph of Bn), 7.12 (d, J = 7.5 Hz, 2H, biphenyl), 6.78 (d, J = 7.5 Hz, 2H, biphenyl), 4.82 (s, 2H, CH2N), 4.70 (d, J = 5.7 Hz, 2H, CH2O), 1.81 (t, J = 5.7 Hz, 1H, OH).
13C-NMR (CDCl3): δ = 155 (tetrazole), 141, 141, 138, 133 (quaternary Ar), 132, 131, 130, 129, 129, 128, 127 (CH), 122 (quaternary Ar), 64 (CH2O), 51 (CH2 of Bn).
MS:343 (MH+)
(工程3)
Figure JPOXMLDOC01-appb-C000089
 粗[2’-(1-ベンジル-1H-テトラゾール-5-イル)ビフェニル-4-イル]メタノール(粗生成物として118g,粗生成物中の化合物4bの含量52.9g,0.154mol)とTHF(710mL)の混合物に、窒素雰囲気下-9~-4℃で三臭化リン(62.7g,0.232mol)を1時間かけて滴下し、THF(7mL)で洗い込んだ。反応はTLC(展開溶媒:トルエン/酢酸エチル(4:1)および酢酸エチル/ヘキサン(1:1))で確認した。反応混合物を、12℃まで昇温し、26℃以下で水(360mL)に加え、酢酸エチル(360mL)を加えて抽出した。水層に酢酸エチル(360mL)を加えて抽出し、あわせた有機層を10%食塩水(190g)で2回洗浄し、硫酸マグネシウム(34g)で乾燥した後、40℃以下で減圧下濃縮することにより、粗生成物(96.5g,理論収量の154%)を得た。粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/酢酸エチル(100:0~1:1))により、下記に示す3つの暗褐色油状物を得た。
(A):0.17g,理論収量の0.3%;化合物5bの他に低極性のスポットをごく少量含む
(B):16.6g,理論収量の26.5%;ほぼ化合物5bのみ
(C):9.99g,理論収量の9.6%;化合物5bの他に高極性の2スポットを少量含む
 上記(B)の油状物(化合物5b)をNMR測定に供した。
IR (neat): 1603 cm-1
1H-NMR (CDCl3): δ = 7.65 (td, J = 7.5, 1.5 Hz, 1H, biphenyl), 7.57 (dd, J = 7.5, 1.5 Hz, 1H, biphenyl), 7.45 (td, J = 7.9, 1.4 Hz, 1H, biphenyl), 7.35 (dd, J = 7.9, 1.4 Hz, 1H, biphenyl), 7.31 (d, J = 8.2 Hz, 2H, o-Ph), 7.22 (t, J = 8.2 Hz, 1H, p-Ph), 7.17 (t, J = 8.2 Hz, 2H, m-Ph), 7.10 (2H, J = 8.2 Hz, 2H, biphenyl), 6.77 (2H, J = 8.2 Hz, 2H, biphenyl), 4.82 (s, 2H, CH2N), 4.46 (s, 2H, CH2Br).
13C-NMR (CDCl3): δ = 154 (tetrazole), 141 (quaternary Ar), 139 (quaternary Ar), 138 (quaternary Ar), 133 (quaternary Ar), 132 (CH of Ar), 131 (CH of Ar), 130 (CH of Ar), 129 (CH of Ar), 129 (CH of Ar), 129 (CH of Ar), 128 (CH of Ar), 128 (CH of Ar), 122 (quaternary Ar), 51 (CH2N), 32 (CH2Br).
MS:405 (MH+)
実施例5
Figure JPOXMLDOC01-appb-C000090
 アルゴン雰囲気下、50mL三口フラスコに1-(4-メトキシベンジル)-5-フェニルテトラゾール(化合物1a,799.0mg,3mmol)、4-ブロモトルエン(化合物2b,1.2803g,7.5mmol)、[RuCl(η-C)](75.3mg,0.15mmol(5mol%))、トリフェニルホスフィン(157.0mg,0.6mmol)、炭酸カリウム(1.6601g,12mmol)、脱水NMP(6.0mL)を加え、140℃で2時間反応した。反応終了後、酢酸エチル(90mL)で希釈し、不溶物をろ別した後、酢酸エチル(45mL)で洗浄した。ろ液および洗液を合わせ、食塩水で洗浄後、硫酸マグネシウムで乾燥し、溶媒を濃縮し、深緑色液体の粗生成物(1.53g,収率143%)を得た。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=4/1)で精製し、黄白色固体の1-(4-メトキシベンジル)-5-(4’-メチルビフェニル-2-イル)テトラゾール(化合物3e,640mg,収率60%)を得た。
1H-NMR(400MHz, CDCl3)δ=2.34(3H, s), 3.72(3H, s), 4.70(2H, s), 6.61-6.73(4H, m), 7.00-7.12(4H, m), 7.30-7.45(2H, m), 7.53-7.65(2H, m).
13C-NMR(400MHz, CDCl3)δ=122.61, 125.08, 135.76, 137.82, 141.42, 154.31, 159.40(7s), 113.87, 127.40, 128.32, 129.25, 129.52, 129.99, 131.11, 131.30(8d), 50.44(1t), 21.23, 55.25(3q).
IR(KBr)ν(cm-1):1612
EIMS(m/z):356
実施例6
Figure JPOXMLDOC01-appb-C000091
 塩化ルテニウム(III)水和物(Ru40.01%;5.8mg,RuClとして4.8mg,23μmol,1.3mol%)、トリフェニルホスファン(10.4mg,39.7μmol)、1-(o-メトキシベンジル)-5-フェニル-1H-テトラゾール(化合物1c,481mg,1.81mmol)、炭酸カリウム(499mg,3.61mmol)、p-ブロモベンジルアセタート(化合物2a,455mg,1.99mmol)およびN-メチル-2-ピロリドン(1.9mL)の混合物を、窒素雰囲気下攪拌しながら140℃の浴で10時間加熱し、反応をHPLCでモニターした。反応混合物を室温に冷却後、酢酸エチル(10mL)を加えて濾過し、酢酸エチル(10mL)で洗浄した。得られた濾液(19.6g)中の生成物(化合物3c)をHPLCにより定量した結果、化合物3cの正味量は607mg(81%)であった。
HPLC測定条件:
  カラム Inertsil ODS-3,2μm,3.0×50mm
  移動相A MeCN/30mM KHPO(11:9)
  移動相B 0.1w/v%リン酸
  総流量 0.5mL/min
  グラジエントサイクル:0分(A液/B液=80/20)、5分(A液/B液=100/0)、40分(A液/B液=100/0)、43分(A液/B液=80/20)
  検出器 UV225nm
  温度 40℃
融点: 117~118℃
IR (KBr): 1735, 1603 cm-1
1H-NMR (DMSO-d6): δ = 7.74 (td, J = 7.7, 1.4 Hz, 1H), 7.61-7.58 (m, 3H), 7.28 (d, J = 8.2 Hz, 2H), 7.27 (td, J = 7.4, 1.4 Hz, 1H), 7.00 (d, 2H, J = 8.2 Hz, 2H), 6.91 (dd, J = 7.4, 1.4 Hz, 1H), 6.90 (d, J = 7.4 Hz, 1H), 6.81 (t, J = 7.4 Hz, 1H), 5.06 (s, 2H), 4.98 (s, 2H), 3.51 (s, 3H), 2.08 (s, 3H).
13C-NMR (DMSO-d6): δ = 170, 156, 154, 141, 138, 136, 131, 131, 130, 130, 128, 128, 128, 122, 121, 120, 111, 65, 55, 46, 21.
MS: m/z = 415 (MH+)
実施例7
Figure JPOXMLDOC01-appb-C000092
 ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)(360mg,0.375mmol,5mol%)、1-(o-メトキシベンジル)-5-フェニル-1H-テトラゾール(化合物1c,2.00g,7.51mmol)、炭酸カリウム(2.09g,15.1mmol)、p-ブロモベンジルアセタート(化合物2a,2.54g,11.1mmol)およびN-メチル-2-ピロリドン(15.0mL)の混合物を、窒素雰囲気下攪拌しながら加熱して内温を約140℃に5時間保持した後、室温に冷却した。反応はHPLCでモニターした。反応混合物に酢酸エチル(45mL)を加え、濾過を行い、酢酸エチル(10mL)で洗浄した。濾液を20%食塩水(40mL)で2回洗浄し、硫酸マグネシウム(1.1g)で乾燥した。硫酸マグネシウムを濾去し、酢酸エチル(約10mL)で洗浄した。得られた濾液(58.6g)中の生成物(化合物3c)をHPLCで定量した結果、化合物3cの正味量は2.56g(82.2%)であった。
HPLC測定条件:
  カラム Inertsil ODS-3,2μm,3.0×50mm
  移動相A MeCN/30mM KHPO(11:9)
  移動相B 0.1w/v%リン酸
  総流量 0.5mL/min
  グラジエントサイクル:0分(A液/B液=80/20)、5分(A液/B液=100/0)、40分(A液/B液=100/0)、43分(A液/B液=80/20)
  検出器 UV225nm
  温度 40℃
実施例8
Figure JPOXMLDOC01-appb-C000093
 塩化ルテニウム(III)水和物(Ru40.01%;5.2mg,RuClとして4.3mg,21μmol,1.3mol%)、トリ(p-トリル)ホスファン(11.0mg,36.1μmol)、1-(o-メトキシベンジル)-5-フェニル-1H-テトラゾール(化合物1c,439mg,1.65mmol)、炭酸カリウム(455mg,3.29mmol)、p-ブロモベンジルアセタート(化合物2a,415mg,1.81mmol)およびN-メチル-2-ピロリドン(1.8mL)の混合物を、窒素雰囲気下攪拌しながら140℃の浴で11時間加熱し、反応をHPLCでモニターした。反応混合物を室温に冷却後、酢酸エチル(10mL)を加えて濾過し、酢酸エチル(10mL)で洗浄した。得られた濾液(19.4g)中の生成物(化合物3c)をHPLCにより定量した結果、化合物3cの正味量は464mg(67.9%)であった。
HPLC測定条件:
  カラム Inertsil ODS-3,2μm,3.0×50mm
  移動相A MeCN/30mM KHPO(11:9)
  移動相B 0.1w/v%リン酸
  総流量 0.5mL/min
  グラジエントサイクル:0分(A液/B液=80/20)、5分(A液/B液=100/0)、40分(A液/B液=100/0)、43分(A液/B液=80/20)
  検出器 UV225nm
  温度 40℃
実施例9
Figure JPOXMLDOC01-appb-C000094
 塩化ルテニウム(III)水和物(Ru40.01%;5.1mg,RuClとして4.2mg,20μmol,1.3mol%)、トリ(p-メトキシフェニル)ホスファン(12.5mg,35.5μmol)、1-(o-メトキシベンジル)-5-フェニル-1H-テトラゾール(化合物1c,430mg,1.61mmol)、炭酸カリウム(446mg,3.23mmol)、p-ブロモベンジルアセタート(化合物2a,407mg,1.78mmol)およびN-メチル-2-ピロリドン(1.7mL)の混合物を、窒素雰囲気下攪拌しながら140℃の浴で12時間加熱し、反応をHPLCでモニターした。反応混合物を室温に冷却後、酢酸エチル(10mL)を加えて濾過し、酢酸エチル(10mL)で洗浄した。得られた濾液(19.3g)中の生成物(化合物3c)をHPLCにより定量した結果、化合物3cの正味量は475mg(71.0%)であった。
HPLC測定条件:
  カラム Inertsil ODS-3,2μm,3.0×50mm
  移動相A MeCN/30mM KHPO(11:9)
  移動相B 0.1w/v%リン酸
  総流量 0.5mL/min
  グラジエントサイクル:0分(A液/B液=80/20)、5分(A液/B液=100/0)、40分(A液/B液=100/0)、43分(A液/B液=80/20)
  検出器 UV225nm
  温度 40℃
実施例10
Figure JPOXMLDOC01-appb-C000095
 塩化ルテニウム(III)水和物(Ru40.01%;5.5mg,RuClとして4.5mg,22μmol,1.2mol%)、シクロヘキシルジフェニルホスファン(10.2mg,38.0μmol)、1-(o-メトキシベンジル)-5-フェニル-1H-テトラゾール(化合物1c,464mg,1.74mmol)、炭酸カリウム(482mg,3.48mmol)、p-ブロモベンジルアセタート(化合物2a,439mg,1.92mmol)およびN-メチル-2-ピロリドン(1.9mL)の混合物を、窒素雰囲気下攪拌しながら140℃の浴で12時間加熱し、反応をHPLCでモニターした。反応混合物を室温に冷却後、酢酸エチル(10mL)を加えて濾過し、酢酸エチル(10mL)で洗浄した。得られた濾液(19.5g)中の生成物(化合物3c)をHPLCにより定量した結果、化合物3cの正味量は292mg(40.5%)であった。
HPLC測定条件:
  カラム Inertsil ODS-3,2μm,3.0×50mm
  移動相A MeCN/30mM KHPO(11:9)
  移動相B 0.1w/v%リン酸
  総流量 0.5mL/min
  グラジエントサイクル:0分(A液/B液=80/20)、5分(A液/B液=100/0)、40分(A液/B液=100/0)、43分(A液/B液=80/20)
  検出器 UV225nm
  温度 40℃
実施例11
Figure JPOXMLDOC01-appb-C000096
 塩化ルテニウム(III)水和物(Ru40.01%;5.4mg,RuClとして4.4mg,21μmol,1.3mol%)、トリフェニルホスファン(11.2mg,42.7μmol)、1-(o-メトキシベンジル)-5-フェニル-1H-テトラゾール(化合物1c,455mg,1.71mmol)、炭酸カリウム(472mg,3.42mmol)、p-クロロベンジルアセタート(化合物2c,347mg,1.88mmol)およびN-メチル-2-ピロリドン(1.8mL)の混合物を、窒素雰囲気下攪拌しながら140℃の浴で13時間加熱し、反応をHPLCでモニターした。反応混合物を室温に冷却後、酢酸エチル(10mL)を加え、濾過し酢酸エチル(10mL)で洗浄した。濾液(19.8g)中の生成物(化合物3c)をHPLCで定量した結果、化合物3cの正味量は213mg(30.0%)であった。
HPLC測定条件:
  カラム Inertsil ODS-3,2μm,3.0×50mm
  移動相A MeCN/30mM KHPO(11:9)
  移動相B 0.1w/v%リン酸
  総流量 0.5mL/min
  グラジエントサイクル:0分(A液/B液=80/20)、5分(A液/B液=100/0)、40分(A液/B液=100/0)、43分(A液/B液=80/20)
  検出器 UV225nm
  温度 40℃
実施例12
Figure JPOXMLDOC01-appb-C000097
 塩化ルテニウム(III)水和物(Ru40.01%;6.8mg,RuClとして5.6mg,27μmol,1.3mol%)、トリフェニルホスファン(14.0mg,53.4μmol)、1-(o-メトキシベンジル)-5-フェニル-1H-テトラゾール(化合物1c,567mg,2.13mmol)、p-ブロモ安息香酸メチル(化合物2d,503mg,2.34mmol)、炭酸カリウム(324mg,2.34mmol)およびN-メチル-2-ピロリドン(2.0mL)の混合物を、窒素雰囲気下攪拌しながら140℃の浴で12時間加熱し、反応をHPLCでモニターした。反応混合物を室温に冷却後、酢酸エチル(10mL)を加えて濾過し、酢酸エチル(10mL)で洗浄した。得られた濾液(20.3g)中の生成物(化合物3d)をHPLCにより定量した結果、化合物3dの正味量は632mg(74.1%)であった。
HPLC測定条件:
  カラム Inertsil ODS-3,2μm,3.0×50mm
  移動相A MeCN/30mM KHPO(11:9)
  移動相B 0.1w/v%リン酸
  総流量 0.5mL/min
