WO2014034868A1 - ビアリール化合物の製造方法 - Google Patents

ビアリール化合物の製造方法 Download PDF

Info

Publication number
WO2014034868A1
WO2014034868A1 PCT/JP2013/073365 JP2013073365W WO2014034868A1 WO 2014034868 A1 WO2014034868 A1 WO 2014034868A1 JP 2013073365 W JP2013073365 W JP 2013073365W WO 2014034868 A1 WO2014034868 A1 WO 2014034868A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
salt
compound
group
symbols
Prior art date
Application number
PCT/JP2013/073365
Other languages
English (en)
French (fr)
Inventor
雅彦 関
Original Assignee
株式会社エーピーアイ コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エーピーアイ コーポレーション filed Critical 株式会社エーピーアイ コーポレーション
Priority to EP13832547.7A priority Critical patent/EP2891650B1/en
Priority to US14/424,912 priority patent/US9624181B2/en
Priority to JP2014533118A priority patent/JP5925899B2/ja
Priority to CN201380044890.XA priority patent/CN104583185A/zh
Publication of WO2014034868A1 publication Critical patent/WO2014034868A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/04Substitution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings

Definitions

  • the present invention relates to a method for producing a biaryl compound or a salt thereof useful as an intermediate of an angiotensin II receptor antagonist.
  • Losartan potassium, valsartan, olmesartan medoxomil, candesartan cilexetil, telmisartan, irbesartan and the like are useful as angiotensin II receptor antagonists.
  • a method for producing these compounds for example, J. Org. Chem. 1994, 59, 6391-6394 (Non-patent Document 1), and a method for synthesizing valsartan is described in Org. Process Res. Dev. 2007, Vol. 11, pages 892 to 898 (Non-Patent Document 2) is further described in J. Org. Med. Chem. 1993, Vol. 36, pages 3371 to 3380 (Non-patent Document 3) are known.
  • Patent Document 1 JP-B-7-121918
  • Patent Document 2 JP-T 2010-505926
  • Patent Document 3 International Publication No. 2004/085428
  • Patent Document 4 a conventional method of biphenylation reaction
  • Tetrahedron, 2008, 64, 6051-6059 Non-patent Document 5
  • Angelwandte Chemie International Edition The method described in 2009, 48, 9792-9827 (nonpatent literature 6) and international publication 2011/061996 (patent literature 4) is known.
  • An object of the present invention is to provide a novel production method capable of producing a biaryl compound useful as an intermediate of an angiotensin II receptor antagonist under conditions suitable for economical and industrial production.
  • the present inventor used an inexpensive metal compound as a catalyst and further used a specific compound, thereby allowing angiotensin II receptor under conditions suitable for economical and industrial production. It has been found that biaryl compounds useful as intermediates for body antagonists can be produced, and the present invention has been completed. That is, the present invention is: [1] General formula [1]:
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group, an aralkyl group or an aryl group, each optionally having a substituent, and ring A is substituted. Represents a nitrogen-containing heterocyclic ring which may optionally be present.
  • a 2-phenylazole derivative or a salt thereof also referred to as 2-phenylazole derivative [1]
  • R 5 represents an alkyl group, an aralkyl group or an aryl group, each of which may have a substituent
  • m represents an integer of 0 to 5
  • X 1 represents a leaving group.
  • a benzene derivative (also referred to as benzene derivative [2]) is reacted in the presence of a metal catalyst, a base, and one or more compounds selected from the group consisting of the following (a) to (d):
  • a metal salt of phosphate ester or phosphate amide represented by: [2] General formula [1]:
  • R 1 to R 4 each independently represent a hydrogen atom or an alkyl group, an aralkyl group or an aryl group, each optionally having a substituent, and ring A is substituted. Represents a nitrogen-containing heterocyclic ring which may optionally be present.
  • a 2-phenylazole derivative or a salt thereof also referred to as 2-phenylazole derivative [1]
  • R 5 represents an alkyl group, an aralkyl group or an aryl group, each of which may have a substituent
  • m represents an integer of 0 to 5
  • X 1 represents a leaving group.
  • a benzene derivative (also referred to as benzene derivative [2]) is reacted in the presence of a metal catalyst, a base, and one or more compounds selected from the group consisting of the following (a) to (d):
  • production method 1 ′ Metal salt of monocarboxylic acid
  • metal salt of dicarboxylic acid Metal salt of sulfonic acid
  • d (R ′′ ′ O) ⁇ P (O) (OM) y
  • R ′′ ′ Is a hydrogen atom, or a linear or branched alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 14 carbon atoms, or a carbon number, each of which may contain a nitrogen atom, an oxygen atom or a sulfur atom.
  • M represents a metal atom
  • x and y are each independently an integer of 1 or 2
  • x + y is 3.
  • a metal salt of a phosphate ester represented by [3] The production method of the above-mentioned [1] or [2], wherein the reaction is further carried out under conditions where a phosphine compound is present; [4] The general formula [1] described in the above [1] or [2] is represented by the general formula [1 ′]:
  • R 6 represents a protective group for a tetrazolyl group, and R 1 to R 4 have the same meanings as described above.
  • a salt thereof also referred to as 2-phenyltetrazole derivative [1 ′]
  • the general formula [2] described in the above [1] or [2] is represented by the general formula [2 ′]:
  • R 5 ′ represents a methyl group, a methyl group substituted with a protected hydroxyl group, or a lower alkoxycarbonyl group, and X 1 has the same meaning as described above.
  • a method for producing a biaryltetrazole derivative or a salt thereof (also referred to as a biaryltetrazole derivative [5]) (hereinafter also referred to as “production method 2”); [6] 1) General formula [5 ′] obtained by the production method described in [5] above:
  • R 10 represents a protecting group for a carboxy group.
  • a salt thereof also referred to as compound [6] is reacted to give a general formula [7]:
  • R 7 represents a protecting group for a carboxy group.
  • a salt thereof also referred to as a compound [17] is reacted with the compound represented by the general formula [18]:
  • R 8 represents a protecting group for a carboxy group.
  • a salt thereof also referred to as compound [X] is reacted to form a compound represented by the general formula [31]:
  • X 4 represents a leaving group or a hydroxyl group.
  • a salt thereof also referred to as a compound [33] is reacted with the compound represented by the general formula [34]:
  • R 8 represents a protecting group for a carboxy group
  • R 9 represents a protecting group for an amino group.
  • a salt thereof (also referred to as a compound [27]) is reacted with the compound represented by the general formula [28]:
  • X 4 represents a leaving group or a hydroxyl group.
  • a salt thereof also referred to as a compound [33] is reacted with the compound represented by the general formula [34]:
  • production method 7 a salt thereof (that is, candesartan cilexetil or a salt thereof) (hereinafter, also referred to as “production method 7”); About.
  • a biaryl compound useful as an intermediate of an angiotensin II receptor antagonist can be produced under conditions suitable for economical and industrial production.
  • the “protecting group for tetrazolyl group” is not particularly limited as long as it can stably protect the tetrazolyl group during the reaction, but specifically, Protective Groups in Organic Synthesis 3 rd Ed. T. W. Greene, P.M. G. M.M. Wuts, John Wiley and Sons, Inc. And those described in 1999.
  • a protecting group for the tetrazolyl group for example, A C 7-19 aralkyl group (eg, benzyl, diphenylmethyl, trityl, etc.); A substituted C 7-19 aralkyl group such as substituted benzyl, substituted diphenylmethyl, etc.
  • C 1-6 alkyl preferably 1-3 selected from the group consisting of C 1-6 alkyl, nitro, C 1-6 alkylenedioxy and C 1-6 alkoxy
  • C 7-19 aralkyl substituted with one substituent when two or more substituents are present, they may be the same or different, and the substituents may combine to form a ring
  • Substituted C 1-6 alkyl groups preferably hydroxy, alkoxy (eg, C 1-6 alkoxy), aryloxy (eg, C 6-10 aryloxy) and dialkylamino (eg, di (C 1-6 alkyl)) C 1-6 alkyl substituted with 1
  • protective group for the hydroxyl group of the “methyl group substituted with a protected hydroxyl group” include Protective Groups in Organic Synthesis 3 rd Ed. T. W. Greene, P.M. G. M.M. Wuts, John Wiley and Sons, Inc. And those described in 1999.
  • hydroxyl protecting groups include: An acyl group (preferably C 1-6 alkyl-carbonyl, C 3-8 cycloalkyl-carbonyl, C 6-10 aryl-carbonyl, eg, acetyl, propionyl, butyryl, isobutyryl, pivaloyl, cyclohexylcarbonyl, benzoyl, etc.), A C 7-19 aralkyl group (eg, benzyl, etc.), A trialkylsilyl group (preferably tri (C 1-6 alkyl) silyl, eg, trimethylsilyl, triethylsilyl, triisopropylsilyl, t-butyldimethylsilyl, etc.), Alkoxycarbonyl group (preferably C 1-6 alkoxy-carbonyl) Etc.
  • An acyl group preferably C 1-6 alkyl-carbonyl, C 3-8 cycloalkyl-carbonyl, C 6-10 aryl-
  • the “protecting group for carboxy group” is not particularly limited as long as it can stably protect the carboxy group during the reaction, and specifically, Protective Groups in Organic Synthesis 3 rd Ed. T. W. Greene, P.M. G. M.M. Wuts, John Wiley and Sons, Inc. And those described in 1999.
  • Examples of the protecting group for carboxy group include: An alkyl group (preferably C 1-6 alkyl, eg methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl), A C 3-8 cycloalkyl group (eg, cyclohexyl), A C 7-19 aralkyl group (eg, benzyl, diphenylmethyl, trityl), C 2-6 alkenyl group (eg, allyl) Etc.
  • An alkyl group preferably C 1-6 alkyl, eg methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl
  • a C 3-8 cycloalkyl group eg, cyclohexyl
  • a C 7-19 aralkyl group eg, benzyl, diphenylmethyl, trityl
  • C 2-6 alkenyl group
  • amino group-protecting group is not particularly limited as long as it can stably protect an amino group during the reaction, and specifically, Protective Groups in Organic Synthesis 3 rd Ed. T. W. Greene, P.M. G. M.M. Wuts, John Wiley and Sons, Inc. And those described in 1999.
  • amino-protecting groups include acyl groups (preferably C 1-6 alkyl-carbonyl, C 3-8 cycloalkyl-carbonyl, C 6-10 aryl-carbonyl, eg, acetyl, propionyl, butyryl, isobutyryl).
  • lower alkoxycarbonyl group examples include linear or branched C 1-12 alkoxy-carbonyl groups, preferably methoxycarbonyl, ethoxycarbonyl, butoxycarbonyl (eg, tert-carbonyl). Butoxycarbonyl) and the like.
  • a halogen atom As the “leaving group” for X 1 , A halogen atom, A C 6-10 arylsulfonyloxy group (eg, toluenesulfonyloxy etc.) optionally substituted with 1 to 3 C 1-6 alkyl groups, C 1-6 alkylsulfonyloxy group optionally substituted with 1 to 3 halogen atoms (eg, methanesulfonyloxy, trifluoromethanesulfonyloxy, etc.) Etc.
  • a halogen atom eg, toluenesulfonyloxy etc.
  • C 1-6 alkylsulfonyloxy group optionally substituted with 1 to 3 halogen atoms (eg, methanesulfonyloxy, trifluoromethanesulfonyloxy, etc.) Etc.
  • a halogen atom As the “leaving group” for X 3 , A halogen atom, A C 6-10 arylsulfonyloxy group (eg, toluenesulfonyloxy etc.) optionally substituted with 1 to 3 C 1-6 alkyl groups, A C 1-6 alkylsulfonyloxy group (eg, methanesulfonyloxy etc.) optionally substituted with 1 to 3 halogen atoms, An alkanoyloxy group (preferably C 1-6 alkyl-carbonyloxy), An aroyloxy group (preferably C 6-10 aryl-carbonyloxy), Dialkoxyphosphoryloxy group (preferably di (C 1-6 alkoxy) phosphoryloxy), Diaryloxyphosphoryloxy group (preferably di (C 6-10 aryloxy) phosphoryloxy) Etc.
  • a C 6-10 arylsulfonyloxy group eg, toluenesulfonyloxy etc.
  • halogen atom examples include fluorine, chlorine, bromine or iodine.
  • alkyl group in the present specification includes, unless otherwise specified, a linear or branched alkyl group having 1 to 12 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, Examples include isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl and the like.
  • the “aralkyl group” in the present specification includes an aralkyl group having 7 to 14 carbon atoms unless otherwise specified, and examples thereof include benzyl, phenethyl, 1-methyl-2-phenylethyl, diphenylmethyl, 1- Naphtylmethyl, 2-naphthylmethyl, 2,2-diphenylethyl, 3-phenylpropyl, 4-phenylbutyl, 5-phenylpentyl, 2-biphenylylmethyl, 3-biphenylylmethyl, 4-biphenylylmethyl, etc. It is done.
  • aryl group in the present specification includes an aryl group having 6 to 14 carbon atoms unless otherwise specified, and examples thereof include phenyl, 1-naphthyl, 2-naphthyl, 2-anthryl and the like.
  • the aryl group may be fused with the following "C 3-8 cycloalkane” or "C 3-8 cycloalkene", for example, tetrahydronaphthyl and the like.
  • the “nitrogen-containing heterocycle” in the present specification is, for example, 1 selected from a nitrogen atom, a sulfur atom, and an oxygen atom as a ring-constituting atom, in addition to a carbon atom and one nitrogen atom.
  • 2 to 3-8-membered nitrogen-containing heterocycles preferably 5- or 6-membered nitrogen-containing aromatic heterocycles which may contain 1 to 3 heteroatoms may be mentioned.
  • a pyrrole ring an imidazole ring, an oxazole ring, a thiazole ring, an oxadiazole ring, a thiadiazole ring, a triazole ring, a tetrazole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, and a pyrazine ring.
  • Examples of the “optionally substituted alkyl group, aralkyl group or aryl group” and “optionally substituted nitrogen-containing heterocycle” in the present specification include, for example, (1) a halogen atom; (2) hydroxy; (3) amino; (4) Nitro; (5) Cyano; (6) Halogen atom, hydroxy, amino, nitro, cyano, optionally halogenated C 1-6 alkyl, mono- or di-C 1-6 alkyl-amino, C 6-14 aryl, mono- or di -C 6-14 aryl-amino, C 3-8 cycloalkyl, C 1-6 alkoxy, C 1-6 alkoxy-C 1-6 alkoxy, C 1-6 alkylsulfanyl, C 1-6 alkylsulfinyl, C 1 -6 alkylsulfonyl, optionally esterified carboxy, carbamoyl, thiocarbamoyl, mono- or di-C 1-6 alkyl-carbamo
  • Biaryl compound [3] is obtained by converting 2-phenylazole derivative [1] into benzene derivative [2] in the presence of a metal catalyst, a base and one or more compounds selected from the group consisting of (a) to (d). It can manufacture by making it react. This reaction can also be performed using a solvent.
  • a metal catalyst a ruthenium catalyst, an iridium catalyst, a rhodium catalyst, or a palladium catalyst can be used.
  • Examples of the ruthenium catalyst include dichlorotris (triphenylphosphine) ruthenium (II) (RuCl 2 (PPh 3 ) 3 ), Dichloro (1,5-cyclooctadiene) ruthenium (II) polymer ([RuCl 2 ( ⁇ 4 -COD)] n or poly [( ⁇ 2 , ⁇ 2 -cycloocta-1,5-diene) ruthenium-di- ⁇ -Chloro]), [RuCl 2 ( ⁇ 6 -C 6 H 6 )] 2 , dichloro (p-cymene) ruthenium (II) dimer ([Ru (p-cymene) Cl 2 ] 2 ) , Dichloro (mesitylene) ruthenium (II) dimer ([Ru (mesitylene) Cl 2 ] 2 ), chloride Examples include ruthenium (III) (RuCl 3 ), ruthenium chloride (III) hydrate
  • a ruthenium catalyst eg, dichloro (p-cymene) ruthenium (II) dimer ([Ru (p-cymene) Cl 2 ] 2 ), ruthenium (III) chloride hydrate (RuCl 3 xH 2 O), Dipivaloyloxy (p-cymene) ruthenium (II)
  • the amount of the metal catalyst to be used is generally 0.00001 equivalent to 10 equivalents, preferably 0.001 equivalent to 0.3 equivalent, more preferably 0.003 equivalent to the 2-phenylazole derivative [1]. Equivalent to 0.015 equivalent.
  • it is potassium carbonate.
  • the amount of the base used is usually 0.1 equivalents to 10 equivalents, preferably 0.1 equivalents to 3 equivalents, more preferably 0.3 equivalents to 2 equivalents, relative to the 2-phenylazole derivative [1]. is there.
  • the (a) a metal salt of a monocarboxylic acid of the present invention is not particularly limited, for example, metal salts of carboxylic acid represented by RCO 2 M and the like.
  • R represents a hydrogen atom, or a linear or branched alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 14 carbon atoms, or a carbon number 6 which may contain a nitrogen atom, an oxygen atom or a sulfur atom, respectively.
  • R represents a hydrogen atom, or a linear or branched alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 14 carbon atoms, or a carbon number 6 which may contain a nitrogen atom, an oxygen atom or a sulfur atom, respectively.
  • R is preferably a linear or branched alkyl group having 1 to 12 carbon atoms (eg, methyl, tert-butyl, 2-ethyl-hexyl, n-dodecyl), an aralkyl group having 7 to 10 carbon atoms, carbon An aryl group having 6 to 12 carbon atoms (eg, mesityl) optionally substituted with an alkyl group having 1 to 6 carbon atoms, and a cycloalkyl group having 3 to 7 carbon atoms (eg, cyclohexyl), particularly preferably methyl Group and tert-butyl group.
  • 1 to 12 carbon atoms eg, methyl, tert-butyl, 2-ethyl-hexyl, n-dodecyl
  • an aralkyl group having 7 to 10 carbon atoms carbon
  • An aryl group having 6 to 12 carbon atoms eg, mesityl
  • M represents a metal atom, preferably Li (lithium), Na (sodium), K (potassium), Rb (rubidium), Cs (cesium), Mg (magnesium) or Zn (zinc), more preferably Is an alkali metal atom, particularly preferably K.
  • R is a linear or branched alkyl group having 1 to 12 carbon atoms (eg, methyl, tert-butyl, 2-ethyl-hexyl, n-dodecyl), carbon A potassium salt of a carboxylic acid which is a cycloalkyl group having 3 to 7 carbon atoms (eg, cyclohexyl) or an aryl group having 6 to 12 carbon atoms (eg, mesityl) optionally substituted with an alkyl group having 1 to 6 carbon atoms
  • the potassium salt of acetic acid or the potassium salt of pivalic acid is particularly preferred.
  • (b) metal salt of dicarboxylic acid of this invention For example,
  • R ′ represents a hydrogen atom, or a linear or branched alkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 14 carbon atoms, or carbon, each of which may contain a nitrogen atom, an oxygen atom or a sulfur atom.
  • R ′ represents a hydrogen atom, or a linear or branched alkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 14 carbon atoms, or carbon, each of which may contain a nitrogen atom, an oxygen atom or a sulfur atom.
  • aryl groups of 6 to 18, and the alkyl group, aralkyl group and aryl group may have a substituent.
  • R ′ is preferably a hydrogen atom, or a linear or branched alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and a hydrogen atom Is particularly preferred.
  • n is an integer of 0 to 10, preferably an integer of 0 to 5, particularly preferably 0 or 3.
  • Ring Z represents a cycloalkylene having 3 to 8 carbon atoms, a cycloalkenylene, arylene or heterocyclylene having 3 to 8 carbon atoms, and preferably includes phenylene, naphthylene, anthrylene, phenanthrylene and the like.
  • M represents a metal atom, preferably Li (lithium), Na (sodium), K (potassium), Rb (rubidium), Cs (cesium), Mg (magnesium) or Zn (zinc), more preferably Is an alkali metal atom, particularly preferably K.
  • Preferred examples of the metal salt of dicarboxylic acid include potassium salt of dicarboxylic acid in which R ′ is a hydrogen atom and n is an integer of 0 to 5, and potassium salt of oxalic acid or potassium salt of glutaric acid is particularly preferable.
  • the metal salt of (c) sulfonic acid of the present invention is not particularly limited, and examples thereof include a sulfonic acid metal salt represented by R ′′ SO 3 M.
  • R ′′ represents a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 14 carbon atoms or a carbon atom, each of which may contain a nitrogen atom, an oxygen atom or a sulfur atom.
  • alkyl groups, aralkyl groups and aryl groups may have a substituent, preferably a linear or branched alkyl group having 1 to 6 carbon atoms, An aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms which may be substituted with an alkyl group having 1 to 12 carbon atoms (eg, 2,4,6-trimethylphenyl or 4-dodecylphenyl), Particularly preferred is a 4-dodecylphenyl group.
  • M represents a metal atom, preferably Li (lithium), Na (sodium), K (potassium), Rb (rubidium), Cs (cesium), Mg (magnesium) or Zn (zinc), more preferably Is an alkali metal atom, particularly preferably K.
  • Preferred examples of the metal salt of (c) sulfonic acid of the present invention include potassium salt of sulfonic acid in which R ′′ is a phenyl group optionally substituted with an alkyl group having 1 to 12 carbon atoms. Particularly preferred is potassium dodecylbenzenesulfonate.
  • R A x P (O) (OM) y (wherein R A represents R ′′ ′ O or R ′′ ′ 2 N) of the present invention
  • R ′′ ′ of the metal salt of is a straight chain or branched chain having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, which may contain a hydrogen atom or a nitrogen atom, an oxygen atom or a sulfur atom, respectively.
  • a linear or branched alkyl group having 1 to 12 carbon atoms eg, ethyl, n-butyl, t-butyl, dodecyl, 2-ethyl-n-hexyl), an aralkyl group having 7 to 10 carbon atoms, or An aryl group having 6 to 12 carbon atoms (eg, 2-naphthyl), particularly preferably a 2-ethyl-n-hexyl group.
  • x and y are each independently an integer of 1 or 2, and x + y is 3.
  • M represents a metal atom, preferably Li (lithium), Na (sodium), K (potassium), Rb (rubidium), Cs (cesium), Mg (magnesium) or Zn (zinc), more preferably Is an alkali metal atom, particularly preferably K.
  • R A x P (O) (OM) y (wherein R A represents R ′′ ′ O or R ′′ ′ 2 N) of the present invention
  • R A represents R ′′ ′ O or R ′′ ′ 2 N
  • R ′′ ′ is a linear or branched alkyl group having 1 to 12 carbon atoms (eg, ethyl, n-butyl, t-butyl, dodecyl, 2-ethyl-n-hexyl).
  • R ′′ ′ of the metal salt of a phosphate ester represented by (d) (R ′′ ′ O) ⁇ P (O) (OM) y of the present invention is a hydrogen atom or a nitrogen atom, respectively.
  • Two R ′′ ′ may form a ring in the molecule.
  • it is a linear or branched alkyl group having 1 to 12 carbon atoms (eg, ethyl, n-butyl, t-butyl).
  • M represents a metal atom, preferably Li (lithium), Na (sodium), K (potassium), Rb (rubidium), Cs (cesium), Mg (magnesium) or Zn (zinc), more preferably Is an alkali metal atom, particularly preferably K.
  • R ′′ ′ is a straight chain having 1 to 12 carbon atoms or A phosphate ester which is a branched alkyl group (eg, ethyl, n-butyl, t-butyl, dodecyl, 2-ethyl-n-hexyl) or an aryl group having 6 to 12 carbon atoms (eg, 2-naphthyl) And potassium bis (2-ethyl-n-hexyl) phosphate is particularly preferable.
  • R A x P (O) (OM) y is preferably used, and (R ′′ ′ O) x P (O) (OM) It is more preferable to use a metal salt of a phosphate represented by y .
  • the amount of one or more compounds selected from the group consisting of (a) to (d) is usually 0.00001 equivalents to 10 equivalents, preferably 0.001 to the 2-phenylazole derivative [1]. Equivalent to 8.0 equivalents, more preferably 0.005 to 5.0 equivalents.
  • the method of adding a metal catalyst, a base, and one or more compounds selected from the group consisting of the above (a) to (d) is not particularly limited, and is selected from the group consisting of a base and the above (a) to (d).
  • the reaction may be further performed in the presence of a phosphine compound.
  • phosphine compound examples include compounds represented by the general formula [X2]: PR 3 (wherein R represents an alkyl group, an aralkyl group, or an aryl group).
  • triphenylphosphine (sometimes referred to as triphenylphosphane), tri (t-butyl) phosphine, triethylphosphine, tricyclohexylphosphine, tri (o-tolyl) phosphine, tri (p-tolyl) phosphane, Examples include tri (p-methoxyphenyl) phosphane and cyclohexyldiphenylphosphane, with triphenylphosphine being preferred.
  • the amount of the phosphine compound to be used is generally 0.00001 equivalent to 10 equivalents, preferably 0.001 equivalent to 1 equivalent, relative to the 2-phenylazole derivative [1].
  • the reaction may be performed in the presence of a conjugate acid of the metal salt described in the above (a) to (d).
  • the amount of the conjugate acid used is usually 0.00001 equivalent to 3 equivalents, preferably 0.05 equivalent to 1.0 equivalent, more preferably 0.1 equivalent to the 2-phenylazole derivative [1]. Equivalent to 0.5 equivalent.
  • the solvent is not particularly limited as long as the reaction proceeds, but N-methyl-2-pyrrolidone (sometimes abbreviated as NMP), N, N-dimethylformamide (sometimes abbreviated as DMF), N, N A polar solvent such as dimethylacetamide (sometimes abbreviated as DMA) or dimethyl sulfoxide (sometimes abbreviated as DMSO), a nonpolar solvent such as toluene or xylene, or a mixture of these polar and nonpolar solvents Is preferred.
  • the amount of the solvent to be used is generally 0 mL to 100 mL, preferably 0.1 mL to 10 mL, relative to 1 mmol of 2-phenylazole derivative [1].
  • the reaction temperature is usually 20 ° C. to 300 ° C., preferably 100 ° C. to 200 ° C.
  • the reaction time is usually 0.01 hours to 200 hours, preferably 0.5 hours to 24 hours.
  • Step 2a When R 5 ′ of the biaryltetrazole compound [3 ′] is a methyl group substituted with a protected hydroxyl group, the compound [4] removes the biaryltetrazole compound [3 ′] in the presence of a base or acid. It can be manufactured by protecting. This reaction can also be performed using a solvent.
  • the base include sodium hydroxide, potassium hydroxide, sodium methoxide, sodium ethoxide, dimethylamine, methylamine, ammonia, potassium carbonate, sodium carbonate and the like.
  • the amount of the base to be used is generally 0.001 equivalent to 10 equivalents, preferably 0.01 equivalent to 1 equivalent, relative to the biaryltetrazole compound [3 ′].
  • Examples of the acid include hydrobromic acid and hydrogen chloride.
  • the amount of the acid to be used is generally 1 equivalent to 10,000 equivalents, preferably 1 equivalent to 100 equivalents, relative to the biaryltetrazole compound [3 ′].
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include methanol, ethanol, propanol, tetrahydrofuran (sometimes abbreviated as THF), and acetic acid is used when deprotecting in the presence of an acid. You can also. Moreover, you may use the mixed solvent of these solvents and water.
  • the amount of the solvent to be used is generally 0.01 mL to 100 mL, preferably 0.1 mL to 10 mL, relative to 1 mmol of the biaryltetrazole compound [3 ′].
  • the reaction temperature is generally ⁇ 50 ° C. to 100 ° C., preferably 10 ° C. to 40 ° C.
  • the reaction time is usually 0.001 hour to 50 hours, preferably 0.1 hour to 20 hours.
  • Step 2b When R 5 ′ of the biaryltetrazole compound [3 ′] is a lower alkoxycarbonyl group, the compound [4] can be produced by reducing the biaryltetrazole compound [3 ′] in the presence of a reducing agent. It can. This reaction can also be performed using a solvent.
  • the reducing agent include sodium borohydride (also referred to as sodium tetrahydroborate), lithium aluminum hydride, diisobutylaluminum hydride and the like.
  • the amount of the reducing agent to be used is generally 1 equivalent to 5 equivalents, preferably 1 equivalent to 2 equivalents, relative to the biaryltetrazole compound [3 ′].
  • a metal salt may be added.
  • the metal salt include calcium chloride and zinc chloride.
  • the amount of the metal salt used is usually 0.1 equivalent to 2 equivalents, preferably 0.5 equivalents to 1 equivalent, relative to the biaryltetrazole compound [3 ′], but as a reducing agent, lithium aluminum hydride, diisobutyl.
  • the reaction proceeds in the absence of a metal salt.
  • the solvent is not particularly limited as long as the reaction proceeds, and ethanol, 2-propanol, methanol and the like can be mentioned.
  • the amount of the solvent to be used is generally 1 mL to 50 mL, preferably 1 mL to 2 mL, relative to 1 mmol of the biaryltetrazole compound [3 ′].
  • the reaction temperature is usually ⁇ 50 ° C. to 120 ° C., preferably 0 ° C. to 80 ° C.
  • the reaction time is usually 0.1 hour to 24 hours, preferably 3 hours to 10 hours.
  • the biaryltetrazole derivative [5] is obtained by reacting the biaryltetrazole compound [3 ′] with a halogenating reagent in the presence of azobisisobutyronitrile (AIBN). It can be produced by reacting.
  • R 5 ′ of the biaryltetrazole compound [3 ′] is a methyl group or lower alkoxycarbonyl group substituted with a protected hydroxyl group
  • the biaryltetrazole derivative [5] reacts the compound [4] with a halogenating reagent. Can be manufactured. These reactions can also be performed using a solvent.
  • the halogenating reagent is not particularly limited, and a halogenating reagent known per se can be applied.
  • a halogenating reagent known per se can be applied.
  • phosphorus tribromide, thionyl bromide, hydrobromic acid, hydrogen chloride, thionyl chloride examples thereof include carbon tetrachloride / triphenylphosphine, bromotrimethylsilane, N-bromosuccinimide (NBS) and the like.
  • the amount of the halogenating reagent to be used is generally 1 equivalent to 10 equivalents, preferably 1 equivalent to 3 equivalents, relative to the biaryltetrazole compound [3 ′] or compound [4].
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include THF, toluene, ethyl acetate, dioxane, methyl t-butyl ether (MTBE), chloroform, methylene chloride, diisopropyl ether, acetonitrile, acetic acid and the like.
  • the amount of the solvent to be used is generally 0.01 mL to 100 mL, preferably 0.1 mL to 10 mL, relative to 1 mmol of the biaryltetrazole compound [3 ′] or compound [4].
  • the reaction temperature is usually ⁇ 50 ° C. to 150 ° C., preferably ⁇ 20 ° C. to 50 ° C.
  • the reaction time is usually 0.001 to 24 hours, preferably 0.1 to 10 hours.
  • Olmesartan or a salt thereof can be produced from the biaryltetrazole derivative [5 ′] by a known method described in JP-B No. 7-121918, JP-A No. 2010-505926, and the like. It can also be produced by the following method.
  • Compound [7] can be produced by reacting biaryltetrazole derivative [5 ′] obtained by Production Method 2 described above with compound [6] in the presence of a base. This reaction can also be performed using a solvent.
  • the base is not particularly limited, and a base known per se can be applied. For example, potassium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide, triethylamine, diisopropylethylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) and the like.
  • the amount of the base to be used is generally 1 equivalent to 10 equivalents, preferably 1 equivalent to 3 equivalents, relative to the biaryltetrazole derivative [5 ′].
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include DMA, DMF, DMSO, NMP, acetonitrile, toluene, THF, dioxane, acetone and the like.
  • the amount of the solvent to be used is generally 0.001 mL to 100 mL, preferably 0.1 mL to 10 mL, relative to 1 mmol of the biaryltetrazole derivative [5 ′].
  • the reaction temperature is usually ⁇ 50 ° C. to 150 ° C., preferably 20 ° C. to 50 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 0.5 hour to 5 hours.
  • R 10 of compound [6] and compound [7] in this step is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, and particularly preferably an alkyl group having 1 to 3 carbon atoms. More preferably, it is a methyl group or an ethyl group.
  • Compound [8] can be produced by hydrolyzing compound [7] in the presence of a base or acid and a water-soluble organic solvent.
  • the base is not particularly limited, and a base known per se can be applied, and examples thereof include potassium hydroxide, potassium carbonate, sodium hydroxide, sodium hydride and the like.
  • the acid is not particularly limited, and a known acid can be used. Examples thereof include trifluoroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, sulfuric acid, and hydrochloric acid. It is done.
  • the amount of the base or acid to be used is generally 1 equivalent to 10 equivalents, preferably 1 equivalent to 3 equivalents, relative to compound [7].
  • water-soluble organic solvent examples include methanol, ethanol, acetone and the like.
  • the amount of the solvent to be used is generally 0.001 mL to 100 mL, preferably 0.1 mL to 10 mL, per 1 mmol of compound [7].
  • the reaction temperature is usually 0 ° C. to 120 ° C., preferably 30 ° C. to 100 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 0.5 hour to 10 hours.
  • R 10 of the compound [7] in this step is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group Or it is more preferable that it is an ethyl group.
  • Process 2 The following processes are mentioned as another aspect of (process 2).
  • Compound [Y1] can be produced by removing R 6 of compound [7]. This reaction can also be performed using a solvent.
  • An acid can be used to remove R 6 .
  • the acid is not particularly limited, and an acid known per se can be applied. Examples thereof include trifluoroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, sulfuric acid, hydrochloric acid, and acetic acid. It is done.
  • the amount of the acid to be used is generally 0.1 equivalent to 1000 equivalents, preferably 1 equivalent to 500 equivalents, relative to compound [7]. Removal of R 6 with an acid can be preferably performed in the presence of a scavenger.
  • the scavenger is not particularly limited as long as the reaction proceeds, and examples thereof include mercaptans such as anisole, mesitylene, and 1-octanethiol.
  • the amount of the scavenger to be used is generally 0.001 mL to 10 mL, preferably 0.1 mL to 5 mL, per 1 mmol of compound [7].
  • the above acid and scavenger may act as a solvent in this step.
  • the reaction temperature is usually ⁇ 50 ° C. to 150 ° C., preferably 10 ° C. to 100 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 0.5 hour to 20 hours.
  • a method of reduction (eg, catalytic reduction, formic acid reduction, etc.) can also be used.
  • This reaction can also be performed using a solvent.
  • the reduction can be performed in the presence of a catalyst.
  • the catalyst is not particularly limited as long as it can be used for catalytic reduction or formic acid reduction. Examples thereof include palladium catalysts such as palladium / barium sulfate, palladium carbon, palladium black, palladium oxide, palladium chloride, and palladium acetate. .
  • the amount of the catalyst to be used is generally 0.0001 equivalent to 10 equivalents, preferably 0.01 equivalent to 0.1 equivalent, relative to compound [7].
  • This reaction can also be carried out under basic conditions of pH 7 to pH 14 or pH 7.
  • the hydrogen pressure is 1 atm to 100 atm, preferably 1 atm to 10 atm.
  • formic acid and formic acid salts (such as ammonium formate) are added as additives.