  グラジエントサイクル:0分(A液/B液=70/30)、5分(A液/B液=100/0)、35分(A液/B液=100/0)、38分(A液/B液=70/30)
  検出器 UV225nm
  温度 40℃
融点: 72~75℃
IR(KBr): 1735, 1719, 1610 cm-1
1H-NMR(DMSO-d6): δ = 7.84(d, J = 8.4 Hz, 2H), 7.77(m, 1H), 7.67-7.65(m, 3H), 7.27(td, J = 8.4, 1.4Hz, 1H), 7.11(d, J = 8.4 Hz, 2H), 6.97(dd, J = 8.4, 1.4 Hz, 1H), 6.90(d, J = 8.4 Hz, 1H), 6.81(t, J = 8.4 Hz, 1H), 5.03(s, 2H), 3.85(s, 3H), 3.50(s, 3H).
MS: m/z = 401(MH+)
実施例13
Figure JPOXMLDOC01-appb-C000098
 ポリ[(η,η-シクロオクタ-1,5-ジエン)ルテニウム-ジ-μ-クロロ](10.2mg,単量体として36.4μmol,5mol%)、トリフェニルホスファン(19.3mg,73.6μmol)、1-(o-メトキシベンジル)-5-フェニル-1H-テトラゾール(化合物1c,194mg,0.729mmol)、p-ブロモ安息香酸メチル(化合物2d,236mg,1.10mmol)、炭酸カリウム(203mg,1.47mmol)およびN-メチル-2-ピロリドン(1.5mL)の混合物を、窒素雰囲気下攪拌しながら140℃の浴で9時間加熱し、反応をHPLCでモニターした。反応混合物に酢酸エチル(5.0mL)を加え、濾過し、酢酸エチル(7.0mL)で洗浄した。濾液を20%食塩水(4.0mL)で洗浄し、水層に酢酸エチル(10.0mL)を加えて抽出を行った。あわせた有機層を硫酸マグネシウム(1.0g)で乾燥し、活性炭(雪A(dry)(商品名),セラケム株式会社製;0.10g)を加えて30分攪拌した後濾過し、酢酸エチル(10mL)で洗浄した。濾液を40℃の浴を用い減圧下濃縮することにより、粗生成物(10.6g)を得た。粗生成物中の化合物3dをHPLCで定量した結果、正味量は232mg(79.3%)であった。
HPLC測定条件:
  カラム Inertsil ODS-3,2μm,3.0×50mm
  移動相A MeCN/30mM KHPO(11:9)
  移動相B 0.1w/v%リン酸
  総流量 0.5mL/min
  グラジエントサイクル:0分(A液/B液=70/30)、5分(A液/B液=100/0)、35分(A液/B液=100/0)、38分(A液/B液=70/30)
  検出器 UV225nm
  温度 40℃
実施例14
Figure JPOXMLDOC01-appb-C000099
 ポリ[(η,η-シクロオクタ-1,5-ジエン)ルテニウム-ジ-μ-クロロ](11.2mg,単量体として40.0μmol,5mol%)、トリフェニルホスファン(21.1mg,80.4μmol)、1-(o-メトキシベンジル)-5-フェニル-1H-テトラゾール(化合物1c,214mg,0.802mmol)、p-クロロ安息香酸メチル(化合物2e,205mg,1.20mmol)、炭酸カリウム(222mg,1.61mmol)およびN-メチル-2-ピロリドン(1.6mL)の混合物を窒素雰囲気下攪拌しながら140℃の浴で9時間加熱し、反応をHPLCでモニターした。反応混合物を室温で放置後、酢酸エチル(5.0mL)を加え、濾過し、酢酸エチル(6.4mL)で洗い込んだ。10%食塩水(4.0mL)を加えて分液を行った。TLC(展開溶媒:ヘキサン/酢酸エチル(1:1)およびトルエン/酢酸エチル(7:3))で水層に主生成物が検出されたため、水層に酢酸エチル(5.0mL)を加え抽出を行った。あわせた有機層に20%食塩水を加えて分液した。TLC(展開溶媒:ヘキサン/酢酸エチル(1:1))で水層に主生成物が検出されたため、水層に酢酸エチル(5.0mL)を加えて抽出を行った。あわせた有機層を飽和食塩水(5.0mL)で洗浄した後、さらに飽和食塩水(8.0mL)を加えて分液した。TLCで水層に主生成物が検出されたため、水層をあわせ、酢酸エチル(10mL)で抽出した。あわせた有機層に硫酸マグネシウム(3.4g)を加えて乾燥した後、活性炭(雪A(dry)(商品名),セラケム株式会社製;0.10g)を加え40分攪拌後濾過し、酢酸エチル(10mL)で洗浄した。濾液を40℃の浴を用い、減圧下濃縮することによって粗生成物(9.54g)を得た。得られた粗生成物中の化合物3dを、HPLCで定量した結果、73.9%(粗生成物321mg中、化合物3d 237mg)であった。得られた粗生成物の全量(9.54g)を、シリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン/酢酸エチル(100:0~2:1))で精製した。溶媒を留去し、酢酸エチル(2mL)と加熱して固体の大部分を溶解した後、ジイソプロピルエーテル(8mL)を徐々に加え、適宜種晶の接種を行った。この混合物を-2℃まで冷却し、固体を濾取し、ジイソプロピルエーテル(8.5mL)で洗浄し、40℃以下で乾燥することにより化合物3d(466mg,理論収量の76.0%)を白色結晶として得た。H-NMRスペクトル(化合物3d/ジイソプロピルエーテル/酢酸エチル=90.3:5.8:3.9(質量比))から、得られた化合物3dの正味量を求めると、421mg(68.6%)であった。
HPLC測定条件:
  カラム Inertsil ODS-3,2μm,3.0×50mm
  移動相A MeCN/30mM KHPO(11:9)
  移動相B 0.1w/v%リン酸
  総流量 0.5mL/min
  グラジエントサイクル:0分(A液/B液=70/30)、5分(A液/B液=100/0)、35分(A液/B液=100/0)、38分(A液/B液=70/30)
  検出器 UV225nm
  温度 40℃
実施例15
Figure JPOXMLDOC01-appb-C000100
 塩化カルシウム(0.910g)にエタノール(99.5;7.85g)を加え、約60℃に加熱して溶解し、室温に冷却することにより、塩化カルシウムエタノール溶液(10.4%;密度0.850g/mL)を得た。
 2’-[1-(o-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-カルボン酸メチル(化合物3d,含量90.3%;97.7mg,正味量88.3mg,0.220mmol)、上記の塩化カルシウムエタノール溶液(10.4%;0.166mL,141mg,塩化カルシウム量14.6mg,0.132mmol)およびエタノール(99.5;0.29mL)の混合物を5℃の浴で冷却後、テトラヒドロホウ酸ナトリウム(10.0mg,0.264mmol)を加え、窒素雰囲気下室温にて1時間攪拌した。反応はTLC(展開溶媒:トルエン/酢酸エチル(2:1))でモニターした。反応混合物を攪拌しながら60℃の浴で2時間半加熱後、室温に冷却した。反応混合物に塩化カルシウムエタノール溶液(10.4%;50μL,42mg,塩化カルシウム量4.4mg,40μmol)を加え、8℃の浴で冷却した後、テトラヒドロホウ酸ナトリウム(3.1mg,82μmol)を加え、冷浴を除いた。反応混合物を60℃の浴で2時間加熱した。反応混合物を8℃の浴で冷却し、10%塩酸(0.15mL,159mg)を加え、室温に昇温した後、水(1.0mL)を加え、酢酸エチル(5.0mL)で3回抽出を行った。あわせた有機層を飽和炭酸水素ナトリウム水溶液(3.0mL)および20%食塩水(3.0mL)で順次洗浄し、硫酸マグネシウム(0.5g)で乾燥した後、減圧下30℃以下で濃縮した。得られた油状物にジイソプロピルエーテル(1.0mL)を加えてトリチュレーションを行い、結晶化させた。さらにジイソプロピルエーテル(2.0mL)を加えて30分攪拌し、固体を濾取し、ジイソプロピルエーテル(1.0mL)で洗浄した後、減圧下40℃以下で乾燥することにより、化合物4c(62.7mg,76.4%)を得た。
融点: 139~141℃
IR(KBr): 3398, 1605 cm-1
1H-NMR(DMSO-d6): δ = 7.73(td, J = 7.8, 2.3 Hz, 1H), 7.60(d, J = 7.8 Hz, 1H), 7.59-7.55(m, 2H), 7.26(td, J = 7.9, 1.6 Hz, 1H), 7.23(d, J = 8.2 Hz, 2H), 6.96(d, J = 8.2 Hz, 2H), 6.91(dd, J = 7.9, 1.6 Hz, 1H), 6.89(d, J = 7.9 Hz, 1H), 6.81(t, J = 7.9 Hz, 1H), 5.22(t, J = 5.9 Hz, 1H), 4.93(s, 2H), 4.49(d, J = 5.9 Hz, 2H), 3.50(s, 3H).
13C-NMR(DMSO-d6): δ = 157, 154, 142, 141, 137, 131, 131, 130, 128, 128, 127, 122, 121, 120, 111, 62, 55, 46.
MS: m/z = 373(MH+)
実施例16
Figure JPOXMLDOC01-appb-C000101
 {2’-[1-(o-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-イル}メチルアセタート(化合物3c,1.01g,2.44mmol)およびメタノール(5.0mL)の混合物に、28%ナトリウムメトキシドメタノール溶液(24μL,23mg,0.12mmol)を加え、窒素雰囲気下9時間攪拌した。反応はTLC(展開溶媒:トルエン/酢酸エチル(2:1))でモニターした。反応混合物を減圧下40℃の浴を用いて濃縮し、クロロホルム(6mL)に溶解し、20%食塩水(2mL)で2回洗浄し、硫酸マグネシウム(0.3g)で乾燥した後、減圧下40℃以下で濃縮し、結晶化させた。クロロホルムを加え内容物量を3.4gにし、攪拌下ヘキサン(5.5mL)を加えて、冷浴の温度を20℃から1℃まで下げて冷却した。固体を濾取し、ヘキサン(4mL)で洗浄した後、40℃の浴を用いて減圧乾燥することによって、化合物4c(765mg,84.3%)を白色結晶として得た。
実施例17
Figure JPOXMLDOC01-appb-C000102
 {2’-[1-(o-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-イル}メタノール(化合物4c,47.2mg,0.127mmol)およびテトラヒドロフラン(0.35mL)の混合物に、-15℃の浴で冷却下、三臭化リンのテトラヒドロフラン溶液(14.2%;0.272mL,265mg,三臭化リン量37.7mg,0.139mmol)を加え、窒素気流下-14~-4℃で1時間半攪拌した。反応はTLC(展開溶媒:トルエン/酢酸エチル(3:2))でモニターした。反応混合物に冷水(0.33mL)、酢酸エチル(10mL)および20%食塩水(1.0mL)を加えて分液を行った。有機層を20%食塩水(1.0mL)で洗浄し、硫酸マグネシウム(1.2g)で乾燥し、40℃以下で減圧下濃縮した。濃縮物にクロロホルム(5mL)を加えて減圧下濃縮する操作を3回繰り返した後、減圧乾燥することによって、化合物5cの粗生成物(63.1mg,理論収量の114%)を得た。
実施例18
Figure JPOXMLDOC01-appb-C000103
 {2’-[1-(o-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-イル}メタノール(化合物4c,200mg,0.537mmol)およびアセトニトリル(1.0mL)の混合物に、ブロモトリメチルシラン(142μL,165mg,1.08mmol)を加え、窒素雰囲気下50℃の浴で6時間攪拌した。反応はHPLCでモニターした。浴を除き、0℃の浴で反応混合物を冷却後、冷酢酸エチル(3.8mL)で希釈し、冷水(1.8mL)で洗浄した。水層に冷酢酸エチル(3.8mL)を加えて抽出を行った。あわせた有機層に10%食塩水(1.7mL)と飽和食塩水(1.0mL)を加えて洗浄し、さらに飽和食塩水(2.0mL)で洗浄し、硫酸マグネシウム(1.2g)で乾燥処理後、35℃以下で減圧下濃縮した。溶媒をクロロホルムに置換し、シリカゲル(メルク;シリカゲル60N(商品名))カラムクロマトグラフィー(展開溶媒:トルエン/酢酸エチル(100:0~50:1))で精製した。主生成物と低極性生成物の混合フラクションを集め、減圧濃縮し、クロロホルム(5mL以上)を加えて減圧濃縮する操作を3回行った後、40℃で真空乾燥することによって、化合物5cの粗精製物(240mg,理論収量の103%)を得た。
HPLC測定条件:
  カラム Cadenza CD-C18,3μm,4.6×150mm
  移動相 MeCN/30mM KHPO(3:2)
  流量 1.0mL/min
  検出器 UV225nm
  温度 40℃
1H-NMR(CDCl3): δ = 7.64(td, J = 7.2, 2.0 Hz, 1H), 7.57(dd, J = 7.2, 1.4 Hz, 1H), 7.48(td, J = 7.2, 1.4 Hz, 1H), 7.45(dd, J = 7.2, 2.0 Hz, 1H), 7.31(d, J = 8.3 Hz, 2H), 7.21(ddd, J = 8.4, 7.2, 2.0 Hz, 1H), 7.10(d, J = 8.3 Hz, 2H), 6.81(dd, J = 7.2 Hz, 2.0 Hz, 1H), 6.78(t, J = 7.2 Hz, 1H), 6.69(d, J = 8.4 Hz, 1H), 4.75(s, 2H), 4.47(s, 2H), 3.51(s, 3H).
MS: m/z = 435(MH+)
実施例19
(工程1)
Figure JPOXMLDOC01-appb-C000104
 窒素雰囲気下、50mLなし型フラスコに化合物5a(93.0mg,0.213mmol)、化合物6(40.5mg,0.217mmol)、DMA(1.00g)、炭酸カリウム(30.3mg,0.219mmol)を加え、-10℃で4時間反応を行った後、室温で4時間撹拌を行った。その後、酢酸エチル(10mL)を加え、ろ過を行い、固形物を酢酸エチル(5mL)で洗浄した。ろ液と洗液を合わせ、濃縮し、室温で真空乾燥を行ったところ、淡黄色液体(0.11g,収率95%)を得た。得られた粗生成物を、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/2)で精製し、化合物7a(0.106mg,収率92%)を無色固体として得た。
1H-NMR(400MHz, CDCl3)δ=0.90(3H, t, J=7.2), 1.30-1.42(2H, m), 1.61-1.73(2H, m), 2.61(2H, t, J=7.6), 3.72(3H, s), 4.74(2H, s), 5.52(2H, s), 6.66-6.73(4H, m), 6.97(2H, d, J=8.0), 7.09(2H, d, J=8.0), 7.34(1H, d, J=7.6), 7.46(1H, t, J=7.2), 7.53(1H, d, J=7.6), 7.65(1H, t, J=7.6), 9.75(1H, s).
13C-NMR(400MHz, CDCl3)δ=122.64, 124.11, 124.87, 135.35, 138.45, 140.74, 143.03, 153.92, 154.30, 159.52(10s), 113.98, 126.73, 127.90, 129.07, 129.26, 130.10, 131.07, 131.43, 177.64(9d), 22.49, 26.60, 29.32, 47.88, 50.54(5t), 13.83, 55.30(2q).
IR(KBr)ν(cm-1):1664
EIMS(m/z):540(M+-1)
融点:47.1-48.6℃
(工程2)
Figure JPOXMLDOC01-appb-C000105
 アルゴン雰囲気下、50mLフラスコに、化合物7a(433mg,0.8mmol)及びメタノール(0.50mL)を加え、NaBH(90.8mg,2.4mmol)を-10℃で加えた後、室温に昇温して0.5時間撹拌した。続いて、メタノール(0.50mL)を追加して、室温で更に1.5時間撹拌した。続いて、NaBH(30.3mg,0.8mmol)を追加し、室温で1時間撹拌した。TLC(酢酸エチル/ヘキサン=1/1)で、原料がほぼ消失したことを確認した。その後50%酢酸水溶液(0.029mL)を加え20~25℃で30分間撹拌した。続いて水(1.6mL)を滴下し、室温で2時間撹拌した後、5~10℃で30分撹拌した。結晶をろ別し、乾燥して化合物8a(373mg,収率86%)を得た。
1H-NMR(400MHz, CDCl3)δ=0.88(3H, t, J=7.6), 1.28-1.41(2H, m), 1.60-1.70(2H, m), 2.54(2H, dd, J=7.6), 3.73(3H, s), 4.49(2H, d, J=6.4), 4.78(2H, s), 5.18(2H, s), 6.64-6.75(4H, m), 6.91(2H, d, J=8.0), 7.07(2H, d, J=8.4), 7.30-7.35(1H, m), 7.42-7.50(1H, m), 7.51-7.55(1H, m), 7.62-7.68(1H, m).
13C-NMR(400MHz, CDCl3)δ=122.63, 124.55, 124.88, 127.46, 135.90, 138.37, 140.88, 148.37, 153.92, 159.54(10s), 114.00, 126.25, 127.90, 129.13, 129.26, 130.12, 130.99, 131.44(8d), 22.53, 26.88, 29.80, 47.16, 50.57, 53.24(6t), 13.90, 55.33(2q).
IR(KBr)ν(cm-1):1612, 1583
EIMS(m/z):542(M+-1)
融点:119.5-120.8℃
(工程3)
Figure JPOXMLDOC01-appb-C000106
 50mLフラスコに化合物8a(73.0mg,0.13mmol)、トリフルオロ酢酸(1mL)とアニソール(0.05mL(約50mg))を加え、60℃で1.5時間撹拌した。TLC(酢酸エチル/ヘキサン=1/1)で反応の終了を確認した。3%水酸化カリウム水溶液(20mL)に反応混合物を溶解し、ヘキサン(10mL)で洗浄した。水層を1N塩酸でpH2.65に調整して固体を析出させ、酢酸エチル(10mL×3)で抽出した。有機層を合わせ、10%食塩水(20mL)で洗浄した。硫酸マグネシウムで乾燥した後、濃縮し、ロサルタン(化合物9,27.9mg,収率49%)を得た。
1H-NMR(400MHz, DMSO-d6)δ=0.79(3H, t, J-=7.2), 1.18-1.30(2H, m), 1.37-1.48(2H, m), 2.47(2H, t, J=8.0), 4.32(2H, s), 5.24(2H, s), 6.98-7.08(4H, m), 7.48-7.72(4H, m).
IR(KBr)ν(cm-1):1741
EIMS(m/z):422(M+)
実施例20
(工程1)
Figure JPOXMLDOC01-appb-C000107
 実施例19の工程1で得られた化合物7a(93.0mg,0.172mmol)、アニソール(64μL,63mg,0.59mmol)およびトリフルオロ酢酸(1.3mL)の混合物を窒素雰囲気下、室温で3時間攪拌した後、45℃、65℃および80℃で順次1時間、4時間、5時間加熱した。反応はHPLCおよびTLC(展開溶媒:ジクロロメタン/メタノール(20:1))でモニターした。反応混合物を40℃で減圧濃縮した後、1mol/L水酸化カリウム水溶液(5mL)と混合し、水(20mL)およびトルエン(20mL)を加えて分離した。得られた水層をトルエン(20mL)で洗浄した後、1mol/L塩酸でpHを1.8にした。これを酢酸エチル(20mL)で3回抽出し、あわせた有機層を10%食塩水(30mL)で洗浄し、硫酸マグネシウム(1.5g)で乾燥し、40℃で減圧濃縮し、粗生成物(89.4mg;理論収量の124%)を得た。
 粗生成物の一部を分取TLC(展開溶媒:ジクロロメタン/メタノール(20:1))で粗精製した後、さらに分取TLC(展開溶媒:ジクロロメタン/メタノール(10:1),3度展開)で精製することにより、化合物8-2a(32.9mg,仕込み原料に対し45.5%)を白褐色固体として得た。
 上記精製に使用せずに残した粗生成物を減圧乾燥(40℃)すると、化合物8-2a(9.1mg,仕込み原料から算出される理論収量の13%)が得られた。
 したがって、化合物8-2aの通算補正収率は50.6%と推定される。
IR(KBr):1667(C=O), 1604 cm-1.
1H-NMR(CDCl3): δ = 9.69(s, 1H, CHO), 8.04(dd, J = 7.7, 1.5 Hz, 1H, biphenyl), 7.60(td, J = 7.7, 1.5 Hz, 1H, biphenyl), 7.54(td, J = 7.7, 1.5 Hz, 1H, biphenyl), 7.42(dd, J = 7.7, 1.5 Hz, 1H, biphenyl), 7.18(d, J = 8.2Hz, 2H, biphenyl), 7.04(d, J = 8.2Hz, 2H, biphenyl), 5.54(s, 2H, CH2), 2.64(t, J = 7.7 Hz, 2H, 1-CH2 in Bu), 1.68(quint, J = 7.7 Hz, 2H, 2-CH2 of Bu), 1.36(sext, J = 7.7 Hz, 2H, CH2Me), 0.89(t, J = 7.7 Hz, 3H, CH3 of Bu).
MS:421(MH+)
(工程2)
Figure JPOXMLDOC01-appb-C000108
 2-ブチル-4-クロロ-1-{[2’-(1H-テトラゾール-5-イル)ビフェニル-4-イル]メチル}イミダゾール-5-カルバルデヒド(化合物8-2a)(または、2-ブチル-4-クロロ-1-{[2’-(2H-テトラゾール-5-イル)ビフェニル-4-イル]メチル}イミダゾール-5-カルバルデヒド)(101mg,0.240mmol)、1mol/L水酸化ナトリウム水溶液(0.24mL)および水(0.24mL)の混合物を、5℃に冷却し、NaBH(18.4mg,0.486mmol)を加えた。反応混合物を5℃で25分攪拌後、室温で3時間攪拌した。NaBH(8.6mg,0.23mmol)を加え、1時間攪拌した。反応はTLC(展開溶媒:クロロホルム/メタノール(10:1))およびHPLCでモニターした。反応混合物に水(0.5mL)を加え、ジイソプロピルエーテル(0.5mL)で洗浄した。水層に1%HClを加え、pHを2に調整し、酢酸エチル(5mL)で3回抽出した。得られた有機層を10%食塩水(5mL)で洗浄し、硫酸マグネシウム(0.35g)で乾燥し、濃縮乾固して白色固体(66.1mg,理論収量の65.2%)を得た。得られた濃縮乾固物を水/アセトニトリル(4:3,1.4mL)を加えて溶解し、水(0.49mL)を加えて懸濁させた。適宜種晶の接種を行い、懸濁液を5℃まで冷却した。析出した固体を濾過し、固体を冷水/アセトニトリル(4:1,数mL)で洗浄し、減圧下40~55℃で乾燥することによって、ロサルタン(化合物9,29.6mg,収率29.2%)を得た。
融点:161-164℃
IR(KBr): 3374(OH), 1604, 1579, 1469 cm-1
1H-NMR(DMSO-d6): δ = 7.68(t, J = 7.4 Hz, 1H, biphenyl), 7.66(d, J = 7.4 Hz, 1H, biphenyl), 7.58(t, J = 7.4 Hz, 1H, biphenyl), 7.55(d, J = 7.4 Hz, 1H, biphenyl), 7.08(d, J = 8.2Hz, 2H, biphenyl), 7.02(d, J = 8.2Hz, 2H, biphenyl), 5.23(s, 1H, CH2N), 4.32(s, 1H, CH2O), 2.45(t, J = 7.5 Hz, 2H, 1-CH2 of Bu), 1.44 (quint, J = 7.5 Hz, 2H, 2-CH2 of Bu), 1.23(sext, J = 7.5 Hz, 2H, CH2Me), 0.80 (t, J = 7.7 Hz, 3H, CH3of Bu).
MS:m/z = 423(MH+)
実施例21
(工程1)
Figure JPOXMLDOC01-appb-C000109
 50mLフラスコに、アセトニトリル(20mL)、化合物5a(1.95g,4.50mmol)、バリンベンジルエステル p-トルエンスルホン酸(PTSA)塩(化合物10a,2.56g,6.75mmol)、エチルジイソプロピルアミン(2.19g,16.9mmol)を加え、85℃で2時間還流した。TLC(展開溶媒:メタノール/クロロホルム=1/19)で反応の終了を確認した。反応終了後、酢酸エチル(20mL)で希釈し、水(5mL)で洗浄した後、水層を酢酸エチル(10mL)で再抽出した。有機層を合わせ硫酸マグネシウムで乾燥し、溶媒を留去して黄色油状物を得た。
 得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル/トルエン=1/9)により精製し、減圧乾燥したところ、白色油状物のベンジル N-({2’-[1-(p-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-イル}メチル)-L-バリナート(化合物11a,1.99g,収率79%)を得た。
1H-NMR(400MHz, CDCl3)δ=0.94(6H, q, J=3.6), 1.78(1H, s), 1.90-2.10(1H, m), 3.03(1H, d, J=6.4), 3.55(1H, d, J=13.2), 3.72(3H, s), 3.80(1H, d, J-13.2), 4.69(2H, s), 5.15-5.21(m, 2H), 5.55(s, 1H), 6.68(4H, q, J=8.8), 6.85(1H, d, J=8.8), 7.09(2H, t, J=10.4), 7.19-7.29(2H, m), 7.31-7.40(5H, m), 7.49-7.66(3H, m).
13C-NMR(400MHz, CDCl3)δ=122.61, 125.03, 135.61, 137.31, 139.96, 141.28, 154.21, 159.41, 174.72(9s), 31.78, 66.68, 113.89, 127.54, 128.27, 128.37, 128.54, 128.74, 128.99, 129.26, 130.05, 131.12, 131.33(13d), 50.46, 51.01, 66.36(3t), 18.67, 19.53, 55.25(3q).
IR(KBr)ν(cm-1):1729, 1611
EIMS(m/z):561(M+)
(工程2)
Figure JPOXMLDOC01-appb-C000110
 アルゴン雰囲気下、50mLフラスコに化合物11a(393mg,0.7mmol)、トリフルオロ酢酸(5.6mL)とアニソール(0.28mL)を加え、60℃で2.5時間撹拌した。TLC(展開溶媒:メタノール/クロロホルム=1/19)で原料の消失を確認した。
 反応終了後、反応液を濃縮し、5%重曹水(50mL)に溶解させた後、ヘキサン(20mL×2)で洗浄した。水層を1N塩酸でpH4.3に調整し、析出した白色の粘性固体を、酢酸エチル(20mL×3)で抽出し、有機層を合わせ、10%食塩水(20mL)で洗浄した。硫酸マグネシウムで乾燥した後、濃縮し、化合物12a(261mg,収率84%)を白色固体として得た。
1H-NMR(400MHz, CDCl3)δ=0.90(3H, d, J=6.4), 0.95(3H, d, J=6.8), 2.13-2.28(1H, m), 3.49(1H, d, J=4.4), 3.77-3.90(2H, m), 5.19(2H, dd, J=12.0, 29.2), 6.75-7.10(4H, m), 7.27-7.56(9H, m). 
IR(KBr)ν(cm-1):1742, 1668, 1604
EIMS(m/z):441(M+)
融点:53.5-57.2℃
実施例22
(工程1)
Figure JPOXMLDOC01-appb-C000111
 実施例21の工程1で得られた化合物11a(253mg,0.451mmol)のトルエン(1.3mL)溶液に、ピリジン(55μL,54mg,0.68mmol)およびペンタノイルクロリド(化合物13a,75μL,76mg,0.63mmol)を加え、窒素雰囲気下、室温で7時間攪拌した。その後、ピリジン(18.2mg,0.230mmol)およびペンタノイルクロリド(化合物13a,28.0mg,0.232mmol)を加えて6時間攪拌した後、ピリジン(18.6mg,0.235mmol)、ペンタノイルクロリド(化合物13a,30.0mg,0.249mmol)を加え22時間攪拌した。反応はHPLCでモニターした。反応混合物に1mol/L塩酸(3mL)を加え、酢酸エチル(10mL)で2回抽出した。あわせた有機層を飽和炭酸水素ナトリウム水溶液(5mL)で2回、20%食塩水(5mL)で2回洗浄し、硫酸マグネシウム(2.4g)で乾燥し、濃縮し、メタノールを加え溶液(10.3268g)とした。この溶液の一部(5.6199g)を45℃以下で減圧濃縮し、化合物12-2aの粗生成物(153mg,仕込み量に対して52.5%)を黄褐色油状物として得た。この粗生成物を、次工程(脱保護)に用いた。残りを濃縮し、化合物12-2aの粗生成物(119mg,仕込み量に対して40.7%)を黄褐色油状物として得た。
(工程2)
Figure JPOXMLDOC01-appb-C000112
 化合物12-2aの粗生成物(153mg)、メタノール(21mL)およびパラジウム炭素(200mg,Pd換算4.12mg)の混合物を水素雰囲気下、水素で約0.46MPa(4.5気圧)加圧し、室温にて2時間攪拌した。放圧し、系内の気体を窒素に置換した後、同触媒(206mg,Pd換算4.24mg)を加えた。反応混合物を水素雰囲気下、水素で0.65MPa加圧し、室温にて3時間攪拌した。放圧し、系内の気体を窒素に置換した後、同触媒(215mg,Pd換算4.43mg)および0.2mol/L塩酸(50μL)を加え、系を水素雰囲気にした後、水素で0.58~0.65MPa加圧した状態で5日間攪拌した。反応はHPLCでモニターした。反応混合物を窒素雰囲気状態にした後、反応混合物にMeOH(42mL)を加え、濾過し、ケーキをMeOH(43mL)で洗浄した。濾液を減圧下濃縮し、濃縮物を0.5mol/L水酸化ナトリウム水溶液(1.5mL)および水(4.2mL)に溶解し、MTBE(5.5mL)で洗浄した。水層に水(4.2mL)およびMTBE(10mL)を加えて洗浄した。水層に4mol/L塩酸(0.17mL)および0.2mol/L塩酸(0.10mL)および5%塩酸(0.13mL)を加えてpHを2にし、酢酸エチル(34mL,10mL)で2回抽出した。さらに水層に5%塩酸(70μL)を加えてpHを1にし、酢酸エチル(30mL)で抽出した。あわせた有機層を10%食塩水(20mL)で2回洗浄し、硫酸マグネシウム(2.0g)で乾燥した後、40℃で減圧下濃縮乾固した。濃縮物を酢酸エチル(0.29mL)に溶解し、シクロヘキサン(0.30mL)を加え、種晶を接種した。さらに混合物にシクロヘキサン(0.30mL)を加えて、9℃まで冷却した。析出した固体を濾過し、固体をシクロヘキサン(0.30mL)で洗浄した後、40℃で減圧乾燥することにより、バルサルタン(化合物15,25.9mg,収率25.1%)を白色固体として得た。
融点:約70-95℃
IR(KBr):1732(CO2H), 1607(CON)cm-1
1H-NMR(DMSO-d6): δ = 16.3(br s, 1H, CO2H), 12.6(br s, 1H, CO2H or CO2H), 7.70-7.63(m, 2H, biphenyl;CM, Cm), 7.58-7.53(m, 2H, biphenyl, ;CM, Cm), 7.20(d, J = 8.2 Hz, 1H, biphenyl; CM), 7.08(d, J = 8.2 Hz, 1H, biphenyl; Cm), 7.07(d, J = 8.2 Hz, 1H, biphenyl; CM), 6.97(d, J = 8.2 Hz, 1H, biphenyl; Cm), 4.67(s, 2H, CH2-Val; CM), 4.48(d, J = 15.2 Hz, 1H, CH2-Val; Cm), 4.36(d, J = 10.3 Hz, 1H, CHPri; CM), 4.08(d, J = 10.5 Hz, 1H, CHPri; Cm), 2.22-2.12(m, 1H, CHMe2; CM, Cm), 2.21(dt, J = 15.8, 7.9 Hz, 1H, 1-CH2 of Bu; CM), 2.03(dt, J = 15.8, 7.9 Hz, 1H, 1-CH2 of Bu; CM), 1.54(quint, J = 6.9 Hz, 2H, 2-CH2of Bu; Cm), 1.41(dquint, J = 14.1, 7.9 Hz, 1H, 2-CH2 of Bu; CM), 1.37(dquint, J = 14.1, 7.9 Hz, 1H, 2-CH2 of Bu; CM), 1.31(sext, J = 6.9 Hz, 2H, CH2Me; Cm), 1.15(sext, J = 7.9 Hz, 2H, CH2Me; CM), 0.93(d, J = 6.9 Hz, 3H, CH3 of i-Pr; Cm), 0.93(d, J = 7.9 Hz, 3H, CH3 of i-Pr; CM), 0.88(t, 3H, J = 6.9 Hz, 4-CH3 of Bu; Cm), 0.76(t, 3H, J = 7.9 Hz, 4-CH3of Bu; CM), 0.75(d, 3H, J = 7.9 Hz, CH3 of i-Pr; CM), 0.70 (d, J = 6.9 Hz, 3H, CH3 of i-Pr; Cm).