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include isopropyl alcohol, n-propyl alcohol, alcohols such as methanol and ethanol, tetrahydrofuran, methylene chloride, ethyl acetate and the like, or a mixed solvent of the above solvent and water. .
  • the amount of the solvent to be used is generally 0.1 mL to 100 mL, preferably 0.5 mL to 10 mL, per 1 mmol of compound [7].
  • the reaction temperature is usually 0 ° C. to 150 ° C., preferably 10 ° C. to 80 ° C.
  • the reaction time is usually 0.1 hour to 72 hours, preferably 0.5 hour to 24 hours.
  • R 6 of compound [7] in this step is preferably a benzyl group, and it is preferable to remove R 6 by reacting in the presence of ammonium formate, a palladium catalyst and an alcohol.
  • R 10 of compound [7], compound [Y1] and compound [Y2] in this step is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, and in particular, alkyl having 1 to 3 carbon atoms. The group is more preferably a methyl group or an ethyl group.
  • Step 2'-2 Compound [Y2] can be produced by reacting compound [Y1] with compound [Y3] in the presence of a base. This reaction can also be performed using a solvent.
  • the base is not particularly limited, and a base known per se can be applied. Examples thereof include triethylamine, N, N-diisopropylethylamine, pyridine, lutidine, sodium carbonate, potassium carbonate, cesium carbonate and the like. It is done. Triethylamine is preferable.
  • the amount of the base to be used is generally 0.1 equivalent to 10 equivalents, preferably 1 equivalent to 5 equivalents, relative to compound [Y1].
  • the solvent is not particularly limited as long as the reaction proceeds, and examples include methylene chloride, chloroform, toluene, acetone, tetrahydrofuran, ethyl acetate, N, N-dimethylformamide and the like.
  • the amount of the solvent to be used is generally 0.01 mL to 50 mL, preferably 0.5 mL to 5 mL, per 1 mmol of compound [Y1].
  • the reaction temperature is usually ⁇ 10 ° C. to 50 ° C., preferably ⁇ 5 ° C. to 40 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 1 hour to 24 hours.
  • Compound [10] can be produced by reacting compound [8] with compound [9] in the presence of a base.
  • the base is not particularly limited, and a base known per se can be applied.
  • a base known per se can be applied.
  • the amount of the base to be used is generally 1 equivalent to 10 equivalents, preferably 1 equivalent to 3 equivalents, relative to compound [8].
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include DMA, DMF, DMSO, NMP, acetonitrile, toluene, THF, dioxane, acetone and the like.
  • the amount of the solvent to be used is generally 0.001 mL to 100 mL, preferably 0.1 mL to 10 mL, per 1 mmol of compound [8].
  • the reaction temperature is usually 0 ° C. to 150 ° C., preferably 30 ° C. to 100 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 0.5 hour to 24 hours.
  • Compound [10 ′] can be produced in the same manner as in Step 3 above, using compound [8 ′].
  • Compound [11] (olmesartan or a salt thereof) can be produced by removing R 6 of compound [10]. This reaction can also be performed using a solvent.
  • An acid can be used to remove R 6 .
  • the acid is not particularly limited, and an acid known per se can be applied. Examples thereof include trifluoroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, sulfuric acid, hydrochloric acid, and acetic acid. It is done.
  • the amount of the acid to be used is generally 0.1 equivalent to 1000 equivalents, preferably 1 equivalent to 500 equivalents, relative to compound [10]. Removal of R 6 with an acid can be preferably performed in the presence of a scavenger.
  • the scavenger is not particularly limited as long as the reaction proceeds, and examples thereof include mercaptans such as anisole, mesitylene, and 1-octanethiol.
  • the amount of the scavenger used is usually 0.001 mL to 10 mL, preferably 0.1 mL to 5 mL, relative to 1 mmol of compound [10].
  • the above acid and scavenger may act as a solvent in this step.
  • the reaction temperature is usually ⁇ 50 ° C. to 150 ° C., preferably 10 ° C. to 100 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 0.5 hour to 20 hours.
  • a method of reduction eg, catalytic reduction, formic acid reduction, etc.
  • This reaction can also be performed using a solvent.
  • the reduction can be performed in the presence of a catalyst.
  • the catalyst is not particularly limited as long as it can be used for catalytic reduction or formic acid reduction, and examples thereof include palladium carbon, palladium black, palladium oxide, palladium chloride, palladium acetate and the like.
  • the amount of the catalyst to be used is generally 0.0001 equivalent to 10 equivalents, preferably 0.01 equivalent to 0.1 equivalent, relative to compound [10].
  • This reaction can also be carried out under basic conditions of pH 7 to 14 or pH 7.
  • the hydrogen pressure is 1 to 100 atm, preferably 1 to 10 atm.
  • formic acid reduction formic acid and formic acid salts (such as ammonium formate) are added as additives.
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include isopropyl alcohol, n-propyl alcohol, methanol, ethanol, tetrahydrofuran, methylene chloride, ethyl acetate and the like, or a mixed solvent of the above solvent and water.
  • the amount of the solvent to be used is generally 0.1 mL to 100 mL, preferably 0.5 mL to 10 mL, per 1 mmol of compound [10].
  • the reaction temperature is usually 0 ° C. to 150 ° C., preferably 10 ° C. to 80 ° C.
  • the reaction time is usually 0.1 hour to 72 hours, preferably 0.5 hour to 24 hours.
  • Compound [11] can be produced in the same manner as in the method using the acid described in Step 4 above, using compound [10 ′].
  • Compound [13] is produced by reacting biaryltetrazole derivative [5 ′] obtained by Production Method 2 above with Compound [12] in the same manner as in Step 1 of Production Method 3. be able to.
  • Compound [14] can be produced by reducing compound [13] in the presence of a reducing agent.
  • This reaction can also be performed using a solvent.
  • the reducing agent is not particularly limited, and a known reducing agent can be applied. Examples thereof include sodium borohydride, lithium borohydride, zinc borohydride, sodium triacetoxyborohydride and the like. Can be mentioned.
  • the amount of the reducing agent to be used is generally 1 equivalent to 10 equivalents, preferably 1 equivalent to 5 equivalents, relative to compound [13].
  • the solvent is not particularly limited as long as the reaction proceeds, and methanol, ethanol, isopropyl alcohol, dimethoxyethane, water and the like can be mentioned.
  • the amount of the solvent to be used is generally 0.01 mL to 100 mL, preferably 0.1 mL to 10 mL, per 1 mmol of compound [13].
  • a base can be used as necessary. Examples of the base include sodium hydroxide.
  • the amount of the base to be used is generally 0 equivalent to 10 equivalents, preferably 1 equivalent to 2 equivalents, relative to compound [13].
  • the reaction temperature is usually ⁇ 50 ° C. to 100 ° C., preferably 20 ° C. to 50 ° C.
  • the reaction time is usually 0.01 hours to 48 hours, preferably 0.1 hours to 5 hours.
  • Compound [16] can be produced using compound [14] in the same manner as described in Step 4 of Production Method 3 above.
  • Compound [15] can be produced using compound [13] in the same manner as described in Step 4 of Production Method 3 above.
  • Compound [16] can be produced by reducing Compound [15] in the same manner as described in Step 2-A (1) above.
  • Compound [18] is obtained by reacting biaryltetrazole derivative [5 ′] obtained by Production Method 2 with compound [17] (eg, p-toluenesulfonate, hydrochloride, etc.) in the presence of a base.
  • a base can be manufactured. This reaction can also be performed using a solvent.
  • the base is not particularly limited, and a base known per se can be applied. Examples thereof include diisopropylethylamine, triethylamine, pyridine, sodium hydride, potassium t-butoxide and the like.
  • the amount of the base to be used is generally 1 equivalent to 10 equivalents, preferably 1 equivalent to 5 equivalents, relative to the biaryltetrazole derivative [5 ′].
  • a catalyst can be used as necessary, and examples thereof include tetrabutylammonium iodide.
  • the amount of the catalyst to be used is generally 0.01 equivalent to 0.5 equivalent, preferably 0.01 equivalent to 0.1 equivalent, relative to the biaryltetrazole derivative [5 ′].
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include DMF, acetonitrile, toluene, THF, dioxane, chloroform, and methylene chloride.
  • the amount of the solvent to be used is generally 0.1 mL to 100 mL, preferably 0.5 mL to 5 mL, relative to 1 mmol of the biaryltetrazole derivative [5 ′].
  • the reaction temperature is usually ⁇ 50 ° C. to 150 ° C., preferably 5 ° C. to 100 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 0.5 hour to 36 hours.
  • Compound [19] can be produced using compound [18] in the same manner as described in Step 4 of Production Method 3 above.
  • Compound [21] can be produced by reacting compound [19] with compound [20] in the presence of a base. This reaction can also be performed using a solvent.
  • the base is not particularly limited. For example, triethylamine, diisopropylethylamine, DBU, sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, potassium phosphate, 4-dimethyl Aminopyridine (DMAP), lutidine, pyridine and the like can be mentioned.
  • the amount of the base to be used is generally 1 equivalent to 10 equivalents, preferably 1 equivalent to 3 equivalents, relative to compound [19].
  • the solvent is not particularly limited as long as the reaction proceeds, but toluene, xylene, methylene chloride, chloroform, acetonitrile, NMP, DMF, DMSO, THF, dimethoxyethane, t-butyl methyl ether (hereinafter also referred to as t-BME). 1,4-dioxane and the like.
  • the amount of the solvent to be used is generally 0.001 mL to 100 mL, preferably 0.1 mL to 10 mL, per 1 mmol of compound [19].
  • the reaction temperature is usually ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 0.5 hour to 5 hours.
  • Compound [23] can be produced by removing R 7 of compound [21] in the presence of an acid.
  • the acid is not particularly limited, and an acid known per se can be applied, and examples thereof include trifluoroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, sulfuric acid, hydrochloric acid and the like.
  • the amount of the acid to be used is generally 0.1 equivalent to 1000 equivalents, preferably 1 equivalent to 500 equivalents, relative to compound [21].
  • Deprotection with an acid can be preferably carried out in the presence of a scavenger.
  • the scavenger is not particularly limited as long as the reaction proceeds, and examples thereof include mercaptans such as anisole and mesitylene.
  • the amount of the scavenger to be used is generally 0.001 mL to 10 mL, preferably 0.1 mL to 5 mL, per 1 mmol of compound [21].
  • the above acid and scavenger may act as a solvent in this step.
  • the reaction temperature is usually ⁇ 50 ° C. to 150 ° C., preferably 10 ° C. to 100 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 0.5 hour to 5 hours.
  • compound [23] can also be produced by removing R 7 of compound [21] in the presence of a base.
  • This reaction can also be performed using a solvent.
  • the base include sodium methoxide, sodium ethoxide, dimethylamine, methylamine, ammonia, potassium carbonate, sodium carbonate and the like.
  • the amount of the base to be used is generally 0.001 equivalents to 10 equivalents, preferably 0.01 equivalents to 1 equivalents, relative to compound [21].
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include methanol, ethanol, propanol and the like.
  • the amount of the solvent to be used is generally 0.01 mL to 100 mL, preferably 0.1 mL to 10 mL, per 1 mmol of compound [21].
  • the reaction temperature is usually ⁇ 50 ° C. to 100 ° C., preferably 0 ° C. to 20 ° C.
  • the reaction time is usually 0.001 hour to 10 hours, preferably 0.1 hour to 5 hours.
  • compound [23] can also be produced by removing R 7 of compound [21] by reduction (eg, catalytic reduction, formic acid reduction, etc.). This reaction can also be performed using a solvent.
  • the reduction can be performed in the presence of a catalyst.
  • the catalyst is not particularly limited as long as it can be used for catalytic reduction or formic acid reduction, and examples thereof include palladium carbon, palladium black, palladium oxide, palladium chloride, palladium acetate and the like.
  • the amount of the catalyst to be used is generally 0.0001 equivalent to 10 equivalents, preferably 0.01 equivalent to 0.1 equivalent, relative to compound [21].
  • the hydrogen pressure is 1 atm to 100 atm, preferably 1 atm to 10 atm.
  • the solvent is not particularly limited as long as the reaction proceeds, and includes n-propyl alcohol, methanol, ethanol, tetrahydrofuran, methylene chloride, ethyl acetate, or a mixed solvent of the above solvent and water.
  • the amount of the solvent to be used is generally 0.1 mL to 100 mL, preferably 0.5 mL to 10 mL, per 1 mmol of compound [21].
  • the reaction temperature is usually 0 ° C. to 150 ° C., preferably 10 ° C. to 80 ° C.
  • the reaction time is usually 0.1 hour to 72 hours, preferably 0.5 hour to 24 hours.
  • Compound [22] can be produced using compound [18] in the same manner as described in Step 2-A (2) above.
  • Compound [23] is produced using compound [22] in the same manner as described in Step 4 of Production Method 3 and Step 2-A (3) (removal of R 6 and R 7 ). be able to.
  • Compound [25] is obtained by reacting the biaryltetrazole derivative [5 ′] obtained by the above production method 2 with compound [24] (for example, hydrochloride, etc.) in the presence of a base or a base and an additive. Can be manufactured. This reaction can also be performed using a solvent.
  • the base is not particularly limited. For example, triethylamine, ethyldiisopropylamine, DBU, sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, potassium carbonate, potassium hydrogen carbonate, potassium phosphate, 4-phosphate Examples thereof include dimethylaminopyridine (DMAP) and lutidine.
  • DMAP dimethylaminopyridine
  • the amount of the base to be used is generally 1 equivalent to 10 equivalents, preferably 1 equivalent to 3 equivalents, relative to the biaryltetrazole derivative [5 ′].
  • the additive include tetraalkylammonium halide (eg, tetrabutylammonium bromide), tetraalkylphosphonium halide, and the like.
  • the amount of the additive to be used is generally 0.01 equivalents to 10 equivalents, preferably 0.05 equivalents to 1 equivalent, relative to the biaryltetrazole derivative [5 ′].
  • the solvent is not particularly limited as long as the reaction proceeds, but toluene, xylene, methylene chloride, chloroform, acetonitrile, DMF, DMSO, THF, dimethoxyethane, t-BME, 1,4-dioxane, or the above solvent and water. And a mixture thereof.
  • the amount of the solvent to be used is generally 0.001 mL to 100 mL, preferably 0.1 mL to 10 mL, relative to 1 mmol of the biaryltetrazole derivative [5 ′].
  • the reaction temperature is usually ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 0.5 hour to 10 hours.
  • Compound [26] can be produced using compound [25] in the same manner as described in Step 4 of Production Method 3 above.
  • Compound [31] can be produced by reacting biaryltetrazole derivative [5 ′] obtained by Production Method 2 described above with compound [X] in the presence of a base. This reaction can also be performed using a solvent.
  • the base is not particularly limited, and for example, potassium carbonate, potassium hydrogen carbonate, potassium phosphate, sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, triethylamine, ethyldiisopropylamine, DBU, 4-dimethyl Examples include aminopyridine (DMAP) and lutidine.
  • the amount of the base to be used is generally 1 equivalent to 10 equivalents, preferably 1 equivalent to 3 equivalents, relative to the biaryltetrazole derivative [5 ′].
  • the solvent is not particularly limited as long as the reaction proceeds, but DMA, methanol, ethanol, propanol, toluene, xylene, methylene chloride, chloroform, acetonitrile, DMF, DMSO, THF, dimethoxyethane, t-BME, 1,4- Examples thereof include dioxane and the like, or two or more mixed solvents selected from these.
  • the amount of the solvent to be used is generally 0.001 mL to 100 mL, preferably 0.1 mL to 10 mL, relative to 1 mmol of the biaryltetrazole derivative [5 ′].
  • the reaction temperature is usually ⁇ 20 ° C. to 150 ° C., preferably 10 ° C. to 40 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 0.5 hour to 36 hours.
  • compound [31] can also be produced by the method described in the following steps 1′-1 to 1′-4. (Process 1'-1)
  • Compound [28] can be produced by reacting biaryltetrazole derivative [5 ′] obtained by Production Method 2 described above with compound [27] in the presence or absence of a base. This reaction can also be performed using a solvent. This reaction is preferably performed in the presence of a base.
  • the base include metal hydrides such as sodium hydride, metal alkoxides such as t-butoxy sodium and t-butoxy potassium, potassium carbonate, potassium hydrogen carbonate, Examples thereof include carbonates such as sodium carbonate and sodium hydrogen carbonate. Among them, carbonates, particularly potassium carbonate is preferably used.
  • the amount of the base used is usually 1 equivalent to 5 equivalents relative to the biaryltetrazole derivative [5 ′].
  • Solvents include aprotic polar solvents such as dimethylformamide, dimethyl sulfoxide, dimethylacetamide, ketones such as acetone and ethyl methyl ketone, ethers such as tetrahydrofuran and dioxane, esters such as ethyl acetate, benzene, toluene, Aromatic hydrocarbons such as xylene, halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride and dichloroethane, acetonitrile and the like can be mentioned, among which acetonitrile is preferably used.
  • aprotic polar solvents such as dimethylformamide, dimethyl sulfoxide, dimethylacetamide, ketones such as acetone and ethyl methyl ketone, ethers such as tetrahydrofuran and dioxane, esters such as ethyl acetate, benz
  • the amount of the solvent used is usually 0.1 mL to 10 mL with respect to 1 mmol of the biaryltetrazole derivative [5 ′].
  • the reaction temperature is usually 70 ° C. to 90 ° C., and the reaction time is 3 hours to 10 hours.
  • Compound [29] can be produced by removing R 9 of compound [28] in the presence of an acid.
  • the acid is not particularly limited, and an acid known per se can be applied.
  • Bronsted acid for example, trifluoromethanesulfonic acid, methanesulfonic acid, phosphoric acid, sulfuric acid, hydrochloric acid, etc.
  • Lewis acids for example, aluminum chloride, tin chloride, boron trifluoride diethyl ether, etc.
  • the amount of the acid to be used is generally 0.1 equivalent to 1000 equivalents, preferably 1 equivalent to 500 equivalents, relative to compound [28].
  • the solvent is not particularly limited as long as the reaction proceeds, and water, methanol, ethanol, isopropyl alcohol, tetrahydrofuran, dimethoxyethane, methyl t-butyl ether and the like can be mentioned.
  • the amount of the solvent to be used is generally 0.01 mL to 100 mL, preferably 0.1 mL to 10 mL, per 1 mmol of compound [28].
  • the reaction temperature is usually ⁇ 50 ° C. to 150 ° C., preferably 10 ° C. to 100 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 0.5 hour to 20 hours.
  • Compound [30] can be produced by reducing compound [29] in the presence of a reducing agent.
  • This reaction can also be performed using a solvent.
  • the reducing agent is not particularly limited, and a known reducing agent can be applied.
  • tin chloride, sodium borohydride, lithium borohydride, zinc borohydride, sodium triacetoxyboro A hydride etc. are mentioned.
  • the amount of the reducing agent to be used is generally 1 equivalent to 10 equivalents, preferably 1 equivalent to 5 equivalents, relative to compound [29].
  • the solvent is not particularly limited as long as the reaction proceeds, and water, methanol, ethanol, isopropyl alcohol, dimethoxyethane, methyl t-butyl ether and the like can be mentioned.
  • the amount of the solvent to be used is generally 0.01 mL to 100 mL, preferably 0.1 mL to 10 mL, per 1 mmol of compound [29].
  • the reaction temperature is usually ⁇ 50 ° C. to 100 ° C., preferably 20 ° C. to 50 ° C.
  • the reaction time is usually 0.01 hours to 48 hours, preferably 0.1 hours to 5 hours.
  • Compound [31] can be produced by reacting compound [30] with tetraethoxymethane in the presence or absence of a solvent.
  • the solvent is not particularly limited as long as the reaction proceeds, and ethanol, tetrahydrofuran, toluene, ethyl acetate, acetic acid, dimethoxyethane, methyl t-butyl ether and the like can be mentioned.
  • the reaction temperature is usually 0 ° C. to 120 ° C., preferably 50 ° C. to 100 ° C.
  • the reaction time is usually 0.01 hours to 48 hours, preferably 0.1 hours to 5 hours.
  • Compound [32] can be produced using compound [31] in the same manner as described in Step 2-A (3) of Production Method 5 above.
  • Compound [34] can be produced by reacting compound [32] with compound [33] in the presence of a base. This reaction can also be performed using a solvent.
  • the base is not particularly limited, and a base known per se can be applied.
  • sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, triethylamine Examples include tributylamine, methylamine, and dimethylamine.
  • the solvent is not particularly limited as long as the reaction proceeds, and examples thereof include methanol, ethanol, isopropyl alcohol, dimethylformamide and the like.
  • the amount of the solvent to be used is generally 0.01 mL to 100 mL, preferably 0.1 mL to 10 mL, per 1 mmol of compound [32].
  • the reaction temperature is usually ⁇ 50 ° C. to 150 ° C., preferably 10 ° C. to 100 ° C.
  • the reaction time is usually 0.1 hour to 48 hours, preferably 0.5 hour to 20 hours.
  • Compound [35] can be produced using compound [34] in the same manner as in Step 4 of Production Method 3 above.
  • salts with hydrochloric acid, a sulfuric acid, etc. are mentioned.
  • the salt of compound [11], compound [16], compound [23], compound [26] or compound [35] is not particularly limited as long as it is pharmacologically acceptable.
  • Salts with mineral acids such as hydrochloric acid, sulfuric acid, hydrobromic acid, phosphoric acid; Salts with organic acids such as methanesulfonic acid, p-toluenesulfonic acid, acetic acid, oxalic acid, citric acid, malic acid, fumaric acid; Salts with alkali metals such as sodium and potassium; Salts with alkaline earth metals such as magnesium; Examples thereof include salts with amines such as ammonia, ethanolamine, and 2-amino-2-methyl-1-propanol.
  • the salt of compound [23] is not particularly limited as long as it is pharmacologically acceptable. Salts with alkali metals such as sodium and potassium; Salts with alkaline earth metals such as magnesium; Examples thereof include salts with amines such as ammonia, ethanolamine, and 2-amino-2-methyl-1-propanol.
  • Compound [5], Compound [11], Compound [16], Compound [23], Compound [26], Compound [35], or a salt thereof includes a solvate.
  • solvates include hydrates and alcohol solvates (eg, methanol solvates and ethanol solvates).
  • room temperature refers to a temperature of 15 ° C. to 30 ° C.
  • % in concentration and content represents “% by weight” unless otherwise specified.
  • HBT 1-benzyl-5-phenyl-1H-tetrazole BAC: [2 ′-(1-benzyl-1H-tetrazol-5-yl) biphenyl-4-yl] methyl acetate
  • BBA p-bromobenzyl acetate
  • DBAC ⁇ 2 '-[2-Benzyl-2H-tetrazol-5-yl] -1,1': 3 ', 1 "-terphenyl-4,4" -diyl ⁇ dimethyldiacetate
  • BBB p-bromobenzyl Benzoate
  • BBZ 1-benzyl-5- [4 ′-(benzoyloxymethyl) biphenyl-2-yl] -1H-tetrazole
  • BBR 1-benzyl-5- [4 ′-(bromomethyl) biphenyl-2-yl]- 1H-tetrazole
  • IME ethyl 4- (1-hydroxy
  • Triphenylphosphine (0.05 g, 0.19 mmol), 1-benzyl-5-phenyl-1H-tetrazole (HBT, 5 g, 21.2 mmol), potassium carbonate (1.76 g, 12.7 mmol), potassium acetate (0 .208 g, 2.12 mol), p-bromobenzyl acetate (BBA, 5.34 g, 23.3 mmol) and N-methyl-2-pyrrolidone (25 mL) were heated to 138 ° C.
  • HBT 1-benzyl-5-phenyl-1H-tetrazole
  • BBA p-bromobenzyl acetate
  • N-methyl-2-pyrrolidone 25 mL
  • N-methyl-2-pyrrolidone (5 mL) was added to dichloro (p-cymene) ruthenium (II) dimer (0.026 g, 0.042 mmol as monomer) and potassium pivalate (0.024 g, 0.17 mmol). And stirred at 25 ° C. for 1 hour.
  • BBA p-bromobenzyl acetate
  • BBA 2.13 g, 9.31 mmol
  • the reaction mixture was cooled and then mixed with water (50 mL) and t-butyl methyl ether (50 mL).
  • the aqueous layer was extracted with t-butyl methyl ether (50 mL ⁇ 2), and the combined organic layers were washed with water (50 mL ⁇ 2) and brine (50 mL), dried over sodium sulfate, concentrated under reduced pressure, and the crude BAC product (18.4 g, 113.3% of the theoretical yield) was obtained as a dark brown oil.
  • 1-benzyl-5-phenyl-1H-tetrazole HBT, 2 g, 8.4 mmol
  • potassium carbonate 1.17 g, 8.4 mmol
  • triphenylphosphine 0.052 g, 0.2 mmol
  • p-bromobenzyl A mixture of acetate (BBA, 2.13 g, 9.3 mmol), potassium bis (2-ethylhexyl) phosphate (0.044 g, 0.12 mmol) and N-methyl-2-pyrrolidone (10 mL) was added under a nitrogen atmosphere.
  • the reaction mixture was cooled to 25 ° C. to 30 ° C., t-butyl methyl ether (500 mL, 5 vol) was added thereto and stirred for 5 minutes, and then filtered through a filter covered with celite.
  • the celite layer was washed with t-butyl methyl ether (500 mL, 5 vol).
  • the filtrate and the washing solution were combined, desalted water (500 mL, 5 vol) was added thereto, and the mixture was stirred for 10 minutes and allowed to stand for 5 minutes.
  • the layers were separated and the aqueous layer was extracted with t-butyl methyl ether (2 ⁇ 500 mL, 2 ⁇ 5 vol).
  • Ethyl acetate (110 mL, 1 vol with respect to the crude product) was added to the obtained BIA crude product and dissolved by heating to 60 ° C. to 65 ° C. To this was added n-heptane (550 mL, 5 vol to the crude product) at 60 ° C. to 65 ° C. over 5 minutes, and then the heating was stopped and the mixture was gradually cooled to 25 ° C. to 30 ° C. to precipitate a solid. I let you. BIA was obtained by filtration. Ethyl acetate (175 mL, 1 vol) was added to the obtained BIA (175 g), and the mixture was stirred for 15 minutes at 60 ° C. to 65 ° C. to dissolve.
  • n-heptane 875 mL, 5 vol
  • the heating was stopped and the mixture was gradually cooled to 25 ° C. to 30 ° C. to precipitate a solid. Filtration, suction drying for 30 minutes, and further drying at 45 ° C. to 50 ° C. for 30 minutes gave BIA (165 g).
  • the aqueous layer was extracted with methylene chloride (2 ⁇ 200 mL, 2 ⁇ 1.25 vol), and the organic layer was combined there, washed with demineralized water (2 ⁇ 320 mL, 2 ⁇ 2 vol), and separated. The organic layer was washed with saturated brine (2 ⁇ 320 mL, 2 ⁇ 2 vol). The organic layer was dried over sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure at 40 ° C. to 45 ° C. to obtain BIH (100 g, 74%).
  • Trityl chloride (2.92 g, 0.05 eq) was added and the reaction mixture was stirred for an additional 3 hours. When confirmed using TLC (thin layer chromatography) (TLC developing solvent: 10% methanol / methylene chloride, detection method: UV), BIH was completely disappeared.
  • the reaction mixture was cooled to 0 ° C. to 5 ° C., demineralized water (270 mL, 2.7 vol) was added, and the mixture was stirred at 25 ° C. to 30 ° C. for 15 minutes. The mixture was allowed to stand and separated.
  • aqueous layer was extracted with methylene chloride (200 mL, 2 vol), and the organic layer was combined therewith and washed with demineralized water (500 mL, 5 vol).
  • demineralized water 500 mL, 5 vol.
  • the organic layer was dried over sodium sulfate and filtered, and the filtrate was concentrated under reduced pressure at 40 ° C. to 45 ° C. to obtain BIT (135 g, 89%).
  • Acetone (650 mL, 5 vol) was added to BIT (130 g, 1 eq) at 25 ° C. to 30 ° C. to dissolve.
  • the reaction solution is cooled to 0 ° C. to 5 ° C., a solution of potassium hydroxide (30.5 g, 3 eq) in demineralized water (130 mL, 1 vol) is slowly added over 15 minutes, and the reaction temperature is then raised to 40 ° C. to 45 ° C. And stirred at 40 ° C. to 45 ° C. for 5 hours.
  • TLC thin layer chromatography
  • Acetone (385 mL, 3.5 vol) was added to BIC (110 g, 1 eq) at 25 ° C. to 30 ° C. and stirred for 5 minutes to dissolve.
  • Sodium carbonate (20.85 g, 1.3 eq) and potassium iodide (0.25 g, 0.01) were added and the mixture was stirred for 10 minutes.
  • the reaction mixture was heated to 45 ° C. to 50 ° C. and stirred at the same temperature for 12 hours.
  • the reaction mixture was stirred for 5 minutes, methylene chloride (225 mL, 3 vol) was added thereto, and the mixture was stirred for 5 minutes. Stirring was stopped, the mixture was allowed to stand, and liquid separation was performed. The aqueous layer was extracted with methylene chloride (2 ⁇ 225 mL, 2 ⁇ 3 vol), the organic layers were combined, demineralized water (375 mL, 5 vol) was added, and the mixture was stirred for 5 minutes. Stirring was stopped and the mixture was allowed to stand for 5 minutes for liquid separation. A saturated saline solution (375 mL, 5 vol) was added to the organic layer, and the mixture was stirred for 5 minutes, and then allowed to stand to separate. The organic layer was concentrated under reduced pressure at 40 ° C. to 45 ° C. to obtain crude OLM MDX (49 g, 93%) as a pale yellow solid.
  • OLM MDX Isopropyl alcohol (164 mL, 4 vol) was added to the OLM MDX obtained as described above, and the mixture was heated to 55 ° C. to 60 ° C. and stirred at 55 ° C. to 60 ° C. for 1 hour. The heating was stopped and the mixture was gradually cooled to 25 ° C. to 30 ° C. and stirred at 25 ° C. to 30 ° C. for 30 minutes. The precipitated solid was filtered and then suction-dried to obtain OLM MDX (41 g, 100%). OLM MDX (41 g) and acetone (about 1 L) obtained as described above were heated to 55 ° C. to 60 ° C. and stirred at 55 ° C. to 60 ° C. for 25 minutes.
  • OLM MDX (34 g, 83%).
  • the HPLC purity of the obtained OLM MDX was 99.66%.
  • OLM MDX (44 g) obtained as described above was dissolved in acetone (about 1.2 L), stirred at 55 ° C. to 60 ° C. for 10 minutes, and then acetone was distilled off at normal pressure until the solution became cloudy.
  • the solution was gradually cooled to 25 ° C to 30 ° C.
  • the precipitated solid was collected by filtration, suction-dried for 30 minutes, then air-dried for 1 hour, and further air-dried at 40 ° C. to 45 ° C. for 5 hours to obtain OLM MDX (36 g) as a white solid.
  • the HPLC purity of the obtained OLM MDX was 99.8%.
  • L-valine methyl ester hydrochloride (L-Val-OMe.HCl, 10 g, 1 eq) is dissolved in methylene chloride, adjusted to pH 9-10 with 10% aqueous sodium carbonate solution, and extracted with methylene chloride (50 mL, 5 vol). did. The organic layer was dried over sodium sulfate, filtered, and concentrated under reduced pressure at 40 ° C to 45 ° C. Of the obtained L-valine methyl ester, 1.46 g was dissolved in dimethylformamide (12 mL, 3 vol). Diisopropylethylamine (4.58 mL, 2.5 eq) was added to the resulting solution and stirred for 5 minutes.
  • oxalic acid 1.5 g, 1.1 eq
  • n-heptane 20 mL, 5 vol
  • the aqueous layer was extracted with t-butyl methyl ether (700 mL, 2 ⁇ 2.5 vol), and the organic layers were combined, washed with water (700 mL, 2 ⁇ 2.5 vol), and further saturated brine (350 mL, 2 ⁇ 2). .5 vol).
  • the organic layer was dried over sodium sulfate and concentrated under reduced pressure at 40 ° C. to 45 ° C. to obtain crude BAL (111 g, 103%).
  • Diisopropyl ether 700 mL, 5 vol
  • the precipitated solid was filtered, washed with diisopropyl ether (140 mL, 1 vol), and suction-dried for 30 minutes. Thereafter, BAL (92.5 g, 92%) was obtained by drying at 50 ° C. to 55 ° C. for 2 hours.
  • BIM (20 g, 1 eq) was dissolved in dimethylacetamide: methanol [(1: 4), (100 mL, 5 vol)], and potassium carbonate (18.8 g, 1.5 eq) was added thereto at 25 ° C. to 30 ° C. Stir at 15 ° C. for 15 minutes. Furthermore, BCL (34.4 g, 1.05 eq) and tetrabutylammonium iodide (1.67 g, 0.05 eq) were added thereto and stirred at the same temperature for 26 hours. It was confirmed that BIM was completely consumed using TLC (TLC: 40% ethyl acetate / hexane, detection method: UV).
  • acetic acid (5.8 mL, 0.48 vol) was added to adjust the pH to 5.5-6. 5 and extracted with methylene chloride (120 mL, 2 ⁇ 5 vol). The organic layers were combined, washed with water (120 mL, 2 ⁇ 5 vol), and further washed with saturated brine (60 mL, 5 vol). The organic layer was dried over sodium sulfate and concentrated under reduced pressure at 40 ° C. to 45 ° C. to obtain CBCA (9 g, 47% from BCL).
  • Benzoyl chloride (98.4 g, 0.700 mol) was added dropwise to a mixture of benzylamine (75.0 g, 0.700 mol), THF (300 mL) and triethylamine (70.8 g, 134 g, 0.700 mol) at 2 ° C. or lower. Then, the temperature was raised and the mixture was stirred at 12 ° C. to 35 ° C. for 3 hours. The progress of the reaction was confirmed by TLC (developing solvent: toluene / ethyl acetate (4: 1)). Water (165 mL) was added to the reaction mixture at 16 ° C.
  • the crude product (69.8 g, 99.8% of theoretical yield) was obtained as a cloudy yellow oil.
  • Isopropyl alcohol (75.9 mL) was added to the crude product (69.0 g), dissolved by heating, filtered while hot, and washed with isopropyl alcohol (4.7 mL). The filtrate was cooled to -1 ° C over 7 hours. During this time, inoculation was performed at 38 ° C. The crystals were collected by filtration, washed with cold isopropyl alcohol (20 mL), and dried under reduced pressure to give the title compound (65.4 g, purification yield 94.9%, 94.7% from the main raw material). .
  • Acetic anhydride 164 g, 1.60 mol
  • THF 14 mL
  • Triethylamine 203 g, 2.01 mol was added to the mixture at 5 ° C. to 8 ° C. over 8 minutes, and the mixture was washed with THF (13 mL).
  • 4- (dimethylamino) pyridine 8.17 g, 66.9 mmol
  • THF 21 mL
  • the reaction was confirmed by TLC (developing solvent: hexane / ethyl acetate (1: 1 and 2: 1)).
  • the reaction mixture was stirred at room temperature for 15 hours, methanol was added at 22 ° C. to 25 ° C., and the mixture was concentrated under reduced pressure at 45 ° C. or lower.
  • Ethyl acetate (2000 mL) and cold 1 mol / L hydrochloric acid (1000 mL) were added to the concentrate and the phases were separated.
  • a 4% aqueous sodium hydrogen carbonate solution (1000 mL), a 5% aqueous sodium hydrogen carbonate solution (100 mL), and an aqueous sodium hydrogen carbonate solution (500 mL) were added to the organic layer for liquid separation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