実施例23
Figure JPOXMLDOC01-appb-C000113
 実施例21の工程1で得られた化合物11a(0.18g,0.32mmol)のN-メチル-2-ピロリドン(0.9mL)溶液に、エチルジイソプロピルアミン(0.10mL,74mg,0.57mmol)およびペンタン酸無水物(化合物13b,95μL,90mg,0.48mmol)を加え、窒素雰囲気下、室温で1時間攪拌した。反応混合物に、4-(ジメチルアミノ)ピリジン(14.7mg,0.120mmol)を加え、45℃で2時間加熱後、エチルジイソプロピルアミン(0.10mL,74mg,0.57mmol)およびペンタン酸無水物(化合物13b,95μL,90mg,0.48mmol)を加え、70℃に昇温し、さらに12時間後90℃に昇温して5時間攪拌した。エチルジイソプロピルアミン(40μL,30mg,0.23mmol)およびペンタン酸無水物(化合物13b,50μL,47mg,0.25mmol)を加え、100℃で13時間攪拌した。反応はHPLCでモニターした。反応混合物を室温に冷却後、1%塩酸(3mL)および酢酸エチル(10mL)を加えて分離し、水層に酢酸エチル(10mL)を加え抽出した。あわせた有機層を飽和炭酸水素ナトリウム水溶液(5mL)で2回、10%食塩水(5mL)で2回洗浄した後、硫酸マグネシウムで乾燥し、粗生成物(236mg,理論収量の114%)を得た。粗生成物をTLC(展開溶媒:ヘキサン/酢酸エチル(10:9))で精製することにより、化合物12-2a(227mg,理論収量の109%)を淡黄色油状物として得た。
IR(neat):1735(COO), 1654(CON), 1613 cm-1.
1H-NMR(CDCl3): δ = 7.65(t, J = 6.8 Hz, 1H, biphenyl; CM), 7.65(t, J = 6.8 Hz, 1H, biphenyl; Cm), 7.53(d, J = 6.8 Hz, 1H, biphenyl; CM), 7.50(d, J = 6.8 Hz, 1H, biphenyl; Cm), 7.45(t, J = 6.8 Hz, 1H, biphenyl; CM), 7.42(t, J = 6.8 Hz, 1H, biphenyl; Cm), 7.36-7.23(m, 6H, biphenyl, Ph of Bn; CM, Cm), 7.13(d, J = 8.4 Hz, 1H, biphenyl; Cm), 7.07(d, J = 8.4 Hz, 1H, biphenyl; CM), 7.03(d, J = 8.4 Hz, 1H, biphenyl; Cm), 7.01(d, J = 8.4 Hz, 1H, biphenyl; CM), 6.72(d, J = 8.7 Hz, 1H, Ar of PMB; CM), 6.69(d, J = 8.7 Hz, 1H, Ar of PMB; Cm), 6.68(d, J = 8.7 Hz, 1H, Ar of PMB; CM), 6.67(d, J = 8.7 Hz, 1H, Ar of PMB; Cm), 4.94(d, J = 12.6 Hz, 1H, CH2 of Bn; CM), 4.89(d, J = 12.6 Hz, 1H, CH2 of Bn; Cm), 4.86(d, J = 12.6 Hz, 1H, CH2 of Bn; CM), 4.79(d, J = 15.9 Hz, 1H, CH2-Val; CM), 4.79(d, J = 10.6 Hz, 1H, CHPri; CM), 4.78(d, J = 12.6 Hz, 1H, CH2 of Bn; Cm), 4.68(d, J = 18.0 Hz, 1H, CH2-Val; CM), 4.67(s, 2H, CH2-Val; CM or Cm), 4.67(d, J = 14.8 Hz, 1H, CH2-Val; Cm or CM), 4.66(d, J = 15.9 Hz, 1H, PMB; Cm), 4.63(d, J = 14.8 Hz, 1H, CH2-Val; Cm or CM), 4.53(d, J = 18.0 Hz, 1H, CH2-Val; CM), 4.42(d, J = 15.9 Hz, 1H, PMB; Cm), 4.07(d, J = 10.6 Hz, 1H, CHPri; CM, Cm), 3.72(s, 3H, CH3O; CM), 3.72(s, 3H, CH3O; Cm), 2.56(dt, J = 16.0, 8.0 Hz, 1H, 1-CH2 of Bu; Cm), 2.42(dt, J = 16.0, 8.0 Hz, 1H, 1-CH2 of Bu; Cm), 2.35-2.30(m, 1H, CHMe2; CM, Cm)2.25(dt, J = 16.0, 8.0 Hz, 1H, 1-CH2of Bu; CM), 2.16(dt, J = 16.0, 8.0 Hz, 1H, 1-CH2of Bu; CM), 1.70-1.25(m, 4H; CM, Cm), 1.37(dquint, J = 16.0, 8.0 Hz, 1H, 2-CH2of Bu; CM), 1.38(dquint, J = 16.0, 8.0 Hz, 1H, 2-CH2 of Bu; CM), 1.26(quint, J = 6.7 Hz, 2H, CH2Me; Cm), 0.97 or 0.96(J = 6.7 Hz, 2H, CH3 of i-Pr; Cm), d, 0.96(t, J = 6.7 Hz, 3H, CH3 of Bu; Cm), 0.92(d, J = Hz, J = 6.7 Hz, 3H, CH3 of i-Pr; CM), 0.88(d, J = 6.7 Hz, 3H, CH3of i-Pr; CM), 0.84(t, J = 6.7 Hz, 1H, CH3of Bu; CM), 0.81(d, J = 6.7 Hz, 3H, CH3of i-Pr; Cm).
13C-NMR(CDCl3): δ = 178(C=O), 174(C=O), 170(C=O), 170(C=O), 160(tetrazole), 154(tetrazole), 141(quaternary Ar), 141(quaternary Ar), 138(quaternary Ar), 138(quaternary Ar), 137(quaternary Ar), 137(quaternary Ar), 135(quaternary Ar), 135(quaternary Ar), 132(CH of Ar), 132(CH of Ar), 131(CH of Ar), 130(CH of Ar), 129(CH of Ar), 129(CH of Ar), 129(CH of Ar), 129(CH of Ar), 128(CH of Ar), 128(CH of Ar), 128(CH of Ar), 128(CH of Ar), 128(CH of Ar), 127(CH of Ar), 125(quaternary Ar), 125(quaternary Ar), 123(quaternary Ar), 114(Ar CH of PMB), 114(Ar CH of PMB), 67(CH2 of Bn), 67(CH2of Bn), 66(CHPri), 63 (CHPri), 55(MeO), 50(CH2), 49(CH2N), 46 CH2N), 33(1-CH2of Bu), 33(1-CH2of Bu), 28(CH of i-Pr), 28(CH of i-Pr), 27(2-CH2of Bu), 27(2-CH2of Bu), 22(3-CH2of Bu), 22(3-CH2of Bu), 20(Me of i-Pr), 20(Me of i-Pr), 19(Me of i-Pr), 19(Me of i-Pr), 14(Me of Bu), 14(Me of Bu).
MS: m/z = 646(MH+)
実施例24
(工程1)
Figure JPOXMLDOC01-appb-C000114
 1-ベンジル-5-[4’-(ブロモメチル)ビフェニル-2-イル]-1H-テトラゾール(化合物5b,749mg,1.85mmol)、アセトニトリル(4.8mL)、2-ブチル-1,3-ジアザスピロ[4.4]ノナ-1-エン-4-オン塩酸塩(化合物16,512mg,2.22mmol)およびテトラブチルアンモニウムブロミド(242mg,0.75mmol)の混合物に、水酸化カリウム(粉末,699mg,12.5mmol)およびアセトニトリル(1.2mL)を加え、窒素雰囲気下室温で7時間攪拌した。反応はHPLCでモニターした。反応混合物を5日間放置した後、水(10mL)およびtert-ブチルメチルエーテル(30mL)を加えて分離し、水層にtert-ブチルメチルエーテル(20mL)を加えて抽出した。あわせた有機層を5%クエン酸(5.0mL)で洗浄した後、20%食塩水(5mL)で2回洗浄した。洗浄した有機層を硫酸マグネシウム(3.0g)で乾燥し、40℃で減圧下濃縮し、粗生成物(0.99g,理論収量の1.0×10%)を泡を含む白橙色の固体として得た。粗生成物をEtOAc(15mL)およびトルエン(10mL)に溶解し、シリカゲル(6.0g)を加え1時間攪拌した後、シリカゲル(15g)に通し濾過した。シリカゲルを酢酸エチル/トルエン(3:2~4:1)で洗浄し、濾液を減圧下1.1gまで濃縮した。
 濃縮液の一部を減圧下濃縮乾燥(45℃)し、粗生成物(0.42g,仕込み原料に対して44%)を得た。この粗生成物をTLC(展開溶媒:酢酸エチル/ヘキサン(2:1);2度展開)で精製することによって化合物17a(287mg,精製収率68%)を得た。
IR(KBr):1723(COO), 1632(CON), 1604 cm-1.
1H-NMR(CDCl3): δ = 7.64(td, J = 7.7, 1.5 Hz, 1H, biphenyl), 7.54(dd, J = 7.7, 1.5 Hz, 1H, biphenyl), 7.44(td, J = 7.7, 1.5 Hz, 1H, biphenyl), 7.38(dd, J = 7.7, 1.5 Hz, 1H, biphenyl), 7.22(t, J = 7.7 Hz, 1H, p-Ph), 7.16(t, J = 7.7 Hz, 1H, m-Ph), 7.10(d, J = 7.7 Hz, 1H, o-Ph), 7.08(d, J = 7.7 Hz, 2H, biphenyl), 7.07(d, J = 7.7 Hz, 1H, o-Ph), 6.77(d, J = 7.7 Hz, 2H, biphenyl), 4.81(s, 2H, CH2N), 4.65(s, 2H, CH2N), 2.28(t, J = 7.7 Hz, 2H, 1-CH2 of Bu), 2.03-1.94(m, 6H, cyclopentanediyl), 1.83-1.81(m, 2H, cyclopentanediyl), 1.58(quint, J = 7.7 Hz, 2H, 2-CH2of Bu), 1.33(sext, J = 7.7 Hz, 2H, CH2Me), 1.87(t, J = 7.7 Hz, 2H, CH3).
13C-NMR(CDCl3): δ = 187(CO), 161(CBu), 154(tetrazole), 141(quaternary Ar), 141(quaternary Ar), 138(quaternary Ar), 137(quaternary Ar), 133(quaternary Ar), 132(CH of Ar), 131(CH of Ar), 131(CH of Ar), 130(CH of Ar), 129(CH of Ar), 129(CH of Ar), 129(CH of Ar), 129(CH of Ar), 128(CH of Ar), 128(CH of Ar), 128(CH of Ar), 127(CH of Ar), 127(CH of Ar), 123(quaternary Ar), 51(CH2of Bn), 43(CH2-biphenyl), 37(CH2of 2-CH2 of cyclopentanediyl), 29(1-CH2of Bu), 28(2-CH2of Bu), 26(3-CH2 of cyclopentanediyl), 22(CH2Me), 14(CH3).
MS: m/z = 519(MH+)
(工程2)
Figure JPOXMLDOC01-appb-C000115
 粗3-[2’-(1-ベンジル-1H-テトラゾール-5-イル)ビフェニル-4-イル]-2-ブチル-1,3-ジアザスピロ[4.4]ノナ-1-エン-4-オン(化合物17aの粗生成物,153mg,0.295mmol)、イソプロピルアルコール/精製水(3:2,2.0mL)、5%パラジウム炭素(134mg,Pd換算2.9mg,0.028mmol)およびギ酸アンモニウム(119mg,1.88mmol)の混合物を、攪拌下55~60℃で3時間加熱した。反応混合物に同5%パラジウム炭素(136mg,Pd換算3.0mg,0.028mmol)を加え、80℃で4時間加熱した。反応はHPLCおよびTLC(展開溶媒:クロロホルム/メタノール(20:1))でモニターした。反応混合物を室温に冷却後、イソプロピルアルコール(約20mL)を用いて濾過した。濾液を0.15gまで濃縮した後、0.5mol/L水酸化ナトリウム水溶液(1.5mL)、水(1.6mL)、tert-ブチルメチルエーテル(3.0mL)および1mol/L水酸化ナトリウム水溶液(0.2mL)を加えて分離した。水層をtert-ブチルメチルエーテル(3.0mL)で洗浄した後、4mol/L塩酸(0.17mL)、0.2mol/L塩酸(0.15mL)および1mol/L塩酸(0.11mL)を滴下してpHを6.0にした。析出した固体を濾取し、水(5.0mL)で洗浄した後、40~60℃で減圧下乾燥することによって、イルベサルタン(化合物18)の粗生成物(63.9mg,理論収量の50.5%)を得た。
1H-NMR(DMSO-d6): δ = 7.68(t, J = 7.8 Hz, 1H, biphenyl), 7.64(d, J = 7.8 Hz, 1H, biphenyl), 7.57(t, J = 7.8 Hz, 1H, biphenyl), 7.04(d, J = 7.8 Hz, 1H, biphenyl), 7.08(s, 4H, biphenyl), 4.68(s, 2H, CH2N), 2.29(t, J = 7.5 Hz, 2H, 1-CH2 of Bu), 1.86-1.60(m, 8H, cyclopentanediyl), 1.47(quint, J = 7.5 Hz, 2H, 2-CH2of Bu), 1.26(sext, J = 7.5 Hz, 2H, CH2Me), 0.80(t, J = 7.5 Hz, 2H, CH3).
IR(KBr): 1725(C=O), 1630(C=N)cm-1
MS: m/z = 429(MH+)
実施例25
Figure JPOXMLDOC01-appb-C000116
 {2’-[1-(o-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-イル}メタノール(化合物4c,113mg,0.303mmol)およびアセトニトリル(0.56mL)の混合物に、ブロモトリメチルシラン(80μL,93mg,0.61mmol)を加え、窒素雰囲気下50℃の浴で5時間攪拌した。反応はHPLCでモニターした。得られた化合物5cを含む反応混合物を、精製することなく次工程に用いた。
 該反応混合物に室温で、エチルジイソプロピルアミン(240μL,182mg,1.41mmol)、(S)-1-ベンジルオキシカルボニル-2-メチルプロピルアンモニウム p-トルエンスルホナート(化合物10a,171mg,0.452mmol)およびアセトニトリル(0.30mL)を加え、50℃の浴で加熱しながら3時間攪拌し、反応をHPLCでモニターした。反応混合物を室温に冷却後、酢酸エチル(3.3mL)で希釈し、水(1.7mL)で洗浄した。水層に酢酸エチル(3.3mL)を加えて抽出を行い、あわせた有機層を飽和食塩水(2.5mL)で洗浄し、硫酸マグネシウム(1.3g)で乾燥処理後、減圧濃縮した。この溶液(7.43g)中の生成物(化合物11b)を定量した結果、正味量は156mg(92.0%)であった。
HPLC測定条件:
  カラム Cadenza CD-C18,3μm,4.6×150mm
  移動相 MeCN/30mM KHPO(3:2)
  流量 1.0mL/min
  検出器 UV225nm
  温度 40℃
実施例26
Figure JPOXMLDOC01-appb-C000117
 {2’-[1-(o-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-イル}メタノール(化合物4c,1.00g,2.69mmol)、アセトニトリル(5.0mL)、ブロモトリメチルシラン(0.711mL,822mg,5.37mmol)の混合物を窒素雰囲気下攪拌しながら約50℃の浴で4時間半加熱した。反応混合物を冷却後、エチルジイソプロピルアミン(1.57g,12.1mmol)および(S)-1-ベンジルオキシカルボニル-2-メチルプロピルアンモニウム p-トルエンスルホナート(1.53g,4.03mmol)およびアセトニトリル(4.0mL)を加え、50℃の浴で加熱しながら2時間攪拌し、反応混合物を室温に冷却後、酢酸エチル(20mL)、水(1.7mL)を加えて分液した。水層に酢酸エチル(10mL)を加えて抽出を行い、あわせた有機層を飽和食塩水(5.0mL)で洗浄し、硫酸マグネシウム(1.3g)で乾燥処理後、減圧濃縮およびクロロホルム(20mL)添加を3回行い、クロロホルム(10mL)を加えて粗体溶液(生成物理論量1.51g含有を仮定)とした。この内、ベンジル N-{2’-[1-(o-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-イル}メチル-L-バリナートクロロホルム溶液(15.3g,net1.27g,2.26mmol)に相当するものを約40℃の浴を用い、減圧下濃縮および乾燥を行った。トルエン(6.4mL)、ピリジン(0.275mL,0.269g,3.40mmol)およびペンタノイルクロリド(0.376mL,0.382g,3.17mmol)を加え、窒素雰囲気下4時間攪拌した。反応はHPLCでモニターした。反応混合物を40℃の浴で2時間加温した後浴を除き、ピリジン(92.8mg,1.17mmol)およびペンタノイルクロリド(141mg,1.17mol)を加え、再び40℃の浴で3時間半加温した。反応混合物を室温に冷却し、1mol/L塩酸(5mL)および酢酸エチル(20mL)を加えて分液した。水層に酢酸エチル(20mL)を加えて抽出し、あわせた有機層を飽和炭酸水素ナトリウム(10mL)で2回、20%食塩水(10mL)で2回洗浄し、硫酸マグネシウムで乾燥した。濾過液を減圧濃縮し濃縮残渣をカラムクロマトグラフィー(トルエン/酢酸エチル(50:1~5:1))で精製し得たもの(濃縮物:1.47g/本中間体の推定構造及び物性値は後記)をイソプロピルアルコール(2-プロパノール)(4.53g)に溶かした。バレリル化体イソプロピルアルコール溶液(24.4%,800mg,net 195mg,0.302mmol)、パラジウム-炭素(E 1003 NN/W 5%Pd,水分58.8%;128mg,Pdとして2.6mg,25μmol,8.2mol%)、ギ酸アンモニウム(96.2mg,1.53mmol)、精製水(0.51mL)の混合物を窒素雰囲気下、室温で14分攪拌後、45℃の浴で6時間加熱した。浴温を55℃に上げた。反応混合物を室温に冷却後、イソプロピルアルコール(10mL)を加えて濾過し、イソプロピルアルコール(5mL)で洗浄した。濾液を減圧下濃縮した後、0.5mol/L水酸化ナトリウム(2.0mL)、水(7mL)およびt-ブチルメチルエーテル(5mL)を加えて分液を行った。水層をt-ブチルメチルエーテル(5mL)で洗浄した後、1mol/L塩酸(1.7mL)および酢酸エチル(40mL)を加えて分液した。水層につき酢酸エチル(15mL)で2回抽出を行い、あわせた有機層を10%食塩水(10mL)で2回洗浄し、硫酸マグネシウム(2.0g)で乾燥した。不溶物を濾去後濾液(83.0g)中の生成物を定量した結果、正味量は99.5mg(75.6%)であった。硫酸マグネシウム濾去後40℃の浴を用い、減圧下濃縮乾固することにより、粗生成物(139mg,理論収量の106%)を得た。粗生成物に酢酸エチル(0.30mL)を加えた後、シクロヘキサン(5.0mL)を加え、9℃の浴で2時間冷却した。固体を濾取し、シクロヘキサン(0.30mL)で洗浄し、40℃以下で減圧下乾燥することにより、バルサルタン(化合物15、72.2mg,54.9%)を白色固体として得た。
IR (KBr): 1730, 1619 cm-1
中間体の推定構造及び物性値:
Figure JPOXMLDOC01-appb-C000118
IR (neat): 1652, 1604 cm-1
実施例27
Figure JPOXMLDOC01-appb-C000119
 {2’-[1-(o-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-イル}メタノール(化合物4c,196mg,0.525mmol)、アセトニトリル(1.0mL)の混合物(溶解していない)に、ブロモトリメチルシラン(0.140mL,162mg,1.06mmol)を加え、攪拌しながら50~60℃の浴で7時間加熱し、反応混合物を室温に冷却後、炭酸カリウム(74.8mg,0.541mmol)、2-ブチル-4-クロロ-1H-イミダゾール-5-カルバルデヒド(化合物6,101mg,0.541)およびアセトニトリル(0.50mL)を加え、攪拌下50℃の浴で3時間加熱した。反応混合物を室温に冷却後、酢酸エチル(20mL)を加えて濾過し、酢酸エチル(10mL)で洗浄した。得られた酢酸エチル溶液を減圧濃縮し濃縮残渣を薄層シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル(1:1))で精製し、目的物(化合物7b)を384mg(73%)得た。
IR (neat): 1664, 1604 cm-1
実施例28
(工程1)
Figure JPOXMLDOC01-appb-C000120
 1-(o-メトキシベンジル)-5-フェニル-1H-テトラゾール(化合物1c,206mg,0.774mmol)、ジ-μ-クロロ-ビス[(η-ベンゼン)クロロルテニウム](Johnson Matthey;193mg,単量体として0.773mmol)、ヘキサフルオロリン酸カリウム(285mg,1.55mmol)、水酸化ナトリウム(31.4mg,0.785mmol)およびアセトニトリル(6.4mL)の混合物を窒素雰囲気下室温で1時間半攪拌後、約47℃の浴で1時間半加熱した。反応液を減圧濃縮し濃縮残渣をアルミナカラムクロマトグラフィー(ジクロロメタン/アセトニトリル(100:0~2:1))で精製することにより目的物90mg(17.2%)を得た。
 IR (KBr): 2277, 1605, 842 cm-1.
(工程2)
Figure JPOXMLDOC01-appb-C000121
 テトラキス(アセトニトリル){[1-(o-メトキシベンジル)-1H-テトラゾール-5-イル]フェニル}ルテニウム(II)ヘキサフルオロリン酸塩(69.4mg,0.103mmol)、トリフェニルホスファン(26.9mg,0.103mmol)、炭酸カリウム(28.4mg,0.205mmol)、p-ブロモベンジルアセタート(化合物2a)のN-メチル-2-ピロリドン溶液(56.7mg/mL;0.831mL,net 47.1mg,0.205mmol)およびN-メチル-2-ピロリドン(138μL)の混合物を窒素雰囲気下、攪拌しながら140℃の浴で6時間加熱し、反応をHPLCでモニターした。反応混合物を室温に冷却した。反応混合物を室温に冷却後、酢酸エチル(5mL)を加えて濾過し、酢酸エチル(5mL)で洗浄した。濾液(9.50g)中の生成物(化合物3c)を定量した結果、正味量は16.8mg(40%)であった。生成物のHPLC分析条件を以下に記載する。
Figure JPOXMLDOC01-appb-T000122
実施例29
Figure JPOXMLDOC01-appb-C000123
 ジ-μ-クロロ-ビス[クロロ(η-p-シメン)ルテニウム](Johnson Matthey;8.8mg,単量体として29μmol,0.63mol%)、トリフェニルホスファン(13.2mg,50.3μmol)、1-(o-メトキシベンジル)-5-フェニル-1H-テトラゾール(化合物1c,1.22g,4.60mmol)、炭酸カリウム(1.27g,9.20mmol)、p-ブロモベンジルアセタート(化合物2a,1.16g,5.06mmol)およびN-メチル-2-ピロリドン(4.9mL)の混合物を窒素雰囲気下攪拌しながら140℃の浴で15時間加熱し、反応をHPLCでモニターした。反応混合物を室温に冷却後酢酸エチル(20mL)を加えて濾過し、酢酸エチル(12mL)で洗浄した。得られた濾液(27.3g)中の生成物(化合物3c)を定量した結果、正味量は1.49g(78.3%)であった。
実施例30
Figure JPOXMLDOC01-appb-C000124
 ジ-μ-クロロ-ビス[クロロ(η-p-シメン)ルテニウム](Johnson Matthey;6.1mg,単量体として20μmol,0.31mol%)、トリフェニルホスファン(6.6mg,25μmol)、1-(o-メトキシベンジル)-5-フェニル-1H-テトラゾール(化合物1c,1.70g,6.37mmol)、炭酸カリウム(1.76g,12.7mmol)、p-ブロモベンジルアセタート(化合物2a,1.61g,7.01mmol)およびN-メチル-2-ピロリドン(6.8mL)の混合物を窒素雰囲気下攪拌しながら140℃の浴で8時間加熱し、反応をHPLCでモニターした。反応混合物を室温に冷却後、酢酸エチル(20mL)を加えて濾過し、酢酸エチル(13mL)で洗浄した。得られた濾液(30.6mg)中の生成物(化合物3c)をHPLCで定量した結果、正味量は1.54g(58.2%)であった。
実施例31
(工程1)
Figure JPOXMLDOC01-appb-C000125
 2-メトキシカルボニル-6-ニトロ安息香酸(18.3g,81.3mmol)のN,N-ジメチルホルムアミド(24.1mL)溶液に、室温でジフェニル アジドホスホナート(22.8g,83.0mmol)を滴下しN,N-ジメチルホルムアミド(1.8mL)で洗い込んだ。その後トリエチルアミン(9.75g,96.4mmol)を22~31℃で滴下し、N,N-ジメチルホルムアミド(1.6mL)で洗い込んだ。反応混合物を窒素雰囲気下28~23℃で5時間攪拌した。反応はHPLCでモニターした。反応混合物に室温で、tert-ブチルアルコール(104g)を滴下した後、反応混合物を5時間かけて約85℃に昇温し、85~87℃で4時間攪拌した。反応はHPLCでモニターした。反応混合物を減圧下50℃以下で濃縮した後、酢酸エチル(156mL)と1.3%塩酸(229mL)を加えて分液した。有機層を水(74mL)、5%炭酸水素ナトリウム水溶液(117mL)、水(74mL)で順次洗浄した後、有機層を減圧下40℃以下で濃縮し(固化)、メタノール(42.3mL)を加え約55℃で固体を溶解した。さらにメタノール(63.5mL)を加えた後、内容物を50℃から、3時間かけて約5℃に冷却した。この際、36℃のときに接種を行った。約5℃で2時間攪拌した後、結晶を濾取し、冷メタノール(18mL)で洗浄し、50℃以下で減圧下乾燥することにより、2-(tert-ブトキシカルボニルアミノ)-3-ニトロ安息香酸メチル(化合物19a,17.5g,72.5%)を淡黄色結晶として得た。
融点:92~94℃
IR (KBr): 3368, 1735, 1608, 1540, 1508 cm-1
1H-NMR (CDCl3): δ= 9.61 (br s, 1H), 8.16 (dd, J = 8.1, 1.5 Hz, 1H), 8.10 (dd, J = 8.1, 1.5 Hz, 1H), 7.23 (t, J = 8.1 Hz, 1H), 3.95 (s, 3H), 1.50 (s, 9H)
MS: m/z = 314 (MNH4 +)
(工程2)
Figure JPOXMLDOC01-appb-C000126
 5-[4’-(ブロモメチル)ビフェニル-2-イル]-1-(p-メトキシベンジル)-1H-テトラゾール(化合物5a,9.25g,21.2mmol)、アセトニトリル(107mL)、2-(tert-ブトキシカルボニルアミノ)-3-ニトロ安息香酸メチル(化合物19a,6.43g,21.7mmol)、炭酸カリウム(3.00g,21.7mmol)の混合物を窒素雰囲気下6時間加熱還流した。反応はTLC(展開溶媒:トルエン/酢酸エチル(4:1))でモニターした。反応混合物を冷却後、濾過し、ケーキをアセトニトリル(35mL)で洗浄した後、減圧下35℃以下で濃縮することにより、粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン/酢酸エチル(100:0~4:1))で精製し、濃縮して、クロロホルム(約30mL)を加えて濃縮する操作を4回繰り返し、40℃の浴を用いて減圧乾燥することによって、2-(N-tert-ブトキシカルボニル-N-{(2’-[1-(p-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-イル)メチル}アミノ)-3-ニトロ安息香酸メチル(化合物20a)を黄褐色のアモルファス固体(9.83g(71.1%))として得た。
IR (KBr): 1735, 1604, 1513 cm-1
1H-NMR (CDCl3): δ= 8.06 (dd, J = 8.2, 1.7 Hz, 1H), 7.88 (dd, J = 8.2, 1.7 Hz, 1H), 7.61 (td, J = 7.5, 1.3 Hz, 1H), 7.53 (dd, J = 7.5, 1.3 Hz, 1H), 7.50 (t, J = 8.2 Hz, 1H), 7.40 (td, J = 7.5, 1.3 Hz, 1H), 7.26 (dd, J = 7.5 Hz, 1.3 Hz, 1H), 7.05 (d, J = 8.2 Hz, 2H), 7.02 (d, J = 8.2 Hz, 2H), 6.72-6.74 (m, 2H), 6.68-6.65 (m, 2H), 4.85 (d, J = 14.5 Hz, 1H), 4.85 (d, J = 14.5 Hz, 1H), 4.67 (d, J = 14.5 Hz, 1H), 4.43 (d, J = 14.5 Hz, 1H), 3.79 (s, 3H), 3.73 (s, 3H), 1.34 (s, 9H)
13C-NMR (CDCl3): δ= 165, 159, 154, 154, 149, 141, 138, 136, 135, 135, 132, 131, 131, 130, 130, 129, 129, 128, 128, 125, 123, 114, 81, 55, 53, 53, 51, 28
MS: m/z = 651 (MH+)
(工程3)
Figure JPOXMLDOC01-appb-C000127
 塩化水素メタノール(30%;26.9g,net 8.08g,222mmol)に、4~5℃で、2-(N-tert-ブトキシカルボニル-N-{(2’-[1-(p-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-イル)メチル}アミノ)-3-ニトロ安息香酸メチル(化合物20a,5.00g,7.68mmol)を4回に分け13分かけて加えた。約3℃で2時間攪拌した後、1時間かけて9℃に昇温した。反応はTLC(展開溶媒:トルエン/酢酸エチル(2:1))でモニターした。反応混合物を3℃に冷却し、30℃以下で飽和炭酸水素ナトリウム水溶液(180mL)を滴下した。酢酸エチル(450mL,250mL)で2回抽出し、あわせた有機層を飽和食塩水(200mL)で洗浄し、硫酸マグネシウム(10g)で乾燥した後、40℃以下で減圧下濃縮した。濃縮物にクロロホルムを加え、40℃の浴を用いて減圧下溶媒を留去することにより、2-[({2’-[1-(p-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-イル}メチル)アミノ]-3-ニトロ安息香酸メチル(化合物21a,4.27g,101%)を黄褐色のアモルファス固体として得た。
IR: 1701, 1610, 1508, 1345 cm-1
1H-NMR (CDCl3): δ= 8.85 (br s, 1H), 8.12 (dd, J = 8.0, 1.8 Hz, 1H), 7.98 (dd, J = 8.0, 1.8 Hz, 1H), 7.65 (td, J = 7.8, 1.2 Hz, 1H), 7.58 (dd, J = 7.8, 1.2 Hz, 1H), 7.45 (td, J = 7.8, 1.2 Hz, 1H), 7.36 (dd, J = 7.8, 1.2 Hz, 1H), 7.19 (d, J = 8.2, 1.2 Hz, 2H), 7.10 (d, J = 8.2 Hz, 2H), 6.74 (t, J = 8.0 Hz, 1H), 6.67 (d, J = 9.0 Hz, 2H), 6.72 (d, J = 9.0 Hz, 2H), 4.68 (s, 2H), 4.20 (d, J = 5.0 Hz, 2H), 3.90 (s, 3H), 3.72 (s, 3H)