経済的かつ工業的製造に適した条件で、アンジオテンシンII受容体拮抗薬の中間体として有用なビアリール化合物を製造することができる、新規な製造方法を提供する。 一般式[1]の2-フェニルアゾール誘導体またはその塩と、一般式[2]のベンゼン誘導体またはその塩を、金属触媒、塩基、並びに(a)モノカルボン酸の金属塩、(b)ジカルボン酸の金属塩、(c)スルホン酸の金属塩、及び(d)R P(O)(OM)で表されるリン酸エステル又はリン酸アミドの金属塩からなる群より選ばれる1種以上の化合物の存在下に反応させることを特徴とする、一般式[3]のビアリール化合物又はその塩の製造方法(各式中、各記号は本明細書中で定義した通り)。

Description

ビアリール化合物の製造方法
 本発明は、アンジオテンシンII受容体拮抗薬の中間体として有用なビアリール化合物又はその塩の製造方法に関する。
 ロサルタン カリウム、バルサルタン、オルメサルタン メドキソミル、カンデサルタン シレキセチル、テルミサルタン、イルベサルタンなどは、アンジオテンシンII受容体拮抗薬として有用である。
 これらの化合物の製造方法としては、例えば、ロサルタンの合成法としてJ.Org.Chem.、1994年、59巻、6391~6394頁(非特許文献1)に記載の製法が、また、バルサルタンの合成法としてOrg.Process Res.Dev.、2007年、11巻、892~898頁(非特許文献2)に記載の製法が、さらにイルベサルタンの合成法としてJ.Med.Chem.、1993年、36巻、3371~3380頁(非特許文献3)に記載の製法がそれぞれ知られている。
 また、オルメサルタンの製造方法としては、特公平7-121918号(特許文献1)、特表2010-505926号(特許文献2)、国際公開第2004/085428号(特許文献3)等に記載の製法が知られている。
 また、ビフェニル化反応の従来法としては、例えば、Chem.Lett.、2008年、37巻、9号、994~995頁(非特許文献4)に記載の方法が、Tetrahedron、2008年、64巻、6051~6059頁(非特許文献5)、Angewandte Chemie International Edition、2009年、48巻、9792~9827頁(非特許文献6)、国際公開第2011/061996号(特許文献4)に記載の方法が知られている。
特公平7-121918号公報 特表2010-505926号公報 国際公開第2004/085428号 国際公開第2011/061996号
J.Org.Chem.、1994年、59巻、6391~6394頁 Org.Process Res.Dev.、2007年、11巻、892~898頁 J.Med.Chem.、1993年、36巻、3371~3380頁 Chem.Lett.、2008年、37巻、9号、994~995頁 Tetrahedron、2008年、64巻、6051~6059頁 Angewandte Chemie International Edition、2009年、48巻、9792~9827頁
 前記の従来技術の製造法は、高価な金属化合物が必要であったり、複数の反応ステップを含んでいたりするため、より経済的な製造法の開発が望まれている。
 本発明は、経済的かつ工業的製造に適した条件で、アンジオテンシンII受容体拮抗薬の中間体として有用なビアリール化合物を製造することができる、新規な製法を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意研究した結果、触媒として安価な金属化合物を用い、さらに特定の化合物を使用することにより、経済的かつ工業的製造に適した条件で、アンジオテンシンII受容体拮抗薬の中間体として有用なビアリール化合物を製造できることを見出し、本発明を完成するに至った。
 即ち、本発明は;
[1]一般式[1]:
Figure JPOXMLDOC01-appb-C000042
[式中、RないしRは、それぞれ、独立して、水素原子、あるいは、それぞれ置換基を有していてもよい、アルキル基、アラルキル基又はアリール基を表し、環Aは、置換されていてもよい含窒素複素環を表す。]
で示される2-フェニルアゾール誘導体又はその塩(2-フェニルアゾール誘導体[1]ともいう)と、一般式[2]:
Figure JPOXMLDOC01-appb-C000043
[式中、Rは、それぞれ置換基を有していてもよい、アルキル基、アラルキル基又はアリール基を表し、mは、0ないし5の整数を表し、Xは脱離基を表す。]
で示されるベンゼン誘導体(ベンゼン誘導体[2]ともいう)を、金属触媒、塩基及び下記(a)~(d)からなる群より選ばれる1種以上の化合物の存在下に反応させることを特徴とする、一般式[3]:
Figure JPOXMLDOC01-appb-C000044
[式中、各記号は前記と同義である。]
で示されるビアリール化合物又はその塩(ビアリール化合物[3]ともいう)の製造方法(以下、「製造方法1」ともいう);
(a)モノカルボン酸の金属塩
(b)ジカルボン酸の金属塩
(c)スルホン酸の金属塩
(d)R P(O)(OM)[式中、Rは、R”’O又はR”’Nを表し、ここで、R”’は、水素原子、あるいは、それぞれ、窒素原子、酸素原子又は硫黄原子を含んでいてもよい、炭素数1~20の直鎖または分岐鎖のアルキル基、炭素数7~14のアラルキル基又は炭素数6~18のアリール基を表す。Mは、金属原子を表し、xおよびyは、それぞれ独立して、1又は2の整数であり、かつ、x+yは3である。]で表されるリン酸エステル又はリン酸アミドの金属塩;
[2]一般式[1]:
Figure JPOXMLDOC01-appb-C000045
[式中、RないしRは、それぞれ、独立して、水素原子、あるいは、それぞれ置換基を有していてもよい、アルキル基、アラルキル基又はアリール基を表し、環Aは、置換されていてもよい含窒素複素環を表す。]
で示される2-フェニルアゾール誘導体又はその塩(2-フェニルアゾール誘導体[1]ともいう)と、一般式[2]:
Figure JPOXMLDOC01-appb-C000046
[式中、Rは、それぞれ置換基を有していてもよい、アルキル基、アラルキル基又はアリール基を表し、mは、0ないし5の整数を表し、Xは脱離基を表す。]
で示されるベンゼン誘導体(ベンゼン誘導体[2]ともいう)を、金属触媒、塩基及び下記(a)~(d)からなる群より選ばれる1種以上の化合物の存在下に反応させることを特徴とする、一般式[3]:
Figure JPOXMLDOC01-appb-C000047
[式中、各記号は前記と同義である。]
で示されるビアリール化合物又はその塩(ビアリール化合物[3]ともいう)の製造方法(以下、「製造方法1’」ともいう);
(a)モノカルボン酸の金属塩
(b)ジカルボン酸の金属塩
(c)スルホン酸の金属塩
(d)(R”’O)P(O)(OM)[式中、R”’は、水素原子、あるいは、それぞれ、窒素原子、酸素原子又は硫黄原子を含んでいてもよい、炭素数1~20の直鎖または分岐鎖のアルキル基、炭素数7~14のアラルキル基又は炭素数6~18のアリール基を表す。Mは、金属原子を表し、xおよびyは、それぞれ独立して、1又は2の整数であり、かつ、x+yは3である。]で表されるリン酸エステルの金属塩;
[3]さらに、ホスフィン系化合物が存在する条件下で反応させることを特徴とする、上記[1]又は[2]記載の製造方法;
[4]上記[1]又は[2]記載の一般式[1]が一般式[1’]:
Figure JPOXMLDOC01-appb-C000048
[式中、Rは、テトラゾリル基の保護基を表し、RないしRは、前記と同義である。]
で示される2-フェニルテトラゾール誘導体又はその塩(2-フェニルテトラゾール誘導体[1’]ともいう)であり、上記[1]又は[2]記載の一般式[2]が一般式[2’]:
Figure JPOXMLDOC01-appb-C000049
[式中、R5’は、メチル基、保護された水酸基で置換されたメチル基又は低級アルコシキカルボニル基であり、Xは前記と同義である。]
で示されるベンゼン誘導体(ベンゼン誘導体[2’]ともいう)である、上記[1]ないし[3]のいずれか1つに記載の製造方法;
[5]1)上記[4]記載の製造方法で得られた一般式[3’]:
Figure JPOXMLDOC01-appb-C000050
[式中、各記号は前記と同義である。]
で示されるビアリールテトラゾール化合物又はその塩(ビアリールテトラゾール化合物[3’]ともいう)において、
1-A)(a)R5’が保護された水酸基で置換されたメチル基である場合は、脱保護して、
(b)R5’が低級アルコキシカルボニル基である場合は、還元して、
一般式[4]:
Figure JPOXMLDOC01-appb-C000051
[式中、各記号は前記と同義である。]
で示される化合物又はその塩(化合物[4]ともいう)を得、さらにハロゲン化するか;又は
1-B)一般式[3’]で示される化合物のR5’がメチル基である場合は、一般式[3’]で示される化合物をハロゲン化することを特徴とする、一般式[5]:
Figure JPOXMLDOC01-appb-C000052
[式中、Xは、ハロゲン原子を表し、RないしRおよびRは、前記と同義である。]
で示されるビアリールテトラゾール誘導体又はその塩(ビアリールテトラゾール誘導体[5]ともいう)の製造方法(以下、「製造方法2」ともいう);
[6]1)上記[5]記載の製造方法で得られた一般式[5’]:
Figure JPOXMLDOC01-appb-C000053
[式中、各記号は前記と同義である。]
で示されるビアリールテトラゾール誘導体又はその塩(ビアリールテトラゾール誘導体[5’]ともいう)と、一般式[6]:
Figure JPOXMLDOC01-appb-C000054
[式中、R10は、カルボキシ基の保護基を示す。]
で示される化合物又はその塩(化合物[6]ともいう)を反応させて、一般式[7]:
Figure JPOXMLDOC01-appb-C000055
[式中、各記号は前記と同義である。]
で示される化合物又はその塩(化合物[7]ともいう)を得;
2)化合物[7]のRを除去して、一般式[Y1]:
Figure JPOXMLDOC01-appb-C000056
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[Y1]ともいう)を得;
3)化合物[Y1]を、一般式[Y3]:R6’-X[式中、R6’はトリチル基を表し、Xはハロゲン原子を表す。]で示される化合物(化合物[Y3]ともいう)と反応させて、一般式[Y2]:
Figure JPOXMLDOC01-appb-C000057
[式中、各記号は前記と同義である。]
で示される化合物又はその塩(化合物[Y2]ともいう)を得;
4)化合物[Y2]を加水分解して、一般式[8’]:
Figure JPOXMLDOC01-appb-C000058
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[8’]ともいう)を得;
5)化合物[8’]と式[9]:
Figure JPOXMLDOC01-appb-C000059
で示される化合物(化合物[9]ともいう)を反応させて、一般式[10’]:
Figure JPOXMLDOC01-appb-C000060
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[10’]ともいう)を得;
6)化合物[10’]のR6’を除去することを特徴とする、式[11]:
Figure JPOXMLDOC01-appb-C000061
で示される化合物又はその塩(即ち、オルメサルタン又はその塩、以下化合物[11]ともいう)の製造方法(以下、「製造方法3’」ともいう);
[7]1)上記[5]記載の製造方法で得られた一般式[5’]:
Figure JPOXMLDOC01-appb-C000062
 