13C-NMR (CDCl3): δ= 168, 160, 154, 145, 141, 138, 138, 137, 132, 131, 130, 130, 129, 128, 128, 125, 123, 117, 115, 114, 56, 52, 50, 50
MS: m/z = 551 (MH+)
(工程4)
Figure JPOXMLDOC01-appb-C000128
 2-[({2’-[1-(p-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-イル}メチル)アミノ]-3-ニトロ安息香酸メチル(化合物21a,2.73g,4.96mmol)および塩化スズ(II)2水和物(4.48g,19.9mmol)のメタノール(60mL)混合物を2時間加熱還流した。反応混合物を減圧濃縮し、濃縮残渣に飽和重曹水と酢酸エチルを加えて1時間攪拌した。この混合物を濾過し、不溶物を酢酸エチルで洗浄した。濾過液と洗浄液を合わし減圧濃縮後、濃縮液を酢酸エチルで抽出した。生成物の酢酸エチル溶液を硫酸マグネシウム上乾燥後濾過した。濾過液を減圧濃縮後、濃縮残渣をシリカゲルカラムで精製すること(ヘキサン→ヘキサン:AcOEt=4:1→2:1→3:2)により2-[({2’-[1-(p-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-イル}メチル)アミノ]-3-アミノ安息香酸メチル(化合物22a)を褐色アモルファスとして得た(1.96g,70%)。
IR: 1693, 1514, 1468, 1251 cm-1
1H-NMR (CDCl3): δ= 7.57-7.65 (m, 2H), 7.36-7.41 (m, 3H), 7.24-7.26 (m,3H), 7.06-7.08 (m, 2H), 6.86-6.88 (m, 2H), 6.58-6.72 (m, 5H), 4.62 (s, 2H), 4.19 (s, 2H), 3.80 (s, 3H), 3.72 (s, 3H).  
MS: m/z = 521 (MH+)
(工程5)
Figure JPOXMLDOC01-appb-C000129
 2-[({2’-[1-(p-メトキシベンジル)-1H-テトラゾール-5-イル]ビフェニル-4-イル}メチル)アミノ]-3-アミノ安息香酸メチル(化合物22a,1.76g,3.39mmol)、テトラエトキシメタン(1mL,4.8mmol)および酢酸(2mL)の混合物を90℃で1時間攪拌した。反応混合物を冷却後、氷と飽和重曹水を加えてクロロホルムで抽出した。抽出液を硫酸マグネシウム上乾燥後濾過し濾過液を減圧濃縮した。濃縮残渣をシリカゲルカラムで精製すること(ヘキサン→ヘキサン:AcOEt=5:1→4:1→3:1→2:1→1:1)により目的物(化合物23a)を褐色アモルファスとして得た(1.62g,83%)。
IR: 1716, 1549 cm-1
1H-NMR (CDCl3): δ= 7.73-7.74 (m, 1H), 7.15-7.56 (m,6H), 6.99 (d, J = 8Hz, 2H), 6.89 (d, J = 8Hz, 2H), 6.60-6.66 (m, 4H), 5.59 (s, 2H), 4.68 (q, J = 4Hz, 2H), 4.59 (s, 2H), 3.75 (s, 3H), 3.68 (s, 3H), 1.49 (t, J = 4Hz, 3H).  
MS: m/z = 575 (MH+)
(工程6)
Figure JPOXMLDOC01-appb-C000130
 メチルエステル体(化合物23a,1.41g,2.45mmol)、1N水酸化ナトリウム(15mL)およびメタノール(7.5mL)の混合物を90℃で2時間攪拌した。メタノールを減圧濃縮後、10%塩酸を加えて生成物をクロロホルムとTHFの混合物で抽出した。抽出液を硫酸マグネシウム上乾燥して濾過し濾過液を減圧濃縮した。濃縮残渣をシリカゲルカラムで精製した(CHCl→MeOH/CHCl2%→5%)。目的物のフラクションを集めて減圧濃縮した。濃縮残渣にクロロホルムとジイソプロピルエーテルの混合物を加えて結晶化し、得られた結晶をジイソプロピルエーテルで洗浄後乾燥することにより目的物(化合物24a)を無色固体として得た(1g,73%)。
融点:196-198℃
IR: 1690, 1551, 1465 cm-1
1H-NMR (DMSO-d6): δ= 7.65-7.72 (m, 2H), 7.49-7.60 (m, 5H), 7.16-7.20 (m, 1H), 6.85-6.90 (m, 4H), 6.71-6.75 (m, $H), 5.59 (s, 2H), 4.89 (s, 2H), 4.58 (q, J = 8Hz, 2H), 3.65 (s, 3H), 1.37 (t, J = 8Hz, 3H).  
MS: m/z = 561 (MH+)
元素分析: Calcd for C31H26N6O3・0.1iPr2O: C: 68.38; H: 5.21; N: 14.68%.  Found: C: 68.10; H: 5.15; N: 14.68%.
(工程7)
Figure JPOXMLDOC01-appb-C000131
 カルボン酸体(化合物24a,804mg,1.4mmol)、炭酸1-クロロエチルシクロヘキシル(化合物25a,346mg,1.7mmol)、炭酸カリウム(309mg,2.2mmol)およびDMF(5mL)の混合物を65℃で4時間攪拌した。反応液に水を加えて生成物を酢酸エチルで抽出した。抽出液を水洗、硫酸マグネシウム上乾燥後濾過した。濾過液を減圧濃縮し濃縮残渣をシリカゲルカラムで精製すること(ヘキサン→ヘキサン:AcOEt=4:1→2:1→3:2→1:1)により目的物(化合物26a)を無色アモルファスとして得た(972mg,93%)。
IR: 1751, 1550, 1462 cm-1
1H-NMR (CDCl3): δ= 7.74-7.76 (m, 1H), 7.59-7.62 (m, 2H), 7.49-7.51 (m, 1H), 7.38-7.40 (m, 1H), 7.31-7.33 (m, 1H), 7.16-7.20 (m, 1H), 7.01 (d, J = 8Hz, 2H), 6.96 (d, J = 8Hz, 2H), 6.87-6.89 (m, 1H), 6.62-6.68 (m, 4H), 5.56-5.68 (m, 2H), 4.60-4.69 (m, 6H), 3.70 (s, 3H), 1.91-1.93 (m, 2H), 1.71-1.73 (m, 2H), 1.15-1.63 (m, 13H).  
MS: m/z = 731 (MH+)
(工程8)
Figure JPOXMLDOC01-appb-C000132
 p-メトキシベンジル保護体(化合物26a,80.2mg,0.11mmol)、イソプロパノール(0.45mL)、水(0.3mL)、蟻酸アンモニウム(36mg,0.57mmol)、パラジウム炭素触媒(17mg,0.0033mmol,Evonik,NN/W 5%Pd,水分56%)の混合物を40℃~50℃で4時間攪拌後、パラジウム炭素触媒(13.5mg,0.0028mmol,Evonik,NN/W 5%Pd,水分56%)を追加した後、50℃で1時間攪拌した。さらに、パラジウム炭素触媒(13.8mg,0.0029mmol,Evonik,NN/W 5%Pd,水分56%)を追加した後、50℃で12時間攪拌した。反応終了後、反応液に酢酸エチルを加えて濾過し、濾過液をHPLCで定量したところ、目的物(化合物27,カンデサルタン)が36.8mg(収率55%)含まれていた。
実施例32
(工程1)
Figure JPOXMLDOC01-appb-C000133
 1-ベンジル-5-[4’-(ブロモメチル)ビフェニル-2-イル]-1H-テトラゾール(化合物5b,9.82g,24mmol)、2-(tert-ブトキシカルボニルアミノ)-3-ニトロ安息香酸メチル(化合物19a,7.32g,24.7mmol)および炭酸カリウム(3.68g,26.7mmol)のアセトニトリル(100mL)混合物をアルゴン気流下6時間加熱還流した。反応混合物に炭酸カリウム(1.34g)を加えて、さらに3時間加熱還流した。反応混合物を冷却後濾過した。不溶物をクロロホルムで洗浄した。濾過液および洗浄液を合わして減圧濃縮した。濃縮残渣をシリカゲルカラムで精製すること(ヘキサン→ヘキサン:AcOEt=5:1→4:1→3:1→2:1→3:2)により2-(N-tert-ブトキシカルボニル-N-{(2’-[1-ベンジル-1H-テトラゾール-5-イル]ビフェニル-4-イル)メチル}アミノ)-3-ニトロ安息香酸メチル(化合物20b)を黄色アモルファスとして得た(12.17g,81%)。
IR: 1710 cm-1.
1H-NMR (CDCl3): δ= 8.05-8.11, 7.88-7.90 (m, 2H), 7.60-7.61 (m, 1H), 7.50-7.52 (m。1H), 7.05-7.26 (m, 10H), 6.78-6.80 (m, 2H), 4.85-4.94, 4.72-4.75 (m, 4H), 3.79 (s, 3H), 1.34 (s, 9H).
MS: m/z = 621 (MH+)
(工程2)
Figure JPOXMLDOC01-appb-C000134
 2-(N-tert-ブトキシカルボニル-N-{(2’-[1-ベンジル-1H-テトラゾール-5-イル]ビフェニル-4-イル)メチル}アミノ)-3-ニトロ安息香酸メチル(化合物20b,11.93g,19.2mmol)のメタノール(15mL)溶液に2N HCl-MeOH(30mL)を氷冷下加えて、同温度で2時間攪拌後、室温で1終夜攪拌した。反応混合物を減圧濃縮し濃縮残渣にメタノールとジイソプロピルエーテルを加えて結晶化し濾過した。得られた結晶をジイソプロピルエーテルおよびヘキサンで洗浄後、減圧乾燥することにより、2-[({2’-[1-ベンジル-1H-テトラゾール-5-イル]ビフェニル-4-イル}メチル)アミノ]-3-ニトロ安息香酸メチル(化合物21b)を黄色結晶として得た(8.64g,86%)。
融点:115-117℃.
IR: 1696, 1530, 1451, 1256 cm-1.
1H-NMR (CDCl3): δ= 8.59-8.62 (m, 1H), 8.05-8.08 (m, 2H), 7.94-7.96 (m, 2H), 7.73-7.75 (m, 1H), 7.52-7.62 (m, 3H), 7.17-7.26 (m, 4H), 6.94-6.96 (m, 2H), 6.80-6.83 (m, 3H).  
MS: m/z = 521 (MH+)
元素分析: Calcd for C29H24N6O4: C: 6691; H: 9.65; N: 16.14%.  Found: C: 66.75; H: 4.66; N: 16.19%.
(工程3)
Figure JPOXMLDOC01-appb-C000135
 2-[({2’-[1-ベンジル-1H-テトラゾール-5-イル]ビフェニル-4-イル}メチル)アミノ]-3-ニトロ安息香酸メチル(化合物21b,8.396g)および塩化スズ(II)2水和物(13.56g)のメタノール(155mL)混合物を2時間加熱還流した。反応混合物を減圧濃縮し、濃縮残渣に飽和重曹水と酢酸エチルを加えて1時間攪拌した。この混合物を濾過し、不溶物を酢酸エチルで洗浄した。濾過液と洗浄液を合わし、減圧濃縮した後、濃縮液を酢酸エチルで抽出した。生成物の酢酸エチル溶液を硫酸マグネシウム上で乾燥した後、濾過した。濾過液を減圧濃縮後、濃縮残渣をシリカゲルカラムで精製すること(ヘキサン→ヘキサン:AcOEt=5:1→4:1→3:1→2:1→3:2)により2-[({2’-[1-ベンジル-1H-テトラゾール-5-イル]ビフェニル-4-イル}メチル)アミノ]-3-アミノ安息香酸メチル(化合物22b)を褐色アモルファスとして得た(6.68g,84%)。
IR: 1692, 1468 cm-1.
1H-NMR (CDCl3): δ= 7.56-7.64 (m, 2H), 7.05-7.43 (m, 10H), 6.86-6.90 (m, 2H), 6.74-6.76 (m, 2H), 4.68 (s, 2H), 4.16 (s, 2H), 3.80 (s, 3H).
MS: m/z = 491 (MH+)
(工程4)
Figure JPOXMLDOC01-appb-C000136
 2-[({2’-[1-ベンジル-1H-テトラゾール-5-イル]ビフェニル-4-イル}メチル)アミノ]-3-アミノ安息香酸メチル(化合物22b,6.46g,13mmol)、テトラエトキシメタン(3.6mL,17mmol)および酢酸(8mL)の混合物を90℃で1時間攪拌した。反応混合物を冷却後、氷と飽和重曹水を加えてクロロホルムで抽出した。抽出液を硫酸マグネシウム上で乾燥した後、濾過し、濾過液を減圧濃縮した。濃縮残渣をシリカゲルカラムで精製すること(ヘキサン→ヘキサン:AcOEt=5:1→4:1→3:1→2:1→1:1)により目的物(化合物23b)を褐色アモルファスとして得た(5.61g,78%)。
IR: 1715, 1548 cm-1
1H-NMR (CDCl3): δ= 7.72-7.74 (m, 1H), 7.10-7.62 (m, 9H), 6.99 (d, J = 8Hz, 2H), 6.90 (d, J = 8HZ, 2H), 6.70-6.72 (m, 2H), 5.59 (s, 2H), 4.70 (q, J = 4Hz, 2H), 4.65 (s, 2H), 3.76 (s, 3H), 1.50 (t, J = 4Hz, 3H).
MS: m/z = 545 (MH+)
(工程5)
Figure JPOXMLDOC01-appb-C000137
 メチルエステル体(化合物23b,5.4g,9.9mmol)、1N水酸化ナトリウム(30mL)およびメタノール(15mL)の混合物を90℃で2時間攪拌した。メタノールを減圧濃縮後、10%塩酸を加えて、生成物をクロロホルムとTHFの混合物で抽出した。抽出液を硫酸マグネシウム上乾燥して濾過し濾過液を減圧濃縮した。濃縮残渣をシリカゲルカラムで精製した(MeOH/CHCl2%→4%)。目的物のフラクションを集めて減圧濃縮した。濃縮残渣にクロロホルムとジイソプロピルエーテルの混合物を加えて結晶化し、得られた結晶をジイソプロピルエーテルで洗浄後乾燥することにより目的物(化合物24b)を無色固体として得た(3.96g,75%)。
融点:171-173℃
IR: 1696, 1530, 1451, 1256 cm-1
1H-NMR (DMSO-d6): δ= 7.65-7.72 (m, 2H), 7.49-7.56 (m, 4H), 7.15-7.23 (m, 4H), 6.86-6.90 (m, 4H), 6.75-6.77 (m, 2H), 5.59 (s, 2H), 4.97 (s, 2H), 4.59 (q, J = 8Hz, 2H), 1.37 (t, J = 8Hz, 3H).  
MS: m/z = 531 (MH+)
元素分析: Calcd for C31H26N6O3・0.1H2O: C: 69.94; H: 4.96; N: 15.79%.  Found: C: 69.83; H: 4.96; N: 15.73%.
(工程6)
Figure JPOXMLDOC01-appb-C000138
 カルボン酸体(化合物24b,3.71g,6.99mmol)、炭酸1-クロロエチルシクロヘキシル(化合物25a,1.73g)、炭酸カリウム(1.54g)およびDMF(20mL)の混合物を65℃で4時間攪拌した。反応液に水を加えて、生成物を酢酸エチルで抽出した。抽出液を水洗し、硫酸マグネシウム上で乾燥した後、濾過した。濾過液を減圧濃縮し、濃縮残渣をシリカゲルカラムで精製すること(ヘキサン→ヘキサン:AcOEt=4:1→2:1→3:2→1:1)により、目的物(化合物26b)を黄色アモルファスとして得た(4.9g,定量的)。
IR: 1751, 1549, 1458 cm-1
1H-NMR (CDCl3): δ= 7.74-7.76 (m, 1H), 7.57-7.61 (m, 2H), 7.48-7.50 (m, 1H), 7.30-7.40 (m, 2H), 7.13-7.18 (m, 3H), 6.87-7.02 (m, 5H), 6.70-6.72 (m, 2H), 5.56-5.67 (m, 2H), 4.61-4.71 (m, 6H), 1.85-1.93 (m, 2H), 1.65-1.80 (m, 2H), 1.20-1.62 (m, 13H).  
MS: m/z = 701 (MH+)
 本発明によれば、安価な金属化合物を用いることが可能となり、経済的かつ工業的製造に適した条件で、アンジオテンシンII受容体拮抗薬の中間体として有用なビアリールテトラゾール誘導体を製造することが可能となる。
 本願は、日本に出願された特願2009-262149及び特願2010-143845を基礎としており、その内容は本明細書に全て包含される。

Claims (7)

  1.  1)一般式[II]:
    Figure JPOXMLDOC01-appb-C000001

    [式中、Rはテトラゾリル基の保護基を表す。]
    で示されるアリールテトラゾール誘導体と、一般式[III]:
    Figure JPOXMLDOC01-appb-C000002

    [式中、Rはメチル基、保護基で保護された水酸基で置換されたメチル基又は低級アルコキシカルボニル基、Xは脱離基を表す。]
    で示されるベンゼン誘導体を反応させ;
    2)得られる一般式[IV]:
    Figure JPOXMLDOC01-appb-C000003

    [式中、記号は前記と同一意味を表す。]
    で示される化合物において
    (a)Rが保護基で保護された水酸基で置換されたメチル基である場合は、脱保護して、
    (b)Rが低級アルコキシカルボニル基である場合は、還元して、
    一般式[V]:
    Figure JPOXMLDOC01-appb-C000004

    [式中、記号は前記と同一意味を表す。]
    で示される化合物を得;
    3)一般式[IV]で示される化合物のRがメチル基である場合は、一般式[IV]で示される化合物を、
    一般式[IV]で示される化合物のRが保護基で保護された水酸基で置換されたメチル基又は低級アルコキシカルボニル基である場合は、一般式[V]で示される化合物を、
    さらにハロゲン化することを特徴とする、一般式[I]:
    Figure JPOXMLDOC01-appb-C000005