[式中、各記号は前記と同義である。]
で示されるビアリールテトラゾール誘導体又はその塩(ビアリールテトラゾール誘導体[5’]ともいう)と、式[6’]:
Figure JPOXMLDOC01-appb-C000063
 
で示される化合物又はその塩(化合物[6’]ともいう)を反応させて、一般式[7’]:
Figure JPOXMLDOC01-appb-C000064
 
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[7’]ともいう)を得;
2)化合物[7’]を加水分解して、一般式[8]:
Figure JPOXMLDOC01-appb-C000065
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[8]ともいう)を得;
3)化合物[8]と式[9]:
Figure JPOXMLDOC01-appb-C000066
で示される化合物(化合物[9]ともいう)を反応させて、一般式[10]:
Figure JPOXMLDOC01-appb-C000067
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[10]ともいう)を得;
4)化合物[10]のRを除去することを特徴とする、式[11]:
Figure JPOXMLDOC01-appb-C000068
で示される化合物又はその塩(即ち、オルメサルタン又はその塩)の製造方法(以下、「製造方法3」ともいう);
[8]1)上記[5]記載の製造方法で得られた一般式[5’]:
Figure JPOXMLDOC01-appb-C000069
[式中、各記号は前記と同義である。]
で示されるビアリールテトラゾール誘導体又はその塩と、式[12]:
Figure JPOXMLDOC01-appb-C000070
で示される化合物又はその塩(化合物[12]ともいう)を反応させて、一般式[13]:
Figure JPOXMLDOC01-appb-C000071
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[13]ともいう)を得;
2-A)化合物[13]を還元して、一般式[14]:
Figure JPOXMLDOC01-appb-C000072
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[14]ともいう)を得、さらにRを除去するか;又は、
2-B)化合物[13]のRを除去して、式[15]:
Figure JPOXMLDOC01-appb-C000073
で示される化合物又はその塩(化合物[15]ともいう)を得、さらに還元することを特徴とする、式[16]:
Figure JPOXMLDOC01-appb-C000074
で示される化合物又はその塩(即ち、ロサルタン又はその塩、以下化合物[16]ともいう)の製造方法(以下、「製造方法4」ともいう);
[9]1)上記[5]記載の製造方法で得られた一般式[5’]:
Figure JPOXMLDOC01-appb-C000075
[式中、各記号は前記と同義である。]
で示されるビアリールテトラゾール誘導体又はその塩と、一般式[17]:
Figure JPOXMLDOC01-appb-C000076
[式中、Rは、カルボキシ基の保護基を表す。]
で示される化合物又はその塩(化合物[17]ともいう)を反応させて、一般式[18]:
Figure JPOXMLDOC01-appb-C000077
[式中、各記号は前記と同義である。]
で示される化合物又はその塩(化合物[18]ともいう)を得;
2-A)化合物[18]のRを除去して、一般式[19]:
Figure JPOXMLDOC01-appb-C000078
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[19]ともいう)を得;
3-A)化合物[19]と、一般式[20]:CHCHCHCHCO-X[式中、Xは脱離基を表す。]で示される化合物(化合物[20]ともいう)を反応させて、一般式[21]:
Figure JPOXMLDOC01-appb-C000079
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[21]ともいう)を得;
4-A)化合物[21]のRを除去するか;又は
2-B)化合物[18]と、化合物[20]を反応させ、一般式[22]:
Figure JPOXMLDOC01-appb-C000080
[式中、各記号は前記と同義である。]
で示される化合物又はその塩(化合物[22]ともいう)を得;
3-B)化合物[22]のR及びRを除去することを特徴とする、式[23]:
Figure JPOXMLDOC01-appb-C000081
で示される化合物又はその塩(即ち、バルサルタン又はその塩、以下化合物[23]ともいう)の製造方法(以下、「製造方法5」ともいう);
[10]上記[5]記載の製造方法で得られた一般式[5’]:
Figure JPOXMLDOC01-appb-C000082
[式中、各記号は前記と同義である。]
で示されるビアリールテトラゾール誘導体又はその塩と、式[24]:
Figure JPOXMLDOC01-appb-C000083
で示される化合物又はその塩(化合物[24]ともいう)を反応させて、一般式[25]:
Figure JPOXMLDOC01-appb-C000084
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[25]ともいう)を得、さらにRを除去することを特徴とする、式[26]:
Figure JPOXMLDOC01-appb-C000085
で示される化合物又はその塩(即ち、イルベサルタン又はその塩、以下化合物[26]ともいう)の製造方法(以下、「製造方法6」ともいう);
[11]1)上記[5]記載の製造方法で得られた一般式[5’]:
Figure JPOXMLDOC01-appb-C000086
[式中、各記号は前記と同義である。]
で示されるビアリールテトラゾール誘導体又はその塩と、一般式[X]:
Figure JPOXMLDOC01-appb-C000087
[式中、Rはカルボキシ基の保護基を表す。]
で示される化合物又はその塩(化合物[X]ともいう)を反応させて、一般式[31]:
Figure JPOXMLDOC01-appb-C000088
[式中、各記号は前記と同義である。]
で示される化合物又はその塩(化合物[31]ともいう)を得;
2)化合物[31]のRを除去して、一般式[32]:
Figure JPOXMLDOC01-appb-C000089
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[32]ともいう)を得;
3)化合物[32]と、一般式[33]:
Figure JPOXMLDOC01-appb-C000090
[式中、Xは脱離基又は水酸基を表す。]
で示される化合物又はその塩(化合物[33]ともいう)を反応させて、一般式[34]:
Figure JPOXMLDOC01-appb-C000091
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[34])を得;
4)化合物[34]のRを除去することを特徴とする、式[35]:
Figure JPOXMLDOC01-appb-C000092
で示される化合物又はその塩(即ち、カンデサルタン シレキセチル又はその塩、以下化合物[35]ともいう)の製造方法(以下、「製造方法7’」ともいう);
[12]1)上記[5]記載の製造方法で得られた一般式[5’]:
Figure JPOXMLDOC01-appb-C000093
[式中、各記号は前記と同義である。]
で示されるビアリールテトラゾール誘導体又はその塩と、一般式[27]:
Figure JPOXMLDOC01-appb-C000094
[式中、Rはカルボキシ基の保護基を表し、Rはアミノ基の保護基を表す。]
で示される化合物又はその塩(化合物[27]ともいう)を反応させて、一般式[28]:
Figure JPOXMLDOC01-appb-C000095
[式中、各記号は前記と同義である。]
で示される化合物又はその塩(化合物[28]ともいう)を得;
2)化合物[28]のRを除去して、一般式[29]:
Figure JPOXMLDOC01-appb-C000096
[式中、各記号は前記と同義である。]
で示される化合物又はその塩(化合物[29]ともいう)を得;
3)化合物[29]を還元して、一般式[30]:
Figure JPOXMLDOC01-appb-C000097
[式中、各記号は前記と同義である。]
で示される化合物又はその塩(化合物[30]ともいう)を得;
4)化合物[30]と、テトラエトキシメタンを反応させて、一般式[31]:
Figure JPOXMLDOC01-appb-C000098
[式中、各記号は前記と同義である。]
で示される化合物又はその塩(化合物[31]ともいう)を得;
4)化合物[31]のRを除去して、一般式[32]:
Figure JPOXMLDOC01-appb-C000099
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[32]ともいう)を得;
5)化合物[32]と、一般式[33]:
Figure JPOXMLDOC01-appb-C000100
[式中、Xは脱離基又は水酸基を表す。]
で示される化合物又はその塩(化合物[33]ともいう)を反応させて、一般式[34]:
Figure JPOXMLDOC01-appb-C000101
[式中、記号は前記と同義である。]
で示される化合物又はその塩(化合物[34]ともいう)を得;
6)化合物[34]のRを除去することを特徴とする、一般式[35]:
Figure JPOXMLDOC01-appb-C000102
で示される化合物又はその塩(即ち、カンデサルタン シレキセチル又はその塩)の製造方法(以下、「製造方法7」ともいう);
に関する。
 本発明によれば、経済的かつ工業的製造に適した条件で、アンジオテンシンII受容体拮抗薬の中間体として有用なビアリール化合物を製造することが可能となる。
(発明の詳細な説明)
 本発明において用いられる記号及び用語の定義について、以下に詳述する。
 本明細書中、「テトラゾリル基の保護基」とは、反応の際に安定してテトラゾリル基を保護し得るものであれば特に限定されないが、具体的にはProtective Groups in Organic Synthesis 3rd Ed.、T.W.Greene、P.G.M.Wuts著、John Wiley and Sons,Inc.、1999年に記載のものが挙げられる。
 テトラゾリル基の保護基としては、例えば、
7-19アラルキル基(例、ベンジル、ジフェニルメチル、トリチル等);
置換ベンジル、置換ジフェニルメチル等の置換C7-19アラルキル基(好ましくは、C1-6アルキル、ニトロ、C1-6アルキレンジオキシ及びC1-6アルコキシからなる群から選択される1~3個の置換基で置換されたC7-19アラルキル(該置換基が2個以上存在する場合は、同一又は異なっていてもよく、該置換基同士が結合して環を形成してもよい)、例、p-メチルベンジル、p-ニトロベンジル、2,4-ジメトキシベンジル、3,4-ジメトキシベンジル、3,4-(メチレンジオキシ)ベンジル、p-メトキシベンジル、o-メトキシベンジル、3,4,5-トリメトキシベンジル等);
置換C1-6アルキル基(好ましくは、ヒドロキシ、アルコキシ(例、C1-6アルコキシ)、アリールオキシ(例、C6-10アリールオキシ)及びジアルキルアミノ(例、ジ(C1-6アルキル)アミノ)からなる群から選択される1~3個の置換基で置換されたC1-6アルキル、例、ヒドロキシメチル、アルコキシメチル、アリールオキシメチル、ジアルキルアミノメチル等);
トリアルキルシリル基(好ましくは、トリ(C1-6アルキル)シリル);
1-6アルキル基(例、t-ブチル等)
等が挙げられる。
 本明細書中、「保護された水酸基で置換されたメチル基」の水酸基の保護基として、具体的にはProtective Groups in Organic Synthesis 3rd Ed.、T.W.Greene、P.G.M.Wuts著、John Wiley and Sons,Inc.、1999年に記載のものが挙げられる。
 水酸基の保護基としては、例えば、
アシル基(好ましくは、C1-6アルキル-カルボニル、C3-8シクロアルキル-カルボニル、C6-10アリール-カルボニル、例、アセチル、プロピオニル、ブチリル、イソブチリル、ピバロイル、シクロヘキシルカルボニル、ベンゾイル等)、
7-19アラルキル基(例、ベンジル等)、
トリアルキルシリル基(好ましくは、トリ(C1-6アルキル)シリル、例、トリメチルシリル、トリエチルシリル、トリイソプロピルシリル、t-ブチルジメチルシリル等)、
アルコキシカルボニル基(好ましくは、C1-6アルコキシ-カルボニル)
等が挙げられる。
 本明細書中、「カルボキシ基の保護基」とは、反応の際に安定してカルボキシ基を保護し得るものであれば特に限定されないが、具体的にはProtective Groups in Organic Synthesis 3rd Ed.、T.W.Greene、P.G.M.Wuts著、John Wiley and Sons,Inc.、1999年に記載のものが挙げられる。
 カルボキシ基の保護基としては、例えば、
アルキル基(好ましくは、C1-6アルキル、例、メチル、エチル、プロピル、イソプロピル、ブチル、ペンチル、ヘキシル)、
3-8シクロアルキル基(例、シクロヘキシル)、
7-19アラルキル基(例、ベンジル、ジフェニルメチル、トリチル)、
2-6アルケニル基(例、アリル)
等が挙げられる。
 本明細書中、「アミノ基の保護基」とは、反応の際に安定してアミノ基を保護し得るものであれば特に限定されないが、具体的にはProtective Groups in Organic Synthesis 3rd Ed.、T.W.Greene、P.G.M.Wuts著、John Wiley and Sons,Inc.、1999年に記載のものが挙げられる。
 アミノ基の保護基としては、例えば、アシル基(好ましくは、C1-6アルキル-カルボニル、C3-8シクロアルキル-カルボニル、C6-10アリール-カルボニル、例、アセチル、プロピオニル、ブチリル、イソブチリル、ピバロイル、シクロヘキシルカルボニル、ベンゾイル等)および低級アルコキシカルボニル基等が挙げられる。
 本明細書中、「低級アルコキシカルボニル基」としては、直鎖状又は分岐鎖状のC1-12アルコキシ-カルボニル基が挙げられ、好ましくは、メトキシカルボニル、エトキシカルボニル、ブトキシカルボニル(例、tert-ブトキシカルボニル)等が挙げられる。
 Xの「脱離基」としては、
ハロゲン原子、
1~3個のC1-6アルキル基で置換されていてもよいC6-10アリールスルホニルオキシ基(例、トルエンスルホニルオキシ等)、
1~3個のハロゲン原子で置換されていてもよいC1-6アルキルスルホニルオキシ基(例、メタンスルホニルオキシ、トリフルオロメタンスルホニルオキシ等)
等が挙げられる。
 Xの「脱離基」としては、
ハロゲン原子、
1~3個のC1-6アルキル基で置換されていてもよいC6-10アリールスルホニルオキシ基(例、トルエンスルホニルオキシ等)、
1~3個のハロゲン原子で置換されていてもよいC1-6アルキルスルホニルオキシ基(例、メタンスルホニルオキシ等)、
アルカノイルオキシ基(好ましくは、C1-6アルキル-カルボニルオキシ)、
アロイルオキシ基(好ましくは、C6-10アリール-カルボニルオキシ)、
ジアルコキシホスホリルオキシ基(好ましくは、ジ(C1-6アルコキシ)ホスホリルオキシ)、
ジアリールオキシホスホリルオキシ基(好ましくは、ジ(C6-10アリールオキシ)ホスホリルオキシ)
等が挙げられる。
 本明細書中の「ハロゲン原子」としては、フッ素、塩素、臭素又はヨウ素が挙げられる。
 本明細書中の「アルキル基」としては、特に断りのない限り、炭素数1~12の直鎖状又は分岐鎖状のアルキル基が挙げられ、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシルなどが挙げられる。
 本明細書中の「アラルキル基」としては、特に断りのない限り、炭素数7~14のアラルキル基が挙げられ、例えば、ベンジル、フェネチル、1-メチル-2-フェニルエチル、ジフェニルメチル、1-ナフチルメチル、2-ナフチルメチル、2,2-ジフェニルエチル、3-フェニルプロピル、4-フェニルブチル、5-フェニルペンチル、2-ビフェニリルメチル、3-ビフェニリルメチル、4-ビフェニリルメチルなどが挙げられる。
 本明細書中の「アリール基」としては、特に断りのない限り、炭素数6~14のアリール基が挙げられ、例えば、フェニル、1-ナフチル、2-ナフチル、2-アンスリルなどが挙げられる。該アリール基は、下記「C3-8シクロアルカン」または「C3-8シクロアルケン」と縮合していてもよく、例えば、テトラヒドロナフチルなどが挙げられる。
 本明細書中の「含窒素複素環」としては、特に断りのない限り、例えば、環構成原子として、炭素原子および1個の窒素原子以外に、窒素原子、硫黄原子及び酸素原子から選ばれる1又は2種、1ないし3個のヘテロ原子を含んでもよい3-8員含窒素複素環(好ましくは、5又は6員含窒素芳香族複素環)が挙げられる。具体的には、例えば、ピロール環、イミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、テトラゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環などが挙げられる。
 本明細書中の「それぞれ置換基を有してよい、アルキル基、アラルキル基又はアリール基」、「置換されていてもよい含窒素複素環」としては、例えば、
(1)ハロゲン原子;
(2)ヒドロキシ;
(3)アミノ;
(4)ニトロ;
(5)シアノ;
(6)ハロゲン原子、ヒドロキシ、アミノ、ニトロ、シアノ、ハロゲン化されていてもよいC1-6アルキル、モノ-又はジ-C1-6アルキル-アミノ、C6-14アリール、モノ-又はジ-C6-14アリール-アミノ、C3-8シクロアルキル、C1-6アルコキシ、C1-6アルコキシ-C1-6アルコキシ、C1-6アルキルスルファニル、C1-6アルキルスルフィニル、C1-6アルキルスルホニル、エステル化されていてもよいカルボキシ、カルバモイル、チオカルバモイル、モノ-又はジ-C1-6アルキル-カルバモイル、モノ-又はジ-C6-14アリール-カルバモイル、スルファモイル、モノ-又はジ-C1-6アルキル-スルファモイル及びモノ-又はジ-C6-14アリール-スルファモイルから選ばれる1ないし3個の置換基で置換されていてもよい複素環基;
(7)モノ-又はジ-C1-6アルキル-アミノ;
(8)モノ-又はジ-C6-14アリール-アミノ;
(9)モノ-又はジ-C7-14アラルキル-アミノ;
(10)N-C1-6アルキル-N-C6-14アリール-アミノ;
(11)N-C1-6アルキル-N-C7-14アラルキル-アミノ;
(12)C3-8シクロアルキル;
(13)ハロゲン化されていてもよいC1-6アルコキシ;
(14)C1-6アルキルスルファニル;
(15)C1-6アルキルスルフィニル;
(16)C1-6アルキルスルホニル;
(17)エステル化されていてもよいカルボキシ;
(18)C1-6アルキル-カルボニル;
(19)C3-8シクロアルキル-カルボニル;
(20)C6-14アリール-カルボニル;
(21)カルバモイル;
(22)チオカルバモイル;
(23)モノ-又はジ-C1-6アルキル-カルバモイル;
(24)モノ-又はジ-C6-14アリール-カルバモイル;
(25)N-C1-6アルキル-N-C6-14アリール-カルバモイル;
(26)モノ-又はジ-5ないし7員複素環-カルバモイル;
(27)カルボキシで置換されていてもよいC1-6アルキル-カルボニルアミノ;
(28)ハロゲン原子、ヒドロキシ、アミノ、ニトロ、シアノ、ハロゲン化されていてもよいC1-6アルキル、モノ-又はジ-C1-6アルキル-アミノ、C6-14アリール、モノ-又はジ-C6-14アリール-アミノ、C3-8シクロアルキル、C1-6アルコキシ、C1-6アルコキシ-C1-6アルコキシ、C1-6アルキルスルファニル、C1-6アルキルスルフィニル、C1-6アルキルスルホニル、エステル化されていてもよいカルボキシ、カルバモイル、チオカルバモイル、モノ-又はジ-C1-6アルキル-カルバモイル、モノ-又はジ-C6-14アリール-カルバモイル、スルファモイル、モノ-又はジ-C1-6アルキル-スルファモイル及びモノ-又はジ-C6-14アリール-スルファモイルから選ばれる1ないし3個の置換基で置換されていてもよいC6-14アリールオキシ;
(29)ハロゲン原子、ヒドロキシ、アミノ、ニトロ、シアノ、ハロゲン化されていてもよいC1-6アルキル、モノ-又はジ-C1-6アルキル-アミノ、C6-14アリール、モノ-又はジ-C6-14アリール-アミノ、C3-8シクロアルキル、C1-6アルコキシ、C1-6アルコキシ-C1-6アルコキシ、C1-6アルキルスルファニル、C1-6アルキルスルフィニル、C1-6アルキルスルホニル、エステル化されていてもよいカルボキシ、カルバモイル、チオカルバモイル、モノ-又はジ-C1-6アルキル-カルバモイル、モノ-又はジ-C6-14アリール-カルバモイル、スルファモイル、モノ-又はジ-C1-6アルキル-スルファモイル及びモノ-又はジ-C6-14アリール-スルファモイルから選ばれる1ないし3個の置換基で置換されていてもよいC6-14アリール;
(30)複素環-オキシ;
(31)スルファモイル;
(32)モノ-又はジ-C1-6アルキル-スルファモイル;
(33)モノ-又はジ-C6-14アリール-スルファモイル;
(34)ハロゲン原子、ヒドロキシ、アミノ、ニトロ、シアノ、ハロゲン化されていてもよいC1-6アルキル、モノ-又はジ-C1-6アルキル-アミノ、C6-14アリール、モノ-又はジ-C6-14アリール-アミノ、C3-8シクロアルキル、C1-6アルコキシ、C1-6アルコキシ-C1-6アルコキシ、C1-6アルキルスルファニル、C1-6アルキルスルフィニル、C1-6アルキルスルホニル、エステル化されていてもよいカルボキシ、カルバモイル、チオカルバモイル、モノ-又はジ-C1-6アルキル-カルバモイル、モノ-又はジ-C6-14アリール-カルバモイル、スルファモイル、モノ-又はジ-C1-6アルキル-スルファモイル及びモノ-又はジ-C6-14アリール-スルファモイルから選ばれる1ないし3個の置換基で置換されていてもよいC7-14アラルキルオキシ;
(35)C1-6アルキル-カルボニルオキシ;
(36)C1-6アルコキシ-カルボニル;
(37)トリC1-6アルキルシリルオキシ;
などから選ばれる1ないし5個の置換基をそれぞれ置換可能な位置に有していてもよい、「アルキル基」、「アラルキル基」、「アリール基」、「含窒素複素環」が挙げられる。置換基が複数存在する場合、各置換基は同一でも異なっていてもよい。
 次に本発明の製造方法につき説明する。
[製造方法1]および[製造方法1’]
 2-フェニルアゾール誘導体[1]及びベンゼン誘導体[2]は、市販品を用いてもよく、2-フェニルアゾール誘導体[1]は国際公開第2009/49305号に記載の方法、又はそれに準じる方法で製造してもよい。
(工程1)
Figure JPOXMLDOC01-appb-C000103
 ビアリール化合物[3]は、2-フェニルアゾール誘導体[1]を、金属触媒、塩基及び前記(a)~(d)からなる群より選ばれる1種以上の化合物の存在下に、ベンゼン誘導体[2]と反応させることにより製造することができる。本反応は溶媒を用いて行うこともできる。
 金属触媒としては、ルテニウム触媒、イリジウム触媒、ロジウム触媒、パラジウム触媒を用いることができ、ルテニウム触媒としては、例えば、ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)(RuCl(PPh)、ジクロロ(1,5-シクロオクタジエン)ルテニウム(II)ポリマー([RuCl(η-COD)]またはポリ[(η,η-シクロオクタ-1,5-ジエン)ルテニウム-ジ-μ-クロロ]と表記することもある)、[RuCl(η-C)]、ジクロロ(p-シメン)ルテニウム(II)ダイマー([Ru(p-cymene)Cl)、ジクロロ(メシチレン)ルテニウム(II)ダイマー([Ru(mesitylene)Cl)、塩化ルテニウム(III)(RuCl)、塩化ルテニウム(III)水和物(RuCl・xHO)、ルテニウム炭素、ジピバロイルオキシ(p-シメン)ルテニウム(II)が挙げられる。好ましくは、ルテニウム触媒(例、ジクロロ(p-シメン)ルテニウム(II)ダイマー([Ru(p-cymene)Cl)、塩化ルテニウム(III)水和物(RuCl・xHO)、ジピバロイルオキシ(p-シメン)ルテニウム(II))である。
 金属触媒の使用量は、2-フェニルアゾール誘導体[1]に対して、通常0.00001当量~10当量、好ましくは、0.001当量~0.3当量であり、より好ましくは、0.003当量~0.015当量である。
 塩基としては、炭酸カリウム(KCO)、炭酸ナトリウム(NaCO)、炭酸水素ナトリウム(NaHCO)、炭酸水素カリウム(KHCO)、リン酸カリウム(KPO)、炭酸セシウム(CsCO)、炭酸ルビジウム(RbCO)等が挙げられる。好ましくは、炭酸カリウムである。
 塩基の使用量は、2-フェニルアゾール誘導体[1]に対して、通常0.1当量~10当量、好ましくは、0.1当量~3当量、より好ましくは、0.3当量~2当量である。
 本発明の(a)モノカルボン酸の金属塩としては、特に限定されないが、例えば、RCOMで表されるカルボン酸の金属塩等が挙げられる。
 Rは、水素原子、あるいはそれぞれ窒素原子、酸素原子又は硫黄原子を含んでいてもよい、炭素数1~20の直鎖または分岐鎖のアルキル基、炭素数7~14のアラルキル基、炭素数6~18のアリール基又は炭素数3~7のシクロアルキル基であり、該アルキル基、アラルキル基、シクロアルキル基およびアリール基は、それぞれ置換基を有していてもよい。Rは、好ましくは、炭素数1~12の直鎖または分岐鎖のアルキル基(例、メチル、tert-ブチル、2-エチル-ヘキシル、n-ドデシル)、炭素数7~10のアラルキル基、炭素数1~6のアルキル基で置換されていてもよい炭素数6~12のアリール基(例、メシチル)、炭素数3~7のシクロアルキル基(例、シクロヘキシル)であり、特に好ましくは、メチル基及びtert-ブチル基である。
 Mは、金属原子を表し、好ましくは、Li(リチウム)、Na(ナトリウム)、K(カリウム)、Rb(ルビジウム)、Cs(セシウム)、Mg(マグネシウム)又はZn(亜鉛)であり、より好ましくはアルカリ金属原子であり、特に好ましくは、Kである。
 モノカルボン酸の金属塩の好ましい例としては、Rが、直鎖または分岐鎖の炭素数1~12のアルキル基(例、メチル、tert-ブチル、2-エチル-ヘキシル、n-ドデシル)、炭素数3~7のシクロアルキル基(例、シクロヘキシル)、又は炭素数1~6のアルキル基で置換されていてもよい炭素数6~12のアリール基(例、メシチル)であるカルボン酸のカリウム塩が挙げられ、酢酸のカリウム塩又はピバリン酸のカリウム塩が特に好ましい。
 本発明の(b)ジカルボン酸の金属塩としては、特に限定されないが、例えば、
Figure JPOXMLDOC01-appb-C000104
で表されるジカルボン酸の金属塩等が挙げられる。
 R’は、水素原子、あるいは、それぞれ窒素原子、酸素原子又は硫黄原子を含んでいてもよい、炭素数1~10の直鎖または分岐鎖のアルキル基、炭素数7~14のアラルキル基又は炭素数6~18のアリール基であり、該アルキル基、アラルキル基およびアリール基は置換基を有していてもよい。R’は、好ましくは、水素原子、あるいは、炭素数1~6の直鎖または分岐鎖のアルキル基、炭素数7~10のアラルキル基、又は炭素数6~12のアリール基であり、水素原子が特に好ましい。
 nは、0~10の整数であり、好ましくは、0~5の整数であり、特に好ましくは、0又は3である。
 環Zは、炭素数3~8のシクロアルキレン、炭素数3~8のシクロアルケニレン、アリーレン、又はヘテロシクリレンを表し、好ましくは、フェニレン、ナフチレン、アントリレン、フェナントリレン等が挙げられる。
 Mは、金属原子を表し、好ましくは、Li(リチウム)、Na(ナトリウム)、K(カリウム)、Rb(ルビジウム)、Cs(セシウム)、Mg(マグネシウム)又はZn(亜鉛)であり、より好ましくは、アルカリ金属原子であり、特に好ましくは、Kである。
 ジカルボン酸の金属塩の好ましい例としては、R’が水素原子であり、nが0~5の整数であるジカルボン酸のカリウム塩が挙げられ、シュウ酸のカリウム塩又はグルタル酸のカリウム塩が特に好ましい。
 本発明の(c)スルホン酸の金属塩としては、特に限定されないが、例えば、R”SOMで表されるスルホン酸金属塩等が挙げられる。
 R”は、水素原子、あるいは、それぞれ窒素原子、酸素原子又は硫黄原子を含んでいてもよい、炭素数1~10の直鎖または分岐鎖のアルキル基、炭素数7~14のアラルキル基又は炭素数6~18のアリール基であり、これらアルキル基、アラルキル基およびアリール基は置換基を有していてもよい。好ましくは、炭素数1~6の直鎖または分岐鎖のアルキル基、炭素数7~10のアラルキル基、炭素数1~12のアルキル基で置換されていてもよい炭素数6~12のアリール基(例、2,4,6-トリメチルフェニル又は4-ドデシルフェニル)であり、特に好ましくは、4-ドデシルフェニル基である。
 Mは、金属原子を表し、好ましくは、Li(リチウム)、Na(ナトリウム)、K(カリウム)、Rb(ルビジウム)、Cs(セシウム)、Mg(マグネシウム)又はZn(亜鉛)であり、より好ましくは、アルカリ金属原子であり、特に好ましくは、Kである。
 本発明の(c)スルホン酸の金属塩の好ましい例としては、R”が炭素数1~12のアルキル基で置換されていてもよいフェニル基であるスルホン酸のカリウム塩が挙げられ、4-ドデシルベンゼンスルホン酸カリウムが特に好ましい。
 本発明の(d)R P(O)(OM)(ここで、Rは、R”’OまたはR”’Nを表す。)で表されるリン酸エステル又はリン酸アミドの金属塩のR”’は、水素原子、あるいは、それぞれ窒素原子、酸素原子又は硫黄原子を含んでいてもよい、炭素数1~20、好ましくは炭素数1~12の直鎖または分岐鎖のアルキル基、炭素数7~14のアラルキル基、又は炭素数6~18、好ましくは炭素数6~12のアリール基であり、これらアルキル基、アラルキル基およびアリール基は置換基を有していてもよい。また、2つのR”’は、分子内で環を形成していてもよい。好ましくは、炭素数1~12の直鎖または分岐鎖のアルキル基(例、エチル、n-ブチル、t-ブチル、ドデシル、2-エチル-n-ヘキシル)、炭素数7~10のアラルキル基又は炭素数6~12のアリール基(例、2-ナフチル)であり、特に好ましくは、2-エチル-n-へキシル基である。
 xおよびyは、それぞれ独立して、1又は2の整数であり、かつ、x+yは3である。
 Mは、金属原子を表し、好ましくは、Li(リチウム)、Na(ナトリウム)、K(カリウム)、Rb(ルビジウム)、Cs(セシウム)、Mg(マグネシウム)又はZn(亜鉛)であり、より好ましくは、アルカリ金属原子であり、特に好ましくは、Kである。
 本発明の(d)R P(O)(OM)(ここで、Rは、R”’O又はR”’Nを表す。)で表されるリン酸エステル又はリン酸アミドの金属塩の好ましい例としては、R”’が炭素数1~12の直鎖または分岐鎖のアルキル基(例、エチル、n-ブチル、t-ブチル、ドデシル、2-エチル-n-ヘキシル)又は炭素数6~12のアリール基(例、2-ナフチル)である、リン酸エステルのカリウム塩又はリン酸アミドのカリウム塩が挙げられ、ビス(2―エチル-n-ヘキシル)リン酸カリウムが特に好ましい。
 別の態様として、本発明の(d)(R”’O)P(O)(OM)で表されるリン酸エステルの金属塩のR”’は、水素原子、あるいは、それぞれ窒素原子、酸素原子又は硫黄原子を含んでいてもよい、炭素数1~20、好ましくは炭素数1~12の直鎖または分岐鎖のアルキル基、炭素数7~14のアラルキル基、又は炭素数6~18、好ましくは炭素数6~12のアリール基であり、これらアルキル基、アラルキル基およびアリール基は置換基を有していてもよい。また、2つのR”’は、分子内で環を形成していてもよい。好ましくは、炭素数1~12の直鎖または分岐鎖のアルキル基(例、エチル、n-ブチル、t-ブチル、ドデシル、2-エチル-n-ヘキシル)、炭素数7~10のアラルキル基又は炭素数6~12のアリール基(例、2-ナフチル)であり、特に好ましくは、2-エチル-n-へキシル基である。
 xおよびyは、それぞれ独立して、1又は2の整数であり、かつ、x+yは3である。
 Mは、金属原子を表し、好ましくは、Li(リチウム)、Na(ナトリウム)、K(カリウム)、Rb(ルビジウム)、Cs(セシウム)、Mg(マグネシウム)又はZn(亜鉛)であり、より好ましくは、アルカリ金属原子であり、特に好ましくは、Kである。
 本発明の(d)(R”’O)P(O)(OM)で表されるリン酸エステルの金属塩の好ましい例としては、R”’が炭素数1~12の直鎖または分岐鎖のアルキル基(例、エチル、n-ブチル、t-ブチル、ドデシル、2-エチル-n-ヘキシル)又は炭素数6~12のアリール基(例、2-ナフチル)である、リン酸エステルのカリウム塩が挙げられ、ビス(2―エチル-n-ヘキシル)リン酸カリウムが特に好ましい。
 なお、収率が高くなることから、上述した(a)~(d)の中でも、(d)R P(O)(OM)を用いることが好ましく、(R”’O)P(O)(OM)で表されるリン酸エステルの金属塩を用いることがより好ましい。
 (a)~(d)からなる群より選ばれる1種以上の化合物の使用量は、2-フェニルアゾール誘導体[1]に対して、通常0.00001当量~10当量、好ましくは、0.001当量~8.0当量であり、より好ましくは、0.005当量~5.0当量である。
 金属触媒、塩基、上記(a)~(d)からなる群より選ばれる1種以上の化合物の添加方法は、特に限定されず、塩基と上記(a)~(d)からなる群より選ばれる1種以上の化合物を添加した後に金属触媒を添加する方法、塩基を添加した後に金属触媒と上記(a)~(d)からなる群より選ばれる1種以上の化合物から調製したルテニウム触媒を添加する方法等が挙げられる。
 好適に反応を進行させるために、さらに、ホスフィン系化合物の存在下に反応させてもよい。ホスフィン系化合物としては、一般式[X2]:PR(式中、Rは、アルキル基、アラルキル基またはアリール基を示す。)で示される化合物が挙げられる。
 具体的には、トリフェニルホスフィン(トリフェニルホスファンということもある)、トリ(t-ブチル)ホスフィン、トリエチルホスフィン、トリシクロヘキシルホスフィン、トリ(o-トリル)ホスフィン、トリ(p-トリル)ホスファン、トリ(p-メトキシフェニル)ホスファン、シクロヘキシルジフェニルホスファン等が挙げられ、トリフェニルホスフィンが好ましい。
 ホスフィン系化合物の使用量は、2-フェニルアゾール誘導体[1]に対して、通常0.00001当量~10当量、好ましくは、0.001当量~1当量である。
 また、上記(a)~(d)記載の金属塩の共役酸の存在下に反応させてもよい。
 共役酸の使用量は、2-フェニルアゾール誘導体[1]に対して、通常0.00001当量~3当量、好ましくは、0.05当量~1.0当量であり、より好ましくは、0.1当量~0.5当量である。
 溶媒としては、反応が進行する限り特に限定されないが、N-メチル-2-ピロリドン(NMPと略記することもある)、N,N-ジメチルホルムアミド(DMFと略記することもある)、N,N-ジメチルアセトアミド(DMAと略記することもある)、ジメチルスルホキシド(DMSOと略記することもある)等の極性溶媒、又はトルエン、キシレン等の非極性溶媒、さらにはこれら極性溶媒と非極性溶媒の混合物が好ましい。
 溶媒の使用量は、2-フェニルアゾール誘導体[1]1mmolに対して、通常0mL~100mL、好ましくは、0.1mL~10mLである。
 反応温度は、通常20℃~300℃、好ましくは、100℃~200℃である。
 反応時間は、通常0.01時間~200時間、好ましくは、0.5時間~24時間である。
[製造方法2]
Figure JPOXMLDOC01-appb-C000105
(工程2a)
 ビアリールテトラゾール化合物[3’]のR5’が保護された水酸基で置換されたメチル基である場合、化合物[4]は、ビアリールテトラゾール化合物[3’]を、塩基または酸の存在下で、脱保護することにより製造することができる。本反応は溶媒を用いて行うこともできる。
 塩基としては、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、ナトリウムエトキシド、ジメチルアミン、メチルアミン、アンモニア、炭酸カリウム、炭酸ナトリウム等が挙げられる。塩基の使用量は、ビアリールテトラゾール化合物[3’]に対して、通常0.001当量~10当量、好ましくは、0.01当量~1当量である。
 酸としては、臭化水素酸、塩化水素等が挙げられる。酸の使用量は、ビアリールテトラゾール化合物[3’]に対して、通常1当量~10000当量、好ましくは、1当量~100当量である。
 溶媒としては、反応が進行する限り特に限定されないが、メタノール、エタノール、プロパノール、テトラヒドロフラン(THFと略記することもある)等が挙げられ、酸の存在下で脱保護する場合は、酢酸等を用いることもできる。また、これらの溶媒と水との混合溶媒を用いてもよい。溶媒の使用量は、ビアリールテトラゾール化合物[3’]1mmolに対して、通常0.01mL~100mL、好ましくは、0.1mL~10mLである。
 反応温度は、通常-50℃~100℃、好ましくは、10℃~40℃である。
 反応時間は、通常0.001時間~50時間、好ましくは、0.1時間~20時間である。
 水酸基の保護基が酸で脱保護される基(例えば、ベンゾイル基)であって、ハロゲン化水素またはハロゲン化水素酸を使用する場合、工程2a(脱保護工程)および下記工程3(ハロゲン化工程)を同時に行うこともできる。
(工程2b)
 ビアリールテトラゾール化合物[3’]のR5’が低級アルコキシカルボニル基である場合、化合物[4]は、ビアリールテトラゾール化合物[3’]を、還元剤の存在下で、還元することにより製造することができる。本反応は溶媒を用いて行うこともできる。
 還元剤としては、水素化ホウ素ナトリウム(テトラヒドロホウ酸ナトリウムともいう)、水素化アルミニウムリチウム、ジイソブチルアルミニウムヒドリド等が挙げられる。還元剤の使用量は、ビアリールテトラゾール化合物[3’]に対して、通常1当量~5当量、好ましくは、1当量~2当量である。
 好適に反応を進行させるために、金属塩を添加してもよい。金属塩としては、塩化カルシウム、塩化亜鉛等が挙げられる。金属塩の使用量は、ビアリールテトラゾール化合物[3’]に対して、通常0.1当量~2当量、好ましくは、0.5当量~1当量であるが、還元剤として水素化アルミニウムリチウム、ジイソブチルアルミニウムヒドリドを用いる場合、金属塩の非存在下で反応は進行する。
 溶媒としては、反応が進行する限り特に限定されないが、エタノール、2-プロパノール、メタノール等が挙げられる。溶媒の使用量は、ビアリールテトラゾール化合物[3’]1mmolに対して、通常1mL~50mL、好ましくは、1mL~2mLである。
 反応温度は、通常-50℃~120℃、好ましくは、0℃~80℃である。
 反応時間は、通常0.1時間~24時間、好ましくは、3時間~10時間である。
(工程3)
Figure JPOXMLDOC01-appb-C000106
 ビアリールテトラゾール化合物[3’]のR5’がメチル基である場合、ビアリールテトラゾール誘導体[5]は、ビアリールテトラゾール化合物[3’]を、アゾビスイソブチロニトリル(AIBN)存在下ハロゲン化試薬と反応させることにより製造することができる。
 ビアリールテトラゾール化合物[3’]のR5’が保護された水酸基で置換されたメチル基又は低級アルコキシカルボニル基である場合、ビアリールテトラゾール誘導体[5]は、化合物[4]を、ハロゲン化試薬と反応させることにより製造することができる。
 これらの反応は溶媒を用いて行うこともできる。
 ハロゲン化試薬としては、特に限定されるものではなく、自体公知のハロゲン化試薬を適用することができるが、例えば、三臭化リン、臭化チオニル、臭化水素酸、塩化水素、塩化チオニル、四塩化炭素/トリフェニルホスフィン、ブロモトリメチルシラン、N-ブロモスクシンイミド(NBS)等が挙げられる。ハロゲン化試薬の使用量は、ビアリールテトラゾール化合物[3’]又は化合物[4]に対して、通常1当量~10当量、好ましくは、1当量~3当量である。
 溶媒としては、反応が進行する限り特に限定されないが、THF、トルエン、酢酸エチル、ジオキサン、メチルt-ブチルエーテル(MTBE)、クロロホルム、塩化メチレン、ジイソプロピルエーテル、アセトニトリル、酢酸等が挙げられる。溶媒の使用量は、ビアリールテトラゾール化合物[3’]又は化合物[4]1mmolに対して、通常0.01mL~100mL、好ましくは、0.1mL~10mLである。
 反応温度は、通常-50℃~150℃、好ましくは、-20℃~50℃である。
 反応時間は、通常0.001時間~24時間、好ましくは、0.1時間~10時間である。
[製造方法3]および[製造方法3’](オルメサルタン製法)
Figure JPOXMLDOC01-appb-C000107
 