    [式中、Xはハロゲン原子を表し、他の記号は前記と同一意味を表す。]
    で示されるビアリールテトラゾール誘導体又はその塩の製法。
  2.  一般式[II]で示されるアリールテトラゾール誘導体と、一般式[III]で示されるベンゼン誘導体を、金属触媒存在下で反応させることを特徴とする、請求項1に記載の製法。
  3.  一般式[II]で示されるアリールテトラゾール誘導体と、一般式[III]で示されるベンゼン誘導体を、塩基及び金属触媒存在下で反応させることを特徴とする、請求項1に記載の製法。
  4.  1)請求項1記載の製法で得られた一般式[I]:
    Figure JPOXMLDOC01-appb-C000006

    [式中、Xはハロゲン原子を表し、Rはテトラゾリル基の保護基を表す。]
    で示されるビアリールテトラゾール誘導体又はその塩と、式[VI]:
    Figure JPOXMLDOC01-appb-C000007

    で示される化合物を反応させ;
    2-A)得られる一般式[VII]:
    Figure JPOXMLDOC01-appb-C000008

    [式中、記号は前記と同一意味を表す。]
    で示される化合物を還元して、一般式[VIII]:
    Figure JPOXMLDOC01-appb-C000009

    [式中、記号は前記と同一意味を表す。]
    で示される化合物を得、さらにRを除去するか;又は
    2-B)一般式[VII]で示される化合物のRを除去して、式[VIII-2]:
    Figure JPOXMLDOC01-appb-C000010

    で示される化合物を得、さらに還元することを特徴とする、
    式[IX]:
    Figure JPOXMLDOC01-appb-C000011

    で示される化合物又はその塩の製法。
  5.  1)請求項1記載の製法で得られた一般式[I]:
    Figure JPOXMLDOC01-appb-C000012

    [式中、Xはハロゲン原子を表し、Rはテトラゾリル基の保護基を表す。]
    で示されるビアリールテトラゾール誘導体又はその塩と、一般式[X]:
    Figure JPOXMLDOC01-appb-C000013

    [式中、Rはカルボキシ基の保護基を表す。]
    で示される化合物又はその塩を反応させ;
    2-A)得られる一般式[XI]:
    Figure JPOXMLDOC01-appb-C000014

    [式中、記号は前記と同一意味を表す。]
    で示される化合物のRを除去し、得られる一般式[XII]:
    Figure JPOXMLDOC01-appb-C000015

    [式中、記号は前記と同一意味を表す。]
    で示される化合物と、一般式[XIII]:
    CHCHCHCHCO-X
    [式中、Xは脱離基を表す。]
    で示される化合物を反応させ、得られる一般式[XIV]:
    Figure JPOXMLDOC01-appb-C000016

    [式中、記号は前記と同一意味を表す。]
    で示される化合物のRを除去するか;又は
    2-B)一般式[XI]で示される化合物と、一般式[XIII]で示される化合物を反応させ、得られる一般式[XII-2]:
    Figure JPOXMLDOC01-appb-C000017

    [式中、記号は前記と同一意味を表す。]
    で示される化合物のR及びRを除去することを特徴とする、
    式[XV]:
    Figure JPOXMLDOC01-appb-C000018

    で示される化合物又はその塩の製法。
  6.  請求項1記載の製法で得られた一般式[I]:
    Figure JPOXMLDOC01-appb-C000019

    [式中、Xはハロゲン原子を表し、Rはテトラゾリル基の保護基を表す。]
    で示されるビアリールテトラゾール誘導体又はその塩と、式[XVI]:
    Figure JPOXMLDOC01-appb-C000020

    で示される化合物又はその塩を反応させて、一般式[XVII]:
    Figure JPOXMLDOC01-appb-C000021

    [式中、記号は前記と同一意味を表す。]
    で示される化合物を得、さらにRを除去することを特徴とする、
    式[XVIII]:
    Figure JPOXMLDOC01-appb-C000022

    で示される化合物又はその塩の製法。
  7.  1)請求項1記載の製法で得られた一般式[I]:
    Figure JPOXMLDOC01-appb-C000023

    [式中、Xはハロゲン原子を表し、Rはテトラゾリル基の保護基を表す。]
    で示されるビアリールテトラゾール誘導体又はその塩と、一般式[XIX]:
    Figure JPOXMLDOC01-appb-C000024

    [式中、Rはカルボキシ基の保護基を表し、Rはアミノ基の保護基を表す。]
    で示される化合物を反応させ、
     2)得られる一般式[XX]:
    Figure JPOXMLDOC01-appb-C000025

    [式中、記号は前記と同一意味を表す。]
    で示される化合物のRを除去して、一般式[XXI]:
    Figure JPOXMLDOC01-appb-C000026

    [式中、記号は前記と同一意味を表す。]
    で示される化合物を得、さらに還元して、
     3)得られる一般式[XXII]:
    Figure JPOXMLDOC01-appb-C000027

    [式中、記号は前記と同一意味を表す。]
    で示される化合物とテトラエトキシメタンを反応させて一般式[XXIII]:
    Figure JPOXMLDOC01-appb-C000028

    [式中、記号は前記と同一意味を表す。]
    で示される化合物を得、さらにRを除去して、
     4)得られる一般式[XXIV]:
    Figure JPOXMLDOC01-appb-C000029

    [式中、記号は前記と同一意味を表す。]
    で示される化合物と一般式[XXV]:
    Figure JPOXMLDOC01-appb-C000030

    [式中、Xは脱離基または水酸基を表す。]
    で示される化合物とを反応させて一般式[XXVI]:
    Figure JPOXMLDOC01-appb-C000031

    [式中、記号は前記と同一意味を表す。]
    で示される化合物を得、さらにRを除去することを特徴とする、一般式[XXVII]:
    Figure JPOXMLDOC01-appb-C000032

    [式中、記号は前記と同一意味を表す。]
    で示される化合物又はその塩の製法。
PCT/JP2010/066596 2009-11-17 2010-09-24 ビフェニル誘導体の製法 WO2011061996A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011541847A JPWO2011061996A1 (ja) 2009-11-17 2010-09-24 ビフェニル誘導体の製法
CN201080061483.6A CN102712606A (zh) 2009-11-17 2010-09-24 联苯基衍生物的制备方法
US13/509,817 US8530506B2 (en) 2009-11-17 2010-09-24 Process for production of biphenyl derivative
EP10831395.8A EP2502919A4 (en) 2009-11-17 2010-09-24 METHOD FOR MANUFACTURING BIPHENYL DERIVATIVE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009262149 2009-11-17
JP2009-262149 2009-11-17
JP2010-143845 2010-06-24
JP2010143845 2010-06-24

Publications (1)

Publication Number Publication Date
WO2011061996A1 true WO2011061996A1 (ja) 2011-05-26

Family

ID=44059481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066596 WO2011061996A1 (ja) 2009-11-17 2010-09-24 ビフェニル誘導体の製法

Country Status (6)

Country Link
US (1) US8530506B2 (ja)
EP (1) EP2502919A4 (ja)
JP (1) JPWO2011061996A1 (ja)
CN (1) CN102712606A (ja)
TW (1) TW201120015A (ja)
WO (1) WO2011061996A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013171643A1 (en) * 2012-05-14 2013-11-21 Piramal Enterprises Limited An improved process for preparation of irbesartan
WO2014034868A1 (ja) 2012-08-31 2014-03-06 株式会社エーピーアイ コーポレーション ビアリール化合物の製造方法
WO2014051008A1 (ja) 2012-09-26 2014-04-03 株式会社エーピーアイ コーポレーション テトラゾール化合物の脱保護方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015054120A1 (en) * 2013-10-08 2015-04-16 Chicago Discovery Solutions, Llc Ruthenium-catalyzed synthesis of biaryl compounds in water
WO2015090635A1 (en) * 2013-12-20 2015-06-25 Farma Grs, D.O.O. A new process for the preparation of candesartan cilexetil
CN112920193B (zh) * 2021-02-07 2021-11-16 南通大学 一种灰黄霉素四唑衍生物及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286972A (ja) * 1992-01-28 1993-11-02 Zeneca Ltd 化学的方法
JP2009513555A (ja) * 2003-07-15 2009-04-02 ノバルティス アクチエンゲゼルシャフト 有機ホウ素および有機アルミニウムアジドからのテトラゾール誘導体の調製のための方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753489A (ja) * 1993-06-11 1995-02-28 Sankyo Co Ltd ビフェニルカルボキサミド誘導体の製造法
ATE203526T1 (de) * 1994-10-27 2001-08-15 Novartis Erfind Verwalt Gmbh Verfahren zur herstellung tetrazole
JPH10195063A (ja) * 1996-10-21 1998-07-28 Dai Ichi Seiyaku Co Ltd エチニルチアゾール誘導体
CZ298685B6 (cs) * 2003-05-15 2007-12-19 Zentiva, A.S. Zpusob výroby N-(1-oxopentyl)-N-[[2´-(1H-tetrazol-5-yl)[1,1´-bifenyl]-4-yl]methyl]-L-valinu (valsartanu)
CN1272325C (zh) * 2003-05-16 2006-08-30 天津药物研究院 坎地沙坦酯中间体1-((2′-氰基联苯-4-基)甲基)-2-乙氧基苯并咪唑-7-甲酸乙酯的制备方法
WO2006038223A1 (en) * 2004-10-06 2006-04-13 Matrix Laboratories Ltd A process for preparation of 2-n-butyl -4-chloro - 1 - {[2`- (2-triphenylmethyl - 2h - tetrazole - 5- yl) - 1, 1’ - biphenyl-4-yl] methyl}-lh- imidazoie-5-methanol (intermediate of losartan)
CN101323610B (zh) * 2007-06-15 2013-10-30 横店集团成都分子实验室有限公司 三苯甲基坎地沙坦酯中间体制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286972A (ja) * 1992-01-28 1993-11-02 Zeneca Ltd 化学的方法
JP2009513555A (ja) * 2003-07-15 2009-04-02 ノバルティス アクチエンゲゼルシャフト 有機ホウ素および有機アルミニウムアジドからのテトラゾール誘導体の調製のための方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
COUSAERT, N. ET AL.: "Efficient, protection-free Suzuki-Miyaura synthesis of ortho-biphenyltetrazoles", TETRAHEDRON LETTERS, vol. 46, no. 38, 2005, pages 6529 - 6532, XP008157573 *
COUSAERT, N. ET AL.: "Original loading and Suzuki conditions for the solid-phase synthesis of biphenyltetrazoles. Application to the first solid-phase synthesis of irbesartan", TETRAHEDRON LETTERS, vol. 49, no. 17, 2008, pages 2743 - 2747, XP008157575 *
OI, S. ET AL.: "Nitrogen-directed ortho-arylation and - heteroarylation of aromatic rings catalyzed by ruthenium complexes", TETRAHEDRON, vol. 64, no. 26, 2008, pages 6051 - 6059, XP008157587 *
OI, S. ET AL.: "Ortho-selective Arylation of Arylazoles with Aryl Bromides Catalyzed by Ruthenium Complexes", CHEMISTRY LETTERS, vol. 37, no. 9, 2008, pages 994 - 995, XP008157584 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013171643A1 (en) * 2012-05-14 2013-11-21 Piramal Enterprises Limited An improved process for preparation of irbesartan
WO2014034868A1 (ja) 2012-08-31 2014-03-06 株式会社エーピーアイ コーポレーション ビアリール化合物の製造方法
CN104583185A (zh) * 2012-08-31 2015-04-29 株式会社Api 联芳基化合物的制造方法
JP5925899B2 (ja) * 2012-08-31 2016-05-25 株式会社エーピーアイ コーポレーション ビアリール化合物の製造方法
US9624181B2 (en) 2012-08-31 2017-04-18 Api Corporation Method for producing biaryl compound
WO2014051008A1 (ja) 2012-09-26 2014-04-03 株式会社エーピーアイ コーポレーション テトラゾール化合物の脱保護方法
JP5881837B2 (ja) * 2012-09-26 2016-03-09 株式会社エーピーアイ コーポレーション テトラゾール化合物の脱保護方法
US9527821B2 (en) 2012-09-26 2016-12-27 Api Corporation Deprotection method for tetrazole compound

Also Published As

Publication number Publication date
JPWO2011061996A1 (ja) 2013-04-04
US8530506B2 (en) 2013-09-10
EP2502919A4 (en) 2013-06-26
US20120232283A1 (en) 2012-09-13
CN102712606A (zh) 2012-10-03
TW201120015A (en) 2011-06-16
EP2502919A1 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
EP2190804B1 (en) Process and intermediates for preparing integrase inhibitors
KR101565169B1 (ko) 인테그라제 억제제의 제조를 위한 방법 및 중간체
WO2011061996A1 (ja) ビフェニル誘導体の製法
JP5575921B2 (ja) テトラゾールメタンスルホン酸塩の製造方法及びそれに用いられる新規化合物
ITMI990134A1 (it) Metodo di sintesi di nitrossimetilfenil esteri di derivati dell'aspirina
KR101942064B1 (ko) 신규한 아연 아지드 착물 및 이를 이용한 테트라졸 유도체의 제조방법
JP2008531642A (ja) 薬学活性化合物イルベサルタンおよびその合成中間体を得る方法
ES2344571T3 (es) Procedimiento para la preparacion de candesartan.
JP5925899B2 (ja) ビアリール化合物の製造方法
JP5881837B2 (ja) テトラゾール化合物の脱保護方法
JPWO2019131695A1 (ja) 1−[5−(2−フルオロフェニル)−1−(ピリジン−3−イルスルホニル)−1h−ピロ−ル−3−イル]−n−メチルメタンアミンモノフマル酸塩の製造法
CN101121708B (zh) 奥沙碘铵及其类似物的合成方法
ES2288376A1 (es) Procedimientoo para la obtencion de intermedios utiles en la obtencion de un compuesto farmaceuticamente activo.
JP2014523917A5 (ja)
JP2007106722A5 (ja) 18Fで標識したアミノ酸O-(2-[18F]fluoroethyl)-L-Tyrosineの前駆体の製造方法。
JP2004123640A (ja) 3−ニトロ−1,8−ナフチリジン−2(1h)−オン誘導体の製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080061483.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541847

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13509817

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010831395

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5081/CHENP/2012

Country of ref document: IN