(オルメサルタン)
 オルメサルタン又はその塩は、特公平7-121918号公報、特表2010-505926号公報等に記載されている公知の方法により、ビアリールテトラゾール誘導体[5’]から製造することができる。また、以下の方法によって製造することもできる。
(工程1)
Figure JPOXMLDOC01-appb-C000108
 化合物[7]は、前記の製造方法2で得られたビアリールテトラゾール誘導体[5’]を、塩基の存在下で、化合物[6]と反応させることにより製造することができる。本反応は溶媒を用いて行うこともできる。
 塩基としては、特に限定されるものではなく、自体公知の塩基を適用することができるが、例えば、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ジイソプロピルエチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)等が挙げられる。塩基の使用量は、ビアリールテトラゾール誘導体[5’]に対して、通常1当量~10当量、好ましくは、1当量~3当量である。
 溶媒としては、反応が進行する限り特に限定されないが、DMA、DMF、DMSO、NMP、アセトニトリル、トルエン、THF、ジオキサン、アセトン等が挙げられる。溶媒の使用量は、ビアリールテトラゾール誘導体[5’]1mmolに対して、通常0.001mL~100mL、好ましくは、0.1mL~10mLである。
 反応温度は、通常-50℃~150℃、好ましくは、20℃~50℃である。
 反応時間は、通常0.1時間~48時間、好ましくは、0.5時間~5時間である。
 本工程における化合物[6]および化合物[7]のR10は、炭素数1~6の直鎖状又は分岐鎖状のアルキル基が好ましく、中でも、炭素数1~3のアルキル基であることがより好ましく、メチル基又はエチル基であることがさらに好ましい。
(工程2)
Figure JPOXMLDOC01-appb-C000109
 化合物[8]は、化合物[7]を、塩基又は酸、および水溶性有機溶媒の存在下、加水分解ことにより製造することができる。
 塩基としては、特に限定されるものではなく、自体公知の塩基を適用することができるが、例えば、水酸化カリウム、炭酸カリウム、水酸化ナトリウム、水素化ナトリウム等が挙げられる。また、酸としては、特に限定されるものではなく、自体公知の酸を適用することができるが、例えば、トリフルオロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、メタンスルホン酸、硫酸、塩酸等が挙げられる。塩基または酸の使用量は、化合物[7]に対して、通常1当量~10当量、好ましくは、1当量~3当量である。
 水溶性有機溶媒としては、メタノール、エタノール、アセトン等が挙げられる。溶媒の使用量は、化合物[7]1mmolに対して、通常0.001mL~100mL、好ましくは、0.1mL~10mLである。
 反応温度は、通常0℃~120℃、好ましくは、30℃~100℃である。
 反応時間は、通常0.1時間~48時間、好ましくは、0.5時間~10時間である。
 本工程における化合物[7]のR10は、炭素数1~6の直鎖状又は分岐鎖状のアルキル基が好ましく、中でも、炭素数1~3のアルキル基であることがより好ましく、メチル基又はエチル基であることがさらに好ましい。
(工程2’)
 (工程2)の別の態様として、以下の工程が挙げられる。
Figure JPOXMLDOC01-appb-C000110
(工程2’-1)
 化合物[Y1]は、化合物[7]のRを除去することにより製造することができる。本反応は溶媒を用いて行うこともできる。
 Rの除去には、酸を用いることができる。酸としては、特に限定されるものではなく、自体公知の酸を適用することができるが、例えば、トリフルオロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、メタンスルホン酸、硫酸、塩酸、酢酸等が挙げられる。酸の使用量は、化合物[7]に対して、通常0.1当量~1000当量、好ましくは、1当量~500当量である。
 酸によるRの除去は、好適には捕捉剤の存在下で行うことができる。捕捉剤としては、反応が進行する限り特に限定されないが、アニソール、メシチレン、1-オクタンチオール等のメルカプタン類等が挙げられる。捕捉剤の使用量は、化合物[7]1mmolに対して、通常0.001mL~10mL、好ましくは、0.1mL~5mLである。
 上記の酸及び捕捉剤が、本工程において溶媒として作用してもよい。
 反応温度は、通常-50℃~150℃、好ましくは、10℃~100℃である。
 反応時間は、通常0.1時間~48時間、好ましくは、0.5時間~20時間である。
 Rの除去には、還元(例、接触還元、ギ酸還元等)する方法も用いることができる。本反応は溶媒を用いて行うこともできる。
 還元は、触媒の存在下で行うことができる。触媒としては、接触還元又はギ酸還元に用いることができれば特に限定されるものではなく、例えば、パラジウム/硫酸バリウム、パラジウム炭素、パラジウムブラック、酸化パラジウム、塩化パラジウム、酢酸パラジウム等のパラジウム触媒が挙げられる。触媒の使用量は、化合物[7]に対して、通常0.0001当量~10当量、好ましくは、0.01当量~0.1当量である。
 本反応は、pH7~pH14塩基性条件下、もしくはpH7で実施することもできる。
 接触還元の場合、水素圧は、1気圧~100気圧、好ましくは、1気圧~10気圧である。
 ギ酸還元の場合、添加剤として、ギ酸、ギ酸の塩(ギ酸アンモニウム等)を添加する。
 溶媒としては、反応が進行する限り特に限定されないが、イソプロピルアルコール、n-プロピルアルコール、メタノール、エタノール等のアルコール、テトラヒドロフラン、塩化メチレン、酢酸エチル等、あるいは上記溶媒と水との混合溶媒が挙げられる。溶媒の使用量は、化合物[7]1mmolに対して、通常0.1mL~100mL、好ましくは、0.5mL~10mLである。
 反応温度は、通常0℃~150℃、好ましくは、10℃~80℃である。
 反応時間は、通常0.1時間~72時間、好ましくは、0.5時間~24時間である。
 本工程における化合物[7]のRはベンジル基が好ましく、ギ酸アンモニウム、パラジウム触媒およびアルコールの存在下で反応させることによりRを除去することが好ましい。
 本工程における化合物[7]、化合物[Y1]および化合物[Y2]のR10は、炭素数1~6の直鎖状又は分岐鎖状のアルキル基が好ましく、中でも、炭素数1~3のアルキル基であることがより好ましく、メチル基又はエチル基であることがさらに好ましい。
(工程2’-2)
 化合物[Y2]は、塩基の存在下で、化合物[Y1]を化合物[Y3]と反応させることにより製造することができる。本反応は溶媒を用いて行うこともできる。
 塩基としては、特に限定されるものではなく、自体公知の塩基を適用することができるが、例えば、トリエチルアミン、N,N-ジイソプロピルエチルアミン、ピリジン、ルチジン、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等が挙げられる。好ましくは、トリエチルアミンである。塩基の使用量は、化合物[Y1]に対して、通常0.1当量~10当量、好ましくは、1当量~5当量である。
 溶媒としては、反応が進行する限り特に限定されないが、塩化メチレン、クロロホルム、トルエン、アセトン、テトラヒドロフラン、酢酸エチル、N,N-ジメチルホルムアミド等が挙げられる。溶媒の使用量は、化合物[Y1]1mmolに対して、通常0.01mL~50mL、好ましくは、0.5mL~5mLである。
 反応温度は、通常-10℃~50℃、好ましくは、-5℃~40℃である。
 反応時間は、通常0.1時間~48時間、好ましくは、1時間~24時間である。
(工程2’-3)
 化合物[8’]は、化合物[Y2]を用いて、上記工程2に記載の方法と同様にして製造することができる。
 本工程は、塩基の存在下で加水分解することが好ましい。
(工程3)
Figure JPOXMLDOC01-appb-C000111
 化合物[10]は、化合物[8]を、塩基の存在下、化合物[9]と反応させることにより製造することができる。
 塩基としては、特に限定されるものではなく、自体公知の塩基を適用することができるが、例えば、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウム、トリエチルアミン、ジイソプロピルエチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)等が挙げられる。塩基の使用量は、化合物[8]に対して、通常1当量~10当量、好ましくは、1当量~3当量である。
 溶媒としては、反応が進行する限り特に限定されないが、DMA、DMF、DMSO、NMP、アセトニトリル、トルエン、THF、ジオキサン、アセトン等が挙げられる。溶媒の使用量は、化合物[8]1mmolに対して、通常0.001mL~100mL、好ましくは、0.1mL~10mLである。
 反応温度は、通常0℃~150℃、好ましくは、30℃~100℃である。
 反応時間は、通常0.1時間~48時間、好ましくは、0.5時間~24時間である。
(工程3’)
Figure JPOXMLDOC01-appb-C000112
 化合物[10’]は、化合物[8’]を用いて、上記工程3に記載の方法と同様にして製造することができる。
(工程4)
Figure JPOXMLDOC01-appb-C000113
 化合物[11](オルメサルタン又はその塩)は、化合物[10]のRを除去することにより製造することができる。本反応は溶媒を用いて行うこともできる。
 Rの除去には、酸を用いることができる。酸としては、特に限定されるものではなく、自体公知の酸を適用することができるが、例えば、トリフルオロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、メタンスルホン酸、硫酸、塩酸、酢酸等が挙げられる。酸の使用量は、化合物[10]に対して、通常0.1当量~1000当量、好ましくは、1当量~500当量である。
 酸によるRの除去は、好適には捕捉剤の存在下で行うことができる。捕捉剤としては、反応が進行する限り特に限定されないが、アニソール、メシチレン、1-オクタンチオール等のメルカプタン類等が挙げられる。捕捉剤の使用量は、化合物[10]1mmolに対して、通常0.001mL~10mL、好ましくは、0.1mL~5mLである。
 上記の酸及び捕捉剤が、本工程において溶媒として作用してもよい。
 反応温度は、通常-50℃~150℃、好ましくは、10℃~100℃である。
 反応時間は、通常0.1時間~48時間、好ましくは、0.5時間~20時間である。
 Rの除去には、還元(例、接触還元、ギ酸還元等)する方法も用いることができる。本反応は溶媒を用いて行うこともできる。
 還元は、触媒の存在下で行うことができる。触媒としては、接触還元又はギ酸還元に用いることができれば特に限定されるものではなく、例えば、パラジウム炭素、パラジウムブラック、酸化パラジウム、塩化パラジウム、酢酸パラジウム等が挙げられる。触媒の使用量は、化合物[10]に対して、通常0.0001当量~10当量、好ましくは、0.01当量~0.1当量である。
 本反応は、pH7~14塩基性条件下、もしくはpH7で実施することもできる。
 接触還元の場合、水素圧は、1~100気圧、好ましくは、1~10気圧である。
 ギ酸還元の場合、添加剤として、ギ酸、ギ酸の塩(ギ酸アンモニウム等)を添加する。
 溶媒としては、反応が進行する限り特に限定されないが、イソプロピルアルコール、n-プロピルアルコール、メタノール、エタノール、テトラヒドロフラン、塩化メチレン、酢酸エチル等、あるいは上記溶媒と水との混合溶媒が挙げられる。溶媒の使用量は、化合物[10]1mmolに対して、通常0.1mL~100mL、好ましくは、0.5mL~10mLである。
 反応温度は、通常0℃~150℃、好ましくは、10℃~80℃である。
 反応時間は、通常0.1時間~72時間、好ましくは、0.5時間~24時間である。
(工程4’)
Figure JPOXMLDOC01-appb-C000114
 化合物[11]は、化合物[10’]を用いて、上記工程4に記載の酸を用いる方法と同様にして製造することができる。
[製造方法4](ロサルタン製法)
(工程1)
Figure JPOXMLDOC01-appb-C000115
 化合物[13]は、前記の製造方法2で得られたビアリールテトラゾール誘導体[5’]を、製造方法3の工程1に記載の方法と同様にして、化合物[12]と反応させることにより製造することができる。
(工程2-A(1))
Figure JPOXMLDOC01-appb-C000116
 化合物[14]は、化合物[13]を、還元剤の存在下で還元することにより製造することができる。本反応は溶媒を用いて行うこともできる。
 還元剤としては、特に限定されるものではなく、自体公知の還元剤を適用することができるが、例えば、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化ホウ素亜鉛、ナトリウムトリアセトキシボロヒドリド等が挙げられる。還元剤の使用量は、化合物[13]に対して、通常1当量~10当量、好ましくは、1当量~5当量である。
 溶媒としては、反応が進行する限り特に限定されないが、メタノール、エタノール、イソプロピルアルコール、ジメトキシエタン、水等が挙げられる。溶媒の使用量は、化合物[13]1mmolに対して、通常0.01mL~100mL、好ましくは、0.1mL~10mLである。
 本反応には、必要に応じて塩基を用いることもできる。塩基としては、例えば水酸化ナトリウム等が挙げられる。塩基の使用量は、化合物[13]に対して、通常0当量~10当量、好ましくは、1当量~2当量である。
 反応温度は、通常-50℃~100℃、好ましくは、20℃~50℃である。
 反応時間は、通常0.01時間~48時間、好ましくは、0.1時間~5時間である。
(工程2-A(2))
Figure JPOXMLDOC01-appb-C000117
 化合物[16]は、化合物[14]を用いて、上記製造方法3の工程4に記載の方法と同様にして、製造することができる。
(工程2-B(1))
Figure JPOXMLDOC01-appb-C000118
 化合物[15]は、化合物[13]を用いて、上記製造方法3の工程4に記載の方法と同様にして、製造することができる。
(工程2-B(2))
Figure JPOXMLDOC01-appb-C000119
 化合物[16]は、化合物[15]を、上記工程2-A(1)に記載の方法と同様にして、還元することにより製造することができる。
[製造方法5](バルサルタン製法)
(工程1)
Figure JPOXMLDOC01-appb-C000120
 化合物[18]は、前記の製造方法2で得られたビアリールテトラゾール誘導体[5’]を、塩基の存在下で、化合物[17](例えば、p-トルエンスルホン酸塩、塩酸塩等)と反応させることにより製造することができる。本反応は溶媒を用いて行うこともできる。
 塩基としては、特に限定されるものではなく、自体公知の塩基を適用することができるが、例えば、ジイソプロピルエチルアミン、トリエチルアミン、ピリジン、水素化ナトリウム、カリウムt-ブトキサイド等が挙げられる。塩基の使用量はビアリールテトラゾール誘導体[5’]に対して、通常1当量~10当量、好ましくは、1当量~5当量である。
 本反応には、必要に応じて触媒を用いることもでき、例えば、テトラブチルアンモニウムヨージド等が挙げられる。触媒の使用量はビアリールテトラゾール誘導体[5’]に対して、通常0.01当量~0.5当量、好ましくは、0.01当量~0.1当量である。
 溶媒としては、反応が進行する限り特に限定されないが、DMF、アセトニトリル、トルエン、THF、ジオキサン、クロロホルム、塩化メチレン等が挙げられる。溶媒の使用量は、ビアリールテトラゾール誘導体[5’]1mmolに対して、通常0.1mL~100mL、好ましくは、0.5mL~5mLである。
 反応温度は、通常-50℃~150℃、好ましくは、5℃~100℃である。
 反応時間は、通常0.1時間~48時間、好ましくは、0.5時間~36時間である。
(工程2-A(1))
Figure JPOXMLDOC01-appb-C000121
 化合物[19]は、化合物[18]を用いて、上記製造方法3の工程4に記載の方法と同様にして、製造することができる。
(工程2-A(2))
Figure JPOXMLDOC01-appb-C000122
 化合物[21]は、化合物[19]を、塩基存在下で、化合物[20]と反応させることにより製造することができる。本反応は溶媒を用いて行うこともできる。
 塩基としては、特に限定されるものではなく、例えば、トリエチルアミン、ジイソプロピルエチルアミン、DBU、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素カリウム、リン酸カリウム、4-ジメチルアミノピリジン(DMAP)、ルチジン、ピリジン等が挙げられる。塩基の使用量は、化合物[19]に対して、通常1当量~10当量、好ましくは、1当量~3当量である。
 溶媒としては、反応が進行する限り特に限定されないが、トルエン、キシレン、塩化メチレン、クロロホルム、アセトニトリル、NMP、DMF、DMSO、THF、ジメトキシエタン、t-ブチルメチルエーテル(以下、t-BMEともいう)、1,4-ジオキサン等が挙げられる。溶媒の使用量は、化合物[19]1mmolに対して、通常0.001mL~100mL、好ましくは、0.1mL~10mLである。
 反応温度は、通常-20℃~150℃、好ましくは、0℃~100℃である。
 反応時間は、通常0.1時間~48時間、好ましくは、0.5時間~5時間である。
(工程2-A(3))
Figure JPOXMLDOC01-appb-C000123
 化合物[23]は、化合物[21]のRを、酸の存在下、除去することにより製造することができる。
 酸としては、特に限定されるものではなく、自体公知の酸を適用することができるが、例えば、トリフルオロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、メタンスルホン酸、硫酸、塩酸等が挙げられる。酸の使用量は、化合物[21]に対して、通常0.1当量~1000当量、好ましくは、1当量~500当量である。
 酸による脱保護は、好適には捕捉剤の存在下で行うことができる。捕捉剤としては、反応が進行する限り特に限定されないが、アニソール、メシチレン等のメルカプタン類等が挙げられる。捕捉剤の使用量は、化合物[21]1mmolに対して、通常0.001mL~10mL、好ましくは、0.1mL~5mLである。
 上記の酸及び捕捉剤が、本工程において溶媒として作用してもよい。
 反応温度は、通常-50℃~150℃、好ましくは、10℃~100℃である。
 反応時間は、通常0.1時間~48時間、好ましくは、0.5時間~5時間である。
 あるいは、化合物[23]は、化合物[21]のRを、塩基の存在下、除去することにより製造することもできる。本反応は溶媒を用いて行うこともできる。
 塩基としては、ナトリウムメトキシド、ナトリウムエトキシド、ジメチルアミン、メチルアミン、アンモニア、炭酸カリウム、炭酸ナトリウム等が挙げられる。塩基の使用量は、化合物[21]に対して、通常0.001当量~10当量、好ましくは、0.01当量~1当量である。
 溶媒としては、反応が進行する限り特に限定されないが、メタノール、エタノール、プロパノール等が挙げられる。溶媒の使用量は、化合物[21]1mmolに対して、通常0.01mL~100mL、好ましくは、0.1mL~10mLである。
 反応温度は、通常-50℃~100℃、好ましくは、0℃~20℃である。
 反応時間は、通常0.001時間~10時間、好ましくは、0.1時間~5時間である。
 あるいは、化合物[23]は、化合物[21]のRを、還元(例、接触還元、ギ酸還元等)して除去することにより製造することもできる。本反応は溶媒を用いて行うこともできる。
 還元は、触媒の存在下で行うことができる。触媒としては、接触還元又はギ酸還元に用いることができれば特に限定されるものではなく、例えば、パラジウム炭素、パラジウムブラック、酸化パラジウム、塩化パラジウム、酢酸パラジウム等が挙げられる。触媒の使用量は、化合物[21]に対して、通常0.0001当量~10当量、好ましくは、0.01当量~0.1当量である。
 接触還元の場合、水素圧は、1気圧~100気圧、好ましくは、1気圧~10気圧である。
 ギ酸還元の場合、添加剤として、ギ酸、ギ酸の塩(ギ酸アンモニウム等)を添加する。
 溶媒としては、反応が進行する限り特に限定されないが、n-プロピルアルコール、メタノール、エタノール、テトラヒドロフラン、塩化メチレン、酢酸エチル等、あるいは上記溶媒と水との混合溶媒が挙げられる。溶媒の使用量は、化合物[21]1mmolに対して、通常0.1mL~100mL、好ましくは、0.5mL~10mLである。
 反応温度は、通常0℃~150℃、好ましくは、10℃~80℃である。
 反応時間は、通常0.1時間~72時間、好ましくは、0.5時間~24時間である。
(工程2-B(1))
Figure JPOXMLDOC01-appb-C000124
 化合物[22]は、化合物[18]を用いて、上記工程2-A(2)に記載の方法と同様にして、製造することができる。
(工程2-B(2))
Figure JPOXMLDOC01-appb-C000125
 化合物[23]は、化合物[22]を用いて、上記製造方法3の工程4及び上記工程2-A(3)(R及びRの除去)に記載の方法と同様にして、製造することができる。
[製造方法6](イルべサルタン製法)
(工程1)
 化合物[25]は、前記の製造方法2で得られたビアリールテトラゾール誘導体[5’]を、塩基又は塩基及び添加物の存在下で、化合物[24](例えば、塩酸塩等)と反応させることにより製造することができる。本反応は溶媒を用いて行うこともできる。
 塩基としては、特に限定されるものではなく、例えば、トリエチルアミン、エチルジイソプロピルアミン、DBU、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素カリウム、リン酸カリウム、4-ジメチルアミノピリジン(DMAP)、ルチジンが挙げられる。塩基の使用量は、ビアリールテトラゾール誘導体[5’]に対して、通常1当量~10当量、好ましくは、1当量~3当量である。
 添加物としては、テトラアルキルアンモニウムハライド(例、テトラブチルアンモニウムブロミド)、テトラアルキルホスホニウムハライド等が挙げられる。添加物の使用量は、ビアリールテトラゾール誘導体[5’]に対して、通常0.01当量~10当量、好ましくは、0.05当量~1当量である。
 溶媒としては、反応が進行する限り特に限定されないが、トルエン、キシレン、塩化メチレン、クロロホルム、アセトニトリル、DMF、DMSO、THF、ジメトキシエタン、t-BME、1,4-ジオキサン等、あるいは上記溶媒と水との混合物が挙げられる。溶媒の使用量は、ビアリールテトラゾール誘導体[5’]1mmolに対して、通常0.001mL~100mL、好ましくは、0.1mL~10mLである。
 反応温度は、通常-20℃~150℃、好ましくは、0℃~100℃である。
 反応時間は、通常0.1時間~48時間、好ましくは、0.5時間~10時間である。
(工程2)
Figure JPOXMLDOC01-appb-C000127
 化合物[26]は、化合物[25]を用いて、上記製造方法3の工程4に記載の方法と同様にして、製造することができる。
[製造方法7]および[製造方法7’](カンデサルタン製法)
(工程1)
Figure JPOXMLDOC01-appb-C000128
 化合物[31]は、前記の製造方法2で得られたビアリールテトラゾール誘導体[5’]を、塩基の存在下で、化合物[X]と反応させることにより製造することができる。本反応は溶媒を用いて行うこともできる。
 塩基としては、特に限定されるものではなく、例えば炭酸カリウム、炭酸水素カリウム、リン酸カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、トリエチルアミン、エチルジイソプロピルアミン、DBU、4-ジメチルアミノピリジン(DMAP)、ルチジン等が挙げられる。塩基の使用量は、ビアリールテトラゾール誘導体[5’]に対して、通常1当量~10当量、好ましくは、1当量~3当量である。
 溶媒としては、反応が進行する限り特に限定されないが、DMA、メタノール、エタノール、プロパノール、トルエン、キシレン、塩化メチレン、クロロホルム、アセトニトリル、DMF、DMSO、THF、ジメトキシエタン、t-BME、1,4-ジオキサン等、またはこれらから選択される2種以上の混合溶媒が挙げられる。溶媒の使用量は、ビアリールテトラゾール誘導体[5’]1mmolに対して、通常0.001mL~100mL、好ましくは、0.1mL~10mLである。
 反応温度は、通常-20℃~150℃、好ましくは、10℃~40℃である。
 反応時間は、通常0.1時間~48時間、好ましくは、0.5時間~36時間である。
 化合物[31]は、別の態様として、以下の工程1’-1ないし工程1’-4に記載の方法でも製造することができる。
(工程1’-1)
Figure JPOXMLDOC01-appb-C000129
 化合物[28]は、前記の製造方法2で得られたビアリールテトラゾール誘導体[5’]を、塩基の存在下又は非存在下で、化合物[27]と反応させることにより製造することができる。本反応は溶媒を用いて行うこともできる。
 本反応は、塩基の存在下に行うことが好ましく、かかる塩基としては、水素化ナトリウムなどの金属水素化物、t-ブトキシナトリウム、t-ブトキシカリウムなどの金属アルコキシド類、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどの炭酸塩等が挙げられるが、なかでも炭酸塩、とりわけ炭酸カリウムが好ましく用いられる。塩基の使用量は、ビアリールテトラゾール誘導体[5’]に対して、通常1当量~5当量である。
 溶媒としては、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミドなどの非プロトン性極性溶媒類、アセトン、エチルメチルケトンなどのケトン類、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸エチルなどのエステル類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタンなどのハロゲン化炭化水素類、アセトニトリルなどが挙げられるが、なかでもアセトニトリルが好ましく用いられる。溶媒の使用量は、ビアリールテトラゾール誘導体[5’]1mmolに対して、通常0.1mL~10mLである。
 反応温度は、通常70℃~90℃で、反応時間は、3時間~10時間である。
(工程1’-2)
Figure JPOXMLDOC01-appb-C000130
 化合物[29]は、化合物[28]のRを、酸の存在下で除去することにより製造することができる。
 酸としては、特に限定されるものではなく、自体公知の酸を適用することができるが、例えば、ブレンステッド酸(例えば、トリフルオロメタンスルホン酸、メタンスルホン酸、リン酸、硫酸、塩酸等)あるいはルイス酸(例えば、塩化アルミニウム、塩化スズ、ボロントリフルオライドジエチルエーテル等)が挙げられる。酸の使用量は、化合物[28]に対して、通常0.1当量~1000当量、好ましくは、1当量~500当量である。
 溶媒としては、反応が進行する限り特に限定されないが、水、メタノール、エタノール、イソプロピルアルコール、テトラヒドロフラン、ジメトキシエタン、メチルt-ブチルエーテル等が挙げられる。溶媒の使用量は、化合物[28]1mmolに対して、通常0.01mL~100mL、好ましくは、0.1mL~10mLである。
 反応温度は、通常-50℃~150℃、好ましくは、10℃~100℃である。
 反応時間は、通常0.1時間~48時間、好ましくは、0.5時間~20時間である。
(工程1’-3)
Figure JPOXMLDOC01-appb-C000131
 化合物[30]は、化合物[29]を、還元剤の存在下で還元することにより製造することができる。本反応は溶媒を用いて行うこともできる。
 還元剤としては、特に限定されるものではなく、自体公知の還元剤を適用することができるが、例えば、塩化スズ、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化ホウ素亜鉛、ナトリウムトリアセトキシボロヒドリド等が挙げられる。還元剤の使用量は、化合物[29]に対して、通常1当量~10当量、好ましくは、1当量~5当量である。
 溶媒としては、反応が進行する限り特に限定されないが、水、メタノール、エタノール、イソプロピルアルコール、ジメトキシエタン、メチルt-ブチルエーテル等が挙げられる。溶媒の使用量は、化合物[29]1mmolに対して、通常0.01mL~100mL、好ましくは、0.1mL~10mLである。
 反応温度は、通常-50℃~100℃、好ましくは、20℃~50℃である。
 反応時間は、通常0.01時間~48時間、好ましくは、0.1時間~5時間である。
(工程1’-4)
Figure JPOXMLDOC01-appb-C000132
 化合物[31]は、化合物[30]とテトラエトキシメタンを、溶媒の存在下又は非存在下で反応することにより製造することができる。
 溶媒としては、反応が進行する限り特に限定されないが、エタノール、テトラヒドロフラン、トルエン、酢酸エチル、酢酸、ジメトキシエタン、メチルt-ブチルエーテル等が挙げられる。
 反応温度は、通常0℃~120℃、好ましくは、50℃~100℃である。
 反応時間は、通常0.01時間~48時間、好ましくは、0.1時間~5時間である。
(工程2)
Figure JPOXMLDOC01-appb-C000133
 化合物[32]は、化合物[31]を用いて、上記製造方法5の工程2-A(3)に記載の方法と同様にして、製造することができる。
(工程3)
Figure JPOXMLDOC01-appb-C000134
 化合物[34]は、化合物[32]と化合物[33]を、塩基の存在下反応させて製造することができる。本反応は溶媒を用いて行うこともできる。
 塩基としては、特に限定されるものではなく、自体公知の塩基を適用することができるが、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、トリエチルアミン、トリブチルアミン、メチルアミン、ジメチルアミンが挙げられる。
 溶媒としては、反応が進行する限り特に限定されないが、メタノール、エタノール、イソプロピルアルコール、ジメチルホルムアミド等が挙げられる。溶媒の使用量は、化合物[32]1mmolに対して、通常0.01mL~100mL、好ましくは、0.1mL~10mLである。
 反応温度は、通常-50℃~150℃、好ましくは、10℃~100℃である。
 反応時間は、通常0.1時間~48時間、好ましくは、0.5時間~20時間である。
(工程4)
Figure JPOXMLDOC01-appb-C000135
 化合物[35]は、化合物[34]を用いて、上記製造方法3の工程4に記載の方法と同様にして、製造することができる。
 化合物[5]の塩としては、特に限定されないが、例えば、塩酸、硫酸等との塩が挙げられる。
 化合物[11]、化合物[16]、化合物[23]、化合物[26]又は化合物[35]の塩としては、薬理学的に許容されるものであれば特に限定されないが、例えば、
塩酸、硫酸、臭化水素酸、リン酸等の鉱酸との塩;
メタンスルホン酸、p-トルエンスルホン酸、酢酸、シュウ酸、クエン酸、リンゴ酸、フマル酸等の有機酸との塩;
ナトリウム、カリウム等のアルカリ金属との塩;
マグネシウム等のアルカリ土類金属との塩;
アンモニア、エタノールアミン、2-アミノ-2-メチル-1-プロパノール等のアミンとの塩が挙げられる。
 また、化合物[23]の塩としては、薬理学的に許容されるものであれば特に限定されないが、例えば、
ナトリウム、カリウム等のアルカリ金属との塩;
マグネシウム等のアルカリ土類金属との塩;
アンモニア、エタノールアミン、2-アミノ-2-メチル-1-プロパノール等のアミンとの塩が挙げられる。
 化合物[5]、化合物[11]、化合物[16]、化合物[23]、化合物[26]、化合物[35]、又はそれらの塩は、溶媒和物を含む。溶媒和物としては、例えば、水和物、アルコール和物(例、メタノール和物、エタノール和物)が挙げられる。
 以下に参考例、実施例を挙げて、本発明を更に具体的に説明するが、これによって本発明が限定されるものではない。
 以下の参考例、実施例において、「室温」とは、15℃~30℃の温度をいう。
 以下の参考例、実施例において、濃度及び含量における「%」は、特段の記載が無い限り、「重量%」を示す。
 実施例における略号は、以下の化合物を表す。
HBT :1-ベンジル-5-フェニル-1H-テトラゾール
BAC :[2’-(1-ベンジル-1H-テトラゾール-5-イル)ビフェニル-4-イル]メチルアセタート
BBA :p-ブロモベンジルアセタート
DBAC:{2’-[2-ベンジル-2H-テトラゾール-5-イル]-1,1’:3’,1”-ターフェニル-4,4”-ジイル}ジメチルジアセタート
BBB :p-ブロモベンジルベンゾエート
BBZ :1-ベンジル-5-[4’-(ベンゾイルオキシメチル)ビフェニル-2-イル]-1H-テトラゾール
BBR :1-ベンジル-5-[4’-(ブロモメチル)ビフェニル-2-イル]-1H-テトラゾール
IME :エチル 4-(1-ヒドロキシ-1-メチルエチル)-2-プロピル-イミダゾール-5-カルボキシラート
TBAB:テトラ-n-ブチルアンモニウムブロマイド
BIA :エチル 4-(1-ヒドロキシ-1-メチルエチル)-2-プロピル-1-[[2’-[2-ベンジル-2H-テトラゾール-5-イル]ビフェニル-4-イル]メチル]イミダゾール-5-カルボキシラート
BIH :エチル 4-(1-ヒドロキシ-1-メチルエチル)-2-プロピル-1-[[2’-[2H-テトラゾール-5-イル]ビフェニル-4-イル]メチル]イミダゾール-5-カルボキシラート
BIT :エチル 4-(1-ヒドロキシ-1-メチルエチル)-2-プロピル-1-[[2’-[2-(トリフェニルメチル)-2H-テトラゾール-5-イル]ビフェニル-4-イル]メチル]イミダゾール-5-カルボキシラート
BIC :4-(1-ヒドロキシ-1-メチルエチル)-2-プロピル-1-[[2’-[2-(トリフェニルメチル)-2H-テトラゾール-5-イル]ビフェニル-4-イル]メチル]イミダゾール-5-カルボン酸カリウム
TOLM:(5-メチル-2-オキソ-1,3-ジオキソール-4-イル)メチル 4-(1-ヒドロキシ-1-メチルエチル)-2-プロピル-1-[[2’-[2-(トリフェニルメチル)-2H-テトラゾール-5-イル]ビフェニル-4-イル]メチル]イミダゾール-5-カルボキシラート
OLM MDX:(5-メチル-2-オキソ-1,3-ジオキソール-4-イル)メチル 4-(1-ヒドロキシ-1-メチルエチル)-2-プロピル-1-[[2’-(2H-テトラゾール-5-イル)ビフェニル-4-イル]メチル]イミダゾール-5-カルボキシラート
BCL :1-ベンジル-5-[4’-(クロロメチル)ビフェニル-2-イル]-1H-テトラゾール
VM  :N-[[2’-ベンジル-1H-テトラゾール-5-イル][1,1’-ビフェニル]-4-イル]メチル]-L-バリンメチルエステル

BAL :1-ベンジル-5-[4’-(ヒドロキシメチル)ビフェニル-2-イル]-1H-テトラゾール
BIM :メチル 2-エトキシ-1H-ベンズイミダゾール-7-カルボキシラート
CBME:エチル 2-エトキシ-1-[2’-[1-ベンジル-1H-テトラゾール-5-イル]ビフェニル-4-イル]-1H-ベンズイミダゾール-7-カルボキシラート
CBCA:2-エトキシ-1-[2’-[1-ベンジル-1H-テトラゾール-5-イル]ビフェニル-4-イル]-1H-ベンズイミダゾール-7-カルボン酸
実施例1
Figure JPOXMLDOC01-appb-C000136
 トリフェニルホスフィン(0.05g,0.19mmol)、1-ベンジル-5-フェニル-1H-テトラゾール(HBT,5g,21.2mmol)、炭酸カリウム(1.76g,12.7mmol)、酢酸カリウム(0.208g、2.12mol)、p-ブロモベンジルアセタート(BBA,5.34g,23.3mmol)およびN-メチル-2-ピロリドン(25mL)の混合物を、窒素雰囲気下138℃まで加熱し、ジクロロ(p-シメン)ルテニウム(II)ダイマー(0.065g,単量体として0.106mmol)を加えて同温度で6時間攪拌した。反応混合物を冷却後、水(10mL)とt-ブチルメチルエーテル(20mL)と混合した。水層をt-ブチルメチルエーテルで抽出し(20mLx2)、有機層を合わせて水(20mLx2)およびブライン(10mL)で洗浄し、硫酸ナトリウムで乾燥した後、減圧下濃縮し、BACの粗生成物(9.4g,理論収量の115.6%)を暗褐色油状物として得た。本反応の変換率は96.2%であった[BAC:DBAC=81:19]。本品をシリカゲルカラム(ヘキサン:酢酸エチル=4:1)で精製したものから下記の物性を得た。
mp 74.4℃; IR (neat): 1741 (C=O), 1603 cm-11H NMR (CDCl3): δ = 7.63 (td, J = 7.6, 1.4 Hz, 1H), 7.57 (dd, J = 7.6, 1.4 Hz, 1H), 7.44 (td, J = 7.6, 1.4 Hz, 1H), 7.34 (dd, J = 7.6, 1.4 Hz, 1H), 7.27 (d, J = 8.6 Hz, 2H), 7.22 (t, J = 8.6 Hz, 1H), 7.16 (t, J = 8.6 Hz, 2H), 7.13 (d, J = 7.2 Hz, 2H), 6.76 (d, J = 7.2 Hz, 2H), 5.09 (s, 2H), 4.82 (s, 2H), 2.11 (s, 3H); 13C NMR (CDCl3): δ = 171, 155, 141, 139, 136, 133, 132, 131, 130, 129, 129, 128, 128, 122, 66, 51, 21; MS 385 [M + H]+.
実施例2
Figure JPOXMLDOC01-appb-C000137
 トリフェニルホスフィン(0.031g,0.118mmol)、1-ベンジル-5-フェニル-1H-テトラゾール(HBT,5g,21.2mmol)、炭酸カリウム(2.92g,12.7mmol)、酢酸カリウム(0.208g,2.12mmol)、p-ブロモベンジルアセタート(BBA,5.34g,23.3mmol)、N-メチル-2-ピロリドン(25mL)およびジクロロ(p-シメン)ルテニウム(II)ダイマー(0.052g,単量体として0.084mmol)用いて実施例1と同じ操作を行いBACの粗生成物(9.2g,理論収量の113.2%)を暗褐色油状物として得た。本反応の変換率は96.7%であった[BAC:DBAC=79:21]。
実施例3
Figure JPOXMLDOC01-appb-C000138
 ジクロロ(p-シメン)ルテニウム(II)ダイマー(0.026g,単量体として0.042mmol)およびピバリン酸カリウム(0.024g、0.17mmol)にN-メチル-2-ピロリドン(5mL)を加えて25℃で1時間攪拌した。ここへ1-ベンジル-5-フェニル-1H-テトラゾール(HBT,2g,8.46mmol)、p-ブロモベンジルアセタート(BBA,2.13g,9.31mmol)、炭酸カリウム(1.17g,8.46mmol)およびN-メチル-2-ピロリドン(5mL)を加えて138℃で5.5時間攪拌した。反応終了後、実施例1と同様の処理を行いBACの粗生成物(3.53g,理論収量の109%)を暗褐色油状物として得た。本反応の変換率は95.4%であった[BAC:DBAC=79:21]。
実施例4
Figure JPOXMLDOC01-appb-C000139
 1-ベンジル-5-フェニル-1H-テトラゾール(HBT,5g,21.2mmol)、炭酸カリウム(2.92g,21.2mmol)、p-ブロモベンジルアセタート(BBA,5.34g,23.3mmol)およびN-メチル-2-ピロリドン(25mL)の混合物を、窒素雰囲気下138℃まで加熱し、ジピバロイルオキシ(p-シメン)ルテニウム(II)0.093g,0.21mmol)を加えて同温度で6時間攪拌した。実施例1と同様の処理を行いBACの粗生成物(9.34g,理論収量の114.9%)を暗褐色油状物として得た。本反応の変換率は96.2%であった[BAC:DBAC=77:23]。
実施例5
Figure JPOXMLDOC01-appb-C000140
 1-ベンジル-5-フェニル-1H-テトラゾール(HBT,10g,42.3mmol)、炭酸カリウム(5.85g,42.3mmol)、p-ブロモベンジルアセタート(BBA,10.7g,46.6mmol)、グルタル酸ジカリウム(0.882g,4.23mmol)およびN-メチル-2-ピロリドン(50mL)の混合物を、窒素雰囲気下138℃まで加熱し、ジクロロ(p-シメン)ルテニウム(II)ダイマー(0.13g,0.21mmol)を加えて同温度で6時間攪拌した。反応混合物を冷却後、水(50mL)とt-ブチルメチルエーテル(50mL)と混合した。水層をt-ブチルメチルエーテルで抽出し(50mLx2)、有機層を合わせて水(50mLx2)およびブライン(50mL)で洗浄し、硫酸ナトリウムで乾燥した後、減圧下濃縮し、BACの粗生成物(18.4g,理論収量の113.3%)を暗褐色油状物として得た。本反応の変換率は93.4%であった[BAC:DBAC=85:15]。
実施例6
Figure JPOXMLDOC01-appb-C000141
 1-ベンジル-5-フェニル-1H-テトラゾール(HBT,2g,8.4mmol)、炭酸カリウム(1.17g,8.4mmol)、p-ブロモベンジルアセタート(BBA,2.13g,9.3mmol)、トリフェニルホスフィン(0.072g,0.275mmol)、4-ドデシルベンゼンスルホン酸カリウム(0.044g、0.12mmol)およびN-メチル-2-ピロリドン(10mL)の混合物を、窒素雰囲気下138℃まで加熱し、塩化ルテニウム(III)水和物(0.023g,0.095mmol)を加えて同温度で6時間攪拌した。実施例1と同じ操作を行いBACの粗生成物(3.4g,理論収量の104.5%)を暗褐色油状物として得た。本反応の変換率は83.9%であった[BAC:DBAC=96:4]。
実施例7
Figure JPOXMLDOC01-appb-C000142
 1-ベンジル-5-フェニル-1H-テトラゾール(HBT,2g,8.4mmol)、炭酸カリウム(1.17g,8.4mmol)、トリフェニルホスフィン(0.052g、0.2mmol)、p-ブロモベンジルアセタート(BBA,2.13g,9.3mmol)、ビス(2-エチルヘキシル)リン酸カリウム(0.044g、0.12mmol)およびN-メチル-2-ピロリドン(10mL)の混合物を、窒素雰囲気下138℃まで加熱し、塩化ルテニウム(III)水和物(0.023g,0.095mmol)を加えて同温度で6時間攪拌した。実施例1と同じ操作を行いBACの粗生成物(3.57g,理論収量の109.7%)を暗褐色油状物として得た。本反応の変換率は91.2%であった[BAC:DBAC=93:7]。
実施例8
Figure JPOXMLDOC01-appb-C000143
 1-ベンジル-5-フェニル-1H-テトラゾール(HBT,5g,21.2mmol)、炭酸カリウム(2.93g,21.2mmol)、トリフェニルホスフィン(0.178g、0.68mmol)、p-ブロモベンジルアセタート(BBA,5.33g,23.3mmol)、ビス(2-エチルヘキシル)リン酸カリウム(0.099g、0.28mmol)およびN-メチル-2-ピロリドン(20mL)の混合物を、窒素雰囲気下138℃まで加熱し、塩化ルテニウム(III)水和物(0.057g,0.24mmol)を加えて同温度で5分間攪拌した後、ビス(2-エチルヘキシル)リン酸(1.46g、4.52mmol)のN-メチル-2-ピロリドン(5mL)を加えて6時間攪拌した。実施例1と同じ操作を行いBACの粗生成物(9.8g,理論収量の120.5%)を暗褐色油状物として得た。本反応の変換率は85.7%であった[BAC:DBAC=94:6]。
比較例1
Figure JPOXMLDOC01-appb-C000144
 1-ベンジル-5-フェニル-1H-テトラゾール(HBT,2g,8.4mmol)、炭酸カリウム(1.17g,8.4mmol)、トリフェニルホスフィン(0.052g,0.2mmol)、p-ブロモベンジルアセタート(BBA,2.13g,9.3mmol)、N-メチル-2-ピロリドン(10mL)の混合物を、窒素雰囲気下138℃まで加熱し、塩化ルテニウム水和物(0.023g,0.095mmol)を加えて同温度で6時間攪拌した。実施例1と同じ操作を行いBACの粗生成物(3.5g,理論収量の107.7%)を暗褐色油状物として得た。本反応の変換率は66.2%であった。
比較例2
Figure JPOXMLDOC01-appb-C000145
 1-ベンジル-5-フェニル-1H-テトラゾール(HBT,2g,8.4mmol)、炭酸カリウム(1.17g,8.4mmol)、p-ブロモベンジルアセタート(BBA,2.13g,9.3mmol)、N-メチル-2-ピロリドン(10mL)の混合物を、窒素雰囲気下138℃まで加熱し、ジクロロ(p-シメン)ルテニウム(II)ダイマー(0.021g,0.034mmol)を加えて同温度で6時間攪拌した。実施例1と同じ操作を行いBACの粗生成物(3.7g,理論収量の113.8%)を暗褐色油状物として得た。本反応の変換率は20.3%であった。
実施例9
Figure JPOXMLDOC01-appb-C000146
 1-ベンジル-5-フェニル-1H-テトラゾール(HBT,100g,1eq)、p-ブロモベンジルベンゾエート(BBB,135.5g,1.1eq)、炭酸カリウム(58.5g,1eq)、トリフェニルホスフィン(2.23g,Ruに対して2eq)およびN-メチル-2-ピロリドン(380mL,3.8vol)の混合物を、5分間攪拌した。そこに、2.5%ビス(2-エチルヘキシル)リン酸カリウムのN-メチル-2-ピロリドン溶液(122mL,Ruに対して2eq)を加えて5分間攪拌した。混合物にアルゴンガスを10分間吹き込み、混合物から酸素を除去した。反応混合物を138℃~140℃に加熱し、ジクロロ(p-シメン)ルテニウム(II)ダイマー(1.3g,0.005eq)を138℃~140℃で加えた。さらに、反応混合物にアルゴンガスを10分間吹き込むことにより、反応混合物から酸素を除去した。次いで、反応混合物を138℃~140℃で8時間攪拌した。反応はTLC:薄層クロマトグラフィー(TLC展開溶媒:30%酢酸エチル/ヘキサン,検出法:UV)でモニターした。HBTは痕跡量となった。
 反応混合物を25℃~30℃まで冷却し、そこに、t-ブチルメチルエーテル(500mL,5vol)を加えて5分間攪拌し、次いで、セライトを敷いたフィルターで濾過した。セライト層をt-ブチルメチルエーテル(500mL,5vol)で洗浄した。濾液および洗浄液を合わせて、そこに脱塩水(500mL,5vol)を加え、10分間攪拌後5分間静置した。分液して、水層をt-ブチルメチルエーテル(2x500mL,2x5vol)で抽出した。有機層を合わせて脱塩水(500mL,5vol)を加えて10分間攪拌した。混合物を5分間静置して分液した。t-ブチルメチルエーテル層に飽和食塩水(500mL,5vol)を加えて10分間攪拌した。静置後、分液し、t-ブチルメチルエーテル層を硫酸ナトリウムで(50g,0.5w/w)乾燥した。混合物を濾過して濾液を40℃~45℃で減圧濃縮しBBZの粗生成物(220g)を緑色シロップとして得た。
 得られた粗生成物にt-ブチルメチルエーテル(400mL,4vol)を加えて25℃~30℃で24時間攪拌したところ、固体が析出したので、これを濾過した。得られた固体を吸引乾燥することにより、BBZ(140g,68.5%)を緑色固体として得た。
実施例10
(1)
Figure JPOXMLDOC01-appb-C000147
 0℃~5℃に冷却したBBZ(135g,1eq)に、33%臭化水素/酢酸溶液(405mL,3vol)を0℃~5℃で15分間かけて加えた。反応混合物を25℃~30℃で18時間攪拌した。反応をTLC:薄層クロマトグラフィー(TLC展開溶媒:30%酢酸エチル/ヘキサン,検出法:UV)でチェックし、BBZが完全に無くなったことを確認した。
 反応混合物を濾過し析出したBBRを濾取し、得られた固体を1時間吸引乾燥し、さらに、8時間送風乾燥した。得られた固体に50%酢酸エチル/ヘキサン(270mL,2vol)を加え、得られた懸濁液を25℃~30℃で1時間攪拌した。該懸濁液を濾過することにより、BBR(113g,92%)を淡黄色固体として得た。
(2)
Figure JPOXMLDOC01-appb-C000148
 フラスコにIME(50g,1eq)を仕込み、アセトン(125mL,2.5vol)を入れて5分間攪拌して溶解し、そこに、炭酸カリウム(71.8g,3eq)とTBAB(0.67g,0.01eq)を添加した。反応混合物を0℃~5℃に冷却し、そこに、アセトン(125mL,2.5vol)に溶かしたBBR(96g,1.05eq)を15分間かけて加え、反応混合物を25℃~30℃で12時間攪拌した。反応混合物をさらに40℃~45℃で8時間攪拌した。TLCで確認し、BBRが完全に消費されたことを確認した。反応混合物を25℃~30℃まで冷却し、次いで、40℃~45℃で減圧濃縮した。濃縮残渣に酢酸エチル(200mL,4vol)と脱塩水(400mL,8vol)を加えて15分間攪拌し、分液し、水層を酢酸エチル(200mL,4vol)で抽出した。有機層を合わせて脱塩水(2x200mL,2x4vol)を加えて10分間攪拌し、分液し、有機層に0.5%塩酸(250mL,5vol)を加えて10分間攪拌し、さらに分液し、脱塩水(2x200mL,2x4vol)を有機層に加えて5分間攪拌し静置し、分液した。有機層に飽和食塩水(125mL,5vol)を加えて5分間攪拌し、5分間静置した後、分液し、有機層を硫酸ナトリウムで乾燥し、濾過して濾液を40℃~45℃で減圧濃縮してBIAの粗生成物(110g,93.5%)を得た。
 得られたBIAの粗生成物に酢酸エチル(110mL,粗生成物に対して1vol)を加えて60℃~65℃に加熱し溶解した。そこに、n-ヘプタン(550mL,粗生成物に対して5vol)を60℃~65℃で5分間かけて加えた後、加熱を止めて25℃~30℃まで徐々に冷却し、固体を析出させた。濾過することによりBIAを得た。得られたBIA(175g)に、酢酸エチル(175mL,1vol)を加えて60℃~65℃で15分間攪拌し溶解した。そこに、n-ヘプタン(875mL,5vol)を15分間かけて加えた後、加熱を止めて25℃~30℃まで徐々に冷却し、固体を析出させた。濾過し、30分間吸引乾燥を行ない、さらに、45℃~50℃で30分間乾燥することによりBIA(165g)を得た。
(3)
Figure JPOXMLDOC01-appb-C000149
 BIA(160g,1eq)に、イソプロピルアルコール(800mL,5vol)および水(480mL,3vol)を加え、さらに、蟻酸アンモニウム(85.76g,4.8eq)および5%パラジウム/硫酸バリウム(17.88g,3mol%)を加えた。反応混合物を55℃~60℃で12時間攪拌した。TLC(薄層クロマトグラフィー)(TLC展開溶媒:5%メタノール/塩化メチレン,検出法:UV)を用いて、BIAが完全になくなっていることを確認した。
 25℃~30℃まで冷却した反応混合物を、セライトを敷いたフィルターで濾過し、セライト層をイソプロピルアルコール(2x160mL,2x1vol)で洗浄し、濾液および洗浄液を合わせて40℃~45℃で減圧濃縮した。濃縮残渣に塩化メチレン(720mL,4.5vol)および脱塩水(448mL,2.8vol)を加えて5分間攪拌した。5%塩酸を加えて、pHを3~4に調整した後、5分間攪拌し、5分間静置し、分液した。水層を塩化メチレン(2x200mL,2x1.25vol)で抽出し、そこに有機層を合わせて脱塩水(2x320mL,2x2vol)で洗浄し、分液した。有機層を飽和食塩水(2x320mL,2x2vol)で洗浄した。有機層を硫酸ナトリウムで乾燥し、濾過し、濾液を40℃~45℃で減圧濃縮することでBIH(100g,74%)を得た。
(4)
Figure JPOXMLDOC01-appb-C000150
 BIH(100g,1eq)に、塩化メチレン(500mL,5vol)を加えて溶解した。そこに、トリエチルアミン(32.3mL,1.1eq)を加え、反応混合物を0℃~5℃に冷却した。そこに、トリチルクロリド(63.22g,1.08eq)の塩化メチレン(300mL,3vol)溶液を0℃~5℃で30分間かけてゆっくり加え、反応混合物を25℃~30℃で12時間攪拌した。トリチルクロリド(2.92g,0.05eq)を追加し、反応混合物をさらに3時間攪拌した。TLC(薄層クロマトグラフィー)(TLC展開溶媒:10%メタノール/塩化メチレン,検出法:UV)を用いて確認したところ、BIHは完全に消失していた。
 反応混合物を0℃~5℃まで冷却し、脱塩水(270mL,2.7vol)を加えた後、25℃~30℃で15分間攪拌した。混合物を静置し、分液した。水層を塩化メチレン(200mL,2vol)で抽出し、そこに有機層を合わせて脱塩水(500mL,5vol)で洗浄した。有機層を硫酸ナトリウムで乾燥し、濾過し、濾液を40℃~45℃で減圧濃縮しBIT(135g,89%)を得た。
(5)
Figure JPOXMLDOC01-appb-C000151
 
 BIT(130g,1eq)に、25℃~30℃でアセトン(650mL,5vol)を加えて溶解した。反応液を0℃~5℃まで冷却し、水酸化カリウム(30.5g,3eq)の脱塩水(130mL,1vol)溶液を15分間かけてゆっくり加えた後、反応温度を40℃~45℃に上げ、40℃~45℃で5時間攪拌した。TLC(薄層クロマトグラフィー)(TLC展開溶媒:10%メタノール/塩化メチレン,検出法:UV)を用いてBITが完全に消失していることを確認した。
 析出した固体を濾別し、濾液を40℃~45℃で減圧濃縮した。得られた濃縮残渣に25%食塩水(520mL,4vol)と酢酸エチル(780mL,6vol)を加えた。10分間攪拌した後、5分間静置し、分液した。水層を酢酸エチル(2x260mL,2x2vol)で抽出し、有機層を合わせた。有機層に飽和重曹水(3x390mL,3x3vol)を加えて5分間攪拌し、静置し、分液した。有機層に、飽和食塩水(650mL,5vol)を加えて5分間攪拌後、静置し、分液した。有機層を硫酸ナトリウムで乾燥し、濾過し、濾液を40℃~45℃で減圧濃縮してBICの粗生成物(115g,87%)を白色固体として得た。粗生成物はそのまま次工程に用いた。
(6)
Figure JPOXMLDOC01-appb-C000152
 
 BIC(110g,1eq)に、25℃~30℃でアセトン(385mL,3.5vol)を加えて5分間攪拌し、溶解した。炭酸ナトリウム(20.85g,1.3eq)およびヨウ化カリウム(0.25g,0.01)を加え、混合物を10分間攪拌した。そこに、4-クロロメチル-5-メチル-2-オキソ-1,3-ジオキソレン(31.456g,1.4eq)のアセトン(165mL,1.5vol)溶液を加えた。反応混合物を45℃~50℃に加熱し、同温度で12時間攪拌した。TLC(薄層クロマトグラフィー)(TLC展開溶媒:10%メタノール/塩化メチレン,検出法:UV)を用いてBICが完全に消失していることを確認した。反応混合物を25℃~30℃まで冷却した。次いで、反応液に含まれる溶媒を、40℃~45℃で減圧留去した。得られた残渣に10%食塩水(550mL,5vol)およびトルエン(550mL,5vol)を加えた。さらに、5%塩酸(33mL)を加えて混合物のpHを7~8に調整した後、10分間攪拌した。5分間静置後、分液し、水層をトルエン(2x330mL,2x3vol)で抽出した。有機層を合わせて、10%食塩水(550mL,5vol)を加え、5分間攪拌し、45分間静置した後、分液し、40℃~45℃で減圧濃縮してTOLM(110g,90%)を得た。
 得られたTOLMにアセトン(110mL,1vol)を加えて25℃~30℃で30分間攪拌した。n-ヘプタン(440mL,4vol)を加えて5℃~10℃まで冷却し、5℃~10℃で30分間攪拌したところ、固体の析出が確認された。固体(80g,66%)を濾取し、送風乾燥を行なった。得られた固体にイソプロピルアルコール(400mL,5vol)を加えて50℃~55℃に加熱し、50℃~55℃で1時間攪拌した。次いで、混合物を25℃~30℃まで冷却し、25℃~30℃で1時間攪拌した。生成した固体を濾過し、10分間吸引濾過することにより、TOLM(76g,62%)を得た。
(7)
Figure JPOXMLDOC01-appb-C000153
 TOLM(75g)に、酢酸:水=1:1(330mL,4.4vol)および濃硫酸(5.4mL,1.08eq)を順次加えた。得られた混合物を25℃~30℃で1時間攪拌した。TLC(薄層クロマトグラフィー)(TLC展開溶媒:10%メタノール/塩化メチレン,検出法:UV)を用いてTOLMが完全に消失していることを確認した。
 反応混合物を濾過し不溶性のトリチルアルコールを除去した。25%炭酸ナトリウム水溶液を加えることにより、水層のpHを2~3になるように調整した(反応混合物の最初のpHは4~4.5であった)。反応液を5分間攪拌し、そこに塩化メチレン(225mL,3vol)を加えて5分間攪拌した。攪拌を止め、静置し、分液した。水層を塩化メチレン(2x225mL,2x3vol)で抽出し、有機層を合わせて、脱塩水(375mL,5vol)を加えて5分間攪拌した。攪拌を止めて、5分間静置し、分液した。有機層に飽和食塩水(375mL,5vol)を加えて5分間攪拌した後、静置し、分液した。有機層を40℃~45℃で減圧濃縮して粗OLM MDX(49g,93%)を淡黄色固体として得た。
(8)OLM MDXの精製
 上記(7)で得られた粗OLM MDX(49g,1eq)に、アセトン(735mL,15vol)を加えて55℃~60℃で10分間攪拌した。さらに、反応液を同温で15分間攪拌し、アセトンを常圧で留去した。固体が析出したところで加熱を止め、25℃~30℃まで冷却した。析出した固体を濾取し、30分間吸引乾燥することによりOLM MDX(41g,83%)を得た。
 上述のようにして得られたOLM MDXにイソプロピルアルコール(164mL,4vol)を加え、混合物を55℃~60℃に加熱し、55℃~60℃で1時間攪拌した。加熱を止めて25℃~30℃まで徐々に冷却し、25℃~30℃で30分間攪拌した。析出した固体を濾過後、吸引乾燥することにより、OLM MDX(41g,100%)を得た。
 上述のようにして得られたOLM MDX(41g)およびアセトン(約1L)を55℃~60℃に加熱し、55℃~60℃で25分間攪拌した後、該混合物が濁るまでアセトンを常圧で留去し、25℃~30℃まで徐々に冷却した。析出した固体を濾取し30分間吸引乾燥することにより、OLM MDX(34g,83%)を得た。得られたOLM MDXのHPLC純度は99.66%であった。
 上述のようにして得られたOLM MDX(44g)をアセトン(約1.2L)に溶解し、55℃~60℃で10分間攪拌した後、溶液が濁るまでアセトンを常圧で留去し、25℃~30℃まで徐々に冷却した。析出した固体を濾取し、30分間吸引乾燥後、1時間送風乾燥し、さらに40℃~45℃で5時間送風乾燥を行ない、OLM MDX(36g)を白色固体として得た。得られたOLM MDXのHPLC純度は、99.8%であった。
実施例11
Figure JPOXMLDOC01-appb-C000154
 L-バリンメチルエステル塩酸塩(L-Val-OMe・HCl,10g,1eq)を塩化メチレンに溶かし、10%炭酸ナトリウム水溶液を加えてpH9~10に調整し、塩化メチレン(50mL,5vol)で抽出した。有機層を硫酸ナトリウムで乾燥後、ろ過し、40℃~45℃で減圧濃縮した。得られたL-バリンメチルエステルのうち1.46gをジメチルホルムアミド(12mL,3vol)に溶かした。得られた溶液にジイソプロピルエチルアミン(4.58mL,2.5eq)を加えて5分間攪拌した。そこに、BCL(4g,1eq)およびテトラブチルアンモニウムヨージド(0.20g,0.05eq)を加え、45℃~50℃で24時間攪拌した。反応混合物に水(40mL,10vol)を加えて反応を止め、酢酸エチル(20mL,5vol)を加えて5分間攪拌した後、分液した。有機層を水(20mL,5vol)で洗浄した後、飽和食塩水(20mL,5vol)で洗浄した。硫酸ナトリウムで乾燥後、ろ過し、10℃~15℃まで冷却し、シュウ酸(1.5g,1.1eq)を加えて5℃まで冷却し、同温で30分間攪拌した。析出した固体を濾過し、n-ヘプタン(20mL,5vol)で洗浄後、10分間吸引乾燥することによりVMのシュウ酸塩(4.4g,68%)を得た。
 得られたVMを原料化合物として、本明細書に記載の方法により、VALを合成することが可能である。
実施例12
(1)
Figure JPOXMLDOC01-appb-C000155
 BBZ(140g,1eq)を、THF(560mL,4vol)に溶解し、そこに、20%水酸化ナトリウム水溶液(280mL,2vol)を加えて、60℃~65℃で6時間攪拌した。TLC(TLC:30%酢酸エチル/ヘキサン,検出法:UV)を用いて、BBZが完全に消費されていることを確認した。反応混合物を40℃~45℃で減圧濃縮し、濃縮残渣にt-ブチルメチルエーテル(700mL,5vol)を加えて5分間攪拌し、分液した。水層をt-ブチルメチルエーテル(700mL,2×2.5vol)で抽出し、有機層を合わせた後、水(700mL,2×2.5vol)で洗浄し、さらに飽和食塩水(350mL,2.5vol)で洗浄した。有機層を硫酸ナトリウムで乾燥し、40℃~45℃で減圧濃縮することにより粗BAL(111g,103%)を得た。
 得られた粗BALに、ジイソプロピルエーテル(700mL,5vol)を加えて60℃~65℃で1時間攪拌した後、25℃~30℃まで冷却した。析出した固体を濾過後、ジイソプロピルエーテル(140mL,1vol)で洗浄し、30分間吸引乾燥した。その後、50℃~55℃で2時間乾燥することによりBAL(92.5g,92%)を得た。
(2)
Figure JPOXMLDOC01-appb-C000156
 BAL(90g,1eq)を、塩化メチレン(900mL,10vol)に溶解した後、0℃~5℃に冷やし、塩化チオニル(37.5mL,1.2eq)を0℃~5℃で10分間かけて加えた。反応混合物を0℃~5℃で1時間撹拌し、25℃~30℃に昇温し、さらに、25℃~30℃で3時間攪拌した。TLC(TLC:50%酢酸エチル/ヘキサン,検出法:UV)を用いて、BALが完全に消費されていることを確認した。反応混合物に氷水(540mL,6vol)を加えて10分間攪拌し、分液した。有機層を、水(2×540mL,2×6vol)、飽和重曹水(540mL,6vol)、水(540mL,6vol)、飽和食塩水(540mL,6vol)の順で洗浄した。有機層を硫酸ナトリウム(45g)で乾燥した後,40℃~45℃で減圧濃縮することにより粗BCL(110g)を得た。
 得られた粗BCLに酢酸エチル(90mL,1vol)を加えて溶解し、さらに、n-ヘプタン(360mL,4vol)を加えて0℃~5℃で2時間攪拌した。析出した固体を濾過し、n-ヘプタン(90mL,1vol)で洗浄後、20分間吸引乾燥した。さらに、50℃~55℃で2時間乾燥することによりBCL(89g,91%)をベージュ色固体として得た。
(3)
Figure JPOXMLDOC01-appb-C000157
 
 BIM(20g,1eq)を、ジメチルアセトアミド:メタノール[(1:4),(100mL,5vol)]に溶解し、そこに炭酸カリウム(18.8g,1.5eq)を加えて、25℃~30℃で15分間攪拌した。さらに、そこに、BCL(34.4g,1.05eq)およびテトラブチルアンモニウムヨージド(1.67g,0.05eq)を加えて同温で26時間攪拌した。TLC(TLC:40%酢酸エチル/ヘキサン,検出法:UV)を用いてBIMが完全に消費されていることを確認した。反応混合物に水(200mL,10vol)を加えて2時間攪拌し、析出した桃色固体を濾過した。得られた固体を、水(40mL,2vol)で洗浄し、15分間吸引乾燥後、50℃~55℃で4時間送風乾燥することにより粗CBMEおよび化合物37の混合物(49g,CBME:化合物37=6:1(モル比))を得た。なお、粗生成物のまま次の工程(4)に用いた。
(4)
Figure JPOXMLDOC01-appb-C000158
 上記(3)で得られた粗CBME(20g,1eq)にメタノール:水[(1:1)(160mL)]および水酸化ナトリウム(4.4g,3eq)を25℃~30℃で加え、反応混合物を75℃~80℃で4時間攪拌した。TLC(TLC:40%酢酸エチル/ヘキサン,検出法:UV)を用いてCBMEが完全に消費されていることを確認した。反応混合物を25℃~30℃まで冷却し、有機溶媒を40℃~45℃で減圧留去した。濃縮残渣に水(200mL,10vol)を加えて、水層をt-ブチルメチルエーテル(100mL,2×5vol)で洗浄した。水層に酢酸(6mL,0.3vol)を加えてpHを5.5~6.5に調整し、得られたスラリーを25℃~30℃で1時間攪拌し、析出した固体を濾過した。この固体を水(40mL,2vol)で洗浄後、15分間吸引乾燥し、さらに、50℃~55℃で4時間乾燥することにより粗CBCA(16g)を得た。
 得られた粗CBCA(16g)に酢酸エチル(160mL,10vol)、ジシクロヘキシルアミン(DCHA)(8.2g,1.5eq)を加え、25℃~30℃で2時間撹拌した。析出した固体を濾過し、酢酸エチル(80mL,5vol)で洗浄し、15分間吸引乾燥した後、さらに50℃~55℃で4時間送風乾燥することによりCBCAのDCHA塩(16g)を得た。この塩にイソプロピルアルコール(192mL,12vol)を25℃~30℃で加えた後、75℃~85℃に加熱することで、この塩を溶解させ、15分間撹拌した。その後、反応液を25℃~30℃まで冷却し、同温度で2時間攪拌した。析出した固体を濾過し、イソプロピルアルコール(32mL,2vol)で洗浄後、15分間吸引乾燥し、さらに、50℃~55℃で4時間送風乾燥することにより純品のCBCAのDCHA塩(13g)を得た。この塩に25%水酸化ナトリウム水溶液(120mL,10vol)を25℃~30℃で加えて15分間攪拌した後、酢酸(5.8mL,0.48vol)を加えてpHを5.5~6.5に調整し、塩化メチレン(120mL,2×5vol)で抽出した。有機層を合わせて、水(120mL,2×5vol)で洗浄後、さらに、飽和食塩水(60mL,5vol)で洗浄した。有機層を硫酸ナトリウムで乾燥した後、40℃~45℃で減圧濃縮することによりCBCA(9g,BCLから47%)を得た。
(原料合成法)
HBTの合成
(1) N-ベンジルベンズアミド
Figure JPOXMLDOC01-appb-C000159
 ベンジルアミン(75.0g,0.700mol)、THF(300mL)およびトリエチルアミン(70.8g,134g,0.700mol)の混合物に、2℃以下で塩化ベンゾイル(98.4g,0.700mol)を滴下した後、昇温し、12℃~35℃で3時間攪拌した。反応の進行はTLC(展開溶媒:トルエン/酢酸エチル(4:1))で確認した。反応混合物に16℃以下で水(165mL)を加えた後、酢酸エチル(60mL)で抽出を行い、さらに水層に酢酸エチル(150mL)を加えて抽出した。合わせた有機層を5%クエン酸水溶液(50mL)で2回、20%食塩水(75mL)で3回洗浄し、硫酸マグネシウム(20g)を加えて乾燥し、シリカゲル(12g)を加えた後、シリカゲルに通して濾過を行った。濾液を40℃の浴を用いて減圧下析出が始まるまで濃縮した(263g)。濃縮物に酢酸エチル(41.5g)を加え、60℃の浴で固体を溶解した後、2時間かけて20℃まで冷却し、酢酸エチル(40mL)を加えた。さらに5℃まで冷却した後、結晶を濾取し、冷酢酸エチル(75mL)で洗浄した。結晶を減圧下40℃で乾燥することにより、N-ベンジルベンズアミド(116g,78.5%)を白色結晶として得た。
融点:104℃~105℃
IR (KBr): 3328 (NH), 1642 (C=O) cm-1
1H NMR (CDCl3): δ = 7.79 (d, J = 8.0 Hz, 2H, o-Bz), 7.50 (t, J = 8.0 Hz, 1H, p-Bz), 7.43 (t, J = 8.0, 2H, m-Bz), 7.37-7.35 (m, 4H, Ph), 7.32 (m, 1H, Ph), 6.41 (br s, 1H, NH), 4.65 (d, J = 5.6 Hz, 2H, CH2)
(2) 1-ベンジル-5-フェニル-1H-テトラゾール(HBT)
Figure JPOXMLDOC01-appb-C000160
 N-ベンジルベンズアミド(62.5g,0.296mol)と塩化メチレン(570mL)の混合物に、-15℃~-8℃で五塩化リン(67.9g,0.326mol)を5回に分けて加えた。この混合物を3時間かけて21℃まで昇温した後、21℃以下で減圧下、0.17Lまで濃縮した。この混合物に塩化メチレン(450mL)を加え、-8℃以下でアジドトリメチルシラン(50.3g,0.436mol)を0.5時間かけて滴下し、塩化メチレン(5mL)で洗い込んだ。反応混合物を室温へ昇温し、4時間攪拌した。TLC(展開溶媒:トルエン/酢酸エチル(4:1))でN-ベンジルベンズアミドの消失を確認した。反応混合物に、17℃以下で飽和炭酸水素ナトリウム水溶液(1000mL)を加えた。さらに飽和炭酸水素ナトリウム水溶液(1300mL)を加えて分液した。水層に塩化メチレン(450mL)を加えて抽出を行い、合わせた有機層を20%食塩水(300g)で洗浄し、硫酸マグネシウム(20g)で乾燥した後、40℃以下で減圧濃縮を行い、粗生成物(69.8g,理論収量の99.8%)を濁りのある黄色油状物質として得た。粗生成物(69.0g)にイソプロピルアルコール(75.9mL)を加えて加熱溶解し、熱時濾過を行い、イソプロピルアルコール(4.7mL)で洗い込んだ。濾液を7時間かけて-1℃まで冷却した。この間38℃のときに接種を行った。結晶を濾取し、冷イソプロピルアルコール(20mL)で洗浄した後、減圧下乾燥することにより、標題化合物(65.4g,精製収率94.9%,主原料から94.7%)を得た。
融点:66.0℃~67.5℃
IR (KBr):1606 cm-1
1H NMR (CDCl3): δ = 7.58 (d, J = 7.9 Hz, 2H, 5-Ph), 7.57 (t, J = 7.9 Hz, 1H, 5-Ph), 7.50 (t, J = 7.9 Hz, 2H, 5-Ph), 7.37-7.34 (m, 3H, Ph), 7.17-7.15 (m, 2H, Ph), 5.62 (s, CH2)
MS:237 (MH+)
p-ブロモベンジル=アセタート(BBA)の合成
Figure JPOXMLDOC01-appb-C000161
 p-ブロモベンジルアルコール(250g,1.34mol)のTHF(1000mL)溶液に、8℃~9℃で無水酢酸(164g,1.60mol)およびTHF(14mL)を加えた。この混合物にトリエチルアミン(203g,2.01mol)を5℃~8℃で8分かけて加え、THF(13mL)で洗い込んだ。この反応混合物に、6℃で4-(ジメチルアミノ)ピリジン(8.17g,66.9mmol)およびTHF(21mL)を加えた(内温が28℃まで上昇した)。反応はTLC(展開溶媒:ヘキサン/酢酸エチル(1:1および2:1))で確認した。反応混合物を室温で15時間攪拌後、メタノールを22℃~25℃にて加え、45℃以下で減圧濃縮した。濃縮物に酢酸エチル(2000mL)および冷1mol/L塩酸(1000mL)を加え、分液した。有機層に4%炭酸水素ナトリウム水溶液(1000mL)、5%炭酸水素ナトリウム水溶液(100mL)および炭酸水素ナトリウム水溶液(500mL)を加えて分液した。有機層を水(1000mL)で洗浄し、硫酸マグネシウム(77g)で乾燥し、減圧下濃縮することにより、標題化合物(308g,100%)を得た。
1H NMR (CDCl3): δ = 7.49 (d, J = 8.2 Hz, 2H, Ar), 7.23 (d, J = 8.2 Hz, 2H, Ar), 5.05 (s, 2H, CH2), 2.10 (s, 3H, Ac) 

Claims (9)

  1. 一般式[1]:
    Figure JPOXMLDOC01-appb-C000001
     
    [式中、RないしRは、それぞれ、独立して、水素原子、あるいは、それぞれ置換基を有していてもよい、アルキル基、アラルキル基又はアリール基を表し、環Aは、置換されていてもよい含窒素複素環を表す。]
    で示される2-フェニルアゾール誘導体又はその塩と、一般式[2]: 
    Figure JPOXMLDOC01-appb-C000002
     
    [式中、Rは、それぞれ置換基を有していてもよい、アルキル基、アラルキル基又はアリール基を表し、mは、0ないし5の整数を表し、Xは脱離基を表す。]
    で示されるベンゼン誘導体を、金属触媒、塩基及び下記(a)~(d)からなる群より選ばれる1種以上の化合物の存在下に反応させることを特徴とする、一般式[3]:
    Figure JPOXMLDOC01-appb-C000003
     
    [式中、各記号は前記と同義である。]
    で示されるビアリール化合物又はその塩の製造方法。
    (a)モノカルボン酸の金属塩
    (b)ジカルボン酸の金属塩
    (c)スルホン酸の金属塩
    (d)R P(O)(OM)[式中、Rは、R”’O又はR”’Nを表し、ここで、R”’は、水素原子、あるいは、それぞれ窒素原子、酸素原子又は硫黄原子を含んでいてもよい、炭素数1~20の直鎖または分岐鎖のアルキル基、炭素数7~14のアラルキル基又は炭素数6~18のアリール基を表し、Mは、金属原子を表し、xおよびyは、それぞれ独立して、1又は2の整数であり、かつ、x+yは3である。]で示されるリン酸エステル又はリン酸アミドの金属塩
  2. さらに、ホスフィン系化合物が存在する条件下で反応させることを特徴とする、請求項1記載の製造方法。
  3. 請求項1記載の一般式[1]が一般式[1’]:
    Figure JPOXMLDOC01-appb-C000004
     
    [式中、Rは、テトラゾリル基の保護基を表し、RないしRは、前記と同義である。]
    で示される2-フェニルテトラゾール誘導体又はその塩であり、請求項1記載の一般式[2]が一般式[2’]:
    Figure JPOXMLDOC01-appb-C000005
     
    [式中、R5’は、メチル基、保護された水酸基で置換されたメチル基又は低級アルコシキカルボニル基であり、Xは前記と同義である。]
    で示されるベンゼン誘導体である、請求項1または請求項2記載の製造方法。
  4. 1)請求項3記載の製造方法で得られた一般式[3’]:
    Figure JPOXMLDOC01-appb-C000006
     
    [式中、各記号は前記と同義である。]
    で示されるビアリールテトラゾール化合物又はその塩において、
    1-A)(a)R5’が保護された水酸基で置換されたメチル基である場合は、脱保護して、
    (b)R5’が低級アルコキシカルボニル基である場合は、還元して、
    一般式[4]:
    Figure JPOXMLDOC01-appb-C000007
     
    [式中、各記号は前記と同義である。]
    で示される化合物又はその塩を得、さらにハロゲン化するか;又は
    1-B)一般式[3’]で示される化合物のR5’がメチル基である場合は、一般式[3’]で示される化合物をハロゲン化することを特徴とする、一般式[5]:
    Figure JPOXMLDOC01-appb-C000008
     
    [式中、Xは、ハロゲン原子を表し、RないしRおよびRは、前記と同義である。]
    で示されるビアリールテトラゾール誘導体又はその塩の製造方法。
  5. 1)請求項4記載の製造方法で得られた一般式[5’]:
    Figure JPOXMLDOC01-appb-C000009
     
    [式中、各記号は前記と同義である。]
    で示されるビアリールテトラゾール誘導体又はその塩と、一般式[6]:
    Figure JPOXMLDOC01-appb-C000010
    [式中、R10は、カルボキシ基の保護基を示す。]
    で示される化合物又はその塩を反応させて、一般式[7]:
    Figure JPOXMLDOC01-appb-C000011
     
    [式中、各記号は前記と同義である。]
    で示される化合物又はその塩を得;
    2)一般式[7]で示される化合物又はその塩のRを除去して、一般式[Y1]:
    Figure JPOXMLDOC01-appb-C000012
     
    [式中、記号は前記と同義である。]
    で示される化合物又はその塩を得;
    3)一般式[Y1]で示される化合物又はその塩を、一般式[Y3]:R6’-X[式中、R6’はトリチル基を表し、Xはハロゲン原子を表す。]で示される化合物と反応させて、一般式[Y2]:
    Figure JPOXMLDOC01-appb-C000013
     
    [式中、各記号は前記と同義である。]
    で示される化合物又はその塩を得;
    4)一般式[Y2]で示される化合物又はその塩を加水分解して、一般式[8’]:
    Figure JPOXMLDOC01-appb-C000014
     
    [式中、記号は前記と同義である。]
    で示される化合物又はその塩を得;
    5)一般式[8’]で示される化合物又はその塩と式[9]:
    Figure JPOXMLDOC01-appb-C000015
     
    で示される化合物を反応させて、一般式[10’]:
    Figure JPOXMLDOC01-appb-C000016
     
    [式中、記号は前記と同義である。]
    で示される化合物又はその塩を得;
    6)一般式[10’]で示される化合物又はその塩のR6’を除去することを特徴とする、式
    [11]:
    Figure JPOXMLDOC01-appb-C000017
     
    で示される化合物又はその塩の製造方法。
  6. 1)請求項4記載の製造方法で得られた一般式[5’]:
    Figure JPOXMLDOC01-appb-C000018
     
    [式中、各記号は前記と同義である。]
    で示されるビアリールテトラゾール誘導体又はその塩と、式[12]:
    Figure JPOXMLDOC01-appb-C000019
     
    で示される化合物又はその塩を反応させて、一般式[13]:
    Figure JPOXMLDOC01-appb-C000020
     
    [式中、記号は前記と同義である。]
    で示される化合物又はその塩を得;
    2-A)一般式[13]で示される化合物又はその塩を還元して、一般式[14]:
    Figure JPOXMLDOC01-appb-C000021
     
    [式中、記号は前記と同義である。]
    で示される化合物又はその塩を得、さらにRを除去するか;又は、
    2-B)一般式[13]で示される化合物又はその塩のRを除去して、式[15]:
    Figure JPOXMLDOC01-appb-C000022
     
    で示される化合物又はその塩を得、さらに還元することを特徴とする、式[16]:
    Figure JPOXMLDOC01-appb-C000023
     
    で示される化合物又はその塩の製造方法。
  7. 1)請求項4記載の製造方法で得られた一般式[5’]:
    Figure JPOXMLDOC01-appb-C000024
     
    [式中、各記号は前記と同義である。]
    で示されるビアリールテトラゾール誘導体又はその塩と、一般式[17]:
    Figure JPOXMLDOC01-appb-C000025
     
    [式中、Rは、カルボキシ基の保護基を表す。]
    で示される化合物又はその塩を反応させて、一般式[18]:
    Figure JPOXMLDOC01-appb-C000026
     
    [式中、各記号は前記と同義である。]
    で示される化合物又はその塩を得;
    2-A)一般式[18]で示される化合物又はその塩のRを除去して、一般式[19]:
    Figure JPOXMLDOC01-appb-C000027
     
    [式中、記号は前記と同義である。]
    で示される化合物又はその塩を得;
    3-A)一般式[19]で示される化合物又はその塩と、一般式[20]:CHCHCHCHCO-X[式中、Xは脱離基を表す。]で示される化合物を反応させて、一般式[21]:
    Figure JPOXMLDOC01-appb-C000028
     
    [式中、記号は前記と同義である。]
    で示される化合物又はその塩を得;
    4-A)一般式[21]で示される化合物又はその塩のRを除去するか;又は2-B)一般式[18]で示される化合物又はその塩と、一般式[20]で示される化合物又はその塩を反応させ、一般式[22]:
    Figure JPOXMLDOC01-appb-C000029
     
    [式中、各記号は前記と同義である。]
    で示される化合物又はその塩を得;
    3-B)一般式[22]で示される化合物又はその塩のR及びRを除去することを特徴とする、式[23]:
    Figure JPOXMLDOC01-appb-C000030
     
    で示される化合物又はその塩の製造方法。
  8. 請求項4記載の製造方法で得られた一般式[5’]:
    Figure JPOXMLDOC01-appb-C000031
     
    [式中、各記号は前記と同義である。]
    で示されるビアリールテトラゾール誘導体又はその塩と、式[24]:
    Figure JPOXMLDOC01-appb-C000032
     
    で示される化合物又はその塩を反応させて、一般式[25]:
    Figure JPOXMLDOC01-appb-C000033

    [式中、記号は前記と同義である。]
    で示される化合物又はその塩を得、さらにRを除去することを特徴とする、式[26]:
    Figure JPOXMLDOC01-appb-C000034
     
    で示される化合物又はその塩の製造方法。
  9. 1)請求項4記載の製造方法で得られた一般式[5’]:
    Figure JPOXMLDOC01-appb-C000035
     
    [式中、各記号は前記と同義である。]
    で示されるビアリールテトラゾール誘導体又はその塩と、一般式[X]:
    Figure JPOXMLDOC01-appb-C000036
    [式中、Rはカルボキシ基の保護基を表す。]
    で示される化合物又はその塩を反応させて、一般式[31]:
    Figure JPOXMLDOC01-appb-C000037
     
    [式中、各記号は前記と同義である。]
    で示される化合物又はその塩を得;
    2)一般式[31]で示される化合物又はその塩のRを除去して、一般式[32]:
    Figure JPOXMLDOC01-appb-C000038
     
    [式中、記号は前記と同義である。]
    で示される化合物又はその塩を得;
    3)一般式[32]で示される化合物又はその塩と、一般式[33]:
    Figure JPOXMLDOC01-appb-C000039
     
    [式中、Xは脱離基又は水酸基を表す。]
    で示される化合物又はその塩を反応させて、一般式[34]:
    Figure JPOXMLDOC01-appb-C000040
     
    [式中、記号は前記と同義である。]
    で示される化合物又はその塩を得;
    4)一般式[34]で示される化合物又はその塩のRを除去することを特徴とする、式[35]:
    Figure JPOXMLDOC01-appb-C000041
     
    で示される化合物又はその塩の製造方法。
PCT/JP2013/073365 2012-08-31 2013-08-30 ビアリール化合物の製造方法 WO2014034868A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13832547.7A EP2891650B1 (en) 2012-08-31 2013-08-30 Method for producing biaryl compound
US14/424,912 US9624181B2 (en) 2012-08-31 2013-08-30 Method for producing biaryl compound
JP2014533118A JP5925899B2 (ja) 2012-08-31 2013-08-30 ビアリール化合物の製造方法
CN201380044890.XA CN104583185A (zh) 2012-08-31 2013-08-30 联芳基化合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012191767 2012-08-31
JP2012-191767 2012-08-31

Publications (1)

Publication Number Publication Date
WO2014034868A1 true WO2014034868A1 (ja) 2014-03-06

Family

ID=50183673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073365 WO2014034868A1 (ja) 2012-08-31 2013-08-30 ビアリール化合物の製造方法

Country Status (5)

Country Link
US (1) US9624181B2 (ja)
EP (1) EP2891650B1 (ja)
JP (1) JP5925899B2 (ja)
CN (1) CN104583185A (ja)
WO (1) WO2014034868A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11407733B2 (en) 2016-06-29 2022-08-09 Bristol-Myers Squibb Company Biarylmethyl heterocycles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5881837B2 (ja) 2012-09-26 2016-03-09 株式会社エーピーアイ コーポレーション テトラゾール化合物の脱保護方法
CN110396084B (zh) * 2018-04-24 2023-01-20 连云港润众制药有限公司 一种制备高纯度三苯甲基奥美沙坦酯的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121918B2 (ja) 1991-02-21 1995-12-25 三共株式会社 ビフェニルメチルイミダゾール誘導体
WO2004069394A2 (en) * 2003-02-03 2004-08-19 The Trustees Of Columbia University In The City Of New York Synthetic method for direct arylation of heterocyclic arenes
WO2004085428A1 (fr) 2003-03-25 2004-10-07 Shanghai Institute Of Pharmaceutical Industry Nouveau procede de preparation d'olmesartan medoxomil
WO2009049305A2 (en) 2007-10-12 2009-04-16 Arqule, Inc. 5- (2-hydroxyphenyl) tetrazoles as hsp90 inhibitors against cancer
JP2010505926A (ja) 2006-10-09 2010-02-25 シプラ・リミテッド トリチルオルメサルタンメドキソミルおよびオルメサルタンメドキソミルの製造方法
WO2011061996A1 (ja) 2009-11-17 2011-05-26 田辺三菱製薬株式会社 ビフェニル誘導体の製法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136672A2 (en) 2006-05-19 2007-11-29 Merck & Co., Inc. Synthesis of a biaryl synthetic intermediate
JP5881837B2 (ja) 2012-09-26 2016-03-09 株式会社エーピーアイ コーポレーション テトラゾール化合物の脱保護方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121918B2 (ja) 1991-02-21 1995-12-25 三共株式会社 ビフェニルメチルイミダゾール誘導体
WO2004069394A2 (en) * 2003-02-03 2004-08-19 The Trustees Of Columbia University In The City Of New York Synthetic method for direct arylation of heterocyclic arenes
WO2004085428A1 (fr) 2003-03-25 2004-10-07 Shanghai Institute Of Pharmaceutical Industry Nouveau procede de preparation d'olmesartan medoxomil
JP2010505926A (ja) 2006-10-09 2010-02-25 シプラ・リミテッド トリチルオルメサルタンメドキソミルおよびオルメサルタンメドキソミルの製造方法
WO2009049305A2 (en) 2007-10-12 2009-04-16 Arqule, Inc. 5- (2-hydroxyphenyl) tetrazoles as hsp90 inhibitors against cancer
WO2011061996A1 (ja) 2009-11-17 2011-05-26 田辺三菱製薬株式会社 ビフェニル誘導体の製法

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
ACKERMANN, L. ET AL.: "C-H Functionaliaztion Transition-Metal-Catalyzed Direct Arylation of (Hetero)Arenes by C-H Bond Cleavage", ANGEW. CHEM. INT. ED., vol. 48, no. 52, 2009, pages 9792 - 9826, XP055081899 *
ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 48, 2009, pages 9792 - 9827
AROCKIAM, P. ET AL.: "Diethyl carbonate as a solvent for ruthenium catalysed C-H bond functionalisation", GREEN CHEM., vol. 11, no. 11, 2009, pages 1871 - 1875, XP055189989 *
AROCKIAM, P.B. ET AL.: "C-H Bond Functionalization in Water Catalyzed by Carboxylato Ruthenium(II) Systems", ANGEW. CHEM. INT. ED., vol. 49, no. 37, 2010, pages 6629 - 6632, XP055189986 *
BERNHART, C. A. ET AL.: "A New Series of Imidazolones: Highly Specific and Potent Nonpeptide AT1 Angiotensin II Receptor Antagonists", J. MED. CHEM., vol. 36, no. 22, 1993, pages 3371 - 3380, XP002064391 *
BEUTLER, U. ET AL.: "A High-Throughput Process for Valsartan", ORGANIC PROCESS RESEARCH & DEVELOPMENT, vol. 11, no. 5, 2007, pages 892 - 898, XP002479424 *
CHEM. LETT., vol. 37, no. 9, 2008, pages 994 - 995
J. MED. CHEM., vol. 36, 1993, pages 3371 - 3380
J. ORG. CHEM., vol. 59, 1994, pages 6391 - 6394
LARSEN, R. D. ET AL.: "Effecient Synthesis of Losartan, A Nonpeptide Angiotensin II Receptor Antagonist", J. ORG. CHEM., vol. 59, no. 21, 1994, pages 6391 - 6394, XP002097895 *
OI, S. ET AL.: "Nitrogen-directed ortho- arylation and -heteroarylation of aromatic rings catalyzed by ruthenium complexes", TETRAHEDRON, vol. 64, no. 26, 2008, pages 6051 - 6059, XP022682843 *
OI, S. ET AL.: "Ortho-selective Arylation of Arylazoles with Aryl Bromides Catalyzed by Ruthenium Complexes", CHEMISTRY LETTERS, vol. 37, no. 9, 2008, pages 994 - 995, XP003015579 *
ORG. PROCESS RES. DEV., vol. 11, 2007, pages 892 - 898
OZDEMIR, I. ET AL.: "Synthesis, Characterization and Catalytic Activity of New H-Heterocyclic Bis(carbene)ruthenium Complexes", EUR. J. INORG. CHEM., vol. 13, 2009, pages 1942 - 1949, XP055189983 *
STEFANE, B. ET AL.: "C-H Bond Funcionalization of Arylpyrimidines Catalyzed by an in situ Generated Ruthenium(II) Carboxylate System and the Construction of Tris(heteroaryl) -Substituted Benzenes", EUR. J. ORG. CHEM., 2011, pages 3474 - 3481, XP055189992 *
T.W. GREENE; P.G.M. WUTS: "Protective Groups in Organic Synthesis", 1999, JOHN WILEY AND SONS, INC.
TETRAHEDRON, vol. 64, 2008, pages 6051 - 6059
ZHAO, B. ET AL.: "RUCL3-CATALYZED REGIOSELECTIVE DIARYLATION WITH ARYL TOSYLATES VIA C-H ACTIVATION", SYNTHETIC COMMUNICATIONS, vol. 43, no. 13-15, 2013, pages 2110 - 2118, XP055190005 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11407733B2 (en) 2016-06-29 2022-08-09 Bristol-Myers Squibb Company Biarylmethyl heterocycles

Also Published As

Publication number Publication date
CN104583185A (zh) 2015-04-29
JPWO2014034868A1 (ja) 2016-08-08
EP2891650A1 (en) 2015-07-08
US20150239853A1 (en) 2015-08-27
EP2891650B1 (en) 2018-08-01
US9624181B2 (en) 2017-04-18
JP5925899B2 (ja) 2016-05-25
EP2891650A4 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
KR101934096B1 (ko) 이델라리십의 제조방법
CA2698245C (en) Process and intermediates for preparing integrase inhibitors
CA2661943C (en) Process and intermediates for preparing integrase inhibitors
WO2011153435A1 (en) Preparation of 5-ethyl-2-{4-[4-(4-tetrazol-1-yl-phenoxymethyl)-thiazol-2-yl]-piperidin-1-yl}-pyrimidine
US8530506B2 (en) Process for production of biphenyl derivative
JP5925899B2 (ja) ビアリール化合物の製造方法
JP5102002B2 (ja) アセナピン合成中間体の製造方法
KR101942064B1 (ko) 신규한 아연 아지드 착물 및 이를 이용한 테트라졸 유도체의 제조방법
JP2014524887A (ja) アジルサルタンの改善された製造方法
US20080076932A1 (en) A process for the preparation of phenyltetrazole compounds
JP5881837B2 (ja) テトラゾール化合物の脱保護方法
ES2554454T3 (es) Método de producción de derivados de imidazol
MX2007007303A (es) Proceso para preparar olmesartan medoxomil a ph superior a 2,5.
TW201002673A (en) A method for preparation of 1-biphenylmethylimidazole compound
US5856337A (en) 2-arylquinolines and process for producing the same
KR101226332B1 (ko) 2-(2-n-부틸-4-히드록시-6-메틸-피리미딘-5-일)-N,N-디메틸아세트아미드의 신규한 제조방법
US20060217554A1 (en) Processes for producing pyrazoloacridone derivative and synthetic intermediate thereof
JP2007106722A5 (ja) 18Fで標識したアミノ酸O-(2-[18F]fluoroethyl)-L-Tyrosineの前駆体の製造方法。
JP2011074073A (ja) 2−(1−ベンゾチオフェン−5−イル)エタノールの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014533118

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14424912

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE